power.c 36 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490
  1. // SPDX-License-Identifier: GPL-2.0-only
  2. /*
  3. * Copyright (c) 2016-2021, The Linux Foundation. All rights reserved.
  4. * Copyright (c) 2021 Qualcomm Innovation Center, Inc. All rights reserved.
  5. */
  6. #include <linux/clk.h>
  7. #include <linux/delay.h>
  8. #if IS_ENABLED(CONFIG_MSM_QMP)
  9. #include <linux/mailbox/qmp.h>
  10. #endif
  11. #include <linux/of.h>
  12. #include <linux/of_gpio.h>
  13. #include <linux/pinctrl/consumer.h>
  14. #include <linux/regulator/consumer.h>
  15. #if IS_ENABLED(CONFIG_QCOM_COMMAND_DB)
  16. #include <soc/qcom/cmd-db.h>
  17. #endif
  18. #include "main.h"
  19. #include "debug.h"
  20. #include "bus.h"
  21. #if IS_ENABLED(CONFIG_ARCH_QCOM)
  22. static struct cnss_vreg_cfg cnss_vreg_list[] = {
  23. {"vdd-wlan-core", 1300000, 1300000, 0, 0, 0},
  24. {"vdd-wlan-io", 1800000, 1800000, 0, 0, 0},
  25. {"vdd-wlan-xtal-aon", 0, 0, 0, 0, 0},
  26. {"vdd-wlan-xtal", 1800000, 1800000, 0, 2, 0},
  27. {"vdd-wlan", 0, 0, 0, 0, 0},
  28. {"vdd-wlan-ctrl1", 0, 0, 0, 0, 0},
  29. {"vdd-wlan-ctrl2", 0, 0, 0, 0, 0},
  30. {"vdd-wlan-sp2t", 2700000, 2700000, 0, 0, 0},
  31. {"wlan-ant-switch", 1800000, 1800000, 0, 0, 0},
  32. {"wlan-soc-swreg", 1200000, 1200000, 0, 0, 0},
  33. {"vdd-wlan-aon", 950000, 950000, 0, 0, 0},
  34. {"vdd-wlan-dig", 950000, 952000, 0, 0, 0},
  35. {"vdd-wlan-rfa1", 1900000, 1900000, 0, 0, 0},
  36. {"vdd-wlan-rfa2", 1350000, 1350000, 0, 0, 0},
  37. {"vdd-wlan-rfa3", 1900000, 1900000, 450000, 0, 0},
  38. {"alt-sleep-clk", 0, 0, 0, 0, 0},
  39. {"vdd-wlan-en", 0, 0, 0, 10, 0},
  40. };
  41. static struct cnss_clk_cfg cnss_clk_list[] = {
  42. {"rf_clk", 0, 0},
  43. };
  44. #else
  45. static struct cnss_vreg_cfg cnss_vreg_list[] = {
  46. };
  47. static struct cnss_clk_cfg cnss_clk_list[] = {
  48. };
  49. #endif
  50. #define CNSS_VREG_INFO_SIZE ARRAY_SIZE(cnss_vreg_list)
  51. #define CNSS_CLK_INFO_SIZE ARRAY_SIZE(cnss_clk_list)
  52. #define MAX_PROP_SIZE 32
  53. #define BOOTSTRAP_GPIO "qcom,enable-bootstrap-gpio"
  54. #define BOOTSTRAP_ACTIVE "bootstrap_active"
  55. #define HOST_SOL_GPIO "wlan-host-sol-gpio"
  56. #define DEV_SOL_GPIO "wlan-dev-sol-gpio"
  57. #define SOL_DEFAULT "sol_default"
  58. #define WLAN_EN_GPIO "wlan-en-gpio"
  59. #define BT_EN_GPIO "qcom,bt-en-gpio"
  60. #define XO_CLK_GPIO "qcom,xo-clk-gpio"
  61. #define WLAN_SW_CTRL_GPIO "qcom,wlan-sw-ctrl-gpio"
  62. #define WLAN_EN_ACTIVE "wlan_en_active"
  63. #define WLAN_EN_SLEEP "wlan_en_sleep"
  64. #define BOOTSTRAP_DELAY 1000
  65. #define WLAN_ENABLE_DELAY 1000
  66. #define TCS_CMD_DATA_ADDR_OFFSET 0x4
  67. #define TCS_OFFSET 0xC8
  68. #define TCS_CMD_OFFSET 0x10
  69. #define MAX_TCS_NUM 8
  70. #define MAX_TCS_CMD_NUM 5
  71. #define BT_CXMX_VOLTAGE_MV 950
  72. #define CNSS_MBOX_MSG_MAX_LEN 64
  73. #define CNSS_MBOX_TIMEOUT_MS 1000
  74. /**
  75. * enum cnss_aop_vreg_param: Voltage regulator TCS param
  76. * @CNSS_VREG_VOLTAGE: Provides voltage level in mV to be configured in TCS
  77. * @CNSS_VREG_MODE: Regulator mode
  78. * @CNSS_VREG_TCS_ENABLE: Set bool Voltage regulator enable config in TCS.
  79. */
  80. enum cnss_aop_vreg_param {
  81. CNSS_VREG_VOLTAGE,
  82. CNSS_VREG_MODE,
  83. CNSS_VREG_ENABLE,
  84. CNSS_VREG_PARAM_MAX
  85. };
  86. /** enum cnss_aop_vreg_param_mode: Voltage modes supported by AOP*/
  87. enum cnss_aop_vreg_param_mode {
  88. CNSS_VREG_RET_MODE = 3,
  89. CNSS_VREG_LPM_MODE = 4,
  90. CNSS_VREG_AUTO_MODE = 6,
  91. CNSS_VREG_NPM_MODE = 7,
  92. CNSS_VREG_MODE_MAX
  93. };
  94. /**
  95. * enum cnss_aop_tcs_seq: TCS sequence ID for trigger
  96. * @CNSS_TCS_UP_SEQ: TCS Sequence based on up trigger / Wake TCS
  97. * @CNSS_TCS_DOWN_SEQ: TCS Sequence based on down trigger / Sleep TCS
  98. * @CNSS_TCS_ENABLE_SEQ: Enable this TCS seq entry
  99. */
  100. enum cnss_aop_tcs_seq_param {
  101. CNSS_TCS_UP_SEQ,
  102. CNSS_TCS_DOWN_SEQ,
  103. CNSS_TCS_ENABLE_SEQ,
  104. CNSS_TCS_SEQ_MAX
  105. };
  106. static int cnss_get_vreg_single(struct cnss_plat_data *plat_priv,
  107. struct cnss_vreg_info *vreg)
  108. {
  109. int ret = 0;
  110. struct device *dev;
  111. struct regulator *reg;
  112. const __be32 *prop;
  113. char prop_name[MAX_PROP_SIZE] = {0};
  114. int len;
  115. dev = &plat_priv->plat_dev->dev;
  116. reg = devm_regulator_get_optional(dev, vreg->cfg.name);
  117. if (IS_ERR(reg)) {
  118. ret = PTR_ERR(reg);
  119. if (ret == -ENODEV)
  120. return ret;
  121. else if (ret == -EPROBE_DEFER)
  122. cnss_pr_info("EPROBE_DEFER for regulator: %s\n",
  123. vreg->cfg.name);
  124. else
  125. cnss_pr_err("Failed to get regulator %s, err = %d\n",
  126. vreg->cfg.name, ret);
  127. return ret;
  128. }
  129. vreg->reg = reg;
  130. snprintf(prop_name, MAX_PROP_SIZE, "qcom,%s-config",
  131. vreg->cfg.name);
  132. prop = of_get_property(dev->of_node, prop_name, &len);
  133. if (!prop || len != (5 * sizeof(__be32))) {
  134. cnss_pr_dbg("Property %s %s, use default\n", prop_name,
  135. prop ? "invalid format" : "doesn't exist");
  136. } else {
  137. vreg->cfg.min_uv = be32_to_cpup(&prop[0]);
  138. vreg->cfg.max_uv = be32_to_cpup(&prop[1]);
  139. vreg->cfg.load_ua = be32_to_cpup(&prop[2]);
  140. vreg->cfg.delay_us = be32_to_cpup(&prop[3]);
  141. vreg->cfg.need_unvote = be32_to_cpup(&prop[4]);
  142. }
  143. cnss_pr_dbg("Got regulator: %s, min_uv: %u, max_uv: %u, load_ua: %u, delay_us: %u, need_unvote: %u\n",
  144. vreg->cfg.name, vreg->cfg.min_uv,
  145. vreg->cfg.max_uv, vreg->cfg.load_ua,
  146. vreg->cfg.delay_us, vreg->cfg.need_unvote);
  147. return 0;
  148. }
  149. static void cnss_put_vreg_single(struct cnss_plat_data *plat_priv,
  150. struct cnss_vreg_info *vreg)
  151. {
  152. struct device *dev = &plat_priv->plat_dev->dev;
  153. cnss_pr_dbg("Put regulator: %s\n", vreg->cfg.name);
  154. devm_regulator_put(vreg->reg);
  155. devm_kfree(dev, vreg);
  156. }
  157. static int cnss_vreg_on_single(struct cnss_vreg_info *vreg)
  158. {
  159. int ret = 0;
  160. if (vreg->enabled) {
  161. cnss_pr_dbg("Regulator %s is already enabled\n",
  162. vreg->cfg.name);
  163. return 0;
  164. }
  165. cnss_pr_dbg("Regulator %s is being enabled\n", vreg->cfg.name);
  166. if (vreg->cfg.min_uv != 0 && vreg->cfg.max_uv != 0) {
  167. ret = regulator_set_voltage(vreg->reg,
  168. vreg->cfg.min_uv,
  169. vreg->cfg.max_uv);
  170. if (ret) {
  171. cnss_pr_err("Failed to set voltage for regulator %s, min_uv: %u, max_uv: %u, err = %d\n",
  172. vreg->cfg.name, vreg->cfg.min_uv,
  173. vreg->cfg.max_uv, ret);
  174. goto out;
  175. }
  176. }
  177. if (vreg->cfg.load_ua) {
  178. ret = regulator_set_load(vreg->reg,
  179. vreg->cfg.load_ua);
  180. if (ret < 0) {
  181. cnss_pr_err("Failed to set load for regulator %s, load: %u, err = %d\n",
  182. vreg->cfg.name, vreg->cfg.load_ua,
  183. ret);
  184. goto out;
  185. }
  186. }
  187. if (vreg->cfg.delay_us)
  188. udelay(vreg->cfg.delay_us);
  189. ret = regulator_enable(vreg->reg);
  190. if (ret) {
  191. cnss_pr_err("Failed to enable regulator %s, err = %d\n",
  192. vreg->cfg.name, ret);
  193. goto out;
  194. }
  195. vreg->enabled = true;
  196. out:
  197. return ret;
  198. }
  199. static int cnss_vreg_unvote_single(struct cnss_vreg_info *vreg)
  200. {
  201. int ret = 0;
  202. if (!vreg->enabled) {
  203. cnss_pr_dbg("Regulator %s is already disabled\n",
  204. vreg->cfg.name);
  205. return 0;
  206. }
  207. cnss_pr_dbg("Removing vote for Regulator %s\n", vreg->cfg.name);
  208. if (vreg->cfg.load_ua) {
  209. ret = regulator_set_load(vreg->reg, 0);
  210. if (ret < 0)
  211. cnss_pr_err("Failed to set load for regulator %s, err = %d\n",
  212. vreg->cfg.name, ret);
  213. }
  214. if (vreg->cfg.min_uv != 0 && vreg->cfg.max_uv != 0) {
  215. ret = regulator_set_voltage(vreg->reg, 0,
  216. vreg->cfg.max_uv);
  217. if (ret)
  218. cnss_pr_err("Failed to set voltage for regulator %s, err = %d\n",
  219. vreg->cfg.name, ret);
  220. }
  221. return ret;
  222. }
  223. static int cnss_vreg_off_single(struct cnss_vreg_info *vreg)
  224. {
  225. int ret = 0;
  226. if (!vreg->enabled) {
  227. cnss_pr_dbg("Regulator %s is already disabled\n",
  228. vreg->cfg.name);
  229. return 0;
  230. }
  231. cnss_pr_dbg("Regulator %s is being disabled\n",
  232. vreg->cfg.name);
  233. ret = regulator_disable(vreg->reg);
  234. if (ret)
  235. cnss_pr_err("Failed to disable regulator %s, err = %d\n",
  236. vreg->cfg.name, ret);
  237. if (vreg->cfg.load_ua) {
  238. ret = regulator_set_load(vreg->reg, 0);
  239. if (ret < 0)
  240. cnss_pr_err("Failed to set load for regulator %s, err = %d\n",
  241. vreg->cfg.name, ret);
  242. }
  243. if (vreg->cfg.min_uv != 0 && vreg->cfg.max_uv != 0) {
  244. ret = regulator_set_voltage(vreg->reg, 0,
  245. vreg->cfg.max_uv);
  246. if (ret)
  247. cnss_pr_err("Failed to set voltage for regulator %s, err = %d\n",
  248. vreg->cfg.name, ret);
  249. }
  250. vreg->enabled = false;
  251. return ret;
  252. }
  253. static struct cnss_vreg_cfg *get_vreg_list(u32 *vreg_list_size,
  254. enum cnss_vreg_type type)
  255. {
  256. switch (type) {
  257. case CNSS_VREG_PRIM:
  258. *vreg_list_size = CNSS_VREG_INFO_SIZE;
  259. return cnss_vreg_list;
  260. default:
  261. cnss_pr_err("Unsupported vreg type 0x%x\n", type);
  262. *vreg_list_size = 0;
  263. return NULL;
  264. }
  265. }
  266. static int cnss_get_vreg(struct cnss_plat_data *plat_priv,
  267. struct list_head *vreg_list,
  268. struct cnss_vreg_cfg *vreg_cfg,
  269. u32 vreg_list_size)
  270. {
  271. int ret = 0;
  272. int i;
  273. struct cnss_vreg_info *vreg;
  274. struct device *dev = &plat_priv->plat_dev->dev;
  275. if (!list_empty(vreg_list)) {
  276. cnss_pr_dbg("Vregs have already been updated\n");
  277. return 0;
  278. }
  279. for (i = 0; i < vreg_list_size; i++) {
  280. vreg = devm_kzalloc(dev, sizeof(*vreg), GFP_KERNEL);
  281. if (!vreg)
  282. return -ENOMEM;
  283. memcpy(&vreg->cfg, &vreg_cfg[i], sizeof(vreg->cfg));
  284. ret = cnss_get_vreg_single(plat_priv, vreg);
  285. if (ret != 0) {
  286. if (ret == -ENODEV) {
  287. devm_kfree(dev, vreg);
  288. continue;
  289. } else {
  290. devm_kfree(dev, vreg);
  291. return ret;
  292. }
  293. }
  294. list_add_tail(&vreg->list, vreg_list);
  295. }
  296. return 0;
  297. }
  298. static void cnss_put_vreg(struct cnss_plat_data *plat_priv,
  299. struct list_head *vreg_list)
  300. {
  301. struct cnss_vreg_info *vreg;
  302. while (!list_empty(vreg_list)) {
  303. vreg = list_first_entry(vreg_list,
  304. struct cnss_vreg_info, list);
  305. list_del(&vreg->list);
  306. if (IS_ERR_OR_NULL(vreg->reg))
  307. continue;
  308. cnss_put_vreg_single(plat_priv, vreg);
  309. }
  310. }
  311. static int cnss_vreg_on(struct cnss_plat_data *plat_priv,
  312. struct list_head *vreg_list)
  313. {
  314. struct cnss_vreg_info *vreg;
  315. int ret = 0;
  316. list_for_each_entry(vreg, vreg_list, list) {
  317. if (IS_ERR_OR_NULL(vreg->reg))
  318. continue;
  319. ret = cnss_vreg_on_single(vreg);
  320. if (ret)
  321. break;
  322. }
  323. if (!ret)
  324. return 0;
  325. list_for_each_entry_continue_reverse(vreg, vreg_list, list) {
  326. if (IS_ERR_OR_NULL(vreg->reg) || !vreg->enabled)
  327. continue;
  328. cnss_vreg_off_single(vreg);
  329. }
  330. return ret;
  331. }
  332. static int cnss_vreg_off(struct cnss_plat_data *plat_priv,
  333. struct list_head *vreg_list)
  334. {
  335. struct cnss_vreg_info *vreg;
  336. list_for_each_entry_reverse(vreg, vreg_list, list) {
  337. if (IS_ERR_OR_NULL(vreg->reg))
  338. continue;
  339. cnss_vreg_off_single(vreg);
  340. }
  341. return 0;
  342. }
  343. static int cnss_vreg_unvote(struct cnss_plat_data *plat_priv,
  344. struct list_head *vreg_list)
  345. {
  346. struct cnss_vreg_info *vreg;
  347. list_for_each_entry_reverse(vreg, vreg_list, list) {
  348. if (IS_ERR_OR_NULL(vreg->reg))
  349. continue;
  350. if (vreg->cfg.need_unvote)
  351. cnss_vreg_unvote_single(vreg);
  352. }
  353. return 0;
  354. }
  355. int cnss_get_vreg_type(struct cnss_plat_data *plat_priv,
  356. enum cnss_vreg_type type)
  357. {
  358. struct cnss_vreg_cfg *vreg_cfg;
  359. u32 vreg_list_size = 0;
  360. int ret = 0;
  361. vreg_cfg = get_vreg_list(&vreg_list_size, type);
  362. if (!vreg_cfg)
  363. return -EINVAL;
  364. switch (type) {
  365. case CNSS_VREG_PRIM:
  366. ret = cnss_get_vreg(plat_priv, &plat_priv->vreg_list,
  367. vreg_cfg, vreg_list_size);
  368. break;
  369. default:
  370. cnss_pr_err("Unsupported vreg type 0x%x\n", type);
  371. return -EINVAL;
  372. }
  373. return ret;
  374. }
  375. void cnss_put_vreg_type(struct cnss_plat_data *plat_priv,
  376. enum cnss_vreg_type type)
  377. {
  378. switch (type) {
  379. case CNSS_VREG_PRIM:
  380. cnss_put_vreg(plat_priv, &plat_priv->vreg_list);
  381. break;
  382. default:
  383. return;
  384. }
  385. }
  386. int cnss_vreg_on_type(struct cnss_plat_data *plat_priv,
  387. enum cnss_vreg_type type)
  388. {
  389. int ret = 0;
  390. switch (type) {
  391. case CNSS_VREG_PRIM:
  392. ret = cnss_vreg_on(plat_priv, &plat_priv->vreg_list);
  393. break;
  394. default:
  395. cnss_pr_err("Unsupported vreg type 0x%x\n", type);
  396. return -EINVAL;
  397. }
  398. return ret;
  399. }
  400. int cnss_vreg_off_type(struct cnss_plat_data *plat_priv,
  401. enum cnss_vreg_type type)
  402. {
  403. int ret = 0;
  404. switch (type) {
  405. case CNSS_VREG_PRIM:
  406. ret = cnss_vreg_off(plat_priv, &plat_priv->vreg_list);
  407. break;
  408. default:
  409. cnss_pr_err("Unsupported vreg type 0x%x\n", type);
  410. return -EINVAL;
  411. }
  412. return ret;
  413. }
  414. int cnss_vreg_unvote_type(struct cnss_plat_data *plat_priv,
  415. enum cnss_vreg_type type)
  416. {
  417. int ret = 0;
  418. switch (type) {
  419. case CNSS_VREG_PRIM:
  420. ret = cnss_vreg_unvote(plat_priv, &plat_priv->vreg_list);
  421. break;
  422. default:
  423. cnss_pr_err("Unsupported vreg type 0x%x\n", type);
  424. return -EINVAL;
  425. }
  426. return ret;
  427. }
  428. static int cnss_get_clk_single(struct cnss_plat_data *plat_priv,
  429. struct cnss_clk_info *clk_info)
  430. {
  431. struct device *dev = &plat_priv->plat_dev->dev;
  432. struct clk *clk;
  433. int ret;
  434. clk = devm_clk_get(dev, clk_info->cfg.name);
  435. if (IS_ERR(clk)) {
  436. ret = PTR_ERR(clk);
  437. if (clk_info->cfg.required)
  438. cnss_pr_err("Failed to get clock %s, err = %d\n",
  439. clk_info->cfg.name, ret);
  440. else
  441. cnss_pr_dbg("Failed to get optional clock %s, err = %d\n",
  442. clk_info->cfg.name, ret);
  443. return ret;
  444. }
  445. clk_info->clk = clk;
  446. cnss_pr_dbg("Got clock: %s, freq: %u\n",
  447. clk_info->cfg.name, clk_info->cfg.freq);
  448. return 0;
  449. }
  450. static void cnss_put_clk_single(struct cnss_plat_data *plat_priv,
  451. struct cnss_clk_info *clk_info)
  452. {
  453. struct device *dev = &plat_priv->plat_dev->dev;
  454. cnss_pr_dbg("Put clock: %s\n", clk_info->cfg.name);
  455. devm_clk_put(dev, clk_info->clk);
  456. }
  457. static int cnss_clk_on_single(struct cnss_clk_info *clk_info)
  458. {
  459. int ret;
  460. if (clk_info->enabled) {
  461. cnss_pr_dbg("Clock %s is already enabled\n",
  462. clk_info->cfg.name);
  463. return 0;
  464. }
  465. cnss_pr_dbg("Clock %s is being enabled\n", clk_info->cfg.name);
  466. if (clk_info->cfg.freq) {
  467. ret = clk_set_rate(clk_info->clk, clk_info->cfg.freq);
  468. if (ret) {
  469. cnss_pr_err("Failed to set frequency %u for clock %s, err = %d\n",
  470. clk_info->cfg.freq, clk_info->cfg.name,
  471. ret);
  472. return ret;
  473. }
  474. }
  475. ret = clk_prepare_enable(clk_info->clk);
  476. if (ret) {
  477. cnss_pr_err("Failed to enable clock %s, err = %d\n",
  478. clk_info->cfg.name, ret);
  479. return ret;
  480. }
  481. clk_info->enabled = true;
  482. return 0;
  483. }
  484. static int cnss_clk_off_single(struct cnss_clk_info *clk_info)
  485. {
  486. if (!clk_info->enabled) {
  487. cnss_pr_dbg("Clock %s is already disabled\n",
  488. clk_info->cfg.name);
  489. return 0;
  490. }
  491. cnss_pr_dbg("Clock %s is being disabled\n", clk_info->cfg.name);
  492. clk_disable_unprepare(clk_info->clk);
  493. clk_info->enabled = false;
  494. return 0;
  495. }
  496. int cnss_get_clk(struct cnss_plat_data *plat_priv)
  497. {
  498. struct device *dev;
  499. struct list_head *clk_list;
  500. struct cnss_clk_info *clk_info;
  501. int ret, i;
  502. if (!plat_priv)
  503. return -ENODEV;
  504. dev = &plat_priv->plat_dev->dev;
  505. clk_list = &plat_priv->clk_list;
  506. if (!list_empty(clk_list)) {
  507. cnss_pr_dbg("Clocks have already been updated\n");
  508. return 0;
  509. }
  510. for (i = 0; i < CNSS_CLK_INFO_SIZE; i++) {
  511. clk_info = devm_kzalloc(dev, sizeof(*clk_info), GFP_KERNEL);
  512. if (!clk_info) {
  513. ret = -ENOMEM;
  514. goto cleanup;
  515. }
  516. memcpy(&clk_info->cfg, &cnss_clk_list[i],
  517. sizeof(clk_info->cfg));
  518. ret = cnss_get_clk_single(plat_priv, clk_info);
  519. if (ret != 0) {
  520. if (clk_info->cfg.required) {
  521. devm_kfree(dev, clk_info);
  522. goto cleanup;
  523. } else {
  524. devm_kfree(dev, clk_info);
  525. continue;
  526. }
  527. }
  528. list_add_tail(&clk_info->list, clk_list);
  529. }
  530. return 0;
  531. cleanup:
  532. while (!list_empty(clk_list)) {
  533. clk_info = list_first_entry(clk_list, struct cnss_clk_info,
  534. list);
  535. list_del(&clk_info->list);
  536. if (IS_ERR_OR_NULL(clk_info->clk))
  537. continue;
  538. cnss_put_clk_single(plat_priv, clk_info);
  539. devm_kfree(dev, clk_info);
  540. }
  541. return ret;
  542. }
  543. void cnss_put_clk(struct cnss_plat_data *plat_priv)
  544. {
  545. struct device *dev;
  546. struct list_head *clk_list;
  547. struct cnss_clk_info *clk_info;
  548. if (!plat_priv)
  549. return;
  550. dev = &plat_priv->plat_dev->dev;
  551. clk_list = &plat_priv->clk_list;
  552. while (!list_empty(clk_list)) {
  553. clk_info = list_first_entry(clk_list, struct cnss_clk_info,
  554. list);
  555. list_del(&clk_info->list);
  556. if (IS_ERR_OR_NULL(clk_info->clk))
  557. continue;
  558. cnss_put_clk_single(plat_priv, clk_info);
  559. devm_kfree(dev, clk_info);
  560. }
  561. }
  562. static int cnss_clk_on(struct cnss_plat_data *plat_priv,
  563. struct list_head *clk_list)
  564. {
  565. struct cnss_clk_info *clk_info;
  566. int ret = 0;
  567. list_for_each_entry(clk_info, clk_list, list) {
  568. if (IS_ERR_OR_NULL(clk_info->clk))
  569. continue;
  570. ret = cnss_clk_on_single(clk_info);
  571. if (ret)
  572. break;
  573. }
  574. if (!ret)
  575. return 0;
  576. list_for_each_entry_continue_reverse(clk_info, clk_list, list) {
  577. if (IS_ERR_OR_NULL(clk_info->clk))
  578. continue;
  579. cnss_clk_off_single(clk_info);
  580. }
  581. return ret;
  582. }
  583. static int cnss_clk_off(struct cnss_plat_data *plat_priv,
  584. struct list_head *clk_list)
  585. {
  586. struct cnss_clk_info *clk_info;
  587. list_for_each_entry_reverse(clk_info, clk_list, list) {
  588. if (IS_ERR_OR_NULL(clk_info->clk))
  589. continue;
  590. cnss_clk_off_single(clk_info);
  591. }
  592. return 0;
  593. }
  594. int cnss_get_pinctrl(struct cnss_plat_data *plat_priv)
  595. {
  596. int ret = 0;
  597. struct device *dev;
  598. struct cnss_pinctrl_info *pinctrl_info;
  599. dev = &plat_priv->plat_dev->dev;
  600. pinctrl_info = &plat_priv->pinctrl_info;
  601. pinctrl_info->pinctrl = devm_pinctrl_get(dev);
  602. if (IS_ERR_OR_NULL(pinctrl_info->pinctrl)) {
  603. ret = PTR_ERR(pinctrl_info->pinctrl);
  604. cnss_pr_err("Failed to get pinctrl, err = %d\n", ret);
  605. goto out;
  606. }
  607. if (of_find_property(dev->of_node, BOOTSTRAP_GPIO, NULL)) {
  608. pinctrl_info->bootstrap_active =
  609. pinctrl_lookup_state(pinctrl_info->pinctrl,
  610. BOOTSTRAP_ACTIVE);
  611. if (IS_ERR_OR_NULL(pinctrl_info->bootstrap_active)) {
  612. ret = PTR_ERR(pinctrl_info->bootstrap_active);
  613. cnss_pr_err("Failed to get bootstrap active state, err = %d\n",
  614. ret);
  615. goto out;
  616. }
  617. }
  618. if (of_find_property(dev->of_node, HOST_SOL_GPIO, NULL) &&
  619. of_find_property(dev->of_node, DEV_SOL_GPIO, NULL)) {
  620. pinctrl_info->sol_default =
  621. pinctrl_lookup_state(pinctrl_info->pinctrl,
  622. SOL_DEFAULT);
  623. if (IS_ERR_OR_NULL(pinctrl_info->sol_default)) {
  624. ret = PTR_ERR(pinctrl_info->sol_default);
  625. cnss_pr_err("Failed to get sol default state, err = %d\n",
  626. ret);
  627. goto out;
  628. }
  629. cnss_pr_dbg("Got sol default state\n");
  630. }
  631. if (of_find_property(dev->of_node, WLAN_EN_GPIO, NULL)) {
  632. pinctrl_info->wlan_en_active =
  633. pinctrl_lookup_state(pinctrl_info->pinctrl,
  634. WLAN_EN_ACTIVE);
  635. if (IS_ERR_OR_NULL(pinctrl_info->wlan_en_active)) {
  636. ret = PTR_ERR(pinctrl_info->wlan_en_active);
  637. cnss_pr_err("Failed to get wlan_en active state, err = %d\n",
  638. ret);
  639. goto out;
  640. }
  641. pinctrl_info->wlan_en_sleep =
  642. pinctrl_lookup_state(pinctrl_info->pinctrl,
  643. WLAN_EN_SLEEP);
  644. if (IS_ERR_OR_NULL(pinctrl_info->wlan_en_sleep)) {
  645. ret = PTR_ERR(pinctrl_info->wlan_en_sleep);
  646. cnss_pr_err("Failed to get wlan_en sleep state, err = %d\n",
  647. ret);
  648. goto out;
  649. }
  650. }
  651. /* Added for QCA6490 PMU delayed WLAN_EN_GPIO */
  652. if (of_find_property(dev->of_node, BT_EN_GPIO, NULL)) {
  653. pinctrl_info->bt_en_gpio = of_get_named_gpio(dev->of_node,
  654. BT_EN_GPIO, 0);
  655. cnss_pr_dbg("BT GPIO: %d\n", pinctrl_info->bt_en_gpio);
  656. } else {
  657. pinctrl_info->bt_en_gpio = -EINVAL;
  658. }
  659. /* Added for QCA6490 to minimize XO CLK selection leakage prevention */
  660. if (of_find_property(dev->of_node, XO_CLK_GPIO, NULL)) {
  661. pinctrl_info->xo_clk_gpio = of_get_named_gpio(dev->of_node,
  662. XO_CLK_GPIO, 0);
  663. cnss_pr_dbg("QCA6490 XO_CLK GPIO: %d\n",
  664. pinctrl_info->xo_clk_gpio);
  665. cnss_set_feature_list(plat_priv, BOOTSTRAP_CLOCK_SELECT_V01);
  666. } else {
  667. pinctrl_info->xo_clk_gpio = -EINVAL;
  668. }
  669. return 0;
  670. out:
  671. return ret;
  672. }
  673. int cnss_get_wlan_sw_ctrl(struct cnss_plat_data *plat_priv)
  674. {
  675. struct device *dev;
  676. struct cnss_pinctrl_info *pinctrl_info;
  677. dev = &plat_priv->plat_dev->dev;
  678. pinctrl_info = &plat_priv->pinctrl_info;
  679. if (of_find_property(dev->of_node, WLAN_SW_CTRL_GPIO, NULL)) {
  680. pinctrl_info->wlan_sw_ctrl_gpio = of_get_named_gpio(dev->of_node,
  681. WLAN_SW_CTRL_GPIO,
  682. 0);
  683. cnss_pr_dbg("WLAN Switch control GPIO: %d\n",
  684. pinctrl_info->wlan_sw_ctrl_gpio);
  685. } else {
  686. pinctrl_info->wlan_sw_ctrl_gpio = -EINVAL;
  687. }
  688. return 0;
  689. }
  690. #define CNSS_XO_CLK_RETRY_COUNT_MAX 5
  691. static void cnss_set_xo_clk_gpio_state(struct cnss_plat_data *plat_priv,
  692. bool enable)
  693. {
  694. int xo_clk_gpio = plat_priv->pinctrl_info.xo_clk_gpio, retry = 0, ret;
  695. if (xo_clk_gpio < 0 || plat_priv->device_id != QCA6490_DEVICE_ID)
  696. return;
  697. retry_gpio_req:
  698. ret = gpio_request(xo_clk_gpio, "XO_CLK_GPIO");
  699. if (ret) {
  700. if (retry++ < CNSS_XO_CLK_RETRY_COUNT_MAX) {
  701. /* wait for ~(10 - 20) ms */
  702. usleep_range(10000, 20000);
  703. goto retry_gpio_req;
  704. }
  705. }
  706. if (ret) {
  707. cnss_pr_err("QCA6490 XO CLK Gpio request failed\n");
  708. return;
  709. }
  710. if (enable) {
  711. gpio_direction_output(xo_clk_gpio, 1);
  712. /*XO CLK must be asserted for some time before WLAN_EN */
  713. usleep_range(100, 200);
  714. } else {
  715. /* Assert XO CLK ~(2-5)ms before off for valid latch in HW */
  716. usleep_range(2000, 5000);
  717. gpio_direction_output(xo_clk_gpio, 0);
  718. }
  719. gpio_free(xo_clk_gpio);
  720. }
  721. static int cnss_select_pinctrl_state(struct cnss_plat_data *plat_priv,
  722. bool state)
  723. {
  724. int ret = 0;
  725. struct cnss_pinctrl_info *pinctrl_info;
  726. if (!plat_priv) {
  727. cnss_pr_err("plat_priv is NULL!\n");
  728. ret = -ENODEV;
  729. goto out;
  730. }
  731. pinctrl_info = &plat_priv->pinctrl_info;
  732. if (state) {
  733. if (!IS_ERR_OR_NULL(pinctrl_info->bootstrap_active)) {
  734. ret = pinctrl_select_state
  735. (pinctrl_info->pinctrl,
  736. pinctrl_info->bootstrap_active);
  737. if (ret) {
  738. cnss_pr_err("Failed to select bootstrap active state, err = %d\n",
  739. ret);
  740. goto out;
  741. }
  742. udelay(BOOTSTRAP_DELAY);
  743. }
  744. if (!IS_ERR_OR_NULL(pinctrl_info->sol_default)) {
  745. ret = pinctrl_select_state
  746. (pinctrl_info->pinctrl,
  747. pinctrl_info->sol_default);
  748. if (ret) {
  749. cnss_pr_err("Failed to select sol default state, err = %d\n",
  750. ret);
  751. goto out;
  752. }
  753. cnss_pr_dbg("Selected sol default state\n");
  754. }
  755. cnss_set_xo_clk_gpio_state(plat_priv, true);
  756. if (!IS_ERR_OR_NULL(pinctrl_info->wlan_en_active)) {
  757. ret = pinctrl_select_state
  758. (pinctrl_info->pinctrl,
  759. pinctrl_info->wlan_en_active);
  760. if (ret) {
  761. cnss_pr_err("Failed to select wlan_en active state, err = %d\n",
  762. ret);
  763. goto out;
  764. }
  765. udelay(WLAN_ENABLE_DELAY);
  766. }
  767. cnss_set_xo_clk_gpio_state(plat_priv, false);
  768. } else {
  769. if (!IS_ERR_OR_NULL(pinctrl_info->wlan_en_sleep)) {
  770. ret = pinctrl_select_state(pinctrl_info->pinctrl,
  771. pinctrl_info->wlan_en_sleep);
  772. if (ret) {
  773. cnss_pr_err("Failed to select wlan_en sleep state, err = %d\n",
  774. ret);
  775. goto out;
  776. }
  777. }
  778. }
  779. cnss_pr_dbg("%s WLAN_EN GPIO successfully\n",
  780. state ? "Assert" : "De-assert");
  781. return 0;
  782. out:
  783. return ret;
  784. }
  785. /**
  786. * cnss_select_pinctrl_enable - select WLAN_GPIO for Active pinctrl status
  787. * @plat_priv: Platform private data structure pointer
  788. *
  789. * For QCA6490, PMU requires minimum 100ms delay between BT_EN_GPIO off and
  790. * WLAN_EN_GPIO on. This is done to avoid power up issues.
  791. *
  792. * Return: Status of pinctrl select operation. 0 - Success.
  793. */
  794. static int cnss_select_pinctrl_enable(struct cnss_plat_data *plat_priv)
  795. {
  796. int ret = 0, bt_en_gpio = plat_priv->pinctrl_info.bt_en_gpio;
  797. u8 wlan_en_state = 0;
  798. if (bt_en_gpio < 0 || plat_priv->device_id != QCA6490_DEVICE_ID)
  799. goto set_wlan_en;
  800. if (gpio_get_value(bt_en_gpio)) {
  801. cnss_pr_dbg("BT_EN_GPIO State: On\n");
  802. ret = cnss_select_pinctrl_state(plat_priv, true);
  803. if (!ret)
  804. return ret;
  805. wlan_en_state = 1;
  806. }
  807. if (!gpio_get_value(bt_en_gpio)) {
  808. cnss_pr_dbg("BT_EN_GPIO State: Off. Delay WLAN_GPIO enable\n");
  809. /* check for BT_EN_GPIO down race during above operation */
  810. if (wlan_en_state) {
  811. cnss_pr_dbg("Reset WLAN_EN as BT got turned off during enable\n");
  812. cnss_select_pinctrl_state(plat_priv, false);
  813. wlan_en_state = 0;
  814. }
  815. /* 100 ms delay for BT_EN and WLAN_EN QCA6490 PMU sequencing */
  816. msleep(100);
  817. }
  818. set_wlan_en:
  819. if (!wlan_en_state)
  820. ret = cnss_select_pinctrl_state(plat_priv, true);
  821. return ret;
  822. }
  823. int cnss_power_on_device(struct cnss_plat_data *plat_priv)
  824. {
  825. int ret = 0;
  826. if (plat_priv->powered_on) {
  827. cnss_pr_dbg("Already powered up");
  828. return 0;
  829. }
  830. ret = cnss_vreg_on_type(plat_priv, CNSS_VREG_PRIM);
  831. if (ret) {
  832. cnss_pr_err("Failed to turn on vreg, err = %d\n", ret);
  833. goto out;
  834. }
  835. ret = cnss_clk_on(plat_priv, &plat_priv->clk_list);
  836. if (ret) {
  837. cnss_pr_err("Failed to turn on clocks, err = %d\n", ret);
  838. goto vreg_off;
  839. }
  840. ret = cnss_select_pinctrl_enable(plat_priv);
  841. if (ret) {
  842. cnss_pr_err("Failed to select pinctrl state, err = %d\n", ret);
  843. goto clk_off;
  844. }
  845. plat_priv->powered_on = true;
  846. cnss_enable_dev_sol_irq(plat_priv);
  847. cnss_set_host_sol_value(plat_priv, 0);
  848. return 0;
  849. clk_off:
  850. cnss_clk_off(plat_priv, &plat_priv->clk_list);
  851. vreg_off:
  852. cnss_vreg_off_type(plat_priv, CNSS_VREG_PRIM);
  853. out:
  854. return ret;
  855. }
  856. void cnss_power_off_device(struct cnss_plat_data *plat_priv)
  857. {
  858. if (!plat_priv->powered_on) {
  859. cnss_pr_dbg("Already powered down");
  860. return;
  861. }
  862. cnss_disable_dev_sol_irq(plat_priv);
  863. cnss_select_pinctrl_state(plat_priv, false);
  864. cnss_clk_off(plat_priv, &plat_priv->clk_list);
  865. cnss_vreg_off_type(plat_priv, CNSS_VREG_PRIM);
  866. plat_priv->powered_on = false;
  867. }
  868. bool cnss_is_device_powered_on(struct cnss_plat_data *plat_priv)
  869. {
  870. return plat_priv->powered_on;
  871. }
  872. void cnss_set_pin_connect_status(struct cnss_plat_data *plat_priv)
  873. {
  874. unsigned long pin_status = 0;
  875. set_bit(CNSS_WLAN_EN, &pin_status);
  876. set_bit(CNSS_PCIE_TXN, &pin_status);
  877. set_bit(CNSS_PCIE_TXP, &pin_status);
  878. set_bit(CNSS_PCIE_RXN, &pin_status);
  879. set_bit(CNSS_PCIE_RXP, &pin_status);
  880. set_bit(CNSS_PCIE_REFCLKN, &pin_status);
  881. set_bit(CNSS_PCIE_REFCLKP, &pin_status);
  882. set_bit(CNSS_PCIE_RST, &pin_status);
  883. plat_priv->pin_result.host_pin_result = pin_status;
  884. }
  885. #if IS_ENABLED(CONFIG_QCOM_COMMAND_DB)
  886. static int cnss_cmd_db_ready(struct cnss_plat_data *plat_priv)
  887. {
  888. return cmd_db_ready();
  889. }
  890. static u32 cnss_cmd_db_read_addr(struct cnss_plat_data *plat_priv,
  891. const char *res_id)
  892. {
  893. return cmd_db_read_addr(res_id);
  894. }
  895. #else
  896. static int cnss_cmd_db_ready(struct cnss_plat_data *plat_priv)
  897. {
  898. return -EOPNOTSUPP;
  899. }
  900. static u32 cnss_cmd_db_read_addr(struct cnss_plat_data *plat_priv,
  901. const char *res_id)
  902. {
  903. return 0;
  904. }
  905. #endif
  906. int cnss_get_tcs_info(struct cnss_plat_data *plat_priv)
  907. {
  908. struct platform_device *plat_dev = plat_priv->plat_dev;
  909. struct resource *res;
  910. resource_size_t addr_len;
  911. void __iomem *tcs_cmd_base_addr;
  912. int ret = 0;
  913. res = platform_get_resource_byname(plat_dev, IORESOURCE_MEM, "tcs_cmd");
  914. if (!res) {
  915. cnss_pr_dbg("TCS CMD address is not present for CPR\n");
  916. goto out;
  917. }
  918. plat_priv->tcs_info.cmd_base_addr = res->start;
  919. addr_len = resource_size(res);
  920. cnss_pr_dbg("TCS CMD base address is %pa with length %pa\n",
  921. &plat_priv->tcs_info.cmd_base_addr, &addr_len);
  922. tcs_cmd_base_addr = devm_ioremap(&plat_dev->dev, res->start, addr_len);
  923. if (!tcs_cmd_base_addr) {
  924. ret = -EINVAL;
  925. cnss_pr_err("Failed to map TCS CMD address, err = %d\n",
  926. ret);
  927. goto out;
  928. }
  929. plat_priv->tcs_info.cmd_base_addr_io = tcs_cmd_base_addr;
  930. return 0;
  931. out:
  932. return ret;
  933. }
  934. int cnss_get_cpr_info(struct cnss_plat_data *plat_priv)
  935. {
  936. struct platform_device *plat_dev = plat_priv->plat_dev;
  937. struct cnss_cpr_info *cpr_info = &plat_priv->cpr_info;
  938. const char *cmd_db_name;
  939. u32 cpr_pmic_addr = 0;
  940. int ret = 0;
  941. if (plat_priv->tcs_info.cmd_base_addr == 0) {
  942. cnss_pr_dbg("TCS CMD not configured\n");
  943. return 0;
  944. }
  945. ret = of_property_read_string(plat_dev->dev.of_node,
  946. "qcom,cmd_db_name", &cmd_db_name);
  947. if (ret) {
  948. cnss_pr_dbg("CommandDB name is not present for CPR\n");
  949. goto out;
  950. }
  951. ret = cnss_cmd_db_ready(plat_priv);
  952. if (ret) {
  953. cnss_pr_err("CommandDB is not ready, err = %d\n", ret);
  954. goto out;
  955. }
  956. cpr_pmic_addr = cnss_cmd_db_read_addr(plat_priv, cmd_db_name);
  957. if (cpr_pmic_addr > 0) {
  958. cpr_info->cpr_pmic_addr = cpr_pmic_addr;
  959. cnss_pr_dbg("Get CPR PMIC address 0x%x from %s\n",
  960. cpr_info->cpr_pmic_addr, cmd_db_name);
  961. } else {
  962. cnss_pr_err("CPR PMIC address is not available for %s\n",
  963. cmd_db_name);
  964. ret = -EINVAL;
  965. goto out;
  966. }
  967. return 0;
  968. out:
  969. return ret;
  970. }
  971. #if IS_ENABLED(CONFIG_MSM_QMP)
  972. int cnss_aop_mbox_init(struct cnss_plat_data *plat_priv)
  973. {
  974. struct mbox_client *mbox = &plat_priv->mbox_client_data;
  975. struct mbox_chan *chan;
  976. int ret;
  977. plat_priv->mbox_chan = NULL;
  978. mbox->dev = &plat_priv->plat_dev->dev;
  979. mbox->tx_block = true;
  980. mbox->tx_tout = CNSS_MBOX_TIMEOUT_MS;
  981. mbox->knows_txdone = false;
  982. chan = mbox_request_channel(mbox, 0);
  983. if (IS_ERR(chan)) {
  984. cnss_pr_err("Failed to get mbox channel\n");
  985. return PTR_ERR(chan);
  986. }
  987. plat_priv->mbox_chan = chan;
  988. cnss_pr_dbg("Mbox channel initialized\n");
  989. ret = cnss_aop_pdc_reconfig(plat_priv);
  990. if (ret)
  991. cnss_pr_err("Failed to reconfig WLAN PDC, err = %d\n", ret);
  992. return 0;
  993. }
  994. /**
  995. * cnss_aop_send_msg: Sends json message to AOP using QMP
  996. * @plat_priv: Pointer to cnss platform data
  997. * @msg: String in json format
  998. *
  999. * AOP accepts JSON message to configure WLAN resources. Format as follows:
  1000. * To send VReg config: {class: wlan_pdc, ss: <pdc_name>,
  1001. * res: <VReg_name>.<param>, <seq_param>: <value>}
  1002. * To send PDC Config: {class: wlan_pdc, ss: <pdc_name>, res: pdc,
  1003. * enable: <Value>}
  1004. * QMP returns timeout error if format not correct or AOP operation fails.
  1005. *
  1006. * Return: 0 for success
  1007. */
  1008. int cnss_aop_send_msg(struct cnss_plat_data *plat_priv, char *mbox_msg)
  1009. {
  1010. struct qmp_pkt pkt;
  1011. int ret = 0;
  1012. cnss_pr_dbg("Sending AOP Mbox msg: %s\n", mbox_msg);
  1013. pkt.size = CNSS_MBOX_MSG_MAX_LEN;
  1014. pkt.data = mbox_msg;
  1015. ret = mbox_send_message(plat_priv->mbox_chan, &pkt);
  1016. if (ret < 0)
  1017. cnss_pr_err("Failed to send AOP mbox msg: %s\n", mbox_msg);
  1018. else
  1019. ret = 0;
  1020. return ret;
  1021. }
  1022. /* cnss_pdc_reconfig: Send PDC init table as configured in DT for wlan device */
  1023. int cnss_aop_pdc_reconfig(struct cnss_plat_data *plat_priv)
  1024. {
  1025. u32 i;
  1026. int ret;
  1027. if (plat_priv->pdc_init_table_len <= 0 || !plat_priv->pdc_init_table)
  1028. return 0;
  1029. cnss_pr_dbg("Setting PDC defaults for device ID: %d\n",
  1030. plat_priv->device_id);
  1031. for (i = 0; i < plat_priv->pdc_init_table_len; i++) {
  1032. ret = cnss_aop_send_msg(plat_priv,
  1033. (char *)plat_priv->pdc_init_table[i]);
  1034. if (ret < 0)
  1035. break;
  1036. }
  1037. return ret;
  1038. }
  1039. /* cnss_aop_pdc_name_str: Get PDC name corresponding to VReg from DT Mapiping */
  1040. static const char *cnss_aop_pdc_name_str(struct cnss_plat_data *plat_priv,
  1041. const char *vreg_name)
  1042. {
  1043. u32 i;
  1044. static const char * const aop_pdc_ss_str[] = {"rf", "bb"};
  1045. const char *pdc = aop_pdc_ss_str[0], *vreg_map_name;
  1046. if (plat_priv->vreg_pdc_map_len <= 0 || !plat_priv->vreg_pdc_map)
  1047. goto end;
  1048. for (i = 0; i < plat_priv->vreg_pdc_map_len; i++) {
  1049. vreg_map_name = plat_priv->vreg_pdc_map[i];
  1050. if (strnstr(vreg_map_name, vreg_name, strlen(vreg_map_name))) {
  1051. pdc = plat_priv->vreg_pdc_map[i + 1];
  1052. break;
  1053. }
  1054. }
  1055. end:
  1056. cnss_pr_dbg("%s mapped to %s\n", vreg_name, pdc);
  1057. return pdc;
  1058. }
  1059. static int cnss_aop_set_vreg_param(struct cnss_plat_data *plat_priv,
  1060. const char *vreg_name,
  1061. enum cnss_aop_vreg_param param,
  1062. enum cnss_aop_tcs_seq_param seq_param,
  1063. int val)
  1064. {
  1065. char msg[CNSS_MBOX_MSG_MAX_LEN];
  1066. static const char * const aop_vreg_param_str[] = {
  1067. [CNSS_VREG_VOLTAGE] = "v", [CNSS_VREG_MODE] = "m",
  1068. [CNSS_VREG_ENABLE] = "e",};
  1069. static const char * const aop_tcs_seq_str[] = {
  1070. [CNSS_TCS_UP_SEQ] = "upval", [CNSS_TCS_DOWN_SEQ] = "dwnval",
  1071. [CNSS_TCS_ENABLE_SEQ] = "enable",};
  1072. if (param >= CNSS_VREG_PARAM_MAX || seq_param >= CNSS_TCS_SEQ_MAX ||
  1073. !vreg_name)
  1074. return -EINVAL;
  1075. snprintf(msg, CNSS_MBOX_MSG_MAX_LEN,
  1076. "{class: wlan_pdc, ss: %s, res: %s.%s, %s: %d}",
  1077. cnss_aop_pdc_name_str(plat_priv, vreg_name),
  1078. vreg_name, aop_vreg_param_str[param],
  1079. aop_tcs_seq_str[seq_param], val);
  1080. return cnss_aop_send_msg(plat_priv, msg);
  1081. }
  1082. #else
  1083. int cnss_aop_mbox_init(struct cnss_plat_data *plat_priv)
  1084. {
  1085. return 0;
  1086. }
  1087. int cnss_aop_send_msg(struct cnss_plat_data *plat_priv, char *msg)
  1088. {
  1089. return 0;
  1090. }
  1091. int cnss_aop_pdc_reconfig(struct cnss_plat_data *plat_priv)
  1092. {
  1093. return 0;
  1094. }
  1095. static int cnss_aop_set_vreg_param(struct cnss_plat_data *plat_priv,
  1096. const char *vreg_name,
  1097. enum cnss_aop_vreg_param param,
  1098. enum cnss_aop_tcs_seq_pram seq_param,
  1099. int val)
  1100. {
  1101. return 0;
  1102. }
  1103. #endif
  1104. void cnss_power_misc_params_init(struct cnss_plat_data *plat_priv)
  1105. {
  1106. struct device *dev = &plat_priv->plat_dev->dev;
  1107. int ret;
  1108. /* common DT Entries */
  1109. plat_priv->pdc_init_table_len =
  1110. of_property_count_strings(dev->of_node,
  1111. "qcom,pdc_init_table");
  1112. if (plat_priv->pdc_init_table_len > 0) {
  1113. plat_priv->pdc_init_table =
  1114. kcalloc(plat_priv->pdc_init_table_len,
  1115. sizeof(char *), GFP_KERNEL);
  1116. ret =
  1117. of_property_read_string_array(dev->of_node,
  1118. "qcom,pdc_init_table",
  1119. plat_priv->pdc_init_table,
  1120. plat_priv->pdc_init_table_len);
  1121. if (ret < 0)
  1122. cnss_pr_err("Failed to get PDC Init Table\n");
  1123. } else {
  1124. cnss_pr_dbg("PDC Init Table not configured\n");
  1125. }
  1126. plat_priv->vreg_pdc_map_len =
  1127. of_property_count_strings(dev->of_node,
  1128. "qcom,vreg_pdc_map");
  1129. if (plat_priv->vreg_pdc_map_len > 0) {
  1130. plat_priv->vreg_pdc_map =
  1131. kcalloc(plat_priv->vreg_pdc_map_len,
  1132. sizeof(char *), GFP_KERNEL);
  1133. ret =
  1134. of_property_read_string_array(dev->of_node,
  1135. "qcom,vreg_pdc_map",
  1136. plat_priv->vreg_pdc_map,
  1137. plat_priv->vreg_pdc_map_len);
  1138. if (ret < 0)
  1139. cnss_pr_err("Failed to get VReg PDC Mapping\n");
  1140. } else {
  1141. cnss_pr_dbg("VReg PDC Mapping not configured\n");
  1142. }
  1143. /* Device DT Specific */
  1144. if (plat_priv->device_id == QCA6390_DEVICE_ID ||
  1145. plat_priv->device_id == QCA6490_DEVICE_ID) {
  1146. ret = of_property_read_string(dev->of_node,
  1147. "qcom,vreg_ol_cpr",
  1148. &plat_priv->vreg_ol_cpr);
  1149. if (ret)
  1150. cnss_pr_dbg("VReg for QCA6490 OL CPR not configured\n");
  1151. ret = of_property_read_string(dev->of_node,
  1152. "qcom,vreg_ipa",
  1153. &plat_priv->vreg_ipa);
  1154. if (ret)
  1155. cnss_pr_dbg("VReg for QCA6490 Int Power Amp not configured\n");
  1156. }
  1157. }
  1158. int cnss_update_cpr_info(struct cnss_plat_data *plat_priv)
  1159. {
  1160. struct cnss_cpr_info *cpr_info = &plat_priv->cpr_info;
  1161. u32 pmic_addr, voltage = 0, voltage_tmp, offset;
  1162. void __iomem *tcs_cmd_addr, *tcs_cmd_data_addr;
  1163. int i, j;
  1164. if (cpr_info->voltage == 0) {
  1165. cnss_pr_err("OL CPR Voltage %dm is not valid\n",
  1166. cpr_info->voltage);
  1167. return -EINVAL;
  1168. }
  1169. if (!plat_priv->vreg_ol_cpr || !plat_priv->mbox_chan) {
  1170. cnss_pr_dbg("Mbox channel / OL CPR Vreg not configured\n");
  1171. } else {
  1172. return cnss_aop_set_vreg_param(plat_priv,
  1173. plat_priv->vreg_ol_cpr,
  1174. CNSS_VREG_VOLTAGE,
  1175. CNSS_TCS_UP_SEQ,
  1176. cpr_info->voltage);
  1177. }
  1178. if (plat_priv->tcs_info.cmd_base_addr == 0) {
  1179. cnss_pr_dbg("TCS CMD not configured for OL CPR update\n");
  1180. return 0;
  1181. }
  1182. if (cpr_info->cpr_pmic_addr == 0) {
  1183. cnss_pr_err("PMIC address 0x%x is not valid\n",
  1184. cpr_info->cpr_pmic_addr);
  1185. return -EINVAL;
  1186. }
  1187. if (cpr_info->tcs_cmd_data_addr_io)
  1188. goto update_cpr;
  1189. for (i = 0; i < MAX_TCS_NUM; i++) {
  1190. for (j = 0; j < MAX_TCS_CMD_NUM; j++) {
  1191. offset = i * TCS_OFFSET + j * TCS_CMD_OFFSET;
  1192. tcs_cmd_addr = plat_priv->tcs_info.cmd_base_addr_io +
  1193. offset;
  1194. pmic_addr = readl_relaxed(tcs_cmd_addr);
  1195. if (pmic_addr == cpr_info->cpr_pmic_addr) {
  1196. tcs_cmd_data_addr = tcs_cmd_addr +
  1197. TCS_CMD_DATA_ADDR_OFFSET;
  1198. voltage_tmp = readl_relaxed(tcs_cmd_data_addr);
  1199. cnss_pr_dbg("Got voltage %dmV from i: %d, j: %d\n",
  1200. voltage_tmp, i, j);
  1201. if (voltage_tmp > voltage) {
  1202. voltage = voltage_tmp;
  1203. cpr_info->tcs_cmd_data_addr =
  1204. plat_priv->tcs_info.cmd_base_addr +
  1205. offset + TCS_CMD_DATA_ADDR_OFFSET;
  1206. cpr_info->tcs_cmd_data_addr_io =
  1207. tcs_cmd_data_addr;
  1208. }
  1209. }
  1210. }
  1211. }
  1212. if (!cpr_info->tcs_cmd_data_addr_io) {
  1213. cnss_pr_err("Failed to find proper TCS CMD data address\n");
  1214. return -EINVAL;
  1215. }
  1216. update_cpr:
  1217. cpr_info->voltage = cpr_info->voltage > BT_CXMX_VOLTAGE_MV ?
  1218. cpr_info->voltage : BT_CXMX_VOLTAGE_MV;
  1219. cnss_pr_dbg("Update TCS CMD data address %pa with voltage %dmV\n",
  1220. &cpr_info->tcs_cmd_data_addr, cpr_info->voltage);
  1221. writel_relaxed(cpr_info->voltage, cpr_info->tcs_cmd_data_addr_io);
  1222. return 0;
  1223. }
  1224. int cnss_enable_int_pow_amp_vreg(struct cnss_plat_data *plat_priv)
  1225. {
  1226. struct platform_device *plat_dev = plat_priv->plat_dev;
  1227. u32 offset, addr_val, data_val;
  1228. void __iomem *tcs_cmd;
  1229. int ret;
  1230. static bool config_done;
  1231. if (plat_priv->device_id != QCA6490_DEVICE_ID)
  1232. return -EINVAL;
  1233. if (config_done) {
  1234. cnss_pr_dbg("IPA Vreg already configured\n");
  1235. return 0;
  1236. }
  1237. if (!plat_priv->vreg_ipa || !plat_priv->mbox_chan) {
  1238. cnss_pr_dbg("Mbox channel / IPA Vreg not configured\n");
  1239. } else {
  1240. ret = cnss_aop_set_vreg_param(plat_priv,
  1241. plat_priv->vreg_ipa,
  1242. CNSS_VREG_ENABLE,
  1243. CNSS_TCS_UP_SEQ, 1);
  1244. if (ret == 0)
  1245. config_done = true;
  1246. return ret;
  1247. }
  1248. if (!plat_priv->tcs_info.cmd_base_addr_io) {
  1249. cnss_pr_err("TCS CMD not configured for IPA Vreg enable\n");
  1250. return -EINVAL;
  1251. }
  1252. ret = of_property_read_u32(plat_dev->dev.of_node,
  1253. "qcom,tcs_offset_int_pow_amp_vreg",
  1254. &offset);
  1255. if (ret) {
  1256. cnss_pr_dbg("Internal Power Amp Vreg not configured\n");
  1257. return -EINVAL;
  1258. }
  1259. tcs_cmd = plat_priv->tcs_info.cmd_base_addr_io + offset;
  1260. addr_val = readl_relaxed(tcs_cmd);
  1261. tcs_cmd += TCS_CMD_DATA_ADDR_OFFSET;
  1262. /* 1 = enable Vreg */
  1263. writel_relaxed(1, tcs_cmd);
  1264. data_val = readl_relaxed(tcs_cmd);
  1265. cnss_pr_dbg("Setup S3E TCS Addr: %x Data: %d\n", addr_val, data_val);
  1266. config_done = true;
  1267. return 0;
  1268. }