msm_cvp_clocks.c 10 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464
  1. // SPDX-License-Identifier: GPL-2.0-only
  2. /*
  3. * Copyright (c) 2018-2021, The Linux Foundation. All rights reserved.
  4. */
  5. #include "msm_cvp_common.h"
  6. #include "cvp_hfi_api.h"
  7. #include "msm_cvp_debug.h"
  8. #include "msm_cvp_clocks.h"
  9. static bool __mmrm_client_check_scaling_supported(
  10. struct mmrm_client_desc *client)
  11. {
  12. #ifdef CVP_MMRM_ENABLED
  13. return mmrm_client_check_scaling_supported(
  14. client->client_type,
  15. client->client_info.desc.client_domain);
  16. #else
  17. return false;
  18. #endif
  19. }
  20. static struct mmrm_client *__mmrm_client_register(
  21. struct mmrm_client_desc *client)
  22. {
  23. #ifdef CVP_MMRM_ENABLED
  24. return mmrm_client_register(client);
  25. #else
  26. return NULL;
  27. #endif
  28. }
  29. static int __mmrm_client_deregister(struct mmrm_client *client)
  30. {
  31. #ifdef CVP_MMRM_ENABLED
  32. return mmrm_client_deregister(client);
  33. #else
  34. return -ENODEV;
  35. #endif
  36. }
  37. static int __mmrm_client_set_value_in_range(struct mmrm_client *client,
  38. struct mmrm_client_data *data,
  39. struct mmrm_client_res_value *val)
  40. {
  41. #ifdef CVP_MMRM_ENABLED
  42. return mmrm_client_set_value_in_range(client, data, val);
  43. #else
  44. return -ENODEV;
  45. #endif
  46. }
  47. int msm_cvp_mmrm_notifier_cb(
  48. struct mmrm_client_notifier_data *notifier_data)
  49. {
  50. if (!notifier_data) {
  51. dprintk(CVP_WARN, "%s Invalid notifier data: %pK\n",
  52. __func__, notifier_data);
  53. return -EINVAL;
  54. }
  55. if (notifier_data->cb_type == MMRM_CLIENT_RESOURCE_VALUE_CHANGE) {
  56. struct iris_hfi_device *dev = notifier_data->pvt_data;
  57. dprintk(CVP_PWR,
  58. "%s: Clock %s throttled from %ld to %ld \n",
  59. __func__, dev->mmrm_desc.client_info.desc.name,
  60. notifier_data->cb_data.val_chng.old_val,
  61. notifier_data->cb_data.val_chng.new_val);
  62. /*TODO: if need further handling to notify eva client */
  63. } else {
  64. dprintk(CVP_WARN, "%s Invalid cb type: %d\n",
  65. __func__, notifier_data->cb_type);
  66. return -EINVAL;
  67. }
  68. return 0;
  69. }
  70. int msm_cvp_set_clocks(struct msm_cvp_core *core)
  71. {
  72. struct cvp_hfi_device *hdev;
  73. int rc;
  74. if (!core || !core->device) {
  75. dprintk(CVP_ERR, "%s Invalid args: %pK\n", __func__, core);
  76. return -EINVAL;
  77. }
  78. hdev = core->device;
  79. rc = call_hfi_op(hdev, scale_clocks,
  80. hdev->hfi_device_data, core->curr_freq);
  81. return rc;
  82. }
  83. int msm_cvp_mmrm_register(struct iris_hfi_device *device)
  84. {
  85. int rc = 0;
  86. struct clock_info *cl = NULL;
  87. char *name;
  88. bool isSupport;
  89. if (!device) {
  90. dprintk(CVP_ERR, "%s invalid device\n", __func__);
  91. return -EINVAL;
  92. }
  93. name = (char *)device->mmrm_desc.client_info.desc.name;
  94. device->mmrm_cvp=NULL;
  95. device->mmrm_desc.client_type=MMRM_CLIENT_CLOCK;
  96. device->mmrm_desc.priority=MMRM_CLIENT_PRIOR_LOW;
  97. device->mmrm_desc.pvt_data = device;
  98. device->mmrm_desc.notifier_callback_fn = msm_cvp_mmrm_notifier_cb;
  99. device->mmrm_desc.client_info.desc.client_domain=MMRM_CLIENT_DOMAIN_CVP;
  100. iris_hfi_for_each_clock(device, cl) {
  101. if (cl->has_scaling) { /* only clk source enabled in dtsi */
  102. device->mmrm_desc.client_info.desc.clk=cl->clk;
  103. device->mmrm_desc.client_info.desc.client_id=cl->clk_id;
  104. strlcpy(name, cl->name,
  105. sizeof(device->mmrm_desc.client_info.desc.name));
  106. }
  107. }
  108. isSupport = __mmrm_client_check_scaling_supported(&(device->mmrm_desc));
  109. if (!isSupport) {
  110. dprintk(CVP_PWR, "%s: mmrm not supported, flag: %d\n",
  111. __func__, isSupport);
  112. return rc;
  113. }
  114. dprintk(CVP_PWR,
  115. "%s: Register for %s, clk_id %d\n",
  116. __func__, device->mmrm_desc.client_info.desc.name,
  117. device->mmrm_desc.client_info.desc.client_id);
  118. device->mmrm_cvp = __mmrm_client_register(&(device->mmrm_desc));
  119. if (device->mmrm_cvp == NULL) {
  120. dprintk(CVP_ERR,
  121. "%s: Failed mmrm_client_register with mmrm_cvp: %pK\n",
  122. __func__, device->mmrm_cvp);
  123. rc = -ENOENT;
  124. } else {
  125. dprintk(CVP_PWR,
  126. "%s: mmrm_client_register done: %pK, type:%d, uid:%ld\n",
  127. __func__, device->mmrm_cvp,
  128. device->mmrm_cvp->client_type,
  129. device->mmrm_cvp->client_uid);
  130. }
  131. return rc;
  132. }
  133. int msm_cvp_mmrm_deregister(struct iris_hfi_device *device)
  134. {
  135. int rc = 0;
  136. struct clock_info *cl = NULL;
  137. if (!device) {
  138. dprintk(CVP_ERR,
  139. "%s invalid args: device %pK \n",
  140. __func__, device);
  141. return -EINVAL;
  142. }
  143. if (!device->mmrm_cvp) { // when mmrm not supported
  144. dprintk(CVP_ERR,
  145. "%s device->mmrm_cvp not initialized \n",
  146. __func__);
  147. return rc;
  148. }
  149. /* set clk value to 0 before deregister */
  150. iris_hfi_for_each_clock(device, cl) {
  151. if ((cl->has_scaling) && (__clk_is_enabled(cl->clk))){
  152. // set min freq and cur freq to 0;
  153. rc = msm_cvp_mmrm_set_value_in_range(device,
  154. 0, 0);
  155. if (rc) {
  156. dprintk(CVP_ERR,
  157. "%s Failed set clock %s: %d\n",
  158. __func__, cl->name, rc);
  159. }
  160. }
  161. }
  162. rc = __mmrm_client_deregister(device->mmrm_cvp);
  163. if (rc) {
  164. dprintk(CVP_ERR,
  165. "%s: Failed mmrm_client_deregister with rc: %d\n",
  166. __func__, rc);
  167. }
  168. device->mmrm_cvp = NULL;
  169. return rc;
  170. }
  171. int msm_cvp_mmrm_set_value_in_range(struct iris_hfi_device *device,
  172. u32 freq_min, u32 freq_cur)
  173. {
  174. int rc = 0;
  175. struct mmrm_client_res_value val;
  176. struct mmrm_client_data data;
  177. if (!device) {
  178. dprintk(CVP_ERR, "%s invalid device\n", __func__);
  179. return -EINVAL;
  180. }
  181. dprintk(CVP_PWR,
  182. "%s: set clock rate for mmrm_cvp: %pK, type :%d, uid: %ld\n",
  183. __func__, device->mmrm_cvp,
  184. device->mmrm_cvp->client_type, device->mmrm_cvp->client_uid);
  185. val.min = freq_min;
  186. val.cur = freq_cur;
  187. data.num_hw_blocks = 1;
  188. data.flags = 0; /* Not MMRM_CLIENT_DATA_FLAG_RESERVE_ONLY */
  189. dprintk(CVP_PWR,
  190. "%s: set clock rate to min %u cur %u: %d\n",
  191. __func__, val.min, val.cur, rc);
  192. rc = __mmrm_client_set_value_in_range(device->mmrm_cvp, &data, &val);
  193. if (rc) {
  194. dprintk(CVP_ERR,
  195. "%s: Failed to set clock rate to min %u cur %u: %d\n",
  196. __func__, val.min, val.cur, rc);
  197. }
  198. return rc;
  199. }
  200. int msm_cvp_set_clocks_impl(struct iris_hfi_device *device, u32 freq)
  201. {
  202. struct clock_info *cl;
  203. int rc = 0;
  204. int fsrc2clk = 3;
  205. // ratio factor for clock source : clk
  206. u32 freq_min = device->res->allowed_clks_tbl[0].clock_rate * fsrc2clk;
  207. dprintk(CVP_PWR, "%s: entering with freq : %ld\n", __func__, freq);
  208. iris_hfi_for_each_clock(device, cl) {
  209. if (cl->has_scaling) {/* has_scaling */
  210. device->clk_freq = freq;
  211. if (msm_cvp_clock_voting)
  212. freq = msm_cvp_clock_voting;
  213. freq = freq * fsrc2clk;
  214. dprintk(CVP_PWR,
  215. "%s: clock source rate set to: %ld\n",
  216. __func__, freq);
  217. if (device->mmrm_cvp != NULL) {
  218. /* min freq : 1st element value in the table */
  219. rc = msm_cvp_mmrm_set_value_in_range(device,
  220. freq_min, freq);
  221. if (rc) {
  222. dprintk(CVP_ERR,
  223. "Failed set clock %s: %d\n",
  224. cl->name, rc);
  225. return rc;
  226. }
  227. }
  228. else {
  229. dprintk(CVP_PWR,
  230. "%s: set clock with clk_set_rate\n",
  231. __func__);
  232. rc = clk_set_rate(cl->clk, freq);
  233. if (rc) {
  234. dprintk(CVP_ERR,
  235. "Failed set clock %u %s: %d\n",
  236. freq, cl->name, rc);
  237. return rc;
  238. }
  239. dprintk(CVP_PWR, "Scaling clock %s to %u\n",
  240. cl->name, freq);
  241. }
  242. }
  243. }
  244. return 0;
  245. }
  246. int msm_cvp_scale_clocks(struct iris_hfi_device *device)
  247. {
  248. int rc = 0;
  249. struct allowed_clock_rates_table *allowed_clks_tbl = NULL;
  250. u32 rate = 0;
  251. allowed_clks_tbl = device->res->allowed_clks_tbl;
  252. rate = device->clk_freq ? device->clk_freq :
  253. allowed_clks_tbl[0].clock_rate;
  254. dprintk(CVP_PWR, "%s: scale clock rate %d\n", __func__, rate);
  255. rc = msm_cvp_set_clocks_impl(device, rate);
  256. return rc;
  257. }
  258. int msm_cvp_prepare_enable_clk(struct iris_hfi_device *device,
  259. const char *name)
  260. {
  261. struct clock_info *cl = NULL;
  262. int rc = 0;
  263. if (!device) {
  264. dprintk(CVP_ERR, "Invalid params: %pK\n", device);
  265. return -EINVAL;
  266. }
  267. iris_hfi_for_each_clock(device, cl) {
  268. if (strcmp(cl->name, name))
  269. continue;
  270. /*
  271. * For the clocks we control, set the rate prior to preparing
  272. * them. Since we don't really have a load at this point,
  273. * scale it to the lowest frequency possible
  274. */
  275. if (cl->has_scaling) {
  276. if (device->mmrm_cvp != NULL) {
  277. // set min freq and cur freq to 0;
  278. rc = msm_cvp_mmrm_set_value_in_range(device,
  279. 0, 0);
  280. if (rc)
  281. dprintk(CVP_ERR,
  282. "%s Failed set clock %s: %d\n",
  283. __func__, cl->name, rc);
  284. }
  285. else {
  286. dprintk(CVP_PWR,
  287. "%s: set clock with clk_set_rate\n",
  288. __func__);
  289. clk_set_rate(cl->clk,
  290. clk_round_rate(cl->clk, 0));
  291. }
  292. }
  293. rc = clk_prepare_enable(cl->clk);
  294. if (rc) {
  295. dprintk(CVP_ERR, "Failed to enable clock %s\n",
  296. cl->name);
  297. return rc;
  298. }
  299. if (!__clk_is_enabled(cl->clk)) {
  300. dprintk(CVP_ERR, "%s: clock %s not enabled\n",
  301. __func__, cl->name);
  302. clk_disable_unprepare(cl->clk);
  303. return -EINVAL;
  304. }
  305. dprintk(CVP_PWR, "Clock: %s prepared and enabled\n",
  306. cl->name);
  307. return 0;
  308. }
  309. dprintk(CVP_ERR, "%s clock %s not found\n", __func__, name);
  310. return -EINVAL;
  311. }
  312. int msm_cvp_disable_unprepare_clk(struct iris_hfi_device *device,
  313. const char *name)
  314. {
  315. struct clock_info *cl;
  316. int rc = 0;
  317. if (!device) {
  318. dprintk(CVP_ERR, "Invalid params: %pK\n", device);
  319. return -EINVAL;
  320. }
  321. iris_hfi_for_each_clock_reverse(device, cl) {
  322. if (strcmp(cl->name, name))
  323. continue;
  324. clk_disable_unprepare(cl->clk);
  325. dprintk(CVP_PWR, "Clock: %s disable and unprepare\n",
  326. cl->name);
  327. if (cl->has_scaling) {
  328. if (device->mmrm_cvp != NULL) {
  329. // set min freq and cur freq to 0;
  330. rc = msm_cvp_mmrm_set_value_in_range(device,
  331. 0, 0);
  332. if (rc)
  333. dprintk(CVP_ERR,
  334. "%s Failed set clock %s: %d\n",
  335. __func__, cl->name, rc);
  336. }
  337. }
  338. return 0;
  339. }
  340. dprintk(CVP_ERR, "%s clock %s not found\n", __func__, name);
  341. return -EINVAL;
  342. }
  343. int msm_cvp_init_clocks(struct iris_hfi_device *device)
  344. {
  345. int rc = 0;
  346. struct clock_info *cl = NULL;
  347. if (!device) {
  348. dprintk(CVP_ERR, "Invalid params: %pK\n", device);
  349. return -EINVAL;
  350. }
  351. iris_hfi_for_each_clock(device, cl) {
  352. dprintk(CVP_PWR, "%s: scalable? %d, count %d\n",
  353. cl->name, cl->has_scaling, cl->count);
  354. }
  355. iris_hfi_for_each_clock(device, cl) {
  356. if (!cl->clk) {
  357. cl->clk = clk_get(&device->res->pdev->dev, cl->name);
  358. if (IS_ERR(cl->clk)) {
  359. rc = PTR_ERR(cl->clk);
  360. dprintk(CVP_ERR,
  361. "Failed to get clock: %s, rc %d\n",
  362. cl->name, rc);
  363. cl->clk = NULL;
  364. goto err_clk_get;
  365. }
  366. }
  367. }
  368. device->clk_freq = 0;
  369. return 0;
  370. err_clk_get:
  371. msm_cvp_deinit_clocks(device);
  372. return rc;
  373. }
  374. void msm_cvp_deinit_clocks(struct iris_hfi_device *device)
  375. {
  376. struct clock_info *cl;
  377. device->clk_freq = 0;
  378. iris_hfi_for_each_clock_reverse(device, cl) {
  379. if (cl->clk) {
  380. clk_put(cl->clk);
  381. cl->clk = NULL;
  382. }
  383. }
  384. }
  385. int msm_cvp_set_bw(struct bus_info *bus, unsigned long bw)
  386. {
  387. int rc = 0;
  388. if (!bus->client)
  389. return -EINVAL;
  390. rc = icc_set_bw(bus->client, bw, 0);
  391. if (rc)
  392. dprintk(CVP_ERR, "Failed voting bus %s to ab %u\n",
  393. bus->name, bw);
  394. return rc;
  395. }