msm_cvp_buf.c 52 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075
  1. // SPDX-License-Identifier: GPL-2.0-only
  2. /*
  3. * Copyright (c) 2020-2021, The Linux Foundation. All rights reserved.
  4. */
  5. #include <linux/pid.h>
  6. #include <linux/fdtable.h>
  7. #include <linux/rcupdate.h>
  8. #include <linux/fs.h>
  9. #include <linux/dma-buf.h>
  10. #include <linux/sched/task.h>
  11. #include <linux/version.h>
  12. #include "msm_cvp_common.h"
  13. #include "cvp_hfi_api.h"
  14. #include "msm_cvp_debug.h"
  15. #include "msm_cvp_core.h"
  16. #include "msm_cvp_dsp.h"
  17. #if (LINUX_VERSION_CODE < KERNEL_VERSION(5, 16, 0))
  18. #define eva_buf_map dma_buf_map
  19. #define _buf_map_set_vaddr dma_buf_map_set_vaddr
  20. #else
  21. #define eva_buf_map iosys_map
  22. #define _buf_map_set_vaddr iosys_map_set_vaddr
  23. #endif
  24. #define CLEAR_USE_BITMAP(idx, inst) \
  25. do { \
  26. clear_bit(idx, &inst->dma_cache.usage_bitmap); \
  27. dprintk(CVP_MEM, "clear %x bit %d dma_cache bitmap 0x%llx\n", \
  28. hash32_ptr(inst->session), smem->bitmap_index, \
  29. inst->dma_cache.usage_bitmap); \
  30. } while (0)
  31. #define SET_USE_BITMAP(idx, inst) \
  32. do { \
  33. set_bit(idx, &inst->dma_cache.usage_bitmap); \
  34. dprintk(CVP_MEM, "Set %x bit %d dma_cache bitmap 0x%llx\n", \
  35. hash32_ptr(inst->session), idx, \
  36. inst->dma_cache.usage_bitmap); \
  37. } while (0)
  38. static void _wncc_print_cvpwnccbufs_table(struct msm_cvp_inst* inst);
  39. static int _wncc_unmap_metadata_bufs(struct eva_kmd_hfi_packet* in_pkt,
  40. unsigned int num_layers, struct eva_kmd_wncc_metadata** wncc_metadata);
  41. void msm_cvp_print_inst_bufs(struct msm_cvp_inst *inst, bool log);
  42. int print_smem(u32 tag, const char *str, struct msm_cvp_inst *inst,
  43. struct msm_cvp_smem *smem)
  44. {
  45. int i;
  46. char name[PKT_NAME_LEN] = "Unknown";
  47. if (!(tag & msm_cvp_debug))
  48. return 0;
  49. if (!inst || !smem) {
  50. dprintk(CVP_ERR, "Invalid inst 0x%llx or smem 0x%llx\n",
  51. inst, smem);
  52. return -EINVAL;
  53. }
  54. if (smem->dma_buf) {
  55. i = get_pkt_index_from_type(smem->pkt_type);
  56. if (i > 0)
  57. strlcpy(name, cvp_hfi_defs[i].name, PKT_NAME_LEN);
  58. if (!atomic_read(&smem->refcount))
  59. dprintk(tag,
  60. " UNUSED mapping %s: 0x%llx %s size %d iova %#x idx %d pkt_type %s buf_idx %#x fd %d",
  61. str, smem->dma_buf, smem->dma_buf->name,
  62. smem->size, smem->device_addr, smem->bitmap_index, name, smem->buf_idx, smem->fd);
  63. else
  64. dprintk(tag,
  65. "%s: %x : 0x%llx %s size %d flags %#x iova %#x idx %d ref %d pkt_type %s buf_idx %#x fd %d",
  66. str, hash32_ptr(inst->session), smem->dma_buf, smem->dma_buf->name,
  67. smem->size, smem->flags, smem->device_addr,
  68. smem->bitmap_index, atomic_read(&smem->refcount),
  69. name, smem->buf_idx, smem->fd);
  70. }
  71. return 0;
  72. }
  73. static void print_internal_buffer(u32 tag, const char *str,
  74. struct msm_cvp_inst *inst, struct cvp_internal_buf *cbuf)
  75. {
  76. if (!(tag & msm_cvp_debug) || !inst || !cbuf)
  77. return;
  78. if (cbuf->smem->dma_buf) {
  79. dprintk(tag,
  80. "%s: %x : fd %d off %d 0x%llx %s size %d iova %#x",
  81. str, hash32_ptr(inst->session), cbuf->fd,
  82. cbuf->offset, cbuf->smem->dma_buf, cbuf->smem->dma_buf->name,
  83. cbuf->size, cbuf->smem->device_addr);
  84. } else {
  85. dprintk(tag,
  86. "%s: %x : idx %2d fd %d off %d size %d iova %#x",
  87. str, hash32_ptr(inst->session), cbuf->index, cbuf->fd,
  88. cbuf->offset, cbuf->size, cbuf->smem->device_addr);
  89. }
  90. }
  91. void print_cvp_buffer(u32 tag, const char *str, struct msm_cvp_inst *inst,
  92. struct cvp_internal_buf *cbuf)
  93. {
  94. if (!inst || !cbuf)
  95. dprintk(CVP_ERR,
  96. "%s Invalid params inst %pK, cbuf %pK\n",
  97. str, inst, cbuf);
  98. print_smem(tag, str, inst, cbuf->smem);
  99. }
  100. static void _log_smem(struct inst_snapshot *snapshot, struct msm_cvp_inst *inst,
  101. struct msm_cvp_smem *smem, bool logging)
  102. {
  103. if (print_smem(CVP_ERR, "bufdump", inst, smem))
  104. return;
  105. if (!logging || !snapshot)
  106. return;
  107. if (snapshot && snapshot->smem_index < MAX_ENTRIES) {
  108. struct smem_data *s;
  109. s = &snapshot->smem_log[snapshot->smem_index];
  110. snapshot->smem_index++;
  111. s->size = smem->size;
  112. s->flags = smem->flags;
  113. s->device_addr = smem->device_addr;
  114. s->bitmap_index = smem->bitmap_index;
  115. s->refcount = atomic_read(&smem->refcount);
  116. s->pkt_type = smem->pkt_type;
  117. s->buf_idx = smem->buf_idx;
  118. }
  119. }
  120. static void _log_buf(struct inst_snapshot *snapshot, enum smem_prop prop,
  121. struct msm_cvp_inst *inst, struct cvp_internal_buf *cbuf,
  122. bool logging)
  123. {
  124. struct cvp_buf_data *buf = NULL;
  125. u32 index;
  126. print_cvp_buffer(CVP_ERR, "bufdump", inst, cbuf);
  127. if (!logging)
  128. return;
  129. if (snapshot) {
  130. if (prop == SMEM_ADSP && snapshot->dsp_index < MAX_ENTRIES) {
  131. index = snapshot->dsp_index;
  132. buf = &snapshot->dsp_buf_log[index];
  133. snapshot->dsp_index++;
  134. } else if (prop == SMEM_PERSIST &&
  135. snapshot->persist_index < MAX_ENTRIES) {
  136. index = snapshot->persist_index;
  137. buf = &snapshot->persist_buf_log[index];
  138. snapshot->persist_index++;
  139. }
  140. if (buf) {
  141. buf->device_addr = cbuf->smem->device_addr;
  142. buf->size = cbuf->size;
  143. }
  144. }
  145. }
  146. void print_client_buffer(u32 tag, const char *str,
  147. struct msm_cvp_inst *inst, struct eva_kmd_buffer *cbuf)
  148. {
  149. if (!(tag & msm_cvp_debug) || !str || !inst || !cbuf)
  150. return;
  151. dprintk(tag,
  152. "%s: %x : idx %2d fd %d off %d size %d type %d flags 0x%x"
  153. " reserved[0] %u\n",
  154. str, hash32_ptr(inst->session), cbuf->index, cbuf->fd,
  155. cbuf->offset, cbuf->size, cbuf->type, cbuf->flags,
  156. cbuf->reserved[0]);
  157. }
  158. static bool __is_buf_valid(struct msm_cvp_inst *inst,
  159. struct eva_kmd_buffer *buf)
  160. {
  161. struct cvp_hal_session *session;
  162. struct cvp_internal_buf *cbuf = NULL;
  163. bool found = false;
  164. if (!inst || !inst->core || !buf) {
  165. dprintk(CVP_ERR, "%s: invalid params\n", __func__);
  166. return false;
  167. }
  168. if (buf->fd < 0) {
  169. dprintk(CVP_ERR, "%s: Invalid fd = %d", __func__, buf->fd);
  170. return false;
  171. }
  172. if (buf->offset) {
  173. dprintk(CVP_ERR,
  174. "%s: offset is deprecated, set to 0.\n",
  175. __func__);
  176. return false;
  177. }
  178. session = (struct cvp_hal_session *)inst->session;
  179. mutex_lock(&inst->cvpdspbufs.lock);
  180. list_for_each_entry(cbuf, &inst->cvpdspbufs.list, list) {
  181. if (cbuf->fd == buf->fd) {
  182. if (cbuf->size != buf->size) {
  183. dprintk(CVP_ERR, "%s: buf size mismatch\n",
  184. __func__);
  185. mutex_unlock(&inst->cvpdspbufs.lock);
  186. return false;
  187. }
  188. found = true;
  189. break;
  190. }
  191. }
  192. mutex_unlock(&inst->cvpdspbufs.lock);
  193. if (found) {
  194. print_internal_buffer(CVP_ERR, "duplicate", inst, cbuf);
  195. return false;
  196. }
  197. return true;
  198. }
  199. static struct file *msm_cvp_fget(unsigned int fd, struct task_struct *task,
  200. fmode_t mask, unsigned int refs)
  201. {
  202. struct files_struct *files = task->files;
  203. struct file *file;
  204. if (!files)
  205. return NULL;
  206. rcu_read_lock();
  207. loop:
  208. #if (LINUX_VERSION_CODE < KERNEL_VERSION(5, 13, 0))
  209. file = fcheck_files(files, fd);
  210. #else
  211. file = files_lookup_fd_rcu(files, fd);
  212. #endif
  213. if (file) {
  214. /* File object ref couldn't be taken.
  215. * dup2() atomicity guarantee is the reason
  216. * we loop to catch the new file (or NULL pointer)
  217. */
  218. if (file->f_mode & mask)
  219. file = NULL;
  220. else if (!get_file_rcu(file))
  221. goto loop;
  222. }
  223. rcu_read_unlock();
  224. return file;
  225. }
  226. static struct dma_buf *cvp_dma_buf_get(struct file *file, int fd,
  227. struct task_struct *task)
  228. {
  229. if (file->f_op != gfa_cv.dmabuf_f_op) {
  230. dprintk(CVP_WARN, "fd doesn't refer to dma_buf\n");
  231. return ERR_PTR(-EINVAL);
  232. }
  233. return file->private_data;
  234. }
  235. int msm_cvp_map_buf_dsp(struct msm_cvp_inst *inst, struct eva_kmd_buffer *buf)
  236. {
  237. int rc = 0;
  238. struct cvp_internal_buf *cbuf = NULL;
  239. struct msm_cvp_smem *smem = NULL;
  240. struct dma_buf *dma_buf = NULL;
  241. struct file *file;
  242. if (!__is_buf_valid(inst, buf))
  243. return -EINVAL;
  244. if (!inst->task)
  245. return -EINVAL;
  246. file = msm_cvp_fget(buf->fd, inst->task, FMODE_PATH, 1);
  247. if (file == NULL) {
  248. dprintk(CVP_WARN, "%s fail to get file from fd\n", __func__);
  249. return -EINVAL;
  250. }
  251. dma_buf = cvp_dma_buf_get(
  252. file,
  253. buf->fd,
  254. inst->task);
  255. if (dma_buf == ERR_PTR(-EINVAL)) {
  256. dprintk(CVP_ERR, "%s: Invalid fd = %d", __func__, buf->fd);
  257. rc = -EINVAL;
  258. goto exit;
  259. }
  260. dprintk(CVP_MEM, "dma_buf from internal %llu\n", dma_buf);
  261. cbuf = cvp_kmem_cache_zalloc(&cvp_driver->buf_cache, GFP_KERNEL);
  262. if (!cbuf) {
  263. rc = -ENOMEM;
  264. goto exit;
  265. }
  266. smem = cvp_kmem_cache_zalloc(&cvp_driver->smem_cache, GFP_KERNEL);
  267. if (!smem) {
  268. rc = -ENOMEM;
  269. goto exit;
  270. }
  271. smem->dma_buf = dma_buf;
  272. smem->bitmap_index = MAX_DMABUF_NUMS;
  273. smem->pkt_type = 0;
  274. smem->buf_idx = 0;
  275. smem->fd = buf->fd;
  276. dprintk(CVP_MEM, "%s: dma_buf = %llx\n", __func__, dma_buf);
  277. rc = msm_cvp_map_smem(inst, smem, "map dsp");
  278. if (rc) {
  279. print_client_buffer(CVP_ERR, "map failed", inst, buf);
  280. goto exit;
  281. }
  282. cbuf->smem = smem;
  283. cbuf->fd = buf->fd;
  284. cbuf->size = buf->size;
  285. cbuf->offset = buf->offset;
  286. cbuf->ownership = CLIENT;
  287. cbuf->index = buf->index;
  288. buf->reserved[0] = (uint32_t)smem->device_addr;
  289. mutex_lock(&inst->cvpdspbufs.lock);
  290. list_add_tail(&cbuf->list, &inst->cvpdspbufs.list);
  291. mutex_unlock(&inst->cvpdspbufs.lock);
  292. return rc;
  293. exit:
  294. fput(file);
  295. if (smem) {
  296. if (smem->device_addr)
  297. msm_cvp_unmap_smem(inst, smem, "unmap dsp");
  298. msm_cvp_smem_put_dma_buf(smem->dma_buf);
  299. cvp_kmem_cache_free(&cvp_driver->smem_cache, smem);
  300. }
  301. if (cbuf)
  302. cvp_kmem_cache_free(&cvp_driver->buf_cache, cbuf);
  303. return rc;
  304. }
  305. int msm_cvp_unmap_buf_dsp(struct msm_cvp_inst *inst, struct eva_kmd_buffer *buf)
  306. {
  307. int rc = 0;
  308. bool found;
  309. struct cvp_internal_buf *cbuf;
  310. struct cvp_hal_session *session;
  311. if (!inst || !inst->core || !buf) {
  312. dprintk(CVP_ERR, "%s: invalid params\n", __func__);
  313. return -EINVAL;
  314. }
  315. session = (struct cvp_hal_session *)inst->session;
  316. if (!session) {
  317. dprintk(CVP_ERR, "%s: invalid session\n", __func__);
  318. return -EINVAL;
  319. }
  320. mutex_lock(&inst->cvpdspbufs.lock);
  321. found = false;
  322. list_for_each_entry(cbuf, &inst->cvpdspbufs.list, list) {
  323. if (cbuf->fd == buf->fd) {
  324. found = true;
  325. break;
  326. }
  327. }
  328. mutex_unlock(&inst->cvpdspbufs.lock);
  329. if (!found) {
  330. print_client_buffer(CVP_ERR, "invalid", inst, buf);
  331. return -EINVAL;
  332. }
  333. if (cbuf->smem->device_addr) {
  334. msm_cvp_unmap_smem(inst, cbuf->smem, "unmap dsp");
  335. msm_cvp_smem_put_dma_buf(cbuf->smem->dma_buf);
  336. }
  337. mutex_lock(&inst->cvpdspbufs.lock);
  338. list_del(&cbuf->list);
  339. mutex_unlock(&inst->cvpdspbufs.lock);
  340. cvp_kmem_cache_free(&cvp_driver->smem_cache, cbuf->smem);
  341. cvp_kmem_cache_free(&cvp_driver->buf_cache, cbuf);
  342. return rc;
  343. }
  344. int msm_cvp_map_buf_wncc(struct msm_cvp_inst *inst,
  345. struct eva_kmd_buffer *buf)
  346. {
  347. int rc = 0, i;
  348. bool found = false;
  349. struct cvp_internal_buf* cbuf;
  350. struct msm_cvp_smem* smem = NULL;
  351. struct dma_buf* dma_buf = NULL;
  352. if (!inst || !inst->core || !buf) {
  353. dprintk(CVP_ERR, "%s: invalid params", __func__);
  354. return -EINVAL;
  355. }
  356. if (!inst->session) {
  357. dprintk(CVP_ERR, "%s: invalid session", __func__);
  358. return -EINVAL;
  359. }
  360. if (buf->index) {
  361. dprintk(CVP_ERR, "%s: buf index is NOT 0 fd=%d",
  362. __func__, buf->fd);
  363. return -EINVAL;
  364. }
  365. if (buf->fd < 0) {
  366. dprintk(CVP_ERR, "%s: invalid fd = %d", __func__, buf->fd);
  367. return -EINVAL;
  368. }
  369. if (buf->offset) {
  370. dprintk(CVP_ERR, "%s: offset is not supported, set to 0.",
  371. __func__);
  372. return -EINVAL;
  373. }
  374. mutex_lock(&inst->cvpwnccbufs.lock);
  375. list_for_each_entry(cbuf, &inst->cvpwnccbufs.list, list) {
  376. if (cbuf->fd == buf->fd) {
  377. if (cbuf->size != buf->size) {
  378. dprintk(CVP_ERR, "%s: buf size mismatch",
  379. __func__);
  380. mutex_unlock(&inst->cvpwnccbufs.lock);
  381. return -EINVAL;
  382. }
  383. found = true;
  384. break;
  385. }
  386. }
  387. mutex_unlock(&inst->cvpwnccbufs.lock);
  388. if (found) {
  389. print_internal_buffer(CVP_ERR, "duplicate", inst, cbuf);
  390. return -EINVAL;
  391. }
  392. dma_buf = msm_cvp_smem_get_dma_buf(buf->fd);
  393. if (!dma_buf) {
  394. dprintk(CVP_ERR, "%s: invalid fd = %d", __func__, buf->fd);
  395. return -EINVAL;
  396. }
  397. cbuf = cvp_kmem_cache_zalloc(&cvp_driver->buf_cache, GFP_KERNEL);
  398. if (!cbuf) {
  399. msm_cvp_smem_put_dma_buf(dma_buf);
  400. return -ENOMEM;
  401. }
  402. smem = cvp_kmem_cache_zalloc(&cvp_driver->smem_cache, GFP_KERNEL);
  403. if (!smem) {
  404. cvp_kmem_cache_free(&cvp_driver->buf_cache, cbuf);
  405. msm_cvp_smem_put_dma_buf(dma_buf);
  406. return -ENOMEM;
  407. }
  408. smem->dma_buf = dma_buf;
  409. smem->bitmap_index = MAX_DMABUF_NUMS;
  410. smem->pkt_type = 0;
  411. smem->buf_idx = 0;
  412. smem->fd = buf->fd;
  413. dprintk(CVP_MEM, "%s: dma_buf = %llx", __func__, dma_buf);
  414. rc = msm_cvp_map_smem(inst, smem, "map wncc");
  415. if (rc) {
  416. dprintk(CVP_ERR, "%s: map failed", __func__);
  417. print_client_buffer(CVP_ERR, __func__, inst, buf);
  418. goto exit;
  419. }
  420. cbuf->smem = smem;
  421. cbuf->fd = buf->fd;
  422. cbuf->size = buf->size;
  423. cbuf->offset = buf->offset;
  424. cbuf->ownership = CLIENT;
  425. cbuf->index = buf->index;
  426. /* Added for PreSil/RUMI testing */
  427. #ifdef USE_PRESIL
  428. dprintk(CVP_DBG,
  429. "wncc buffer is %x for cam_presil_send_buffer"
  430. " with MAP_ADDR_OFFSET %x",
  431. (u64)(smem->device_addr) - MAP_ADDR_OFFSET, MAP_ADDR_OFFSET);
  432. cam_presil_send_buffer((u64)smem->dma_buf, 0,
  433. (u32)cbuf->offset, (u32)cbuf->size,
  434. (u64)(smem->device_addr) - MAP_ADDR_OFFSET);
  435. #endif
  436. mutex_lock(&inst->cvpwnccbufs.lock);
  437. if (inst->cvpwnccbufs_table == NULL) {
  438. inst->cvpwnccbufs_table =
  439. (struct msm_cvp_wncc_buffer*) kzalloc(
  440. sizeof(struct msm_cvp_wncc_buffer) *
  441. EVA_KMD_WNCC_MAX_SRC_BUFS,
  442. GFP_KERNEL);
  443. if (!inst->cvpwnccbufs_table) {
  444. mutex_unlock(&inst->cvpwnccbufs.lock);
  445. goto exit;
  446. }
  447. }
  448. list_add_tail(&cbuf->list, &inst->cvpwnccbufs.list);
  449. for (i = 0; i < EVA_KMD_WNCC_MAX_SRC_BUFS; i++)
  450. {
  451. if (inst->cvpwnccbufs_table[i].iova == 0)
  452. {
  453. inst->cvpwnccbufs_num++;
  454. inst->cvpwnccbufs_table[i].fd = buf->fd;
  455. inst->cvpwnccbufs_table[i].iova = smem->device_addr;
  456. inst->cvpwnccbufs_table[i].size = smem->size;
  457. /* buf reserved[0] used to store wncc src buf id */
  458. buf->reserved[0] = i + EVA_KMD_WNCC_SRC_BUF_ID_OFFSET;
  459. /* cbuf ktid used to store wncc src buf id */
  460. cbuf->ktid = i + EVA_KMD_WNCC_SRC_BUF_ID_OFFSET;
  461. dprintk(CVP_MEM, "%s: wncc buf iova: 0x%08X",
  462. __func__, inst->cvpwnccbufs_table[i].iova);
  463. break;
  464. }
  465. }
  466. if (i == EVA_KMD_WNCC_MAX_SRC_BUFS) {
  467. dprintk(CVP_ERR,
  468. "%s: wncc buf table full - max (%u) already registered",
  469. __func__, EVA_KMD_WNCC_MAX_SRC_BUFS);
  470. /* _wncc_print_cvpwnccbufs_table(inst); */
  471. mutex_unlock(&inst->cvpwnccbufs.lock);
  472. rc = -EDQUOT;
  473. goto exit;
  474. }
  475. mutex_unlock(&inst->cvpwnccbufs.lock);
  476. return rc;
  477. exit:
  478. if (smem->device_addr)
  479. msm_cvp_unmap_smem(inst, smem, "unmap wncc");
  480. msm_cvp_smem_put_dma_buf(smem->dma_buf);
  481. cvp_kmem_cache_free(&cvp_driver->buf_cache, cbuf);
  482. cbuf = NULL;
  483. cvp_kmem_cache_free(&cvp_driver->smem_cache, smem);
  484. smem = NULL;
  485. return rc;
  486. }
  487. int msm_cvp_unmap_buf_wncc(struct msm_cvp_inst *inst,
  488. struct eva_kmd_buffer *buf)
  489. {
  490. int rc = 0;
  491. bool found;
  492. struct cvp_internal_buf *cbuf;
  493. uint32_t buf_id, buf_idx;
  494. if (!inst || !inst->core || !buf) {
  495. dprintk(CVP_ERR, "%s: invalid params", __func__);
  496. return -EINVAL;
  497. }
  498. if (!inst->session) {
  499. dprintk(CVP_ERR, "%s: invalid session", __func__);
  500. return -EINVAL;
  501. }
  502. if (buf->index) {
  503. dprintk(CVP_ERR, "%s: buf index is NOT 0 fd=%d",
  504. __func__, buf->fd);
  505. return -EINVAL;
  506. }
  507. buf_id = buf->reserved[0];
  508. if (buf_id < EVA_KMD_WNCC_SRC_BUF_ID_OFFSET || buf_id >=
  509. (EVA_KMD_WNCC_MAX_SRC_BUFS + EVA_KMD_WNCC_SRC_BUF_ID_OFFSET)) {
  510. dprintk(CVP_ERR, "%s: invalid buffer id %d",
  511. __func__, buf->reserved[0]);
  512. return -EINVAL;
  513. }
  514. mutex_lock(&inst->cvpwnccbufs.lock);
  515. if (inst->cvpwnccbufs_num == 0) {
  516. dprintk(CVP_ERR, "%s: no wncc buffers currently mapped", __func__);
  517. mutex_unlock(&inst->cvpwnccbufs.lock);
  518. return -EINVAL;
  519. }
  520. buf_idx = buf_id - EVA_KMD_WNCC_SRC_BUF_ID_OFFSET;
  521. if (inst->cvpwnccbufs_table[buf_idx].iova == 0) {
  522. dprintk(CVP_ERR, "%s: buffer id %d not found",
  523. __func__, buf_id);
  524. mutex_unlock(&inst->cvpwnccbufs.lock);
  525. return -EINVAL;
  526. }
  527. buf->fd = inst->cvpwnccbufs_table[buf_idx].fd;
  528. found = false;
  529. list_for_each_entry(cbuf, &inst->cvpwnccbufs.list, list) {
  530. if (cbuf->fd == buf->fd) {
  531. found = true;
  532. break;
  533. }
  534. }
  535. if (!found) {
  536. dprintk(CVP_ERR, "%s: buffer id %d not found",
  537. __func__, buf_id);
  538. print_client_buffer(CVP_ERR, __func__, inst, buf);
  539. _wncc_print_cvpwnccbufs_table(inst);
  540. mutex_unlock(&inst->cvpwnccbufs.lock);
  541. return -EINVAL;
  542. }
  543. mutex_unlock(&inst->cvpwnccbufs.lock);
  544. if (cbuf->smem->device_addr) {
  545. msm_cvp_unmap_smem(inst, cbuf->smem, "unmap wncc");
  546. msm_cvp_smem_put_dma_buf(cbuf->smem->dma_buf);
  547. }
  548. mutex_lock(&inst->cvpwnccbufs.lock);
  549. list_del(&cbuf->list);
  550. inst->cvpwnccbufs_table[buf_idx].fd = 0;
  551. inst->cvpwnccbufs_table[buf_idx].iova = 0;
  552. inst->cvpwnccbufs_table[buf_idx].size = 0;
  553. inst->cvpwnccbufs_num--;
  554. if (inst->cvpwnccbufs_num == 0) {
  555. kfree(inst->cvpwnccbufs_table);
  556. inst->cvpwnccbufs_table = NULL;
  557. }
  558. mutex_unlock(&inst->cvpwnccbufs.lock);
  559. cvp_kmem_cache_free(&cvp_driver->smem_cache, cbuf->smem);
  560. cvp_kmem_cache_free(&cvp_driver->buf_cache, cbuf);
  561. return rc;
  562. }
  563. static void _wncc_print_oob(struct eva_kmd_oob_wncc* wncc_oob)
  564. {
  565. u32 i, j;
  566. if (!wncc_oob) {
  567. dprintk(CVP_ERR, "%s: invalid params", __func__);
  568. return;
  569. }
  570. dprintk(CVP_DBG, "%s: wncc OOB --", __func__);
  571. dprintk(CVP_DBG, "%s: num_layers: %u", __func__, wncc_oob->num_layers);
  572. for (i = 0; i < wncc_oob->num_layers; i++) {
  573. dprintk(CVP_DBG, "%s: layers[%u].num_addrs: %u",
  574. __func__, i, wncc_oob->layers[i].num_addrs);
  575. for (j = 0; j < wncc_oob->layers[i].num_addrs; j++) {
  576. dprintk(CVP_DBG,
  577. "%s: layers[%u].addrs[%u]: %04u 0x%08x",
  578. __func__, i, j,
  579. wncc_oob->layers[i].addrs[j].buffer_id,
  580. wncc_oob->layers[i].addrs[j].offset);
  581. }
  582. }
  583. }
  584. static void _wncc_print_cvpwnccbufs_table(struct msm_cvp_inst* inst)
  585. {
  586. u32 i, entries = 0;
  587. if (!inst) {
  588. dprintk(CVP_ERR, "%s: invalid params", __func__);
  589. return;
  590. }
  591. if (inst->cvpwnccbufs_num == 0) {
  592. dprintk(CVP_DBG, "%s: wncc buffer look-up table is empty",
  593. __func__);
  594. return;
  595. }
  596. if (!inst->cvpwnccbufs_table) {
  597. dprintk(CVP_ERR, "%s: invalid params", __func__);
  598. return;
  599. }
  600. dprintk(CVP_DBG, "%s: wncc buffer table:", __func__);
  601. for (i = 0; i < EVA_KMD_WNCC_MAX_SRC_BUFS &&
  602. entries < inst->cvpwnccbufs_num; i++) {
  603. if (inst->cvpwnccbufs_table[i].iova != 0) {
  604. dprintk(CVP_DBG,
  605. "%s: buf_idx=%04d --> "
  606. "fd=%03d, iova=0x%08x, size=%d",
  607. __func__, i,
  608. inst->cvpwnccbufs_table[i].fd,
  609. inst->cvpwnccbufs_table[i].iova,
  610. inst->cvpwnccbufs_table[i].size);
  611. entries++;
  612. }
  613. }
  614. }
  615. static void _wncc_print_metadata_buf(u32 num_layers, u32 num_addrs,
  616. struct eva_kmd_wncc_metadata** wncc_metadata)
  617. {
  618. u32 i, j, iova;
  619. if (num_layers < 1 || num_layers > EVA_KMD_WNCC_MAX_LAYERS ||
  620. !wncc_metadata) {
  621. dprintk(CVP_ERR, "%s: invalid params", __func__);
  622. return;
  623. }
  624. dprintk(CVP_DBG, "%s: wncc metadata buffers --", __func__);
  625. dprintk(CVP_DBG, "%s: num_layers: %u", __func__, num_layers);
  626. dprintk(CVP_DBG, "%s: num_addrs: %u", __func__, num_addrs);
  627. for (i = 0; i < num_layers; i++) {
  628. for (j = 0; j < num_addrs; j++) {
  629. iova = (wncc_metadata[i][j].iova_msb << 22) |
  630. wncc_metadata[i][j].iova_lsb;
  631. dprintk(CVP_DBG,
  632. "%s: wncc_metadata[%u][%u]: "
  633. "%4u %3u %4u %3u 0x%08x %1u %4d %4d %4d %4d",
  634. __func__, i, j,
  635. wncc_metadata[i][j].loc_x_dec,
  636. wncc_metadata[i][j].loc_x_frac,
  637. wncc_metadata[i][j].loc_y_dec,
  638. wncc_metadata[i][j].loc_y_frac,
  639. iova,
  640. wncc_metadata[i][j].scale_idx,
  641. wncc_metadata[i][j].aff_coeff_3,
  642. wncc_metadata[i][j].aff_coeff_2,
  643. wncc_metadata[i][j].aff_coeff_1,
  644. wncc_metadata[i][j].aff_coeff_0);
  645. }
  646. }
  647. }
  648. static int _wncc_copy_oob_from_user(struct eva_kmd_hfi_packet* in_pkt,
  649. struct eva_kmd_oob_wncc* wncc_oob)
  650. {
  651. int rc = 0;
  652. u32 oob_type;
  653. struct eva_kmd_oob_wncc* wncc_oob_u;
  654. struct eva_kmd_oob_wncc* wncc_oob_k;
  655. unsigned int i;
  656. u32 num_addrs;
  657. if (!in_pkt || !wncc_oob) {
  658. dprintk(CVP_ERR, "%s: invalid params", __func__);
  659. return -EINVAL;
  660. }
  661. if (!access_ok(in_pkt->oob_buf, sizeof(*in_pkt->oob_buf))) {
  662. dprintk(CVP_ERR, "%s: invalid OOB buf pointer", __func__);
  663. return -EINVAL;
  664. }
  665. rc = get_user(oob_type, &in_pkt->oob_buf->oob_type);
  666. if (rc)
  667. return rc;
  668. if (oob_type != EVA_KMD_OOB_WNCC) {
  669. dprintk(CVP_ERR, "%s: incorrect OOB type (%d) for wncc",
  670. __func__, oob_type);
  671. return -EINVAL;
  672. }
  673. wncc_oob_u = &in_pkt->oob_buf->wncc;
  674. wncc_oob_k = wncc_oob;
  675. rc = get_user(wncc_oob_k->num_layers, &wncc_oob_u->num_layers);
  676. if (rc)
  677. return rc;
  678. if (wncc_oob_k->num_layers < 1 ||
  679. wncc_oob_k->num_layers > EVA_KMD_WNCC_MAX_LAYERS) {
  680. dprintk(CVP_ERR, "%s: invalid wncc num layers", __func__);
  681. return -EINVAL;
  682. }
  683. for (i = 0; i < wncc_oob_k->num_layers; i++) {
  684. rc = get_user(wncc_oob_k->layers[i].num_addrs,
  685. &wncc_oob_u->layers[i].num_addrs);
  686. if (rc)
  687. break;
  688. num_addrs = wncc_oob_k->layers[i].num_addrs;
  689. if (num_addrs < 1 || num_addrs > EVA_KMD_WNCC_MAX_ADDRESSES) {
  690. dprintk(CVP_ERR,
  691. "%s: invalid wncc num addrs for layer %u",
  692. __func__, i);
  693. rc = -EINVAL;
  694. break;
  695. }
  696. rc = copy_from_user(wncc_oob_k->layers[i].addrs,
  697. wncc_oob_u->layers[i].addrs,
  698. wncc_oob_k->layers[i].num_addrs *
  699. sizeof(struct eva_kmd_wncc_addr));
  700. if (rc)
  701. break;
  702. }
  703. if (false)
  704. _wncc_print_oob(wncc_oob);
  705. return rc;
  706. }
  707. static int _wncc_map_metadata_bufs(struct eva_kmd_hfi_packet* in_pkt,
  708. unsigned int num_layers, struct eva_kmd_wncc_metadata** wncc_metadata)
  709. {
  710. int rc = 0, i;
  711. struct cvp_buf_type* wncc_metadata_bufs;
  712. struct dma_buf* dmabuf;
  713. struct eva_buf_map map;
  714. if (!in_pkt || !wncc_metadata ||
  715. num_layers < 1 || num_layers > EVA_KMD_WNCC_MAX_LAYERS) {
  716. dprintk(CVP_ERR, "%s: invalid params", __func__);
  717. return -EINVAL;
  718. }
  719. wncc_metadata_bufs = (struct cvp_buf_type*)
  720. &in_pkt->pkt_data[EVA_KMD_WNCC_HFI_METADATA_BUFS_OFFSET];
  721. for (i = 0; i < num_layers; i++) {
  722. dmabuf = dma_buf_get(wncc_metadata_bufs[i].fd);
  723. if (IS_ERR(dmabuf)) {
  724. rc = PTR_ERR(dmabuf);
  725. dprintk(CVP_ERR,
  726. "%s: dma_buf_get() failed for "
  727. "wncc_metadata_bufs[%d], rc %d",
  728. __func__, i, rc);
  729. break;
  730. }
  731. rc = dma_buf_begin_cpu_access(dmabuf, DMA_TO_DEVICE);
  732. if (rc) {
  733. dprintk(CVP_ERR,
  734. "%s: dma_buf_begin_cpu_access() failed "
  735. "for wncc_metadata_bufs[%d], rc %d",
  736. __func__, i, rc);
  737. dma_buf_put(dmabuf);
  738. break;
  739. }
  740. rc = dma_buf_vmap(dmabuf, &map);
  741. if (rc) {
  742. dprintk(CVP_ERR,
  743. "%s: dma_buf_vmap() failed for "
  744. "wncc_metadata_bufs[%d]",
  745. __func__, i);
  746. dma_buf_end_cpu_access(dmabuf, DMA_TO_DEVICE);
  747. dma_buf_put(dmabuf);
  748. break;
  749. }
  750. dprintk(CVP_DBG,
  751. "%s: wncc_metadata_bufs[%d] map.is_iomem is %d",
  752. __func__, i, map.is_iomem);
  753. wncc_metadata[i] = (struct eva_kmd_wncc_metadata*)map.vaddr;
  754. dma_buf_put(dmabuf);
  755. }
  756. if (rc)
  757. _wncc_unmap_metadata_bufs(in_pkt, i, wncc_metadata);
  758. return rc;
  759. }
  760. static int _wncc_unmap_metadata_bufs(struct eva_kmd_hfi_packet* in_pkt,
  761. unsigned int num_layers, struct eva_kmd_wncc_metadata** wncc_metadata)
  762. {
  763. int rc = 0, i;
  764. struct cvp_buf_type* wncc_metadata_bufs;
  765. struct dma_buf* dmabuf;
  766. struct eva_buf_map map;
  767. if (!in_pkt || !wncc_metadata ||
  768. num_layers < 1 || num_layers > EVA_KMD_WNCC_MAX_LAYERS) {
  769. dprintk(CVP_ERR, "%s: invalid params", __func__);
  770. return -EINVAL;
  771. }
  772. wncc_metadata_bufs = (struct cvp_buf_type*)
  773. &in_pkt->pkt_data[EVA_KMD_WNCC_HFI_METADATA_BUFS_OFFSET];
  774. for (i = 0; i < num_layers; i++) {
  775. if (!wncc_metadata[i]) {
  776. rc = -EINVAL;
  777. break;
  778. }
  779. dmabuf = dma_buf_get(wncc_metadata_bufs[i].fd);
  780. if (IS_ERR(dmabuf)) {
  781. rc = -PTR_ERR(dmabuf);
  782. dprintk(CVP_ERR,
  783. "%s: dma_buf_get() failed for "
  784. "wncc_metadata_bufs[%d], rc %d",
  785. __func__, i, rc);
  786. break;
  787. }
  788. _buf_map_set_vaddr(&map, wncc_metadata[i]);
  789. dma_buf_vunmap(dmabuf, &map);
  790. wncc_metadata[i] = NULL;
  791. rc = dma_buf_end_cpu_access(dmabuf, DMA_TO_DEVICE);
  792. dma_buf_put(dmabuf);
  793. if (rc) {
  794. dprintk(CVP_ERR,
  795. "%s: dma_buf_end_cpu_access() failed "
  796. "for wncc_metadata_bufs[%d], rc %d",
  797. __func__, i, rc);
  798. break;
  799. }
  800. }
  801. return rc;
  802. }
  803. static int msm_cvp_proc_oob_wncc(struct msm_cvp_inst* inst,
  804. struct eva_kmd_hfi_packet* in_pkt)
  805. {
  806. int rc = 0;
  807. struct eva_kmd_oob_wncc* wncc_oob;
  808. struct eva_kmd_wncc_metadata* wncc_metadata[EVA_KMD_WNCC_MAX_LAYERS];
  809. unsigned int i, j;
  810. bool empty = false;
  811. u32 buf_id, buf_idx, buf_offset, iova;
  812. if (!inst || !inst->core || !in_pkt) {
  813. dprintk(CVP_ERR, "%s: invalid params", __func__);
  814. return -EINVAL;
  815. }
  816. wncc_oob = (struct eva_kmd_oob_wncc*)kzalloc(
  817. sizeof(struct eva_kmd_oob_wncc), GFP_KERNEL);
  818. if (!wncc_oob)
  819. return -ENOMEM;
  820. rc = _wncc_copy_oob_from_user(in_pkt, wncc_oob);
  821. if (rc) {
  822. dprintk(CVP_ERR, "%s: OOB buf copying failed", __func__);
  823. goto exit;
  824. }
  825. rc = _wncc_map_metadata_bufs(in_pkt,
  826. wncc_oob->num_layers, wncc_metadata);
  827. if (rc) {
  828. dprintk(CVP_ERR, "%s: failed to map wncc metadata bufs",
  829. __func__);
  830. goto exit;
  831. }
  832. mutex_lock(&inst->cvpwnccbufs.lock);
  833. if (inst->cvpwnccbufs_num == 0 || inst->cvpwnccbufs_table == NULL) {
  834. dprintk(CVP_ERR, "%s: no wncc bufs currently mapped", __func__);
  835. empty = true;
  836. rc = -EINVAL;
  837. }
  838. for (i = 0; !empty && i < wncc_oob->num_layers; i++) {
  839. for (j = 0; j < wncc_oob->layers[i].num_addrs; j++) {
  840. buf_id = wncc_oob->layers[i].addrs[j].buffer_id;
  841. if (buf_id < EVA_KMD_WNCC_SRC_BUF_ID_OFFSET ||
  842. buf_id >= (EVA_KMD_WNCC_SRC_BUF_ID_OFFSET +
  843. EVA_KMD_WNCC_MAX_SRC_BUFS)) {
  844. dprintk(CVP_ERR,
  845. "%s: invalid wncc buf id %u "
  846. "in layer #%u address #%u",
  847. __func__, buf_id, i, j);
  848. rc = -EINVAL;
  849. break;
  850. }
  851. buf_idx = buf_id - EVA_KMD_WNCC_SRC_BUF_ID_OFFSET;
  852. if (inst->cvpwnccbufs_table[buf_idx].iova == 0) {
  853. dprintk(CVP_ERR,
  854. "%s: unmapped wncc buf id %u "
  855. "in layer #%u address #%u",
  856. __func__, buf_id, i, j);
  857. /* _wncc_print_cvpwnccbufs_table(inst); */
  858. rc = -EINVAL;
  859. break;
  860. }
  861. buf_offset = wncc_oob->layers[i].addrs[j].offset;
  862. if (buf_offset >=
  863. inst->cvpwnccbufs_table[buf_idx].size) {
  864. /* NOTE: This buffer offset validation is
  865. * not comprehensive since wncc src image
  866. * resolution information is not known to
  867. * KMD. UMD is responsible for comprehensive
  868. * validation.
  869. */
  870. dprintk(CVP_ERR,
  871. "%s: invalid wncc buf offset %u "
  872. "in layer #%u address #%u",
  873. __func__, buf_offset, i, j);
  874. rc = -EINVAL;
  875. break;
  876. }
  877. iova = inst->cvpwnccbufs_table[buf_idx].iova +
  878. buf_offset;
  879. wncc_metadata[i][j].iova_lsb = iova;
  880. wncc_metadata[i][j].iova_msb = iova >> 22;
  881. }
  882. }
  883. mutex_unlock(&inst->cvpwnccbufs.lock);
  884. if (false)
  885. _wncc_print_metadata_buf(wncc_oob->num_layers,
  886. wncc_oob->layers[0].num_addrs, wncc_metadata);
  887. if (_wncc_unmap_metadata_bufs(in_pkt,
  888. wncc_oob->num_layers, wncc_metadata)) {
  889. dprintk(CVP_ERR, "%s: failed to unmap wncc metadata bufs",
  890. __func__);
  891. }
  892. exit:
  893. kfree(wncc_oob);
  894. return rc;
  895. }
  896. int msm_cvp_proc_oob(struct msm_cvp_inst* inst,
  897. struct eva_kmd_hfi_packet* in_pkt)
  898. {
  899. int rc = 0;
  900. struct cvp_hfi_cmd_session_hdr* cmd_hdr =
  901. (struct cvp_hfi_cmd_session_hdr*)in_pkt;
  902. if (!inst || !inst->core || !in_pkt) {
  903. dprintk(CVP_ERR, "%s: invalid params", __func__);
  904. return -EINVAL;
  905. }
  906. switch (cmd_hdr->packet_type) {
  907. case HFI_CMD_SESSION_CVP_WARP_NCC_FRAME:
  908. rc = msm_cvp_proc_oob_wncc(inst, in_pkt);
  909. break;
  910. default:
  911. break;
  912. }
  913. return rc;
  914. }
  915. void msm_cvp_cache_operations(struct msm_cvp_smem *smem, u32 type,
  916. u32 offset, u32 size)
  917. {
  918. enum smem_cache_ops cache_op;
  919. if (msm_cvp_cacheop_disabled)
  920. return;
  921. if (!smem) {
  922. dprintk(CVP_ERR, "%s: invalid params\n", __func__);
  923. return;
  924. }
  925. switch (type) {
  926. case EVA_KMD_BUFTYPE_INPUT:
  927. cache_op = SMEM_CACHE_CLEAN;
  928. break;
  929. case EVA_KMD_BUFTYPE_OUTPUT:
  930. cache_op = SMEM_CACHE_INVALIDATE;
  931. break;
  932. default:
  933. cache_op = SMEM_CACHE_CLEAN_INVALIDATE;
  934. }
  935. dprintk(CVP_MEM,
  936. "%s: cache operation enabled for dma_buf: %llx, cache_op: %d, offset: %d, size: %d\n",
  937. __func__, smem->dma_buf, cache_op, offset, size);
  938. msm_cvp_smem_cache_operations(smem->dma_buf, cache_op, offset, size);
  939. }
  940. static struct msm_cvp_smem *msm_cvp_session_find_smem(struct msm_cvp_inst *inst,
  941. struct dma_buf *dma_buf,
  942. u32 pkt_type)
  943. {
  944. struct msm_cvp_smem *smem;
  945. struct msm_cvp_frame *frame;
  946. struct cvp_internal_buf *buf;
  947. int i;
  948. if (inst->dma_cache.nr > MAX_DMABUF_NUMS)
  949. return NULL;
  950. mutex_lock(&inst->dma_cache.lock);
  951. for (i = 0; i < inst->dma_cache.nr; i++)
  952. if (inst->dma_cache.entries[i]->dma_buf == dma_buf) {
  953. SET_USE_BITMAP(i, inst);
  954. smem = inst->dma_cache.entries[i];
  955. smem->bitmap_index = i;
  956. smem->pkt_type = pkt_type;
  957. atomic_inc(&smem->refcount);
  958. /*
  959. * If we find it, it means we already increased
  960. * refcount before, so we put it to avoid double
  961. * incremental.
  962. */
  963. msm_cvp_smem_put_dma_buf(smem->dma_buf);
  964. mutex_unlock(&inst->dma_cache.lock);
  965. print_smem(CVP_MEM, "found in cache", inst, smem);
  966. return smem;
  967. }
  968. mutex_unlock(&inst->dma_cache.lock);
  969. /* earch persist list */
  970. mutex_lock(&inst->persistbufs.lock);
  971. list_for_each_entry(buf, &inst->persistbufs.list, list) {
  972. smem = buf->smem;
  973. if (smem && smem->dma_buf == dma_buf) {
  974. atomic_inc(&smem->refcount);
  975. mutex_unlock(&inst->persistbufs.lock);
  976. print_smem(CVP_MEM, "found in persist", inst, smem);
  977. return smem;
  978. }
  979. }
  980. mutex_unlock(&inst->persistbufs.lock);
  981. /* Search frame list */
  982. mutex_lock(&inst->frames.lock);
  983. list_for_each_entry(frame, &inst->frames.list, list) {
  984. for (i = 0; i < frame->nr; i++) {
  985. smem = frame->bufs[i].smem;
  986. if (smem && smem->dma_buf == dma_buf) {
  987. atomic_inc(&smem->refcount);
  988. mutex_unlock(&inst->frames.lock);
  989. print_smem(CVP_MEM, "found in frame",
  990. inst, smem);
  991. return smem;
  992. }
  993. }
  994. }
  995. mutex_unlock(&inst->frames.lock);
  996. return NULL;
  997. }
  998. static int msm_cvp_session_add_smem(struct msm_cvp_inst *inst,
  999. struct msm_cvp_smem *smem)
  1000. {
  1001. unsigned int i;
  1002. struct msm_cvp_smem *smem2;
  1003. mutex_lock(&inst->dma_cache.lock);
  1004. if (inst->dma_cache.nr < MAX_DMABUF_NUMS) {
  1005. inst->dma_cache.entries[inst->dma_cache.nr] = smem;
  1006. SET_USE_BITMAP(inst->dma_cache.nr, inst);
  1007. smem->bitmap_index = inst->dma_cache.nr;
  1008. inst->dma_cache.nr++;
  1009. i = smem->bitmap_index;
  1010. } else {
  1011. i = find_first_zero_bit(&inst->dma_cache.usage_bitmap,
  1012. MAX_DMABUF_NUMS);
  1013. if (i < MAX_DMABUF_NUMS) {
  1014. smem2 = inst->dma_cache.entries[i];
  1015. msm_cvp_unmap_smem(inst, smem2, "unmap cpu");
  1016. msm_cvp_smem_put_dma_buf(smem2->dma_buf);
  1017. cvp_kmem_cache_free(&cvp_driver->smem_cache, smem2);
  1018. inst->dma_cache.entries[i] = smem;
  1019. smem->bitmap_index = i;
  1020. SET_USE_BITMAP(i, inst);
  1021. } else {
  1022. dprintk(CVP_WARN,
  1023. "%s: reached limit, fallback to buf mapping list\n"
  1024. , __func__);
  1025. atomic_inc(&smem->refcount);
  1026. mutex_unlock(&inst->dma_cache.lock);
  1027. return -ENOMEM;
  1028. }
  1029. }
  1030. atomic_inc(&smem->refcount);
  1031. mutex_unlock(&inst->dma_cache.lock);
  1032. dprintk(CVP_MEM, "Add entry %d into cache\n", i);
  1033. return 0;
  1034. }
  1035. static struct msm_cvp_smem *msm_cvp_session_get_smem(struct msm_cvp_inst *inst,
  1036. struct cvp_buf_type *buf,
  1037. bool is_persist,
  1038. u32 pkt_type)
  1039. {
  1040. int rc = 0, found = 1;
  1041. struct msm_cvp_smem *smem = NULL;
  1042. struct dma_buf *dma_buf = NULL;
  1043. if (buf->fd < 0) {
  1044. dprintk(CVP_ERR, "%s: Invalid fd = %d", __func__, buf->fd);
  1045. return NULL;
  1046. }
  1047. dma_buf = msm_cvp_smem_get_dma_buf(buf->fd);
  1048. if (!dma_buf) {
  1049. dprintk(CVP_ERR, "%s: Invalid fd = %d", __func__, buf->fd);
  1050. return NULL;
  1051. }
  1052. if (is_persist) {
  1053. smem = cvp_kmem_cache_zalloc(&cvp_driver->smem_cache, GFP_KERNEL);
  1054. if (!smem)
  1055. return NULL;
  1056. smem->dma_buf = dma_buf;
  1057. smem->bitmap_index = MAX_DMABUF_NUMS;
  1058. smem->pkt_type = pkt_type;
  1059. smem->flags |= SMEM_PERSIST;
  1060. smem->fd = buf->fd;
  1061. atomic_inc(&smem->refcount);
  1062. rc = msm_cvp_map_smem(inst, smem, "map cpu");
  1063. if (rc)
  1064. goto exit;
  1065. if (!IS_CVP_BUF_VALID(buf, smem)) {
  1066. dprintk(CVP_ERR,
  1067. "%s: invalid offset %d or size %d persist\n",
  1068. __func__, buf->offset, buf->size);
  1069. goto exit2;
  1070. }
  1071. return smem;
  1072. }
  1073. smem = msm_cvp_session_find_smem(inst, dma_buf, pkt_type);
  1074. if (!smem) {
  1075. found = 0;
  1076. smem = cvp_kmem_cache_zalloc(&cvp_driver->smem_cache, GFP_KERNEL);
  1077. if (!smem)
  1078. return NULL;
  1079. smem->dma_buf = dma_buf;
  1080. smem->bitmap_index = MAX_DMABUF_NUMS;
  1081. smem->pkt_type = pkt_type;
  1082. smem->fd = buf->fd;
  1083. rc = msm_cvp_map_smem(inst, smem, "map cpu");
  1084. if (rc)
  1085. goto exit;
  1086. if (!IS_CVP_BUF_VALID(buf, smem)) {
  1087. dprintk(CVP_ERR,
  1088. "%s: invalid buf %d %d fd %d dma 0x%llx %s %d type %#x\n",
  1089. __func__, buf->offset, buf->size, buf->fd,
  1090. dma_buf, dma_buf->name, dma_buf->size, pkt_type);
  1091. goto exit2;
  1092. }
  1093. rc = msm_cvp_session_add_smem(inst, smem);
  1094. if (rc && rc != -ENOMEM)
  1095. goto exit2;
  1096. return smem;
  1097. }
  1098. if (!IS_CVP_BUF_VALID(buf, smem)) {
  1099. dprintk(CVP_ERR, "%s: invalid offset %d or size %d found\n",
  1100. __func__, buf->offset, buf->size);
  1101. if (found) {
  1102. mutex_lock(&inst->dma_cache.lock);
  1103. atomic_dec(&smem->refcount);
  1104. mutex_unlock(&inst->dma_cache.lock);
  1105. return NULL;
  1106. }
  1107. goto exit2;
  1108. }
  1109. if (smem->fd != buf->fd)
  1110. dprintk(CVP_ERR, "%s Failed fd check\n", __func__);
  1111. return smem;
  1112. exit2:
  1113. msm_cvp_unmap_smem(inst, smem, "unmap cpu");
  1114. exit:
  1115. msm_cvp_smem_put_dma_buf(dma_buf);
  1116. cvp_kmem_cache_free(&cvp_driver->smem_cache, smem);
  1117. smem = NULL;
  1118. return smem;
  1119. }
  1120. static u32 msm_cvp_map_user_persist_buf(struct msm_cvp_inst *inst,
  1121. struct cvp_buf_type *buf,
  1122. u32 pkt_type, u32 buf_idx)
  1123. {
  1124. u32 iova = 0;
  1125. struct msm_cvp_smem *smem = NULL;
  1126. struct list_head *ptr, *next;
  1127. struct cvp_internal_buf *pbuf;
  1128. struct dma_buf *dma_buf;
  1129. if (!inst) {
  1130. dprintk(CVP_ERR, "%s: invalid params\n", __func__);
  1131. return -EINVAL;
  1132. }
  1133. dma_buf = msm_cvp_smem_get_dma_buf(buf->fd);
  1134. if (!dma_buf)
  1135. return -EINVAL;
  1136. mutex_lock(&inst->persistbufs.lock);
  1137. list_for_each_safe(ptr, next, &inst->persistbufs.list) {
  1138. pbuf = list_entry(ptr, struct cvp_internal_buf, list);
  1139. if (dma_buf == pbuf->smem->dma_buf) {
  1140. pbuf->size =
  1141. (pbuf->size >= buf->size) ?
  1142. pbuf->size : buf->size;
  1143. iova = pbuf->smem->device_addr + buf->offset;
  1144. mutex_unlock(&inst->persistbufs.lock);
  1145. atomic_inc(&pbuf->smem->refcount);
  1146. dma_buf_put(dma_buf);
  1147. dprintk(CVP_MEM,
  1148. "map persist Reuse fd %d, dma_buf %#llx\n",
  1149. pbuf->fd, pbuf->smem->dma_buf);
  1150. return iova;
  1151. }
  1152. }
  1153. mutex_unlock(&inst->persistbufs.lock);
  1154. dma_buf_put(dma_buf);
  1155. pbuf = cvp_kmem_cache_zalloc(&cvp_driver->buf_cache, GFP_KERNEL);
  1156. if (!pbuf) {
  1157. dprintk(CVP_ERR, "%s failed to allocate kmem obj\n",
  1158. __func__);
  1159. return 0;
  1160. }
  1161. if (is_params_pkt(pkt_type))
  1162. smem = msm_cvp_session_get_smem(inst, buf, false, pkt_type);
  1163. else
  1164. smem = msm_cvp_session_get_smem(inst, buf, true, pkt_type);
  1165. if (!smem)
  1166. goto exit;
  1167. smem->pkt_type = pkt_type;
  1168. smem->buf_idx = buf_idx;
  1169. smem->fd = buf->fd;
  1170. pbuf->smem = smem;
  1171. pbuf->fd = buf->fd;
  1172. pbuf->size = buf->size;
  1173. pbuf->offset = buf->offset;
  1174. pbuf->ownership = CLIENT;
  1175. mutex_lock(&inst->persistbufs.lock);
  1176. list_add_tail(&pbuf->list, &inst->persistbufs.list);
  1177. mutex_unlock(&inst->persistbufs.lock);
  1178. print_internal_buffer(CVP_MEM, "map persist", inst, pbuf);
  1179. iova = smem->device_addr + buf->offset;
  1180. return iova;
  1181. exit:
  1182. cvp_kmem_cache_free(&cvp_driver->buf_cache, pbuf);
  1183. return 0;
  1184. }
  1185. static u32 msm_cvp_map_frame_buf(struct msm_cvp_inst *inst,
  1186. struct cvp_buf_type *buf,
  1187. struct msm_cvp_frame *frame,
  1188. u32 pkt_type, u32 buf_idx)
  1189. {
  1190. u32 iova = 0;
  1191. struct msm_cvp_smem *smem = NULL;
  1192. u32 nr;
  1193. u32 type;
  1194. if (!inst || !frame) {
  1195. dprintk(CVP_ERR, "%s: invalid params\n", __func__);
  1196. return 0;
  1197. }
  1198. nr = frame->nr;
  1199. if (nr == MAX_FRAME_BUFFER_NUMS) {
  1200. dprintk(CVP_ERR, "%s: max frame buffer reached\n", __func__);
  1201. return 0;
  1202. }
  1203. smem = msm_cvp_session_get_smem(inst, buf, false, pkt_type);
  1204. if (!smem)
  1205. return 0;
  1206. smem->buf_idx = buf_idx;
  1207. frame->bufs[nr].fd = buf->fd;
  1208. frame->bufs[nr].smem = smem;
  1209. frame->bufs[nr].size = buf->size;
  1210. frame->bufs[nr].offset = buf->offset;
  1211. print_internal_buffer(CVP_MEM, "map cpu", inst, &frame->bufs[nr]);
  1212. frame->nr++;
  1213. type = EVA_KMD_BUFTYPE_INPUT | EVA_KMD_BUFTYPE_OUTPUT;
  1214. msm_cvp_cache_operations(smem, type, buf->offset, buf->size);
  1215. iova = smem->device_addr + buf->offset;
  1216. return iova;
  1217. }
  1218. static void msm_cvp_unmap_frame_buf(struct msm_cvp_inst *inst,
  1219. struct msm_cvp_frame *frame)
  1220. {
  1221. u32 i;
  1222. u32 type;
  1223. struct msm_cvp_smem *smem = NULL;
  1224. struct cvp_internal_buf *buf;
  1225. type = EVA_KMD_BUFTYPE_OUTPUT;
  1226. for (i = 0; i < frame->nr; ++i) {
  1227. buf = &frame->bufs[i];
  1228. smem = buf->smem;
  1229. msm_cvp_cache_operations(smem, type, buf->offset, buf->size);
  1230. if (smem->bitmap_index >= MAX_DMABUF_NUMS) {
  1231. /* smem not in dmamap cache */
  1232. if (atomic_dec_and_test(&smem->refcount)) {
  1233. msm_cvp_unmap_smem(inst, smem, "unmap cpu");
  1234. dma_heap_buffer_free(smem->dma_buf);
  1235. smem->buf_idx |= 0xdead0000;
  1236. cvp_kmem_cache_free(&cvp_driver->smem_cache, smem);
  1237. buf->smem = NULL;
  1238. }
  1239. } else {
  1240. mutex_lock(&inst->dma_cache.lock);
  1241. if (atomic_dec_and_test(&smem->refcount)) {
  1242. CLEAR_USE_BITMAP(smem->bitmap_index, inst);
  1243. print_smem(CVP_MEM, "Map dereference",
  1244. inst, smem);
  1245. smem->buf_idx |= 0x10000000;
  1246. }
  1247. mutex_unlock(&inst->dma_cache.lock);
  1248. }
  1249. }
  1250. cvp_kmem_cache_free(&cvp_driver->frame_cache, frame);
  1251. }
  1252. void msm_cvp_unmap_frame(struct msm_cvp_inst *inst, u64 ktid)
  1253. {
  1254. struct msm_cvp_frame *frame, *dummy1;
  1255. bool found;
  1256. if (!inst) {
  1257. dprintk(CVP_ERR, "%s: invalid params\n", __func__);
  1258. return;
  1259. }
  1260. ktid &= (FENCE_BIT - 1);
  1261. dprintk(CVP_MEM, "%s: (%#x) unmap frame %llu\n",
  1262. __func__, hash32_ptr(inst->session), ktid);
  1263. found = false;
  1264. mutex_lock(&inst->frames.lock);
  1265. list_for_each_entry_safe(frame, dummy1, &inst->frames.list, list) {
  1266. if (frame->ktid == ktid) {
  1267. found = true;
  1268. list_del(&frame->list);
  1269. break;
  1270. }
  1271. }
  1272. mutex_unlock(&inst->frames.lock);
  1273. if (found)
  1274. msm_cvp_unmap_frame_buf(inst, frame);
  1275. else
  1276. dprintk(CVP_WARN, "%s frame %llu not found!\n", __func__, ktid);
  1277. }
  1278. int msm_cvp_mark_user_persist(struct msm_cvp_inst *inst,
  1279. struct eva_kmd_hfi_packet *in_pkt,
  1280. unsigned int offset, unsigned int buf_num)
  1281. {
  1282. dprintk(CVP_ERR, "Unexpected user persistent buffer release\n");
  1283. return 0;
  1284. }
  1285. int msm_cvp_map_user_persist(struct msm_cvp_inst *inst,
  1286. struct eva_kmd_hfi_packet *in_pkt,
  1287. unsigned int offset, unsigned int buf_num)
  1288. {
  1289. struct cvp_buf_type *buf;
  1290. struct cvp_hfi_cmd_session_hdr *cmd_hdr;
  1291. int i;
  1292. u32 iova;
  1293. if (!offset || !buf_num)
  1294. return 0;
  1295. cmd_hdr = (struct cvp_hfi_cmd_session_hdr *)in_pkt;
  1296. for (i = 0; i < buf_num; i++) {
  1297. buf = (struct cvp_buf_type *)&in_pkt->pkt_data[offset];
  1298. offset += sizeof(*buf) >> 2;
  1299. if (buf->fd < 0 || !buf->size)
  1300. continue;
  1301. iova = msm_cvp_map_user_persist_buf(inst, buf,
  1302. cmd_hdr->packet_type, i);
  1303. if (!iova) {
  1304. dprintk(CVP_ERR,
  1305. "%s: buf %d register failed.\n",
  1306. __func__, i);
  1307. return -EINVAL;
  1308. }
  1309. buf->fd = iova;
  1310. }
  1311. return 0;
  1312. }
  1313. int msm_cvp_map_frame(struct msm_cvp_inst *inst,
  1314. struct eva_kmd_hfi_packet *in_pkt,
  1315. unsigned int offset, unsigned int buf_num)
  1316. {
  1317. struct cvp_buf_type *buf;
  1318. int i;
  1319. u32 iova;
  1320. u64 ktid;
  1321. struct msm_cvp_frame *frame;
  1322. struct cvp_hfi_cmd_session_hdr *cmd_hdr;
  1323. struct msm_cvp_inst *instance;
  1324. struct msm_cvp_core *core = NULL;
  1325. core = get_cvp_core(MSM_CORE_CVP);
  1326. if (!core)
  1327. return -EINVAL;
  1328. if (!offset || !buf_num)
  1329. return 0;
  1330. cmd_hdr = (struct cvp_hfi_cmd_session_hdr *)in_pkt;
  1331. ktid = atomic64_inc_return(&inst->core->kernel_trans_id);
  1332. ktid &= (FENCE_BIT - 1);
  1333. cmd_hdr->client_data.kdata = ktid;
  1334. frame = cvp_kmem_cache_zalloc(&cvp_driver->frame_cache, GFP_KERNEL);
  1335. if (!frame)
  1336. return -ENOMEM;
  1337. frame->ktid = ktid;
  1338. frame->nr = 0;
  1339. frame->pkt_type = cmd_hdr->packet_type;
  1340. for (i = 0; i < buf_num; i++) {
  1341. buf = (struct cvp_buf_type *)&in_pkt->pkt_data[offset];
  1342. offset += sizeof(*buf) >> 2;
  1343. if (buf->fd < 0 || !buf->size)
  1344. continue;
  1345. iova = msm_cvp_map_frame_buf(inst, buf, frame, cmd_hdr->packet_type, i);
  1346. if (!iova) {
  1347. dprintk(CVP_ERR,
  1348. "%s: buf %d register failed.\n",
  1349. __func__, i);
  1350. dprintk(CVP_ERR, "smem_leak_count %d\n", core->smem_leak_count);
  1351. mutex_lock(&core->lock);
  1352. list_for_each_entry(instance, &core->instances, list) {
  1353. msm_cvp_print_inst_bufs(instance, false);
  1354. }
  1355. mutex_unlock(&core->lock);
  1356. msm_cvp_unmap_frame_buf(inst, frame);
  1357. return -EINVAL;
  1358. }
  1359. buf->fd = iova;
  1360. }
  1361. mutex_lock(&inst->frames.lock);
  1362. list_add_tail(&frame->list, &inst->frames.list);
  1363. mutex_unlock(&inst->frames.lock);
  1364. dprintk(CVP_MEM, "%s: map frame %llu\n", __func__, ktid);
  1365. return 0;
  1366. }
  1367. int msm_cvp_session_deinit_buffers(struct msm_cvp_inst *inst)
  1368. {
  1369. int rc = 0, i;
  1370. struct cvp_internal_buf *cbuf, *dummy;
  1371. struct msm_cvp_frame *frame, *dummy1;
  1372. struct msm_cvp_smem *smem;
  1373. struct cvp_hal_session *session;
  1374. struct eva_kmd_buffer buf;
  1375. struct list_head *ptr, *next;
  1376. session = (struct cvp_hal_session *)inst->session;
  1377. mutex_lock(&inst->frames.lock);
  1378. list_for_each_entry_safe(frame, dummy1, &inst->frames.list, list) {
  1379. list_del(&frame->list);
  1380. msm_cvp_unmap_frame_buf(inst, frame);
  1381. }
  1382. mutex_unlock(&inst->frames.lock);
  1383. mutex_lock(&inst->persistbufs.lock);
  1384. list_for_each_safe(ptr, next, &inst->persistbufs.list) {
  1385. cbuf = list_entry(ptr, struct cvp_internal_buf, list);
  1386. smem = cbuf->smem;
  1387. if (!smem) {
  1388. dprintk(CVP_ERR, "%s invalid persist smem\n", __func__);
  1389. mutex_unlock(&inst->persistbufs.lock);
  1390. return -EINVAL;
  1391. }
  1392. if (cbuf->ownership != DRIVER) {
  1393. dprintk(CVP_MEM,
  1394. "%s: %x : fd %d %pK size %d",
  1395. "free user persistent", hash32_ptr(inst->session), cbuf->fd,
  1396. smem->dma_buf, cbuf->size);
  1397. list_del(&cbuf->list);
  1398. if (smem->bitmap_index >= MAX_DMABUF_NUMS) {
  1399. /*
  1400. * don't care refcount, has to remove mapping
  1401. * this is user persistent buffer
  1402. */
  1403. if (smem->device_addr) {
  1404. msm_cvp_unmap_smem(inst, smem,
  1405. "unmap persist");
  1406. msm_cvp_smem_put_dma_buf(
  1407. cbuf->smem->dma_buf);
  1408. smem->device_addr = 0;
  1409. }
  1410. cvp_kmem_cache_free(&cvp_driver->smem_cache, smem);
  1411. cbuf->smem = NULL;
  1412. cvp_kmem_cache_free(&cvp_driver->buf_cache, cbuf);
  1413. } else {
  1414. /*
  1415. * DMM_PARAMS and WAP_NCC_PARAMS cases
  1416. * Leave dma_cache cleanup to unmap
  1417. */
  1418. cbuf->smem = NULL;
  1419. cvp_kmem_cache_free(&cvp_driver->buf_cache, cbuf);
  1420. }
  1421. }
  1422. }
  1423. mutex_unlock(&inst->persistbufs.lock);
  1424. mutex_lock(&inst->dma_cache.lock);
  1425. for (i = 0; i < inst->dma_cache.nr; i++) {
  1426. smem = inst->dma_cache.entries[i];
  1427. if (atomic_read(&smem->refcount) == 0) {
  1428. print_smem(CVP_MEM, "free", inst, smem);
  1429. } else if (!(smem->flags & SMEM_PERSIST)) {
  1430. print_smem(CVP_WARN, "in use", inst, smem);
  1431. }
  1432. msm_cvp_unmap_smem(inst, smem, "unmap cpu");
  1433. msm_cvp_smem_put_dma_buf(smem->dma_buf);
  1434. cvp_kmem_cache_free(&cvp_driver->smem_cache, smem);
  1435. inst->dma_cache.entries[i] = NULL;
  1436. }
  1437. mutex_unlock(&inst->dma_cache.lock);
  1438. mutex_lock(&inst->cvpdspbufs.lock);
  1439. list_for_each_entry_safe(cbuf, dummy, &inst->cvpdspbufs.list, list) {
  1440. print_internal_buffer(CVP_MEM, "remove dspbufs", inst, cbuf);
  1441. if (cbuf->ownership == CLIENT) {
  1442. rc = cvp_dsp_deregister_buffer(hash32_ptr(session),
  1443. cbuf->fd, cbuf->smem->dma_buf->size, cbuf->size,
  1444. cbuf->offset, cbuf->index,
  1445. (uint32_t)cbuf->smem->device_addr);
  1446. if (rc)
  1447. dprintk(CVP_ERR,
  1448. "%s: failed dsp deregistration fd=%d rc=%d",
  1449. __func__, cbuf->fd, rc);
  1450. msm_cvp_unmap_smem(inst, cbuf->smem, "unmap dsp");
  1451. msm_cvp_smem_put_dma_buf(cbuf->smem->dma_buf);
  1452. } else if (cbuf->ownership == DSP) {
  1453. rc = cvp_dsp_fastrpc_unmap(inst->process_id, cbuf);
  1454. if (rc)
  1455. dprintk(CVP_ERR,
  1456. "%s: failed to unmap buf from DSP\n",
  1457. __func__);
  1458. rc = cvp_release_dsp_buffers(inst, cbuf);
  1459. if (rc)
  1460. dprintk(CVP_ERR,
  1461. "%s Fail to free buffer 0x%x\n",
  1462. __func__, rc);
  1463. }
  1464. list_del(&cbuf->list);
  1465. cvp_kmem_cache_free(&cvp_driver->buf_cache, cbuf);
  1466. }
  1467. mutex_unlock(&inst->cvpdspbufs.lock);
  1468. mutex_lock(&inst->cvpwnccbufs.lock);
  1469. if (inst->cvpwnccbufs_num != 0)
  1470. dprintk(CVP_WARN, "%s: cvpwnccbufs not empty, contains %d bufs",
  1471. __func__, inst->cvpwnccbufs_num);
  1472. list_for_each_entry_safe(cbuf, dummy, &inst->cvpwnccbufs.list, list) {
  1473. print_internal_buffer(CVP_MEM, "remove wnccbufs", inst, cbuf);
  1474. buf.fd = cbuf->fd;
  1475. buf.reserved[0] = cbuf->ktid;
  1476. mutex_unlock(&inst->cvpwnccbufs.lock);
  1477. msm_cvp_unmap_buf_wncc(inst, &buf);
  1478. mutex_lock(&inst->cvpwnccbufs.lock);
  1479. }
  1480. mutex_unlock(&inst->cvpwnccbufs.lock);
  1481. return rc;
  1482. }
  1483. void msm_cvp_print_inst_bufs(struct msm_cvp_inst *inst, bool log)
  1484. {
  1485. struct cvp_internal_buf *buf;
  1486. struct msm_cvp_frame *frame;
  1487. struct msm_cvp_core *core;
  1488. struct inst_snapshot *snap = NULL;
  1489. int i = 0, c = 0;
  1490. core = list_first_entry(&cvp_driver->cores, struct msm_cvp_core, list);
  1491. if (log && core->log.snapshot_index < 16) {
  1492. snap = &core->log.snapshot[core->log.snapshot_index];
  1493. snap->session = inst->session;
  1494. core->log.snapshot_index++;
  1495. }
  1496. if (!inst) {
  1497. dprintk(CVP_ERR, "%s - invalid param %pK\n",
  1498. __func__, inst);
  1499. return;
  1500. }
  1501. dprintk(CVP_ERR,
  1502. "---Buffer details for inst: %pK %s of type: %d---\n",
  1503. inst, inst->proc_name, inst->session_type);
  1504. dprintk(CVP_ERR, "dma_cache entries %d\n", inst->dma_cache.nr);
  1505. mutex_lock(&inst->dma_cache.lock);
  1506. if (inst->dma_cache.nr <= MAX_DMABUF_NUMS)
  1507. for (i = 0; i < inst->dma_cache.nr; i++)
  1508. _log_smem(snap, inst, inst->dma_cache.entries[i], log);
  1509. mutex_unlock(&inst->dma_cache.lock);
  1510. i = 0;
  1511. dprintk(CVP_ERR, "frame buffer list\n");
  1512. mutex_lock(&inst->frames.lock);
  1513. list_for_each_entry(frame, &inst->frames.list, list) {
  1514. dprintk(CVP_ERR, "frame no %d tid %llx bufs\n", i++, frame->ktid);
  1515. for (c = 0; c < frame->nr; c++)
  1516. _log_smem(snap, inst, frame->bufs[c].smem, log);
  1517. }
  1518. mutex_unlock(&inst->frames.lock);
  1519. mutex_lock(&inst->cvpdspbufs.lock);
  1520. dprintk(CVP_ERR, "dsp buffer list:\n");
  1521. list_for_each_entry(buf, &inst->cvpdspbufs.list, list)
  1522. _log_buf(snap, SMEM_ADSP, inst, buf, log);
  1523. mutex_unlock(&inst->cvpdspbufs.lock);
  1524. mutex_lock(&inst->cvpwnccbufs.lock);
  1525. dprintk(CVP_ERR, "wncc buffer list:\n");
  1526. list_for_each_entry(buf, &inst->cvpwnccbufs.list, list)
  1527. print_cvp_buffer(CVP_ERR, "bufdump", inst, buf);
  1528. mutex_unlock(&inst->cvpwnccbufs.lock);
  1529. mutex_lock(&inst->persistbufs.lock);
  1530. dprintk(CVP_ERR, "persist buffer list:\n");
  1531. list_for_each_entry(buf, &inst->persistbufs.list, list)
  1532. _log_buf(snap, SMEM_PERSIST, inst, buf, log);
  1533. mutex_unlock(&inst->persistbufs.lock);
  1534. }
  1535. struct cvp_internal_buf *cvp_allocate_arp_bufs(struct msm_cvp_inst *inst,
  1536. u32 buffer_size)
  1537. {
  1538. struct cvp_internal_buf *buf;
  1539. struct msm_cvp_list *buf_list;
  1540. u32 smem_flags = SMEM_UNCACHED;
  1541. int rc = 0;
  1542. if (!inst) {
  1543. dprintk(CVP_ERR, "%s Invalid input\n", __func__);
  1544. return NULL;
  1545. }
  1546. buf_list = &inst->persistbufs;
  1547. if (!buffer_size)
  1548. return NULL;
  1549. /* PERSIST buffer requires secure mapping
  1550. * Disable and wait for hyp_assign available
  1551. */
  1552. smem_flags |= SMEM_SECURE | SMEM_NON_PIXEL;
  1553. buf = cvp_kmem_cache_zalloc(&cvp_driver->buf_cache, GFP_KERNEL);
  1554. if (!buf) {
  1555. dprintk(CVP_ERR, "%s Out of memory\n", __func__);
  1556. goto fail_kzalloc;
  1557. }
  1558. buf->smem = cvp_kmem_cache_zalloc(&cvp_driver->smem_cache, GFP_KERNEL);
  1559. if (!buf->smem) {
  1560. dprintk(CVP_ERR, "%s Out of memory\n", __func__);
  1561. goto fail_kzalloc;
  1562. }
  1563. buf->smem->flags = smem_flags;
  1564. rc = msm_cvp_smem_alloc(buffer_size, 1, 0,
  1565. &(inst->core->resources), buf->smem);
  1566. if (rc) {
  1567. dprintk(CVP_ERR, "Failed to allocate ARP memory\n");
  1568. goto err_no_mem;
  1569. }
  1570. buf->smem->pkt_type = buf->smem->buf_idx = 0;
  1571. buf->smem->pkt_type = buf->smem->buf_idx = 0;
  1572. atomic_inc(&buf->smem->refcount);
  1573. buf->size = buf->smem->size;
  1574. buf->type = HFI_BUFFER_INTERNAL_PERSIST_1;
  1575. buf->ownership = DRIVER;
  1576. mutex_lock(&buf_list->lock);
  1577. list_add_tail(&buf->list, &buf_list->list);
  1578. mutex_unlock(&buf_list->lock);
  1579. return buf;
  1580. err_no_mem:
  1581. cvp_kmem_cache_free(&cvp_driver->buf_cache, buf);
  1582. fail_kzalloc:
  1583. return NULL;
  1584. }
  1585. int cvp_release_arp_buffers(struct msm_cvp_inst *inst)
  1586. {
  1587. struct msm_cvp_smem *smem;
  1588. struct list_head *ptr, *next;
  1589. struct cvp_internal_buf *buf;
  1590. int rc = 0;
  1591. struct msm_cvp_core *core;
  1592. struct cvp_hfi_device *hdev;
  1593. if (!inst) {
  1594. dprintk(CVP_ERR, "Invalid instance pointer = %pK\n", inst);
  1595. return -EINVAL;
  1596. }
  1597. core = inst->core;
  1598. if (!core) {
  1599. dprintk(CVP_ERR, "Invalid core pointer = %pK\n", core);
  1600. return -EINVAL;
  1601. }
  1602. hdev = core->device;
  1603. if (!hdev) {
  1604. dprintk(CVP_ERR, "Invalid device pointer = %pK\n", hdev);
  1605. return -EINVAL;
  1606. }
  1607. dprintk(CVP_MEM, "release persist buffer!\n");
  1608. mutex_lock(&inst->persistbufs.lock);
  1609. /* Workaround for FW: release buffer means release all */
  1610. if (inst->state <= MSM_CVP_CLOSE_DONE) {
  1611. rc = call_hfi_op(hdev, session_release_buffers,
  1612. (void *)inst->session);
  1613. if (!rc) {
  1614. mutex_unlock(&inst->persistbufs.lock);
  1615. rc = wait_for_sess_signal_receipt(inst,
  1616. HAL_SESSION_RELEASE_BUFFER_DONE);
  1617. if (rc)
  1618. dprintk(CVP_WARN,
  1619. "%s: wait for signal failed, rc %d\n",
  1620. __func__, rc);
  1621. mutex_lock(&inst->persistbufs.lock);
  1622. } else {
  1623. dprintk(CVP_WARN, "Fail to send Rel prst buf\n");
  1624. }
  1625. }
  1626. list_for_each_safe(ptr, next, &inst->persistbufs.list) {
  1627. buf = list_entry(ptr, struct cvp_internal_buf, list);
  1628. smem = buf->smem;
  1629. if (!smem) {
  1630. dprintk(CVP_ERR, "%s invalid smem\n", __func__);
  1631. mutex_unlock(&inst->persistbufs.lock);
  1632. return -EINVAL;
  1633. }
  1634. if (buf->ownership == DRIVER) {
  1635. dprintk(CVP_MEM,
  1636. "%s: %x : fd %d %pK size %d",
  1637. "free arp", hash32_ptr(inst->session), buf->fd,
  1638. smem->dma_buf, buf->size);
  1639. list_del(&buf->list);
  1640. atomic_dec(&smem->refcount);
  1641. msm_cvp_smem_free(smem);
  1642. cvp_kmem_cache_free(&cvp_driver->smem_cache, smem);
  1643. buf->smem = NULL;
  1644. cvp_kmem_cache_free(&cvp_driver->buf_cache, buf);
  1645. }
  1646. }
  1647. mutex_unlock(&inst->persistbufs.lock);
  1648. return rc;
  1649. }
  1650. int cvp_allocate_dsp_bufs(struct msm_cvp_inst *inst,
  1651. struct cvp_internal_buf *buf,
  1652. u32 buffer_size,
  1653. u32 secure_type)
  1654. {
  1655. u32 smem_flags = SMEM_UNCACHED;
  1656. int rc = 0;
  1657. if (!inst) {
  1658. dprintk(CVP_ERR, "%s Invalid input\n", __func__);
  1659. return -EINVAL;
  1660. }
  1661. if (!buf)
  1662. return -EINVAL;
  1663. if (!buffer_size)
  1664. return -EINVAL;
  1665. switch (secure_type) {
  1666. case 0:
  1667. break;
  1668. case 1:
  1669. smem_flags |= SMEM_SECURE | SMEM_PIXEL;
  1670. break;
  1671. case 2:
  1672. smem_flags |= SMEM_SECURE | SMEM_NON_PIXEL;
  1673. break;
  1674. default:
  1675. dprintk(CVP_ERR, "%s Invalid secure_type %d\n",
  1676. __func__, secure_type);
  1677. return -EINVAL;
  1678. }
  1679. dprintk(CVP_MEM, "%s smem_flags 0x%x\n", __func__, smem_flags);
  1680. buf->smem = cvp_kmem_cache_zalloc(&cvp_driver->smem_cache, GFP_KERNEL);
  1681. if (!buf->smem) {
  1682. dprintk(CVP_ERR, "%s Out of memory\n", __func__);
  1683. goto fail_kzalloc_smem_cache;
  1684. }
  1685. buf->smem->flags = smem_flags;
  1686. rc = msm_cvp_smem_alloc(buffer_size, 1, 0,
  1687. &(inst->core->resources), buf->smem);
  1688. if (rc) {
  1689. dprintk(CVP_ERR, "Failed to allocate ARP memory\n");
  1690. goto err_no_mem;
  1691. }
  1692. buf->smem->pkt_type = buf->smem->buf_idx = 0;
  1693. atomic_inc(&buf->smem->refcount);
  1694. dprintk(CVP_MEM, "%s dma_buf %pK\n", __func__, buf->smem->dma_buf);
  1695. buf->size = buf->smem->size;
  1696. buf->type = HFI_BUFFER_INTERNAL_PERSIST_1;
  1697. buf->ownership = DSP;
  1698. return rc;
  1699. err_no_mem:
  1700. cvp_kmem_cache_free(&cvp_driver->smem_cache, buf->smem);
  1701. fail_kzalloc_smem_cache:
  1702. return rc;
  1703. }
  1704. int cvp_release_dsp_buffers(struct msm_cvp_inst *inst,
  1705. struct cvp_internal_buf *buf)
  1706. {
  1707. struct msm_cvp_smem *smem;
  1708. int rc = 0;
  1709. if (!inst) {
  1710. dprintk(CVP_ERR, "Invalid instance pointer = %pK\n", inst);
  1711. return -EINVAL;
  1712. }
  1713. if (!buf) {
  1714. dprintk(CVP_ERR, "Invalid buffer pointer = %pK\n", inst);
  1715. return -EINVAL;
  1716. }
  1717. smem = buf->smem;
  1718. if (!smem) {
  1719. dprintk(CVP_ERR, "%s invalid smem\n", __func__);
  1720. return -EINVAL;
  1721. }
  1722. if (buf->ownership == DSP) {
  1723. dprintk(CVP_MEM,
  1724. "%s: %x : fd %x %s size %d",
  1725. __func__, hash32_ptr(inst->session), buf->fd,
  1726. smem->dma_buf->name, buf->size);
  1727. atomic_dec(&smem->refcount);
  1728. msm_cvp_smem_free(smem);
  1729. cvp_kmem_cache_free(&cvp_driver->smem_cache, smem);
  1730. } else {
  1731. dprintk(CVP_ERR,
  1732. "%s: wrong owner %d %x : fd %x %s size %d",
  1733. __func__, buf->ownership, hash32_ptr(inst->session),
  1734. buf->fd, smem->dma_buf->name, buf->size);
  1735. }
  1736. return rc;
  1737. }
  1738. int msm_cvp_register_buffer(struct msm_cvp_inst *inst,
  1739. struct eva_kmd_buffer *buf)
  1740. {
  1741. struct cvp_hfi_device *hdev;
  1742. struct cvp_hal_session *session;
  1743. struct msm_cvp_inst *s;
  1744. int rc = 0;
  1745. if (!inst || !inst->core || !buf) {
  1746. dprintk(CVP_ERR, "%s: invalid params\n", __func__);
  1747. return -EINVAL;
  1748. }
  1749. s = cvp_get_inst_validate(inst->core, inst);
  1750. if (!s)
  1751. return -ECONNRESET;
  1752. session = (struct cvp_hal_session *)inst->session;
  1753. if (!session) {
  1754. dprintk(CVP_ERR, "%s: invalid session\n", __func__);
  1755. rc = -EINVAL;
  1756. goto exit;
  1757. }
  1758. hdev = inst->core->device;
  1759. print_client_buffer(CVP_HFI, "register", inst, buf);
  1760. if (buf->index)
  1761. rc = msm_cvp_map_buf_dsp(inst, buf);
  1762. else
  1763. rc = msm_cvp_map_buf_wncc(inst, buf);
  1764. dprintk(CVP_DSP, "%s: fd %d, iova 0x%x\n", __func__,
  1765. buf->fd, buf->reserved[0]);
  1766. exit:
  1767. cvp_put_inst(s);
  1768. return rc;
  1769. }
  1770. int msm_cvp_unregister_buffer(struct msm_cvp_inst *inst,
  1771. struct eva_kmd_buffer *buf)
  1772. {
  1773. struct msm_cvp_inst *s;
  1774. int rc = 0;
  1775. if (!inst || !inst->core || !buf) {
  1776. dprintk(CVP_ERR, "%s: invalid params\n", __func__);
  1777. return -EINVAL;
  1778. }
  1779. s = cvp_get_inst_validate(inst->core, inst);
  1780. if (!s)
  1781. return -ECONNRESET;
  1782. print_client_buffer(CVP_HFI, "unregister", inst, buf);
  1783. if (buf->index)
  1784. rc = msm_cvp_unmap_buf_dsp(inst, buf);
  1785. else
  1786. rc = msm_cvp_unmap_buf_wncc(inst, buf);
  1787. cvp_put_inst(s);
  1788. return rc;
  1789. }