msm_cvp_buf.c 57 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284
  1. // SPDX-License-Identifier: GPL-2.0-only
  2. /*
  3. * Copyright (c) 2020-2021, The Linux Foundation. All rights reserved.
  4. * Copyright (c) 2023 Qualcomm Innovation Center, Inc. All rights reserved.
  5. */
  6. #include <linux/pid.h>
  7. #include <linux/fdtable.h>
  8. #include <linux/rcupdate.h>
  9. #include <linux/fs.h>
  10. #include <linux/dma-buf.h>
  11. #include <linux/sched/task.h>
  12. #include <linux/version.h>
  13. #include "msm_cvp_common.h"
  14. #include "cvp_hfi_api.h"
  15. #include "msm_cvp_debug.h"
  16. #include "msm_cvp_core.h"
  17. #include "msm_cvp_dsp.h"
  18. #include "eva_shared_def.h"
  19. #if (LINUX_VERSION_CODE < KERNEL_VERSION(5, 16, 0))
  20. #define eva_buf_map dma_buf_map
  21. #define _buf_map_set_vaddr dma_buf_map_set_vaddr
  22. #else
  23. #define eva_buf_map iosys_map
  24. #define _buf_map_set_vaddr iosys_map_set_vaddr
  25. #endif
  26. #define CLEAR_USE_BITMAP(idx, inst) \
  27. do { \
  28. clear_bit(idx, &inst->dma_cache.usage_bitmap); \
  29. dprintk(CVP_MEM, "clear %x bit %d dma_cache bitmap 0x%llx\n", \
  30. hash32_ptr(inst->session), smem->bitmap_index, \
  31. inst->dma_cache.usage_bitmap); \
  32. } while (0)
  33. #define SET_USE_BITMAP(idx, inst) \
  34. do { \
  35. set_bit(idx, &inst->dma_cache.usage_bitmap); \
  36. dprintk(CVP_MEM, "Set %x bit %d dma_cache bitmap 0x%llx\n", \
  37. hash32_ptr(inst->session), idx, \
  38. inst->dma_cache.usage_bitmap); \
  39. } while (0)
  40. struct cvp_oob_pool wncc_buf_pool;
  41. static void _wncc_print_cvpwnccbufs_table(struct msm_cvp_inst* inst);
  42. static int _wncc_unmap_metadata_bufs(struct eva_kmd_hfi_packet* in_pkt,
  43. unsigned int num_layers, unsigned int metadata_bufs_offset,
  44. struct eva_kmd_wncc_metadata** wncc_metadata);
  45. void msm_cvp_print_inst_bufs(struct msm_cvp_inst *inst, bool log);
  46. int print_smem(u32 tag, const char *str, struct msm_cvp_inst *inst,
  47. struct msm_cvp_smem *smem)
  48. {
  49. int i;
  50. char name[PKT_NAME_LEN] = "Unknown";
  51. if (!(tag & msm_cvp_debug))
  52. return 0;
  53. if (!inst || !smem) {
  54. dprintk(CVP_ERR, "Invalid inst 0x%llx or smem 0x%llx\n",
  55. inst, smem);
  56. return -EINVAL;
  57. }
  58. if (smem->dma_buf) {
  59. i = get_pkt_index_from_type(smem->pkt_type);
  60. if (i > 0)
  61. strlcpy(name, cvp_hfi_defs[i].name, PKT_NAME_LEN);
  62. if (!atomic_read(&smem->refcount))
  63. dprintk(tag,
  64. " UNUSED mapping %s: 0x%llx size %d iova %#x idx %d pkt_type %s buf_idx %#x fd %d",
  65. str, smem->dma_buf,
  66. smem->size, smem->device_addr, smem->bitmap_index, name, smem->buf_idx, smem->fd);
  67. else
  68. dprintk(tag,
  69. "%s: %x : 0x%llx size %d flags %#x iova %#x idx %d ref %d pkt_type %s buf_idx %#x fd %d",
  70. str, hash32_ptr(inst->session), smem->dma_buf,
  71. smem->size, smem->flags, smem->device_addr,
  72. smem->bitmap_index, atomic_read(&smem->refcount),
  73. name, smem->buf_idx, smem->fd);
  74. }
  75. return 0;
  76. }
  77. static void print_internal_buffer(u32 tag, const char *str,
  78. struct msm_cvp_inst *inst, struct cvp_internal_buf *cbuf)
  79. {
  80. if (!(tag & msm_cvp_debug) || !inst || !cbuf)
  81. return;
  82. if (cbuf->smem->dma_buf) {
  83. dprintk(tag,
  84. "%s: %x : fd %d off %d 0x%llx %s size %d iova %#x",
  85. str, hash32_ptr(inst->session), cbuf->fd,
  86. cbuf->offset, cbuf->smem->dma_buf, cbuf->smem->dma_buf->name,
  87. cbuf->size, cbuf->smem->device_addr);
  88. } else {
  89. dprintk(tag,
  90. "%s: %x : idx %2d fd %d off %d size %d iova %#x",
  91. str, hash32_ptr(inst->session), cbuf->index, cbuf->fd,
  92. cbuf->offset, cbuf->size, cbuf->smem->device_addr);
  93. }
  94. }
  95. void print_cvp_buffer(u32 tag, const char *str, struct msm_cvp_inst *inst,
  96. struct cvp_internal_buf *cbuf)
  97. {
  98. if (!inst || !cbuf) {
  99. dprintk(CVP_ERR,
  100. "%s Invalid params inst %pK, cbuf %pK\n",
  101. str, inst, cbuf);
  102. return;
  103. }
  104. print_smem(tag, str, inst, cbuf->smem);
  105. }
  106. static void _log_smem(struct inst_snapshot *snapshot, struct msm_cvp_inst *inst,
  107. struct msm_cvp_smem *smem, bool logging)
  108. {
  109. if (print_smem(CVP_ERR, "bufdump", inst, smem))
  110. return;
  111. if (!logging || !snapshot)
  112. return;
  113. if (snapshot && snapshot->smem_index < MAX_ENTRIES) {
  114. struct smem_data *s;
  115. s = &snapshot->smem_log[snapshot->smem_index];
  116. snapshot->smem_index++;
  117. s->size = smem->size;
  118. s->flags = smem->flags;
  119. s->device_addr = smem->device_addr;
  120. s->bitmap_index = smem->bitmap_index;
  121. s->refcount = atomic_read(&smem->refcount);
  122. s->pkt_type = smem->pkt_type;
  123. s->buf_idx = smem->buf_idx;
  124. }
  125. }
  126. static void _log_buf(struct inst_snapshot *snapshot, enum smem_prop prop,
  127. struct msm_cvp_inst *inst, struct cvp_internal_buf *cbuf,
  128. bool logging)
  129. {
  130. struct cvp_buf_data *buf = NULL;
  131. u32 index;
  132. print_cvp_buffer(CVP_ERR, "bufdump", inst, cbuf);
  133. if (!logging)
  134. return;
  135. if (snapshot) {
  136. if (prop == SMEM_ADSP && snapshot->dsp_index < MAX_ENTRIES) {
  137. index = snapshot->dsp_index;
  138. buf = &snapshot->dsp_buf_log[index];
  139. snapshot->dsp_index++;
  140. } else if (prop == SMEM_PERSIST &&
  141. snapshot->persist_index < MAX_ENTRIES) {
  142. index = snapshot->persist_index;
  143. buf = &snapshot->persist_buf_log[index];
  144. snapshot->persist_index++;
  145. }
  146. if (buf) {
  147. buf->device_addr = cbuf->smem->device_addr;
  148. buf->size = cbuf->size;
  149. }
  150. }
  151. }
  152. void print_client_buffer(u32 tag, const char *str,
  153. struct msm_cvp_inst *inst, struct eva_kmd_buffer *cbuf)
  154. {
  155. if (!(tag & msm_cvp_debug) || !str || !inst || !cbuf)
  156. return;
  157. dprintk(tag,
  158. "%s: %x : idx %2d fd %d off %d size %d type %d flags 0x%x"
  159. " reserved[0] %u\n",
  160. str, hash32_ptr(inst->session), cbuf->index, cbuf->fd,
  161. cbuf->offset, cbuf->size, cbuf->type, cbuf->flags,
  162. cbuf->reserved[0]);
  163. }
  164. static bool __is_buf_valid(struct msm_cvp_inst *inst,
  165. struct eva_kmd_buffer *buf)
  166. {
  167. struct cvp_hal_session *session;
  168. struct cvp_internal_buf *cbuf = (struct cvp_internal_buf *)0xdeadbeef;
  169. bool found = false;
  170. if (!inst || !inst->core || !buf) {
  171. dprintk(CVP_ERR, "%s: invalid params\n", __func__);
  172. return false;
  173. }
  174. if (buf->fd < 0) {
  175. dprintk(CVP_ERR, "%s: Invalid fd = %d", __func__, buf->fd);
  176. return false;
  177. }
  178. if (buf->offset) {
  179. dprintk(CVP_ERR,
  180. "%s: offset is deprecated, set to 0.\n",
  181. __func__);
  182. return false;
  183. }
  184. session = (struct cvp_hal_session *)inst->session;
  185. mutex_lock(&inst->cvpdspbufs.lock);
  186. list_for_each_entry(cbuf, &inst->cvpdspbufs.list, list) {
  187. if (cbuf->fd == buf->fd) {
  188. if (cbuf->size != buf->size) {
  189. dprintk(CVP_ERR, "%s: buf size mismatch\n",
  190. __func__);
  191. mutex_unlock(&inst->cvpdspbufs.lock);
  192. return false;
  193. }
  194. found = true;
  195. break;
  196. }
  197. }
  198. mutex_unlock(&inst->cvpdspbufs.lock);
  199. if (found) {
  200. print_internal_buffer(CVP_ERR, "duplicate", inst, cbuf);
  201. return false;
  202. }
  203. return true;
  204. }
  205. static struct file *msm_cvp_fget(unsigned int fd, struct task_struct *task,
  206. fmode_t mask, unsigned int refs)
  207. {
  208. struct files_struct *files = task->files;
  209. struct file *file;
  210. if (!files)
  211. return NULL;
  212. rcu_read_lock();
  213. loop:
  214. #if (LINUX_VERSION_CODE < KERNEL_VERSION(5, 13, 0))
  215. file = fcheck_files(files, fd);
  216. #else
  217. file = files_lookup_fd_rcu(files, fd);
  218. #endif
  219. if (file) {
  220. /* File object ref couldn't be taken.
  221. * dup2() atomicity guarantee is the reason
  222. * we loop to catch the new file (or NULL pointer)
  223. */
  224. if (file->f_mode & mask)
  225. file = NULL;
  226. else if (!get_file_rcu(file))
  227. goto loop;
  228. }
  229. rcu_read_unlock();
  230. return file;
  231. }
  232. static struct dma_buf *cvp_dma_buf_get(struct file *file, int fd,
  233. struct task_struct *task)
  234. {
  235. if (file->f_op != gfa_cv.dmabuf_f_op) {
  236. dprintk(CVP_WARN, "fd doesn't refer to dma_buf\n");
  237. return ERR_PTR(-EINVAL);
  238. }
  239. return file->private_data;
  240. }
  241. int msm_cvp_map_buf_dsp(struct msm_cvp_inst *inst, struct eva_kmd_buffer *buf)
  242. {
  243. int rc = 0;
  244. struct cvp_internal_buf *cbuf = NULL;
  245. struct msm_cvp_smem *smem = NULL;
  246. struct dma_buf *dma_buf = NULL;
  247. struct file *file;
  248. if (!__is_buf_valid(inst, buf))
  249. return -EINVAL;
  250. if (!inst->task)
  251. return -EINVAL;
  252. file = msm_cvp_fget(buf->fd, inst->task, FMODE_PATH, 1);
  253. if (file == NULL) {
  254. dprintk(CVP_WARN, "%s fail to get file from fd\n", __func__);
  255. return -EINVAL;
  256. }
  257. dma_buf = cvp_dma_buf_get(
  258. file,
  259. buf->fd,
  260. inst->task);
  261. if (dma_buf == ERR_PTR(-EINVAL)) {
  262. dprintk(CVP_ERR, "%s: Invalid fd = %d", __func__, buf->fd);
  263. rc = -EINVAL;
  264. goto exit;
  265. }
  266. dprintk(CVP_MEM, "dma_buf from internal %llu\n", dma_buf);
  267. cbuf = cvp_kmem_cache_zalloc(&cvp_driver->buf_cache, GFP_KERNEL);
  268. if (!cbuf) {
  269. rc = -ENOMEM;
  270. goto exit;
  271. }
  272. smem = cvp_kmem_cache_zalloc(&cvp_driver->smem_cache, GFP_KERNEL);
  273. if (!smem) {
  274. rc = -ENOMEM;
  275. goto exit;
  276. }
  277. smem->dma_buf = dma_buf;
  278. smem->bitmap_index = MAX_DMABUF_NUMS;
  279. smem->pkt_type = 0;
  280. smem->buf_idx = 0;
  281. smem->fd = buf->fd;
  282. dprintk(CVP_MEM, "%s: dma_buf = %llx\n", __func__, dma_buf);
  283. rc = msm_cvp_map_smem(inst, smem, "map dsp");
  284. if (rc) {
  285. print_client_buffer(CVP_ERR, "map failed", inst, buf);
  286. goto exit;
  287. }
  288. atomic_inc(&smem->refcount);
  289. cbuf->smem = smem;
  290. cbuf->fd = buf->fd;
  291. cbuf->size = buf->size;
  292. cbuf->offset = buf->offset;
  293. cbuf->ownership = CLIENT;
  294. cbuf->index = buf->index;
  295. buf->reserved[0] = (uint32_t)smem->device_addr;
  296. mutex_lock(&inst->cvpdspbufs.lock);
  297. list_add_tail(&cbuf->list, &inst->cvpdspbufs.list);
  298. mutex_unlock(&inst->cvpdspbufs.lock);
  299. return rc;
  300. exit:
  301. fput(file);
  302. if (smem) {
  303. if (smem->device_addr)
  304. msm_cvp_unmap_smem(inst, smem, "unmap dsp");
  305. msm_cvp_smem_put_dma_buf(smem->dma_buf);
  306. cvp_kmem_cache_free(&cvp_driver->smem_cache, smem);
  307. }
  308. if (cbuf)
  309. cvp_kmem_cache_free(&cvp_driver->buf_cache, cbuf);
  310. return rc;
  311. }
  312. int msm_cvp_unmap_buf_dsp(struct msm_cvp_inst *inst, struct eva_kmd_buffer *buf)
  313. {
  314. int rc = 0;
  315. bool found;
  316. struct cvp_internal_buf *cbuf = (struct cvp_internal_buf *)0xdeadbeef;
  317. struct cvp_hal_session *session;
  318. if (!inst || !inst->core || !buf) {
  319. dprintk(CVP_ERR, "%s: invalid params\n", __func__);
  320. return -EINVAL;
  321. }
  322. session = (struct cvp_hal_session *)inst->session;
  323. if (!session) {
  324. dprintk(CVP_ERR, "%s: invalid session\n", __func__);
  325. return -EINVAL;
  326. }
  327. mutex_lock(&inst->cvpdspbufs.lock);
  328. found = false;
  329. list_for_each_entry(cbuf, &inst->cvpdspbufs.list, list) {
  330. if (cbuf->fd == buf->fd) {
  331. found = true;
  332. break;
  333. }
  334. }
  335. if (!found) {
  336. mutex_unlock(&inst->cvpdspbufs.lock);
  337. print_client_buffer(CVP_ERR, "invalid", inst, buf);
  338. return -EINVAL;
  339. }
  340. if (cbuf->smem->device_addr) {
  341. u64 idx = inst->unused_dsp_bufs.ktid;
  342. inst->unused_dsp_bufs.smem[idx] = *(cbuf->smem);
  343. inst->unused_dsp_bufs.nr++;
  344. inst->unused_dsp_bufs.nr =
  345. (inst->unused_dsp_bufs.nr > MAX_FRAME_BUFFER_NUMS)?
  346. MAX_FRAME_BUFFER_NUMS : inst->unused_dsp_bufs.nr;
  347. inst->unused_dsp_bufs.ktid = ++idx % MAX_FRAME_BUFFER_NUMS;
  348. msm_cvp_unmap_smem(inst, cbuf->smem, "unmap dsp");
  349. msm_cvp_smem_put_dma_buf(cbuf->smem->dma_buf);
  350. atomic_dec(&cbuf->smem->refcount);
  351. }
  352. list_del(&cbuf->list);
  353. mutex_unlock(&inst->cvpdspbufs.lock);
  354. cvp_kmem_cache_free(&cvp_driver->smem_cache, cbuf->smem);
  355. cvp_kmem_cache_free(&cvp_driver->buf_cache, cbuf);
  356. return rc;
  357. }
  358. int msm_cvp_map_buf_wncc(struct msm_cvp_inst *inst,
  359. struct eva_kmd_buffer *buf)
  360. {
  361. int rc = 0, i;
  362. bool found = false;
  363. struct cvp_internal_buf* cbuf = (struct cvp_internal_buf *)0xdeadbeef;
  364. struct msm_cvp_smem* smem = NULL;
  365. struct dma_buf* dma_buf = NULL;
  366. if (!inst || !inst->core || !buf) {
  367. dprintk(CVP_ERR, "%s: invalid params", __func__);
  368. return -EINVAL;
  369. }
  370. if (!inst->session) {
  371. dprintk(CVP_ERR, "%s: invalid session", __func__);
  372. return -EINVAL;
  373. }
  374. if (buf->index) {
  375. dprintk(CVP_ERR, "%s: buf index is NOT 0 fd=%d",
  376. __func__, buf->fd);
  377. return -EINVAL;
  378. }
  379. if (buf->fd < 0) {
  380. dprintk(CVP_ERR, "%s: invalid fd = %d", __func__, buf->fd);
  381. return -EINVAL;
  382. }
  383. if (buf->offset) {
  384. dprintk(CVP_ERR, "%s: offset is not supported, set to 0.",
  385. __func__);
  386. return -EINVAL;
  387. }
  388. mutex_lock(&inst->cvpwnccbufs.lock);
  389. list_for_each_entry(cbuf, &inst->cvpwnccbufs.list, list) {
  390. if (cbuf->fd == buf->fd) {
  391. if (cbuf->size != buf->size) {
  392. dprintk(CVP_ERR, "%s: buf size mismatch",
  393. __func__);
  394. mutex_unlock(&inst->cvpwnccbufs.lock);
  395. return -EINVAL;
  396. }
  397. found = true;
  398. break;
  399. }
  400. }
  401. mutex_unlock(&inst->cvpwnccbufs.lock);
  402. if (found) {
  403. print_internal_buffer(CVP_ERR, "duplicate", inst, cbuf);
  404. return -EINVAL;
  405. }
  406. dma_buf = msm_cvp_smem_get_dma_buf(buf->fd);
  407. if (!dma_buf) {
  408. dprintk(CVP_ERR, "%s: invalid fd = %d", __func__, buf->fd);
  409. return -EINVAL;
  410. }
  411. cbuf = cvp_kmem_cache_zalloc(&cvp_driver->buf_cache, GFP_KERNEL);
  412. if (!cbuf) {
  413. msm_cvp_smem_put_dma_buf(dma_buf);
  414. return -ENOMEM;
  415. }
  416. smem = cvp_kmem_cache_zalloc(&cvp_driver->smem_cache, GFP_KERNEL);
  417. if (!smem) {
  418. cvp_kmem_cache_free(&cvp_driver->buf_cache, cbuf);
  419. msm_cvp_smem_put_dma_buf(dma_buf);
  420. return -ENOMEM;
  421. }
  422. smem->dma_buf = dma_buf;
  423. smem->bitmap_index = MAX_DMABUF_NUMS;
  424. smem->pkt_type = 0;
  425. smem->buf_idx = 0;
  426. smem->fd = buf->fd;
  427. dprintk(CVP_MEM, "%s: dma_buf = %llx", __func__, dma_buf);
  428. rc = msm_cvp_map_smem(inst, smem, "map wncc");
  429. if (rc) {
  430. dprintk(CVP_ERR, "%s: map failed", __func__);
  431. print_client_buffer(CVP_ERR, __func__, inst, buf);
  432. goto exit;
  433. }
  434. cbuf->smem = smem;
  435. cbuf->fd = buf->fd;
  436. cbuf->size = buf->size;
  437. cbuf->offset = buf->offset;
  438. cbuf->ownership = CLIENT;
  439. cbuf->index = buf->index;
  440. /* Added for PreSil/RUMI testing */
  441. #ifdef USE_PRESIL
  442. dprintk(CVP_DBG,
  443. "wncc buffer is %x for cam_presil_send_buffer"
  444. " with MAP_ADDR_OFFSET %x",
  445. (u64)(smem->device_addr) - MAP_ADDR_OFFSET, MAP_ADDR_OFFSET);
  446. cam_presil_send_buffer((u64)smem->dma_buf, 0,
  447. (u32)cbuf->offset, (u32)cbuf->size,
  448. (u64)(smem->device_addr) - MAP_ADDR_OFFSET);
  449. #endif
  450. mutex_lock(&inst->cvpwnccbufs.lock);
  451. if (inst->cvpwnccbufs_table == NULL) {
  452. inst->cvpwnccbufs_table =
  453. (struct msm_cvp_wncc_buffer*) kzalloc(
  454. sizeof(struct msm_cvp_wncc_buffer) *
  455. EVA_KMD_WNCC_MAX_SRC_BUFS,
  456. GFP_KERNEL);
  457. if (!inst->cvpwnccbufs_table) {
  458. mutex_unlock(&inst->cvpwnccbufs.lock);
  459. goto exit;
  460. }
  461. }
  462. list_add_tail(&cbuf->list, &inst->cvpwnccbufs.list);
  463. for (i = 0; i < EVA_KMD_WNCC_MAX_SRC_BUFS; i++)
  464. {
  465. if (inst->cvpwnccbufs_table[i].iova == 0)
  466. {
  467. inst->cvpwnccbufs_num++;
  468. inst->cvpwnccbufs_table[i].fd = buf->fd;
  469. inst->cvpwnccbufs_table[i].iova = smem->device_addr;
  470. inst->cvpwnccbufs_table[i].size = smem->size;
  471. /* buf reserved[0] used to store wncc src buf id */
  472. buf->reserved[0] = i + EVA_KMD_WNCC_SRC_BUF_ID_OFFSET;
  473. /* cbuf ktid used to store wncc src buf id */
  474. cbuf->ktid = i + EVA_KMD_WNCC_SRC_BUF_ID_OFFSET;
  475. dprintk(CVP_MEM, "%s: wncc buf iova: 0x%08X",
  476. __func__, inst->cvpwnccbufs_table[i].iova);
  477. break;
  478. }
  479. }
  480. if (i == EVA_KMD_WNCC_MAX_SRC_BUFS) {
  481. dprintk(CVP_ERR,
  482. "%s: wncc buf table full - max (%u) already registered",
  483. __func__, EVA_KMD_WNCC_MAX_SRC_BUFS);
  484. /* _wncc_print_cvpwnccbufs_table(inst); */
  485. mutex_unlock(&inst->cvpwnccbufs.lock);
  486. rc = -EDQUOT;
  487. goto exit;
  488. }
  489. mutex_unlock(&inst->cvpwnccbufs.lock);
  490. return rc;
  491. exit:
  492. if (smem->device_addr)
  493. msm_cvp_unmap_smem(inst, smem, "unmap wncc");
  494. msm_cvp_smem_put_dma_buf(smem->dma_buf);
  495. cvp_kmem_cache_free(&cvp_driver->buf_cache, cbuf);
  496. cbuf = NULL;
  497. cvp_kmem_cache_free(&cvp_driver->smem_cache, smem);
  498. smem = NULL;
  499. return rc;
  500. }
  501. int msm_cvp_unmap_buf_wncc(struct msm_cvp_inst *inst,
  502. struct eva_kmd_buffer *buf)
  503. {
  504. int rc = 0;
  505. bool found;
  506. struct cvp_internal_buf *cbuf = (struct cvp_internal_buf *)0xdeadbeef;
  507. uint32_t buf_id, buf_idx;
  508. if (!inst || !inst->core || !buf) {
  509. dprintk(CVP_ERR, "%s: invalid params", __func__);
  510. return -EINVAL;
  511. }
  512. if (!inst->session) {
  513. dprintk(CVP_ERR, "%s: invalid session", __func__);
  514. return -EINVAL;
  515. }
  516. if (buf->index) {
  517. dprintk(CVP_ERR, "%s: buf index is NOT 0 fd=%d",
  518. __func__, buf->fd);
  519. return -EINVAL;
  520. }
  521. buf_id = buf->reserved[0];
  522. if (buf_id < EVA_KMD_WNCC_SRC_BUF_ID_OFFSET || buf_id >=
  523. (EVA_KMD_WNCC_MAX_SRC_BUFS + EVA_KMD_WNCC_SRC_BUF_ID_OFFSET)) {
  524. dprintk(CVP_ERR, "%s: invalid buffer id %d",
  525. __func__, buf->reserved[0]);
  526. return -EINVAL;
  527. }
  528. mutex_lock(&inst->cvpwnccbufs.lock);
  529. if (inst->cvpwnccbufs_num == 0) {
  530. dprintk(CVP_ERR, "%s: no wncc buffers currently mapped", __func__);
  531. mutex_unlock(&inst->cvpwnccbufs.lock);
  532. return -EINVAL;
  533. }
  534. buf_idx = buf_id - EVA_KMD_WNCC_SRC_BUF_ID_OFFSET;
  535. if (inst->cvpwnccbufs_table[buf_idx].iova == 0) {
  536. dprintk(CVP_ERR, "%s: buffer id %d not found",
  537. __func__, buf_id);
  538. mutex_unlock(&inst->cvpwnccbufs.lock);
  539. return -EINVAL;
  540. }
  541. buf->fd = inst->cvpwnccbufs_table[buf_idx].fd;
  542. found = false;
  543. list_for_each_entry(cbuf, &inst->cvpwnccbufs.list, list) {
  544. if (cbuf->fd == buf->fd) {
  545. found = true;
  546. break;
  547. }
  548. }
  549. if (!found) {
  550. dprintk(CVP_ERR, "%s: buffer id %d not found",
  551. __func__, buf_id);
  552. print_client_buffer(CVP_ERR, __func__, inst, buf);
  553. _wncc_print_cvpwnccbufs_table(inst);
  554. mutex_unlock(&inst->cvpwnccbufs.lock);
  555. return -EINVAL;
  556. }
  557. if (cbuf->smem->device_addr) {
  558. u64 idx = inst->unused_wncc_bufs.ktid;
  559. inst->unused_wncc_bufs.smem[idx] = *(cbuf->smem);
  560. inst->unused_wncc_bufs.nr++;
  561. inst->unused_wncc_bufs.nr =
  562. (inst->unused_wncc_bufs.nr > NUM_WNCC_BUFS)?
  563. NUM_WNCC_BUFS : inst->unused_wncc_bufs.nr;
  564. inst->unused_wncc_bufs.ktid = ++idx % NUM_WNCC_BUFS;
  565. }
  566. mutex_unlock(&inst->cvpwnccbufs.lock);
  567. if (cbuf->smem->device_addr) {
  568. msm_cvp_unmap_smem(inst, cbuf->smem, "unmap wncc");
  569. msm_cvp_smem_put_dma_buf(cbuf->smem->dma_buf);
  570. }
  571. mutex_lock(&inst->cvpwnccbufs.lock);
  572. list_del(&cbuf->list);
  573. inst->cvpwnccbufs_table[buf_idx].fd = 0;
  574. inst->cvpwnccbufs_table[buf_idx].iova = 0;
  575. inst->cvpwnccbufs_table[buf_idx].size = 0;
  576. inst->cvpwnccbufs_num--;
  577. if (inst->cvpwnccbufs_num == 0) {
  578. kfree(inst->cvpwnccbufs_table);
  579. inst->cvpwnccbufs_table = NULL;
  580. }
  581. mutex_unlock(&inst->cvpwnccbufs.lock);
  582. cvp_kmem_cache_free(&cvp_driver->smem_cache, cbuf->smem);
  583. cvp_kmem_cache_free(&cvp_driver->buf_cache, cbuf);
  584. return rc;
  585. }
  586. static void _wncc_print_oob(struct eva_kmd_oob_wncc* wncc_oob)
  587. {
  588. u32 i, j;
  589. if (!wncc_oob) {
  590. dprintk(CVP_ERR, "%s: invalid params", __func__);
  591. return;
  592. }
  593. dprintk(CVP_DBG, "%s: wncc OOB --", __func__);
  594. dprintk(CVP_DBG, "%s: num_layers: %u", __func__, wncc_oob->num_layers);
  595. for (i = 0; i < wncc_oob->num_layers; i++) {
  596. dprintk(CVP_DBG, "%s: layers[%u].num_addrs: %u",
  597. __func__, i, wncc_oob->layers[i].num_addrs);
  598. for (j = 0; j < wncc_oob->layers[i].num_addrs; j++) {
  599. dprintk(CVP_DBG,
  600. "%s: layers[%u].addrs[%u]: %04u 0x%08x",
  601. __func__, i, j,
  602. wncc_oob->layers[i].addrs[j].buffer_id,
  603. wncc_oob->layers[i].addrs[j].offset);
  604. }
  605. }
  606. }
  607. static void _wncc_print_cvpwnccbufs_table(struct msm_cvp_inst* inst)
  608. {
  609. u32 i, entries = 0;
  610. if (!inst) {
  611. dprintk(CVP_ERR, "%s: invalid params", __func__);
  612. return;
  613. }
  614. if (inst->cvpwnccbufs_num == 0) {
  615. dprintk(CVP_DBG, "%s: wncc buffer look-up table is empty",
  616. __func__);
  617. return;
  618. }
  619. if (!inst->cvpwnccbufs_table) {
  620. dprintk(CVP_ERR, "%s: invalid params", __func__);
  621. return;
  622. }
  623. dprintk(CVP_DBG, "%s: wncc buffer table:", __func__);
  624. for (i = 0; i < EVA_KMD_WNCC_MAX_SRC_BUFS &&
  625. entries < inst->cvpwnccbufs_num; i++) {
  626. if (inst->cvpwnccbufs_table[i].iova != 0) {
  627. dprintk(CVP_DBG,
  628. "%s: buf_idx=%04d --> "
  629. "fd=%03d, iova=0x%08x, size=%d",
  630. __func__, i,
  631. inst->cvpwnccbufs_table[i].fd,
  632. inst->cvpwnccbufs_table[i].iova,
  633. inst->cvpwnccbufs_table[i].size);
  634. entries++;
  635. }
  636. }
  637. }
  638. static void _wncc_print_metadata_buf(u32 num_layers, u32 num_addrs,
  639. struct eva_kmd_wncc_metadata** wncc_metadata)
  640. {
  641. u32 i, j, iova;
  642. if (num_layers < 1 || num_layers > EVA_KMD_WNCC_MAX_LAYERS ||
  643. !wncc_metadata) {
  644. dprintk(CVP_ERR, "%s: invalid params", __func__);
  645. return;
  646. }
  647. dprintk(CVP_DBG, "%s: wncc metadata buffers --", __func__);
  648. dprintk(CVP_DBG, "%s: num_layers: %u", __func__, num_layers);
  649. dprintk(CVP_DBG, "%s: num_addrs: %u", __func__, num_addrs);
  650. for (i = 0; i < num_layers; i++) {
  651. for (j = 0; j < num_addrs; j++) {
  652. iova = (wncc_metadata[i][j].iova_msb << 22) |
  653. wncc_metadata[i][j].iova_lsb;
  654. dprintk(CVP_DBG,
  655. "%s: wncc_metadata[%u][%u]: "
  656. "%4u %3u %4u %3u 0x%08x %1u %4d %4d %4d %4d",
  657. __func__, i, j,
  658. wncc_metadata[i][j].loc_x_dec,
  659. wncc_metadata[i][j].loc_x_frac,
  660. wncc_metadata[i][j].loc_y_dec,
  661. wncc_metadata[i][j].loc_y_frac,
  662. iova,
  663. wncc_metadata[i][j].scale_idx,
  664. wncc_metadata[i][j].aff_coeff_3,
  665. wncc_metadata[i][j].aff_coeff_2,
  666. wncc_metadata[i][j].aff_coeff_1,
  667. wncc_metadata[i][j].aff_coeff_0);
  668. }
  669. }
  670. }
  671. static int _wncc_copy_oob_from_user(struct eva_kmd_hfi_packet* in_pkt,
  672. struct eva_kmd_oob_wncc* wncc_oob)
  673. {
  674. int rc = 0;
  675. u32 oob_type = 0;
  676. struct eva_kmd_oob_buf* oob_buf_u;
  677. struct eva_kmd_oob_wncc* wncc_oob_u;
  678. struct eva_kmd_oob_wncc* wncc_oob_k;
  679. unsigned int i;
  680. u32 num_addrs;
  681. if (!in_pkt || !wncc_oob) {
  682. dprintk(CVP_ERR, "%s: invalid params", __func__);
  683. return -EINVAL;
  684. }
  685. oob_buf_u = in_pkt->oob_buf;
  686. if (!access_ok(oob_buf_u, sizeof(*oob_buf_u))) {
  687. dprintk(CVP_ERR, "%s: invalid OOB buf pointer", __func__);
  688. return -EINVAL;
  689. }
  690. rc = get_user(oob_type, &oob_buf_u->oob_type);
  691. if (rc)
  692. return rc;
  693. if (oob_type != EVA_KMD_OOB_WNCC) {
  694. dprintk(CVP_ERR, "%s: incorrect OOB type (%d) for wncc",
  695. __func__, oob_type);
  696. return -EINVAL;
  697. }
  698. wncc_oob_u = &oob_buf_u->wncc;
  699. wncc_oob_k = wncc_oob;
  700. rc = get_user(wncc_oob_k->metadata_bufs_offset,
  701. &wncc_oob_u->metadata_bufs_offset);
  702. if (rc)
  703. return rc;
  704. if (wncc_oob_k->metadata_bufs_offset > ((sizeof(in_pkt->pkt_data)
  705. - sizeof(struct cvp_buf_type)) / sizeof(__u32))) {
  706. dprintk(CVP_ERR, "%s: invalid wncc metadata bufs offset",
  707. __func__);
  708. return -EINVAL;
  709. }
  710. rc = get_user(wncc_oob_k->num_layers, &wncc_oob_u->num_layers);
  711. if (rc)
  712. return rc;
  713. if (wncc_oob_k->num_layers < 1 ||
  714. wncc_oob_k->num_layers > EVA_KMD_WNCC_MAX_LAYERS) {
  715. dprintk(CVP_ERR, "%s: invalid wncc num layers", __func__);
  716. return -EINVAL;
  717. }
  718. for (i = 0; i < wncc_oob_k->num_layers; i++) {
  719. rc = get_user(wncc_oob_k->layers[i].num_addrs,
  720. &wncc_oob_u->layers[i].num_addrs);
  721. if (rc)
  722. break;
  723. num_addrs = wncc_oob_k->layers[i].num_addrs;
  724. if (num_addrs < 1 || num_addrs > EVA_KMD_WNCC_MAX_ADDRESSES) {
  725. dprintk(CVP_ERR,
  726. "%s: invalid wncc num addrs for layer %u",
  727. __func__, i);
  728. rc = -EINVAL;
  729. break;
  730. }
  731. rc = copy_from_user(wncc_oob_k->layers[i].addrs,
  732. wncc_oob_u->layers[i].addrs,
  733. wncc_oob_k->layers[i].num_addrs *
  734. sizeof(struct eva_kmd_wncc_addr));
  735. if (rc)
  736. break;
  737. }
  738. if (false)
  739. _wncc_print_oob(wncc_oob);
  740. return rc;
  741. }
  742. static int _wncc_map_metadata_bufs(struct eva_kmd_hfi_packet* in_pkt,
  743. unsigned int num_layers, unsigned int metadata_bufs_offset,
  744. struct eva_kmd_wncc_metadata** wncc_metadata)
  745. {
  746. int rc = 0, i;
  747. struct cvp_buf_type* wncc_metadata_bufs;
  748. struct dma_buf* dmabuf;
  749. struct eva_buf_map map;
  750. if (!in_pkt || !wncc_metadata ||
  751. num_layers < 1 || num_layers > EVA_KMD_WNCC_MAX_LAYERS) {
  752. dprintk(CVP_ERR, "%s: invalid params", __func__);
  753. return -EINVAL;
  754. }
  755. if (metadata_bufs_offset > ((sizeof(in_pkt->pkt_data)
  756. - sizeof(struct cvp_buf_type)) / sizeof(__u32))) {
  757. dprintk(CVP_ERR, "%s: invalid wncc metadata bufs offset",
  758. __func__);
  759. return -EINVAL;
  760. }
  761. wncc_metadata_bufs = (struct cvp_buf_type*)
  762. &in_pkt->pkt_data[metadata_bufs_offset];
  763. for (i = 0; i < num_layers; i++) {
  764. dmabuf = dma_buf_get(wncc_metadata_bufs[i].fd);
  765. if (IS_ERR(dmabuf)) {
  766. rc = PTR_ERR(dmabuf);
  767. dprintk(CVP_ERR,
  768. "%s: dma_buf_get() failed for "
  769. "wncc_metadata_bufs[%d], rc %d",
  770. __func__, i, rc);
  771. break;
  772. }
  773. rc = dma_buf_begin_cpu_access(dmabuf, DMA_TO_DEVICE);
  774. if (rc) {
  775. dprintk(CVP_ERR,
  776. "%s: dma_buf_begin_cpu_access() failed "
  777. "for wncc_metadata_bufs[%d], rc %d",
  778. __func__, i, rc);
  779. dma_buf_put(dmabuf);
  780. break;
  781. }
  782. rc = dma_buf_vmap(dmabuf, &map);
  783. if (rc) {
  784. dprintk(CVP_ERR,
  785. "%s: dma_buf_vmap() failed for "
  786. "wncc_metadata_bufs[%d]",
  787. __func__, i);
  788. dma_buf_end_cpu_access(dmabuf, DMA_TO_DEVICE);
  789. dma_buf_put(dmabuf);
  790. break;
  791. }
  792. dprintk(CVP_DBG,
  793. "%s: wncc_metadata_bufs[%d] map.is_iomem is %d",
  794. __func__, i, map.is_iomem);
  795. wncc_metadata[i] = (struct eva_kmd_wncc_metadata*)map.vaddr;
  796. dma_buf_put(dmabuf);
  797. }
  798. if (rc)
  799. _wncc_unmap_metadata_bufs(in_pkt, i, metadata_bufs_offset,
  800. wncc_metadata);
  801. return rc;
  802. }
  803. static int _wncc_unmap_metadata_bufs(struct eva_kmd_hfi_packet* in_pkt,
  804. unsigned int num_layers, unsigned int metadata_bufs_offset,
  805. struct eva_kmd_wncc_metadata** wncc_metadata)
  806. {
  807. int rc = 0, i;
  808. struct cvp_buf_type* wncc_metadata_bufs;
  809. struct dma_buf* dmabuf;
  810. struct eva_buf_map map;
  811. if (!in_pkt || !wncc_metadata ||
  812. num_layers < 1 || num_layers > EVA_KMD_WNCC_MAX_LAYERS) {
  813. dprintk(CVP_ERR, "%s: invalid params", __func__);
  814. return -EINVAL;
  815. }
  816. if (metadata_bufs_offset > ((sizeof(in_pkt->pkt_data)
  817. - sizeof(struct cvp_buf_type)) / sizeof(__u32))) {
  818. dprintk(CVP_ERR, "%s: invalid wncc metadata bufs offset",
  819. __func__);
  820. return -EINVAL;
  821. }
  822. wncc_metadata_bufs = (struct cvp_buf_type*)
  823. &in_pkt->pkt_data[metadata_bufs_offset];
  824. for (i = 0; i < num_layers; i++) {
  825. if (!wncc_metadata[i]) {
  826. rc = -EINVAL;
  827. break;
  828. }
  829. dmabuf = dma_buf_get(wncc_metadata_bufs[i].fd);
  830. if (IS_ERR(dmabuf)) {
  831. rc = -PTR_ERR(dmabuf);
  832. dprintk(CVP_ERR,
  833. "%s: dma_buf_get() failed for "
  834. "wncc_metadata_bufs[%d], rc %d",
  835. __func__, i, rc);
  836. break;
  837. }
  838. _buf_map_set_vaddr(&map, wncc_metadata[i]);
  839. dma_buf_vunmap(dmabuf, &map);
  840. wncc_metadata[i] = NULL;
  841. rc = dma_buf_end_cpu_access(dmabuf, DMA_TO_DEVICE);
  842. dma_buf_put(dmabuf);
  843. if (rc) {
  844. dprintk(CVP_ERR,
  845. "%s: dma_buf_end_cpu_access() failed "
  846. "for wncc_metadata_bufs[%d], rc %d",
  847. __func__, i, rc);
  848. break;
  849. }
  850. }
  851. return rc;
  852. }
  853. static int init_wncc_bufs(void)
  854. {
  855. int i;
  856. for (i = 0; i < NUM_WNCC_BUFS; i++) {
  857. wncc_buf_pool.bufs[i] = (struct eva_kmd_oob_wncc*)kzalloc(
  858. sizeof(struct eva_kmd_oob_wncc), GFP_KERNEL);
  859. if (!wncc_buf_pool.bufs[i]) {
  860. i--;
  861. goto exit_fail;
  862. }
  863. }
  864. wncc_buf_pool.used_bitmap = 0;
  865. wncc_buf_pool.allocated = true;
  866. return 0;
  867. exit_fail:
  868. while (i >= 0) {
  869. kfree(wncc_buf_pool.bufs[i]);
  870. i--;
  871. }
  872. return -ENOMEM;
  873. }
  874. static int alloc_wncc_buf(struct wncc_oob_buf *wob)
  875. {
  876. int rc, i;
  877. mutex_lock(&wncc_buf_pool.lock);
  878. if (!wncc_buf_pool.allocated) {
  879. rc = init_wncc_bufs();
  880. if (rc) {
  881. mutex_unlock(&wncc_buf_pool.lock);
  882. return rc;
  883. }
  884. }
  885. for (i = 0; i < NUM_WNCC_BUFS; i++) {
  886. if (!(wncc_buf_pool.used_bitmap & BIT(i))) {
  887. wncc_buf_pool.used_bitmap |= BIT(i);
  888. wob->bitmap_idx = i;
  889. wob->buf = wncc_buf_pool.bufs[i];
  890. mutex_unlock(&wncc_buf_pool.lock);
  891. return 0;
  892. }
  893. }
  894. mutex_unlock(&wncc_buf_pool.lock);
  895. wob->bitmap_idx = 0xff;
  896. wob->buf = (struct eva_kmd_oob_wncc*)kzalloc(
  897. sizeof(struct eva_kmd_oob_wncc), GFP_KERNEL);
  898. if (!wob->buf)
  899. rc = -ENOMEM;
  900. else
  901. rc = 0;
  902. return rc;
  903. }
  904. static void free_wncc_buf(struct wncc_oob_buf *wob)
  905. {
  906. if (!wob)
  907. return;
  908. if (wob->bitmap_idx == 0xff) {
  909. kfree(wob->buf);
  910. return;
  911. }
  912. if (wob->bitmap_idx < NUM_WNCC_BUFS) {
  913. mutex_lock(&wncc_buf_pool.lock);
  914. wncc_buf_pool.used_bitmap &= ~BIT(wob->bitmap_idx);
  915. memset(wob->buf, 0, sizeof(struct eva_kmd_oob_wncc));
  916. wob->buf = NULL;
  917. mutex_unlock(&wncc_buf_pool.lock);
  918. }
  919. }
  920. static int msm_cvp_proc_oob_wncc(struct msm_cvp_inst* inst,
  921. struct eva_kmd_hfi_packet* in_pkt)
  922. {
  923. int rc = 0;
  924. struct eva_kmd_oob_wncc* wncc_oob;
  925. struct wncc_oob_buf wob;
  926. struct eva_kmd_wncc_metadata* wncc_metadata[EVA_KMD_WNCC_MAX_LAYERS];
  927. unsigned int i, j;
  928. bool empty = false;
  929. u32 buf_id, buf_idx, buf_offset, iova;
  930. if (!inst || !inst->core || !in_pkt) {
  931. dprintk(CVP_ERR, "%s: invalid params", __func__);
  932. return -EINVAL;
  933. }
  934. rc = alloc_wncc_buf(&wob);
  935. if (rc)
  936. return -ENOMEM;
  937. wncc_oob = wob.buf;
  938. rc = _wncc_copy_oob_from_user(in_pkt, wncc_oob);
  939. if (rc) {
  940. dprintk(CVP_ERR, "%s: OOB buf copying failed", __func__);
  941. goto exit;
  942. }
  943. rc = _wncc_map_metadata_bufs(in_pkt,
  944. wncc_oob->num_layers, wncc_oob->metadata_bufs_offset,
  945. wncc_metadata);
  946. if (rc) {
  947. dprintk(CVP_ERR, "%s: failed to map wncc metadata bufs",
  948. __func__);
  949. goto exit;
  950. }
  951. mutex_lock(&inst->cvpwnccbufs.lock);
  952. if (inst->cvpwnccbufs_num == 0 || inst->cvpwnccbufs_table == NULL) {
  953. dprintk(CVP_ERR, "%s: no wncc bufs currently mapped", __func__);
  954. empty = true;
  955. rc = -EINVAL;
  956. }
  957. for (i = 0; !empty && i < wncc_oob->num_layers; i++) {
  958. for (j = 0; j < wncc_oob->layers[i].num_addrs; j++) {
  959. buf_id = wncc_oob->layers[i].addrs[j].buffer_id;
  960. if (buf_id < EVA_KMD_WNCC_SRC_BUF_ID_OFFSET ||
  961. buf_id >= (EVA_KMD_WNCC_SRC_BUF_ID_OFFSET +
  962. EVA_KMD_WNCC_MAX_SRC_BUFS)) {
  963. dprintk(CVP_ERR,
  964. "%s: invalid wncc buf id %u "
  965. "in layer #%u address #%u",
  966. __func__, buf_id, i, j);
  967. rc = -EINVAL;
  968. break;
  969. }
  970. buf_idx = buf_id - EVA_KMD_WNCC_SRC_BUF_ID_OFFSET;
  971. if (inst->cvpwnccbufs_table[buf_idx].iova == 0) {
  972. dprintk(CVP_ERR,
  973. "%s: unmapped wncc buf id %u "
  974. "in layer #%u address #%u",
  975. __func__, buf_id, i, j);
  976. /* _wncc_print_cvpwnccbufs_table(inst); */
  977. rc = -EINVAL;
  978. break;
  979. }
  980. buf_offset = wncc_oob->layers[i].addrs[j].offset;
  981. if (buf_offset >=
  982. inst->cvpwnccbufs_table[buf_idx].size) {
  983. /* NOTE: This buffer offset validation is
  984. * not comprehensive since wncc src image
  985. * resolution information is not known to
  986. * KMD. UMD is responsible for comprehensive
  987. * validation.
  988. */
  989. dprintk(CVP_ERR,
  990. "%s: invalid wncc buf offset %u "
  991. "in layer #%u address #%u",
  992. __func__, buf_offset, i, j);
  993. rc = -EINVAL;
  994. break;
  995. }
  996. iova = inst->cvpwnccbufs_table[buf_idx].iova +
  997. buf_offset;
  998. wncc_metadata[i][j].iova_lsb = iova;
  999. wncc_metadata[i][j].iova_msb = iova >> 22;
  1000. }
  1001. }
  1002. mutex_unlock(&inst->cvpwnccbufs.lock);
  1003. if (false)
  1004. _wncc_print_metadata_buf(wncc_oob->num_layers,
  1005. wncc_oob->layers[0].num_addrs, wncc_metadata);
  1006. if (_wncc_unmap_metadata_bufs(in_pkt,
  1007. wncc_oob->num_layers, wncc_oob->metadata_bufs_offset,
  1008. wncc_metadata)) {
  1009. dprintk(CVP_ERR, "%s: failed to unmap wncc metadata bufs",
  1010. __func__);
  1011. }
  1012. exit:
  1013. free_wncc_buf(&wob);
  1014. return rc;
  1015. }
  1016. int msm_cvp_proc_oob(struct msm_cvp_inst* inst,
  1017. struct eva_kmd_hfi_packet* in_pkt)
  1018. {
  1019. int rc = 0;
  1020. struct cvp_hfi_cmd_session_hdr* cmd_hdr =
  1021. (struct cvp_hfi_cmd_session_hdr*)in_pkt;
  1022. if (!inst || !inst->core || !in_pkt) {
  1023. dprintk(CVP_ERR, "%s: invalid params", __func__);
  1024. return -EINVAL;
  1025. }
  1026. switch (cmd_hdr->packet_type) {
  1027. case HFI_CMD_SESSION_CVP_WARP_NCC_FRAME:
  1028. rc = msm_cvp_proc_oob_wncc(inst, in_pkt);
  1029. break;
  1030. default:
  1031. break;
  1032. }
  1033. return rc;
  1034. }
  1035. void msm_cvp_cache_operations(struct msm_cvp_smem *smem, u32 type,
  1036. u32 offset, u32 size)
  1037. {
  1038. enum smem_cache_ops cache_op;
  1039. if (msm_cvp_cacheop_disabled)
  1040. return;
  1041. if (!smem) {
  1042. dprintk(CVP_ERR, "%s: invalid params\n", __func__);
  1043. return;
  1044. }
  1045. switch (type) {
  1046. case EVA_KMD_BUFTYPE_INPUT:
  1047. cache_op = SMEM_CACHE_CLEAN;
  1048. break;
  1049. case EVA_KMD_BUFTYPE_OUTPUT:
  1050. cache_op = SMEM_CACHE_INVALIDATE;
  1051. break;
  1052. default:
  1053. cache_op = SMEM_CACHE_CLEAN_INVALIDATE;
  1054. }
  1055. dprintk(CVP_MEM,
  1056. "%s: cache operation enabled for dma_buf: %llx, cache_op: %d, offset: %d, size: %d\n",
  1057. __func__, smem->dma_buf, cache_op, offset, size);
  1058. msm_cvp_smem_cache_operations(smem->dma_buf, cache_op, offset, size);
  1059. }
  1060. static struct msm_cvp_smem *msm_cvp_session_find_smem(struct msm_cvp_inst *inst,
  1061. struct dma_buf *dma_buf,
  1062. u32 pkt_type)
  1063. {
  1064. struct msm_cvp_smem *smem;
  1065. struct msm_cvp_frame *frame = (struct msm_cvp_frame *)0xdeadbeef;
  1066. struct cvp_internal_buf *buf = (struct cvp_internal_buf *)0xdeadbeef;
  1067. int i;
  1068. if (inst->dma_cache.nr > MAX_DMABUF_NUMS)
  1069. return NULL;
  1070. mutex_lock(&inst->dma_cache.lock);
  1071. for (i = 0; i < inst->dma_cache.nr; i++)
  1072. if (inst->dma_cache.entries[i]->dma_buf == dma_buf) {
  1073. SET_USE_BITMAP(i, inst);
  1074. smem = inst->dma_cache.entries[i];
  1075. smem->bitmap_index = i;
  1076. smem->pkt_type = pkt_type;
  1077. atomic_inc(&smem->refcount);
  1078. /*
  1079. * If we find it, it means we already increased
  1080. * refcount before, so we put it to avoid double
  1081. * incremental.
  1082. */
  1083. msm_cvp_smem_put_dma_buf(smem->dma_buf);
  1084. mutex_unlock(&inst->dma_cache.lock);
  1085. print_smem(CVP_MEM, "found in cache", inst, smem);
  1086. return smem;
  1087. }
  1088. mutex_unlock(&inst->dma_cache.lock);
  1089. /* earch persist list */
  1090. mutex_lock(&inst->persistbufs.lock);
  1091. list_for_each_entry(buf, &inst->persistbufs.list, list) {
  1092. smem = buf->smem;
  1093. if (smem && smem->dma_buf == dma_buf) {
  1094. atomic_inc(&smem->refcount);
  1095. mutex_unlock(&inst->persistbufs.lock);
  1096. print_smem(CVP_MEM, "found in persist", inst, smem);
  1097. return smem;
  1098. }
  1099. }
  1100. mutex_unlock(&inst->persistbufs.lock);
  1101. /* Search frame list */
  1102. mutex_lock(&inst->frames.lock);
  1103. list_for_each_entry(frame, &inst->frames.list, list) {
  1104. for (i = 0; i < frame->nr; i++) {
  1105. smem = frame->bufs[i].smem;
  1106. if (smem && smem->dma_buf == dma_buf) {
  1107. atomic_inc(&smem->refcount);
  1108. mutex_unlock(&inst->frames.lock);
  1109. print_smem(CVP_MEM, "found in frame",
  1110. inst, smem);
  1111. return smem;
  1112. }
  1113. }
  1114. }
  1115. mutex_unlock(&inst->frames.lock);
  1116. return NULL;
  1117. }
  1118. static int msm_cvp_session_add_smem(struct msm_cvp_inst *inst,
  1119. struct msm_cvp_smem *smem)
  1120. {
  1121. unsigned int i;
  1122. struct msm_cvp_smem *smem2;
  1123. mutex_lock(&inst->dma_cache.lock);
  1124. if (inst->dma_cache.nr < MAX_DMABUF_NUMS) {
  1125. inst->dma_cache.entries[inst->dma_cache.nr] = smem;
  1126. SET_USE_BITMAP(inst->dma_cache.nr, inst);
  1127. smem->bitmap_index = inst->dma_cache.nr;
  1128. inst->dma_cache.nr++;
  1129. i = smem->bitmap_index;
  1130. } else {
  1131. i = find_first_zero_bit(&inst->dma_cache.usage_bitmap,
  1132. MAX_DMABUF_NUMS);
  1133. if (i < MAX_DMABUF_NUMS) {
  1134. smem2 = inst->dma_cache.entries[i];
  1135. msm_cvp_unmap_smem(inst, smem2, "unmap cpu");
  1136. msm_cvp_smem_put_dma_buf(smem2->dma_buf);
  1137. cvp_kmem_cache_free(&cvp_driver->smem_cache, smem2);
  1138. inst->dma_cache.entries[i] = smem;
  1139. smem->bitmap_index = i;
  1140. SET_USE_BITMAP(i, inst);
  1141. } else {
  1142. dprintk(CVP_WARN,
  1143. "%s: reached limit, fallback to buf mapping list\n"
  1144. , __func__);
  1145. atomic_inc(&smem->refcount);
  1146. mutex_unlock(&inst->dma_cache.lock);
  1147. return -ENOMEM;
  1148. }
  1149. }
  1150. atomic_inc(&smem->refcount);
  1151. mutex_unlock(&inst->dma_cache.lock);
  1152. dprintk(CVP_MEM, "Add entry %d into cache\n", i);
  1153. return 0;
  1154. }
  1155. static struct msm_cvp_smem *msm_cvp_session_get_smem(struct msm_cvp_inst *inst,
  1156. struct cvp_buf_type *buf,
  1157. bool is_persist,
  1158. u32 pkt_type)
  1159. {
  1160. int rc = 0, found = 1;
  1161. struct msm_cvp_smem *smem = NULL;
  1162. struct dma_buf *dma_buf = NULL;
  1163. if (buf->fd < 0) {
  1164. dprintk(CVP_ERR, "%s: Invalid fd = %d", __func__, buf->fd);
  1165. return NULL;
  1166. }
  1167. dma_buf = msm_cvp_smem_get_dma_buf(buf->fd);
  1168. if (!dma_buf) {
  1169. dprintk(CVP_ERR, "%s: Invalid fd = %d", __func__, buf->fd);
  1170. return NULL;
  1171. }
  1172. if (is_persist) {
  1173. smem = cvp_kmem_cache_zalloc(&cvp_driver->smem_cache, GFP_KERNEL);
  1174. if (!smem)
  1175. return NULL;
  1176. smem->dma_buf = dma_buf;
  1177. smem->bitmap_index = MAX_DMABUF_NUMS;
  1178. smem->pkt_type = pkt_type;
  1179. smem->flags |= SMEM_PERSIST;
  1180. smem->fd = buf->fd;
  1181. atomic_inc(&smem->refcount);
  1182. rc = msm_cvp_map_smem(inst, smem, "map cpu");
  1183. if (rc)
  1184. goto exit;
  1185. if (!IS_CVP_BUF_VALID(buf, smem)) {
  1186. dprintk(CVP_ERR,
  1187. "%s: invalid offset %d or size %d persist\n",
  1188. __func__, buf->offset, buf->size);
  1189. goto exit2;
  1190. }
  1191. return smem;
  1192. }
  1193. smem = msm_cvp_session_find_smem(inst, dma_buf, pkt_type);
  1194. if (!smem) {
  1195. found = 0;
  1196. smem = cvp_kmem_cache_zalloc(&cvp_driver->smem_cache, GFP_KERNEL);
  1197. if (!smem)
  1198. return NULL;
  1199. smem->dma_buf = dma_buf;
  1200. smem->bitmap_index = MAX_DMABUF_NUMS;
  1201. smem->pkt_type = pkt_type;
  1202. smem->fd = buf->fd;
  1203. if (is_params_pkt(pkt_type))
  1204. smem->flags |= SMEM_PERSIST;
  1205. rc = msm_cvp_map_smem(inst, smem, "map cpu");
  1206. if (rc)
  1207. goto exit;
  1208. if (!IS_CVP_BUF_VALID(buf, smem)) {
  1209. dprintk(CVP_ERR,
  1210. "%s: invalid buf %d %d fd %d dma 0x%llx %s %d type %#x\n",
  1211. __func__, buf->offset, buf->size, buf->fd,
  1212. dma_buf, dma_buf->name, dma_buf->size, pkt_type);
  1213. goto exit2;
  1214. }
  1215. rc = msm_cvp_session_add_smem(inst, smem);
  1216. if (rc && rc != -ENOMEM)
  1217. goto exit2;
  1218. return smem;
  1219. }
  1220. if (!IS_CVP_BUF_VALID(buf, smem)) {
  1221. dprintk(CVP_ERR, "%s: invalid offset %d or size %d found\n",
  1222. __func__, buf->offset, buf->size);
  1223. if (found) {
  1224. mutex_lock(&inst->dma_cache.lock);
  1225. atomic_dec(&smem->refcount);
  1226. mutex_unlock(&inst->dma_cache.lock);
  1227. return NULL;
  1228. }
  1229. goto exit2;
  1230. }
  1231. return smem;
  1232. exit2:
  1233. msm_cvp_unmap_smem(inst, smem, "unmap cpu");
  1234. exit:
  1235. msm_cvp_smem_put_dma_buf(dma_buf);
  1236. cvp_kmem_cache_free(&cvp_driver->smem_cache, smem);
  1237. smem = NULL;
  1238. return smem;
  1239. }
  1240. static u32 msm_cvp_map_user_persist_buf(struct msm_cvp_inst *inst,
  1241. struct cvp_buf_type *buf,
  1242. u32 pkt_type, u32 buf_idx)
  1243. {
  1244. u32 iova = 0;
  1245. struct msm_cvp_smem *smem = NULL;
  1246. struct list_head *ptr;
  1247. struct list_head *next;
  1248. struct cvp_internal_buf *pbuf;
  1249. struct dma_buf *dma_buf;
  1250. if (!inst) {
  1251. dprintk(CVP_ERR, "%s: invalid params\n", __func__);
  1252. return -EINVAL;
  1253. }
  1254. dma_buf = msm_cvp_smem_get_dma_buf(buf->fd);
  1255. if (!dma_buf)
  1256. return -EINVAL;
  1257. mutex_lock(&inst->persistbufs.lock);
  1258. if (!inst->persistbufs.list.next) {
  1259. mutex_unlock(&inst->persistbufs.lock);
  1260. return 0;
  1261. }
  1262. list_for_each_safe(ptr, next, &inst->persistbufs.list) {
  1263. if (!ptr)
  1264. return 0;
  1265. pbuf = list_entry(ptr, struct cvp_internal_buf, list);
  1266. if (dma_buf == pbuf->smem->dma_buf) {
  1267. pbuf->size =
  1268. (pbuf->size >= buf->size) ?
  1269. pbuf->size : buf->size;
  1270. iova = pbuf->smem->device_addr + buf->offset;
  1271. mutex_unlock(&inst->persistbufs.lock);
  1272. atomic_inc(&pbuf->smem->refcount);
  1273. dma_buf_put(dma_buf);
  1274. dprintk(CVP_MEM,
  1275. "map persist Reuse fd %d, dma_buf %#llx\n",
  1276. pbuf->fd, pbuf->smem->dma_buf);
  1277. return iova;
  1278. }
  1279. }
  1280. mutex_unlock(&inst->persistbufs.lock);
  1281. dma_buf_put(dma_buf);
  1282. pbuf = cvp_kmem_cache_zalloc(&cvp_driver->buf_cache, GFP_KERNEL);
  1283. if (!pbuf) {
  1284. dprintk(CVP_ERR, "%s failed to allocate kmem obj\n",
  1285. __func__);
  1286. return 0;
  1287. }
  1288. if (is_params_pkt(pkt_type))
  1289. smem = msm_cvp_session_get_smem(inst, buf, false, pkt_type);
  1290. else
  1291. smem = msm_cvp_session_get_smem(inst, buf, true, pkt_type);
  1292. if (!smem)
  1293. goto exit;
  1294. smem->pkt_type = pkt_type;
  1295. smem->buf_idx = buf_idx;
  1296. smem->fd = buf->fd;
  1297. pbuf->smem = smem;
  1298. pbuf->fd = buf->fd;
  1299. pbuf->size = buf->size;
  1300. pbuf->offset = buf->offset;
  1301. pbuf->ownership = CLIENT;
  1302. mutex_lock(&inst->persistbufs.lock);
  1303. list_add_tail(&pbuf->list, &inst->persistbufs.list);
  1304. mutex_unlock(&inst->persistbufs.lock);
  1305. print_internal_buffer(CVP_MEM, "map persist", inst, pbuf);
  1306. iova = smem->device_addr + buf->offset;
  1307. return iova;
  1308. exit:
  1309. cvp_kmem_cache_free(&cvp_driver->buf_cache, pbuf);
  1310. return 0;
  1311. }
  1312. static u32 msm_cvp_map_frame_buf(struct msm_cvp_inst *inst,
  1313. struct cvp_buf_type *buf,
  1314. struct msm_cvp_frame *frame,
  1315. u32 pkt_type, u32 buf_idx)
  1316. {
  1317. u32 iova = 0;
  1318. struct msm_cvp_smem *smem = NULL;
  1319. u32 nr;
  1320. u32 type;
  1321. if (!inst || !frame) {
  1322. dprintk(CVP_ERR, "%s: invalid params\n", __func__);
  1323. return 0;
  1324. }
  1325. nr = frame->nr;
  1326. if (nr == MAX_FRAME_BUFFER_NUMS) {
  1327. dprintk(CVP_ERR, "%s: max frame buffer reached\n", __func__);
  1328. return 0;
  1329. }
  1330. smem = msm_cvp_session_get_smem(inst, buf, false, pkt_type);
  1331. if (!smem)
  1332. return 0;
  1333. smem->buf_idx = buf_idx;
  1334. frame->bufs[nr].fd = buf->fd;
  1335. frame->bufs[nr].smem = smem;
  1336. frame->bufs[nr].size = buf->size;
  1337. frame->bufs[nr].offset = buf->offset;
  1338. print_internal_buffer(CVP_MEM, "map cpu", inst, &frame->bufs[nr]);
  1339. frame->nr++;
  1340. type = EVA_KMD_BUFTYPE_INPUT | EVA_KMD_BUFTYPE_OUTPUT;
  1341. msm_cvp_cache_operations(smem, type, buf->offset, buf->size);
  1342. iova = smem->device_addr + buf->offset;
  1343. return iova;
  1344. }
  1345. static void msm_cvp_unmap_frame_buf(struct msm_cvp_inst *inst,
  1346. struct msm_cvp_frame *frame)
  1347. {
  1348. u32 i;
  1349. u32 type;
  1350. struct msm_cvp_smem *smem = NULL;
  1351. struct cvp_internal_buf *buf;
  1352. type = EVA_KMD_BUFTYPE_OUTPUT;
  1353. for (i = 0; i < frame->nr; ++i) {
  1354. buf = &frame->bufs[i];
  1355. smem = buf->smem;
  1356. msm_cvp_cache_operations(smem, type, buf->offset, buf->size);
  1357. if (smem->bitmap_index >= MAX_DMABUF_NUMS) {
  1358. /* smem not in dmamap cache */
  1359. if (atomic_dec_and_test(&smem->refcount)) {
  1360. msm_cvp_unmap_smem(inst, smem, "unmap cpu");
  1361. dma_heap_buffer_free(smem->dma_buf);
  1362. smem->buf_idx |= 0xdead0000;
  1363. cvp_kmem_cache_free(&cvp_driver->smem_cache, smem);
  1364. buf->smem = NULL;
  1365. }
  1366. } else {
  1367. mutex_lock(&inst->dma_cache.lock);
  1368. if (atomic_dec_and_test(&smem->refcount)) {
  1369. CLEAR_USE_BITMAP(smem->bitmap_index, inst);
  1370. print_smem(CVP_MEM, "Map dereference",
  1371. inst, smem);
  1372. smem->buf_idx |= 0x10000000;
  1373. }
  1374. mutex_unlock(&inst->dma_cache.lock);
  1375. }
  1376. }
  1377. cvp_kmem_cache_free(&cvp_driver->frame_cache, frame);
  1378. }
  1379. static void backup_frame_buffers(struct msm_cvp_inst *inst,
  1380. struct msm_cvp_frame *frame)
  1381. {
  1382. /* Save frame buffers before unmap them */
  1383. int i = frame->nr;
  1384. if (i == 0 || i > MAX_FRAME_BUFFER_NUMS)
  1385. return;
  1386. inst->last_frame.ktid = frame->ktid;
  1387. inst->last_frame.nr = frame->nr;
  1388. do {
  1389. i--;
  1390. if (frame->bufs[i].smem->bitmap_index < MAX_DMABUF_NUMS) {
  1391. /*
  1392. * Frame buffer info can be found in dma_cache table,
  1393. * Skip saving
  1394. */
  1395. inst->last_frame.nr = 0;
  1396. return;
  1397. }
  1398. inst->last_frame.smem[i] = *(frame->bufs[i].smem);
  1399. } while (i);
  1400. }
  1401. void msm_cvp_unmap_frame(struct msm_cvp_inst *inst, u64 ktid)
  1402. {
  1403. struct msm_cvp_frame *frame = (struct msm_cvp_frame *)0xdeadbeef, *dummy1;
  1404. bool found;
  1405. if (!inst) {
  1406. dprintk(CVP_ERR, "%s: invalid params\n", __func__);
  1407. return;
  1408. }
  1409. ktid &= (FENCE_BIT - 1);
  1410. dprintk(CVP_MEM, "%s: (%#x) unmap frame %llu\n",
  1411. __func__, hash32_ptr(inst->session), ktid);
  1412. found = false;
  1413. mutex_lock(&inst->frames.lock);
  1414. list_for_each_entry_safe(frame, dummy1, &inst->frames.list, list) {
  1415. if (frame->ktid == ktid) {
  1416. found = true;
  1417. list_del(&frame->list);
  1418. dprintk(CVP_CMD, "%s: "
  1419. "pkt_type %08x sess_id %08x trans_id <> ktid %llu\n",
  1420. __func__, frame->pkt_type,
  1421. hash32_ptr(inst->session),
  1422. frame->ktid);
  1423. /* Save the previous frame mappings for debug */
  1424. backup_frame_buffers(inst, frame);
  1425. msm_cvp_unmap_frame_buf(inst, frame);
  1426. break;
  1427. }
  1428. }
  1429. mutex_unlock(&inst->frames.lock);
  1430. if (!found)
  1431. dprintk(CVP_WARN, "%s frame %llu not found!\n", __func__, ktid);
  1432. }
  1433. int msm_cvp_mark_user_persist(struct msm_cvp_inst *inst,
  1434. struct eva_kmd_hfi_packet *in_pkt,
  1435. unsigned int offset, unsigned int buf_num)
  1436. {
  1437. dprintk(CVP_ERR, "Unexpected user persistent buffer release\n");
  1438. return 0;
  1439. }
  1440. int msm_cvp_map_user_persist(struct msm_cvp_inst *inst,
  1441. struct eva_kmd_hfi_packet *in_pkt,
  1442. unsigned int offset, unsigned int buf_num)
  1443. {
  1444. struct cvp_buf_type *buf;
  1445. struct cvp_hfi_cmd_session_hdr *cmd_hdr;
  1446. int i;
  1447. u32 iova;
  1448. if (!offset || !buf_num)
  1449. return 0;
  1450. cmd_hdr = (struct cvp_hfi_cmd_session_hdr *)in_pkt;
  1451. for (i = 0; i < buf_num; i++) {
  1452. buf = (struct cvp_buf_type *)&in_pkt->pkt_data[offset];
  1453. offset += sizeof(*buf) >> 2;
  1454. if (buf->fd < 0 || !buf->size)
  1455. continue;
  1456. iova = msm_cvp_map_user_persist_buf(inst, buf,
  1457. cmd_hdr->packet_type, i);
  1458. if (!iova) {
  1459. dprintk(CVP_ERR,
  1460. "%s: buf %d register failed.\n",
  1461. __func__, i);
  1462. return -EINVAL;
  1463. }
  1464. buf->fd = iova;
  1465. }
  1466. return 0;
  1467. }
  1468. int msm_cvp_map_frame(struct msm_cvp_inst *inst,
  1469. struct eva_kmd_hfi_packet *in_pkt,
  1470. unsigned int offset, unsigned int buf_num)
  1471. {
  1472. struct cvp_buf_type *buf;
  1473. int i;
  1474. u32 iova;
  1475. u64 ktid;
  1476. struct msm_cvp_frame *frame;
  1477. struct cvp_hfi_cmd_session_hdr *cmd_hdr;
  1478. struct msm_cvp_inst *instance = (struct msm_cvp_inst *)0xdeadbeef;
  1479. struct msm_cvp_core *core = NULL;
  1480. core = cvp_driver->cvp_core;
  1481. if (!core)
  1482. return -EINVAL;
  1483. if (!offset || !buf_num)
  1484. return 0;
  1485. cmd_hdr = (struct cvp_hfi_cmd_session_hdr *)in_pkt;
  1486. ktid = atomic64_inc_return(&inst->core->kernel_trans_id);
  1487. ktid &= (FENCE_BIT - 1);
  1488. cmd_hdr->client_data.kdata = ktid;
  1489. dprintk(CVP_CMD, "%s: "
  1490. "pkt_type %08x sess_id %08x trans_id %u ktid %llu\n",
  1491. __func__, cmd_hdr->packet_type,
  1492. cmd_hdr->session_id,
  1493. cmd_hdr->client_data.transaction_id,
  1494. cmd_hdr->client_data.kdata & (FENCE_BIT - 1));
  1495. frame = cvp_kmem_cache_zalloc(&cvp_driver->frame_cache, GFP_KERNEL);
  1496. if (!frame)
  1497. return -ENOMEM;
  1498. frame->ktid = ktid;
  1499. frame->nr = 0;
  1500. frame->pkt_type = cmd_hdr->packet_type;
  1501. for (i = 0; i < buf_num; i++) {
  1502. buf = (struct cvp_buf_type *)&in_pkt->pkt_data[offset];
  1503. offset += sizeof(*buf) >> 2;
  1504. if (buf->fd < 0 || !buf->size) {
  1505. buf->fd = 0;
  1506. buf->size = 0;
  1507. continue;
  1508. }
  1509. iova = msm_cvp_map_frame_buf(inst, buf, frame, cmd_hdr->packet_type, i);
  1510. if (!iova) {
  1511. dprintk(CVP_ERR,
  1512. "%s: buf %d register failed.\n",
  1513. __func__, i);
  1514. dprintk(CVP_ERR, "smem_leak_count %d\n", core->smem_leak_count);
  1515. mutex_lock(&core->lock);
  1516. list_for_each_entry(instance, &core->instances, list) {
  1517. msm_cvp_print_inst_bufs(instance, false);
  1518. }
  1519. mutex_unlock(&core->lock);
  1520. msm_cvp_unmap_frame_buf(inst, frame);
  1521. return -EINVAL;
  1522. }
  1523. buf->fd = iova;
  1524. }
  1525. mutex_lock(&inst->frames.lock);
  1526. list_add_tail(&frame->list, &inst->frames.list);
  1527. mutex_unlock(&inst->frames.lock);
  1528. dprintk(CVP_MEM, "%s: map frame %llu\n", __func__, ktid);
  1529. return 0;
  1530. }
  1531. int msm_cvp_session_deinit_buffers(struct msm_cvp_inst *inst)
  1532. {
  1533. int rc = 0, i;
  1534. struct cvp_internal_buf *cbuf, *dummy;
  1535. struct msm_cvp_frame *frame = (struct msm_cvp_frame *)0xdeadbeef, *dummy1;
  1536. struct msm_cvp_smem *smem;
  1537. struct cvp_hal_session *session;
  1538. struct eva_kmd_buffer buf;
  1539. struct list_head *ptr = (struct list_head *)0xdead;
  1540. struct list_head *next = (struct list_head *)0xdead;
  1541. session = (struct cvp_hal_session *)inst->session;
  1542. mutex_lock(&inst->frames.lock);
  1543. list_for_each_entry_safe(frame, dummy1, &inst->frames.list, list) {
  1544. list_del(&frame->list);
  1545. msm_cvp_unmap_frame_buf(inst, frame);
  1546. }
  1547. mutex_unlock(&inst->frames.lock);
  1548. mutex_lock(&inst->persistbufs.lock);
  1549. list_for_each_safe(ptr, next, &inst->persistbufs.list) {
  1550. if (!ptr)
  1551. return -EINVAL;
  1552. cbuf = list_entry(ptr, struct cvp_internal_buf, list);
  1553. smem = cbuf->smem;
  1554. if (!smem) {
  1555. dprintk(CVP_ERR, "%s invalid persist smem\n", __func__);
  1556. mutex_unlock(&inst->persistbufs.lock);
  1557. return -EINVAL;
  1558. }
  1559. if (cbuf->ownership != DRIVER) {
  1560. dprintk(CVP_MEM,
  1561. "%s: %x : fd %d %pK size %d",
  1562. "free user persistent", hash32_ptr(inst->session), cbuf->fd,
  1563. smem->dma_buf, cbuf->size);
  1564. list_del(&cbuf->list);
  1565. if (smem->bitmap_index >= MAX_DMABUF_NUMS) {
  1566. /*
  1567. * don't care refcount, has to remove mapping
  1568. * this is user persistent buffer
  1569. */
  1570. if (smem->device_addr) {
  1571. msm_cvp_unmap_smem(inst, smem,
  1572. "unmap persist");
  1573. msm_cvp_smem_put_dma_buf(
  1574. cbuf->smem->dma_buf);
  1575. smem->device_addr = 0;
  1576. }
  1577. cvp_kmem_cache_free(&cvp_driver->smem_cache, smem);
  1578. cbuf->smem = NULL;
  1579. cvp_kmem_cache_free(&cvp_driver->buf_cache, cbuf);
  1580. } else {
  1581. /*
  1582. * DMM_PARAMS and WAP_NCC_PARAMS cases
  1583. * Leave dma_cache cleanup to unmap
  1584. */
  1585. cbuf->smem = NULL;
  1586. cvp_kmem_cache_free(&cvp_driver->buf_cache, cbuf);
  1587. }
  1588. }
  1589. }
  1590. mutex_unlock(&inst->persistbufs.lock);
  1591. mutex_lock(&inst->dma_cache.lock);
  1592. for (i = 0; i < inst->dma_cache.nr; i++) {
  1593. smem = inst->dma_cache.entries[i];
  1594. if (atomic_read(&smem->refcount) == 0) {
  1595. print_smem(CVP_MEM, "free", inst, smem);
  1596. } else if (!(smem->flags & SMEM_PERSIST)) {
  1597. print_smem(CVP_WARN, "in use", inst, smem);
  1598. }
  1599. msm_cvp_unmap_smem(inst, smem, "unmap cpu");
  1600. msm_cvp_smem_put_dma_buf(smem->dma_buf);
  1601. cvp_kmem_cache_free(&cvp_driver->smem_cache, smem);
  1602. inst->dma_cache.entries[i] = NULL;
  1603. }
  1604. mutex_unlock(&inst->dma_cache.lock);
  1605. cbuf = (struct cvp_internal_buf *)0xdeadbeef;
  1606. mutex_lock(&inst->cvpdspbufs.lock);
  1607. list_for_each_entry_safe(cbuf, dummy, &inst->cvpdspbufs.list, list) {
  1608. print_internal_buffer(CVP_MEM, "remove dspbufs", inst, cbuf);
  1609. if (cbuf->ownership == CLIENT) {
  1610. rc = cvp_dsp_deregister_buffer(hash32_ptr(session),
  1611. cbuf->fd, cbuf->smem->dma_buf->size, cbuf->size,
  1612. cbuf->offset, cbuf->index,
  1613. (uint32_t)cbuf->smem->device_addr);
  1614. if (rc)
  1615. dprintk(CVP_ERR,
  1616. "%s: failed dsp deregistration fd=%d rc=%d",
  1617. __func__, cbuf->fd, rc);
  1618. msm_cvp_unmap_smem(inst, cbuf->smem, "unmap dsp");
  1619. msm_cvp_smem_put_dma_buf(cbuf->smem->dma_buf);
  1620. } else if (cbuf->ownership == DSP) {
  1621. rc = cvp_dsp_fastrpc_unmap(inst->dsp_handle, cbuf);
  1622. if (rc)
  1623. dprintk(CVP_ERR,
  1624. "%s: failed to unmap buf from DSP\n",
  1625. __func__);
  1626. rc = cvp_release_dsp_buffers(inst, cbuf);
  1627. if (rc)
  1628. dprintk(CVP_ERR,
  1629. "%s Fail to free buffer 0x%x\n",
  1630. __func__, rc);
  1631. }
  1632. list_del(&cbuf->list);
  1633. cvp_kmem_cache_free(&cvp_driver->buf_cache, cbuf);
  1634. }
  1635. mutex_unlock(&inst->cvpdspbufs.lock);
  1636. mutex_lock(&inst->cvpwnccbufs.lock);
  1637. if (inst->cvpwnccbufs_num != 0)
  1638. dprintk(CVP_WARN, "%s: cvpwnccbufs not empty, contains %d bufs",
  1639. __func__, inst->cvpwnccbufs_num);
  1640. list_for_each_entry_safe(cbuf, dummy, &inst->cvpwnccbufs.list, list) {
  1641. print_internal_buffer(CVP_MEM, "remove wnccbufs", inst, cbuf);
  1642. buf.fd = cbuf->fd;
  1643. buf.reserved[0] = cbuf->ktid;
  1644. mutex_unlock(&inst->cvpwnccbufs.lock);
  1645. msm_cvp_unmap_buf_wncc(inst, &buf);
  1646. mutex_lock(&inst->cvpwnccbufs.lock);
  1647. }
  1648. mutex_unlock(&inst->cvpwnccbufs.lock);
  1649. return rc;
  1650. }
  1651. #define MAX_NUM_FRAMES_DUMP 4
  1652. void msm_cvp_print_inst_bufs(struct msm_cvp_inst *inst, bool log)
  1653. {
  1654. struct cvp_internal_buf *buf = (struct cvp_internal_buf *)0xdeadbeef;
  1655. struct msm_cvp_frame *frame = (struct msm_cvp_frame *)0xdeadbeef;
  1656. struct msm_cvp_core *core;
  1657. struct inst_snapshot *snap = NULL;
  1658. int i = 0, c = 0;
  1659. core = cvp_driver->cvp_core;
  1660. if (log && core->log.snapshot_index < 16) {
  1661. snap = &core->log.snapshot[core->log.snapshot_index];
  1662. snap->session = inst->session;
  1663. core->log.snapshot_index++;
  1664. }
  1665. if (!inst) {
  1666. dprintk(CVP_ERR, "%s - invalid param %pK\n",
  1667. __func__, inst);
  1668. return;
  1669. }
  1670. dprintk(CVP_ERR,
  1671. "---Buffer details for inst: %pK %s of type: %d---\n",
  1672. inst, inst->proc_name, inst->session_type);
  1673. dprintk(CVP_ERR, "dma_cache entries %d\n", inst->dma_cache.nr);
  1674. mutex_lock(&inst->dma_cache.lock);
  1675. if (inst->dma_cache.nr <= MAX_DMABUF_NUMS)
  1676. for (i = 0; i < inst->dma_cache.nr; i++)
  1677. _log_smem(snap, inst, inst->dma_cache.entries[i], log);
  1678. mutex_unlock(&inst->dma_cache.lock);
  1679. i = 0;
  1680. dprintk(CVP_ERR, "frame buffer list\n");
  1681. mutex_lock(&inst->frames.lock);
  1682. list_for_each_entry(frame, &inst->frames.list, list) {
  1683. i++;
  1684. if (i <= MAX_NUM_FRAMES_DUMP) {
  1685. dprintk(CVP_ERR, "frame no %d tid %llx bufs\n",
  1686. i, frame->ktid);
  1687. for (c = 0; c < frame->nr; c++)
  1688. _log_smem(snap, inst, frame->bufs[c].smem,
  1689. log);
  1690. }
  1691. }
  1692. if (i > MAX_NUM_FRAMES_DUMP)
  1693. dprintk(CVP_ERR, "Skipped %d frames' buffers\n",
  1694. (i - MAX_NUM_FRAMES_DUMP));
  1695. mutex_unlock(&inst->frames.lock);
  1696. mutex_lock(&inst->cvpdspbufs.lock);
  1697. dprintk(CVP_ERR, "dsp buffer list:\n");
  1698. list_for_each_entry(buf, &inst->cvpdspbufs.list, list)
  1699. _log_buf(snap, SMEM_ADSP, inst, buf, log);
  1700. mutex_unlock(&inst->cvpdspbufs.lock);
  1701. mutex_lock(&inst->cvpwnccbufs.lock);
  1702. dprintk(CVP_ERR, "wncc buffer list:\n");
  1703. list_for_each_entry(buf, &inst->cvpwnccbufs.list, list)
  1704. print_cvp_buffer(CVP_ERR, "bufdump", inst, buf);
  1705. mutex_unlock(&inst->cvpwnccbufs.lock);
  1706. mutex_lock(&inst->persistbufs.lock);
  1707. dprintk(CVP_ERR, "persist buffer list:\n");
  1708. list_for_each_entry(buf, &inst->persistbufs.list, list)
  1709. _log_buf(snap, SMEM_PERSIST, inst, buf, log);
  1710. mutex_unlock(&inst->persistbufs.lock);
  1711. dprintk(CVP_ERR, "last frame ktid %llx\n", inst->last_frame.ktid);
  1712. for (i = 0; i < inst->last_frame.nr; i++)
  1713. _log_smem(snap, inst, &inst->last_frame.smem[i], log);
  1714. dprintk(CVP_ERR, "unmapped wncc bufs\n");
  1715. for (i = 0; i < inst->unused_wncc_bufs.nr; i++)
  1716. _log_smem(snap, inst, &inst->unused_wncc_bufs.smem[i], log);
  1717. dprintk(CVP_ERR, "unmapped dsp bufs\n");
  1718. for (i = 0; i < inst->unused_dsp_bufs.nr; i++)
  1719. _log_smem(snap, inst, &inst->unused_dsp_bufs.smem[i], log);
  1720. }
  1721. struct cvp_internal_buf *cvp_allocate_arp_bufs(struct msm_cvp_inst *inst,
  1722. u32 buffer_size)
  1723. {
  1724. struct cvp_internal_buf *buf;
  1725. struct msm_cvp_list *buf_list;
  1726. u32 smem_flags = SMEM_UNCACHED;
  1727. int rc = 0;
  1728. if (!inst) {
  1729. dprintk(CVP_ERR, "%s Invalid input\n", __func__);
  1730. return NULL;
  1731. }
  1732. buf_list = &inst->persistbufs;
  1733. if (!buffer_size)
  1734. return NULL;
  1735. /* If PERSIST buffer requires secure mapping, uncomment
  1736. * below flags setting
  1737. * smem_flags |= SMEM_SECURE | SMEM_NON_PIXEL;
  1738. */
  1739. buf = cvp_kmem_cache_zalloc(&cvp_driver->buf_cache, GFP_KERNEL);
  1740. if (!buf) {
  1741. dprintk(CVP_ERR, "%s Out of memory\n", __func__);
  1742. goto fail_kzalloc;
  1743. }
  1744. buf->smem = cvp_kmem_cache_zalloc(&cvp_driver->smem_cache, GFP_KERNEL);
  1745. if (!buf->smem) {
  1746. dprintk(CVP_ERR, "%s Out of memory\n", __func__);
  1747. goto fail_kzalloc;
  1748. }
  1749. buf->smem->flags = smem_flags;
  1750. rc = msm_cvp_smem_alloc(buffer_size, 1, 0, /* 0: no mapping in kernel space */
  1751. &(inst->core->resources), buf->smem);
  1752. if (rc) {
  1753. dprintk(CVP_ERR, "Failed to allocate ARP memory\n");
  1754. goto err_no_mem;
  1755. }
  1756. buf->smem->pkt_type = buf->smem->buf_idx = 0;
  1757. buf->smem->pkt_type = buf->smem->buf_idx = 0;
  1758. atomic_inc(&buf->smem->refcount);
  1759. buf->size = buf->smem->size;
  1760. buf->type = HFI_BUFFER_INTERNAL_PERSIST_1;
  1761. buf->ownership = DRIVER;
  1762. mutex_lock(&buf_list->lock);
  1763. list_add_tail(&buf->list, &buf_list->list);
  1764. mutex_unlock(&buf_list->lock);
  1765. return buf;
  1766. err_no_mem:
  1767. cvp_kmem_cache_free(&cvp_driver->buf_cache, buf);
  1768. fail_kzalloc:
  1769. return NULL;
  1770. }
  1771. int cvp_release_arp_buffers(struct msm_cvp_inst *inst)
  1772. {
  1773. struct msm_cvp_smem *smem;
  1774. struct list_head *ptr = (struct list_head *)0xdead;
  1775. struct list_head *next = (struct list_head *)0xdead;
  1776. struct cvp_internal_buf *buf;
  1777. int rc = 0;
  1778. struct msm_cvp_core *core;
  1779. struct cvp_hfi_device *hdev;
  1780. if (!inst) {
  1781. dprintk(CVP_ERR, "Invalid instance pointer = %pK\n", inst);
  1782. return -EINVAL;
  1783. }
  1784. core = inst->core;
  1785. if (!core) {
  1786. dprintk(CVP_ERR, "Invalid core pointer = %pK\n", core);
  1787. return -EINVAL;
  1788. }
  1789. hdev = core->device;
  1790. if (!hdev) {
  1791. dprintk(CVP_ERR, "Invalid device pointer = %pK\n", hdev);
  1792. return -EINVAL;
  1793. }
  1794. dprintk(CVP_MEM, "release persist buffer!\n");
  1795. mutex_lock(&inst->persistbufs.lock);
  1796. /* Workaround for FW: release buffer means release all */
  1797. if (inst->state <= MSM_CVP_CLOSE_DONE) {
  1798. rc = call_hfi_op(hdev, session_release_buffers,
  1799. (void *)inst->session);
  1800. if (!rc) {
  1801. mutex_unlock(&inst->persistbufs.lock);
  1802. rc = wait_for_sess_signal_receipt(inst,
  1803. HAL_SESSION_RELEASE_BUFFER_DONE);
  1804. if (rc)
  1805. dprintk(CVP_WARN,
  1806. "%s: wait release_arp signal failed, rc %d\n",
  1807. __func__, rc);
  1808. mutex_lock(&inst->persistbufs.lock);
  1809. } else {
  1810. dprintk_rl(CVP_WARN, "Fail to send Rel prst buf\n");
  1811. }
  1812. }
  1813. list_for_each_safe(ptr, next, &inst->persistbufs.list) {
  1814. if (!ptr)
  1815. return -EINVAL;
  1816. buf = list_entry(ptr, struct cvp_internal_buf, list);
  1817. smem = buf->smem;
  1818. if (!smem) {
  1819. dprintk(CVP_ERR, "%s invalid smem\n", __func__);
  1820. mutex_unlock(&inst->persistbufs.lock);
  1821. return -EINVAL;
  1822. }
  1823. if (buf->ownership == DRIVER) {
  1824. dprintk(CVP_MEM,
  1825. "%s: %x : fd %d %pK size %d",
  1826. "free arp", hash32_ptr(inst->session), buf->fd,
  1827. smem->dma_buf, buf->size);
  1828. list_del(&buf->list);
  1829. atomic_dec(&smem->refcount);
  1830. msm_cvp_smem_free(smem);
  1831. cvp_kmem_cache_free(&cvp_driver->smem_cache, smem);
  1832. buf->smem = NULL;
  1833. cvp_kmem_cache_free(&cvp_driver->buf_cache, buf);
  1834. }
  1835. }
  1836. mutex_unlock(&inst->persistbufs.lock);
  1837. return rc;
  1838. }
  1839. int cvp_allocate_dsp_bufs(struct msm_cvp_inst *inst,
  1840. struct cvp_internal_buf *buf,
  1841. u32 buffer_size,
  1842. u32 secure_type)
  1843. {
  1844. u32 smem_flags = SMEM_UNCACHED;
  1845. int rc = 0;
  1846. if (!inst) {
  1847. dprintk(CVP_ERR, "%s Invalid input\n", __func__);
  1848. return -EINVAL;
  1849. }
  1850. if (!buf)
  1851. return -EINVAL;
  1852. if (!buffer_size)
  1853. return -EINVAL;
  1854. switch (secure_type) {
  1855. case 0:
  1856. break;
  1857. case 1:
  1858. smem_flags |= SMEM_SECURE | SMEM_PIXEL;
  1859. break;
  1860. case 2:
  1861. smem_flags |= SMEM_SECURE | SMEM_NON_PIXEL;
  1862. break;
  1863. default:
  1864. dprintk(CVP_ERR, "%s Invalid secure_type %d\n",
  1865. __func__, secure_type);
  1866. return -EINVAL;
  1867. }
  1868. dprintk(CVP_MEM, "%s smem_flags 0x%x\n", __func__, smem_flags);
  1869. buf->smem = cvp_kmem_cache_zalloc(&cvp_driver->smem_cache, GFP_KERNEL);
  1870. if (!buf->smem) {
  1871. dprintk(CVP_ERR, "%s Out of memory\n", __func__);
  1872. goto fail_kzalloc_smem_cache;
  1873. }
  1874. buf->smem->flags = smem_flags;
  1875. rc = msm_cvp_smem_alloc(buffer_size, 1, 0,
  1876. &(inst->core->resources), buf->smem);
  1877. if (rc) {
  1878. dprintk(CVP_ERR, "Failed to allocate DSP buf\n");
  1879. goto err_no_mem;
  1880. }
  1881. buf->smem->pkt_type = buf->smem->buf_idx = 0;
  1882. atomic_inc(&buf->smem->refcount);
  1883. dprintk(CVP_MEM, "%s dma_buf %pK\n", __func__, buf->smem->dma_buf);
  1884. buf->size = buf->smem->size;
  1885. buf->type = HFI_BUFFER_INTERNAL_PERSIST_1;
  1886. buf->ownership = DSP;
  1887. return rc;
  1888. err_no_mem:
  1889. cvp_kmem_cache_free(&cvp_driver->smem_cache, buf->smem);
  1890. fail_kzalloc_smem_cache:
  1891. return rc;
  1892. }
  1893. int cvp_release_dsp_buffers(struct msm_cvp_inst *inst,
  1894. struct cvp_internal_buf *buf)
  1895. {
  1896. struct msm_cvp_smem *smem;
  1897. int rc = 0;
  1898. if (!inst) {
  1899. dprintk(CVP_ERR, "Invalid instance pointer = %pK\n", inst);
  1900. return -EINVAL;
  1901. }
  1902. if (!buf) {
  1903. dprintk(CVP_ERR, "Invalid buffer pointer = %pK\n", inst);
  1904. return -EINVAL;
  1905. }
  1906. smem = buf->smem;
  1907. if (!smem) {
  1908. dprintk(CVP_ERR, "%s invalid smem\n", __func__);
  1909. return -EINVAL;
  1910. }
  1911. if (buf->ownership == DSP) {
  1912. dprintk(CVP_MEM,
  1913. "%s: %x : fd %x %s size %d",
  1914. __func__, hash32_ptr(inst->session), buf->fd,
  1915. smem->dma_buf->name, buf->size);
  1916. atomic_dec(&smem->refcount);
  1917. msm_cvp_smem_free(smem);
  1918. cvp_kmem_cache_free(&cvp_driver->smem_cache, smem);
  1919. } else {
  1920. dprintk(CVP_ERR,
  1921. "%s: wrong owner %d %x : fd %x %s size %d",
  1922. __func__, buf->ownership, hash32_ptr(inst->session),
  1923. buf->fd, smem->dma_buf->name, buf->size);
  1924. }
  1925. return rc;
  1926. }
  1927. int msm_cvp_register_buffer(struct msm_cvp_inst *inst,
  1928. struct eva_kmd_buffer *buf)
  1929. {
  1930. struct cvp_hfi_device *hdev;
  1931. struct cvp_hal_session *session;
  1932. struct msm_cvp_inst *s;
  1933. int rc = 0;
  1934. if (!inst || !inst->core || !buf) {
  1935. dprintk(CVP_ERR, "%s: invalid params\n", __func__);
  1936. return -EINVAL;
  1937. }
  1938. s = cvp_get_inst_validate(inst->core, inst);
  1939. if (!s)
  1940. return -ECONNRESET;
  1941. session = (struct cvp_hal_session *)inst->session;
  1942. if (!session) {
  1943. dprintk(CVP_ERR, "%s: invalid session\n", __func__);
  1944. rc = -EINVAL;
  1945. goto exit;
  1946. }
  1947. hdev = inst->core->device;
  1948. print_client_buffer(CVP_HFI, "register", inst, buf);
  1949. if (buf->index)
  1950. rc = msm_cvp_map_buf_dsp(inst, buf);
  1951. else
  1952. rc = msm_cvp_map_buf_wncc(inst, buf);
  1953. dprintk(CVP_DSP, "%s: fd %d, iova 0x%x\n", __func__,
  1954. buf->fd, buf->reserved[0]);
  1955. exit:
  1956. cvp_put_inst(s);
  1957. return rc;
  1958. }
  1959. int msm_cvp_unregister_buffer(struct msm_cvp_inst *inst,
  1960. struct eva_kmd_buffer *buf)
  1961. {
  1962. struct msm_cvp_inst *s;
  1963. int rc = 0;
  1964. if (!inst || !inst->core || !buf) {
  1965. dprintk(CVP_ERR, "%s: invalid params\n", __func__);
  1966. return -EINVAL;
  1967. }
  1968. s = cvp_get_inst_validate(inst->core, inst);
  1969. if (!s)
  1970. return -ECONNRESET;
  1971. print_client_buffer(CVP_HFI, "unregister", inst, buf);
  1972. if (buf->index)
  1973. rc = msm_cvp_unmap_buf_dsp(inst, buf);
  1974. else
  1975. rc = msm_cvp_unmap_buf_wncc(inst, buf);
  1976. cvp_put_inst(s);
  1977. return rc;
  1978. }