power.c 45 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801
  1. // SPDX-License-Identifier: GPL-2.0-only
  2. /*
  3. * Copyright (c) 2016-2021, The Linux Foundation. All rights reserved.
  4. * Copyright (c) 2021-2022 Qualcomm Innovation Center, Inc. All rights reserved.
  5. */
  6. #include <linux/clk.h>
  7. #include <linux/delay.h>
  8. #if IS_ENABLED(CONFIG_MSM_QMP)
  9. #include <linux/mailbox/qmp.h>
  10. #endif
  11. #include <linux/of.h>
  12. #include <linux/of_gpio.h>
  13. #include <linux/pinctrl/consumer.h>
  14. #include <linux/pinctrl/qcom-pinctrl.h>
  15. #include <linux/regulator/consumer.h>
  16. #if IS_ENABLED(CONFIG_QCOM_COMMAND_DB)
  17. #include <soc/qcom/cmd-db.h>
  18. #endif
  19. #include "main.h"
  20. #include "debug.h"
  21. #include "bus.h"
  22. #if IS_ENABLED(CONFIG_ARCH_QCOM)
  23. static struct cnss_vreg_cfg cnss_vreg_list[] = {
  24. {"vdd-wlan-core", 1300000, 1300000, 0, 0, 0},
  25. {"vdd-wlan-io", 1800000, 1800000, 0, 0, 0},
  26. {"vdd-wlan-io12", 1200000, 1200000, 0, 0, 0},
  27. {"vdd-wlan-ant-share", 1800000, 1800000, 0, 0, 0},
  28. {"vdd-wlan-xtal-aon", 0, 0, 0, 0, 0},
  29. {"vdd-wlan-xtal", 1800000, 1800000, 0, 2, 0},
  30. {"vdd-wlan", 0, 0, 0, 0, 0},
  31. {"vdd-wlan-ctrl1", 0, 0, 0, 0, 0},
  32. {"vdd-wlan-ctrl2", 0, 0, 0, 0, 0},
  33. {"vdd-wlan-sp2t", 2700000, 2700000, 0, 0, 0},
  34. {"wlan-ant-switch", 1800000, 1800000, 0, 0, 0},
  35. {"wlan-soc-swreg", 1200000, 1200000, 0, 0, 0},
  36. {"vdd-wlan-aon", 950000, 950000, 0, 0, 0},
  37. {"vdd-wlan-dig", 950000, 952000, 0, 0, 0},
  38. {"vdd-wlan-rfa1", 1900000, 1900000, 0, 0, 0},
  39. {"vdd-wlan-rfa2", 1350000, 1350000, 0, 0, 0},
  40. {"vdd-wlan-rfa3", 1900000, 1900000, 450000, 0, 0},
  41. {"alt-sleep-clk", 0, 0, 0, 0, 0},
  42. {"vdd-wlan-en", 0, 0, 0, 10, 0},
  43. };
  44. static struct cnss_clk_cfg cnss_clk_list[] = {
  45. {"rf_clk", 0, 0},
  46. };
  47. #else
  48. static struct cnss_vreg_cfg cnss_vreg_list[] = {
  49. };
  50. static struct cnss_clk_cfg cnss_clk_list[] = {
  51. };
  52. #endif
  53. #define CNSS_VREG_INFO_SIZE ARRAY_SIZE(cnss_vreg_list)
  54. #define CNSS_CLK_INFO_SIZE ARRAY_SIZE(cnss_clk_list)
  55. #define MAX_PROP_SIZE 32
  56. #define BOOTSTRAP_GPIO "qcom,enable-bootstrap-gpio"
  57. #define BOOTSTRAP_ACTIVE "bootstrap_active"
  58. #define HOST_SOL_GPIO "wlan-host-sol-gpio"
  59. #define DEV_SOL_GPIO "wlan-dev-sol-gpio"
  60. #define SOL_DEFAULT "sol_default"
  61. #define WLAN_EN_GPIO "wlan-en-gpio"
  62. #define BT_EN_GPIO "qcom,bt-en-gpio"
  63. #define XO_CLK_GPIO "qcom,xo-clk-gpio"
  64. #define SW_CTRL_GPIO "qcom,sw-ctrl-gpio"
  65. #define WLAN_SW_CTRL_GPIO "qcom,wlan-sw-ctrl-gpio"
  66. #define WLAN_EN_ACTIVE "wlan_en_active"
  67. #define WLAN_EN_SLEEP "wlan_en_sleep"
  68. #define WLAN_VREGS_PROP "wlan_vregs"
  69. #define BOOTSTRAP_DELAY 1000
  70. #define WLAN_ENABLE_DELAY 1000
  71. #define WLAN_ENABLE_DELAY_ROME 10000
  72. #define TCS_CMD_DATA_ADDR_OFFSET 0x4
  73. #define TCS_OFFSET 0xC8
  74. #define TCS_CMD_OFFSET 0x10
  75. #define MAX_TCS_NUM 8
  76. #define MAX_TCS_CMD_NUM 5
  77. #define BT_CXMX_VOLTAGE_MV 950
  78. #define CNSS_MBOX_MSG_MAX_LEN 64
  79. #define CNSS_MBOX_TIMEOUT_MS 1000
  80. /* Platform HW config */
  81. #define CNSS_PMIC_VOLTAGE_STEP 4
  82. #define CNSS_PMIC_AUTO_HEADROOM 16
  83. #define CNSS_IR_DROP_WAKE 30
  84. #define CNSS_IR_DROP_SLEEP 10
  85. /**
  86. * enum cnss_aop_vreg_param: Voltage regulator TCS param
  87. * @CNSS_VREG_VOLTAGE: Provides voltage level in mV to be configured in TCS
  88. * @CNSS_VREG_MODE: Regulator mode
  89. * @CNSS_VREG_TCS_ENABLE: Set bool Voltage regulator enable config in TCS.
  90. */
  91. enum cnss_aop_vreg_param {
  92. CNSS_VREG_VOLTAGE,
  93. CNSS_VREG_MODE,
  94. CNSS_VREG_ENABLE,
  95. CNSS_VREG_PARAM_MAX
  96. };
  97. /** enum cnss_aop_vreg_param_mode: Voltage modes supported by AOP*/
  98. enum cnss_aop_vreg_param_mode {
  99. CNSS_VREG_RET_MODE = 3,
  100. CNSS_VREG_LPM_MODE = 4,
  101. CNSS_VREG_AUTO_MODE = 6,
  102. CNSS_VREG_NPM_MODE = 7,
  103. CNSS_VREG_MODE_MAX
  104. };
  105. /**
  106. * enum cnss_aop_tcs_seq: TCS sequence ID for trigger
  107. * @CNSS_TCS_UP_SEQ: TCS Sequence based on up trigger / Wake TCS
  108. * @CNSS_TCS_DOWN_SEQ: TCS Sequence based on down trigger / Sleep TCS
  109. * @CNSS_TCS_ENABLE_SEQ: Enable this TCS seq entry
  110. */
  111. enum cnss_aop_tcs_seq_param {
  112. CNSS_TCS_UP_SEQ,
  113. CNSS_TCS_DOWN_SEQ,
  114. CNSS_TCS_ENABLE_SEQ,
  115. CNSS_TCS_SEQ_MAX
  116. };
  117. static int cnss_get_vreg_single(struct cnss_plat_data *plat_priv,
  118. struct cnss_vreg_info *vreg)
  119. {
  120. int ret = 0;
  121. struct device *dev;
  122. struct regulator *reg;
  123. const __be32 *prop;
  124. char prop_name[MAX_PROP_SIZE] = {0};
  125. int len;
  126. struct device_node *dt_node;
  127. dev = &plat_priv->plat_dev->dev;
  128. dt_node = (plat_priv->dev_node ? plat_priv->dev_node : dev->of_node);
  129. reg = devm_regulator_get_optional(dev, vreg->cfg.name);
  130. if (IS_ERR(reg)) {
  131. ret = PTR_ERR(reg);
  132. if (ret == -ENODEV)
  133. return ret;
  134. else if (ret == -EPROBE_DEFER)
  135. cnss_pr_info("EPROBE_DEFER for regulator: %s\n",
  136. vreg->cfg.name);
  137. else
  138. cnss_pr_err("Failed to get regulator %s, err = %d\n",
  139. vreg->cfg.name, ret);
  140. return ret;
  141. }
  142. vreg->reg = reg;
  143. snprintf(prop_name, MAX_PROP_SIZE, "qcom,%s-config",
  144. vreg->cfg.name);
  145. prop = of_get_property(dt_node, prop_name, &len);
  146. if (!prop || len != (5 * sizeof(__be32))) {
  147. cnss_pr_dbg("Property %s %s, use default\n", prop_name,
  148. prop ? "invalid format" : "doesn't exist");
  149. } else {
  150. vreg->cfg.min_uv = be32_to_cpup(&prop[0]);
  151. vreg->cfg.max_uv = be32_to_cpup(&prop[1]);
  152. vreg->cfg.load_ua = be32_to_cpup(&prop[2]);
  153. vreg->cfg.delay_us = be32_to_cpup(&prop[3]);
  154. vreg->cfg.need_unvote = be32_to_cpup(&prop[4]);
  155. }
  156. cnss_pr_dbg("Got regulator: %s, min_uv: %u, max_uv: %u, load_ua: %u, delay_us: %u, need_unvote: %u\n",
  157. vreg->cfg.name, vreg->cfg.min_uv,
  158. vreg->cfg.max_uv, vreg->cfg.load_ua,
  159. vreg->cfg.delay_us, vreg->cfg.need_unvote);
  160. return 0;
  161. }
  162. static void cnss_put_vreg_single(struct cnss_plat_data *plat_priv,
  163. struct cnss_vreg_info *vreg)
  164. {
  165. struct device *dev = &plat_priv->plat_dev->dev;
  166. cnss_pr_dbg("Put regulator: %s\n", vreg->cfg.name);
  167. devm_regulator_put(vreg->reg);
  168. devm_kfree(dev, vreg);
  169. }
  170. static int cnss_vreg_on_single(struct cnss_vreg_info *vreg)
  171. {
  172. int ret = 0;
  173. if (vreg->enabled) {
  174. cnss_pr_dbg("Regulator %s is already enabled\n",
  175. vreg->cfg.name);
  176. return 0;
  177. }
  178. cnss_pr_dbg("Regulator %s is being enabled\n", vreg->cfg.name);
  179. if (vreg->cfg.min_uv != 0 && vreg->cfg.max_uv != 0) {
  180. ret = regulator_set_voltage(vreg->reg,
  181. vreg->cfg.min_uv,
  182. vreg->cfg.max_uv);
  183. if (ret) {
  184. cnss_pr_err("Failed to set voltage for regulator %s, min_uv: %u, max_uv: %u, err = %d\n",
  185. vreg->cfg.name, vreg->cfg.min_uv,
  186. vreg->cfg.max_uv, ret);
  187. goto out;
  188. }
  189. }
  190. if (vreg->cfg.load_ua) {
  191. ret = regulator_set_load(vreg->reg,
  192. vreg->cfg.load_ua);
  193. if (ret < 0) {
  194. cnss_pr_err("Failed to set load for regulator %s, load: %u, err = %d\n",
  195. vreg->cfg.name, vreg->cfg.load_ua,
  196. ret);
  197. goto out;
  198. }
  199. }
  200. if (vreg->cfg.delay_us)
  201. udelay(vreg->cfg.delay_us);
  202. ret = regulator_enable(vreg->reg);
  203. if (ret) {
  204. cnss_pr_err("Failed to enable regulator %s, err = %d\n",
  205. vreg->cfg.name, ret);
  206. goto out;
  207. }
  208. vreg->enabled = true;
  209. out:
  210. return ret;
  211. }
  212. static int cnss_vreg_unvote_single(struct cnss_vreg_info *vreg)
  213. {
  214. int ret = 0;
  215. if (!vreg->enabled) {
  216. cnss_pr_dbg("Regulator %s is already disabled\n",
  217. vreg->cfg.name);
  218. return 0;
  219. }
  220. cnss_pr_dbg("Removing vote for Regulator %s\n", vreg->cfg.name);
  221. if (vreg->cfg.load_ua) {
  222. ret = regulator_set_load(vreg->reg, 0);
  223. if (ret < 0)
  224. cnss_pr_err("Failed to set load for regulator %s, err = %d\n",
  225. vreg->cfg.name, ret);
  226. }
  227. if (vreg->cfg.min_uv != 0 && vreg->cfg.max_uv != 0) {
  228. ret = regulator_set_voltage(vreg->reg, 0,
  229. vreg->cfg.max_uv);
  230. if (ret)
  231. cnss_pr_err("Failed to set voltage for regulator %s, err = %d\n",
  232. vreg->cfg.name, ret);
  233. }
  234. return ret;
  235. }
  236. static int cnss_vreg_off_single(struct cnss_vreg_info *vreg)
  237. {
  238. int ret = 0;
  239. if (!vreg->enabled) {
  240. cnss_pr_dbg("Regulator %s is already disabled\n",
  241. vreg->cfg.name);
  242. return 0;
  243. }
  244. cnss_pr_dbg("Regulator %s is being disabled\n",
  245. vreg->cfg.name);
  246. ret = regulator_disable(vreg->reg);
  247. if (ret)
  248. cnss_pr_err("Failed to disable regulator %s, err = %d\n",
  249. vreg->cfg.name, ret);
  250. if (vreg->cfg.load_ua) {
  251. ret = regulator_set_load(vreg->reg, 0);
  252. if (ret < 0)
  253. cnss_pr_err("Failed to set load for regulator %s, err = %d\n",
  254. vreg->cfg.name, ret);
  255. }
  256. if (vreg->cfg.min_uv != 0 && vreg->cfg.max_uv != 0) {
  257. ret = regulator_set_voltage(vreg->reg, 0,
  258. vreg->cfg.max_uv);
  259. if (ret)
  260. cnss_pr_err("Failed to set voltage for regulator %s, err = %d\n",
  261. vreg->cfg.name, ret);
  262. }
  263. vreg->enabled = false;
  264. return ret;
  265. }
  266. static struct cnss_vreg_cfg *get_vreg_list(u32 *vreg_list_size,
  267. enum cnss_vreg_type type)
  268. {
  269. switch (type) {
  270. case CNSS_VREG_PRIM:
  271. *vreg_list_size = CNSS_VREG_INFO_SIZE;
  272. return cnss_vreg_list;
  273. default:
  274. cnss_pr_err("Unsupported vreg type 0x%x\n", type);
  275. *vreg_list_size = 0;
  276. return NULL;
  277. }
  278. }
  279. /*
  280. * For multi-exchg dt node, get the required vregs' names from property
  281. * 'wlan_vregs', which is string array;
  282. *
  283. * if the property is present but no value is set, then no additional wlan
  284. * verg is required.
  285. *
  286. * For non-multi-exchg dt, go through all vregs in the static array
  287. * 'cnss_vreg_list'.
  288. */
  289. static int cnss_get_vreg(struct cnss_plat_data *plat_priv,
  290. struct list_head *vreg_list,
  291. struct cnss_vreg_cfg *vreg_cfg,
  292. u32 vreg_list_size)
  293. {
  294. int ret = 0;
  295. int i;
  296. struct cnss_vreg_info *vreg;
  297. struct device *dev = &plat_priv->plat_dev->dev;
  298. int id_n;
  299. struct device_node *dt_node;
  300. if (!list_empty(vreg_list) &&
  301. (plat_priv->dt_type != CNSS_DTT_MULTIEXCHG)) {
  302. cnss_pr_dbg("Vregs have already been updated\n");
  303. return 0;
  304. }
  305. dt_node = (plat_priv->dev_node ? plat_priv->dev_node : dev->of_node);
  306. if (plat_priv->dt_type == CNSS_DTT_MULTIEXCHG) {
  307. id_n = of_property_count_strings(dt_node,
  308. WLAN_VREGS_PROP);
  309. if (id_n <= 0) {
  310. if (id_n == -ENODATA) {
  311. cnss_pr_dbg("No additional vregs for: %s:%lx\n",
  312. dt_node->name,
  313. plat_priv->device_id);
  314. return 0;
  315. }
  316. cnss_pr_err("property %s is invalid or missed: %s:%lx\n",
  317. WLAN_VREGS_PROP, dt_node->name,
  318. plat_priv->device_id);
  319. return -EINVAL;
  320. }
  321. } else {
  322. id_n = vreg_list_size;
  323. }
  324. for (i = 0; i < id_n; i++) {
  325. vreg = devm_kzalloc(dev, sizeof(*vreg), GFP_KERNEL);
  326. if (!vreg)
  327. return -ENOMEM;
  328. if (plat_priv->dt_type == CNSS_DTT_MULTIEXCHG) {
  329. ret = of_property_read_string_index(dt_node,
  330. WLAN_VREGS_PROP, i,
  331. &vreg->cfg.name);
  332. if (ret) {
  333. cnss_pr_err("Failed to read vreg ids\n");
  334. return ret;
  335. }
  336. } else {
  337. memcpy(&vreg->cfg, &vreg_cfg[i], sizeof(vreg->cfg));
  338. }
  339. ret = cnss_get_vreg_single(plat_priv, vreg);
  340. if (ret != 0) {
  341. if (ret == -ENODEV) {
  342. devm_kfree(dev, vreg);
  343. continue;
  344. } else {
  345. devm_kfree(dev, vreg);
  346. return ret;
  347. }
  348. }
  349. list_add_tail(&vreg->list, vreg_list);
  350. }
  351. return 0;
  352. }
  353. static void cnss_put_vreg(struct cnss_plat_data *plat_priv,
  354. struct list_head *vreg_list)
  355. {
  356. struct cnss_vreg_info *vreg;
  357. while (!list_empty(vreg_list)) {
  358. vreg = list_first_entry(vreg_list,
  359. struct cnss_vreg_info, list);
  360. list_del(&vreg->list);
  361. if (IS_ERR_OR_NULL(vreg->reg))
  362. continue;
  363. cnss_put_vreg_single(plat_priv, vreg);
  364. }
  365. }
  366. static int cnss_vreg_on(struct cnss_plat_data *plat_priv,
  367. struct list_head *vreg_list)
  368. {
  369. struct cnss_vreg_info *vreg;
  370. int ret = 0;
  371. list_for_each_entry(vreg, vreg_list, list) {
  372. if (IS_ERR_OR_NULL(vreg->reg))
  373. continue;
  374. ret = cnss_vreg_on_single(vreg);
  375. if (ret)
  376. break;
  377. }
  378. if (!ret)
  379. return 0;
  380. list_for_each_entry_continue_reverse(vreg, vreg_list, list) {
  381. if (IS_ERR_OR_NULL(vreg->reg) || !vreg->enabled)
  382. continue;
  383. cnss_vreg_off_single(vreg);
  384. }
  385. return ret;
  386. }
  387. static int cnss_vreg_off(struct cnss_plat_data *plat_priv,
  388. struct list_head *vreg_list)
  389. {
  390. struct cnss_vreg_info *vreg;
  391. list_for_each_entry_reverse(vreg, vreg_list, list) {
  392. if (IS_ERR_OR_NULL(vreg->reg))
  393. continue;
  394. cnss_vreg_off_single(vreg);
  395. }
  396. return 0;
  397. }
  398. static int cnss_vreg_unvote(struct cnss_plat_data *plat_priv,
  399. struct list_head *vreg_list)
  400. {
  401. struct cnss_vreg_info *vreg;
  402. list_for_each_entry_reverse(vreg, vreg_list, list) {
  403. if (IS_ERR_OR_NULL(vreg->reg))
  404. continue;
  405. if (vreg->cfg.need_unvote)
  406. cnss_vreg_unvote_single(vreg);
  407. }
  408. return 0;
  409. }
  410. int cnss_get_vreg_type(struct cnss_plat_data *plat_priv,
  411. enum cnss_vreg_type type)
  412. {
  413. struct cnss_vreg_cfg *vreg_cfg;
  414. u32 vreg_list_size = 0;
  415. int ret = 0;
  416. vreg_cfg = get_vreg_list(&vreg_list_size, type);
  417. if (!vreg_cfg)
  418. return -EINVAL;
  419. switch (type) {
  420. case CNSS_VREG_PRIM:
  421. ret = cnss_get_vreg(plat_priv, &plat_priv->vreg_list,
  422. vreg_cfg, vreg_list_size);
  423. break;
  424. default:
  425. cnss_pr_err("Unsupported vreg type 0x%x\n", type);
  426. return -EINVAL;
  427. }
  428. return ret;
  429. }
  430. void cnss_put_vreg_type(struct cnss_plat_data *plat_priv,
  431. enum cnss_vreg_type type)
  432. {
  433. switch (type) {
  434. case CNSS_VREG_PRIM:
  435. cnss_put_vreg(plat_priv, &plat_priv->vreg_list);
  436. break;
  437. default:
  438. return;
  439. }
  440. }
  441. int cnss_vreg_on_type(struct cnss_plat_data *plat_priv,
  442. enum cnss_vreg_type type)
  443. {
  444. int ret = 0;
  445. switch (type) {
  446. case CNSS_VREG_PRIM:
  447. ret = cnss_vreg_on(plat_priv, &plat_priv->vreg_list);
  448. break;
  449. default:
  450. cnss_pr_err("Unsupported vreg type 0x%x\n", type);
  451. return -EINVAL;
  452. }
  453. return ret;
  454. }
  455. int cnss_vreg_off_type(struct cnss_plat_data *plat_priv,
  456. enum cnss_vreg_type type)
  457. {
  458. int ret = 0;
  459. switch (type) {
  460. case CNSS_VREG_PRIM:
  461. ret = cnss_vreg_off(plat_priv, &plat_priv->vreg_list);
  462. break;
  463. default:
  464. cnss_pr_err("Unsupported vreg type 0x%x\n", type);
  465. return -EINVAL;
  466. }
  467. return ret;
  468. }
  469. int cnss_vreg_unvote_type(struct cnss_plat_data *plat_priv,
  470. enum cnss_vreg_type type)
  471. {
  472. int ret = 0;
  473. switch (type) {
  474. case CNSS_VREG_PRIM:
  475. ret = cnss_vreg_unvote(plat_priv, &plat_priv->vreg_list);
  476. break;
  477. default:
  478. cnss_pr_err("Unsupported vreg type 0x%x\n", type);
  479. return -EINVAL;
  480. }
  481. return ret;
  482. }
  483. static int cnss_get_clk_single(struct cnss_plat_data *plat_priv,
  484. struct cnss_clk_info *clk_info)
  485. {
  486. struct device *dev = &plat_priv->plat_dev->dev;
  487. struct clk *clk;
  488. int ret;
  489. clk = devm_clk_get(dev, clk_info->cfg.name);
  490. if (IS_ERR(clk)) {
  491. ret = PTR_ERR(clk);
  492. if (clk_info->cfg.required)
  493. cnss_pr_err("Failed to get clock %s, err = %d\n",
  494. clk_info->cfg.name, ret);
  495. else
  496. cnss_pr_dbg("Failed to get optional clock %s, err = %d\n",
  497. clk_info->cfg.name, ret);
  498. return ret;
  499. }
  500. clk_info->clk = clk;
  501. cnss_pr_dbg("Got clock: %s, freq: %u\n",
  502. clk_info->cfg.name, clk_info->cfg.freq);
  503. return 0;
  504. }
  505. static void cnss_put_clk_single(struct cnss_plat_data *plat_priv,
  506. struct cnss_clk_info *clk_info)
  507. {
  508. struct device *dev = &plat_priv->plat_dev->dev;
  509. cnss_pr_dbg("Put clock: %s\n", clk_info->cfg.name);
  510. devm_clk_put(dev, clk_info->clk);
  511. }
  512. static int cnss_clk_on_single(struct cnss_clk_info *clk_info)
  513. {
  514. int ret;
  515. if (clk_info->enabled) {
  516. cnss_pr_dbg("Clock %s is already enabled\n",
  517. clk_info->cfg.name);
  518. return 0;
  519. }
  520. cnss_pr_dbg("Clock %s is being enabled\n", clk_info->cfg.name);
  521. if (clk_info->cfg.freq) {
  522. ret = clk_set_rate(clk_info->clk, clk_info->cfg.freq);
  523. if (ret) {
  524. cnss_pr_err("Failed to set frequency %u for clock %s, err = %d\n",
  525. clk_info->cfg.freq, clk_info->cfg.name,
  526. ret);
  527. return ret;
  528. }
  529. }
  530. ret = clk_prepare_enable(clk_info->clk);
  531. if (ret) {
  532. cnss_pr_err("Failed to enable clock %s, err = %d\n",
  533. clk_info->cfg.name, ret);
  534. return ret;
  535. }
  536. clk_info->enabled = true;
  537. return 0;
  538. }
  539. static int cnss_clk_off_single(struct cnss_clk_info *clk_info)
  540. {
  541. if (!clk_info->enabled) {
  542. cnss_pr_dbg("Clock %s is already disabled\n",
  543. clk_info->cfg.name);
  544. return 0;
  545. }
  546. cnss_pr_dbg("Clock %s is being disabled\n", clk_info->cfg.name);
  547. clk_disable_unprepare(clk_info->clk);
  548. clk_info->enabled = false;
  549. return 0;
  550. }
  551. int cnss_get_clk(struct cnss_plat_data *plat_priv)
  552. {
  553. struct device *dev;
  554. struct list_head *clk_list;
  555. struct cnss_clk_info *clk_info;
  556. int ret, i;
  557. if (!plat_priv)
  558. return -ENODEV;
  559. dev = &plat_priv->plat_dev->dev;
  560. clk_list = &plat_priv->clk_list;
  561. if (!list_empty(clk_list)) {
  562. cnss_pr_dbg("Clocks have already been updated\n");
  563. return 0;
  564. }
  565. for (i = 0; i < CNSS_CLK_INFO_SIZE; i++) {
  566. clk_info = devm_kzalloc(dev, sizeof(*clk_info), GFP_KERNEL);
  567. if (!clk_info) {
  568. ret = -ENOMEM;
  569. goto cleanup;
  570. }
  571. memcpy(&clk_info->cfg, &cnss_clk_list[i],
  572. sizeof(clk_info->cfg));
  573. ret = cnss_get_clk_single(plat_priv, clk_info);
  574. if (ret != 0) {
  575. if (clk_info->cfg.required) {
  576. devm_kfree(dev, clk_info);
  577. goto cleanup;
  578. } else {
  579. devm_kfree(dev, clk_info);
  580. continue;
  581. }
  582. }
  583. list_add_tail(&clk_info->list, clk_list);
  584. }
  585. return 0;
  586. cleanup:
  587. while (!list_empty(clk_list)) {
  588. clk_info = list_first_entry(clk_list, struct cnss_clk_info,
  589. list);
  590. list_del(&clk_info->list);
  591. if (IS_ERR_OR_NULL(clk_info->clk))
  592. continue;
  593. cnss_put_clk_single(plat_priv, clk_info);
  594. devm_kfree(dev, clk_info);
  595. }
  596. return ret;
  597. }
  598. void cnss_put_clk(struct cnss_plat_data *plat_priv)
  599. {
  600. struct device *dev;
  601. struct list_head *clk_list;
  602. struct cnss_clk_info *clk_info;
  603. if (!plat_priv)
  604. return;
  605. dev = &plat_priv->plat_dev->dev;
  606. clk_list = &plat_priv->clk_list;
  607. while (!list_empty(clk_list)) {
  608. clk_info = list_first_entry(clk_list, struct cnss_clk_info,
  609. list);
  610. list_del(&clk_info->list);
  611. if (IS_ERR_OR_NULL(clk_info->clk))
  612. continue;
  613. cnss_put_clk_single(plat_priv, clk_info);
  614. devm_kfree(dev, clk_info);
  615. }
  616. }
  617. static int cnss_clk_on(struct cnss_plat_data *plat_priv,
  618. struct list_head *clk_list)
  619. {
  620. struct cnss_clk_info *clk_info;
  621. int ret = 0;
  622. list_for_each_entry(clk_info, clk_list, list) {
  623. if (IS_ERR_OR_NULL(clk_info->clk))
  624. continue;
  625. ret = cnss_clk_on_single(clk_info);
  626. if (ret)
  627. break;
  628. }
  629. if (!ret)
  630. return 0;
  631. list_for_each_entry_continue_reverse(clk_info, clk_list, list) {
  632. if (IS_ERR_OR_NULL(clk_info->clk))
  633. continue;
  634. cnss_clk_off_single(clk_info);
  635. }
  636. return ret;
  637. }
  638. static int cnss_clk_off(struct cnss_plat_data *plat_priv,
  639. struct list_head *clk_list)
  640. {
  641. struct cnss_clk_info *clk_info;
  642. list_for_each_entry_reverse(clk_info, clk_list, list) {
  643. if (IS_ERR_OR_NULL(clk_info->clk))
  644. continue;
  645. cnss_clk_off_single(clk_info);
  646. }
  647. return 0;
  648. }
  649. int cnss_get_pinctrl(struct cnss_plat_data *plat_priv)
  650. {
  651. int ret = 0;
  652. struct device *dev;
  653. struct cnss_pinctrl_info *pinctrl_info;
  654. u32 gpio_id, i;
  655. int gpio_id_n;
  656. dev = &plat_priv->plat_dev->dev;
  657. pinctrl_info = &plat_priv->pinctrl_info;
  658. pinctrl_info->pinctrl = devm_pinctrl_get(dev);
  659. if (IS_ERR_OR_NULL(pinctrl_info->pinctrl)) {
  660. ret = PTR_ERR(pinctrl_info->pinctrl);
  661. cnss_pr_err("Failed to get pinctrl, err = %d\n", ret);
  662. goto out;
  663. }
  664. if (of_find_property(dev->of_node, BOOTSTRAP_GPIO, NULL)) {
  665. pinctrl_info->bootstrap_active =
  666. pinctrl_lookup_state(pinctrl_info->pinctrl,
  667. BOOTSTRAP_ACTIVE);
  668. if (IS_ERR_OR_NULL(pinctrl_info->bootstrap_active)) {
  669. ret = PTR_ERR(pinctrl_info->bootstrap_active);
  670. cnss_pr_err("Failed to get bootstrap active state, err = %d\n",
  671. ret);
  672. goto out;
  673. }
  674. }
  675. if (of_find_property(dev->of_node, HOST_SOL_GPIO, NULL) &&
  676. of_find_property(dev->of_node, DEV_SOL_GPIO, NULL)) {
  677. pinctrl_info->sol_default =
  678. pinctrl_lookup_state(pinctrl_info->pinctrl,
  679. SOL_DEFAULT);
  680. if (IS_ERR_OR_NULL(pinctrl_info->sol_default)) {
  681. ret = PTR_ERR(pinctrl_info->sol_default);
  682. cnss_pr_err("Failed to get sol default state, err = %d\n",
  683. ret);
  684. goto out;
  685. }
  686. cnss_pr_dbg("Got sol default state\n");
  687. }
  688. if (of_find_property(dev->of_node, WLAN_EN_GPIO, NULL)) {
  689. pinctrl_info->wlan_en_gpio = of_get_named_gpio(dev->of_node,
  690. WLAN_EN_GPIO, 0);
  691. cnss_pr_dbg("WLAN_EN GPIO: %d\n", pinctrl_info->wlan_en_gpio);
  692. pinctrl_info->wlan_en_active =
  693. pinctrl_lookup_state(pinctrl_info->pinctrl,
  694. WLAN_EN_ACTIVE);
  695. if (IS_ERR_OR_NULL(pinctrl_info->wlan_en_active)) {
  696. ret = PTR_ERR(pinctrl_info->wlan_en_active);
  697. cnss_pr_err("Failed to get wlan_en active state, err = %d\n",
  698. ret);
  699. goto out;
  700. }
  701. pinctrl_info->wlan_en_sleep =
  702. pinctrl_lookup_state(pinctrl_info->pinctrl,
  703. WLAN_EN_SLEEP);
  704. if (IS_ERR_OR_NULL(pinctrl_info->wlan_en_sleep)) {
  705. ret = PTR_ERR(pinctrl_info->wlan_en_sleep);
  706. cnss_pr_err("Failed to get wlan_en sleep state, err = %d\n",
  707. ret);
  708. goto out;
  709. }
  710. cnss_set_feature_list(plat_priv, CNSS_WLAN_EN_SUPPORT_V01);
  711. } else {
  712. pinctrl_info->wlan_en_gpio = -EINVAL;
  713. }
  714. /* Added for QCA6490 PMU delayed WLAN_EN_GPIO */
  715. if (of_find_property(dev->of_node, BT_EN_GPIO, NULL)) {
  716. pinctrl_info->bt_en_gpio = of_get_named_gpio(dev->of_node,
  717. BT_EN_GPIO, 0);
  718. cnss_pr_dbg("BT GPIO: %d\n", pinctrl_info->bt_en_gpio);
  719. } else {
  720. pinctrl_info->bt_en_gpio = -EINVAL;
  721. }
  722. /* Added for QCA6490 to minimize XO CLK selection leakage prevention */
  723. if (of_find_property(dev->of_node, XO_CLK_GPIO, NULL)) {
  724. pinctrl_info->xo_clk_gpio = of_get_named_gpio(dev->of_node,
  725. XO_CLK_GPIO, 0);
  726. cnss_pr_dbg("QCA6490 XO_CLK GPIO: %d\n",
  727. pinctrl_info->xo_clk_gpio);
  728. cnss_set_feature_list(plat_priv, BOOTSTRAP_CLOCK_SELECT_V01);
  729. } else {
  730. pinctrl_info->xo_clk_gpio = -EINVAL;
  731. }
  732. if (of_find_property(dev->of_node, SW_CTRL_GPIO, NULL)) {
  733. pinctrl_info->sw_ctrl_gpio = of_get_named_gpio(dev->of_node,
  734. SW_CTRL_GPIO,
  735. 0);
  736. cnss_pr_dbg("Switch control GPIO: %d\n",
  737. pinctrl_info->sw_ctrl_gpio);
  738. } else {
  739. pinctrl_info->sw_ctrl_gpio = -EINVAL;
  740. }
  741. /* Find out and configure all those GPIOs which need to be setup
  742. * for interrupt wakeup capable
  743. */
  744. gpio_id_n = of_property_count_u32_elems(dev->of_node, "mpm_wake_set_gpios");
  745. if (gpio_id_n > 0) {
  746. cnss_pr_dbg("Num of GPIOs to be setup for interrupt wakeup capable: %d\n",
  747. gpio_id_n);
  748. for (i = 0; i < gpio_id_n; i++) {
  749. ret = of_property_read_u32_index(dev->of_node,
  750. "mpm_wake_set_gpios",
  751. i, &gpio_id);
  752. if (ret) {
  753. cnss_pr_err("Failed to read gpio_id at index: %d\n", i);
  754. continue;
  755. }
  756. ret = msm_gpio_mpm_wake_set(gpio_id, 1);
  757. if (ret < 0) {
  758. cnss_pr_err("Failed to setup gpio_id: %d as interrupt wakeup capable, ret: %d\n",
  759. ret);
  760. } else {
  761. cnss_pr_dbg("gpio_id: %d successfully setup for interrupt wakeup capable\n",
  762. gpio_id);
  763. }
  764. }
  765. } else {
  766. cnss_pr_dbg("No GPIOs to be setup for interrupt wakeup capable\n");
  767. }
  768. return 0;
  769. out:
  770. return ret;
  771. }
  772. int cnss_get_wlan_sw_ctrl(struct cnss_plat_data *plat_priv)
  773. {
  774. struct device *dev;
  775. struct cnss_pinctrl_info *pinctrl_info;
  776. dev = &plat_priv->plat_dev->dev;
  777. pinctrl_info = &plat_priv->pinctrl_info;
  778. if (of_find_property(dev->of_node, WLAN_SW_CTRL_GPIO, NULL)) {
  779. pinctrl_info->wlan_sw_ctrl_gpio = of_get_named_gpio(dev->of_node,
  780. WLAN_SW_CTRL_GPIO,
  781. 0);
  782. cnss_pr_dbg("WLAN Switch control GPIO: %d\n",
  783. pinctrl_info->wlan_sw_ctrl_gpio);
  784. } else {
  785. pinctrl_info->wlan_sw_ctrl_gpio = -EINVAL;
  786. }
  787. return 0;
  788. }
  789. #define CNSS_XO_CLK_RETRY_COUNT_MAX 5
  790. static void cnss_set_xo_clk_gpio_state(struct cnss_plat_data *plat_priv,
  791. bool enable)
  792. {
  793. int xo_clk_gpio = plat_priv->pinctrl_info.xo_clk_gpio, retry = 0, ret;
  794. if (xo_clk_gpio < 0 || plat_priv->device_id != QCA6490_DEVICE_ID)
  795. return;
  796. retry_gpio_req:
  797. ret = gpio_request(xo_clk_gpio, "XO_CLK_GPIO");
  798. if (ret) {
  799. if (retry++ < CNSS_XO_CLK_RETRY_COUNT_MAX) {
  800. /* wait for ~(10 - 20) ms */
  801. usleep_range(10000, 20000);
  802. goto retry_gpio_req;
  803. }
  804. }
  805. if (ret) {
  806. cnss_pr_err("QCA6490 XO CLK Gpio request failed\n");
  807. return;
  808. }
  809. if (enable) {
  810. gpio_direction_output(xo_clk_gpio, 1);
  811. /*XO CLK must be asserted for some time before WLAN_EN */
  812. usleep_range(100, 200);
  813. } else {
  814. /* Assert XO CLK ~(2-5)ms before off for valid latch in HW */
  815. usleep_range(2000, 5000);
  816. gpio_direction_output(xo_clk_gpio, 0);
  817. }
  818. gpio_free(xo_clk_gpio);
  819. }
  820. static int cnss_select_pinctrl_state(struct cnss_plat_data *plat_priv,
  821. bool state)
  822. {
  823. int ret = 0;
  824. struct cnss_pinctrl_info *pinctrl_info;
  825. if (!plat_priv) {
  826. cnss_pr_err("plat_priv is NULL!\n");
  827. ret = -ENODEV;
  828. goto out;
  829. }
  830. pinctrl_info = &plat_priv->pinctrl_info;
  831. if (state) {
  832. if (!IS_ERR_OR_NULL(pinctrl_info->bootstrap_active)) {
  833. ret = pinctrl_select_state
  834. (pinctrl_info->pinctrl,
  835. pinctrl_info->bootstrap_active);
  836. if (ret) {
  837. cnss_pr_err("Failed to select bootstrap active state, err = %d\n",
  838. ret);
  839. goto out;
  840. }
  841. udelay(BOOTSTRAP_DELAY);
  842. }
  843. if (!IS_ERR_OR_NULL(pinctrl_info->sol_default)) {
  844. ret = pinctrl_select_state
  845. (pinctrl_info->pinctrl,
  846. pinctrl_info->sol_default);
  847. if (ret) {
  848. cnss_pr_err("Failed to select sol default state, err = %d\n",
  849. ret);
  850. goto out;
  851. }
  852. cnss_pr_dbg("Selected sol default state\n");
  853. }
  854. cnss_set_xo_clk_gpio_state(plat_priv, true);
  855. if (!IS_ERR_OR_NULL(pinctrl_info->wlan_en_active)) {
  856. ret = pinctrl_select_state
  857. (pinctrl_info->pinctrl,
  858. pinctrl_info->wlan_en_active);
  859. if (ret) {
  860. cnss_pr_err("Failed to select wlan_en active state, err = %d\n",
  861. ret);
  862. goto out;
  863. }
  864. if (plat_priv->device_id == QCA6174_DEVICE_ID ||
  865. plat_priv->device_id == 0)
  866. udelay(WLAN_ENABLE_DELAY_ROME);
  867. else
  868. udelay(WLAN_ENABLE_DELAY);
  869. cnss_set_xo_clk_gpio_state(plat_priv, false);
  870. } else {
  871. cnss_set_xo_clk_gpio_state(plat_priv, false);
  872. goto out;
  873. }
  874. } else {
  875. if (!IS_ERR_OR_NULL(pinctrl_info->wlan_en_sleep)) {
  876. cnss_wlan_hw_disable_check(plat_priv);
  877. if (test_bit(CNSS_WLAN_HW_DISABLED, &plat_priv->driver_state)) {
  878. cnss_pr_dbg("Avoid WLAN_EN low. WLAN HW Disbaled");
  879. goto out;
  880. }
  881. ret = pinctrl_select_state(pinctrl_info->pinctrl,
  882. pinctrl_info->wlan_en_sleep);
  883. if (ret) {
  884. cnss_pr_err("Failed to select wlan_en sleep state, err = %d\n",
  885. ret);
  886. goto out;
  887. }
  888. } else {
  889. goto out;
  890. }
  891. }
  892. cnss_pr_dbg("WLAN_EN Value: %d\n", gpio_get_value(pinctrl_info->wlan_en_gpio));
  893. cnss_pr_dbg("%s WLAN_EN GPIO successfully\n",
  894. state ? "Assert" : "De-assert");
  895. return 0;
  896. out:
  897. return ret;
  898. }
  899. /**
  900. * cnss_select_pinctrl_enable - select WLAN_GPIO for Active pinctrl status
  901. * @plat_priv: Platform private data structure pointer
  902. *
  903. * For QCA6490, PMU requires minimum 100ms delay between BT_EN_GPIO off and
  904. * WLAN_EN_GPIO on. This is done to avoid power up issues.
  905. *
  906. * Return: Status of pinctrl select operation. 0 - Success.
  907. */
  908. static int cnss_select_pinctrl_enable(struct cnss_plat_data *plat_priv)
  909. {
  910. int ret = 0, bt_en_gpio = plat_priv->pinctrl_info.bt_en_gpio;
  911. u8 wlan_en_state = 0;
  912. if (bt_en_gpio < 0 || plat_priv->device_id != QCA6490_DEVICE_ID)
  913. goto set_wlan_en;
  914. if (gpio_get_value(bt_en_gpio)) {
  915. cnss_pr_dbg("BT_EN_GPIO State: On\n");
  916. ret = cnss_select_pinctrl_state(plat_priv, true);
  917. if (!ret)
  918. return ret;
  919. wlan_en_state = 1;
  920. }
  921. if (!gpio_get_value(bt_en_gpio)) {
  922. cnss_pr_dbg("BT_EN_GPIO State: Off. Delay WLAN_GPIO enable\n");
  923. /* check for BT_EN_GPIO down race during above operation */
  924. if (wlan_en_state) {
  925. cnss_pr_dbg("Reset WLAN_EN as BT got turned off during enable\n");
  926. cnss_select_pinctrl_state(plat_priv, false);
  927. wlan_en_state = 0;
  928. }
  929. /* 100 ms delay for BT_EN and WLAN_EN QCA6490 PMU sequencing */
  930. msleep(100);
  931. }
  932. set_wlan_en:
  933. if (!wlan_en_state)
  934. ret = cnss_select_pinctrl_state(plat_priv, true);
  935. return ret;
  936. }
  937. int cnss_get_input_gpio_value(struct cnss_plat_data *plat_priv, int gpio_num)
  938. {
  939. int ret;
  940. if (gpio_num < 0)
  941. return -EINVAL;
  942. ret = gpio_direction_input(gpio_num);
  943. if (ret) {
  944. cnss_pr_err("Failed to set direction of GPIO(%d), err = %d",
  945. gpio_num, ret);
  946. return -EINVAL;
  947. }
  948. return gpio_get_value(gpio_num);
  949. }
  950. int cnss_power_on_device(struct cnss_plat_data *plat_priv)
  951. {
  952. int ret = 0;
  953. if (plat_priv->powered_on) {
  954. cnss_pr_dbg("Already powered up");
  955. return 0;
  956. }
  957. cnss_wlan_hw_disable_check(plat_priv);
  958. if (test_bit(CNSS_WLAN_HW_DISABLED, &plat_priv->driver_state)) {
  959. cnss_pr_dbg("Avoid WLAN Power On. WLAN HW Disbaled");
  960. return -EINVAL;
  961. }
  962. ret = cnss_vreg_on_type(plat_priv, CNSS_VREG_PRIM);
  963. if (ret) {
  964. cnss_pr_err("Failed to turn on vreg, err = %d\n", ret);
  965. goto out;
  966. }
  967. ret = cnss_clk_on(plat_priv, &plat_priv->clk_list);
  968. if (ret) {
  969. cnss_pr_err("Failed to turn on clocks, err = %d\n", ret);
  970. goto vreg_off;
  971. }
  972. ret = cnss_select_pinctrl_enable(plat_priv);
  973. if (ret) {
  974. cnss_pr_err("Failed to select pinctrl state, err = %d\n", ret);
  975. goto clk_off;
  976. }
  977. plat_priv->powered_on = true;
  978. cnss_enable_dev_sol_irq(plat_priv);
  979. cnss_set_host_sol_value(plat_priv, 0);
  980. return 0;
  981. clk_off:
  982. cnss_clk_off(plat_priv, &plat_priv->clk_list);
  983. vreg_off:
  984. cnss_vreg_off_type(plat_priv, CNSS_VREG_PRIM);
  985. out:
  986. return ret;
  987. }
  988. void cnss_power_off_device(struct cnss_plat_data *plat_priv)
  989. {
  990. if (!plat_priv->powered_on) {
  991. cnss_pr_dbg("Already powered down");
  992. return;
  993. }
  994. cnss_disable_dev_sol_irq(plat_priv);
  995. cnss_select_pinctrl_state(plat_priv, false);
  996. cnss_clk_off(plat_priv, &plat_priv->clk_list);
  997. cnss_vreg_off_type(plat_priv, CNSS_VREG_PRIM);
  998. plat_priv->powered_on = false;
  999. }
  1000. bool cnss_is_device_powered_on(struct cnss_plat_data *plat_priv)
  1001. {
  1002. return plat_priv->powered_on;
  1003. }
  1004. void cnss_set_pin_connect_status(struct cnss_plat_data *plat_priv)
  1005. {
  1006. unsigned long pin_status = 0;
  1007. set_bit(CNSS_WLAN_EN, &pin_status);
  1008. set_bit(CNSS_PCIE_TXN, &pin_status);
  1009. set_bit(CNSS_PCIE_TXP, &pin_status);
  1010. set_bit(CNSS_PCIE_RXN, &pin_status);
  1011. set_bit(CNSS_PCIE_RXP, &pin_status);
  1012. set_bit(CNSS_PCIE_REFCLKN, &pin_status);
  1013. set_bit(CNSS_PCIE_REFCLKP, &pin_status);
  1014. set_bit(CNSS_PCIE_RST, &pin_status);
  1015. plat_priv->pin_result.host_pin_result = pin_status;
  1016. }
  1017. #if IS_ENABLED(CONFIG_QCOM_COMMAND_DB)
  1018. static int cnss_cmd_db_ready(struct cnss_plat_data *plat_priv)
  1019. {
  1020. return cmd_db_ready();
  1021. }
  1022. static u32 cnss_cmd_db_read_addr(struct cnss_plat_data *plat_priv,
  1023. const char *res_id)
  1024. {
  1025. return cmd_db_read_addr(res_id);
  1026. }
  1027. #else
  1028. static int cnss_cmd_db_ready(struct cnss_plat_data *plat_priv)
  1029. {
  1030. return -EOPNOTSUPP;
  1031. }
  1032. static u32 cnss_cmd_db_read_addr(struct cnss_plat_data *plat_priv,
  1033. const char *res_id)
  1034. {
  1035. return 0;
  1036. }
  1037. #endif
  1038. int cnss_get_tcs_info(struct cnss_plat_data *plat_priv)
  1039. {
  1040. struct platform_device *plat_dev = plat_priv->plat_dev;
  1041. struct resource *res;
  1042. resource_size_t addr_len;
  1043. void __iomem *tcs_cmd_base_addr;
  1044. int ret = 0;
  1045. res = platform_get_resource_byname(plat_dev, IORESOURCE_MEM, "tcs_cmd");
  1046. if (!res) {
  1047. cnss_pr_dbg("TCS CMD address is not present for CPR\n");
  1048. goto out;
  1049. }
  1050. plat_priv->tcs_info.cmd_base_addr = res->start;
  1051. addr_len = resource_size(res);
  1052. cnss_pr_dbg("TCS CMD base address is %pa with length %pa\n",
  1053. &plat_priv->tcs_info.cmd_base_addr, &addr_len);
  1054. tcs_cmd_base_addr = devm_ioremap(&plat_dev->dev, res->start, addr_len);
  1055. if (!tcs_cmd_base_addr) {
  1056. ret = -EINVAL;
  1057. cnss_pr_err("Failed to map TCS CMD address, err = %d\n",
  1058. ret);
  1059. goto out;
  1060. }
  1061. plat_priv->tcs_info.cmd_base_addr_io = tcs_cmd_base_addr;
  1062. return 0;
  1063. out:
  1064. return ret;
  1065. }
  1066. int cnss_get_cpr_info(struct cnss_plat_data *plat_priv)
  1067. {
  1068. struct platform_device *plat_dev = plat_priv->plat_dev;
  1069. struct cnss_cpr_info *cpr_info = &plat_priv->cpr_info;
  1070. const char *cmd_db_name;
  1071. u32 cpr_pmic_addr = 0;
  1072. int ret = 0;
  1073. if (plat_priv->tcs_info.cmd_base_addr == 0) {
  1074. cnss_pr_dbg("TCS CMD not configured\n");
  1075. return 0;
  1076. }
  1077. ret = of_property_read_string(plat_dev->dev.of_node,
  1078. "qcom,cmd_db_name", &cmd_db_name);
  1079. if (ret) {
  1080. cnss_pr_dbg("CommandDB name is not present for CPR\n");
  1081. goto out;
  1082. }
  1083. ret = cnss_cmd_db_ready(plat_priv);
  1084. if (ret) {
  1085. cnss_pr_err("CommandDB is not ready, err = %d\n", ret);
  1086. goto out;
  1087. }
  1088. cpr_pmic_addr = cnss_cmd_db_read_addr(plat_priv, cmd_db_name);
  1089. if (cpr_pmic_addr > 0) {
  1090. cpr_info->cpr_pmic_addr = cpr_pmic_addr;
  1091. cnss_pr_dbg("Get CPR PMIC address 0x%x from %s\n",
  1092. cpr_info->cpr_pmic_addr, cmd_db_name);
  1093. } else {
  1094. cnss_pr_err("CPR PMIC address is not available for %s\n",
  1095. cmd_db_name);
  1096. ret = -EINVAL;
  1097. goto out;
  1098. }
  1099. return 0;
  1100. out:
  1101. return ret;
  1102. }
  1103. #if IS_ENABLED(CONFIG_MSM_QMP)
  1104. int cnss_aop_mbox_init(struct cnss_plat_data *plat_priv)
  1105. {
  1106. struct mbox_client *mbox = &plat_priv->mbox_client_data;
  1107. struct mbox_chan *chan;
  1108. int ret;
  1109. plat_priv->mbox_chan = NULL;
  1110. mbox->dev = &plat_priv->plat_dev->dev;
  1111. mbox->tx_block = true;
  1112. mbox->tx_tout = CNSS_MBOX_TIMEOUT_MS;
  1113. mbox->knows_txdone = false;
  1114. chan = mbox_request_channel(mbox, 0);
  1115. if (IS_ERR(chan)) {
  1116. cnss_pr_err("Failed to get mbox channel\n");
  1117. return PTR_ERR(chan);
  1118. }
  1119. plat_priv->mbox_chan = chan;
  1120. cnss_pr_dbg("Mbox channel initialized\n");
  1121. ret = cnss_aop_pdc_reconfig(plat_priv);
  1122. if (ret)
  1123. cnss_pr_err("Failed to reconfig WLAN PDC, err = %d\n", ret);
  1124. return 0;
  1125. }
  1126. /**
  1127. * cnss_aop_send_msg: Sends json message to AOP using QMP
  1128. * @plat_priv: Pointer to cnss platform data
  1129. * @msg: String in json format
  1130. *
  1131. * AOP accepts JSON message to configure WLAN resources. Format as follows:
  1132. * To send VReg config: {class: wlan_pdc, ss: <pdc_name>,
  1133. * res: <VReg_name>.<param>, <seq_param>: <value>}
  1134. * To send PDC Config: {class: wlan_pdc, ss: <pdc_name>, res: pdc,
  1135. * enable: <Value>}
  1136. * QMP returns timeout error if format not correct or AOP operation fails.
  1137. *
  1138. * Return: 0 for success
  1139. */
  1140. int cnss_aop_send_msg(struct cnss_plat_data *plat_priv, char *mbox_msg)
  1141. {
  1142. struct qmp_pkt pkt;
  1143. int ret = 0;
  1144. cnss_pr_dbg("Sending AOP Mbox msg: %s\n", mbox_msg);
  1145. pkt.size = CNSS_MBOX_MSG_MAX_LEN;
  1146. pkt.data = mbox_msg;
  1147. ret = mbox_send_message(plat_priv->mbox_chan, &pkt);
  1148. if (ret < 0)
  1149. cnss_pr_err("Failed to send AOP mbox msg: %s\n", mbox_msg);
  1150. else
  1151. ret = 0;
  1152. return ret;
  1153. }
  1154. /* cnss_pdc_reconfig: Send PDC init table as configured in DT for wlan device */
  1155. int cnss_aop_pdc_reconfig(struct cnss_plat_data *plat_priv)
  1156. {
  1157. u32 i;
  1158. int ret;
  1159. if (plat_priv->pdc_init_table_len <= 0 || !plat_priv->pdc_init_table)
  1160. return 0;
  1161. cnss_pr_dbg("Setting PDC defaults for device ID: %d\n",
  1162. plat_priv->device_id);
  1163. for (i = 0; i < plat_priv->pdc_init_table_len; i++) {
  1164. ret = cnss_aop_send_msg(plat_priv,
  1165. (char *)plat_priv->pdc_init_table[i]);
  1166. if (ret < 0)
  1167. break;
  1168. }
  1169. return ret;
  1170. }
  1171. /* cnss_aop_pdc_name_str: Get PDC name corresponding to VReg from DT Mapiping */
  1172. static const char *cnss_aop_pdc_name_str(struct cnss_plat_data *plat_priv,
  1173. const char *vreg_name)
  1174. {
  1175. u32 i;
  1176. static const char * const aop_pdc_ss_str[] = {"rf", "bb"};
  1177. const char *pdc = aop_pdc_ss_str[0], *vreg_map_name;
  1178. if (plat_priv->vreg_pdc_map_len <= 0 || !plat_priv->vreg_pdc_map)
  1179. goto end;
  1180. for (i = 0; i < plat_priv->vreg_pdc_map_len; i++) {
  1181. vreg_map_name = plat_priv->vreg_pdc_map[i];
  1182. if (strnstr(vreg_map_name, vreg_name, strlen(vreg_map_name))) {
  1183. pdc = plat_priv->vreg_pdc_map[i + 1];
  1184. break;
  1185. }
  1186. }
  1187. end:
  1188. cnss_pr_dbg("%s mapped to %s\n", vreg_name, pdc);
  1189. return pdc;
  1190. }
  1191. static int cnss_aop_set_vreg_param(struct cnss_plat_data *plat_priv,
  1192. const char *vreg_name,
  1193. enum cnss_aop_vreg_param param,
  1194. enum cnss_aop_tcs_seq_param seq_param,
  1195. int val)
  1196. {
  1197. char msg[CNSS_MBOX_MSG_MAX_LEN];
  1198. static const char * const aop_vreg_param_str[] = {
  1199. [CNSS_VREG_VOLTAGE] = "v", [CNSS_VREG_MODE] = "m",
  1200. [CNSS_VREG_ENABLE] = "e",};
  1201. static const char * const aop_tcs_seq_str[] = {
  1202. [CNSS_TCS_UP_SEQ] = "upval", [CNSS_TCS_DOWN_SEQ] = "dwnval",
  1203. [CNSS_TCS_ENABLE_SEQ] = "enable",};
  1204. if (param >= CNSS_VREG_PARAM_MAX || seq_param >= CNSS_TCS_SEQ_MAX ||
  1205. !vreg_name)
  1206. return -EINVAL;
  1207. snprintf(msg, CNSS_MBOX_MSG_MAX_LEN,
  1208. "{class: wlan_pdc, ss: %s, res: %s.%s, %s: %d}",
  1209. cnss_aop_pdc_name_str(plat_priv, vreg_name),
  1210. vreg_name, aop_vreg_param_str[param],
  1211. aop_tcs_seq_str[seq_param], val);
  1212. return cnss_aop_send_msg(plat_priv, msg);
  1213. }
  1214. int cnss_aop_ol_cpr_cfg_setup(struct cnss_plat_data *plat_priv,
  1215. struct wlfw_pmu_cfg_v01 *fw_pmu_cfg)
  1216. {
  1217. const char *pmu_pin, *vreg;
  1218. struct wlfw_pmu_param_v01 *fw_pmu_param;
  1219. u32 fw_pmu_param_len, i, j, plat_vreg_param_len = 0;
  1220. int ret = 0;
  1221. struct platform_vreg_param {
  1222. char vreg[MAX_PROP_SIZE];
  1223. u32 wake_volt;
  1224. u32 sleep_volt;
  1225. } plat_vreg_param[QMI_WLFW_PMU_PARAMS_MAX_V01] = {0};
  1226. static bool config_done;
  1227. if (config_done)
  1228. return 0;
  1229. if (plat_priv->pmu_vreg_map_len <= 0 || !plat_priv->mbox_chan ||
  1230. !plat_priv->pmu_vreg_map) {
  1231. cnss_pr_dbg("Mbox channel / PMU VReg Map not configured\n");
  1232. goto end;
  1233. }
  1234. if (!fw_pmu_cfg)
  1235. return -EINVAL;
  1236. fw_pmu_param = fw_pmu_cfg->pmu_param;
  1237. fw_pmu_param_len = fw_pmu_cfg->pmu_param_len;
  1238. /* Get PMU Pin name to Platfom Vreg Mapping */
  1239. for (i = 0; i < fw_pmu_param_len; i++) {
  1240. cnss_pr_dbg("FW_PMU Data: %s %d %d %d %d\n",
  1241. fw_pmu_param[i].pin_name,
  1242. fw_pmu_param[i].wake_volt_valid,
  1243. fw_pmu_param[i].wake_volt,
  1244. fw_pmu_param[i].sleep_volt_valid,
  1245. fw_pmu_param[i].sleep_volt);
  1246. if (!fw_pmu_param[i].wake_volt_valid &&
  1247. !fw_pmu_param[i].sleep_volt_valid)
  1248. continue;
  1249. vreg = NULL;
  1250. for (j = 0; j < plat_priv->pmu_vreg_map_len; j += 2) {
  1251. pmu_pin = plat_priv->pmu_vreg_map[j];
  1252. if (strnstr(pmu_pin, fw_pmu_param[i].pin_name,
  1253. strlen(pmu_pin))) {
  1254. vreg = plat_priv->pmu_vreg_map[j + 1];
  1255. break;
  1256. }
  1257. }
  1258. if (!vreg) {
  1259. cnss_pr_err("No VREG mapping for %s\n",
  1260. fw_pmu_param[i].pin_name);
  1261. continue;
  1262. } else {
  1263. cnss_pr_dbg("%s mapped to %s\n",
  1264. fw_pmu_param[i].pin_name, vreg);
  1265. }
  1266. for (j = 0; j < QMI_WLFW_PMU_PARAMS_MAX_V01; j++) {
  1267. u32 wake_volt = 0, sleep_volt = 0;
  1268. if (plat_vreg_param[j].vreg[0] == '\0')
  1269. strlcpy(plat_vreg_param[j].vreg, vreg,
  1270. sizeof(plat_vreg_param[j].vreg));
  1271. else if (!strnstr(plat_vreg_param[j].vreg, vreg,
  1272. strlen(plat_vreg_param[j].vreg)))
  1273. continue;
  1274. if (fw_pmu_param[i].wake_volt_valid)
  1275. wake_volt = roundup(fw_pmu_param[i].wake_volt,
  1276. CNSS_PMIC_VOLTAGE_STEP) -
  1277. CNSS_PMIC_AUTO_HEADROOM +
  1278. CNSS_IR_DROP_WAKE;
  1279. if (fw_pmu_param[i].sleep_volt_valid)
  1280. sleep_volt = roundup(fw_pmu_param[i].sleep_volt,
  1281. CNSS_PMIC_VOLTAGE_STEP) -
  1282. CNSS_PMIC_AUTO_HEADROOM +
  1283. CNSS_IR_DROP_SLEEP;
  1284. plat_vreg_param[j].wake_volt =
  1285. (wake_volt > plat_vreg_param[j].wake_volt ?
  1286. wake_volt : plat_vreg_param[j].wake_volt);
  1287. plat_vreg_param[j].sleep_volt =
  1288. (sleep_volt > plat_vreg_param[j].sleep_volt ?
  1289. sleep_volt : plat_vreg_param[j].sleep_volt);
  1290. plat_vreg_param_len = (plat_vreg_param_len > j ?
  1291. plat_vreg_param_len : j);
  1292. cnss_pr_dbg("Plat VReg Data: %s %d %d\n",
  1293. plat_vreg_param[j].vreg,
  1294. plat_vreg_param[j].wake_volt,
  1295. plat_vreg_param[j].sleep_volt);
  1296. break;
  1297. }
  1298. }
  1299. for (i = 0; i <= plat_vreg_param_len; i++) {
  1300. if (plat_vreg_param[i].wake_volt > 0) {
  1301. ret =
  1302. cnss_aop_set_vreg_param(plat_priv,
  1303. plat_vreg_param[i].vreg,
  1304. CNSS_VREG_VOLTAGE,
  1305. CNSS_TCS_UP_SEQ,
  1306. plat_vreg_param[i].wake_volt);
  1307. }
  1308. if (plat_vreg_param[i].sleep_volt > 0) {
  1309. ret =
  1310. cnss_aop_set_vreg_param(plat_priv,
  1311. plat_vreg_param[i].vreg,
  1312. CNSS_VREG_VOLTAGE,
  1313. CNSS_TCS_DOWN_SEQ,
  1314. plat_vreg_param[i].sleep_volt);
  1315. }
  1316. if (ret < 0)
  1317. break;
  1318. }
  1319. end:
  1320. config_done = true;
  1321. return ret;
  1322. }
  1323. #else
  1324. int cnss_aop_mbox_init(struct cnss_plat_data *plat_priv)
  1325. {
  1326. return 0;
  1327. }
  1328. int cnss_aop_send_msg(struct cnss_plat_data *plat_priv, char *msg)
  1329. {
  1330. return 0;
  1331. }
  1332. int cnss_aop_pdc_reconfig(struct cnss_plat_data *plat_priv)
  1333. {
  1334. return 0;
  1335. }
  1336. static int cnss_aop_set_vreg_param(struct cnss_plat_data *plat_priv,
  1337. const char *vreg_name,
  1338. enum cnss_aop_vreg_param param,
  1339. enum cnss_aop_tcs_seq_param seq_param,
  1340. int val)
  1341. {
  1342. return 0;
  1343. }
  1344. int cnss_aop_ol_cpr_cfg_setup(struct cnss_plat_data *plat_priv,
  1345. struct wlfw_pmu_cfg_v01 *fw_pmu_cfg)
  1346. {
  1347. return 0;
  1348. }
  1349. #endif
  1350. void cnss_power_misc_params_init(struct cnss_plat_data *plat_priv)
  1351. {
  1352. struct device *dev = &plat_priv->plat_dev->dev;
  1353. int ret;
  1354. /* common DT Entries */
  1355. plat_priv->pdc_init_table_len =
  1356. of_property_count_strings(dev->of_node,
  1357. "qcom,pdc_init_table");
  1358. if (plat_priv->pdc_init_table_len > 0) {
  1359. plat_priv->pdc_init_table =
  1360. kcalloc(plat_priv->pdc_init_table_len,
  1361. sizeof(char *), GFP_KERNEL);
  1362. ret =
  1363. of_property_read_string_array(dev->of_node,
  1364. "qcom,pdc_init_table",
  1365. plat_priv->pdc_init_table,
  1366. plat_priv->pdc_init_table_len);
  1367. if (ret < 0)
  1368. cnss_pr_err("Failed to get PDC Init Table\n");
  1369. } else {
  1370. cnss_pr_dbg("PDC Init Table not configured\n");
  1371. }
  1372. plat_priv->vreg_pdc_map_len =
  1373. of_property_count_strings(dev->of_node,
  1374. "qcom,vreg_pdc_map");
  1375. if (plat_priv->vreg_pdc_map_len > 0) {
  1376. plat_priv->vreg_pdc_map =
  1377. kcalloc(plat_priv->vreg_pdc_map_len,
  1378. sizeof(char *), GFP_KERNEL);
  1379. ret =
  1380. of_property_read_string_array(dev->of_node,
  1381. "qcom,vreg_pdc_map",
  1382. plat_priv->vreg_pdc_map,
  1383. plat_priv->vreg_pdc_map_len);
  1384. if (ret < 0)
  1385. cnss_pr_err("Failed to get VReg PDC Mapping\n");
  1386. } else {
  1387. cnss_pr_dbg("VReg PDC Mapping not configured\n");
  1388. }
  1389. plat_priv->pmu_vreg_map_len =
  1390. of_property_count_strings(dev->of_node,
  1391. "qcom,pmu_vreg_map");
  1392. if (plat_priv->pmu_vreg_map_len > 0) {
  1393. plat_priv->pmu_vreg_map = kcalloc(plat_priv->pmu_vreg_map_len,
  1394. sizeof(char *), GFP_KERNEL);
  1395. ret =
  1396. of_property_read_string_array(dev->of_node, "qcom,pmu_vreg_map",
  1397. plat_priv->pmu_vreg_map,
  1398. plat_priv->pmu_vreg_map_len);
  1399. if (ret < 0)
  1400. cnss_pr_err("Fail to get PMU VReg Mapping\n");
  1401. } else {
  1402. cnss_pr_dbg("PMU VReg Mapping not configured\n");
  1403. }
  1404. /* Device DT Specific */
  1405. if (plat_priv->device_id == QCA6390_DEVICE_ID ||
  1406. plat_priv->device_id == QCA6490_DEVICE_ID) {
  1407. ret = of_property_read_string(dev->of_node,
  1408. "qcom,vreg_ol_cpr",
  1409. &plat_priv->vreg_ol_cpr);
  1410. if (ret)
  1411. cnss_pr_dbg("VReg for QCA6490 OL CPR not configured\n");
  1412. ret = of_property_read_string(dev->of_node,
  1413. "qcom,vreg_ipa",
  1414. &plat_priv->vreg_ipa);
  1415. if (ret)
  1416. cnss_pr_dbg("VReg for QCA6490 Int Power Amp not configured\n");
  1417. }
  1418. }
  1419. int cnss_update_cpr_info(struct cnss_plat_data *plat_priv)
  1420. {
  1421. struct cnss_cpr_info *cpr_info = &plat_priv->cpr_info;
  1422. u32 pmic_addr, voltage = 0, voltage_tmp, offset;
  1423. void __iomem *tcs_cmd_addr, *tcs_cmd_data_addr;
  1424. int i, j;
  1425. if (cpr_info->voltage == 0) {
  1426. cnss_pr_err("OL CPR Voltage %dm is not valid\n",
  1427. cpr_info->voltage);
  1428. return -EINVAL;
  1429. }
  1430. if (plat_priv->device_id != QCA6490_DEVICE_ID)
  1431. return -EINVAL;
  1432. if (!plat_priv->vreg_ol_cpr || !plat_priv->mbox_chan) {
  1433. cnss_pr_dbg("Mbox channel / OL CPR Vreg not configured\n");
  1434. } else {
  1435. return cnss_aop_set_vreg_param(plat_priv,
  1436. plat_priv->vreg_ol_cpr,
  1437. CNSS_VREG_VOLTAGE,
  1438. CNSS_TCS_DOWN_SEQ,
  1439. cpr_info->voltage);
  1440. }
  1441. if (plat_priv->tcs_info.cmd_base_addr == 0) {
  1442. cnss_pr_dbg("TCS CMD not configured for OL CPR update\n");
  1443. return 0;
  1444. }
  1445. if (cpr_info->cpr_pmic_addr == 0) {
  1446. cnss_pr_err("PMIC address 0x%x is not valid\n",
  1447. cpr_info->cpr_pmic_addr);
  1448. return -EINVAL;
  1449. }
  1450. if (cpr_info->tcs_cmd_data_addr_io)
  1451. goto update_cpr;
  1452. for (i = 0; i < MAX_TCS_NUM; i++) {
  1453. for (j = 0; j < MAX_TCS_CMD_NUM; j++) {
  1454. offset = i * TCS_OFFSET + j * TCS_CMD_OFFSET;
  1455. tcs_cmd_addr = plat_priv->tcs_info.cmd_base_addr_io +
  1456. offset;
  1457. pmic_addr = readl_relaxed(tcs_cmd_addr);
  1458. if (pmic_addr == cpr_info->cpr_pmic_addr) {
  1459. tcs_cmd_data_addr = tcs_cmd_addr +
  1460. TCS_CMD_DATA_ADDR_OFFSET;
  1461. voltage_tmp = readl_relaxed(tcs_cmd_data_addr);
  1462. cnss_pr_dbg("Got voltage %dmV from i: %d, j: %d\n",
  1463. voltage_tmp, i, j);
  1464. if (voltage_tmp > voltage) {
  1465. voltage = voltage_tmp;
  1466. cpr_info->tcs_cmd_data_addr =
  1467. plat_priv->tcs_info.cmd_base_addr +
  1468. offset + TCS_CMD_DATA_ADDR_OFFSET;
  1469. cpr_info->tcs_cmd_data_addr_io =
  1470. tcs_cmd_data_addr;
  1471. }
  1472. }
  1473. }
  1474. }
  1475. if (!cpr_info->tcs_cmd_data_addr_io) {
  1476. cnss_pr_err("Failed to find proper TCS CMD data address\n");
  1477. return -EINVAL;
  1478. }
  1479. update_cpr:
  1480. cpr_info->voltage = cpr_info->voltage > BT_CXMX_VOLTAGE_MV ?
  1481. cpr_info->voltage : BT_CXMX_VOLTAGE_MV;
  1482. cnss_pr_dbg("Update TCS CMD data address %pa with voltage %dmV\n",
  1483. &cpr_info->tcs_cmd_data_addr, cpr_info->voltage);
  1484. writel_relaxed(cpr_info->voltage, cpr_info->tcs_cmd_data_addr_io);
  1485. return 0;
  1486. }
  1487. int cnss_enable_int_pow_amp_vreg(struct cnss_plat_data *plat_priv)
  1488. {
  1489. struct platform_device *plat_dev = plat_priv->plat_dev;
  1490. u32 offset, addr_val, data_val;
  1491. void __iomem *tcs_cmd;
  1492. int ret;
  1493. static bool config_done;
  1494. if (plat_priv->device_id != QCA6490_DEVICE_ID)
  1495. return -EINVAL;
  1496. if (config_done) {
  1497. cnss_pr_dbg("IPA Vreg already configured\n");
  1498. return 0;
  1499. }
  1500. if (!plat_priv->vreg_ipa || !plat_priv->mbox_chan) {
  1501. cnss_pr_dbg("Mbox channel / IPA Vreg not configured\n");
  1502. } else {
  1503. ret = cnss_aop_set_vreg_param(plat_priv,
  1504. plat_priv->vreg_ipa,
  1505. CNSS_VREG_ENABLE,
  1506. CNSS_TCS_UP_SEQ, 1);
  1507. if (ret == 0)
  1508. config_done = true;
  1509. return ret;
  1510. }
  1511. if (!plat_priv->tcs_info.cmd_base_addr_io) {
  1512. cnss_pr_err("TCS CMD not configured for IPA Vreg enable\n");
  1513. return -EINVAL;
  1514. }
  1515. ret = of_property_read_u32(plat_dev->dev.of_node,
  1516. "qcom,tcs_offset_int_pow_amp_vreg",
  1517. &offset);
  1518. if (ret) {
  1519. cnss_pr_dbg("Internal Power Amp Vreg not configured\n");
  1520. return -EINVAL;
  1521. }
  1522. tcs_cmd = plat_priv->tcs_info.cmd_base_addr_io + offset;
  1523. addr_val = readl_relaxed(tcs_cmd);
  1524. tcs_cmd += TCS_CMD_DATA_ADDR_OFFSET;
  1525. /* 1 = enable Vreg */
  1526. writel_relaxed(1, tcs_cmd);
  1527. data_val = readl_relaxed(tcs_cmd);
  1528. cnss_pr_dbg("Setup S3E TCS Addr: %x Data: %d\n", addr_val, data_val);
  1529. config_done = true;
  1530. return 0;
  1531. }
  1532. int cnss_dev_specific_power_on(struct cnss_plat_data *plat_priv)
  1533. {
  1534. int ret;
  1535. if (plat_priv->dt_type != CNSS_DTT_MULTIEXCHG)
  1536. return 0;
  1537. ret = cnss_get_vreg_type(plat_priv, CNSS_VREG_PRIM);
  1538. if (ret)
  1539. return ret;
  1540. plat_priv->powered_on = false;
  1541. return cnss_power_on_device(plat_priv);
  1542. }