cnss_prealloc.c 7.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298
  1. // SPDX-License-Identifier: GPL-2.0-only
  2. /* Copyright (c) 2012,2014-2017,2019-2021 The Linux Foundation. All rights reserved. */
  3. #include <linux/module.h>
  4. #include <linux/slab.h>
  5. #include <linux/mempool.h>
  6. #include <linux/mm.h>
  7. #include <linux/err.h>
  8. #include <linux/of.h>
  9. #ifdef CONFIG_CNSS_OUT_OF_TREE
  10. #include "cnss_prealloc.h"
  11. #else
  12. #include <net/cnss_prealloc.h>
  13. #endif
  14. MODULE_LICENSE("GPL v2");
  15. MODULE_DESCRIPTION("CNSS prealloc driver");
  16. /* cnss preallocation scheme is a memory pool that always tries to keep a
  17. * list of free memory for use in emergencies. It is implemented on kernel
  18. * features: memorypool and kmem cache.
  19. */
  20. struct cnss_pool {
  21. size_t size;
  22. int min;
  23. const char name[50];
  24. mempool_t *mp;
  25. struct kmem_cache *cache;
  26. };
  27. /**
  28. * Memory pool
  29. * -----------
  30. *
  31. * How to update this table:
  32. *
  33. * 1. Add a new row with following elements
  34. * size : Size of one allocation unit in bytes.
  35. * min : Minimum units to be reserved. Used only if a regular
  36. * allocation fails.
  37. * name : Name of the cache/pool. Will be displayed in /proc/slabinfo
  38. * if not merged with another pool.
  39. * mp : A pointer to memory pool. Updated during init.
  40. * cache : A pointer to cache. Updated during init.
  41. * 2. Always keep the table in increasing order
  42. * 3. Please keep the reserve pool as minimum as possible as it's always
  43. * preallocated.
  44. * 4. Always profile with different use cases after updating this table.
  45. * 5. A dynamic view of this pool can be viewed at /proc/slabinfo.
  46. * 6. Each pool has a sys node at /sys/kernel/slab/<name>
  47. *
  48. */
  49. /* size, min pool reserve, name, memorypool handler, cache handler*/
  50. static struct cnss_pool cnss_pools[] = {
  51. {8 * 1024, 22, "cnss-pool-8k", NULL, NULL},
  52. {16 * 1024, 16, "cnss-pool-16k", NULL, NULL},
  53. {32 * 1024, 6, "cnss-pool-32k", NULL, NULL},
  54. {64 * 1024, 8, "cnss-pool-64k", NULL, NULL},
  55. {128 * 1024, 2, "cnss-pool-128k", NULL, NULL},
  56. };
  57. /**
  58. * cnss_pool_alloc_threshold() - Allocation threshold
  59. *
  60. * Minimum memory size to be part of cnss pool.
  61. *
  62. * Return: Size
  63. *
  64. */
  65. static inline size_t cnss_pool_alloc_threshold(void)
  66. {
  67. return cnss_pools[0].size;
  68. }
  69. /**
  70. * cnss_pool_int() - Initialize memory pools.
  71. *
  72. * Create cnss pools as configured by cnss_pools[]. It is the responsibility of
  73. * the caller to invoke cnss_pool_deinit() routine to clean it up. This
  74. * function needs to be called at early boot to preallocate minimum buffers in
  75. * the pool.
  76. *
  77. * Return: 0 - success, otherwise error code.
  78. *
  79. */
  80. static int cnss_pool_init(void)
  81. {
  82. int i;
  83. for (i = 0; i < ARRAY_SIZE(cnss_pools); i++) {
  84. /* Create the slab cache */
  85. cnss_pools[i].cache =
  86. kmem_cache_create_usercopy(cnss_pools[i].name,
  87. cnss_pools[i].size, 0,
  88. SLAB_ACCOUNT, 0,
  89. cnss_pools[i].size, NULL);
  90. if (!cnss_pools[i].cache) {
  91. pr_err("cnss_prealloc: cache %s failed\n",
  92. cnss_pools[i].name);
  93. continue;
  94. }
  95. /* Create the pool and associate to slab cache */
  96. cnss_pools[i].mp =
  97. mempool_create(cnss_pools[i].min, mempool_alloc_slab,
  98. mempool_free_slab, cnss_pools[i].cache);
  99. if (!cnss_pools[i].mp) {
  100. pr_err("cnss_prealloc: mempool %s failed\n",
  101. cnss_pools[i].name);
  102. kmem_cache_destroy(cnss_pools[i].cache);
  103. cnss_pools[i].cache = NULL;
  104. continue;
  105. }
  106. pr_info("cnss_prealloc: created mempool %s of min size %d * %zu\n",
  107. cnss_pools[i].name, cnss_pools[i].min,
  108. cnss_pools[i].size);
  109. }
  110. return 0;
  111. }
  112. /**
  113. * cnss_pool_deinit() - Free memory pools.
  114. *
  115. * Free the memory pools and return resources back to the system. It warns
  116. * if there is any pending element in memory pool or cache.
  117. *
  118. */
  119. static void cnss_pool_deinit(void)
  120. {
  121. int i;
  122. for (i = 0; i < ARRAY_SIZE(cnss_pools); i++) {
  123. pr_info("cnss_prealloc: destroy mempool %s\n",
  124. cnss_pools[i].name);
  125. mempool_destroy(cnss_pools[i].mp);
  126. kmem_cache_destroy(cnss_pools[i].cache);
  127. }
  128. }
  129. /**
  130. * cnss_pool_get_index() - Get the index of memory pool
  131. * @mem: Allocated memory
  132. *
  133. * Returns the index of the memory pool which fits the reqested memory. The
  134. * complexity of this check is O(num of memory pools). Returns a negative
  135. * value with error code in case of failure.
  136. *
  137. */
  138. static int cnss_pool_get_index(void *mem)
  139. {
  140. struct page *page;
  141. struct kmem_cache *cache;
  142. int i;
  143. if (!virt_addr_valid(mem))
  144. return -EINVAL;
  145. /* mem -> page -> cache */
  146. page = virt_to_head_page(mem);
  147. if (!page)
  148. return -ENOENT;
  149. cache = page->slab_cache;
  150. if (!cache)
  151. return -ENOENT;
  152. /* Check if memory belongs to a pool */
  153. for (i = 0; i < ARRAY_SIZE(cnss_pools); i++) {
  154. if (cnss_pools[i].cache == cache)
  155. return i;
  156. }
  157. return -ENOENT;
  158. }
  159. /**
  160. * wcnss_prealloc_get() - Get preallocated memory from a pool
  161. * @size: Size to allocate
  162. *
  163. * Memory pool is chosen based on the size. If memory is not available in a
  164. * given pool it goes to next higher sized pool until it succeeds.
  165. *
  166. * Return: A void pointer to allocated memory
  167. */
  168. void *wcnss_prealloc_get(size_t size)
  169. {
  170. void *mem = NULL;
  171. gfp_t gfp_mask = __GFP_ZERO;
  172. int i;
  173. if (in_interrupt() || irqs_disabled())
  174. gfp_mask |= GFP_ATOMIC;
  175. else
  176. gfp_mask |= GFP_KERNEL;
  177. if (size >= cnss_pool_alloc_threshold()) {
  178. for (i = 0; i < ARRAY_SIZE(cnss_pools); i++) {
  179. if (cnss_pools[i].size >= size) {
  180. mem = mempool_alloc(cnss_pools[i].mp, gfp_mask);
  181. if (mem)
  182. break;
  183. }
  184. }
  185. }
  186. if (!mem && size >= cnss_pool_alloc_threshold()) {
  187. pr_debug("cnss_prealloc: not available for size %zu, flag %x\n",
  188. size, gfp_mask);
  189. }
  190. return mem;
  191. }
  192. EXPORT_SYMBOL(wcnss_prealloc_get);
  193. /**
  194. * wcnss_prealloc_put() - Relase allocated memory
  195. * @mem: Allocated memory
  196. *
  197. * Free the memory got by wcnss_prealloc_get() to slab or pool reserve if memory
  198. * pool doesn't have enough elements.
  199. *
  200. * Return: 1 - success
  201. * 0 - fail
  202. */
  203. int wcnss_prealloc_put(void *mem)
  204. {
  205. int i;
  206. if (!mem)
  207. return 0;
  208. i = cnss_pool_get_index(mem);
  209. if (i >= 0 && i < ARRAY_SIZE(cnss_pools)) {
  210. mempool_free(mem, cnss_pools[i].mp);
  211. return 1;
  212. }
  213. return 0;
  214. }
  215. EXPORT_SYMBOL(wcnss_prealloc_put);
  216. /* Not implemented. Make use of Linux SLAB features. */
  217. void wcnss_prealloc_check_memory_leak(void) {}
  218. EXPORT_SYMBOL(wcnss_prealloc_check_memory_leak);
  219. /* Not implemented. Make use of Linux SLAB features. */
  220. int wcnss_pre_alloc_reset(void) { return -EOPNOTSUPP; }
  221. EXPORT_SYMBOL(wcnss_pre_alloc_reset);
  222. /**
  223. * cnss_prealloc_is_valid_dt_node_found - Check if valid device tree node
  224. * present
  225. *
  226. * Valid device tree node means a node with "qcom,wlan" property present
  227. * and "status" property not disabled.
  228. *
  229. * Return: true if valid device tree node found, false if not found
  230. */
  231. static bool cnss_prealloc_is_valid_dt_node_found(void)
  232. {
  233. struct device_node *dn = NULL;
  234. for_each_node_with_property(dn, "qcom,wlan") {
  235. if (of_device_is_available(dn))
  236. break;
  237. }
  238. if (dn)
  239. return true;
  240. return false;
  241. }
  242. static int __init cnss_prealloc_init(void)
  243. {
  244. if (!cnss_prealloc_is_valid_dt_node_found())
  245. return -ENODEV;
  246. return cnss_pool_init();
  247. }
  248. static void __exit cnss_prealloc_exit(void)
  249. {
  250. cnss_pool_deinit();
  251. }
  252. module_init(cnss_prealloc_init);
  253. module_exit(cnss_prealloc_exit);