dp_rx_defrag.c 60 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182
  1. /*
  2. * Copyright (c) 2017-2021 The Linux Foundation. All rights reserved.
  3. * Copyright (c) 2021-2022 Qualcomm Innovation Center, Inc. All rights reserved.
  4. *
  5. * Permission to use, copy, modify, and/or distribute this software for
  6. * any purpose with or without fee is hereby granted, provided that the
  7. * above copyright notice and this permission notice appear in all
  8. * copies.
  9. *
  10. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
  11. * WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
  12. * WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
  13. * AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
  14. * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
  15. * PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
  16. * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
  17. * PERFORMANCE OF THIS SOFTWARE.
  18. */
  19. #include "hal_hw_headers.h"
  20. #ifndef RX_DEFRAG_DO_NOT_REINJECT
  21. #ifndef DP_BE_WAR
  22. #include "li/hal_li_rx.h"
  23. #endif
  24. #endif
  25. #include "dp_types.h"
  26. #include "dp_rx.h"
  27. #include "dp_peer.h"
  28. #include "hal_api.h"
  29. #include "qdf_trace.h"
  30. #include "qdf_nbuf.h"
  31. #include "dp_internal.h"
  32. #include "dp_rx_defrag.h"
  33. #include <enet.h> /* LLC_SNAP_HDR_LEN */
  34. #include "dp_rx_defrag.h"
  35. #include "dp_ipa.h"
  36. #include "dp_rx_buffer_pool.h"
  37. const struct dp_rx_defrag_cipher dp_f_ccmp = {
  38. "AES-CCM",
  39. IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN + IEEE80211_WEP_EXTIVLEN,
  40. IEEE80211_WEP_MICLEN,
  41. 0,
  42. };
  43. const struct dp_rx_defrag_cipher dp_f_tkip = {
  44. "TKIP",
  45. IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN + IEEE80211_WEP_EXTIVLEN,
  46. IEEE80211_WEP_CRCLEN,
  47. IEEE80211_WEP_MICLEN,
  48. };
  49. const struct dp_rx_defrag_cipher dp_f_wep = {
  50. "WEP",
  51. IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN,
  52. IEEE80211_WEP_CRCLEN,
  53. 0,
  54. };
  55. /*
  56. * The header and mic length are same for both
  57. * GCMP-128 and GCMP-256.
  58. */
  59. const struct dp_rx_defrag_cipher dp_f_gcmp = {
  60. "AES-GCMP",
  61. WLAN_IEEE80211_GCMP_HEADERLEN,
  62. WLAN_IEEE80211_GCMP_MICLEN,
  63. WLAN_IEEE80211_GCMP_MICLEN,
  64. };
  65. /*
  66. * dp_rx_defrag_frames_free(): Free fragment chain
  67. * @frames: Fragment chain
  68. *
  69. * Iterates through the fragment chain and frees them
  70. * Returns: None
  71. */
  72. static void dp_rx_defrag_frames_free(qdf_nbuf_t frames)
  73. {
  74. qdf_nbuf_t next, frag = frames;
  75. while (frag) {
  76. next = qdf_nbuf_next(frag);
  77. dp_rx_nbuf_free(frag);
  78. frag = next;
  79. }
  80. }
  81. /*
  82. * dp_rx_clear_saved_desc_info(): Clears descriptor info
  83. * @txrx peer: Pointer to the peer data structure
  84. * @tid: Transmit ID (TID)
  85. *
  86. * Saves MPDU descriptor info and MSDU link pointer from REO
  87. * ring descriptor. The cache is created per peer, per TID
  88. *
  89. * Returns: None
  90. */
  91. static void dp_rx_clear_saved_desc_info(struct dp_txrx_peer *txrx_peer,
  92. unsigned int tid)
  93. {
  94. if (txrx_peer->rx_tid[tid].dst_ring_desc)
  95. qdf_mem_free(txrx_peer->rx_tid[tid].dst_ring_desc);
  96. txrx_peer->rx_tid[tid].dst_ring_desc = NULL;
  97. txrx_peer->rx_tid[tid].head_frag_desc = NULL;
  98. }
  99. static void dp_rx_return_head_frag_desc(struct dp_txrx_peer *txrx_peer,
  100. unsigned int tid)
  101. {
  102. struct dp_soc *soc;
  103. struct dp_pdev *pdev;
  104. struct dp_srng *dp_rxdma_srng;
  105. struct rx_desc_pool *rx_desc_pool;
  106. union dp_rx_desc_list_elem_t *head = NULL;
  107. union dp_rx_desc_list_elem_t *tail = NULL;
  108. uint8_t pool_id;
  109. pdev = txrx_peer->vdev->pdev;
  110. soc = pdev->soc;
  111. if (txrx_peer->rx_tid[tid].head_frag_desc) {
  112. pool_id = txrx_peer->rx_tid[tid].head_frag_desc->pool_id;
  113. dp_rxdma_srng = &soc->rx_refill_buf_ring[pool_id];
  114. rx_desc_pool = &soc->rx_desc_buf[pool_id];
  115. dp_rx_add_to_free_desc_list(&head, &tail,
  116. txrx_peer->rx_tid[tid].head_frag_desc);
  117. dp_rx_buffers_replenish(soc, 0, dp_rxdma_srng, rx_desc_pool,
  118. 1, &head, &tail);
  119. }
  120. if (txrx_peer->rx_tid[tid].dst_ring_desc) {
  121. if (dp_rx_link_desc_return(soc,
  122. txrx_peer->rx_tid[tid].dst_ring_desc,
  123. HAL_BM_ACTION_PUT_IN_IDLE_LIST) !=
  124. QDF_STATUS_SUCCESS)
  125. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  126. "%s: Failed to return link desc", __func__);
  127. }
  128. }
  129. /*
  130. * dp_rx_reorder_flush_frag(): Flush the frag list
  131. * @txrx_peer: Pointer to the peer data structure
  132. * @tid: Transmit ID (TID)
  133. *
  134. * Flush the per-TID frag list
  135. *
  136. * Returns: None
  137. */
  138. void dp_rx_reorder_flush_frag(struct dp_txrx_peer *txrx_peer,
  139. unsigned int tid)
  140. {
  141. dp_info_rl("Flushing TID %d", tid);
  142. if (!txrx_peer) {
  143. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  144. "%s: NULL peer", __func__);
  145. return;
  146. }
  147. dp_rx_return_head_frag_desc(txrx_peer, tid);
  148. dp_rx_defrag_cleanup(txrx_peer, tid);
  149. }
  150. /*
  151. * dp_rx_defrag_waitlist_flush(): Flush SOC defrag wait list
  152. * @soc: DP SOC
  153. *
  154. * Flush fragments of all waitlisted TID's
  155. *
  156. * Returns: None
  157. */
  158. void dp_rx_defrag_waitlist_flush(struct dp_soc *soc)
  159. {
  160. struct dp_rx_tid_defrag *waitlist_elem = NULL;
  161. struct dp_rx_tid_defrag *tmp;
  162. uint32_t now_ms = qdf_system_ticks_to_msecs(qdf_system_ticks());
  163. TAILQ_HEAD(, dp_rx_tid_defrag) temp_list;
  164. dp_txrx_ref_handle txrx_ref_handle = NULL;
  165. TAILQ_INIT(&temp_list);
  166. dp_debug("Current time %u", now_ms);
  167. qdf_spin_lock_bh(&soc->rx.defrag.defrag_lock);
  168. TAILQ_FOREACH_SAFE(waitlist_elem, &soc->rx.defrag.waitlist,
  169. defrag_waitlist_elem, tmp) {
  170. uint32_t tid;
  171. if (waitlist_elem->defrag_timeout_ms > now_ms)
  172. break;
  173. tid = waitlist_elem->tid;
  174. if (tid >= DP_MAX_TIDS) {
  175. qdf_assert(0);
  176. continue;
  177. }
  178. TAILQ_REMOVE(&soc->rx.defrag.waitlist, waitlist_elem,
  179. defrag_waitlist_elem);
  180. DP_STATS_DEC(soc, rx.rx_frag_wait, 1);
  181. /* Move to temp list and clean-up later */
  182. TAILQ_INSERT_TAIL(&temp_list, waitlist_elem,
  183. defrag_waitlist_elem);
  184. }
  185. if (waitlist_elem) {
  186. soc->rx.defrag.next_flush_ms =
  187. waitlist_elem->defrag_timeout_ms;
  188. } else {
  189. soc->rx.defrag.next_flush_ms =
  190. now_ms + soc->rx.defrag.timeout_ms;
  191. }
  192. qdf_spin_unlock_bh(&soc->rx.defrag.defrag_lock);
  193. TAILQ_FOREACH_SAFE(waitlist_elem, &temp_list,
  194. defrag_waitlist_elem, tmp) {
  195. struct dp_txrx_peer *txrx_peer, *temp_peer = NULL;
  196. qdf_spin_lock_bh(&waitlist_elem->defrag_tid_lock);
  197. TAILQ_REMOVE(&temp_list, waitlist_elem,
  198. defrag_waitlist_elem);
  199. /* get address of current peer */
  200. txrx_peer = waitlist_elem->defrag_peer;
  201. qdf_spin_unlock_bh(&waitlist_elem->defrag_tid_lock);
  202. temp_peer = dp_txrx_peer_get_ref_by_id(soc, txrx_peer->peer_id,
  203. &txrx_ref_handle,
  204. DP_MOD_ID_RX_ERR);
  205. if (temp_peer == txrx_peer) {
  206. qdf_spin_lock_bh(&waitlist_elem->defrag_tid_lock);
  207. dp_rx_reorder_flush_frag(txrx_peer, waitlist_elem->tid);
  208. qdf_spin_unlock_bh(&waitlist_elem->defrag_tid_lock);
  209. }
  210. if (temp_peer)
  211. dp_txrx_peer_unref_delete(txrx_ref_handle,
  212. DP_MOD_ID_RX_ERR);
  213. }
  214. }
  215. /*
  216. * dp_rx_defrag_waitlist_add(): Update per-PDEV defrag wait list
  217. * @txrx_peer: Pointer to the peer data structure
  218. * @tid: Transmit ID (TID)
  219. *
  220. * Appends per-tid fragments to global fragment wait list
  221. *
  222. * Returns: None
  223. */
  224. static void dp_rx_defrag_waitlist_add(struct dp_txrx_peer *txrx_peer,
  225. unsigned int tid)
  226. {
  227. struct dp_soc *psoc = txrx_peer->vdev->pdev->soc;
  228. struct dp_rx_tid_defrag *waitlist_elem = &txrx_peer->rx_tid[tid];
  229. dp_debug("Adding TID %u to waitlist for peer %pK with peer_id = %d ",
  230. tid, txrx_peer, txrx_peer->peer_id);
  231. /* TODO: use LIST macros instead of TAIL macros */
  232. qdf_spin_lock_bh(&psoc->rx.defrag.defrag_lock);
  233. if (TAILQ_EMPTY(&psoc->rx.defrag.waitlist))
  234. psoc->rx.defrag.next_flush_ms =
  235. waitlist_elem->defrag_timeout_ms;
  236. TAILQ_INSERT_TAIL(&psoc->rx.defrag.waitlist, waitlist_elem,
  237. defrag_waitlist_elem);
  238. DP_STATS_INC(psoc, rx.rx_frag_wait, 1);
  239. qdf_spin_unlock_bh(&psoc->rx.defrag.defrag_lock);
  240. }
  241. /*
  242. * dp_rx_defrag_waitlist_remove(): Remove fragments from waitlist
  243. * @txrx peer: Pointer to the peer data structure
  244. * @tid: Transmit ID (TID)
  245. *
  246. * Remove fragments from waitlist
  247. *
  248. * Returns: None
  249. */
  250. void dp_rx_defrag_waitlist_remove(struct dp_txrx_peer *txrx_peer,
  251. unsigned int tid)
  252. {
  253. struct dp_pdev *pdev = txrx_peer->vdev->pdev;
  254. struct dp_soc *soc = pdev->soc;
  255. struct dp_rx_tid_defrag *waitlist_elm;
  256. struct dp_rx_tid_defrag *tmp;
  257. dp_debug("Removing TID %u to waitlist for peer %pK peer_id = %d ",
  258. tid, txrx_peer, txrx_peer->peer_id);
  259. if (tid >= DP_MAX_TIDS) {
  260. dp_err("TID out of bounds: %d", tid);
  261. qdf_assert_always(0);
  262. }
  263. qdf_spin_lock_bh(&soc->rx.defrag.defrag_lock);
  264. TAILQ_FOREACH_SAFE(waitlist_elm, &soc->rx.defrag.waitlist,
  265. defrag_waitlist_elem, tmp) {
  266. struct dp_txrx_peer *peer_on_waitlist;
  267. /* get address of current peer */
  268. peer_on_waitlist = waitlist_elm->defrag_peer;
  269. /* Ensure it is TID for same peer */
  270. if (peer_on_waitlist == txrx_peer && waitlist_elm->tid == tid) {
  271. TAILQ_REMOVE(&soc->rx.defrag.waitlist,
  272. waitlist_elm, defrag_waitlist_elem);
  273. DP_STATS_DEC(soc, rx.rx_frag_wait, 1);
  274. }
  275. }
  276. qdf_spin_unlock_bh(&soc->rx.defrag.defrag_lock);
  277. }
  278. /*
  279. * dp_rx_defrag_fraglist_insert(): Create a per-sequence fragment list
  280. * @txrx_peer: Pointer to the peer data structure
  281. * @tid: Transmit ID (TID)
  282. * @head_addr: Pointer to head list
  283. * @tail_addr: Pointer to tail list
  284. * @frag: Incoming fragment
  285. * @all_frag_present: Flag to indicate whether all fragments are received
  286. *
  287. * Build a per-tid, per-sequence fragment list.
  288. *
  289. * Returns: Success, if inserted
  290. */
  291. static QDF_STATUS
  292. dp_rx_defrag_fraglist_insert(struct dp_txrx_peer *txrx_peer, unsigned int tid,
  293. qdf_nbuf_t *head_addr, qdf_nbuf_t *tail_addr,
  294. qdf_nbuf_t frag, uint8_t *all_frag_present)
  295. {
  296. struct dp_soc *soc = txrx_peer->vdev->pdev->soc;
  297. qdf_nbuf_t next;
  298. qdf_nbuf_t prev = NULL;
  299. qdf_nbuf_t cur;
  300. uint16_t head_fragno, cur_fragno, next_fragno;
  301. uint8_t last_morefrag = 1, count = 0;
  302. struct dp_rx_tid_defrag *rx_tid = &txrx_peer->rx_tid[tid];
  303. uint8_t *rx_desc_info;
  304. qdf_assert(frag);
  305. qdf_assert(head_addr);
  306. qdf_assert(tail_addr);
  307. *all_frag_present = 0;
  308. rx_desc_info = qdf_nbuf_data(frag);
  309. cur_fragno = dp_rx_frag_get_mpdu_frag_number(soc, rx_desc_info);
  310. dp_debug("cur_fragno %d\n", cur_fragno);
  311. /* If this is the first fragment */
  312. if (!(*head_addr)) {
  313. *head_addr = *tail_addr = frag;
  314. qdf_nbuf_set_next(*tail_addr, NULL);
  315. rx_tid->curr_frag_num = cur_fragno;
  316. goto insert_done;
  317. }
  318. /* In sequence fragment */
  319. if (cur_fragno > rx_tid->curr_frag_num) {
  320. qdf_nbuf_set_next(*tail_addr, frag);
  321. *tail_addr = frag;
  322. qdf_nbuf_set_next(*tail_addr, NULL);
  323. rx_tid->curr_frag_num = cur_fragno;
  324. } else {
  325. /* Out of sequence fragment */
  326. cur = *head_addr;
  327. rx_desc_info = qdf_nbuf_data(cur);
  328. head_fragno = dp_rx_frag_get_mpdu_frag_number(soc,
  329. rx_desc_info);
  330. if (cur_fragno == head_fragno) {
  331. dp_rx_nbuf_free(frag);
  332. goto insert_fail;
  333. } else if (head_fragno > cur_fragno) {
  334. qdf_nbuf_set_next(frag, cur);
  335. cur = frag;
  336. *head_addr = frag; /* head pointer to be updated */
  337. } else {
  338. while ((cur_fragno > head_fragno) && cur) {
  339. prev = cur;
  340. cur = qdf_nbuf_next(cur);
  341. if (cur) {
  342. rx_desc_info = qdf_nbuf_data(cur);
  343. head_fragno =
  344. dp_rx_frag_get_mpdu_frag_number(
  345. soc,
  346. rx_desc_info);
  347. }
  348. }
  349. if (cur_fragno == head_fragno) {
  350. dp_rx_nbuf_free(frag);
  351. goto insert_fail;
  352. }
  353. qdf_nbuf_set_next(prev, frag);
  354. qdf_nbuf_set_next(frag, cur);
  355. }
  356. }
  357. next = qdf_nbuf_next(*head_addr);
  358. rx_desc_info = qdf_nbuf_data(*tail_addr);
  359. last_morefrag = dp_rx_frag_get_more_frag_bit(soc, rx_desc_info);
  360. /* TODO: optimize the loop */
  361. if (!last_morefrag) {
  362. /* Check if all fragments are present */
  363. do {
  364. rx_desc_info = qdf_nbuf_data(next);
  365. next_fragno =
  366. dp_rx_frag_get_mpdu_frag_number(soc,
  367. rx_desc_info);
  368. count++;
  369. if (next_fragno != count)
  370. break;
  371. next = qdf_nbuf_next(next);
  372. } while (next);
  373. if (!next) {
  374. *all_frag_present = 1;
  375. return QDF_STATUS_SUCCESS;
  376. } else {
  377. /* revisit */
  378. }
  379. }
  380. insert_done:
  381. return QDF_STATUS_SUCCESS;
  382. insert_fail:
  383. return QDF_STATUS_E_FAILURE;
  384. }
  385. /*
  386. * dp_rx_defrag_tkip_decap(): decap tkip encrypted fragment
  387. * @msdu: Pointer to the fragment
  388. * @hdrlen: 802.11 header length (mostly useful in 4 addr frames)
  389. *
  390. * decap tkip encrypted fragment
  391. *
  392. * Returns: QDF_STATUS
  393. */
  394. static QDF_STATUS
  395. dp_rx_defrag_tkip_decap(struct dp_soc *soc,
  396. qdf_nbuf_t msdu, uint16_t hdrlen)
  397. {
  398. uint8_t *ivp, *orig_hdr;
  399. int rx_desc_len = soc->rx_pkt_tlv_size;
  400. /* start of 802.11 header info */
  401. orig_hdr = (uint8_t *)(qdf_nbuf_data(msdu) + rx_desc_len);
  402. /* TKIP header is located post 802.11 header */
  403. ivp = orig_hdr + hdrlen;
  404. if (!(ivp[IEEE80211_WEP_IVLEN] & IEEE80211_WEP_EXTIV)) {
  405. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  406. "IEEE80211_WEP_EXTIV is missing in TKIP fragment");
  407. return QDF_STATUS_E_DEFRAG_ERROR;
  408. }
  409. qdf_nbuf_trim_tail(msdu, dp_f_tkip.ic_trailer);
  410. return QDF_STATUS_SUCCESS;
  411. }
  412. /*
  413. * dp_rx_defrag_ccmp_demic(): Remove MIC information from CCMP fragment
  414. * @nbuf: Pointer to the fragment buffer
  415. * @hdrlen: 802.11 header length (mostly useful in 4 addr frames)
  416. *
  417. * Remove MIC information from CCMP fragment
  418. *
  419. * Returns: QDF_STATUS
  420. */
  421. static QDF_STATUS
  422. dp_rx_defrag_ccmp_demic(struct dp_soc *soc, qdf_nbuf_t nbuf, uint16_t hdrlen)
  423. {
  424. uint8_t *ivp, *orig_hdr;
  425. int rx_desc_len = soc->rx_pkt_tlv_size;
  426. /* start of the 802.11 header */
  427. orig_hdr = (uint8_t *)(qdf_nbuf_data(nbuf) + rx_desc_len);
  428. /* CCMP header is located after 802.11 header */
  429. ivp = orig_hdr + hdrlen;
  430. if (!(ivp[IEEE80211_WEP_IVLEN] & IEEE80211_WEP_EXTIV))
  431. return QDF_STATUS_E_DEFRAG_ERROR;
  432. qdf_nbuf_trim_tail(nbuf, dp_f_ccmp.ic_trailer);
  433. return QDF_STATUS_SUCCESS;
  434. }
  435. /*
  436. * dp_rx_defrag_ccmp_decap(): decap CCMP encrypted fragment
  437. * @nbuf: Pointer to the fragment
  438. * @hdrlen: length of the header information
  439. *
  440. * decap CCMP encrypted fragment
  441. *
  442. * Returns: QDF_STATUS
  443. */
  444. static QDF_STATUS
  445. dp_rx_defrag_ccmp_decap(struct dp_soc *soc, qdf_nbuf_t nbuf, uint16_t hdrlen)
  446. {
  447. uint8_t *ivp, *origHdr;
  448. int rx_desc_len = soc->rx_pkt_tlv_size;
  449. origHdr = (uint8_t *) (qdf_nbuf_data(nbuf) + rx_desc_len);
  450. ivp = origHdr + hdrlen;
  451. if (!(ivp[IEEE80211_WEP_IVLEN] & IEEE80211_WEP_EXTIV))
  452. return QDF_STATUS_E_DEFRAG_ERROR;
  453. qdf_mem_move(nbuf->data + dp_f_ccmp.ic_header, nbuf->data,
  454. rx_desc_len + hdrlen);
  455. qdf_nbuf_pull_head(nbuf, dp_f_ccmp.ic_header);
  456. return QDF_STATUS_SUCCESS;
  457. }
  458. /*
  459. * dp_rx_defrag_wep_decap(): decap WEP encrypted fragment
  460. * @msdu: Pointer to the fragment
  461. * @hdrlen: length of the header information
  462. *
  463. * decap WEP encrypted fragment
  464. *
  465. * Returns: QDF_STATUS
  466. */
  467. static QDF_STATUS
  468. dp_rx_defrag_wep_decap(struct dp_soc *soc, qdf_nbuf_t msdu, uint16_t hdrlen)
  469. {
  470. uint8_t *origHdr;
  471. int rx_desc_len = soc->rx_pkt_tlv_size;
  472. origHdr = (uint8_t *) (qdf_nbuf_data(msdu) + rx_desc_len);
  473. qdf_mem_move(origHdr + dp_f_wep.ic_header, origHdr, hdrlen);
  474. qdf_nbuf_trim_tail(msdu, dp_f_wep.ic_trailer);
  475. return QDF_STATUS_SUCCESS;
  476. }
  477. /*
  478. * dp_rx_defrag_hdrsize(): Calculate the header size of the received fragment
  479. * @soc: soc handle
  480. * @nbuf: Pointer to the fragment
  481. *
  482. * Calculate the header size of the received fragment
  483. *
  484. * Returns: header size (uint16_t)
  485. */
  486. static uint16_t dp_rx_defrag_hdrsize(struct dp_soc *soc, qdf_nbuf_t nbuf)
  487. {
  488. uint8_t *rx_tlv_hdr = qdf_nbuf_data(nbuf);
  489. uint16_t size = sizeof(struct ieee80211_frame);
  490. uint16_t fc = 0;
  491. uint32_t to_ds, fr_ds;
  492. uint8_t frm_ctrl_valid;
  493. uint16_t frm_ctrl_field;
  494. to_ds = hal_rx_mpdu_get_to_ds(soc->hal_soc, rx_tlv_hdr);
  495. fr_ds = hal_rx_mpdu_get_fr_ds(soc->hal_soc, rx_tlv_hdr);
  496. frm_ctrl_valid =
  497. hal_rx_get_mpdu_frame_control_valid(soc->hal_soc,
  498. rx_tlv_hdr);
  499. frm_ctrl_field = hal_rx_get_frame_ctrl_field(soc->hal_soc, rx_tlv_hdr);
  500. if (to_ds && fr_ds)
  501. size += QDF_MAC_ADDR_SIZE;
  502. if (frm_ctrl_valid) {
  503. fc = frm_ctrl_field;
  504. /* use 1-st byte for validation */
  505. if (DP_RX_DEFRAG_IEEE80211_QOS_HAS_SEQ(fc & 0xff)) {
  506. size += sizeof(uint16_t);
  507. /* use 2-nd byte for validation */
  508. if (((fc & 0xff00) >> 8) & IEEE80211_FC1_ORDER)
  509. size += sizeof(struct ieee80211_htc);
  510. }
  511. }
  512. return size;
  513. }
  514. /*
  515. * dp_rx_defrag_michdr(): Calculate a pseudo MIC header
  516. * @wh0: Pointer to the wireless header of the fragment
  517. * @hdr: Array to hold the pseudo header
  518. *
  519. * Calculate a pseudo MIC header
  520. *
  521. * Returns: None
  522. */
  523. static void dp_rx_defrag_michdr(const struct ieee80211_frame *wh0,
  524. uint8_t hdr[])
  525. {
  526. const struct ieee80211_frame_addr4 *wh =
  527. (const struct ieee80211_frame_addr4 *)wh0;
  528. switch (wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) {
  529. case IEEE80211_FC1_DIR_NODS:
  530. DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr, wh->i_addr1); /* DA */
  531. DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr + QDF_MAC_ADDR_SIZE,
  532. wh->i_addr2);
  533. break;
  534. case IEEE80211_FC1_DIR_TODS:
  535. DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr, wh->i_addr3); /* DA */
  536. DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr + QDF_MAC_ADDR_SIZE,
  537. wh->i_addr2);
  538. break;
  539. case IEEE80211_FC1_DIR_FROMDS:
  540. DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr, wh->i_addr1); /* DA */
  541. DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr + QDF_MAC_ADDR_SIZE,
  542. wh->i_addr3);
  543. break;
  544. case IEEE80211_FC1_DIR_DSTODS:
  545. DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr, wh->i_addr3); /* DA */
  546. DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr + QDF_MAC_ADDR_SIZE,
  547. wh->i_addr4);
  548. break;
  549. }
  550. /*
  551. * Bit 7 is QDF_IEEE80211_FC0_SUBTYPE_QOS for data frame, but
  552. * it could also be set for deauth, disassoc, action, etc. for
  553. * a mgt type frame. It comes into picture for MFP.
  554. */
  555. if (wh->i_fc[0] & QDF_IEEE80211_FC0_SUBTYPE_QOS) {
  556. if ((wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) ==
  557. IEEE80211_FC1_DIR_DSTODS) {
  558. const struct ieee80211_qosframe_addr4 *qwh =
  559. (const struct ieee80211_qosframe_addr4 *)wh;
  560. hdr[12] = qwh->i_qos[0] & IEEE80211_QOS_TID;
  561. } else {
  562. const struct ieee80211_qosframe *qwh =
  563. (const struct ieee80211_qosframe *)wh;
  564. hdr[12] = qwh->i_qos[0] & IEEE80211_QOS_TID;
  565. }
  566. } else {
  567. hdr[12] = 0;
  568. }
  569. hdr[13] = hdr[14] = hdr[15] = 0; /* reserved */
  570. }
  571. /*
  572. * dp_rx_defrag_mic(): Calculate MIC header
  573. * @key: Pointer to the key
  574. * @wbuf: fragment buffer
  575. * @off: Offset
  576. * @data_len: Data length
  577. * @mic: Array to hold MIC
  578. *
  579. * Calculate a pseudo MIC header
  580. *
  581. * Returns: QDF_STATUS
  582. */
  583. static QDF_STATUS dp_rx_defrag_mic(struct dp_soc *soc, const uint8_t *key,
  584. qdf_nbuf_t wbuf, uint16_t off,
  585. uint16_t data_len, uint8_t mic[])
  586. {
  587. uint8_t hdr[16] = { 0, };
  588. uint32_t l, r;
  589. const uint8_t *data;
  590. uint32_t space;
  591. int rx_desc_len = soc->rx_pkt_tlv_size;
  592. dp_rx_defrag_michdr((struct ieee80211_frame *)(qdf_nbuf_data(wbuf)
  593. + rx_desc_len), hdr);
  594. l = dp_rx_get_le32(key);
  595. r = dp_rx_get_le32(key + 4);
  596. /* Michael MIC pseudo header: DA, SA, 3 x 0, Priority */
  597. l ^= dp_rx_get_le32(hdr);
  598. dp_rx_michael_block(l, r);
  599. l ^= dp_rx_get_le32(&hdr[4]);
  600. dp_rx_michael_block(l, r);
  601. l ^= dp_rx_get_le32(&hdr[8]);
  602. dp_rx_michael_block(l, r);
  603. l ^= dp_rx_get_le32(&hdr[12]);
  604. dp_rx_michael_block(l, r);
  605. /* first buffer has special handling */
  606. data = (uint8_t *)qdf_nbuf_data(wbuf) + off;
  607. space = qdf_nbuf_len(wbuf) - off;
  608. for (;; ) {
  609. if (space > data_len)
  610. space = data_len;
  611. /* collect 32-bit blocks from current buffer */
  612. while (space >= sizeof(uint32_t)) {
  613. l ^= dp_rx_get_le32(data);
  614. dp_rx_michael_block(l, r);
  615. data += sizeof(uint32_t);
  616. space -= sizeof(uint32_t);
  617. data_len -= sizeof(uint32_t);
  618. }
  619. if (data_len < sizeof(uint32_t))
  620. break;
  621. wbuf = qdf_nbuf_next(wbuf);
  622. if (!wbuf)
  623. return QDF_STATUS_E_DEFRAG_ERROR;
  624. if (space != 0) {
  625. const uint8_t *data_next;
  626. /*
  627. * Block straddles buffers, split references.
  628. */
  629. data_next =
  630. (uint8_t *)qdf_nbuf_data(wbuf) + off;
  631. if ((qdf_nbuf_len(wbuf)) <
  632. sizeof(uint32_t) - space) {
  633. return QDF_STATUS_E_DEFRAG_ERROR;
  634. }
  635. switch (space) {
  636. case 1:
  637. l ^= dp_rx_get_le32_split(data[0],
  638. data_next[0], data_next[1],
  639. data_next[2]);
  640. data = data_next + 3;
  641. space = (qdf_nbuf_len(wbuf) - off) - 3;
  642. break;
  643. case 2:
  644. l ^= dp_rx_get_le32_split(data[0], data[1],
  645. data_next[0], data_next[1]);
  646. data = data_next + 2;
  647. space = (qdf_nbuf_len(wbuf) - off) - 2;
  648. break;
  649. case 3:
  650. l ^= dp_rx_get_le32_split(data[0], data[1],
  651. data[2], data_next[0]);
  652. data = data_next + 1;
  653. space = (qdf_nbuf_len(wbuf) - off) - 1;
  654. break;
  655. }
  656. dp_rx_michael_block(l, r);
  657. data_len -= sizeof(uint32_t);
  658. } else {
  659. /*
  660. * Setup for next buffer.
  661. */
  662. data = (uint8_t *)qdf_nbuf_data(wbuf) + off;
  663. space = qdf_nbuf_len(wbuf) - off;
  664. }
  665. }
  666. /* Last block and padding (0x5a, 4..7 x 0) */
  667. switch (data_len) {
  668. case 0:
  669. l ^= dp_rx_get_le32_split(0x5a, 0, 0, 0);
  670. break;
  671. case 1:
  672. l ^= dp_rx_get_le32_split(data[0], 0x5a, 0, 0);
  673. break;
  674. case 2:
  675. l ^= dp_rx_get_le32_split(data[0], data[1], 0x5a, 0);
  676. break;
  677. case 3:
  678. l ^= dp_rx_get_le32_split(data[0], data[1], data[2], 0x5a);
  679. break;
  680. }
  681. dp_rx_michael_block(l, r);
  682. dp_rx_michael_block(l, r);
  683. dp_rx_put_le32(mic, l);
  684. dp_rx_put_le32(mic + 4, r);
  685. return QDF_STATUS_SUCCESS;
  686. }
  687. /*
  688. * dp_rx_defrag_tkip_demic(): Remove MIC header from the TKIP frame
  689. * @key: Pointer to the key
  690. * @msdu: fragment buffer
  691. * @hdrlen: Length of the header information
  692. *
  693. * Remove MIC information from the TKIP frame
  694. *
  695. * Returns: QDF_STATUS
  696. */
  697. static QDF_STATUS dp_rx_defrag_tkip_demic(struct dp_soc *soc,
  698. const uint8_t *key,
  699. qdf_nbuf_t msdu, uint16_t hdrlen)
  700. {
  701. QDF_STATUS status;
  702. uint32_t pktlen = 0, prev_data_len;
  703. uint8_t mic[IEEE80211_WEP_MICLEN];
  704. uint8_t mic0[IEEE80211_WEP_MICLEN];
  705. qdf_nbuf_t prev = NULL, prev0, next;
  706. uint8_t len0 = 0;
  707. next = msdu;
  708. prev0 = msdu;
  709. while (next) {
  710. pktlen += (qdf_nbuf_len(next) - hdrlen);
  711. prev = next;
  712. dp_debug("pktlen %u",
  713. (uint32_t)(qdf_nbuf_len(next) - hdrlen));
  714. next = qdf_nbuf_next(next);
  715. if (next && !qdf_nbuf_next(next))
  716. prev0 = prev;
  717. }
  718. if (!prev) {
  719. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  720. "%s Defrag chaining failed !\n", __func__);
  721. return QDF_STATUS_E_DEFRAG_ERROR;
  722. }
  723. prev_data_len = qdf_nbuf_len(prev) - hdrlen;
  724. if (prev_data_len < dp_f_tkip.ic_miclen) {
  725. if (prev0 == prev) {
  726. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  727. "%s Fragments don't have MIC header !\n", __func__);
  728. return QDF_STATUS_E_DEFRAG_ERROR;
  729. }
  730. len0 = dp_f_tkip.ic_miclen - (uint8_t)prev_data_len;
  731. qdf_nbuf_copy_bits(prev0, qdf_nbuf_len(prev0) - len0, len0,
  732. (caddr_t)mic0);
  733. qdf_nbuf_trim_tail(prev0, len0);
  734. }
  735. qdf_nbuf_copy_bits(prev, (qdf_nbuf_len(prev) -
  736. (dp_f_tkip.ic_miclen - len0)),
  737. (dp_f_tkip.ic_miclen - len0),
  738. (caddr_t)(&mic0[len0]));
  739. qdf_nbuf_trim_tail(prev, (dp_f_tkip.ic_miclen - len0));
  740. pktlen -= dp_f_tkip.ic_miclen;
  741. if (((qdf_nbuf_len(prev) - hdrlen) == 0) && prev != msdu) {
  742. dp_rx_nbuf_free(prev);
  743. qdf_nbuf_set_next(prev0, NULL);
  744. }
  745. status = dp_rx_defrag_mic(soc, key, msdu, hdrlen,
  746. pktlen, mic);
  747. if (QDF_IS_STATUS_ERROR(status))
  748. return status;
  749. if (qdf_mem_cmp(mic, mic0, dp_f_tkip.ic_miclen))
  750. return QDF_STATUS_E_DEFRAG_ERROR;
  751. return QDF_STATUS_SUCCESS;
  752. }
  753. /*
  754. * dp_rx_frag_pull_hdr(): Pulls the RXTLV & the 802.11 headers
  755. * @nbuf: buffer pointer
  756. * @hdrsize: size of the header to be pulled
  757. *
  758. * Pull the RXTLV & the 802.11 headers
  759. *
  760. * Returns: None
  761. */
  762. static void dp_rx_frag_pull_hdr(struct dp_soc *soc,
  763. qdf_nbuf_t nbuf, uint16_t hdrsize)
  764. {
  765. hal_rx_print_pn(soc->hal_soc, qdf_nbuf_data(nbuf));
  766. qdf_nbuf_pull_head(nbuf, soc->rx_pkt_tlv_size + hdrsize);
  767. dp_debug("final pktlen %d .11len %d",
  768. (uint32_t)qdf_nbuf_len(nbuf), hdrsize);
  769. }
  770. /*
  771. * dp_rx_defrag_pn_check(): Check the PN of current fragmented with prev PN
  772. * @msdu: msdu to get the current PN
  773. * @cur_pn128: PN extracted from current msdu
  774. * @prev_pn128: Prev PN
  775. *
  776. * Returns: 0 on success, non zero on failure
  777. */
  778. static int dp_rx_defrag_pn_check(struct dp_soc *soc, qdf_nbuf_t msdu,
  779. uint64_t *cur_pn128, uint64_t *prev_pn128)
  780. {
  781. int out_of_order = 0;
  782. hal_rx_tlv_get_pn_num(soc->hal_soc, qdf_nbuf_data(msdu), cur_pn128);
  783. if (cur_pn128[1] == prev_pn128[1])
  784. out_of_order = (cur_pn128[0] - prev_pn128[0] != 1);
  785. else
  786. out_of_order = (cur_pn128[1] - prev_pn128[1] != 1);
  787. return out_of_order;
  788. }
  789. /*
  790. * dp_rx_construct_fraglist(): Construct a nbuf fraglist
  791. * @txrx peer: Pointer to the txrx peer
  792. * @head: Pointer to list of fragments
  793. * @hdrsize: Size of the header to be pulled
  794. *
  795. * Construct a nbuf fraglist
  796. *
  797. * Returns: None
  798. */
  799. static int
  800. dp_rx_construct_fraglist(struct dp_txrx_peer *txrx_peer, int tid,
  801. qdf_nbuf_t head,
  802. uint16_t hdrsize)
  803. {
  804. struct dp_soc *soc = txrx_peer->vdev->pdev->soc;
  805. qdf_nbuf_t msdu = qdf_nbuf_next(head);
  806. qdf_nbuf_t rx_nbuf = msdu;
  807. struct dp_rx_tid_defrag *rx_tid = &txrx_peer->rx_tid[tid];
  808. uint32_t len = 0;
  809. uint64_t cur_pn128[2] = {0, 0}, prev_pn128[2];
  810. int out_of_order = 0;
  811. int index;
  812. int needs_pn_check = 0;
  813. enum cdp_sec_type sec_type;
  814. prev_pn128[0] = rx_tid->pn128[0];
  815. prev_pn128[1] = rx_tid->pn128[1];
  816. index = hal_rx_msdu_is_wlan_mcast(soc->hal_soc, msdu) ? dp_sec_mcast :
  817. dp_sec_ucast;
  818. sec_type = txrx_peer->security[index].sec_type;
  819. if (!(sec_type == cdp_sec_type_none || sec_type == cdp_sec_type_wep128 ||
  820. sec_type == cdp_sec_type_wep104 || sec_type == cdp_sec_type_wep40))
  821. needs_pn_check = 1;
  822. while (msdu) {
  823. if (qdf_likely(needs_pn_check))
  824. out_of_order = dp_rx_defrag_pn_check(soc, msdu,
  825. &cur_pn128[0],
  826. &prev_pn128[0]);
  827. if (qdf_unlikely(out_of_order)) {
  828. dp_info_rl("cur_pn128[0] 0x%llx cur_pn128[1] 0x%llx prev_pn128[0] 0x%llx prev_pn128[1] 0x%llx",
  829. cur_pn128[0], cur_pn128[1],
  830. prev_pn128[0], prev_pn128[1]);
  831. return QDF_STATUS_E_FAILURE;
  832. }
  833. prev_pn128[0] = cur_pn128[0];
  834. prev_pn128[1] = cur_pn128[1];
  835. /*
  836. * Broadcast and multicast frames should never be fragmented.
  837. * Iterating through all msdus and dropping fragments if even
  838. * one of them has mcast/bcast destination address.
  839. */
  840. if (hal_rx_msdu_is_wlan_mcast(soc->hal_soc, msdu)) {
  841. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  842. "Dropping multicast/broadcast fragments");
  843. return QDF_STATUS_E_FAILURE;
  844. }
  845. dp_rx_frag_pull_hdr(soc, msdu, hdrsize);
  846. len += qdf_nbuf_len(msdu);
  847. msdu = qdf_nbuf_next(msdu);
  848. }
  849. qdf_nbuf_append_ext_list(head, rx_nbuf, len);
  850. qdf_nbuf_set_next(head, NULL);
  851. qdf_nbuf_set_is_frag(head, 1);
  852. dp_debug("head len %d ext len %d data len %d ",
  853. (uint32_t)qdf_nbuf_len(head),
  854. (uint32_t)qdf_nbuf_len(rx_nbuf),
  855. (uint32_t)(head->data_len));
  856. return QDF_STATUS_SUCCESS;
  857. }
  858. /**
  859. * dp_rx_defrag_err() - rx err handler
  860. * @pdev: handle to pdev object
  861. * @vdev_id: vdev id
  862. * @peer_mac_addr: peer mac address
  863. * @tid: TID
  864. * @tsf32: TSF
  865. * @err_type: error type
  866. * @rx_frame: rx frame
  867. * @pn: PN Number
  868. * @key_id: key id
  869. *
  870. * This function handles rx error and send MIC error notification
  871. *
  872. * Return: None
  873. */
  874. static void dp_rx_defrag_err(struct dp_vdev *vdev, qdf_nbuf_t nbuf)
  875. {
  876. struct ol_if_ops *tops = NULL;
  877. struct dp_pdev *pdev = vdev->pdev;
  878. int rx_desc_len = pdev->soc->rx_pkt_tlv_size;
  879. uint8_t *orig_hdr;
  880. struct ieee80211_frame *wh;
  881. struct cdp_rx_mic_err_info mic_failure_info;
  882. orig_hdr = (uint8_t *)(qdf_nbuf_data(nbuf) + rx_desc_len);
  883. wh = (struct ieee80211_frame *)orig_hdr;
  884. qdf_copy_macaddr((struct qdf_mac_addr *)&mic_failure_info.da_mac_addr,
  885. (struct qdf_mac_addr *)&wh->i_addr1);
  886. qdf_copy_macaddr((struct qdf_mac_addr *)&mic_failure_info.ta_mac_addr,
  887. (struct qdf_mac_addr *)&wh->i_addr2);
  888. mic_failure_info.key_id = 0;
  889. mic_failure_info.multicast =
  890. IEEE80211_IS_MULTICAST(wh->i_addr1);
  891. qdf_mem_zero(mic_failure_info.tsc, MIC_SEQ_CTR_SIZE);
  892. mic_failure_info.frame_type = cdp_rx_frame_type_802_11;
  893. mic_failure_info.data = (uint8_t *)wh;
  894. mic_failure_info.vdev_id = vdev->vdev_id;
  895. tops = pdev->soc->cdp_soc.ol_ops;
  896. if (tops->rx_mic_error)
  897. tops->rx_mic_error(pdev->soc->ctrl_psoc, pdev->pdev_id,
  898. &mic_failure_info);
  899. }
  900. /*
  901. * dp_rx_defrag_nwifi_to_8023(): Transcap 802.11 to 802.3
  902. * @soc: dp soc handle
  903. * @txrx_peer: txrx_peer handle
  904. * @nbuf: Pointer to the fragment buffer
  905. * @hdrsize: Size of headers
  906. *
  907. * Transcap the fragment from 802.11 to 802.3
  908. *
  909. * Returns: None
  910. */
  911. static void
  912. dp_rx_defrag_nwifi_to_8023(struct dp_soc *soc, struct dp_txrx_peer *txrx_peer,
  913. int tid, qdf_nbuf_t nbuf, uint16_t hdrsize)
  914. {
  915. struct llc_snap_hdr_t *llchdr;
  916. struct ethernet_hdr_t *eth_hdr;
  917. uint8_t ether_type[2];
  918. uint16_t fc = 0;
  919. union dp_align_mac_addr mac_addr;
  920. uint8_t *rx_desc_info = qdf_mem_malloc(soc->rx_pkt_tlv_size);
  921. struct dp_rx_tid_defrag *rx_tid = &txrx_peer->rx_tid[tid];
  922. hal_rx_tlv_get_pn_num(soc->hal_soc, qdf_nbuf_data(nbuf), rx_tid->pn128);
  923. hal_rx_print_pn(soc->hal_soc, qdf_nbuf_data(nbuf));
  924. if (!rx_desc_info) {
  925. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  926. "%s: Memory alloc failed ! ", __func__);
  927. QDF_ASSERT(0);
  928. return;
  929. }
  930. qdf_mem_copy(rx_desc_info, qdf_nbuf_data(nbuf), soc->rx_pkt_tlv_size);
  931. llchdr = (struct llc_snap_hdr_t *)(qdf_nbuf_data(nbuf) +
  932. soc->rx_pkt_tlv_size + hdrsize);
  933. qdf_mem_copy(ether_type, llchdr->ethertype, 2);
  934. qdf_nbuf_pull_head(nbuf, (soc->rx_pkt_tlv_size + hdrsize +
  935. sizeof(struct llc_snap_hdr_t) -
  936. sizeof(struct ethernet_hdr_t)));
  937. eth_hdr = (struct ethernet_hdr_t *)(qdf_nbuf_data(nbuf));
  938. if (hal_rx_get_mpdu_frame_control_valid(soc->hal_soc,
  939. rx_desc_info))
  940. fc = hal_rx_get_frame_ctrl_field(soc->hal_soc, rx_desc_info);
  941. dp_debug("Frame control type: 0x%x", fc);
  942. switch (((fc & 0xff00) >> 8) & IEEE80211_FC1_DIR_MASK) {
  943. case IEEE80211_FC1_DIR_NODS:
  944. hal_rx_mpdu_get_addr1(soc->hal_soc, rx_desc_info,
  945. &mac_addr.raw[0]);
  946. qdf_mem_copy(eth_hdr->dest_addr, &mac_addr.raw[0],
  947. QDF_MAC_ADDR_SIZE);
  948. hal_rx_mpdu_get_addr2(soc->hal_soc, rx_desc_info,
  949. &mac_addr.raw[0]);
  950. qdf_mem_copy(eth_hdr->src_addr, &mac_addr.raw[0],
  951. QDF_MAC_ADDR_SIZE);
  952. break;
  953. case IEEE80211_FC1_DIR_TODS:
  954. hal_rx_mpdu_get_addr3(soc->hal_soc, rx_desc_info,
  955. &mac_addr.raw[0]);
  956. qdf_mem_copy(eth_hdr->dest_addr, &mac_addr.raw[0],
  957. QDF_MAC_ADDR_SIZE);
  958. hal_rx_mpdu_get_addr2(soc->hal_soc, rx_desc_info,
  959. &mac_addr.raw[0]);
  960. qdf_mem_copy(eth_hdr->src_addr, &mac_addr.raw[0],
  961. QDF_MAC_ADDR_SIZE);
  962. break;
  963. case IEEE80211_FC1_DIR_FROMDS:
  964. hal_rx_mpdu_get_addr1(soc->hal_soc, rx_desc_info,
  965. &mac_addr.raw[0]);
  966. qdf_mem_copy(eth_hdr->dest_addr, &mac_addr.raw[0],
  967. QDF_MAC_ADDR_SIZE);
  968. hal_rx_mpdu_get_addr3(soc->hal_soc, rx_desc_info,
  969. &mac_addr.raw[0]);
  970. qdf_mem_copy(eth_hdr->src_addr, &mac_addr.raw[0],
  971. QDF_MAC_ADDR_SIZE);
  972. break;
  973. case IEEE80211_FC1_DIR_DSTODS:
  974. hal_rx_mpdu_get_addr3(soc->hal_soc, rx_desc_info,
  975. &mac_addr.raw[0]);
  976. qdf_mem_copy(eth_hdr->dest_addr, &mac_addr.raw[0],
  977. QDF_MAC_ADDR_SIZE);
  978. hal_rx_mpdu_get_addr4(soc->hal_soc, rx_desc_info,
  979. &mac_addr.raw[0]);
  980. qdf_mem_copy(eth_hdr->src_addr, &mac_addr.raw[0],
  981. QDF_MAC_ADDR_SIZE);
  982. break;
  983. default:
  984. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  985. "%s: Unknown frame control type: 0x%x", __func__, fc);
  986. }
  987. qdf_mem_copy(eth_hdr->ethertype, ether_type,
  988. sizeof(ether_type));
  989. qdf_nbuf_push_head(nbuf, soc->rx_pkt_tlv_size);
  990. qdf_mem_copy(qdf_nbuf_data(nbuf), rx_desc_info, soc->rx_pkt_tlv_size);
  991. qdf_mem_free(rx_desc_info);
  992. }
  993. #ifdef RX_DEFRAG_DO_NOT_REINJECT
  994. /*
  995. * dp_rx_defrag_deliver(): Deliver defrag packet to stack
  996. * @peer: Pointer to the peer
  997. * @tid: Transmit Identifier
  998. * @head: Nbuf to be delivered
  999. *
  1000. * Returns: None
  1001. */
  1002. static inline void dp_rx_defrag_deliver(struct dp_txrx_peer *txrx_peer,
  1003. unsigned int tid,
  1004. qdf_nbuf_t head)
  1005. {
  1006. struct dp_vdev *vdev = txrx_peer->vdev;
  1007. struct dp_soc *soc = vdev->pdev->soc;
  1008. qdf_nbuf_t deliver_list_head = NULL;
  1009. qdf_nbuf_t deliver_list_tail = NULL;
  1010. uint8_t *rx_tlv_hdr;
  1011. rx_tlv_hdr = qdf_nbuf_data(head);
  1012. QDF_NBUF_CB_RX_VDEV_ID(head) = vdev->vdev_id;
  1013. qdf_nbuf_set_tid_val(head, tid);
  1014. qdf_nbuf_pull_head(head, soc->rx_pkt_tlv_size);
  1015. DP_RX_LIST_APPEND(deliver_list_head, deliver_list_tail,
  1016. head);
  1017. dp_rx_deliver_to_stack(soc, vdev, txrx_peer, deliver_list_head,
  1018. deliver_list_tail);
  1019. }
  1020. /*
  1021. * dp_rx_defrag_reo_reinject(): Reinject the fragment chain back into REO
  1022. * @txrx peer: Pointer to the peer
  1023. * @tid: Transmit Identifier
  1024. * @head: Buffer to be reinjected back
  1025. *
  1026. * Reinject the fragment chain back into REO
  1027. *
  1028. * Returns: QDF_STATUS
  1029. */
  1030. static QDF_STATUS dp_rx_defrag_reo_reinject(struct dp_txrx_peer *txrx_peer,
  1031. unsigned int tid, qdf_nbuf_t head)
  1032. {
  1033. struct dp_rx_reorder_array_elem *rx_reorder_array_elem;
  1034. rx_reorder_array_elem = txrx_peer->rx_tid[tid].array;
  1035. dp_rx_defrag_deliver(txrx_peer, tid, head);
  1036. rx_reorder_array_elem->head = NULL;
  1037. rx_reorder_array_elem->tail = NULL;
  1038. dp_rx_return_head_frag_desc(txrx_peer, tid);
  1039. return QDF_STATUS_SUCCESS;
  1040. }
  1041. #else
  1042. #ifdef WLAN_FEATURE_DP_RX_RING_HISTORY
  1043. /**
  1044. * dp_rx_reinject_ring_record_entry() - Record reinject ring history
  1045. * @soc: Datapath soc structure
  1046. * @paddr: paddr of the buffer reinjected to SW2REO ring
  1047. * @sw_cookie: SW cookie of the buffer reinjected to SW2REO ring
  1048. * @rbm: Return buffer manager of the buffer reinjected to SW2REO ring
  1049. *
  1050. * Returns: None
  1051. */
  1052. static inline void
  1053. dp_rx_reinject_ring_record_entry(struct dp_soc *soc, uint64_t paddr,
  1054. uint32_t sw_cookie, uint8_t rbm)
  1055. {
  1056. struct dp_buf_info_record *record;
  1057. uint32_t idx;
  1058. if (qdf_unlikely(!soc->rx_reinject_ring_history))
  1059. return;
  1060. idx = dp_history_get_next_index(&soc->rx_reinject_ring_history->index,
  1061. DP_RX_REINJECT_HIST_MAX);
  1062. /* No NULL check needed for record since its an array */
  1063. record = &soc->rx_reinject_ring_history->entry[idx];
  1064. record->timestamp = qdf_get_log_timestamp();
  1065. record->hbi.paddr = paddr;
  1066. record->hbi.sw_cookie = sw_cookie;
  1067. record->hbi.rbm = rbm;
  1068. }
  1069. #else
  1070. static inline void
  1071. dp_rx_reinject_ring_record_entry(struct dp_soc *soc, uint64_t paddr,
  1072. uint32_t sw_cookie, uint8_t rbm)
  1073. {
  1074. }
  1075. #endif
  1076. /*
  1077. * dp_rx_defrag_reo_reinject(): Reinject the fragment chain back into REO
  1078. * @txrx_peer: Pointer to the txrx_peer
  1079. * @tid: Transmit Identifier
  1080. * @head: Buffer to be reinjected back
  1081. *
  1082. * Reinject the fragment chain back into REO
  1083. *
  1084. * Returns: QDF_STATUS
  1085. */
  1086. static QDF_STATUS dp_rx_defrag_reo_reinject(struct dp_txrx_peer *txrx_peer,
  1087. unsigned int tid, qdf_nbuf_t head)
  1088. {
  1089. struct dp_pdev *pdev = txrx_peer->vdev->pdev;
  1090. struct dp_soc *soc = pdev->soc;
  1091. struct hal_buf_info buf_info;
  1092. struct hal_buf_info temp_buf_info;
  1093. void *link_desc_va;
  1094. void *msdu0, *msdu_desc_info;
  1095. void *ent_ring_desc, *ent_mpdu_desc_info, *ent_qdesc_addr;
  1096. void *dst_mpdu_desc_info;
  1097. uint64_t dst_qdesc_addr;
  1098. qdf_dma_addr_t paddr;
  1099. uint32_t nbuf_len, seq_no, dst_ind;
  1100. uint32_t *mpdu_wrd;
  1101. uint32_t ret, cookie;
  1102. hal_ring_desc_t dst_ring_desc =
  1103. txrx_peer->rx_tid[tid].dst_ring_desc;
  1104. hal_ring_handle_t hal_srng = soc->reo_reinject_ring.hal_srng;
  1105. struct dp_rx_desc *rx_desc = txrx_peer->rx_tid[tid].head_frag_desc;
  1106. struct dp_rx_reorder_array_elem *rx_reorder_array_elem =
  1107. txrx_peer->rx_tid[tid].array;
  1108. qdf_nbuf_t nbuf_head;
  1109. struct rx_desc_pool *rx_desc_pool = NULL;
  1110. void *buf_addr_info = HAL_RX_REO_BUF_ADDR_INFO_GET(dst_ring_desc);
  1111. uint8_t rx_defrag_rbm_id = dp_rx_get_defrag_bm_id(soc);
  1112. /* do duplicate link desc address check */
  1113. dp_rx_link_desc_refill_duplicate_check(
  1114. soc,
  1115. &soc->last_op_info.reo_reinject_link_desc,
  1116. buf_addr_info);
  1117. nbuf_head = dp_ipa_handle_rx_reo_reinject(soc, head);
  1118. if (qdf_unlikely(!nbuf_head)) {
  1119. dp_err_rl("IPA RX REO reinject failed");
  1120. return QDF_STATUS_E_FAILURE;
  1121. }
  1122. /* update new allocated skb in case IPA is enabled */
  1123. if (nbuf_head != head) {
  1124. head = nbuf_head;
  1125. rx_desc->nbuf = head;
  1126. rx_reorder_array_elem->head = head;
  1127. }
  1128. ent_ring_desc = hal_srng_src_get_next(soc->hal_soc, hal_srng);
  1129. if (!ent_ring_desc) {
  1130. dp_err_rl("HAL src ring next entry NULL");
  1131. return QDF_STATUS_E_FAILURE;
  1132. }
  1133. hal_rx_reo_buf_paddr_get(soc->hal_soc, dst_ring_desc, &buf_info);
  1134. /* buffer_addr_info is the first element of ring_desc */
  1135. hal_rx_buf_cookie_rbm_get(soc->hal_soc, (uint32_t *)dst_ring_desc,
  1136. &buf_info);
  1137. link_desc_va = dp_rx_cookie_2_link_desc_va(soc, &buf_info);
  1138. qdf_assert_always(link_desc_va);
  1139. msdu0 = hal_rx_msdu0_buffer_addr_lsb(soc->hal_soc, link_desc_va);
  1140. nbuf_len = qdf_nbuf_len(head) - soc->rx_pkt_tlv_size;
  1141. HAL_RX_UNIFORM_HDR_SET(link_desc_va, OWNER, UNI_DESC_OWNER_SW);
  1142. HAL_RX_UNIFORM_HDR_SET(link_desc_va, BUFFER_TYPE,
  1143. UNI_DESC_BUF_TYPE_RX_MSDU_LINK);
  1144. /* msdu reconfig */
  1145. msdu_desc_info = hal_rx_msdu_desc_info_ptr_get(soc->hal_soc, msdu0);
  1146. dst_ind = hal_rx_msdu_reo_dst_ind_get(soc->hal_soc, link_desc_va);
  1147. qdf_mem_zero(msdu_desc_info, sizeof(struct rx_msdu_desc_info));
  1148. hal_msdu_desc_info_set(soc->hal_soc, msdu_desc_info, dst_ind, nbuf_len);
  1149. /* change RX TLV's */
  1150. hal_rx_tlv_msdu_len_set(soc->hal_soc, qdf_nbuf_data(head), nbuf_len);
  1151. hal_rx_buf_cookie_rbm_get(soc->hal_soc, (uint32_t *)msdu0,
  1152. &temp_buf_info);
  1153. cookie = temp_buf_info.sw_cookie;
  1154. rx_desc_pool = &soc->rx_desc_buf[pdev->lmac_id];
  1155. /* map the nbuf before reinject it into HW */
  1156. ret = qdf_nbuf_map_nbytes_single(soc->osdev, head,
  1157. QDF_DMA_FROM_DEVICE,
  1158. rx_desc_pool->buf_size);
  1159. if (qdf_unlikely(ret == QDF_STATUS_E_FAILURE)) {
  1160. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1161. "%s: nbuf map failed !", __func__);
  1162. return QDF_STATUS_E_FAILURE;
  1163. }
  1164. dp_ipa_handle_rx_buf_smmu_mapping(soc, head,
  1165. rx_desc_pool->buf_size,
  1166. true);
  1167. /*
  1168. * As part of rx frag handler bufffer was unmapped and rx desc
  1169. * unmapped is set to 1. So again for defrag reinject frame reset
  1170. * it back to 0.
  1171. */
  1172. rx_desc->unmapped = 0;
  1173. paddr = qdf_nbuf_get_frag_paddr(head, 0);
  1174. ret = dp_check_paddr(soc, &head, &paddr, rx_desc_pool);
  1175. if (ret == QDF_STATUS_E_FAILURE) {
  1176. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1177. "%s: x86 check failed !", __func__);
  1178. return QDF_STATUS_E_FAILURE;
  1179. }
  1180. hal_rxdma_buff_addr_info_set(soc->hal_soc, msdu0, paddr, cookie,
  1181. rx_defrag_rbm_id);
  1182. /* Lets fill entrance ring now !!! */
  1183. if (qdf_unlikely(hal_srng_access_start(soc->hal_soc, hal_srng))) {
  1184. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1185. "HAL RING Access For REO entrance SRNG Failed: %pK",
  1186. hal_srng);
  1187. return QDF_STATUS_E_FAILURE;
  1188. }
  1189. dp_rx_reinject_ring_record_entry(soc, paddr, cookie,
  1190. rx_defrag_rbm_id);
  1191. paddr = (uint64_t)buf_info.paddr;
  1192. /* buf addr */
  1193. hal_rxdma_buff_addr_info_set(soc->hal_soc, ent_ring_desc, paddr,
  1194. buf_info.sw_cookie,
  1195. soc->idle_link_bm_id);
  1196. /* mpdu desc info */
  1197. ent_mpdu_desc_info = hal_ent_mpdu_desc_info(soc->hal_soc,
  1198. ent_ring_desc);
  1199. dst_mpdu_desc_info = hal_dst_mpdu_desc_info(soc->hal_soc,
  1200. dst_ring_desc);
  1201. qdf_mem_copy(ent_mpdu_desc_info, dst_mpdu_desc_info,
  1202. sizeof(struct rx_mpdu_desc_info));
  1203. qdf_mem_zero(ent_mpdu_desc_info, sizeof(uint32_t));
  1204. mpdu_wrd = (uint32_t *)dst_mpdu_desc_info;
  1205. seq_no = hal_rx_get_rx_sequence(soc->hal_soc, qdf_nbuf_data(head));
  1206. hal_mpdu_desc_info_set(soc->hal_soc, ent_mpdu_desc_info, seq_no);
  1207. /* qdesc addr */
  1208. ent_qdesc_addr = hal_get_reo_ent_desc_qdesc_addr(soc->hal_soc,
  1209. (uint8_t *)ent_ring_desc);
  1210. dst_qdesc_addr = hal_rx_get_qdesc_addr(soc->hal_soc,
  1211. (uint8_t *)dst_ring_desc,
  1212. qdf_nbuf_data(head));
  1213. qdf_mem_copy(ent_qdesc_addr, &dst_qdesc_addr, 5);
  1214. hal_set_reo_ent_desc_reo_dest_ind(soc->hal_soc,
  1215. (uint8_t *)ent_ring_desc, dst_ind);
  1216. hal_srng_access_end(soc->hal_soc, hal_srng);
  1217. DP_STATS_INC(soc, rx.reo_reinject, 1);
  1218. dp_debug("reinjection done !");
  1219. return QDF_STATUS_SUCCESS;
  1220. }
  1221. #endif
  1222. /*
  1223. * dp_rx_defrag_gcmp_demic(): Remove MIC information from GCMP fragment
  1224. * @soc: Datapath soc structure
  1225. * @nbuf: Pointer to the fragment buffer
  1226. * @hdrlen: 802.11 header length
  1227. *
  1228. * Remove MIC information from GCMP fragment
  1229. *
  1230. * Returns: QDF_STATUS
  1231. */
  1232. static QDF_STATUS dp_rx_defrag_gcmp_demic(struct dp_soc *soc, qdf_nbuf_t nbuf,
  1233. uint16_t hdrlen)
  1234. {
  1235. uint8_t *ivp, *orig_hdr;
  1236. int rx_desc_len = soc->rx_pkt_tlv_size;
  1237. /* start of the 802.11 header */
  1238. orig_hdr = (uint8_t *)(qdf_nbuf_data(nbuf) + rx_desc_len);
  1239. /*
  1240. * GCMP header is located after 802.11 header and EXTIV
  1241. * field should always be set to 1 for GCMP protocol.
  1242. */
  1243. ivp = orig_hdr + hdrlen;
  1244. if (!(ivp[IEEE80211_WEP_IVLEN] & IEEE80211_WEP_EXTIV))
  1245. return QDF_STATUS_E_DEFRAG_ERROR;
  1246. qdf_nbuf_trim_tail(nbuf, dp_f_gcmp.ic_trailer);
  1247. return QDF_STATUS_SUCCESS;
  1248. }
  1249. /*
  1250. * dp_rx_defrag(): Defragment the fragment chain
  1251. * @txrx peer: Pointer to the peer
  1252. * @tid: Transmit Identifier
  1253. * @frag_list_head: Pointer to head list
  1254. * @frag_list_tail: Pointer to tail list
  1255. *
  1256. * Defragment the fragment chain
  1257. *
  1258. * Returns: QDF_STATUS
  1259. */
  1260. static QDF_STATUS dp_rx_defrag(struct dp_txrx_peer *txrx_peer, unsigned int tid,
  1261. qdf_nbuf_t frag_list_head,
  1262. qdf_nbuf_t frag_list_tail)
  1263. {
  1264. qdf_nbuf_t tmp_next, prev;
  1265. qdf_nbuf_t cur = frag_list_head, msdu;
  1266. uint32_t index, tkip_demic = 0;
  1267. uint16_t hdr_space;
  1268. uint8_t key[DEFRAG_IEEE80211_KEY_LEN];
  1269. struct dp_vdev *vdev = txrx_peer->vdev;
  1270. struct dp_soc *soc = vdev->pdev->soc;
  1271. uint8_t status = 0;
  1272. if (!cur)
  1273. return QDF_STATUS_E_DEFRAG_ERROR;
  1274. hdr_space = dp_rx_defrag_hdrsize(soc, cur);
  1275. index = hal_rx_msdu_is_wlan_mcast(soc->hal_soc, cur) ?
  1276. dp_sec_mcast : dp_sec_ucast;
  1277. /* Remove FCS from all fragments */
  1278. while (cur) {
  1279. tmp_next = qdf_nbuf_next(cur);
  1280. qdf_nbuf_set_next(cur, NULL);
  1281. qdf_nbuf_trim_tail(cur, DEFRAG_IEEE80211_FCS_LEN);
  1282. prev = cur;
  1283. qdf_nbuf_set_next(cur, tmp_next);
  1284. cur = tmp_next;
  1285. }
  1286. cur = frag_list_head;
  1287. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_DEBUG,
  1288. "%s: index %d Security type: %d", __func__,
  1289. index, txrx_peer->security[index].sec_type);
  1290. switch (txrx_peer->security[index].sec_type) {
  1291. case cdp_sec_type_tkip:
  1292. tkip_demic = 1;
  1293. case cdp_sec_type_tkip_nomic:
  1294. while (cur) {
  1295. tmp_next = qdf_nbuf_next(cur);
  1296. if (dp_rx_defrag_tkip_decap(soc, cur, hdr_space)) {
  1297. QDF_TRACE(QDF_MODULE_ID_TXRX,
  1298. QDF_TRACE_LEVEL_ERROR,
  1299. "dp_rx_defrag: TKIP decap failed");
  1300. return QDF_STATUS_E_DEFRAG_ERROR;
  1301. }
  1302. cur = tmp_next;
  1303. }
  1304. /* If success, increment header to be stripped later */
  1305. hdr_space += dp_f_tkip.ic_header;
  1306. break;
  1307. case cdp_sec_type_aes_ccmp:
  1308. while (cur) {
  1309. tmp_next = qdf_nbuf_next(cur);
  1310. if (dp_rx_defrag_ccmp_demic(soc, cur, hdr_space)) {
  1311. QDF_TRACE(QDF_MODULE_ID_TXRX,
  1312. QDF_TRACE_LEVEL_ERROR,
  1313. "dp_rx_defrag: CCMP demic failed");
  1314. return QDF_STATUS_E_DEFRAG_ERROR;
  1315. }
  1316. if (dp_rx_defrag_ccmp_decap(soc, cur, hdr_space)) {
  1317. QDF_TRACE(QDF_MODULE_ID_TXRX,
  1318. QDF_TRACE_LEVEL_ERROR,
  1319. "dp_rx_defrag: CCMP decap failed");
  1320. return QDF_STATUS_E_DEFRAG_ERROR;
  1321. }
  1322. cur = tmp_next;
  1323. }
  1324. /* If success, increment header to be stripped later */
  1325. hdr_space += dp_f_ccmp.ic_header;
  1326. break;
  1327. case cdp_sec_type_wep40:
  1328. case cdp_sec_type_wep104:
  1329. case cdp_sec_type_wep128:
  1330. while (cur) {
  1331. tmp_next = qdf_nbuf_next(cur);
  1332. if (dp_rx_defrag_wep_decap(soc, cur, hdr_space)) {
  1333. QDF_TRACE(QDF_MODULE_ID_TXRX,
  1334. QDF_TRACE_LEVEL_ERROR,
  1335. "dp_rx_defrag: WEP decap failed");
  1336. return QDF_STATUS_E_DEFRAG_ERROR;
  1337. }
  1338. cur = tmp_next;
  1339. }
  1340. /* If success, increment header to be stripped later */
  1341. hdr_space += dp_f_wep.ic_header;
  1342. break;
  1343. case cdp_sec_type_aes_gcmp:
  1344. case cdp_sec_type_aes_gcmp_256:
  1345. while (cur) {
  1346. tmp_next = qdf_nbuf_next(cur);
  1347. if (dp_rx_defrag_gcmp_demic(soc, cur, hdr_space)) {
  1348. QDF_TRACE(QDF_MODULE_ID_TXRX,
  1349. QDF_TRACE_LEVEL_ERROR,
  1350. "dp_rx_defrag: GCMP demic failed");
  1351. return QDF_STATUS_E_DEFRAG_ERROR;
  1352. }
  1353. cur = tmp_next;
  1354. }
  1355. hdr_space += dp_f_gcmp.ic_header;
  1356. break;
  1357. default:
  1358. break;
  1359. }
  1360. if (tkip_demic) {
  1361. msdu = frag_list_head;
  1362. qdf_mem_copy(key,
  1363. &txrx_peer->security[index].michael_key[0],
  1364. IEEE80211_WEP_MICLEN);
  1365. status = dp_rx_defrag_tkip_demic(soc, key, msdu,
  1366. soc->rx_pkt_tlv_size +
  1367. hdr_space);
  1368. if (status) {
  1369. dp_rx_defrag_err(vdev, frag_list_head);
  1370. QDF_TRACE(QDF_MODULE_ID_TXRX,
  1371. QDF_TRACE_LEVEL_ERROR,
  1372. "%s: TKIP demic failed status %d",
  1373. __func__, status);
  1374. return QDF_STATUS_E_DEFRAG_ERROR;
  1375. }
  1376. }
  1377. /* Convert the header to 802.3 header */
  1378. dp_rx_defrag_nwifi_to_8023(soc, txrx_peer, tid, frag_list_head,
  1379. hdr_space);
  1380. if (qdf_nbuf_next(frag_list_head)) {
  1381. if (dp_rx_construct_fraglist(txrx_peer, tid, frag_list_head,
  1382. hdr_space))
  1383. return QDF_STATUS_E_DEFRAG_ERROR;
  1384. }
  1385. return QDF_STATUS_SUCCESS;
  1386. }
  1387. /*
  1388. * dp_rx_defrag_cleanup(): Clean up activities
  1389. * @txrx_peer: Pointer to the peer
  1390. * @tid: Transmit Identifier
  1391. *
  1392. * Returns: None
  1393. */
  1394. void dp_rx_defrag_cleanup(struct dp_txrx_peer *txrx_peer, unsigned int tid)
  1395. {
  1396. struct dp_rx_reorder_array_elem *rx_reorder_array_elem =
  1397. txrx_peer->rx_tid[tid].array;
  1398. if (rx_reorder_array_elem) {
  1399. /* Free up nbufs */
  1400. dp_rx_defrag_frames_free(rx_reorder_array_elem->head);
  1401. rx_reorder_array_elem->head = NULL;
  1402. rx_reorder_array_elem->tail = NULL;
  1403. } else {
  1404. dp_info("Cleanup self peer %pK and TID %u",
  1405. txrx_peer, tid);
  1406. }
  1407. /* Free up saved ring descriptors */
  1408. dp_rx_clear_saved_desc_info(txrx_peer, tid);
  1409. txrx_peer->rx_tid[tid].defrag_timeout_ms = 0;
  1410. txrx_peer->rx_tid[tid].curr_frag_num = 0;
  1411. txrx_peer->rx_tid[tid].curr_seq_num = 0;
  1412. }
  1413. /*
  1414. * dp_rx_defrag_save_info_from_ring_desc(): Save info from REO ring descriptor
  1415. * @ring_desc: Pointer to the dst ring descriptor
  1416. * @txrx_peer: Pointer to the peer
  1417. * @tid: Transmit Identifier
  1418. *
  1419. * Returns: None
  1420. */
  1421. static QDF_STATUS
  1422. dp_rx_defrag_save_info_from_ring_desc(hal_ring_desc_t ring_desc,
  1423. struct dp_rx_desc *rx_desc,
  1424. struct dp_txrx_peer *txrx_peer,
  1425. unsigned int tid)
  1426. {
  1427. void *dst_ring_desc = qdf_mem_malloc(
  1428. sizeof(struct reo_destination_ring));
  1429. if (!dst_ring_desc) {
  1430. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1431. "%s: Memory alloc failed !", __func__);
  1432. QDF_ASSERT(0);
  1433. return QDF_STATUS_E_NOMEM;
  1434. }
  1435. qdf_mem_copy(dst_ring_desc, ring_desc,
  1436. sizeof(struct reo_destination_ring));
  1437. txrx_peer->rx_tid[tid].dst_ring_desc = dst_ring_desc;
  1438. txrx_peer->rx_tid[tid].head_frag_desc = rx_desc;
  1439. return QDF_STATUS_SUCCESS;
  1440. }
  1441. /*
  1442. * dp_rx_defrag_store_fragment(): Store incoming fragments
  1443. * @soc: Pointer to the SOC data structure
  1444. * @ring_desc: Pointer to the ring descriptor
  1445. * @mpdu_desc_info: MPDU descriptor info
  1446. * @tid: Traffic Identifier
  1447. * @rx_desc: Pointer to rx descriptor
  1448. * @rx_bfs: Number of bfs consumed
  1449. *
  1450. * Returns: QDF_STATUS
  1451. */
  1452. static QDF_STATUS
  1453. dp_rx_defrag_store_fragment(struct dp_soc *soc,
  1454. hal_ring_desc_t ring_desc,
  1455. union dp_rx_desc_list_elem_t **head,
  1456. union dp_rx_desc_list_elem_t **tail,
  1457. struct hal_rx_mpdu_desc_info *mpdu_desc_info,
  1458. unsigned int tid, struct dp_rx_desc *rx_desc,
  1459. uint32_t *rx_bfs)
  1460. {
  1461. struct dp_rx_reorder_array_elem *rx_reorder_array_elem;
  1462. struct dp_pdev *pdev;
  1463. struct dp_txrx_peer *txrx_peer = NULL;
  1464. dp_txrx_ref_handle txrx_ref_handle = NULL;
  1465. uint16_t peer_id;
  1466. uint8_t fragno, more_frag, all_frag_present = 0;
  1467. uint16_t rxseq = mpdu_desc_info->mpdu_seq;
  1468. QDF_STATUS status;
  1469. struct dp_rx_tid_defrag *rx_tid;
  1470. uint8_t mpdu_sequence_control_valid;
  1471. uint8_t mpdu_frame_control_valid;
  1472. qdf_nbuf_t frag = rx_desc->nbuf;
  1473. uint32_t msdu_len;
  1474. if (qdf_nbuf_len(frag) > 0) {
  1475. dp_info("Dropping unexpected packet with skb_len: %d,"
  1476. "data len: %d, cookie: %d",
  1477. (uint32_t)qdf_nbuf_len(frag), frag->data_len,
  1478. rx_desc->cookie);
  1479. DP_STATS_INC(soc, rx.rx_frag_err_len_error, 1);
  1480. goto discard_frag;
  1481. }
  1482. if (dp_rx_buffer_pool_refill(soc, frag, rx_desc->pool_id)) {
  1483. /* fragment queued back to the pool, free the link desc */
  1484. goto err_free_desc;
  1485. }
  1486. msdu_len = hal_rx_msdu_start_msdu_len_get(soc->hal_soc,
  1487. rx_desc->rx_buf_start);
  1488. qdf_nbuf_set_pktlen(frag, (msdu_len + soc->rx_pkt_tlv_size));
  1489. qdf_nbuf_append_ext_list(frag, NULL, 0);
  1490. /* Check if the packet is from a valid peer */
  1491. peer_id = dp_rx_peer_metadata_peer_id_get(soc,
  1492. mpdu_desc_info->peer_meta_data);
  1493. txrx_peer = dp_txrx_peer_get_ref_by_id(soc, peer_id, &txrx_ref_handle,
  1494. DP_MOD_ID_RX_ERR);
  1495. if (!txrx_peer) {
  1496. /* We should not receive anything from unknown peer
  1497. * however, that might happen while we are in the monitor mode.
  1498. * We don't need to handle that here
  1499. */
  1500. dp_info_rl("Unknown peer with peer_id %d, dropping fragment",
  1501. peer_id);
  1502. DP_STATS_INC(soc, rx.rx_frag_err_no_peer, 1);
  1503. goto discard_frag;
  1504. }
  1505. if (tid >= DP_MAX_TIDS) {
  1506. dp_info("TID out of bounds: %d", tid);
  1507. qdf_assert_always(0);
  1508. goto discard_frag;
  1509. }
  1510. mpdu_sequence_control_valid =
  1511. hal_rx_get_mpdu_sequence_control_valid(soc->hal_soc,
  1512. rx_desc->rx_buf_start);
  1513. /* Invalid MPDU sequence control field, MPDU is of no use */
  1514. if (!mpdu_sequence_control_valid) {
  1515. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1516. "Invalid MPDU seq control field, dropping MPDU");
  1517. qdf_assert(0);
  1518. goto discard_frag;
  1519. }
  1520. mpdu_frame_control_valid =
  1521. hal_rx_get_mpdu_frame_control_valid(soc->hal_soc,
  1522. rx_desc->rx_buf_start);
  1523. /* Invalid frame control field */
  1524. if (!mpdu_frame_control_valid) {
  1525. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1526. "Invalid frame control field, dropping MPDU");
  1527. qdf_assert(0);
  1528. goto discard_frag;
  1529. }
  1530. /* Current mpdu sequence */
  1531. more_frag = dp_rx_frag_get_more_frag_bit(soc, rx_desc->rx_buf_start);
  1532. /* HW does not populate the fragment number as of now
  1533. * need to get from the 802.11 header
  1534. */
  1535. fragno = dp_rx_frag_get_mpdu_frag_number(soc, rx_desc->rx_buf_start);
  1536. pdev = txrx_peer->vdev->pdev;
  1537. rx_tid = &txrx_peer->rx_tid[tid];
  1538. qdf_spin_lock_bh(&rx_tid->defrag_tid_lock);
  1539. rx_reorder_array_elem = txrx_peer->rx_tid[tid].array;
  1540. if (!rx_reorder_array_elem) {
  1541. dp_err_rl("Rcvd Fragmented pkt before tid setup for peer %pK",
  1542. txrx_peer);
  1543. qdf_spin_unlock_bh(&rx_tid->defrag_tid_lock);
  1544. goto discard_frag;
  1545. }
  1546. /*
  1547. * !more_frag: no more fragments to be delivered
  1548. * !frag_no: packet is not fragmented
  1549. * !rx_reorder_array_elem->head: no saved fragments so far
  1550. */
  1551. if ((!more_frag) && (!fragno) && (!rx_reorder_array_elem->head)) {
  1552. /* We should not get into this situation here.
  1553. * It means an unfragmented packet with fragment flag
  1554. * is delivered over the REO exception ring.
  1555. * Typically it follows normal rx path.
  1556. */
  1557. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1558. "Rcvd unfragmented pkt on REO Err srng, dropping");
  1559. qdf_spin_unlock_bh(&rx_tid->defrag_tid_lock);
  1560. qdf_assert(0);
  1561. goto discard_frag;
  1562. }
  1563. /* Check if the fragment is for the same sequence or a different one */
  1564. dp_debug("rx_tid %d", tid);
  1565. if (rx_reorder_array_elem->head) {
  1566. dp_debug("rxseq %d\n", rxseq);
  1567. if (rxseq != rx_tid->curr_seq_num) {
  1568. dp_debug("mismatch cur_seq %d rxseq %d\n",
  1569. rx_tid->curr_seq_num, rxseq);
  1570. /* Drop stored fragments if out of sequence
  1571. * fragment is received
  1572. */
  1573. dp_rx_reorder_flush_frag(txrx_peer, tid);
  1574. DP_STATS_INC(soc, rx.rx_frag_oor, 1);
  1575. dp_debug("cur rxseq %d\n", rxseq);
  1576. /*
  1577. * The sequence number for this fragment becomes the
  1578. * new sequence number to be processed
  1579. */
  1580. rx_tid->curr_seq_num = rxseq;
  1581. }
  1582. } else {
  1583. /* Check if we are processing first fragment if it is
  1584. * not first fragment discard fragment.
  1585. */
  1586. if (fragno) {
  1587. qdf_spin_unlock_bh(&rx_tid->defrag_tid_lock);
  1588. goto discard_frag;
  1589. }
  1590. dp_debug("cur rxseq %d\n", rxseq);
  1591. /* Start of a new sequence */
  1592. dp_rx_defrag_cleanup(txrx_peer, tid);
  1593. rx_tid->curr_seq_num = rxseq;
  1594. /* store PN number also */
  1595. }
  1596. /*
  1597. * If the earlier sequence was dropped, this will be the fresh start.
  1598. * Else, continue with next fragment in a given sequence
  1599. */
  1600. status = dp_rx_defrag_fraglist_insert(txrx_peer, tid,
  1601. &rx_reorder_array_elem->head,
  1602. &rx_reorder_array_elem->tail,
  1603. frag, &all_frag_present);
  1604. /*
  1605. * Currently, we can have only 6 MSDUs per-MPDU, if the current
  1606. * packet sequence has more than 6 MSDUs for some reason, we will
  1607. * have to use the next MSDU link descriptor and chain them together
  1608. * before reinjection.
  1609. * ring_desc is validated in dp_rx_err_process.
  1610. */
  1611. if ((fragno == 0) && (status == QDF_STATUS_SUCCESS) &&
  1612. (rx_reorder_array_elem->head == frag)) {
  1613. status = dp_rx_defrag_save_info_from_ring_desc(ring_desc,
  1614. rx_desc, txrx_peer, tid);
  1615. if (status != QDF_STATUS_SUCCESS) {
  1616. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1617. "%s: Unable to store ring desc !", __func__);
  1618. qdf_spin_unlock_bh(&rx_tid->defrag_tid_lock);
  1619. goto discard_frag;
  1620. }
  1621. } else {
  1622. dp_rx_add_to_free_desc_list(head, tail, rx_desc);
  1623. (*rx_bfs)++;
  1624. /* Return the non-head link desc */
  1625. if (dp_rx_link_desc_return(soc, ring_desc,
  1626. HAL_BM_ACTION_PUT_IN_IDLE_LIST) !=
  1627. QDF_STATUS_SUCCESS)
  1628. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1629. "%s: Failed to return link desc", __func__);
  1630. }
  1631. if (pdev->soc->rx.flags.defrag_timeout_check)
  1632. dp_rx_defrag_waitlist_remove(txrx_peer, tid);
  1633. /* Yet to receive more fragments for this sequence number */
  1634. if (!all_frag_present) {
  1635. uint32_t now_ms =
  1636. qdf_system_ticks_to_msecs(qdf_system_ticks());
  1637. txrx_peer->rx_tid[tid].defrag_timeout_ms =
  1638. now_ms + pdev->soc->rx.defrag.timeout_ms;
  1639. dp_rx_defrag_waitlist_add(txrx_peer, tid);
  1640. dp_txrx_peer_unref_delete(txrx_ref_handle, DP_MOD_ID_RX_ERR);
  1641. qdf_spin_unlock_bh(&rx_tid->defrag_tid_lock);
  1642. return QDF_STATUS_SUCCESS;
  1643. }
  1644. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_DEBUG,
  1645. "All fragments received for sequence: %d", rxseq);
  1646. /* Process the fragments */
  1647. status = dp_rx_defrag(txrx_peer, tid, rx_reorder_array_elem->head,
  1648. rx_reorder_array_elem->tail);
  1649. if (QDF_IS_STATUS_ERROR(status)) {
  1650. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1651. "Fragment processing failed");
  1652. dp_rx_add_to_free_desc_list(head, tail,
  1653. txrx_peer->rx_tid[tid].head_frag_desc);
  1654. (*rx_bfs)++;
  1655. if (dp_rx_link_desc_return(soc,
  1656. txrx_peer->rx_tid[tid].dst_ring_desc,
  1657. HAL_BM_ACTION_PUT_IN_IDLE_LIST) !=
  1658. QDF_STATUS_SUCCESS)
  1659. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1660. "%s: Failed to return link desc",
  1661. __func__);
  1662. dp_rx_defrag_cleanup(txrx_peer, tid);
  1663. qdf_spin_unlock_bh(&rx_tid->defrag_tid_lock);
  1664. goto end;
  1665. }
  1666. /* Re-inject the fragments back to REO for further processing */
  1667. status = dp_rx_defrag_reo_reinject(txrx_peer, tid,
  1668. rx_reorder_array_elem->head);
  1669. if (QDF_IS_STATUS_SUCCESS(status)) {
  1670. rx_reorder_array_elem->head = NULL;
  1671. rx_reorder_array_elem->tail = NULL;
  1672. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_DEBUG,
  1673. "Fragmented sequence successfully reinjected");
  1674. } else {
  1675. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1676. "Fragmented sequence reinjection failed");
  1677. dp_rx_return_head_frag_desc(txrx_peer, tid);
  1678. }
  1679. dp_rx_defrag_cleanup(txrx_peer, tid);
  1680. qdf_spin_unlock_bh(&rx_tid->defrag_tid_lock);
  1681. dp_txrx_peer_unref_delete(txrx_ref_handle, DP_MOD_ID_RX_ERR);
  1682. return QDF_STATUS_SUCCESS;
  1683. discard_frag:
  1684. dp_rx_nbuf_free(frag);
  1685. err_free_desc:
  1686. dp_rx_add_to_free_desc_list(head, tail, rx_desc);
  1687. if (dp_rx_link_desc_return(soc, ring_desc,
  1688. HAL_BM_ACTION_PUT_IN_IDLE_LIST) !=
  1689. QDF_STATUS_SUCCESS)
  1690. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1691. "%s: Failed to return link desc", __func__);
  1692. (*rx_bfs)++;
  1693. end:
  1694. if (txrx_peer)
  1695. dp_txrx_peer_unref_delete(txrx_ref_handle, DP_MOD_ID_RX_ERR);
  1696. DP_STATS_INC(soc, rx.rx_frag_err, 1);
  1697. return QDF_STATUS_E_DEFRAG_ERROR;
  1698. }
  1699. /**
  1700. * dp_rx_frag_handle() - Handles fragmented Rx frames
  1701. *
  1702. * @soc: core txrx main context
  1703. * @ring_desc: opaque pointer to the REO error ring descriptor
  1704. * @mpdu_desc_info: MPDU descriptor information from ring descriptor
  1705. * @head: head of the local descriptor free-list
  1706. * @tail: tail of the local descriptor free-list
  1707. * @quota: No. of units (packets) that can be serviced in one shot.
  1708. *
  1709. * This function implements RX 802.11 fragmentation handling
  1710. * The handling is mostly same as legacy fragmentation handling.
  1711. * If required, this function can re-inject the frames back to
  1712. * REO ring (with proper setting to by-pass fragmentation check
  1713. * but use duplicate detection / re-ordering and routing these frames
  1714. * to a different core.
  1715. *
  1716. * Return: uint32_t: No. of elements processed
  1717. */
  1718. uint32_t dp_rx_frag_handle(struct dp_soc *soc, hal_ring_desc_t ring_desc,
  1719. struct hal_rx_mpdu_desc_info *mpdu_desc_info,
  1720. struct dp_rx_desc *rx_desc,
  1721. uint8_t *mac_id,
  1722. uint32_t quota)
  1723. {
  1724. uint32_t rx_bufs_used = 0;
  1725. qdf_nbuf_t msdu = NULL;
  1726. uint32_t tid;
  1727. uint32_t rx_bfs = 0;
  1728. struct dp_pdev *pdev;
  1729. QDF_STATUS status = QDF_STATUS_SUCCESS;
  1730. struct rx_desc_pool *rx_desc_pool;
  1731. qdf_assert(soc);
  1732. qdf_assert(mpdu_desc_info);
  1733. qdf_assert(rx_desc);
  1734. dp_debug("Number of MSDUs to process, num_msdus: %d",
  1735. mpdu_desc_info->msdu_count);
  1736. if (qdf_unlikely(mpdu_desc_info->msdu_count == 0)) {
  1737. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1738. "Not sufficient MSDUs to process");
  1739. return rx_bufs_used;
  1740. }
  1741. /* all buffers in MSDU link belong to same pdev */
  1742. pdev = dp_get_pdev_for_lmac_id(soc, rx_desc->pool_id);
  1743. if (!pdev) {
  1744. dp_nofl_debug("pdev is null for pool_id = %d",
  1745. rx_desc->pool_id);
  1746. return rx_bufs_used;
  1747. }
  1748. *mac_id = rx_desc->pool_id;
  1749. msdu = rx_desc->nbuf;
  1750. rx_desc_pool = &soc->rx_desc_buf[rx_desc->pool_id];
  1751. if (rx_desc->unmapped)
  1752. return rx_bufs_used;
  1753. dp_ipa_rx_buf_smmu_mapping_lock(soc);
  1754. dp_rx_nbuf_unmap_pool(soc, rx_desc_pool, rx_desc->nbuf);
  1755. rx_desc->unmapped = 1;
  1756. dp_ipa_rx_buf_smmu_mapping_unlock(soc);
  1757. rx_desc->rx_buf_start = qdf_nbuf_data(msdu);
  1758. tid = hal_rx_mpdu_start_tid_get(soc->hal_soc, rx_desc->rx_buf_start);
  1759. /* Process fragment-by-fragment */
  1760. status = dp_rx_defrag_store_fragment(soc, ring_desc,
  1761. &pdev->free_list_head,
  1762. &pdev->free_list_tail,
  1763. mpdu_desc_info,
  1764. tid, rx_desc, &rx_bfs);
  1765. if (rx_bfs)
  1766. rx_bufs_used += rx_bfs;
  1767. if (!QDF_IS_STATUS_SUCCESS(status))
  1768. dp_info_rl("Rx Defrag err seq#:0x%x msdu_count:%d flags:%d",
  1769. mpdu_desc_info->mpdu_seq,
  1770. mpdu_desc_info->msdu_count,
  1771. mpdu_desc_info->mpdu_flags);
  1772. return rx_bufs_used;
  1773. }
  1774. QDF_STATUS dp_rx_defrag_add_last_frag(struct dp_soc *soc,
  1775. struct dp_txrx_peer *txrx_peer,
  1776. uint16_t tid,
  1777. uint16_t rxseq, qdf_nbuf_t nbuf)
  1778. {
  1779. struct dp_rx_tid_defrag *rx_tid = &txrx_peer->rx_tid[tid];
  1780. struct dp_rx_reorder_array_elem *rx_reorder_array_elem;
  1781. uint8_t all_frag_present;
  1782. uint32_t msdu_len;
  1783. QDF_STATUS status;
  1784. rx_reorder_array_elem = txrx_peer->rx_tid[tid].array;
  1785. /*
  1786. * HW may fill in unexpected peer_id in RX PKT TLV,
  1787. * if this peer_id related peer is valid by coincidence,
  1788. * but actually this peer won't do dp_peer_rx_init(like SAP vdev
  1789. * self peer), then invalid access to rx_reorder_array_elem happened.
  1790. */
  1791. if (!rx_reorder_array_elem) {
  1792. dp_verbose_debug(
  1793. "peer id:%d drop rx frame!",
  1794. txrx_peer->peer_id);
  1795. DP_STATS_INC(soc, rx.err.defrag_peer_uninit, 1);
  1796. dp_rx_nbuf_free(nbuf);
  1797. goto fail;
  1798. }
  1799. if (rx_reorder_array_elem->head &&
  1800. rxseq != rx_tid->curr_seq_num) {
  1801. /* Drop stored fragments if out of sequence
  1802. * fragment is received
  1803. */
  1804. dp_rx_reorder_flush_frag(txrx_peer, tid);
  1805. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1806. "%s: No list found for TID %d Seq# %d",
  1807. __func__, tid, rxseq);
  1808. dp_rx_nbuf_free(nbuf);
  1809. goto fail;
  1810. }
  1811. msdu_len = hal_rx_msdu_start_msdu_len_get(soc->hal_soc,
  1812. qdf_nbuf_data(nbuf));
  1813. qdf_nbuf_set_pktlen(nbuf, (msdu_len + soc->rx_pkt_tlv_size));
  1814. status = dp_rx_defrag_fraglist_insert(txrx_peer, tid,
  1815. &rx_reorder_array_elem->head,
  1816. &rx_reorder_array_elem->tail, nbuf,
  1817. &all_frag_present);
  1818. if (QDF_IS_STATUS_ERROR(status)) {
  1819. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1820. "%s Fragment insert failed", __func__);
  1821. goto fail;
  1822. }
  1823. if (soc->rx.flags.defrag_timeout_check)
  1824. dp_rx_defrag_waitlist_remove(txrx_peer, tid);
  1825. if (!all_frag_present) {
  1826. uint32_t now_ms =
  1827. qdf_system_ticks_to_msecs(qdf_system_ticks());
  1828. txrx_peer->rx_tid[tid].defrag_timeout_ms =
  1829. now_ms + soc->rx.defrag.timeout_ms;
  1830. dp_rx_defrag_waitlist_add(txrx_peer, tid);
  1831. return QDF_STATUS_SUCCESS;
  1832. }
  1833. status = dp_rx_defrag(txrx_peer, tid, rx_reorder_array_elem->head,
  1834. rx_reorder_array_elem->tail);
  1835. if (QDF_IS_STATUS_ERROR(status)) {
  1836. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1837. "%s Fragment processing failed", __func__);
  1838. dp_rx_return_head_frag_desc(txrx_peer, tid);
  1839. dp_rx_defrag_cleanup(txrx_peer, tid);
  1840. goto fail;
  1841. }
  1842. /* Re-inject the fragments back to REO for further processing */
  1843. status = dp_rx_defrag_reo_reinject(txrx_peer, tid,
  1844. rx_reorder_array_elem->head);
  1845. if (QDF_IS_STATUS_SUCCESS(status)) {
  1846. rx_reorder_array_elem->head = NULL;
  1847. rx_reorder_array_elem->tail = NULL;
  1848. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO,
  1849. "%s: Frag seq successfully reinjected",
  1850. __func__);
  1851. } else {
  1852. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1853. "%s: Frag seq reinjection failed", __func__);
  1854. dp_rx_return_head_frag_desc(txrx_peer, tid);
  1855. }
  1856. dp_rx_defrag_cleanup(txrx_peer, tid);
  1857. return QDF_STATUS_SUCCESS;
  1858. fail:
  1859. return QDF_STATUS_E_DEFRAG_ERROR;
  1860. }