Dateien
android_kernel_samsung_sm86…/dsp/adsprpc.c
Anirudh Raghavendra 7e0eff3f2b adsprpc: Modify code to pass compilation
Add missing module import to macro for DMA_BUF and add fallthrough
statements

Change-Id: Ied625ee1000afca9f269989ff2635ea04a8fe196
Signed-off-by: Anirudh Raghavendra <quic_araghave@quicinc.com>
2022-08-16 10:33:07 -07:00

7976 Zeilen
210 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (c) 2012-2021, The Linux Foundation. All rights reserved.
* Copyright (c) 2022, Qualcomm Innovation Center, Inc. All rights reserved.
*/
/* Uncomment this block to log an error on every VERIFY failure */
/*
* #ifndef VERIFY_PRINT_ERROR
* #define VERIFY_PRINT_ERROR
* #endif
*/
#include <linux/dma-buf.h>
#include <linux/dma-mapping.h>
#include <linux/qcom-dma-mapping.h>
#include <linux/slab.h>
#include <linux/completion.h>
#include <linux/pagemap.h>
#include <linux/mm.h>
#include <linux/wait.h>
#include <linux/sched.h>
#include <linux/module.h>
#include <linux/list.h>
#include <linux/hash.h>
#include <linux/msm_ion.h>
#include <soc/qcom/secure_buffer.h>
#include <linux/ipc_logging.h>
#include <linux/remoteproc/qcom_rproc.h>
#include <linux/scatterlist.h>
#include <linux/uaccess.h>
#include <linux/device.h>
#include <linux/of.h>
#include <linux/of_address.h>
#include <linux/of_platform.h>
#include <linux/dma-map-ops.h>
#include <linux/cma.h>
#include <linux/iommu.h>
#include <linux/sort.h>
#include <linux/cred.h>
#include <linux/msm_dma_iommu_mapping.h>
#include "adsprpc_compat.h"
#include "adsprpc_shared.h"
#include <linux/fastrpc.h>
#include <soc/qcom/qcom_ramdump.h>
#include <soc/qcom/minidump.h>
#include <linux/delay.h>
#include <linux/debugfs.h>
#include <linux/pm_qos.h>
#include <linux/stat.h>
#include <linux/preempt.h>
#include <linux/of_reserved_mem.h>
#include <linux/soc/qcom/pdr.h>
#include <linux/soc/qcom/qmi.h>
#include <linux/mem-buf.h>
#include <asm/arch_timer.h>
#define CREATE_TRACE_POINTS
#include <trace/events/fastrpc.h>
#define TZ_PIL_PROTECT_MEM_SUBSYS_ID 0x0C
#define TZ_PIL_CLEAR_PROTECT_MEM_SUBSYS_ID 0x0D
#define TZ_PIL_AUTH_QDSP6_PROC 1
#define FASTRPC_ENOSUCH 39
#define DEBUGFS_SIZE 3072
#define PID_SIZE 10
#define AUDIO_PDR_ADSP_DTSI_PROPERTY_NAME "qcom,fastrpc-adsp-audio-pdr"
#define AUDIO_PDR_SERVICE_LOCATION_CLIENT_NAME "audio_pdr_adsprpc"
#define AUDIO_PDR_ADSP_SERVICE_NAME "avs/audio"
#define ADSP_AUDIOPD_NAME "msm/adsp/audio_pd"
#define SENSORS_PDR_ADSP_DTSI_PROPERTY_NAME "qcom,fastrpc-adsp-sensors-pdr"
#define SENSORS_PDR_ADSP_SERVICE_LOCATION_CLIENT_NAME "sensors_pdr_adsprpc"
#define SENSORS_PDR_ADSP_SERVICE_NAME "tms/servreg"
#define ADSP_SENSORPD_NAME "msm/adsp/sensor_pd"
#define SENSORS_PDR_SLPI_DTSI_PROPERTY_NAME "qcom,fastrpc-slpi-sensors-pdr"
#define SENSORS_PDR_SLPI_SERVICE_LOCATION_CLIENT_NAME "sensors_pdr_sdsprpc"
#define SENSORS_PDR_SLPI_SERVICE_NAME SENSORS_PDR_ADSP_SERVICE_NAME
#define SLPI_SENSORPD_NAME "msm/slpi/sensor_pd"
#define FASTRPC_SECURE_WAKE_SOURCE_CLIENT_NAME "adsprpc-secure"
#define FASTRPC_NON_SECURE_WAKE_SOURCE_CLIENT_NAME "adsprpc-non_secure"
#define RPC_TIMEOUT (5 * HZ)
#define BALIGN 128
#define M_FDLIST (16)
#define M_CRCLIST (64)
#define M_KERNEL_PERF_LIST (PERF_KEY_MAX)
#define M_DSP_PERF_LIST (12)
#define SESSION_ID_INDEX (30)
#define SESSION_ID_MASK (1 << SESSION_ID_INDEX)
#define PROCESS_ID_MASK ((2^SESSION_ID_INDEX) - 1)
#define FASTRPC_CTX_MAGIC (0xbeeddeed)
/* Process status notifications from DSP will be sent with this unique context */
#define FASTRPC_NOTIF_CTX_RESERVED 0xABCDABCD
#define FASTRPC_CTX_JOB_TYPE_POS (4)
#define FASTRPC_CTX_TABLE_IDX_POS (6)
#define FASTRPC_CTX_JOBID_POS (16)
#define FASTRPC_CTX_TABLE_IDX_MASK \
((FASTRPC_CTX_MAX - 1) << FASTRPC_CTX_TABLE_IDX_POS)
#define FASTRPC_ASYNC_JOB_MASK (1)
#define GET_TABLE_IDX_FROM_CTXID(ctxid) \
((ctxid & FASTRPC_CTX_TABLE_IDX_MASK) >> FASTRPC_CTX_TABLE_IDX_POS)
/* Reserve few entries in context table for critical kernel and static RPC
* calls to avoid user invocations from exhausting all entries.
*/
#define NUM_KERNEL_AND_STATIC_ONLY_CONTEXTS (70)
/* Maximum number of pending contexts per remote session */
#define MAX_PENDING_CTX_PER_SESSION (64)
#define NUM_DEVICES 2 /* adsprpc-smd, adsprpc-smd-secure */
#define MINOR_NUM_DEV 0
#define MINOR_NUM_SECURE_DEV 1
#define NON_SECURE_CHANNEL 0
#define SECURE_CHANNEL 1
#define IS_CACHE_ALIGNED(x) (((x) & ((L1_CACHE_BYTES)-1)) == 0)
#ifndef ION_FLAG_CACHED
#define ION_FLAG_CACHED (1)
#endif
/*
* ctxid of every message is OR-ed with fl->pd (0/1/2) before
* it is sent to DSP. So mask 2 LSBs to retrieve actual context
*/
#define CONTEXT_PD_CHECK (3)
#define GET_CTXID_FROM_RSP_CTX(rsp_ctx) (rsp_ctx & ~CONTEXT_PD_CHECK)
#define RH_CID ADSP_DOMAIN_ID
#define FASTRPC_STATIC_HANDLE_PROCESS_GROUP (1)
#define FASTRPC_STATIC_HANDLE_DSP_UTILITIES (2)
#define FASTRPC_STATIC_HANDLE_LISTENER (3)
#define FASTRPC_STATIC_HANDLE_MAX (20)
#define FASTRPC_LATENCY_CTRL_ENB (1)
/* Maximum PM timeout that can be voted through fastrpc */
#define MAX_PM_TIMEOUT_MS 50
/* timeout in us for busy polling after early response from remote processor */
#define FASTRPC_POLL_TIME (4000)
/* timeout in us for polling until memory barrier */
#define FASTRPC_POLL_TIME_MEM_UPDATE (500)
/* timeout in us for polling completion signal after user early hint */
#define FASTRPC_USER_EARLY_HINT_TIMEOUT (500)
/* Early wake up poll completion number received from remote processor */
#define FASTRPC_EARLY_WAKEUP_POLL (0xabbccdde)
/* Poll response number from remote processor for call completion */
#define FASTRPC_POLL_RESPONSE (0xdecaf)
/* latency in us, early wake up signal used below this value */
#define FASTRPC_EARLY_WAKEUP_LATENCY (200)
/* response version number */
#define FASTRPC_RSP_VERSION2 (2)
/* CPU feature information to DSP */
#define FASTRPC_CPUINFO_DEFAULT (0)
#define FASTRPC_CPUINFO_EARLY_WAKEUP (1)
#define INIT_FILELEN_MAX (2*1024*1024)
#define INIT_MEMLEN_MAX (8*1024*1024)
#define MAX_CACHE_BUF_SIZE (8*1024*1024)
/* Maximum buffers cached in cached buffer list */
#define MAX_CACHED_BUFS (32)
/* Max no. of persistent headers pre-allocated per process */
#define MAX_PERSISTENT_HEADERS (25)
#define PERF_CAPABILITY_SUPPORT (1 << 1)
#define KERNEL_ERROR_CODE_V1_SUPPORT 1
#define USERSPACE_ALLOCATION_SUPPORT 1
#define DSPSIGNAL_SUPPORT 1
#define MD_GMSG_BUFFER (1000)
#define MINI_DUMP_DBG_SIZE (200*1024)
/* Max number of region supported */
#define MAX_UNIQUE_ID 5
/* Convert the 19.2MHz clock count to micro-seconds */
#define CONVERT_CNT_TO_US(CNT) (CNT * 10ull / 192ull)
/* Unique index flag used for mini dump */
static int md_unique_index_flag[MAX_UNIQUE_ID] = { 0, 0, 0, 0, 0 };
/* Fastrpc remote process attributes */
enum fastrpc_proc_attr {
/* Macro for Debug attr */
FASTRPC_MODE_DEBUG = 1 << 0,
/* Macro for Ptrace */
FASTRPC_MODE_PTRACE = 1 << 1,
/* Macro for CRC Check */
FASTRPC_MODE_CRC = 1 << 2,
/* Macro for Unsigned PD */
FASTRPC_MODE_UNSIGNED_MODULE = 1 << 3,
/* Macro for Adaptive QoS */
FASTRPC_MODE_ADAPTIVE_QOS = 1 << 4,
/* Macro for System Process */
FASTRPC_MODE_SYSTEM_PROCESS = 1 << 5,
/* Macro for Prvileged Process */
FASTRPC_MODE_PRIVILEGED = (1 << 6),
};
#define PERF_END ((void)0)
#define PERF(enb, cnt, ff) \
{\
struct timespec64 startT = {0};\
uint64_t *counter = cnt;\
if (enb && counter) {\
ktime_get_real_ts64(&startT);\
} \
ff ;\
if (enb && counter) {\
*counter += getnstimediff(&startT);\
} \
}
#define GET_COUNTER(perf_ptr, offset) \
(perf_ptr != NULL ?\
(((offset >= 0) && (offset < PERF_KEY_MAX)) ?\
(uint64_t *)(perf_ptr + offset)\
: (uint64_t *)NULL) : (uint64_t *)NULL)
/* Macro for comparing local client and PD names with those from callback */
#define COMPARE_SERVICE_LOCATOR_NAMES(cb_client, local_client, \
cb_pdname, local_pdname) \
((!strcmp(cb_client, local_client)) \
&& (!strcmp(cb_pdname, local_pdname)))
#define IS_ASYNC_FASTRPC_AVAILABLE (1)
/* Use the second definition to enable additional dspsignal debug logging */
#define DSPSIGNAL_VERBOSE(x, ...)
/*#define DSPSIGNAL_VERBOSE ADSPRPC_INFO*/
MODULE_IMPORT_NS(DMA_BUF);
static struct dentry *debugfs_root;
static struct dentry *debugfs_global_file;
static inline uint64_t buf_page_start(uint64_t buf)
{
uint64_t start = (uint64_t) buf & PAGE_MASK;
return start;
}
static inline uint64_t buf_page_offset(uint64_t buf)
{
uint64_t offset = (uint64_t) buf & (PAGE_SIZE - 1);
return offset;
}
static inline uint64_t buf_num_pages(uint64_t buf, size_t len)
{
uint64_t start = buf_page_start(buf) >> PAGE_SHIFT;
uint64_t end = (((uint64_t) buf + len - 1) & PAGE_MASK) >> PAGE_SHIFT;
uint64_t nPages = end - start + 1;
return nPages;
}
static inline uint64_t buf_page_size(uint32_t size)
{
uint64_t sz = (size + (PAGE_SIZE - 1)) & PAGE_MASK;
return sz > PAGE_SIZE ? sz : PAGE_SIZE;
}
static inline void *uint64_to_ptr(uint64_t addr)
{
void *ptr = (void *)((uintptr_t)addr);
return ptr;
}
static inline uint64_t ptr_to_uint64(void *ptr)
{
uint64_t addr = (uint64_t)((uintptr_t)ptr);
return addr;
}
static struct fastrpc_apps gfa;
static struct fastrpc_channel_ctx gcinfo[NUM_CHANNELS] = {
{
.name = "adsprpc-smd",
.subsys = "lpass",
.spd = {
{
.servloc_name =
AUDIO_PDR_SERVICE_LOCATION_CLIENT_NAME,
.spdname = ADSP_AUDIOPD_NAME,
.cid = ADSP_DOMAIN_ID,
},
{
.servloc_name =
SENSORS_PDR_ADSP_SERVICE_LOCATION_CLIENT_NAME,
.spdname = ADSP_SENSORPD_NAME,
.cid = ADSP_DOMAIN_ID,
}
},
.cpuinfo_todsp = FASTRPC_CPUINFO_DEFAULT,
.cpuinfo_status = false,
},
{
.name = "mdsprpc-smd",
.subsys = "mpss",
.spd = {
{
.cid = MDSP_DOMAIN_ID,
}
},
.cpuinfo_todsp = FASTRPC_CPUINFO_DEFAULT,
.cpuinfo_status = false,
},
{
.name = "sdsprpc-smd",
.subsys = "dsps",
.spd = {
{
.servloc_name =
SENSORS_PDR_SLPI_SERVICE_LOCATION_CLIENT_NAME,
.spdname = SLPI_SENSORPD_NAME,
.cid = SDSP_DOMAIN_ID,
}
},
.cpuinfo_todsp = FASTRPC_CPUINFO_DEFAULT,
.cpuinfo_status = false,
},
{
.name = "cdsprpc-smd",
.subsys = "cdsp",
.spd = {
{
.cid = CDSP_DOMAIN_ID,
}
},
.cpuinfo_todsp = FASTRPC_CPUINFO_EARLY_WAKEUP,
.cpuinfo_status = false,
},
};
static int hlosvm[1] = {VMID_HLOS};
static int hlosvmperm[1] = {PERM_READ | PERM_WRITE | PERM_EXEC};
static uint32_t kernel_capabilities[FASTRPC_MAX_ATTRIBUTES -
FASTRPC_MAX_DSP_ATTRIBUTES] = {
PERF_CAPABILITY_SUPPORT,
/* PERF_LOGGING_V2_SUPPORT feature is supported, unsupported = 0 */
KERNEL_ERROR_CODE_V1_SUPPORT,
/* Fastrpc Driver error code changes present */
USERSPACE_ALLOCATION_SUPPORT,
/* Userspace allocation allowed for DSP memory request*/
DSPSIGNAL_SUPPORT
/* Lightweight driver-based signaling */
};
static inline void fastrpc_pm_awake(struct fastrpc_file *fl, int channel_type);
static int fastrpc_mem_map_to_dsp(struct fastrpc_file *fl, int fd, int offset,
uint32_t flags, uintptr_t va, uint64_t phys,
size_t size, uintptr_t *raddr);
static inline void fastrpc_update_rxmsg_buf(struct fastrpc_channel_ctx *chan,
uint64_t ctx, int retval, uint32_t rsp_flags,
uint32_t early_wake_time, uint32_t ver, int64_t ns, uint64_t xo_time_in_us);
/**
* fastrpc_device_create - Create device for the fastrpc process file
* @fl : Fastrpc process file
* Returns: 0 on Success
*/
static int fastrpc_device_create(struct fastrpc_file *fl);
static inline int64_t getnstimediff(struct timespec64 *start)
{
int64_t ns;
struct timespec64 ts, b;
ktime_get_real_ts64(&ts);
b = timespec64_sub(ts, *start);
ns = timespec64_to_ns(&b);
return ns;
}
/**
* get_timestamp_in_ns - Gets time of day in nanoseconds
*
* Returns: Timestamp in nanoseconds
*/
static inline int64_t get_timestamp_in_ns(void)
{
int64_t ns = 0;
struct timespec64 ts;
ktime_get_real_ts64(&ts);
ns = timespec64_to_ns(&ts);
return ns;
}
static inline int poll_for_remote_response(struct smq_invoke_ctx *ctx, uint32_t timeout)
{
int err = -EIO;
uint32_t sc = ctx->sc, ii = 0, jj = 0;
struct smq_invoke_buf *list;
struct smq_phy_page *pages;
uint64_t *fdlist = NULL;
uint32_t *crclist = NULL, *poll = NULL;
unsigned int inbufs, outbufs, handles;
/* calculate poll memory location */
inbufs = REMOTE_SCALARS_INBUFS(sc);
outbufs = REMOTE_SCALARS_OUTBUFS(sc);
handles = REMOTE_SCALARS_INHANDLES(sc) + REMOTE_SCALARS_OUTHANDLES(sc);
list = smq_invoke_buf_start(ctx->rpra, sc);
pages = smq_phy_page_start(sc, list);
fdlist = (uint64_t *)(pages + inbufs + outbufs + handles);
crclist = (uint32_t *)(fdlist + M_FDLIST);
poll = (uint32_t *)(crclist + M_CRCLIST);
/* poll on memory for DSP response. Return failure on timeout */
for (ii = 0, jj = 0; ii < timeout; ii++, jj++) {
if (*poll == FASTRPC_EARLY_WAKEUP_POLL) {
/* Remote processor sent early response */
err = 0;
break;
} else if (*poll == FASTRPC_POLL_RESPONSE) {
/* Remote processor sent poll response to complete the call */
err = 0;
ctx->is_work_done = true;
ctx->retval = 0;
/* Update DSP response history */
fastrpc_update_rxmsg_buf(&gfa.channel[ctx->fl->cid],
ctx->msg.invoke.header.ctx, 0, POLL_MODE, 0,
FASTRPC_RSP_VERSION2, get_timestamp_in_ns(),
CONVERT_CNT_TO_US(__arch_counter_get_cntvct()));
break;
}
if (jj == FASTRPC_POLL_TIME_MEM_UPDATE) {
/* Wait for DSP to finish updating poll memory */
rmb();
jj = 0;
}
udelay(1);
}
return err;
}
/**
* fastrpc_update_txmsg_buf - Update history of sent glink messages
* @chan : Channel context
* @msg : Pointer to RPC message to remote subsystem
* @transport_send_err : Error from transport
* @ns : Timestamp (in ns) of sent message
* @xo_time_in_us : XO Timestamp (in us) of sent message
*
* Returns none
*/
static inline void fastrpc_update_txmsg_buf(struct fastrpc_channel_ctx *chan,
struct smq_msg *msg, int transport_send_err, int64_t ns, uint64_t xo_time_in_us)
{
unsigned long flags = 0;
unsigned int tx_index = 0;
struct fastrpc_tx_msg *tx_msg = NULL;
spin_lock_irqsave(&chan->gmsg_log.lock, flags);
tx_index = chan->gmsg_log.tx_index;
tx_msg = &chan->gmsg_log.tx_msgs[tx_index];
memcpy(&tx_msg->msg, msg, sizeof(struct smq_msg));
tx_msg->transport_send_err = transport_send_err;
tx_msg->ns = ns;
tx_msg->xo_time_in_us = xo_time_in_us;
tx_index++;
chan->gmsg_log.tx_index =
(tx_index > (GLINK_MSG_HISTORY_LEN - 1)) ? 0 : tx_index;
spin_unlock_irqrestore(&chan->gmsg_log.lock, flags);
}
/**
* fastrpc_update_rxmsg_buf - Update history of received glink responses
* @chan : Channel context
* @ctx : Context of received response from DSP
* @retval : Return value for RPC call
* @rsp_flags : Response type
* @early_wake_time : Poll time for early wakeup
* @ver : Version of response
* @ns : Timestamp (in ns) of response
* @xo_time_in_us : XO Timestamp (in us) of response
*
* Returns none
*/
static inline void fastrpc_update_rxmsg_buf(struct fastrpc_channel_ctx *chan,
uint64_t ctx, int retval, uint32_t rsp_flags,
uint32_t early_wake_time, uint32_t ver, int64_t ns, uint64_t xo_time_in_us)
{
unsigned long flags = 0;
unsigned int rx_index = 0;
struct fastrpc_rx_msg *rx_msg = NULL;
struct smq_invoke_rspv2 *rsp = NULL;
spin_lock_irqsave(&chan->gmsg_log.lock, flags);
rx_index = chan->gmsg_log.rx_index;
rx_msg = &chan->gmsg_log.rx_msgs[rx_index];
rsp = &rx_msg->rsp;
rsp->ctx = ctx;
rsp->retval = retval;
rsp->flags = rsp_flags;
rsp->early_wake_time = early_wake_time;
rsp->version = ver;
rx_msg->ns = ns;
rx_msg->xo_time_in_us = xo_time_in_us;
rx_index++;
chan->gmsg_log.rx_index =
(rx_index > (GLINK_MSG_HISTORY_LEN - 1)) ? 0 : rx_index;
spin_unlock_irqrestore(&chan->gmsg_log.lock, flags);
}
static inline int get_unique_index(void)
{
int index = -1;
mutex_lock(&gfa.mut_uid);
for (index = 0; index < MAX_UNIQUE_ID; index++) {
if (md_unique_index_flag[index] == 0) {
md_unique_index_flag[index] = 1;
mutex_unlock(&gfa.mut_uid);
return index;
}
}
mutex_unlock(&gfa.mut_uid);
return index;
}
static inline void reset_unique_index(int index)
{
mutex_lock(&gfa.mut_uid);
if (index > -1 && index < MAX_UNIQUE_ID)
md_unique_index_flag[index] = 0;
mutex_unlock(&gfa.mut_uid);
}
/**
* fastrpc_minidump_add_region - Add mini dump region
* @fastrpc_mmap : Input structure mmap
*
* Returns int
*/
static int fastrpc_minidump_add_region(struct fastrpc_mmap *map)
{
int err = 0, ret_val = 0, md_index = 0;
struct md_region md_entry;
md_index = get_unique_index();
if (md_index > -1 && md_index < MAX_UNIQUE_ID) {
scnprintf(md_entry.name, MAX_NAME_LENGTH, "FRPC_%d", md_index);
md_entry.virt_addr = map->va;
md_entry.phys_addr = map->phys;
md_entry.size = map->size;
ret_val = msm_minidump_add_region(&md_entry);
if (ret_val < 0) {
ADSPRPC_ERR(
"Failed to add/update CMA to Minidump for phys: 0x%llx, size: %zu, md_index %d, md_entry.name %s\n",
map->phys,
map->size, md_index,
md_entry.name);
reset_unique_index(md_index);
err = ret_val;
} else {
map->frpc_md_index = md_index;
}
} else {
pr_warn("failed to generate valid unique id for mini dump : %d\n", md_index);
}
return err;
}
/**
* fastrpc_minidump_remove_region - Remove mini dump region if added
* @fastrpc_mmap : Input structure mmap
*
* Returns int
*/
static int fastrpc_minidump_remove_region(struct fastrpc_mmap *map)
{
int err = -EINVAL;
struct md_region md_entry;
if (map->frpc_md_index > -1 && map->frpc_md_index < MAX_UNIQUE_ID) {
scnprintf(md_entry.name, MAX_NAME_LENGTH, "FRPC_%d",
map->frpc_md_index);
md_entry.virt_addr = map->va;
md_entry.phys_addr = map->phys;
md_entry.size = map->size;
err = msm_minidump_remove_region(&md_entry);
if (err < 0) {
ADSPRPC_ERR(
"Failed to remove CMA from Minidump for phys: 0x%llx, size: %zu index = %d\n",
map->phys, map->size, map->frpc_md_index);
} else {
reset_unique_index(map->frpc_md_index);
map->frpc_md_index = -1;
}
} else {
ADSPRPC_ERR("mini-dump enabled with invalid unique id: %d\n", map->frpc_md_index);
}
return err;
}
static void fastrpc_buf_free(struct fastrpc_buf *buf, int cache)
{
struct fastrpc_file *fl = buf == NULL ? NULL : buf->fl;
int vmid, err = 0, cid = -1;
if (!fl)
return;
if (buf->in_use) {
/* Don't free persistent header buf. Just mark as available */
spin_lock(&fl->hlock);
buf->in_use = false;
spin_unlock(&fl->hlock);
return;
}
if (cache && buf->size < MAX_CACHE_BUF_SIZE) {
spin_lock(&fl->hlock);
if (fl->num_cached_buf > MAX_CACHED_BUFS) {
spin_unlock(&fl->hlock);
goto skip_buf_cache;
}
hlist_add_head(&buf->hn, &fl->cached_bufs);
fl->num_cached_buf++;
spin_unlock(&fl->hlock);
buf->type = -1;
return;
}
skip_buf_cache:
if (buf->type == USERHEAP_BUF) {
spin_lock(&fl->hlock);
hlist_del_init(&buf->hn_rem);
spin_unlock(&fl->hlock);
buf->raddr = 0;
}
if (!IS_ERR_OR_NULL(buf->virt)) {
int destVM[1] = {VMID_HLOS};
int destVMperm[1] = {PERM_READ | PERM_WRITE | PERM_EXEC};
VERIFY(err, fl->sctx != NULL);
if (err)
goto bail;
if (fl->sctx->smmu.cb)
buf->phys &= ~((uint64_t)fl->sctx->smmu.cb << 32);
cid = fl->cid;
VERIFY(err, VALID_FASTRPC_CID(cid));
if (err) {
err = -ECHRNG;
ADSPRPC_ERR(
"invalid channel 0x%zx set for session\n",
cid);
goto bail;
}
vmid = fl->apps->channel[cid].vmid;
if (vmid) {
int srcVM[2] = {VMID_HLOS, vmid};
int hyp_err = 0;
hyp_err = hyp_assign_phys(buf->phys,
buf_page_size(buf->size),
srcVM, 2, destVM, destVMperm, 1);
if (hyp_err) {
ADSPRPC_ERR(
"rh hyp unassign failed with %d for phys 0x%llx, size %zu\n",
hyp_err, buf->phys, buf->size);
}
}
trace_fastrpc_dma_free(cid, buf->phys, buf->size);
dma_free_attrs(fl->sctx->smmu.dev, buf->size, buf->virt,
buf->phys, buf->dma_attr);
}
bail:
kfree(buf);
}
static void fastrpc_cached_buf_list_free(struct fastrpc_file *fl)
{
struct fastrpc_buf *buf, *free;
do {
struct hlist_node *n;
free = NULL;
spin_lock(&fl->hlock);
hlist_for_each_entry_safe(buf, n, &fl->cached_bufs, hn) {
hlist_del_init(&buf->hn);
fl->num_cached_buf--;
free = buf;
break;
}
spin_unlock(&fl->hlock);
if (free)
fastrpc_buf_free(free, 0);
} while (free);
}
static void fastrpc_remote_buf_list_free(struct fastrpc_file *fl)
{
struct fastrpc_buf *buf, *free;
do {
struct hlist_node *n;
free = NULL;
spin_lock(&fl->hlock);
hlist_for_each_entry_safe(buf, n, &fl->remote_bufs, hn_rem) {
free = buf;
break;
}
spin_unlock(&fl->hlock);
if (free)
fastrpc_buf_free(free, 0);
} while (free);
}
static void fastrpc_mmap_add(struct fastrpc_mmap *map)
{
if (map->flags == ADSP_MMAP_HEAP_ADDR ||
map->flags == ADSP_MMAP_REMOTE_HEAP_ADDR) {
struct fastrpc_apps *me = &gfa;
unsigned long irq_flags = 0;
spin_lock_irqsave(&me->hlock, irq_flags);
hlist_add_head(&map->hn, &me->maps);
spin_unlock_irqrestore(&me->hlock, irq_flags);
} else {
struct fastrpc_file *fl = map->fl;
hlist_add_head(&map->hn, &fl->maps);
}
}
static int fastrpc_mmap_find(struct fastrpc_file *fl, int fd,
struct dma_buf *buf, uintptr_t va, size_t len, int mflags, int refs,
struct fastrpc_mmap **ppmap)
{
struct fastrpc_apps *me = &gfa;
struct fastrpc_mmap *match = NULL, *map = NULL;
struct hlist_node *n;
unsigned long irq_flags = 0;
if ((va + len) < va)
return -EFAULT;
if (mflags == ADSP_MMAP_HEAP_ADDR ||
mflags == ADSP_MMAP_REMOTE_HEAP_ADDR) {
spin_lock_irqsave(&me->hlock, irq_flags);
hlist_for_each_entry_safe(map, n, &me->maps, hn) {
if (va >= map->va &&
va + len <= map->va + map->len &&
map->fd == fd) {
if (refs) {
if (map->refs + 1 == INT_MAX) {
spin_unlock_irqrestore(&me->hlock, irq_flags);
return -ETOOMANYREFS;
}
map->refs++;
}
match = map;
break;
}
}
spin_unlock_irqrestore(&me->hlock, irq_flags);
} else if (mflags == ADSP_MMAP_DMA_BUFFER) {
hlist_for_each_entry_safe(map, n, &fl->maps, hn) {
if (map->buf == buf) {
if (refs) {
if (map->refs + 1 == INT_MAX)
return -ETOOMANYREFS;
map->refs++;
}
match = map;
break;
}
}
} else {
hlist_for_each_entry_safe(map, n, &fl->maps, hn) {
if (va >= map->va &&
va + len <= map->va + map->len &&
map->fd == fd) {
if (refs) {
if (map->refs + 1 == INT_MAX)
return -ETOOMANYREFS;
map->refs++;
}
match = map;
break;
}
}
}
if (match) {
*ppmap = match;
return 0;
}
return -ENXIO;
}
static int fastrpc_alloc_cma_memory(dma_addr_t *region_phys, void **vaddr,
size_t size, unsigned long dma_attr)
{
int err = 0;
struct fastrpc_apps *me = &gfa;
if (me->dev == NULL) {
ADSPRPC_ERR(
"failed to allocate CMA memory, device adsprpc-mem is not initialized\n");
return -ENODEV;
}
VERIFY(err, size > 0 && size < me->max_size_limit);
if (err) {
err = -EFAULT;
pr_err("adsprpc: %s: invalid allocation size 0x%zx\n",
__func__, size);
return err;
}
*vaddr = dma_alloc_attrs(me->dev, size, region_phys,
GFP_KERNEL, dma_attr);
if (IS_ERR_OR_NULL(*vaddr)) {
ADSPRPC_ERR(
"dma_alloc_attrs failed for device %s size 0x%zx dma_attr %lu, returned %ld\n",
dev_name(me->dev), size, dma_attr, PTR_ERR(*vaddr));
return -ENOBUFS;
}
return 0;
}
static int fastrpc_mmap_remove(struct fastrpc_file *fl, int fd, uintptr_t va,
size_t len, struct fastrpc_mmap **ppmap)
{
struct fastrpc_mmap *match = NULL, *map;
struct hlist_node *n;
struct fastrpc_apps *me = &gfa;
unsigned long irq_flags = 0;
/*
* Search for a mapping by matching fd, remote address and length.
* For backward compatibility, search for a mapping by matching is
* limited to remote address and length when passed fd < 0.
*/
spin_lock_irqsave(&me->hlock, irq_flags);
hlist_for_each_entry_safe(map, n, &me->maps, hn) {
if ((fd < 0 || map->fd == fd) && map->raddr == va &&
map->raddr + map->len == va + len &&
map->refs == 1 &&
/* Skip unmap if it is fastrpc shell memory */
!map->is_filemap) {
match = map;
hlist_del_init(&map->hn);
break;
}
}
spin_unlock_irqrestore(&me->hlock, irq_flags);
if (match) {
*ppmap = match;
return 0;
}
hlist_for_each_entry_safe(map, n, &fl->maps, hn) {
if ((fd < 0 || map->fd == fd) && map->raddr == va &&
map->raddr + map->len == va + len &&
map->refs == 1 &&
/* Skip unmap if it is fastrpc shell memory */
!map->is_filemap) {
match = map;
hlist_del_init(&map->hn);
break;
}
}
if (match) {
*ppmap = match;
return 0;
}
return -ETOOMANYREFS;
}
static void fastrpc_mmap_free(struct fastrpc_mmap *map, uint32_t flags)
{
struct fastrpc_apps *me = &gfa;
struct fastrpc_file *fl;
int vmid, cid = -1, err = 0;
struct fastrpc_session_ctx *sess;
unsigned long irq_flags = 0;
if (!map)
return;
fl = map->fl;
if (fl && !(map->flags == ADSP_MMAP_HEAP_ADDR ||
map->flags == ADSP_MMAP_REMOTE_HEAP_ADDR)) {
cid = fl->cid;
VERIFY(err, VALID_FASTRPC_CID(cid));
if (err) {
err = -ECHRNG;
pr_err("adsprpc: ERROR:%s, Invalid channel id: %d, err:%d\n",
__func__, cid, err);
return;
}
}
if (map->flags == ADSP_MMAP_HEAP_ADDR ||
map->flags == ADSP_MMAP_REMOTE_HEAP_ADDR) {
spin_lock_irqsave(&me->hlock, irq_flags);
map->refs--;
if (!map->refs)
hlist_del_init(&map->hn);
spin_unlock_irqrestore(&me->hlock, irq_flags);
if (map->refs > 0) {
ADSPRPC_WARN(
"multiple references for remote heap size %zu va 0x%lx ref count is %d\n",
map->size, map->va, map->refs);
return;
}
} else {
map->refs--;
if (!map->refs)
hlist_del_init(&map->hn);
if (map->refs > 0 && !flags)
return;
}
if (map->flags == ADSP_MMAP_HEAP_ADDR ||
map->flags == ADSP_MMAP_REMOTE_HEAP_ADDR) {
if (me->dev == NULL) {
ADSPRPC_ERR(
"failed to free remote heap allocation, device is not initialized\n");
return;
}
if (msm_minidump_enabled()) {
err = fastrpc_minidump_remove_region(map);
}
trace_fastrpc_dma_free(-1, map->phys, map->size);
if (map->phys) {
dma_free_attrs(me->dev, map->size, (void *)map->va,
(dma_addr_t)map->phys, (unsigned long)map->attr);
}
} else if (map->flags == FASTRPC_MAP_FD_NOMAP) {
trace_fastrpc_dma_unmap(cid, map->phys, map->size);
if (!IS_ERR_OR_NULL(map->table))
dma_buf_unmap_attachment(map->attach, map->table,
DMA_BIDIRECTIONAL);
if (!IS_ERR_OR_NULL(map->attach))
dma_buf_detach(map->buf, map->attach);
if (!IS_ERR_OR_NULL(map->buf))
dma_buf_put(map->buf);
} else {
int destVM[1] = {VMID_HLOS};
int destVMperm[1] = {PERM_READ | PERM_WRITE | PERM_EXEC};
if (map->secure)
sess = fl->secsctx;
else
sess = fl->sctx;
vmid = fl->apps->channel[cid].vmid;
if (vmid && map->phys) {
int hyp_err = 0;
int srcVM[2] = {VMID_HLOS, vmid};
hyp_err = hyp_assign_phys(map->phys,
buf_page_size(map->size),
srcVM, 2, destVM, destVMperm, 1);
if (hyp_err) {
ADSPRPC_ERR(
"rh hyp unassign failed with %d for phys 0x%llx, size %zu\n",
hyp_err, map->phys, map->size);
}
}
trace_fastrpc_dma_unmap(cid, map->phys, map->size);
if (!IS_ERR_OR_NULL(map->table))
dma_buf_unmap_attachment(map->attach, map->table,
DMA_BIDIRECTIONAL);
if (!IS_ERR_OR_NULL(map->attach))
dma_buf_detach(map->buf, map->attach);
if (!IS_ERR_OR_NULL(map->buf))
dma_buf_put(map->buf);
}
kfree(map);
}
static int fastrpc_session_alloc(struct fastrpc_channel_ctx *chan, int secure,
struct fastrpc_session_ctx **session);
static int fastrpc_mmap_create_remote_heap(struct fastrpc_file *fl,
struct fastrpc_mmap *map, size_t len, int mflags)
{
int err = 0;
struct fastrpc_apps *me = &gfa;
dma_addr_t region_phys = 0;
void *region_vaddr = NULL;
map->apps = me;
map->fl = NULL;
map->attr |= DMA_ATTR_NO_KERNEL_MAPPING;
err = fastrpc_alloc_cma_memory(&region_phys, &region_vaddr,
len, (unsigned long) map->attr);
if (err)
goto bail;
trace_fastrpc_dma_alloc(fl->cid, (uint64_t)region_phys, len,
(unsigned long)map->attr, mflags);
map->phys = (uintptr_t)region_phys;
map->size = len;
map->va = (uintptr_t)region_vaddr;
bail:
return err;
}
static int fastrpc_mmap_create(struct fastrpc_file *fl, int fd, struct dma_buf *buf,
unsigned int attr, uintptr_t va, size_t len, int mflags,
struct fastrpc_mmap **ppmap)
{
struct fastrpc_apps *me = &gfa;
struct fastrpc_session_ctx *sess;
struct fastrpc_apps *apps = NULL;
int cid = -1;
struct fastrpc_channel_ctx *chan = NULL;
struct fastrpc_mmap *map = NULL;
int err = 0, vmid, sgl_index = 0;
struct scatterlist *sgl = NULL;
if (!fl) {
err = -EBADF;
goto bail;
}
apps = fl->apps;
cid = fl->cid;
VERIFY(err, VALID_FASTRPC_CID(cid));
if (err) {
err = -ECHRNG;
goto bail;
}
chan = &apps->channel[cid];
if (!fastrpc_mmap_find(fl, fd, NULL, va, len, mflags, 1, ppmap))
return 0;
map = kzalloc(sizeof(*map), GFP_KERNEL);
VERIFY(err, !IS_ERR_OR_NULL(map));
if (err) {
err = -ENOMEM;
goto bail;
}
INIT_HLIST_NODE(&map->hn);
map->flags = mflags;
map->refs = 1;
map->fl = fl;
map->fd = fd;
map->attr = attr;
map->buf = buf;
map->frpc_md_index = -1;
map->is_filemap = false;
ktime_get_real_ts64(&map->map_start_time);
if (mflags == ADSP_MMAP_HEAP_ADDR ||
mflags == ADSP_MMAP_REMOTE_HEAP_ADDR) {
VERIFY(err, 0 == (err = fastrpc_mmap_create_remote_heap(fl, map,
len, mflags)));
if (err)
goto bail;
if (msm_minidump_enabled()) {
err = fastrpc_minidump_add_region(map);
if (err)
goto bail;
}
} else if (mflags == FASTRPC_MAP_FD_NOMAP) {
VERIFY(err, !IS_ERR_OR_NULL(map->buf = dma_buf_get(fd)));
if (err) {
ADSPRPC_ERR("dma_buf_get failed for fd %d ret %ld\n",
fd, PTR_ERR(map->buf));
err = -EBADFD;
goto bail;
}
map->secure = (mem_buf_dma_buf_exclusive_owner(map->buf)) ? 0 : 1;
map->va = 0;
map->phys = 0;
VERIFY(err, !IS_ERR_OR_NULL(map->attach =
dma_buf_attach(map->buf, me->dev)));
if (err) {
ADSPRPC_ERR(
"dma_buf_attach for fd %d failed to map buffer on SMMU device %s ret %ld\n",
fd, dev_name(me->dev), PTR_ERR(map->attach));
err = -EFAULT;
goto bail;
}
map->attach->dma_map_attrs |= DMA_ATTR_SKIP_CPU_SYNC;
VERIFY(err, !IS_ERR_OR_NULL(map->table =
dma_buf_map_attachment(map->attach,
DMA_BIDIRECTIONAL)));
if (err) {
ADSPRPC_ERR(
"dma_buf_map_attachment for fd %d failed on device %s ret %ld\n",
fd, dev_name(me->dev), PTR_ERR(map->table));
err = -EFAULT;
goto bail;
}
VERIFY(err, map->table->nents == 1);
if (err) {
ADSPRPC_ERR(
"multiple scatter-gather entries (%u) present for NOMAP fd %d\n",
map->table->nents, fd);
err = -EFAULT;
goto bail;
}
map->phys = sg_dma_address(map->table->sgl);
map->size = len;
map->flags = FASTRPC_MAP_FD_DELAYED;
trace_fastrpc_dma_map(cid, fd, map->phys, map->size,
len, mflags, map->attach->dma_map_attrs);
} else {
if (map->attr && (map->attr & FASTRPC_ATTR_KEEP_MAP)) {
ADSPRPC_INFO("buffer mapped with persist attr 0x%x\n",
(unsigned int)map->attr);
map->refs = 2;
}
if (mflags == ADSP_MMAP_DMA_BUFFER) {
VERIFY(err, !IS_ERR_OR_NULL(map->buf));
if (err) {
ADSPRPC_ERR("Invalid DMA buffer address %pK\n",
map->buf);
err = -EFAULT;
goto bail;
}
/* Increment DMA buffer ref count,
* so that client cannot unmap DMA buffer, before freeing buffer
*/
get_dma_buf(map->buf);
} else {
VERIFY(err, !IS_ERR_OR_NULL(map->buf = dma_buf_get(fd)));
if (err) {
ADSPRPC_ERR("dma_buf_get failed for fd %d ret %ld\n",
fd, PTR_ERR(map->buf));
err = -EBADFD;
goto bail;
}
}
map->secure = (mem_buf_dma_buf_exclusive_owner(map->buf)) ? 0 : 1;
if (map->secure) {
if (!fl->secsctx)
err = fastrpc_session_alloc(chan, 1,
&fl->secsctx);
if (err) {
ADSPRPC_ERR(
"fastrpc_session_alloc failed for fd %d ret %d\n",
fd, err);
err = -ENOSR;
goto bail;
}
}
if (map->secure)
sess = fl->secsctx;
else
sess = fl->sctx;
VERIFY(err, !IS_ERR_OR_NULL(sess));
if (err) {
ADSPRPC_ERR(
"session is invalid for fd %d, secure flag %d\n",
fd, map->secure);
err = -EBADR;
goto bail;
}
VERIFY(err, !IS_ERR_OR_NULL(map->attach =
dma_buf_attach(map->buf, sess->smmu.dev)));
if (err) {
ADSPRPC_ERR(
"dma_buf_attach for fd %d failed to map buffer on SMMU device %s ret %ld\n",
fd, dev_name(sess->smmu.dev),
PTR_ERR(map->attach));
err = -EFAULT;
goto bail;
}
map->attach->dma_map_attrs |= DMA_ATTR_DELAYED_UNMAP;
/*
* Skip CPU sync if IO Cohernecy is not supported
*/
if (!sess->smmu.coherent)
map->attach->dma_map_attrs |= DMA_ATTR_SKIP_CPU_SYNC;
VERIFY(err, !IS_ERR_OR_NULL(map->table =
dma_buf_map_attachment(map->attach,
DMA_BIDIRECTIONAL)));
if (err) {
ADSPRPC_ERR(
"dma_buf_map_attachment for fd %d failed on device %s ret %ld\n",
fd, dev_name(sess->smmu.dev),
PTR_ERR(map->table));
err = -EFAULT;
goto bail;
}
if (!sess->smmu.enabled) {
VERIFY(err, map->table->nents == 1);
if (err) {
ADSPRPC_ERR(
"multiple scatter-gather entries (%u) present for fd %d mapped on SMMU disabled device\n",
map->table->nents, fd);
err = -EFAULT;
goto bail;
}
}
map->phys = sg_dma_address(map->table->sgl);
if (sess->smmu.cb) {
map->phys += ((uint64_t)sess->smmu.cb << 32);
for_each_sg(map->table->sgl, sgl, map->table->nents,
sgl_index)
map->size += sg_dma_len(sgl);
} else {
map->size = buf_page_size(len);
}
trace_fastrpc_dma_map(cid, fd, map->phys, map->size,
len, mflags, map->attach->dma_map_attrs);
VERIFY(err, map->size >= len && map->size < me->max_size_limit);
if (err) {
err = -EFAULT;
pr_err("adsprpc: %s: invalid map size 0x%zx len 0x%zx\n",
__func__, map->size, len);
goto bail;
}
vmid = fl->apps->channel[cid].vmid;
if (vmid) {
int srcVM[1] = {VMID_HLOS};
int destVM[2] = {VMID_HLOS, vmid};
int destVMperm[2] = {PERM_READ | PERM_WRITE,
PERM_READ | PERM_WRITE | PERM_EXEC};
err = hyp_assign_phys(map->phys,
buf_page_size(map->size),
srcVM, 1, destVM, destVMperm, 2);
if (err) {
ADSPRPC_ERR(
"rh hyp assign failed with %d for phys 0x%llx, size %zu\n",
err, map->phys, map->size);
err = -EADDRNOTAVAIL;
goto bail;
}
}
map->va = va;
}
map->len = len;
fastrpc_mmap_add(map);
*ppmap = map;
bail:
if (map)
ktime_get_real_ts64(&map->map_end_time);
if (err && map)
fastrpc_mmap_free(map, 0);
return err;
}
static inline bool fastrpc_get_cached_buf(struct fastrpc_file *fl,
size_t size, int buf_type, struct fastrpc_buf **obuf)
{
bool found = false;
struct fastrpc_buf *buf = NULL, *fr = NULL;
struct hlist_node *n = NULL;
if (buf_type == USERHEAP_BUF)
goto bail;
/* find the smallest buffer that fits in the cache */
spin_lock(&fl->hlock);
hlist_for_each_entry_safe(buf, n, &fl->cached_bufs, hn) {
if (buf->size >= size && (!fr || fr->size > buf->size))
fr = buf;
}
if (fr) {
hlist_del_init(&fr->hn);
fl->num_cached_buf--;
}
spin_unlock(&fl->hlock);
if (fr) {
fr->type = buf_type;
*obuf = fr;
found = true;
}
bail:
return found;
}
static inline bool fastrpc_get_persistent_buf(struct fastrpc_file *fl,
size_t size, int buf_type, struct fastrpc_buf **obuf)
{
unsigned int i = 0;
bool found = false;
struct fastrpc_buf *buf = NULL;
spin_lock(&fl->hlock);
if (!fl->num_pers_hdrs)
goto bail;
/*
* Persistent header buffer can be used only if
* metadata length is less than 1 page size.
*/
if (buf_type != METADATA_BUF || size > PAGE_SIZE)
goto bail;
for (i = 0; i < fl->num_pers_hdrs; i++) {
buf = &fl->hdr_bufs[i];
/* If buffer not in use, then assign it for requested alloc */
if (!buf->in_use) {
buf->in_use = true;
*obuf = buf;
found = true;
break;
}
}
bail:
spin_unlock(&fl->hlock);
return found;
}
static int fastrpc_buf_alloc(struct fastrpc_file *fl, size_t size,
unsigned long dma_attr, uint32_t rflags,
int buf_type, struct fastrpc_buf **obuf)
{
int err = 0, vmid;
struct fastrpc_apps *me = &gfa;
struct fastrpc_buf *buf = NULL;
int cid = -1;
VERIFY(err, fl && fl->sctx != NULL);
if (err) {
err = -EBADR;
goto bail;
}
cid = fl->cid;
VERIFY(err, VALID_FASTRPC_CID(cid));
if (err) {
err = -ECHRNG;
goto bail;
}
VERIFY(err, size > 0 && size < me->max_size_limit);
if (err) {
err = -EFAULT;
pr_err("adsprpc: %s: invalid allocation size 0x%zx\n",
__func__, size);
goto bail;
}
VERIFY(err, size > 0 && fl->sctx->smmu.dev);
if (err) {
err = (fl->sctx->smmu.dev == NULL) ? -ENODEV : err;
goto bail;
}
if (fastrpc_get_persistent_buf(fl, size, buf_type, obuf))
return err;
if (fastrpc_get_cached_buf(fl, size, buf_type, obuf))
return err;
/* If unable to get persistent or cached buf, allocate new buffer */
VERIFY(err, NULL != (buf = kzalloc(sizeof(*buf), GFP_KERNEL)));
if (err) {
err = -ENOMEM;
goto bail;
}
INIT_HLIST_NODE(&buf->hn);
buf->fl = fl;
buf->virt = NULL;
buf->phys = 0;
buf->size = size;
buf->dma_attr = dma_attr;
buf->flags = rflags;
buf->raddr = 0;
buf->type = buf_type;
ktime_get_real_ts64(&buf->buf_start_time);
buf->virt = dma_alloc_attrs(fl->sctx->smmu.dev, buf->size,
(dma_addr_t *)&buf->phys,
GFP_KERNEL, buf->dma_attr);
if (IS_ERR_OR_NULL(buf->virt)) {
/* free cache and retry */
fastrpc_cached_buf_list_free(fl);
buf->virt = dma_alloc_attrs(fl->sctx->smmu.dev, buf->size,
(dma_addr_t *)&buf->phys, GFP_KERNEL,
buf->dma_attr);
VERIFY(err, !IS_ERR_OR_NULL(buf->virt));
}
if (err) {
ADSPRPC_ERR(
"dma_alloc_attrs failed for size 0x%zx, returned %pK\n",
size, buf->virt);
err = -ENOBUFS;
goto bail;
}
if (fl->sctx->smmu.cb)
buf->phys += ((uint64_t)fl->sctx->smmu.cb << 32);
trace_fastrpc_dma_alloc(cid, buf->phys, size,
dma_attr, (int)rflags);
vmid = fl->apps->channel[cid].vmid;
if (vmid) {
int srcVM[1] = {VMID_HLOS};
int destVM[2] = {VMID_HLOS, vmid};
int destVMperm[2] = {PERM_READ | PERM_WRITE,
PERM_READ | PERM_WRITE | PERM_EXEC};
err = hyp_assign_phys(buf->phys, buf_page_size(size),
srcVM, 1, destVM, destVMperm, 2);
if (err) {
ADSPRPC_DEBUG(
"rh hyp assign failed with %d for phys 0x%llx, size %zu\n",
err, buf->phys, size);
err = -EADDRNOTAVAIL;
goto bail;
}
}
if (buf_type == USERHEAP_BUF) {
INIT_HLIST_NODE(&buf->hn_rem);
spin_lock(&fl->hlock);
hlist_add_head(&buf->hn_rem, &fl->remote_bufs);
spin_unlock(&fl->hlock);
}
*obuf = buf;
bail:
if (buf)
ktime_get_real_ts64(&buf->buf_end_time);
if (err && buf)
fastrpc_buf_free(buf, 0);
return err;
}
static int context_restore_interrupted(struct fastrpc_file *fl,
struct fastrpc_ioctl_invoke_async *inv,
struct smq_invoke_ctx **po)
{
int err = 0;
struct smq_invoke_ctx *ctx = NULL, *ictx = NULL;
struct hlist_node *n;
struct fastrpc_ioctl_invoke *invoke = &inv->inv;
spin_lock(&fl->hlock);
hlist_for_each_entry_safe(ictx, n, &fl->clst.interrupted, hn) {
if (ictx->pid == current->pid) {
if (invoke->sc != ictx->sc || ictx->fl != fl) {
err = -EINVAL;
ictx->sc_interrupted = invoke->sc;
ictx->fl_interrupted = fl;
ictx->handle_interrupted = invoke->handle;
ADSPRPC_ERR(
"interrupted sc (0x%x) or fl (%pK) does not match with invoke sc (0x%x) or fl (%pK)\n",
ictx->sc, ictx->fl, invoke->sc, fl);
} else {
ctx = ictx;
hlist_del_init(&ctx->hn);
hlist_add_head(&ctx->hn, &fl->clst.pending);
}
break;
}
}
spin_unlock(&fl->hlock);
if (ctx)
*po = ctx;
return err;
}
static unsigned int sorted_lists_intersection(unsigned int *listA,
unsigned int lenA, unsigned int *listB, unsigned int lenB)
{
unsigned int i = 0, j = 0;
while (i < lenA && j < lenB) {
if (listA[i] < listB[j])
i++;
else if (listA[i] > listB[j])
j++;
else
return listA[i];
}
return 0;
}
#define CMP(aa, bb) ((aa) == (bb) ? 0 : (aa) < (bb) ? -1 : 1)
static int uint_cmp_func(const void *p1, const void *p2)
{
unsigned int a1 = *((unsigned int *)p1);
unsigned int a2 = *((unsigned int *)p2);
return CMP(a1, a2);
}
static int overlap_ptr_cmp(const void *a, const void *b)
{
struct overlap *pa = *((struct overlap **)a);
struct overlap *pb = *((struct overlap **)b);
/* sort with lowest starting buffer first */
int st = CMP(pa->start, pb->start);
/* sort with highest ending buffer first */
int ed = CMP(pb->end, pa->end);
return st == 0 ? ed : st;
}
static int context_build_overlap(struct smq_invoke_ctx *ctx)
{
int i, err = 0;
remote_arg_t *lpra = ctx->lpra;
int inbufs = REMOTE_SCALARS_INBUFS(ctx->sc);
int outbufs = REMOTE_SCALARS_OUTBUFS(ctx->sc);
int nbufs = inbufs + outbufs;
struct overlap max;
for (i = 0; i < nbufs; ++i) {
ctx->overs[i].start = (uintptr_t)lpra[i].buf.pv;
ctx->overs[i].end = ctx->overs[i].start + lpra[i].buf.len;
if (lpra[i].buf.len) {
VERIFY(err, ctx->overs[i].end > ctx->overs[i].start);
if (err) {
err = -EFAULT;
ADSPRPC_ERR(
"Invalid address 0x%llx and size %zu\n",
(uintptr_t)lpra[i].buf.pv,
lpra[i].buf.len);
goto bail;
}
}
ctx->overs[i].raix = i;
ctx->overps[i] = &ctx->overs[i];
}
sort(ctx->overps, nbufs, sizeof(*ctx->overps), overlap_ptr_cmp, NULL);
max.start = 0;
max.end = 0;
for (i = 0; i < nbufs; ++i) {
if (ctx->overps[i]->start < max.end) {
ctx->overps[i]->mstart = max.end;
ctx->overps[i]->mend = ctx->overps[i]->end;
ctx->overps[i]->offset = max.end -
ctx->overps[i]->start;
if (ctx->overps[i]->end > max.end) {
max.end = ctx->overps[i]->end;
} else {
if ((max.raix < inbufs &&
ctx->overps[i]->raix + 1 > inbufs) ||
(ctx->overps[i]->raix < inbufs &&
max.raix + 1 > inbufs))
ctx->overps[i]->do_cmo = 1;
ctx->overps[i]->mend = 0;
ctx->overps[i]->mstart = 0;
}
} else {
ctx->overps[i]->mend = ctx->overps[i]->end;
ctx->overps[i]->mstart = ctx->overps[i]->start;
ctx->overps[i]->offset = 0;
max = *ctx->overps[i];
}
}
bail:
return err;
}
#define K_COPY_FROM_USER(err, kernel, dst, src, size) \
do {\
if (!(kernel))\
err = copy_from_user((dst),\
(void const __user *)(src),\
(size));\
else\
memmove((dst), (src), (size));\
} while (0)
#define K_COPY_TO_USER(err, kernel, dst, src, size) \
do {\
if (!(kernel))\
err = copy_to_user((void __user *)(dst),\
(src), (size));\
else\
memmove((dst), (src), (size));\
} while (0)
static void context_free(struct smq_invoke_ctx *ctx);
static int context_alloc(struct fastrpc_file *fl, uint32_t kernel,
struct fastrpc_ioctl_invoke_async *invokefd,
struct smq_invoke_ctx **po)
{
struct fastrpc_apps *me = &gfa;
int err = 0, bufs, ii, size = 0, cid = fl->cid;
struct smq_invoke_ctx *ctx = NULL;
struct fastrpc_ctx_lst *clst = &fl->clst;
struct fastrpc_ioctl_invoke *invoke = &invokefd->inv;
struct fastrpc_channel_ctx *chan = NULL;
unsigned long irq_flags = 0;
uint32_t is_kernel_memory = 0;
spin_lock(&fl->hlock);
if (fl->clst.num_active_ctxs > MAX_PENDING_CTX_PER_SESSION &&
!(kernel || invoke->handle < FASTRPC_STATIC_HANDLE_MAX)) {
err = -EDQUOT;
spin_unlock(&fl->hlock);
goto bail;
}
spin_unlock(&fl->hlock);
bufs = REMOTE_SCALARS_LENGTH(invoke->sc);
size = bufs * sizeof(*ctx->lpra) + bufs * sizeof(*ctx->maps) +
sizeof(*ctx->fds) * (bufs) +
sizeof(*ctx->attrs) * (bufs) +
sizeof(*ctx->overs) * (bufs) +
sizeof(*ctx->overps) * (bufs);
VERIFY(err, NULL != (ctx = kzalloc(sizeof(*ctx) + size, GFP_KERNEL)));
if (err) {
err = -ENOMEM;
goto bail;
}
INIT_HLIST_NODE(&ctx->hn);
INIT_LIST_HEAD(&ctx->asyncn);
hlist_add_fake(&ctx->hn);
ctx->fl = fl;
ctx->maps = (struct fastrpc_mmap **)(&ctx[1]);
ctx->lpra = (remote_arg_t *)(&ctx->maps[bufs]);
ctx->fds = (int *)(&ctx->lpra[bufs]);
ctx->attrs = (unsigned int *)(&ctx->fds[bufs]);
ctx->overs = (struct overlap *)(&ctx->attrs[bufs]);
ctx->overps = (struct overlap **)(&ctx->overs[bufs]);
/* If user message, do not use copy_from_user to copy buffers for
* compat driver,as memory is already copied to kernel memory
* for compat driver
*/
is_kernel_memory = ((kernel == USER_MSG) ? (fl->is_compat) : kernel);
K_COPY_FROM_USER(err, is_kernel_memory, (void *)ctx->lpra, invoke->pra,
bufs * sizeof(*ctx->lpra));
if (err) {
ADSPRPC_ERR(
"copy from user failed with %d for remote arguments list\n",
err);
err = -EFAULT;
goto bail;
}
if (invokefd->fds) {
K_COPY_FROM_USER(err, kernel, ctx->fds, invokefd->fds,
bufs * sizeof(*ctx->fds));
if (err) {
ADSPRPC_ERR(
"copy from user failed with %d for fd list\n",
err);
err = -EFAULT;
goto bail;
}
} else {
ctx->fds = NULL;
}
if (invokefd->attrs) {
K_COPY_FROM_USER(err, kernel, ctx->attrs, invokefd->attrs,
bufs * sizeof(*ctx->attrs));
if (err) {
ADSPRPC_ERR(
"copy from user failed with %d for attribute list\n",
err);
err = -EFAULT;
goto bail;
}
}
ctx->crc = (uint32_t *)invokefd->crc;
ctx->perf_dsp = (uint64_t *)invokefd->perf_dsp;
ctx->perf_kernel = (uint64_t *)invokefd->perf_kernel;
ctx->handle = invoke->handle;
ctx->sc = invoke->sc;
if (bufs) {
VERIFY(err, 0 == (err = context_build_overlap(ctx)));
if (err)
goto bail;
}
ctx->retval = -1;
ctx->pid = current->pid;
ctx->tgid = fl->tgid;
init_completion(&ctx->work);
ctx->magic = FASTRPC_CTX_MAGIC;
ctx->rsp_flags = NORMAL_RESPONSE;
ctx->is_work_done = false;
ctx->copybuf = NULL;
ctx->is_early_wakeup = false;
if (ctx->fl->profile) {
ctx->perf = kzalloc(sizeof(*(ctx->perf)), GFP_KERNEL);
VERIFY(err, !IS_ERR_OR_NULL(ctx->perf));
if (err) {
kfree(ctx->perf);
err = -ENOMEM;
goto bail;
}
memset(ctx->perf, 0, sizeof(*(ctx->perf)));
ctx->perf->tid = fl->tgid;
}
if (invokefd->job) {
K_COPY_FROM_USER(err, kernel, &ctx->asyncjob, invokefd->job,
sizeof(ctx->asyncjob));
if (err)
goto bail;
}
chan = &me->channel[cid];
spin_lock_irqsave(&chan->ctxlock, irq_flags);
me->jobid[cid]++;
for (ii = ((kernel || ctx->handle < FASTRPC_STATIC_HANDLE_MAX)
? 0 : NUM_KERNEL_AND_STATIC_ONLY_CONTEXTS);
ii < FASTRPC_CTX_MAX; ii++) {
if (!chan->ctxtable[ii]) {
chan->ctxtable[ii] = ctx;
ctx->ctxid = (me->jobid[cid] << FASTRPC_CTX_JOBID_POS)
| (ii << FASTRPC_CTX_TABLE_IDX_POS)
| ((ctx->asyncjob.isasyncjob &&
FASTRPC_ASYNC_JOB_MASK) << FASTRPC_CTX_JOB_TYPE_POS);
break;
}
}
spin_unlock_irqrestore(&chan->ctxlock, irq_flags);
VERIFY(err, ii < FASTRPC_CTX_MAX);
if (err) {
ADSPRPC_ERR(
"adsprpc: out of context table entries for handle 0x%x, sc 0x%x\n",
ctx->handle, ctx->sc);
err = -ENOKEY;
goto bail;
}
spin_lock(&fl->hlock);
hlist_add_head(&ctx->hn, &clst->pending);
clst->num_active_ctxs++;
spin_unlock(&fl->hlock);
trace_fastrpc_context_alloc((uint64_t)ctx,
ctx->ctxid | fl->pd, ctx->handle, ctx->sc);
*po = ctx;
bail:
if (ctx && err)
context_free(ctx);
return err;
}
static void context_save_interrupted(struct smq_invoke_ctx *ctx)
{
struct fastrpc_ctx_lst *clst = &ctx->fl->clst;
spin_lock(&ctx->fl->hlock);
hlist_del_init(&ctx->hn);
hlist_add_head(&ctx->hn, &clst->interrupted);
spin_unlock(&ctx->fl->hlock);
}
static void context_free(struct smq_invoke_ctx *ctx)
{
uint32_t i = 0;
struct fastrpc_apps *me = &gfa;
int nbufs = REMOTE_SCALARS_INBUFS(ctx->sc) +
REMOTE_SCALARS_OUTBUFS(ctx->sc);
int cid = ctx->fl->cid;
struct fastrpc_channel_ctx *chan = NULL;
unsigned long irq_flags = 0;
int err = 0;
VERIFY(err, VALID_FASTRPC_CID(cid));
if (err) {
ADSPRPC_ERR(
"invalid channel 0x%zx set for session\n",
cid);
return;
}
chan = &me->channel[cid];
i = (uint32_t)GET_TABLE_IDX_FROM_CTXID(ctx->ctxid);
spin_lock_irqsave(&chan->ctxlock, irq_flags);
if (i < FASTRPC_CTX_MAX && chan->ctxtable[i] == ctx) {
chan->ctxtable[i] = NULL;
} else {
for (i = 0; i < FASTRPC_CTX_MAX; i++) {
if (chan->ctxtable[i] == ctx) {
chan->ctxtable[i] = NULL;
break;
}
}
}
spin_unlock_irqrestore(&chan->ctxlock, irq_flags);
spin_lock(&ctx->fl->hlock);
if (!hlist_unhashed(&ctx->hn)) {
hlist_del_init(&ctx->hn);
ctx->fl->clst.num_active_ctxs--;
}
spin_unlock(&ctx->fl->hlock);
mutex_lock(&ctx->fl->map_mutex);
for (i = 0; i < nbufs; ++i)
fastrpc_mmap_free(ctx->maps[i], 0);
mutex_unlock(&ctx->fl->map_mutex);
fastrpc_buf_free(ctx->buf, 1);
if (ctx->copybuf != ctx->buf)
fastrpc_buf_free(ctx->copybuf, 1);
kfree(ctx->lrpra);
ctx->lrpra = NULL;
ctx->magic = 0;
ctx->ctxid = 0;
if (ctx->fl->profile)
kfree(ctx->perf);
trace_fastrpc_context_free((uint64_t)ctx,
ctx->msg.invoke.header.ctx, ctx->handle, ctx->sc);
kfree(ctx);
}
static void fastrpc_queue_completed_async_job(struct smq_invoke_ctx *ctx)
{
struct fastrpc_file *fl = ctx->fl;
unsigned long flags;
spin_lock_irqsave(&fl->aqlock, flags);
if (ctx->is_early_wakeup)
goto bail;
list_add_tail(&ctx->asyncn, &fl->clst.async_queue);
atomic_add(1, &fl->async_queue_job_count);
ctx->is_early_wakeup = true;
wake_up_interruptible(&fl->async_wait_queue);
bail:
spin_unlock_irqrestore(&fl->aqlock, flags);
}
static void fastrpc_queue_pd_status(struct fastrpc_file *fl, int domain, int status, int sessionid)
{
struct smq_notif_rsp *notif_rsp = NULL;
unsigned long flags;
int err = 0;
VERIFY(err, NULL != (notif_rsp = kzalloc(sizeof(*notif_rsp), GFP_ATOMIC)));
if (err) {
ADSPRPC_ERR(
"allocation failed for size 0x%zx\n",
sizeof(*notif_rsp));
return;
}
notif_rsp->status = status;
notif_rsp->domain = domain;
notif_rsp->session = sessionid;
spin_lock_irqsave(&fl->proc_state_notif.nqlock, flags);
list_add_tail(&notif_rsp->notifn, &fl->clst.notif_queue);
atomic_add(1, &fl->proc_state_notif.notif_queue_count);
wake_up_interruptible(&fl->proc_state_notif.notif_wait_queue);
spin_unlock_irqrestore(&fl->proc_state_notif.nqlock, flags);
}
static void fastrpc_notif_find_process(int domain, struct smq_notif_rspv3 *notif)
{
struct fastrpc_apps *me = &gfa;
struct fastrpc_file *fl = NULL;
struct hlist_node *n;
bool is_process_found = false;
int sessionid = 0;
unsigned long irq_flags = 0;
spin_lock_irqsave(&me->hlock, irq_flags);
hlist_for_each_entry_safe(fl, n, &me->drivers, hn) {
if (fl->tgid == notif->pid ||
(fl->tgid == (notif->pid & PROCESS_ID_MASK))) {
is_process_found = true;
break;
}
}
spin_unlock_irqrestore(&me->hlock, irq_flags);
if (!is_process_found)
return;
if (notif->pid & SESSION_ID_MASK)
sessionid = 1;
fastrpc_queue_pd_status(fl, domain, notif->status, sessionid);
}
static void context_notify_user(struct smq_invoke_ctx *ctx,
int retval, uint32_t rsp_flags, uint32_t early_wake_time)
{
fastrpc_pm_awake(ctx->fl, gcinfo[ctx->fl->cid].secure);
ctx->retval = retval;
ctx->rsp_flags = (enum fastrpc_response_flags)rsp_flags;
trace_fastrpc_context_complete(ctx->fl->cid, (uint64_t)ctx, retval,
ctx->msg.invoke.header.ctx, ctx->handle, ctx->sc);
switch (rsp_flags) {
case NORMAL_RESPONSE:
fallthrough;
case COMPLETE_SIGNAL:
/* normal and complete response with return value */
ctx->is_work_done = true;
if (ctx->asyncjob.isasyncjob)
fastrpc_queue_completed_async_job(ctx);
trace_fastrpc_msg("wakeup_task: begin");
complete(&ctx->work);
trace_fastrpc_msg("wakeup_task: end");
break;
case USER_EARLY_SIGNAL:
/* user hint of approximate time of completion */
ctx->early_wake_time = early_wake_time;
if (ctx->asyncjob.isasyncjob)
break;
fallthrough;
case EARLY_RESPONSE:
/* rpc framework early response with return value */
if (ctx->asyncjob.isasyncjob)
fastrpc_queue_completed_async_job(ctx);
else {
trace_fastrpc_msg("wakeup_task: begin");
complete(&ctx->work);
trace_fastrpc_msg("wakeup_task: end");
}
break;
default:
break;
}
}
static void fastrpc_notify_users(struct fastrpc_file *me)
{
struct smq_invoke_ctx *ictx;
struct hlist_node *n;
unsigned long irq_flags = 0;
spin_lock_irqsave(&me->hlock, irq_flags);
hlist_for_each_entry_safe(ictx, n, &me->clst.pending, hn) {
ictx->is_work_done = true;
ictx->retval = -ECONNRESET;
trace_fastrpc_context_complete(me->cid, (uint64_t)ictx,
ictx->retval, ictx->msg.invoke.header.ctx,
ictx->handle, ictx->sc);
if (ictx->asyncjob.isasyncjob)
fastrpc_queue_completed_async_job(ictx);
else
complete(&ictx->work);
}
hlist_for_each_entry_safe(ictx, n, &me->clst.interrupted, hn) {
ictx->is_work_done = true;
ictx->retval = -ECONNRESET;
trace_fastrpc_context_complete(me->cid, (uint64_t)ictx,
ictx->retval, ictx->msg.invoke.header.ctx,
ictx->handle, ictx->sc);
complete(&ictx->work);
}
spin_unlock_irqrestore(&me->hlock, irq_flags);
}
static void fastrpc_notify_users_staticpd_pdr(struct fastrpc_file *me)
{
struct smq_invoke_ctx *ictx;
struct hlist_node *n;
unsigned long irq_flags = 0;
spin_lock_irqsave(&me->hlock, irq_flags);
hlist_for_each_entry_safe(ictx, n, &me->clst.pending, hn) {
if (ictx->msg.pid) {
ictx->is_work_done = true;
ictx->retval = -ECONNRESET;
trace_fastrpc_context_complete(me->cid, (uint64_t)ictx,
ictx->retval, ictx->msg.invoke.header.ctx,
ictx->handle, ictx->sc);
if (ictx->asyncjob.isasyncjob)
fastrpc_queue_completed_async_job(ictx);
else
complete(&ictx->work);
}
}
hlist_for_each_entry_safe(ictx, n, &me->clst.interrupted, hn) {
if (ictx->msg.pid) {
ictx->is_work_done = true;
ictx->retval = -ECONNRESET;
trace_fastrpc_context_complete(me->cid, (uint64_t)ictx,
ictx->retval, ictx->msg.invoke.header.ctx,
ictx->handle, ictx->sc);
complete(&ictx->work);
}
}
spin_unlock_irqrestore(&me->hlock, irq_flags);
}
static void fastrpc_ramdump_collection(int cid)
{
struct fastrpc_file *fl = NULL;
struct hlist_node *n = NULL;
struct fastrpc_apps *me = &gfa;
struct fastrpc_channel_ctx *chan = &me->channel[cid];
struct qcom_dump_segment ramdump_entry;
struct fastrpc_buf *buf = NULL;
int ret = 0;
unsigned long irq_flags = 0;
struct list_head head;
spin_lock_irqsave(&me->hlock, irq_flags);
hlist_for_each_entry_safe(fl, n, &me->drivers, hn) {
if (fl->cid == cid && fl->init_mem &&
fl->file_close < FASTRPC_PROCESS_DSP_EXIT_COMPLETE &&
fl->dsp_proc_init) {
hlist_add_head(&fl->init_mem->hn_init, &chan->initmems);
fl->is_ramdump_pend = true;
}
}
if (chan->buf)
hlist_add_head(&chan->buf->hn_init, &chan->initmems);
spin_unlock_irqrestore(&me->hlock, irq_flags);
hlist_for_each_entry_safe(buf, n, &chan->initmems, hn_init) {
fl = buf->fl;
memset(&ramdump_entry, 0, sizeof(ramdump_entry));
ramdump_entry.da = buf->phys;
ramdump_entry.va = (void *)buf->virt;
ramdump_entry.size = buf->size;
INIT_LIST_HEAD(&head);
list_add(&ramdump_entry.node, &head);
if (fl && fl->sctx && fl->sctx->smmu.dev)
ret = qcom_elf_dump(&head, fl->sctx->smmu.dev, ELF_CLASS);
else {
if (me->dev != NULL)
ret = qcom_elf_dump(&head, me->dev, ELF_CLASS);
}
if (ret < 0)
ADSPRPC_ERR("adsprpc: %s: unable to dump PD memory (err %d)\n",
__func__, ret);
hlist_del_init(&buf->hn_init);
if (fl) {
spin_lock_irqsave(&me->hlock, irq_flags);
if (fl->file_close)
complete(&fl->work);
fl->is_ramdump_pend = false;
spin_unlock_irqrestore(&me->hlock, irq_flags);
}
}
}
static void fastrpc_notify_drivers(struct fastrpc_apps *me, int cid)
{
struct fastrpc_file *fl;
struct hlist_node *n;
unsigned long irq_flags = 0;
spin_lock_irqsave(&me->hlock, irq_flags);
hlist_for_each_entry_safe(fl, n, &me->drivers, hn) {
if (fl->cid == cid) {
fastrpc_queue_pd_status(fl, cid, FASTRPC_DSP_SSR, 0);
fastrpc_notify_users(fl);
}
}
spin_unlock_irqrestore(&me->hlock, irq_flags);
}
static void fastrpc_notify_pdr_drivers(struct fastrpc_apps *me,
char *servloc_name)
{
struct fastrpc_file *fl;
struct hlist_node *n;
unsigned long irq_flags = 0;
spin_lock_irqsave(&me->hlock, irq_flags);
hlist_for_each_entry_safe(fl, n, &me->drivers, hn) {
if (fl->servloc_name && !strcmp(servloc_name, fl->servloc_name))
fastrpc_notify_users_staticpd_pdr(fl);
}
spin_unlock_irqrestore(&me->hlock, irq_flags);
}
static void context_list_ctor(struct fastrpc_ctx_lst *me)
{
INIT_HLIST_HEAD(&me->interrupted);
INIT_HLIST_HEAD(&me->pending);
me->num_active_ctxs = 0;
INIT_LIST_HEAD(&me->async_queue);
INIT_LIST_HEAD(&me->notif_queue);
}
static void fastrpc_context_list_dtor(struct fastrpc_file *fl)
{
struct fastrpc_ctx_lst *clst = &fl->clst;
struct smq_invoke_ctx *ictx = NULL, *ctxfree;
struct hlist_node *n;
do {
ctxfree = NULL;
spin_lock(&fl->hlock);
hlist_for_each_entry_safe(ictx, n, &clst->interrupted, hn) {
hlist_del_init(&ictx->hn);
clst->num_active_ctxs--;
ctxfree = ictx;
break;
}
spin_unlock(&fl->hlock);
if (ctxfree)
context_free(ctxfree);
} while (ctxfree);
do {
ctxfree = NULL;
spin_lock(&fl->hlock);
hlist_for_each_entry_safe(ictx, n, &clst->pending, hn) {
hlist_del_init(&ictx->hn);
clst->num_active_ctxs--;
ctxfree = ictx;
break;
}
spin_unlock(&fl->hlock);
if (ctxfree)
context_free(ctxfree);
} while (ctxfree);
}
static int fastrpc_file_free(struct fastrpc_file *fl);
static void fastrpc_file_list_dtor(struct fastrpc_apps *me)
{
struct fastrpc_file *fl, *free;
struct hlist_node *n;
unsigned long irq_flags = 0;
do {
free = NULL;
spin_lock_irqsave(&me->hlock, irq_flags);
hlist_for_each_entry_safe(fl, n, &me->drivers, hn) {
hlist_del_init(&fl->hn);
free = fl;
break;
}
spin_unlock_irqrestore(&me->hlock, irq_flags);
if (free)
fastrpc_file_free(free);
} while (free);
}
static int get_args(uint32_t kernel, struct smq_invoke_ctx *ctx)
{
remote_arg64_t *rpra, *lrpra;
remote_arg_t *lpra = ctx->lpra;
struct smq_invoke_buf *list;
struct smq_phy_page *pages, *ipage;
uint32_t sc = ctx->sc;
int inbufs = REMOTE_SCALARS_INBUFS(sc);
int outbufs = REMOTE_SCALARS_OUTBUFS(sc);
int handles, bufs = inbufs + outbufs;
uintptr_t args = 0;
size_t rlen = 0, copylen = 0, metalen = 0, lrpralen = 0, templen = 0;
size_t totallen = 0; //header and non ion copy buf len
int i, oix;
int err = 0, j = 0;
int mflags = 0;
uint64_t *fdlist = NULL;
uint32_t *crclist = NULL;
uint32_t early_hint;
uint64_t *perf_counter = NULL;
struct fastrpc_dsp_capabilities *dsp_cap_ptr = NULL;
if (ctx->fl->profile)
perf_counter = (uint64_t *)ctx->perf + PERF_COUNT;
/* calculate size of the metadata */
rpra = NULL;
lrpra = NULL;
list = smq_invoke_buf_start(rpra, sc);
pages = smq_phy_page_start(sc, list);
ipage = pages;
PERF(ctx->fl->profile, GET_COUNTER(perf_counter, PERF_MAP),
for (i = 0; i < bufs; ++i) {
uintptr_t buf = (uintptr_t)lpra[i].buf.pv;
size_t len = lpra[i].buf.len;
mutex_lock(&ctx->fl->map_mutex);
if (ctx->fds && (ctx->fds[i] != -1))
err = fastrpc_mmap_create(ctx->fl, ctx->fds[i], NULL,
ctx->attrs[i], buf, len,
mflags, &ctx->maps[i]);
mutex_unlock(&ctx->fl->map_mutex);
if (err)
goto bail;
ipage += 1;
}
PERF_END);
handles = REMOTE_SCALARS_INHANDLES(sc) + REMOTE_SCALARS_OUTHANDLES(sc);
mutex_lock(&ctx->fl->map_mutex);
for (i = bufs; i < bufs + handles; i++) {
int dmaflags = 0;
if (ctx->attrs && (ctx->attrs[i] & FASTRPC_ATTR_NOMAP))
dmaflags = FASTRPC_MAP_FD_NOMAP;
VERIFY(err, VALID_FASTRPC_CID(ctx->fl->cid));
if (err) {
err = -ECHRNG;
mutex_unlock(&ctx->fl->map_mutex);
goto bail;
}
dsp_cap_ptr = &gcinfo[ctx->fl->cid].dsp_cap_kernel;
// Skip cpu mapping if DMA_HANDLE_REVERSE_RPC_CAP is true.
if (!dsp_cap_ptr->dsp_attributes[DMA_HANDLE_REVERSE_RPC_CAP] &&
ctx->fds && (ctx->fds[i] != -1))
err = fastrpc_mmap_create(ctx->fl, ctx->fds[i], NULL,
FASTRPC_ATTR_NOVA, 0, 0, dmaflags,
&ctx->maps[i]);
if (err) {
for (j = bufs; j < i; j++)
fastrpc_mmap_free(ctx->maps[j], 0);
mutex_unlock(&ctx->fl->map_mutex);
goto bail;
}
ipage += 1;
}
mutex_unlock(&ctx->fl->map_mutex);
/* metalen includes meta data, fds, crc, dsp perf and early wakeup hint */
metalen = totallen = (size_t)&ipage[0] + (sizeof(uint64_t) * M_FDLIST) +
(sizeof(uint32_t) * M_CRCLIST) + (sizeof(uint64_t) * M_DSP_PERF_LIST) +
sizeof(early_hint);
if (metalen) {
err = fastrpc_buf_alloc(ctx->fl, metalen, 0, 0,
METADATA_BUF, &ctx->buf);
if (err)
goto bail;
VERIFY(err, !IS_ERR_OR_NULL(ctx->buf->virt));
if (err)
goto bail;
memset(ctx->buf->virt, 0, metalen);
}
ctx->used = metalen;
/* allocate new local rpra buffer */
lrpralen = (size_t)&list[0];
if (lrpralen) {
lrpra = kzalloc(lrpralen, GFP_KERNEL);
VERIFY(err, !IS_ERR_OR_NULL(lrpra));
if (err) {
err = -ENOMEM;
goto bail;
}
}
ctx->lrpra = lrpra;
/* calculate len required for copying */
for (oix = 0; oix < inbufs + outbufs; ++oix) {
int i = ctx->overps[oix]->raix;
uintptr_t mstart, mend;
size_t len = lpra[i].buf.len;
if (!len)
continue;
if (ctx->maps[i])
continue;
if (ctx->overps[oix]->offset == 0)
copylen = ALIGN(copylen, BALIGN);
mstart = ctx->overps[oix]->mstart;
mend = ctx->overps[oix]->mend;
templen = mend - mstart;
VERIFY(err, ((templen <= LONG_MAX) && (copylen <= (LONG_MAX - templen))));
if (err) {
err = -EFAULT;
goto bail;
}
copylen += templen;
}
totallen = ALIGN(totallen, BALIGN) + copylen;
/* allocate non -ion copy buffer */
/* Checking if copylen can be accomodated in metalen*/
/*if not allocating new buffer */
if (totallen <= (size_t)buf_page_size(metalen)) {
args = (uintptr_t)ctx->buf->virt + metalen;
ctx->copybuf = ctx->buf;
rlen = totallen - metalen;
} else if (copylen) {
err = fastrpc_buf_alloc(ctx->fl, copylen, 0, 0, COPYDATA_BUF,
&ctx->copybuf);
if (err)
goto bail;
memset(ctx->copybuf->virt, 0, copylen);
args = (uintptr_t)ctx->copybuf->virt;
rlen = copylen;
totallen = copylen;
}
/* copy metadata */
rpra = ctx->buf->virt;
ctx->rpra = rpra;
list = smq_invoke_buf_start(rpra, sc);
pages = smq_phy_page_start(sc, list);
ipage = pages;
for (i = 0; i < bufs + handles; ++i) {
if (lpra[i].buf.len)
list[i].num = 1;
else
list[i].num = 0;
list[i].pgidx = ipage - pages;
ipage++;
}
/* map ion buffers */
PERF(ctx->fl->profile, GET_COUNTER(perf_counter, PERF_MAP),
for (i = 0; rpra && i < inbufs + outbufs; ++i) {
struct fastrpc_mmap *map = ctx->maps[i];
uint64_t buf = ptr_to_uint64(lpra[i].buf.pv);
size_t len = lpra[i].buf.len;
rpra[i].buf.pv = 0;
rpra[i].buf.len = len;
if (!len)
continue;
if (map) {
struct vm_area_struct *vma;
uintptr_t offset;
uint64_t num = buf_num_pages(buf, len);
int idx = list[i].pgidx;
if (map->attr & FASTRPC_ATTR_NOVA) {
offset = 0;
} else {
down_read(&current->mm->mmap_lock);
VERIFY(err, NULL != (vma = find_vma(current->mm,
map->va)));
if (err) {
up_read(&current->mm->mmap_lock);
goto bail;
}
offset = buf_page_start(buf) - vma->vm_start;
up_read(&current->mm->mmap_lock);
VERIFY(err, offset + len <= (uintptr_t)map->size);
if (err) {
ADSPRPC_ERR(
"buffer address is invalid for the fd passed for %d address 0x%llx and size %zu\n",
i, (uintptr_t)lpra[i].buf.pv,
lpra[i].buf.len);
err = -EFAULT;
goto bail;
}
}
pages[idx].addr = map->phys + offset;
pages[idx].size = num << PAGE_SHIFT;
}
rpra[i].buf.pv = buf;
}
PERF_END);
for (i = bufs; i < bufs + handles; ++i) {
struct fastrpc_mmap *map = ctx->maps[i];
if (map) {
pages[i].addr = map->phys;
pages[i].size = map->size;
}
}
fdlist = (uint64_t *)&pages[bufs + handles];
crclist = (uint32_t *)&fdlist[M_FDLIST];
/* reset fds, crc and early wakeup hint memory */
/* remote process updates these values before responding */
memset(fdlist, 0, sizeof(uint64_t)*M_FDLIST + sizeof(uint32_t)*M_CRCLIST +
(sizeof(uint64_t) * M_DSP_PERF_LIST) + sizeof(early_hint));
/* copy non ion buffers */
PERF(ctx->fl->profile, GET_COUNTER(perf_counter, PERF_COPY),
for (oix = 0; rpra && oix < inbufs + outbufs; ++oix) {
int i = ctx->overps[oix]->raix;
struct fastrpc_mmap *map = ctx->maps[i];
size_t mlen;
uint64_t buf;
size_t len = lpra[i].buf.len;
if (!len)
continue;
if (map)
continue;
if (ctx->overps[oix]->offset == 0) {
rlen -= ALIGN(args, BALIGN) - args;
args = ALIGN(args, BALIGN);
}
mlen = ctx->overps[oix]->mend - ctx->overps[oix]->mstart;
VERIFY(err, rlen >= mlen);
if (err) {
err = -EFAULT;
goto bail;
}
rpra[i].buf.pv =
(args - ctx->overps[oix]->offset);
pages[list[i].pgidx].addr = ctx->copybuf->phys -
ctx->overps[oix]->offset +
(totallen - rlen);
pages[list[i].pgidx].addr =
buf_page_start(pages[list[i].pgidx].addr);
buf = rpra[i].buf.pv;
pages[list[i].pgidx].size = buf_num_pages(buf, len) * PAGE_SIZE;
if (i < inbufs) {
K_COPY_FROM_USER(err, kernel, uint64_to_ptr(buf),
lpra[i].buf.pv, len);
if (err) {
ADSPRPC_ERR(
"copy from user failed with %d for dst 0x%llx, src %pK, size 0x%zx, arg %d\n",
err, buf, lpra[i].buf.pv, len, i+1);
err = -EFAULT;
goto bail;
}
}
if (len > DEBUG_PRINT_SIZE_LIMIT)
ADSPRPC_DEBUG(
"copied non ion buffer sc 0x%x pv 0x%llx, mend 0x%llx mstart 0x%llx, len %zu\n",
sc, rpra[i].buf.pv,
ctx->overps[oix]->mend,
ctx->overps[oix]->mstart, len);
args = args + mlen;
rlen -= mlen;
}
PERF_END);
PERF(ctx->fl->profile, GET_COUNTER(perf_counter, PERF_FLUSH),
for (oix = 0; oix < inbufs + outbufs; ++oix) {
int i = ctx->overps[oix]->raix;
struct fastrpc_mmap *map = ctx->maps[i];
if (i+1 > inbufs) // Avoiding flush for outbufs
continue;
if (ctx->fl->sctx && ctx->fl->sctx->smmu.coherent)
continue;
if (map && (map->attr & FASTRPC_ATTR_FORCE_NOFLUSH))
continue;
if (rpra && rpra[i].buf.len && (ctx->overps[oix]->mstart ||
ctx->overps[oix]->do_cmo == 1)) {
if (map && map->buf) {
if (((buf_page_size(ctx->overps[oix]->mend -
ctx->overps[oix]->mstart)) == map->size) ||
ctx->overps[oix]->do_cmo) {
dma_buf_begin_cpu_access(map->buf,
DMA_TO_DEVICE);
dma_buf_end_cpu_access(map->buf,
DMA_TO_DEVICE);
ADSPRPC_DEBUG(
"sc 0x%x pv 0x%llx, mend 0x%llx mstart 0x%llx, len %zu size %zu\n",
sc, rpra[i].buf.pv,
ctx->overps[oix]->mend,
ctx->overps[oix]->mstart,
rpra[i].buf.len, map->size);
} else {
uintptr_t offset;
uint64_t flush_len;
struct vm_area_struct *vma;
down_read(&current->mm->mmap_lock);
VERIFY(err, NULL != (vma = find_vma(
current->mm, rpra[i].buf.pv)));
if (err) {
up_read(&current->mm->mmap_lock);
goto bail;
}
if (ctx->overps[oix]->do_cmo) {
offset = rpra[i].buf.pv -
vma->vm_start;
flush_len = rpra[i].buf.len;
} else {
offset =
ctx->overps[oix]->mstart
- vma->vm_start;
flush_len =
ctx->overps[oix]->mend -
ctx->overps[oix]->mstart;
}
up_read(&current->mm->mmap_lock);
dma_buf_begin_cpu_access_partial(
map->buf, DMA_TO_DEVICE, offset,
flush_len);
dma_buf_end_cpu_access_partial(
map->buf, DMA_TO_DEVICE, offset,
flush_len);
ADSPRPC_DEBUG(
"sc 0x%x vm_start 0x%llx pv 0x%llx, offset 0x%llx, mend 0x%llx mstart 0x%llx, len %zu size %zu\n",
sc, vma->vm_start,
rpra[i].buf.pv, offset,
ctx->overps[oix]->mend,
ctx->overps[oix]->mstart,
rpra[i].buf.len, map->size);
}
}
}
}
PERF_END);
for (i = bufs; ctx->fds && rpra && i < bufs + handles; i++) {
rpra[i].dma.fd = ctx->fds[i];
rpra[i].dma.len = (uint32_t)lpra[i].buf.len;
rpra[i].dma.offset =
(uint32_t)(uintptr_t)lpra[i].buf.pv;
}
/* Copy rpra to local buffer */
if (ctx->lrpra && rpra && lrpralen > 0)
memcpy(ctx->lrpra, rpra, lrpralen);
bail:
return err;
}
static int put_args(uint32_t kernel, struct smq_invoke_ctx *ctx,
remote_arg_t *upra)
{
uint32_t sc = ctx->sc;
struct smq_invoke_buf *list;
struct smq_phy_page *pages;
struct fastrpc_mmap *mmap;
uint64_t *fdlist;
uint32_t *crclist = NULL, *poll = NULL;
uint64_t *perf_dsp_list = NULL;
remote_arg64_t *rpra = ctx->lrpra;
int i, inbufs, outbufs, handles;
int err = 0, perfErr = 0;
inbufs = REMOTE_SCALARS_INBUFS(sc);
outbufs = REMOTE_SCALARS_OUTBUFS(sc);
handles = REMOTE_SCALARS_INHANDLES(sc) + REMOTE_SCALARS_OUTHANDLES(sc);
list = smq_invoke_buf_start(ctx->rpra, sc);
pages = smq_phy_page_start(sc, list);
fdlist = (uint64_t *)(pages + inbufs + outbufs + handles);
crclist = (uint32_t *)(fdlist + M_FDLIST);
poll = (uint32_t *)(crclist + M_CRCLIST);
perf_dsp_list = (uint64_t *)(poll + 1);
for (i = inbufs; i < inbufs + outbufs; ++i) {
if (!ctx->maps[i]) {
K_COPY_TO_USER(err, kernel,
ctx->lpra[i].buf.pv,
uint64_to_ptr(rpra[i].buf.pv),
rpra[i].buf.len);
if (err) {
ADSPRPC_ERR(
"Invalid size 0x%llx for output argument %d ret %ld\n",
rpra[i].buf.len, i+1, err);
err = -EFAULT;
goto bail;
}
} else {
mutex_lock(&ctx->fl->map_mutex);
fastrpc_mmap_free(ctx->maps[i], 0);
mutex_unlock(&ctx->fl->map_mutex);
ctx->maps[i] = NULL;
}
}
mutex_lock(&ctx->fl->map_mutex);
for (i = 0; i < M_FDLIST; i++) {
if (!fdlist[i])
break;
if (!fastrpc_mmap_find(ctx->fl, (int)fdlist[i], NULL, 0, 0,
0, 0, &mmap))
fastrpc_mmap_free(mmap, 0);
}
mutex_unlock(&ctx->fl->map_mutex);
if (ctx->crc && crclist && rpra)
K_COPY_TO_USER(err, kernel, ctx->crc,
crclist, M_CRCLIST*sizeof(uint32_t));
if (ctx->perf_dsp && perf_dsp_list) {
K_COPY_TO_USER(perfErr, kernel, ctx->perf_dsp,
perf_dsp_list, M_DSP_PERF_LIST*sizeof(uint64_t));
if (perfErr)
ADSPRPC_WARN("failed to copy perf data err %d\n", perfErr);
}
bail:
return err;
}
static void inv_args(struct smq_invoke_ctx *ctx)
{
int i, inbufs, outbufs;
uint32_t sc = ctx->sc;
remote_arg64_t *rpra = ctx->lrpra;
int err = 0;
inbufs = REMOTE_SCALARS_INBUFS(sc);
outbufs = REMOTE_SCALARS_OUTBUFS(sc);
for (i = 0; i < inbufs + outbufs; ++i) {
int over = ctx->overps[i]->raix;
struct fastrpc_mmap *map = ctx->maps[over];
if ((over + 1 <= inbufs))
continue;
if (!rpra[over].buf.len)
continue;
if (ctx->fl && ctx->fl->sctx && ctx->fl->sctx->smmu.coherent)
continue;
if (map && (map->attr & FASTRPC_ATTR_FORCE_NOINVALIDATE))
continue;
if (buf_page_start(ptr_to_uint64((void *)rpra)) ==
buf_page_start(rpra[over].buf.pv)) {
continue;
}
if (ctx->overps[i]->mstart || ctx->overps[i]->do_cmo == 1) {
if (map && map->buf) {
if (((buf_page_size(ctx->overps[i]->mend -
ctx->overps[i]->mstart)) == map->size) ||
ctx->overps[i]->do_cmo) {
dma_buf_begin_cpu_access(map->buf,
DMA_TO_DEVICE);
dma_buf_end_cpu_access(map->buf,
DMA_FROM_DEVICE);
ADSPRPC_DEBUG(
"sc 0x%x pv 0x%llx, mend 0x%llx mstart 0x%llx, len %zu size %zu\n",
sc, rpra[over].buf.pv,
ctx->overps[i]->mend,
ctx->overps[i]->mstart,
rpra[over].buf.len, map->size);
} else {
uintptr_t offset;
uint64_t inv_len;
struct vm_area_struct *vma;
down_read(&current->mm->mmap_lock);
VERIFY(err, NULL != (vma = find_vma(
current->mm,
rpra[over].buf.pv)));
if (err) {
up_read(&current->mm->mmap_lock);
goto bail;
}
if (ctx->overps[i]->do_cmo) {
offset = rpra[over].buf.pv -
vma->vm_start;
inv_len = rpra[over].buf.len;
} else {
offset =
ctx->overps[i]->mstart -
vma->vm_start;
inv_len =
ctx->overps[i]->mend -
ctx->overps[i]->mstart;
}
up_read(&current->mm->mmap_lock);
dma_buf_begin_cpu_access_partial(
map->buf, DMA_TO_DEVICE, offset,
inv_len);
dma_buf_end_cpu_access_partial(map->buf,
DMA_FROM_DEVICE, offset,
inv_len);
ADSPRPC_DEBUG(
"sc 0x%x vm_start 0x%llx pv 0x%llx, offset 0x%llx, mend 0x%llx mstart 0x%llx, len %zu size %zu\n",
sc, vma->vm_start,
rpra[over].buf.pv,
offset, ctx->overps[i]->mend,
ctx->overps[i]->mstart,
rpra[over].buf.len, map->size);
}
}
}
}
bail:
return;
}
static int fastrpc_invoke_send(struct smq_invoke_ctx *ctx,
uint32_t kernel, uint32_t handle)
{
struct smq_msg *msg = &ctx->msg;
struct smq_msg msg_temp;
struct fastrpc_file *fl = ctx->fl;
struct fastrpc_channel_ctx *channel_ctx = NULL;
int err = 0, cid = -1;
uint32_t sc = ctx->sc;
int64_t ns = 0;
uint64_t xo_time_in_us = 0;
int isasync = (ctx->asyncjob.isasyncjob ? true : false);
if (!fl) {
err = -EBADF;
goto bail;
}
cid = fl->cid;
VERIFY(err, VALID_FASTRPC_CID(cid));
if (err) {
err = -ECHRNG;
goto bail;
}
channel_ctx = &fl->apps->channel[cid];
mutex_lock(&channel_ctx->smd_mutex);
msg->pid = fl->tgid;
msg->tid = current->pid;
if (fl->sessionid)
msg->tid |= SESSION_ID_MASK;
if (kernel == KERNEL_MSG_WITH_ZERO_PID)
msg->pid = 0;
msg->invoke.header.ctx = ctx->ctxid | fl->pd;
msg->invoke.header.handle = handle;
msg->invoke.header.sc = sc;
msg->invoke.page.addr = ctx->buf ? ctx->buf->phys : 0;
msg->invoke.page.size = buf_page_size(ctx->used);
if (fl->ssrcount != channel_ctx->ssrcount) {
err = -ECONNRESET;
mutex_unlock(&channel_ctx->smd_mutex);
goto bail;
}
mutex_unlock(&channel_ctx->smd_mutex);
xo_time_in_us = CONVERT_CNT_TO_US(__arch_counter_get_cntvct());
if (isasync) {
/*
* After message is sent to DSP, async response thread could immediately
* get the response and free context, which will result in a use-after-free
* in this function. So use a local variable for message.
*/
memcpy(&msg_temp, msg, sizeof(struct smq_msg));
msg = &msg_temp;
}
err = fastrpc_transport_send(cid, (void *)msg, sizeof(*msg), fl->trusted_vm);
trace_fastrpc_transport_send(cid, (uint64_t)ctx, msg->invoke.header.ctx,
handle, sc, msg->invoke.page.addr, msg->invoke.page.size);
ns = get_timestamp_in_ns();
fastrpc_update_txmsg_buf(channel_ctx, msg, err, ns, xo_time_in_us);
bail:
return err;
}
/*
* fastrpc_get_dsp_status - Reads the property string from device node
* and updates the cdsp device avialbility status
* if the node belongs to cdsp device.
* @me : pointer to fastrpc_apps.
*/
static void fastrpc_get_dsp_status(struct fastrpc_apps *me)
{
int ret = -1;
struct device_node *node = NULL;
const char *name = NULL;
do {
node = of_find_compatible_node(node, NULL, "qcom,pil-tz-generic");
if (node) {
ret = of_property_read_string(node, "qcom,firmware-name", &name);
if (!strcmp(name, "cdsp")) {
ret = of_device_is_available(node);
me->remote_cdsp_status = ret;
ADSPRPC_INFO("cdsp node found with ret:%x\n", ret);
break;
}
} else {
ADSPRPC_ERR("cdsp node not found\n");
break;
}
} while (1);
}
static void fastrpc_init(struct fastrpc_apps *me)
{
int i, jj;
INIT_HLIST_HEAD(&me->drivers);
INIT_HLIST_HEAD(&me->maps);
spin_lock_init(&me->hlock);
me->channel = &gcinfo[0];
mutex_init(&me->mut_uid);
for (i = 0; i < NUM_CHANNELS; i++) {
init_completion(&me->channel[i].work);
init_completion(&me->channel[i].workport);
me->channel[i].sesscount = 0;
/* All channels are secure by default except CDSP */
me->channel[i].secure = SECURE_CHANNEL;
me->channel[i].unsigned_support = false;
mutex_init(&me->channel[i].smd_mutex);
fastrpc_transport_session_init(i, me->channel[i].subsys);
spin_lock_init(&me->channel[i].ctxlock);
spin_lock_init(&me->channel[i].gmsg_log.lock);
INIT_HLIST_HEAD(&me->channel[i].initmems);
for (jj = 0; jj < NUM_SESSIONS; jj++)
init_waitqueue_head(&me->channel[i].spd[jj].wait_for_pdup);
}
/* Set CDSP channel to non secure */
me->channel[CDSP_DOMAIN_ID].secure = NON_SECURE_CHANNEL;
me->channel[CDSP_DOMAIN_ID].unsigned_support = true;
}
static inline void fastrpc_pm_awake(struct fastrpc_file *fl, int channel_type)
{
struct fastrpc_apps *me = &gfa;
struct wakeup_source *wake_source = NULL;
if (!fl->wake_enable)
return;
/*
* Vote with PM to abort any suspend in progress and
* keep system awake for specified timeout
*/
if (channel_type == SECURE_CHANNEL)
wake_source = me->wake_source_secure;
else if (channel_type == NON_SECURE_CHANNEL)
wake_source = me->wake_source;
if (wake_source)
pm_wakeup_ws_event(wake_source, fl->ws_timeout, true);
}
static inline int fastrpc_wait_for_response(struct smq_invoke_ctx *ctx,
uint32_t kernel)
{
int interrupted = 0;
if (kernel)
wait_for_completion(&ctx->work);
else
interrupted = wait_for_completion_interruptible(&ctx->work);
return interrupted;
}
static void fastrpc_wait_for_completion(struct smq_invoke_ctx *ctx,
int *ptr_interrupted, uint32_t kernel, uint32_t async,
bool *ptr_isworkdone)
{
int interrupted = 0, err = 0;
int jj;
bool wait_resp;
uint32_t wTimeout = FASTRPC_USER_EARLY_HINT_TIMEOUT;
uint32_t wakeTime = 0;
unsigned long flags;
if (!ctx) {
/* This failure is not expected */
err = *ptr_interrupted = EFAULT;
*ptr_isworkdone = false;
ADSPRPC_ERR("ctx is NULL, cannot wait for response err %d\n",
err);
return;
}
wakeTime = ctx->early_wake_time;
do {
switch (ctx->rsp_flags) {
/* try polling on completion with timeout */
case USER_EARLY_SIGNAL:
/* try wait if completion time is less than timeout */
/* disable preempt to avoid context switch latency */
preempt_disable();
jj = 0;
wait_resp = false;
for (; wakeTime < wTimeout && jj < wTimeout; jj++) {
wait_resp = try_wait_for_completion(&ctx->work);
if (wait_resp)
break;
udelay(1);
}
preempt_enable();
if (async) {
spin_lock_irqsave(&ctx->fl->aqlock, flags);
if (!ctx->is_work_done) {
ctx->is_early_wakeup = false;
*ptr_isworkdone = false;
} else
*ptr_isworkdone = true;
spin_unlock_irqrestore(&ctx->fl->aqlock, flags);
goto bail;
} else if (!wait_resp) {
interrupted = fastrpc_wait_for_response(ctx,
kernel);
*ptr_interrupted = interrupted;
if (interrupted || ctx->is_work_done)
goto bail;
}
break;
/* busy poll on memory for actual job done */
case EARLY_RESPONSE:
trace_fastrpc_msg("early_response: poll_begin");
err = poll_for_remote_response(ctx, FASTRPC_POLL_TIME);
/* Mark job done if poll on memory successful */
/* Wait for completion if poll on memory timoeut */
if (!err) {
ctx->is_work_done = true;
*ptr_isworkdone = true;
goto bail;
}
trace_fastrpc_msg("early_response: poll_timeout");
ADSPRPC_INFO("early rsp poll timeout (%u us) for handle 0x%x, sc 0x%x\n",
FASTRPC_POLL_TIME, ctx->handle, ctx->sc);
if (async) {
spin_lock_irqsave(&ctx->fl->aqlock, flags);
if (!ctx->is_work_done) {
ctx->is_early_wakeup = false;
*ptr_isworkdone = false;
} else
*ptr_isworkdone = true;
spin_unlock_irqrestore(&ctx->fl->aqlock, flags);
goto bail;
} else if (!ctx->is_work_done) {
interrupted = fastrpc_wait_for_response(ctx,
kernel);
*ptr_interrupted = interrupted;
if (interrupted || ctx->is_work_done)
goto bail;
}
break;
case COMPLETE_SIGNAL:
case NORMAL_RESPONSE:
if (!async) {
interrupted = fastrpc_wait_for_response(ctx,
kernel);
*ptr_interrupted = interrupted;
if (interrupted || ctx->is_work_done)
goto bail;
} else {
spin_lock_irqsave(&ctx->fl->aqlock, flags);
if (!ctx->is_work_done) {
ctx->is_early_wakeup = false;
*ptr_isworkdone = false;
} else
*ptr_isworkdone = true;
spin_unlock_irqrestore(&ctx->fl->aqlock, flags);
goto bail;
}
break;
case POLL_MODE:
trace_fastrpc_msg("poll_mode: begin");
err = poll_for_remote_response(ctx, ctx->fl->poll_timeout);
/* If polling timed out, move to normal response state */
if (err) {
trace_fastrpc_msg("poll_mode: timeout");
ADSPRPC_INFO("poll mode timeout (%u us) for handle 0x%x, sc 0x%x\n",
ctx->fl->poll_timeout, ctx->handle, ctx->sc);
ctx->rsp_flags = NORMAL_RESPONSE;
} else {
*ptr_interrupted = 0;
*ptr_isworkdone = true;
}
break;
default:
*ptr_interrupted = EBADR;
*ptr_isworkdone = false;
ADSPRPC_ERR(
"unsupported response flags 0x%x for handle 0x%x, sc 0x%x\n",
ctx->rsp_flags, ctx->handle, ctx->sc);
goto bail;
} /* end of switch */
} while (!ctx->is_work_done);
bail:
return;
}
static void fastrpc_update_invoke_count(uint32_t handle, uint64_t *perf_counter,
struct timespec64 *invoket)
{
/* update invoke count for dynamic handles */
if (handle != FASTRPC_STATIC_HANDLE_LISTENER) {
uint64_t *count = GET_COUNTER(perf_counter, PERF_INVOKE);
if (count)
*count += getnstimediff(invoket);
}
if (handle > FASTRPC_STATIC_HANDLE_MAX) {
uint64_t *count = GET_COUNTER(perf_counter, PERF_COUNT);
if (count)
*count += 1;
}
}
int fastrpc_internal_invoke(struct fastrpc_file *fl, uint32_t mode,
uint32_t kernel,
struct fastrpc_ioctl_invoke_async *inv)
{
struct smq_invoke_ctx *ctx = NULL;
struct fastrpc_ioctl_invoke *invoke = &inv->inv;
int err = 0, interrupted = 0, cid = -1, perfErr = 0;
struct timespec64 invoket = {0};
uint64_t *perf_counter = NULL;
bool isasyncinvoke = false, isworkdone = false;
cid = fl->cid;
VERIFY(err, VALID_FASTRPC_CID(cid) &&
fl->sctx != NULL);
if (err) {
ADSPRPC_ERR("kernel session not initialized yet for %s\n",
current->comm);
err = -EBADR;
goto bail;
}
if (fl->profile)
ktime_get_real_ts64(&invoket);
if (!kernel) {
VERIFY(err, invoke->handle !=
FASTRPC_STATIC_HANDLE_PROCESS_GROUP);
VERIFY(err, invoke->handle !=
FASTRPC_STATIC_HANDLE_DSP_UTILITIES);
if (err) {
err = -EINVAL;
ADSPRPC_ERR(
"user application %s trying to send a kernel RPC message to channel %d, handle 0x%x\n",
cid, invoke->handle);
goto bail;
}
}
if (!kernel) {
VERIFY(err, 0 == (err = context_restore_interrupted(fl,
inv, &ctx)));
if (err)
goto bail;
if (fl->sctx->smmu.faults)
err = -FASTRPC_ENOSUCH;
if (err)
goto bail;
if (ctx) {
trace_fastrpc_context_restore(cid, (uint64_t)ctx,
ctx->msg.invoke.header.ctx,
ctx->handle, ctx->sc);
goto wait;
}
}
trace_fastrpc_msg("context_alloc: begin");
VERIFY(err, 0 == (err = context_alloc(fl, kernel, inv, &ctx)));
trace_fastrpc_msg("context_alloc: end");
if (err)
goto bail;
isasyncinvoke = (ctx->asyncjob.isasyncjob ? true : false);
if (fl->profile)
perf_counter = (uint64_t *)ctx->perf + PERF_COUNT;
PERF(fl->profile, GET_COUNTER(perf_counter, PERF_GETARGS),
VERIFY(err, 0 == (err = get_args(kernel, ctx)));
PERF_END);
trace_fastrpc_msg("get_args: end");
if (err)
goto bail;
PERF(fl->profile, GET_COUNTER(perf_counter, PERF_INVARGS),
inv_args(ctx);
PERF_END);
trace_fastrpc_msg("inv_args_1: end");
PERF(fl->profile, GET_COUNTER(perf_counter, PERF_LINK),
VERIFY(err, 0 == (err = fastrpc_invoke_send(ctx,
kernel, invoke->handle)));
PERF_END);
trace_fastrpc_msg("invoke_send: end");
if (err)
goto bail;
if (isasyncinvoke)
goto invoke_end;
wait:
/* Poll mode allowed only for non-static handle calls to dynamic CDSP process */
if (fl->poll_mode && (invoke->handle > FASTRPC_STATIC_HANDLE_MAX)
&& (cid == CDSP_DOMAIN_ID)
&& (fl->proc_flags == FASTRPC_INIT_CREATE))
ctx->rsp_flags = POLL_MODE;
fastrpc_wait_for_completion(ctx, &interrupted, kernel, 0, &isworkdone);
trace_fastrpc_msg("wait_for_completion: end");
VERIFY(err, 0 == (err = interrupted));
if (err)
goto bail;
if (!ctx->is_work_done) {
err = -ETIMEDOUT;
ADSPRPC_ERR(
"WorkDone state is invalid for handle 0x%x, sc 0x%x\n",
invoke->handle, ctx->sc);
goto bail;
}
PERF(fl->profile, GET_COUNTER(perf_counter, PERF_INVARGS),
inv_args(ctx);
PERF_END);
trace_fastrpc_msg("inv_args_2: end");
PERF(fl->profile, GET_COUNTER(perf_counter, PERF_PUTARGS),
VERIFY(err, 0 == (err = put_args(kernel, ctx, invoke->pra)));
PERF_END);
trace_fastrpc_msg("put_args: end");
if (err)
goto bail;
VERIFY(err, 0 == (err = ctx->retval));
if (err)
goto bail;
bail:
if (ctx && interrupted == -ERESTARTSYS) {
trace_fastrpc_context_interrupt(cid, (uint64_t)ctx,
ctx->msg.invoke.header.ctx, ctx->handle, ctx->sc);
context_save_interrupted(ctx);
} else if (ctx) {
if (fl->profile && !interrupted)
fastrpc_update_invoke_count(invoke->handle,
perf_counter, &invoket);
if (fl->profile && ctx->perf && ctx->handle > FASTRPC_STATIC_HANDLE_MAX) {
trace_fastrpc_perf_counters(ctx->handle, ctx->sc,
ctx->perf->count, ctx->perf->flush, ctx->perf->map,
ctx->perf->copy, ctx->perf->link, ctx->perf->getargs,
ctx->perf->putargs, ctx->perf->invargs,
ctx->perf->invoke, ctx->perf->tid);
if (ctx->perf_kernel) {
K_COPY_TO_USER(perfErr, kernel, ctx->perf_kernel,
ctx->perf, M_KERNEL_PERF_LIST*sizeof(uint64_t));
if (perfErr)
ADSPRPC_WARN("failed to copy perf data err %d\n", perfErr);
}
}
context_free(ctx);
trace_fastrpc_msg("context_free: end");
}
if (VALID_FASTRPC_CID(cid)
&& (fl->ssrcount != fl->apps->channel[cid].ssrcount))
err = -ECONNRESET;
invoke_end:
if (fl->profile && !interrupted && isasyncinvoke)
fastrpc_update_invoke_count(invoke->handle, perf_counter,
&invoket);
return err;
}
static int fastrpc_wait_on_async_queue(
struct fastrpc_ioctl_async_response *async_res,
struct fastrpc_file *fl)
{
int err = 0, ierr = 0, interrupted = 0, perfErr = 0;
struct smq_invoke_ctx *ctx = NULL, *ictx = NULL, *n = NULL;
unsigned long flags;
uint64_t *perf_counter = NULL;
bool isworkdone = false;
read_async_job:
interrupted = wait_event_interruptible(fl->async_wait_queue,
atomic_read(&fl->async_queue_job_count));
if (!fl || fl->file_close >= FASTRPC_PROCESS_EXIT_START) {
err = -EBADF;
goto bail;
}
VERIFY(err, 0 == (err = interrupted));
if (err)
goto bail;
spin_lock_irqsave(&fl->aqlock, flags);
list_for_each_entry_safe(ictx, n, &fl->clst.async_queue, asyncn) {
list_del_init(&ictx->asyncn);
atomic_sub(1, &fl->async_queue_job_count);
ctx = ictx;
break;
}
spin_unlock_irqrestore(&fl->aqlock, flags);
if (ctx) {
if (fl->profile)
perf_counter = (uint64_t *)ctx->perf + PERF_COUNT;
fastrpc_wait_for_completion(ctx, &interrupted, 0, 1,
&isworkdone);
if (!isworkdone) {//In valid workdone state
ADSPRPC_DEBUG(
"Async early wake response did not reach on time for thread %d handle 0x%x, sc 0x%x\n",
ctx->pid, ctx->handle, ctx->sc);
goto read_async_job;
}
async_res->jobid = ctx->asyncjob.jobid;
async_res->result = ctx->retval;
async_res->handle = ctx->handle;
async_res->sc = ctx->sc;
async_res->perf_dsp = (uint64_t *)ctx->perf_dsp;
async_res->perf_kernel = (uint64_t *)ctx->perf_kernel;
PERF(ctx->fl->profile, GET_COUNTER(perf_counter, PERF_INVARGS),
inv_args(ctx);
PERF_END);
if (ctx->retval != 0)
goto bail;
PERF(ctx->fl->profile, GET_COUNTER(perf_counter, PERF_PUTARGS),
VERIFY(ierr, 0 == (ierr = put_args(0, ctx, NULL)));
PERF_END);
if (ierr)
goto bail;
} else { // Go back to wait if ctx is invalid
ADSPRPC_ERR("Invalid async job wake up\n");
goto read_async_job;
}
bail:
if (ierr)
async_res->result = ierr;
if (ctx) {
if (fl->profile && ctx->perf && ctx->handle > FASTRPC_STATIC_HANDLE_MAX) {
trace_fastrpc_perf_counters(ctx->handle, ctx->sc,
ctx->perf->count, ctx->perf->flush, ctx->perf->map,
ctx->perf->copy, ctx->perf->link, ctx->perf->getargs,
ctx->perf->putargs, ctx->perf->invargs,
ctx->perf->invoke, ctx->perf->tid);
if (ctx->perf_kernel) {
K_COPY_TO_USER(perfErr, 0, ctx->perf_kernel,
ctx->perf, M_KERNEL_PERF_LIST*sizeof(uint64_t));
if (perfErr)
ADSPRPC_WARN("failed to copy perf data err %d\n", perfErr);
}
}
context_free(ctx);
}
return err;
}
static int fastrpc_wait_on_notif_queue(
struct fastrpc_ioctl_notif_rsp *notif_rsp,
struct fastrpc_file *fl)
{
int err = 0, interrupted = 0;
unsigned long flags;
struct smq_notif_rsp *notif = NULL, *inotif = NULL, *n = NULL;
read_notif_status:
interrupted = wait_event_interruptible(fl->proc_state_notif.notif_wait_queue,
atomic_read(&fl->proc_state_notif.notif_queue_count));
if (!fl || fl->file_close >= FASTRPC_PROCESS_EXIT_START) {
err = -EBADF;
goto bail;
}
VERIFY(err, 0 == (err = interrupted));
if (err)
goto bail;
spin_lock_irqsave(&fl->proc_state_notif.nqlock, flags);
list_for_each_entry_safe(inotif, n, &fl->clst.notif_queue, notifn) {
list_del_init(&inotif->notifn);
atomic_sub(1, &fl->proc_state_notif.notif_queue_count);
notif = inotif;
break;
}
spin_unlock_irqrestore(&fl->proc_state_notif.nqlock, flags);
if (notif) {
notif_rsp->status = notif->status;
notif_rsp->domain = notif->domain;
notif_rsp->session = notif->session;
} else {// Go back to wait if ctx is invalid
ADSPRPC_ERR("Invalid status notification response\n");
goto read_notif_status;
}
bail:
kfree(notif);
return err;
}
static int fastrpc_get_async_response(
struct fastrpc_ioctl_async_response *async_res,
void *param, struct fastrpc_file *fl)
{
int err = 0;
err = fastrpc_wait_on_async_queue(async_res, fl);
if (err)
goto bail;
K_COPY_TO_USER(err, 0, param, async_res,
sizeof(struct fastrpc_ioctl_async_response));
bail:
return err;
}
static int fastrpc_get_notif_response(
struct fastrpc_ioctl_notif_rsp *notif,
void *param, struct fastrpc_file *fl)
{
int err = 0;
err = fastrpc_wait_on_notif_queue(notif, fl);
if (err)
goto bail;
K_COPY_TO_USER(err, 0, param, notif,
sizeof(struct fastrpc_ioctl_notif_rsp));
bail:
return err;
}
static int fastrpc_create_persistent_headers(struct fastrpc_file *fl,
uint32_t user_concurrency)
{
int err = 0, i = 0;
uint64_t virtb = 0;
struct fastrpc_buf *pers_hdr_buf = NULL, *hdr_bufs = NULL, *buf = NULL;
unsigned int num_pers_hdrs = 0;
size_t hdr_buf_alloc_len = 0;
if (fl->pers_hdr_buf || !user_concurrency)
goto bail;
/*
* Pre-allocate memory for persistent header buffers based
* on concurrency info passed by user. Upper limit enforced.
*/
num_pers_hdrs = (user_concurrency > MAX_PERSISTENT_HEADERS) ?
MAX_PERSISTENT_HEADERS : user_concurrency;
hdr_buf_alloc_len = num_pers_hdrs*PAGE_SIZE;
err = fastrpc_buf_alloc(fl, hdr_buf_alloc_len, 0, 0,
METADATA_BUF, &pers_hdr_buf);
if (err)
goto bail;
virtb = ptr_to_uint64(pers_hdr_buf->virt);
/* Map entire buffer on remote subsystem in single RPC call */
err = fastrpc_mem_map_to_dsp(fl, -1, 0, ADSP_MMAP_PERSIST_HDR, 0,
pers_hdr_buf->phys, pers_hdr_buf->size,
&pers_hdr_buf->raddr);
if (err)
goto bail;
/* Divide and store as N chunks, each of 1 page size */
hdr_bufs = kcalloc(num_pers_hdrs, sizeof(struct fastrpc_buf),
GFP_KERNEL);
if (!hdr_bufs) {
err = -ENOMEM;
goto bail;
}
spin_lock(&fl->hlock);
fl->pers_hdr_buf = pers_hdr_buf;
fl->num_pers_hdrs = num_pers_hdrs;
fl->hdr_bufs = hdr_bufs;
for (i = 0; i < num_pers_hdrs; i++) {
buf = &fl->hdr_bufs[i];
buf->fl = fl;
buf->virt = uint64_to_ptr(virtb + (i*PAGE_SIZE));
buf->phys = pers_hdr_buf->phys + (i*PAGE_SIZE);
buf->size = PAGE_SIZE;
buf->dma_attr = pers_hdr_buf->dma_attr;
buf->flags = pers_hdr_buf->flags;
buf->type = pers_hdr_buf->type;
buf->in_use = false;
}
spin_unlock(&fl->hlock);
bail:
if (err) {
ADSPRPC_ERR(
"failed to map len %zu, flags %d, user concurrency %u, num headers %u with err %d\n",
hdr_buf_alloc_len, ADSP_MMAP_PERSIST_HDR,
user_concurrency, num_pers_hdrs, err);
fl->pers_hdr_buf = NULL;
fl->hdr_bufs = NULL;
fl->num_pers_hdrs = 0;
if (!IS_ERR_OR_NULL(pers_hdr_buf))
fastrpc_buf_free(pers_hdr_buf, 0);
if (!IS_ERR_OR_NULL(hdr_bufs))
kfree(hdr_bufs);
}
return err;
}
int fastrpc_internal_invoke2(struct fastrpc_file *fl,
struct fastrpc_ioctl_invoke2 *inv2)
{
union {
struct fastrpc_ioctl_invoke_async inv;
struct fastrpc_ioctl_invoke_async_no_perf inv3;
struct fastrpc_ioctl_async_response async_res;
uint32_t user_concurrency;
struct fastrpc_ioctl_notif_rsp notif;
} p;
struct fastrpc_dsp_capabilities *dsp_cap_ptr = NULL;
uint32_t size = 0;
int err = 0, domain = fl->cid;
if (inv2->req == FASTRPC_INVOKE2_ASYNC ||
inv2->req == FASTRPC_INVOKE2_ASYNC_RESPONSE) {
VERIFY(err, domain == CDSP_DOMAIN_ID && fl->sctx != NULL);
if (err) {
err = -EBADR;
goto bail;
}
dsp_cap_ptr = &gcinfo[domain].dsp_cap_kernel;
VERIFY(err,
dsp_cap_ptr->dsp_attributes[ASYNC_FASTRPC_CAP] == 1);
if (err) {
err = -EPROTONOSUPPORT;
goto bail;
}
}
switch (inv2->req) {
case FASTRPC_INVOKE2_ASYNC:
size = sizeof(struct fastrpc_ioctl_invoke_async);
VERIFY(err, size >= inv2->size);
if (err) {
err = -EBADE;
goto bail;
}
if (size > inv2->size) {
K_COPY_FROM_USER(err, fl->is_compat, &p.inv3, (void *)inv2->invparam,
sizeof(struct fastrpc_ioctl_invoke_async_no_perf));
if (err)
goto bail;
memcpy(&p.inv, &p.inv3, sizeof(struct fastrpc_ioctl_invoke_crc));
memcpy(&p.inv.job, &p.inv3.job, sizeof(p.inv.job));
} else {
K_COPY_FROM_USER(err, fl->is_compat, &p.inv, (void *)inv2->invparam, size);
if (err)
goto bail;
}
VERIFY(err, 0 == (err = fastrpc_internal_invoke(fl, fl->mode,
USER_MSG, &p.inv)));
if (err)
goto bail;
break;
case FASTRPC_INVOKE2_ASYNC_RESPONSE:
VERIFY(err,
sizeof(struct fastrpc_ioctl_async_response) >= inv2->size);
if (err) {
err = -EBADE;
goto bail;
}
err = fastrpc_get_async_response(&p.async_res,
(void *)inv2->invparam, fl);
break;
case FASTRPC_INVOKE2_KERNEL_OPTIMIZATIONS:
size = sizeof(uint32_t);
if (inv2->size != size) {
err = -EBADE;
goto bail;
}
K_COPY_FROM_USER(err, 0, &p.user_concurrency,
(void *)inv2->invparam, size);
if (err)
goto bail;
err = fastrpc_create_persistent_headers(fl,
p.user_concurrency);
break;
case FASTRPC_INVOKE2_STATUS_NOTIF:
VERIFY(err,
sizeof(struct fastrpc_ioctl_notif_rsp) >= inv2->size);
if (err) {
err = -EBADE;
goto bail;
}
err = fastrpc_get_notif_response(&p.notif,
(void *)inv2->invparam, fl);
break;
default:
err = -ENOTTY;
break;
}
bail:
return err;
}
static int fastrpc_get_spd_session(char *name, int *session, int *cid)
{
struct fastrpc_apps *me = &gfa;
int err = 0, i, j, match = 0;
for (i = 0; i < NUM_CHANNELS; i++) {
for (j = 0; j < NUM_SESSIONS; j++) {
if (!me->channel[i].spd[j].servloc_name)
continue;
if (!strcmp(name, me->channel[i].spd[j].servloc_name)) {
match = 1;
break;
}
}
if (match)
break;
}
VERIFY(err, i < NUM_CHANNELS && j < NUM_SESSIONS);
if (err) {
err = -EUSERS;
goto bail;
}
*cid = i;
*session = j;
bail:
return err;
}
static int fastrpc_mmap_remove_pdr(struct fastrpc_file *fl);
static int fastrpc_channel_open(struct fastrpc_file *fl, uint32_t flags);
static int fastrpc_mmap_remove_ssr(struct fastrpc_file *fl, int locked);
/*
* This function makes a call to create a thread group in the root
* process or static process on the remote subsystem.
* Examples:
* - guestOS daemons on all DSPs
* - sensors daemon on sensorsPD on SLPI/ADSP
*/
static int fastrpc_init_attach_process(struct fastrpc_file *fl,
struct fastrpc_ioctl_init *init)
{
int err = 0, tgid = fl->tgid;
remote_arg_t ra[1];
struct fastrpc_ioctl_invoke_async ioctl;
if (fl->dev_minor == MINOR_NUM_DEV) {
err = -ECONNREFUSED;
ADSPRPC_ERR(
"untrusted app trying to attach to privileged DSP PD\n");
return err;
}
/*
* Prepare remote arguments for creating thread group
* in guestOS/staticPD on the remote subsystem.
*/
ra[0].buf.pv = (void *)&tgid;
ra[0].buf.len = sizeof(tgid);
ioctl.inv.handle = FASTRPC_STATIC_HANDLE_PROCESS_GROUP;
ioctl.inv.sc = REMOTE_SCALARS_MAKE(0, 1, 0);
ioctl.inv.pra = ra;
ioctl.fds = NULL;
ioctl.attrs = NULL;
ioctl.crc = NULL;
ioctl.perf_kernel = NULL;
ioctl.perf_dsp = NULL;
ioctl.job = NULL;
if (init->flags == FASTRPC_INIT_ATTACH)
fl->pd = 0;
else if (init->flags == FASTRPC_INIT_ATTACH_SENSORS) {
if (fl->cid == ADSP_DOMAIN_ID)
fl->servloc_name =
SENSORS_PDR_ADSP_SERVICE_LOCATION_CLIENT_NAME;
else if (fl->cid == SDSP_DOMAIN_ID)
fl->servloc_name =
SENSORS_PDR_SLPI_SERVICE_LOCATION_CLIENT_NAME;
/* Setting to 2 will route the message to sensorsPD */
fl->pd = 2;
}
err = fastrpc_internal_invoke(fl, FASTRPC_MODE_PARALLEL, KERNEL_MSG_WITH_ZERO_PID, &ioctl);
if (err)
goto bail;
bail:
return err;
}
/*
* This function makes a call to spawn a dynamic process
* on the remote subsystem.
* Example: all compute offloads to CDSP
*/
static int fastrpc_init_create_dynamic_process(struct fastrpc_file *fl,
struct fastrpc_ioctl_init_attrs *uproc)
{
int err = 0, memlen = 0, mflags = 0, locked = 0;
struct fastrpc_ioctl_invoke_async ioctl;
struct fastrpc_ioctl_init *init = &uproc->init;
struct smq_phy_page pages[1];
struct fastrpc_mmap *file = NULL;
struct fastrpc_buf *imem = NULL;
unsigned long imem_dma_attr = 0;
remote_arg_t ra[6];
int fds[6];
unsigned int gid = 0, one_mb = 1024*1024;
unsigned int dsp_userpd_memlen = 3 * one_mb;
struct fastrpc_buf *init_mem;
struct {
int pgid;
unsigned int namelen;
unsigned int filelen;
unsigned int pageslen;
int attrs;
int siglen;
} inbuf;
spin_lock(&fl->hlock);
if (fl->in_process_create) {
err = -EALREADY;
ADSPRPC_ERR("Already in create dynamic process\n");
spin_unlock(&fl->hlock);
return err;
}
fl->in_process_create = true;
spin_unlock(&fl->hlock);
inbuf.pgid = fl->tgid;
inbuf.namelen = strlen(current->comm) + 1;
inbuf.filelen = init->filelen;
fl->pd = 1;
if (uproc->attrs & FASTRPC_MODE_UNSIGNED_MODULE)
fl->is_unsigned_pd = true;
/* Check if file memory passed by userspace is valid */
VERIFY(err, access_ok((void __user *)init->file, init->filelen));
if (err)
goto bail;
if (init->filelen) {
/* Map the shell file buffer to remote subsystem */
mutex_lock(&fl->map_mutex);
err = fastrpc_mmap_create(fl, init->filefd, NULL, 0,
init->file, init->filelen, mflags, &file);
if (file)
file->is_filemap = true;
mutex_unlock(&fl->map_mutex);
if (err)
goto bail;
}
inbuf.pageslen = 1;
/* Untrusted apps are not allowed to offload to signedPD on DSP. */
if (fl->untrusted_process) {
VERIFY(err, fl->is_unsigned_pd);
if (err) {
err = -ECONNREFUSED;
ADSPRPC_ERR(
"untrusted app trying to offload to signed remote process\n");
goto bail;
}
}
/* Disregard any privilege bits from userspace */
uproc->attrs &= (~FASTRPC_MODE_PRIVILEGED);
/*
* Check if the primary or supplementary group(s) of the process is
* one of the 'privileged' fastrpc GIDs stored in the device-tree.
*/
gid = sorted_lists_intersection(fl->gidlist.gids,
fl->gidlist.gidcount, gfa.gidlist.gids, gfa.gidlist.gidcount);
if (gid) {
ADSPRPC_INFO("PID %d, GID %u is a privileged process\n",
fl->tgid, gid);
uproc->attrs |= FASTRPC_MODE_PRIVILEGED;
}
/*
* Userspace client should try to allocate the initial memory donated
* to remote subsystem as only the kernel and DSP should have access
* to that memory.
*/
VERIFY(err, !init->mem);
if (err) {
err = -EINVAL;
ADSPRPC_ERR("donated memory allocated in userspace\n");
goto bail;
}
/* Free any previous donated memory */
spin_lock(&fl->hlock);
locked = 1;
if (fl->init_mem) {
init_mem = fl->init_mem;
fl->init_mem = NULL;
spin_unlock(&fl->hlock);
locked = 0;
fastrpc_buf_free(init_mem, 0);
}
if (locked) {
spin_unlock(&fl->hlock);
locked = 0;
}
/* Allocate DMA buffer in kernel for donating to remote process
* Unsigned PD requires additional memory because of the
* additional static heap initialized within the process.
*/
if (fl->is_unsigned_pd)
dsp_userpd_memlen += 2*one_mb;
memlen = ALIGN(max(dsp_userpd_memlen, init->filelen * 4), one_mb);
imem_dma_attr = DMA_ATTR_DELAYED_UNMAP | DMA_ATTR_NO_KERNEL_MAPPING;
err = fastrpc_buf_alloc(fl, memlen, imem_dma_attr, 0,
INITMEM_BUF, &imem);
if (err)
goto bail;
fl->init_mem = imem;
/*
* Prepare remote arguments for dynamic process create
* call to remote subsystem.
*/
inbuf.pageslen = 1;
ra[0].buf.pv = (void *)&inbuf;
ra[0].buf.len = sizeof(inbuf);
fds[0] = -1;
ra[1].buf.pv = (void *)current->comm;
ra[1].buf.len = inbuf.namelen;
fds[1] = -1;
ra[2].buf.pv = (void *)init->file;
ra[2].buf.len = inbuf.filelen;
fds[2] = init->filefd;
pages[0].addr = imem->phys;
pages[0].size = imem->size;
ra[3].buf.pv = (void *)pages;
ra[3].buf.len = 1 * sizeof(*pages);
fds[3] = -1;
inbuf.attrs = uproc->attrs;
ra[4].buf.pv = (void *)&(inbuf.attrs);
ra[4].buf.len = sizeof(inbuf.attrs);
fds[4] = -1;
inbuf.siglen = uproc->siglen;
ra[5].buf.pv = (void *)&(inbuf.siglen);
ra[5].buf.len = sizeof(inbuf.siglen);
fds[5] = -1;
ioctl.inv.handle = FASTRPC_STATIC_HANDLE_PROCESS_GROUP;
/*
* Choose appropriate remote method ID depending on whether the
* HLOS process has any attributes enabled (like unsignedPD,
* critical process, adaptive QoS, CRC checks etc).
*/
ioctl.inv.sc = REMOTE_SCALARS_MAKE(6, 4, 0);
if (uproc->attrs)
ioctl.inv.sc = REMOTE_SCALARS_MAKE(7, 4, 0);
ioctl.inv.pra = ra;
ioctl.fds = fds;
ioctl.attrs = NULL;
ioctl.crc = NULL;
ioctl.perf_kernel = NULL;
ioctl.perf_dsp = NULL;
ioctl.job = NULL;
err = fastrpc_internal_invoke(fl, FASTRPC_MODE_PARALLEL, KERNEL_MSG_WITH_ZERO_PID, &ioctl);
if (err)
goto bail;
bail:
/*
* Shell is loaded into the donated memory on remote subsystem. So, the
* original file buffer can be DMA unmapped. In case of a failure also,
* the mapping needs to be removed.
*/
if (file) {
mutex_lock(&fl->map_mutex);
fastrpc_mmap_free(file, 0);
mutex_unlock(&fl->map_mutex);
}
if (err) {
spin_lock(&fl->hlock);
locked = 1;
if (!IS_ERR_OR_NULL(fl->init_mem)) {
init_mem = fl->init_mem;
fl->init_mem = NULL;
spin_unlock(&fl->hlock);
locked = 0;
fastrpc_buf_free(init_mem, 0);
}
if (locked) {
spin_unlock(&fl->hlock);
locked = 0;
}
}
spin_lock(&fl->hlock);
fl->in_process_create = false;
spin_unlock(&fl->hlock);
return err;
}
/*
* This function makes a call to create a thread group in the static
* process on the remote subsystem.
* Example: audio daemon 'adsprpcd' on audioPD on ADSP
*/
static int fastrpc_init_create_static_process(struct fastrpc_file *fl,
struct fastrpc_ioctl_init *init)
{
int err = 0, rh_hyp_done = 0;
struct fastrpc_apps *me = &gfa;
struct fastrpc_ioctl_invoke_async ioctl;
struct smq_phy_page pages[1];
struct fastrpc_mmap *mem = NULL;
char *proc_name = NULL;
remote_arg_t ra[3];
uint64_t phys = 0;
size_t size = 0;
int fds[3];
struct secure_vm *rhvm = &me->channel[fl->cid].rhvm;
struct {
int pgid;
unsigned int namelen;
unsigned int pageslen;
} inbuf;
if (fl->dev_minor == MINOR_NUM_DEV) {
err = -ECONNREFUSED;
ADSPRPC_ERR(
"untrusted app trying to attach to audio PD\n");
return err;
}
if (!init->filelen)
goto bail;
proc_name = kzalloc(init->filelen + 1, GFP_KERNEL);
VERIFY(err, !IS_ERR_OR_NULL(proc_name));
if (err) {
err = -ENOMEM;
goto bail;
}
err = copy_from_user((void *)proc_name,
(void __user *)init->file, init->filelen);
if (err) {
err = -EFAULT;
goto bail;
}
fl->pd = 1;
inbuf.pgid = fl->tgid;
inbuf.namelen = init->filelen;
inbuf.pageslen = 0;
if (!strcmp(proc_name, "audiopd")) {
fl->servloc_name = AUDIO_PDR_SERVICE_LOCATION_CLIENT_NAME;
/*
* Remove any previous mappings in case process is trying
* to reconnect after a PD restart on remote subsystem.
*/
err = fastrpc_mmap_remove_pdr(fl);
if (err)
goto bail;
} else if (!strcmp(proc_name, "securepd")) {
fl->trusted_vm = true;
} else {
ADSPRPC_ERR(
"Create static process is failed for proc_name %s",
proc_name);
goto bail;
}
if (!fl->trusted_vm && (!me->staticpd_flags && !me->legacy_remote_heap)) {
inbuf.pageslen = 1;
mutex_lock(&fl->map_mutex);
err = fastrpc_mmap_create(fl, -1, NULL, 0, init->mem,
init->memlen, ADSP_MMAP_REMOTE_HEAP_ADDR, &mem);
mutex_unlock(&fl->map_mutex);
if (err)
goto bail;
phys = mem->phys;
size = mem->size;
/*
* If remote-heap VMIDs are defined in DTSI, then do
* hyp_assign from HLOS to those VMs (LPASS, ADSP).
*/
if (rhvm->vmid && mem->refs == 1 && size) {
err = hyp_assign_phys(phys, (uint64_t)size,
hlosvm, 1,
rhvm->vmid, rhvm->vmperm, rhvm->vmcount);
if (err) {
ADSPRPC_ERR(
"rh hyp assign failed with %d for phys 0x%llx, size %zu\n",
err, phys, size);
err = -EADDRNOTAVAIL;
goto bail;
}
rh_hyp_done = 1;
}
me->staticpd_flags = 1;
}
/*
* Prepare remote arguments for static process create
* call to remote subsystem.
*/
ra[0].buf.pv = (void *)&inbuf;
ra[0].buf.len = sizeof(inbuf);
fds[0] = -1;
ra[1].buf.pv = (void *)proc_name;
ra[1].buf.len = inbuf.namelen;
fds[1] = -1;
pages[0].addr = phys;
pages[0].size = size;
ra[2].buf.pv = (void *)pages;
ra[2].buf.len = sizeof(*pages);
fds[2] = -1;
ioctl.inv.handle = FASTRPC_STATIC_HANDLE_PROCESS_GROUP;
ioctl.inv.sc = REMOTE_SCALARS_MAKE(8, 3, 0);
ioctl.inv.pra = ra;
ioctl.fds = NULL;
ioctl.attrs = NULL;
ioctl.crc = NULL;
ioctl.perf_kernel = NULL;
ioctl.perf_dsp = NULL;
ioctl.job = NULL;
err = fastrpc_internal_invoke(fl, FASTRPC_MODE_PARALLEL, KERNEL_MSG_WITH_ZERO_PID, &ioctl);
if (err)
goto bail;
bail:
kfree(proc_name);
if (err) {
me->staticpd_flags = 0;
if (rh_hyp_done) {
int hyp_err = 0;
/* Assign memory back to HLOS in case of errors */
hyp_err = hyp_assign_phys(phys, (uint64_t)size,
rhvm->vmid, rhvm->vmcount,
hlosvm, hlosvmperm, 1);
if (hyp_err)
ADSPRPC_WARN(
"rh hyp unassign failed with %d for phys 0x%llx of size %zu\n",
hyp_err, phys, size);
}
mutex_lock(&fl->map_mutex);
fastrpc_mmap_free(mem, 0);
mutex_unlock(&fl->map_mutex);
}
return err;
}
int fastrpc_init_process(struct fastrpc_file *fl,
struct fastrpc_ioctl_init_attrs *uproc)
{
int err = 0;
struct fastrpc_ioctl_init *init = &uproc->init;
int cid = fl->cid;
struct fastrpc_apps *me = &gfa;
struct fastrpc_channel_ctx *chan = NULL;
VERIFY(err, init->filelen < INIT_FILELEN_MAX
&& init->memlen < INIT_MEMLEN_MAX);
if (err) {
ADSPRPC_ERR(
"file size 0x%x or init memory 0x%x is more than max allowed file size 0x%x or init len 0x%x\n",
init->filelen, init->memlen,
INIT_FILELEN_MAX, INIT_MEMLEN_MAX);
err = -EFBIG;
goto bail;
}
VERIFY(err, VALID_FASTRPC_CID(cid));
if (err) {
err = -ECHRNG;
goto bail;
}
chan = &me->channel[cid];
if (chan->unsigned_support && fl->dev_minor == MINOR_NUM_DEV) {
/* Make sure third party applications */
/* can spawn only unsigned PD when */
/* channel configured as secure. */
if (chan->secure && !(fl->is_unsigned_pd)) {
err = -ECONNREFUSED;
goto bail;
}
}
err = fastrpc_channel_open(fl, init->flags);
if (err)
goto bail;
fl->proc_flags = init->flags;
switch (init->flags) {
case FASTRPC_INIT_ATTACH:
case FASTRPC_INIT_ATTACH_SENSORS:
err = fastrpc_init_attach_process(fl, init);
break;
case FASTRPC_INIT_CREATE:
err = fastrpc_init_create_dynamic_process(fl, uproc);
break;
case FASTRPC_INIT_CREATE_STATIC:
err = fastrpc_init_create_static_process(fl, init);
break;
default:
err = -ENOTTY;
break;
}
if (err)
goto bail;
fl->dsp_proc_init = 1;
VERIFY(err, 0 == (err = fastrpc_device_create(fl)));
if (err)
goto bail;
bail:
return err;
}
static int fastrpc_send_cpuinfo_to_dsp(struct fastrpc_file *fl)
{
int err = 0;
uint64_t cpuinfo = 0;
struct fastrpc_apps *me = &gfa;
struct fastrpc_ioctl_invoke_async ioctl;
remote_arg_t ra[2];
int cid = -1;
if (!fl) {
err = -EBADF;
goto bail;
}
cid = fl->cid;
VERIFY(err, VALID_FASTRPC_CID(cid));
if (err) {
err = -ECHRNG;
ADSPRPC_ERR(
"invalid channel 0x%zx set for session\n",
cid);
goto bail;
}
cpuinfo = me->channel[cid].cpuinfo_todsp;
/* return success if already updated to remote processor */
if (me->channel[cid].cpuinfo_status)
return 0;
ra[0].buf.pv = (void *)&cpuinfo;
ra[0].buf.len = sizeof(cpuinfo);
ioctl.inv.handle = FASTRPC_STATIC_HANDLE_DSP_UTILITIES;
ioctl.inv.sc = REMOTE_SCALARS_MAKE(1, 1, 0);
ioctl.inv.pra = ra;
ioctl.fds = NULL;
ioctl.attrs = NULL;
ioctl.crc = NULL;
ioctl.perf_kernel = NULL;
ioctl.perf_dsp = NULL;
ioctl.job = NULL;
err = fastrpc_internal_invoke(fl, FASTRPC_MODE_PARALLEL, KERNEL_MSG_WITH_ZERO_PID, &ioctl);
if (!err)
me->channel[cid].cpuinfo_status = true;
bail:
return err;
}
int fastrpc_get_info_from_dsp(struct fastrpc_file *fl,
uint32_t *dsp_attr_buf,
uint32_t dsp_attr_buf_len,
uint32_t domain)
{
int err = 0;
struct fastrpc_ioctl_invoke_async ioctl;
remote_arg_t ra[2];
dsp_attr_buf[0] = 0; // Capability filled in userspace
// Fastrpc to modem not supported
if (domain == MDSP_DOMAIN_ID)
goto bail;
err = fastrpc_channel_open(fl, FASTRPC_INIT_NO_CREATE);
if (err)
goto bail;
ra[0].buf.pv = (void *)&dsp_attr_buf_len;
ra[0].buf.len = sizeof(dsp_attr_buf_len);
ra[1].buf.pv = (void *)(&dsp_attr_buf[1]);
ra[1].buf.len = dsp_attr_buf_len * sizeof(uint32_t);
ioctl.inv.handle = FASTRPC_STATIC_HANDLE_DSP_UTILITIES;
ioctl.inv.sc = REMOTE_SCALARS_MAKE(0, 1, 1);
ioctl.inv.pra = ra;
ioctl.fds = NULL;
ioctl.attrs = NULL;
ioctl.crc = NULL;
ioctl.perf_kernel = NULL;
ioctl.perf_dsp = NULL;
ioctl.job = NULL;
err = fastrpc_internal_invoke(fl, FASTRPC_MODE_PARALLEL, KERNEL_MSG_WITH_ZERO_PID, &ioctl);
bail:
if (err)
ADSPRPC_ERR("could not obtain dsp information, err val %d\n",
err);
return err;
}
int fastrpc_get_info_from_kernel(
struct fastrpc_ioctl_capability *cap,
struct fastrpc_file *fl)
{
int err = 0;
uint32_t domain = cap->domain, attribute_ID = cap->attribute_ID;
uint32_t async_capability = 0;
struct fastrpc_dsp_capabilities *dsp_cap_ptr = NULL;
VERIFY(err, domain < NUM_CHANNELS);
if (err) {
err = -ECHRNG;
goto bail;
}
/*
* Check if number of attribute IDs obtained from userspace
* is less than the number of attribute IDs supported by
* kernel
*/
if (attribute_ID >= FASTRPC_MAX_ATTRIBUTES) {
err = -EOVERFLOW;
goto bail;
}
dsp_cap_ptr = &gcinfo[domain].dsp_cap_kernel;
if (attribute_ID >= FASTRPC_MAX_DSP_ATTRIBUTES) {
// Driver capability, pass it to user
memcpy(&cap->capability,
&kernel_capabilities[attribute_ID -
FASTRPC_MAX_DSP_ATTRIBUTES],
sizeof(cap->capability));
} else if (!dsp_cap_ptr->is_cached) {
/*
* Information not on kernel, query device for information
* and cache on kernel
*/
err = fastrpc_get_info_from_dsp(fl,
dsp_cap_ptr->dsp_attributes,
FASTRPC_MAX_DSP_ATTRIBUTES - 1,
domain);
if (err)
goto bail;
/* Async capability support depends on both kernel and DSP */
async_capability = IS_ASYNC_FASTRPC_AVAILABLE &&
dsp_cap_ptr->dsp_attributes[ASYNC_FASTRPC_CAP];
dsp_cap_ptr->dsp_attributes[ASYNC_FASTRPC_CAP]
= async_capability;
memcpy(&cap->capability,
&dsp_cap_ptr->dsp_attributes[attribute_ID],
sizeof(cap->capability));
dsp_cap_ptr->is_cached = 1;
} else {
// Information on Kernel, pass it to user
memcpy(&cap->capability,
&dsp_cap_ptr->dsp_attributes[attribute_ID],
sizeof(cap->capability));
}
bail:
return err;
}
static int fastrpc_release_current_dsp_process(struct fastrpc_file *fl)
{
int err = 0;
struct fastrpc_ioctl_invoke_async ioctl;
remote_arg_t ra[1];
int tgid = 0;
int cid = -1;
unsigned long irq_flags = 0;
if (!fl) {
err = -EBADF;
goto bail;
}
cid = fl->cid;
VERIFY(err, VALID_FASTRPC_CID(cid));
if (err) {
err = -ECHRNG;
goto bail;
}
VERIFY(err, fl->sctx != NULL);
if (err) {
err = -EBADR;
goto bail;
}
err = verify_transport_device(cid, fl->trusted_vm);
if (err)
goto bail;
VERIFY(err, fl->apps->channel[cid].issubsystemup == 1);
if (err) {
err = -ECONNRESET;
goto bail;
}
tgid = fl->tgid;
ra[0].buf.pv = (void *)&tgid;
ra[0].buf.len = sizeof(tgid);
ioctl.inv.handle = FASTRPC_STATIC_HANDLE_PROCESS_GROUP;
ioctl.inv.sc = REMOTE_SCALARS_MAKE(1, 1, 0);
ioctl.inv.pra = ra;
ioctl.fds = NULL;
ioctl.attrs = NULL;
ioctl.crc = NULL;
ioctl.perf_kernel = NULL;
ioctl.perf_dsp = NULL;
ioctl.job = NULL;
spin_lock_irqsave(&fl->apps->hlock, irq_flags);
fl->file_close = FASTRPC_PROCESS_DSP_EXIT_INIT;
spin_unlock_irqrestore(&fl->apps->hlock, irq_flags);
/*
* Pass 2 for "kernel" arg to send kernel msg to DSP
* with non-zero msg PID for the DSP to directly use
* that info to kill the remote process.
*/
VERIFY(err, 0 == (err = fastrpc_internal_invoke(fl,
FASTRPC_MODE_PARALLEL, KERNEL_MSG_WITH_NONZERO_PID, &ioctl)));
spin_lock_irqsave(&fl->apps->hlock, irq_flags);
fl->file_close = FASTRPC_PROCESS_DSP_EXIT_COMPLETE;
spin_unlock_irqrestore(&fl->apps->hlock, irq_flags);
if (err && fl->dsp_proc_init)
ADSPRPC_ERR(
"releasing DSP process failed with %d (0x%x) for %s\n",
err, err, current->comm);
bail:
if (err && fl && fl->apps) {
spin_lock_irqsave(&fl->apps->hlock, irq_flags);
fl->file_close = FASTRPC_PROCESS_DSP_EXIT_ERROR;
spin_unlock_irqrestore(&fl->apps->hlock, irq_flags);
}
return err;
}
static int fastrpc_mem_map_to_dsp(struct fastrpc_file *fl, int fd, int offset,
uint32_t flags, uintptr_t va, uint64_t phys,
size_t size, uintptr_t *raddr)
{
struct fastrpc_ioctl_invoke_async ioctl;
struct smq_phy_page page;
remote_arg_t ra[4];
int err = 0;
struct {
int pid;
int fd;
int offset;
uint32_t flags;
uint64_t vaddrin;
int num;
int data_len;
} inargs;
struct {
uint64_t vaddrout;
} routargs;
inargs.pid = fl->tgid;
inargs.fd = fd;
inargs.offset = offset;
inargs.vaddrin = (uintptr_t)va;
inargs.flags = flags;
inargs.num = sizeof(page);
inargs.data_len = 0;
ra[0].buf.pv = (void *)&inargs;
ra[0].buf.len = sizeof(inargs);
page.addr = phys;
page.size = size;
ra[1].buf.pv = (void *)&page;
ra[1].buf.len = sizeof(page);
ra[2].buf.pv = (void *)&page;
ra[2].buf.len = 0;
ra[3].buf.pv = (void *)&routargs;
ra[3].buf.len = sizeof(routargs);
ioctl.inv.handle = FASTRPC_STATIC_HANDLE_PROCESS_GROUP;
ioctl.inv.sc = REMOTE_SCALARS_MAKE(10, 3, 1);
ioctl.inv.pra = ra;
ioctl.fds = NULL;
ioctl.attrs = NULL;
ioctl.crc = NULL;
ioctl.perf_kernel = NULL;
ioctl.perf_dsp = NULL;
ioctl.job = NULL;
VERIFY(err, 0 == (err = fastrpc_internal_invoke(fl,
FASTRPC_MODE_PARALLEL, KERNEL_MSG_WITH_ZERO_PID, &ioctl)));
if (err)
goto bail;
if (raddr)
*raddr = (uintptr_t)routargs.vaddrout;
bail:
return err;
}
static int fastrpc_mem_unmap_to_dsp(struct fastrpc_file *fl, int fd,
uint32_t flags, uintptr_t va,
uint64_t phys, size_t size)
{
struct fastrpc_ioctl_invoke_async ioctl;
remote_arg_t ra[1];
int err = 0;
struct {
int pid;
int fd;
uint64_t vaddrin;
uint64_t len;
} inargs;
inargs.pid = fl->tgid;
inargs.fd = fd;
inargs.vaddrin = (uint64_t)va;
inargs.len = (uint64_t)size;
ra[0].buf.pv = (void *)&inargs;
ra[0].buf.len = sizeof(inargs);
ioctl.inv.handle = FASTRPC_STATIC_HANDLE_PROCESS_GROUP;
ioctl.inv.sc = REMOTE_SCALARS_MAKE(11, 1, 0);
ioctl.inv.pra = ra;
ioctl.fds = NULL;
ioctl.attrs = NULL;
ioctl.crc = NULL;
ioctl.perf_kernel = NULL;
ioctl.perf_dsp = NULL;
ioctl.job = NULL;
VERIFY(err, 0 == (err = fastrpc_internal_invoke(fl,
FASTRPC_MODE_PARALLEL, KERNEL_MSG_WITH_ZERO_PID, &ioctl)));
if (err)
goto bail;
bail:
return err;
}
static int fastrpc_unmap_on_dsp(struct fastrpc_file *fl,
uintptr_t raddr, uint64_t phys, size_t size, uint32_t flags)
{
struct fastrpc_ioctl_invoke_async ioctl;
remote_arg_t ra[1] = {};
int err = 0;
struct {
int pid;
uintptr_t vaddrout;
size_t size;
} inargs;
inargs.pid = fl->tgid;
inargs.size = size;
inargs.vaddrout = raddr;
ra[0].buf.pv = (void *)&inargs;
ra[0].buf.len = sizeof(inargs);
ioctl.inv.handle = FASTRPC_STATIC_HANDLE_PROCESS_GROUP;
if (fl->apps->compat)
ioctl.inv.sc = REMOTE_SCALARS_MAKE(5, 1, 0);
else
ioctl.inv.sc = REMOTE_SCALARS_MAKE(3, 1, 0);
ioctl.inv.pra = ra;
ioctl.fds = NULL;
ioctl.attrs = NULL;
ioctl.crc = NULL;
ioctl.perf_kernel = NULL;
ioctl.perf_dsp = NULL;
ioctl.job = NULL;
VERIFY(err, 0 == (err = fastrpc_internal_invoke(fl,
FASTRPC_MODE_PARALLEL, KERNEL_MSG_WITH_ZERO_PID, &ioctl)));
if (err)
goto bail;
bail:
return err;
}
static int fastrpc_mmap_on_dsp(struct fastrpc_file *fl, uint32_t flags,
uintptr_t va, uint64_t phys,
size_t size, int refs, uintptr_t *raddr)
{
struct fastrpc_ioctl_invoke_async ioctl;
struct fastrpc_apps *me = &gfa;
struct smq_phy_page page;
int num = 1;
remote_arg_t ra[3];
int err = 0;
struct {
int pid;
uint32_t flags;
uintptr_t vaddrin;
int num;
} inargs;
struct {
uintptr_t vaddrout;
} routargs;
int cid = -1;
if (!fl) {
err = -EBADF;
goto bail;
}
cid = fl->cid;
inargs.pid = fl->tgid;
inargs.vaddrin = (uintptr_t)va;
inargs.flags = flags;
inargs.num = fl->apps->compat ? num * sizeof(page) : num;
ra[0].buf.pv = (void *)&inargs;
ra[0].buf.len = sizeof(inargs);
page.addr = phys;
page.size = size;
ra[1].buf.pv = (void *)&page;
ra[1].buf.len = num * sizeof(page);
ra[2].buf.pv = (void *)&routargs;
ra[2].buf.len = sizeof(routargs);
ioctl.inv.handle = FASTRPC_STATIC_HANDLE_PROCESS_GROUP;
if (fl->apps->compat)
ioctl.inv.sc = REMOTE_SCALARS_MAKE(4, 2, 1);
else
ioctl.inv.sc = REMOTE_SCALARS_MAKE(2, 2, 1);
ioctl.inv.pra = ra;
ioctl.fds = NULL;
ioctl.attrs = NULL;
ioctl.crc = NULL;
ioctl.perf_kernel = NULL;
ioctl.perf_dsp = NULL;
ioctl.job = NULL;
VERIFY(err, 0 == (err = fastrpc_internal_invoke(fl,
FASTRPC_MODE_PARALLEL, KERNEL_MSG_WITH_ZERO_PID, &ioctl)));
*raddr = (uintptr_t)routargs.vaddrout;
if (err)
goto bail;
if (flags == ADSP_MMAP_REMOTE_HEAP_ADDR) {
VERIFY(err, VALID_FASTRPC_CID(cid));
if (err) {
err = -ECHRNG;
ADSPRPC_ERR(
"invalid channel 0x%zx set for session\n",
cid);
goto bail;
}
}
if (flags == ADSP_MMAP_REMOTE_HEAP_ADDR
&& me->channel[cid].rhvm.vmid && refs == 1) {
err = hyp_assign_phys(phys, (uint64_t)size,
hlosvm, 1, me->channel[cid].rhvm.vmid,
me->channel[cid].rhvm.vmperm,
me->channel[cid].rhvm.vmcount);
if (err) {
ADSPRPC_ERR(
"rh hyp assign failed with %d for phys 0x%llx, size %zu\n",
err, phys, size);
err = -EADDRNOTAVAIL;
err = fastrpc_unmap_on_dsp(fl,
*raddr, phys, size, flags);
if (err) {
ADSPRPC_ERR(
"failed to unmap %d for phys 0x%llx, size %zd\n",
err, phys, size);
}
goto bail;
}
}
bail:
return err;
}
static int fastrpc_munmap_on_dsp_rh(struct fastrpc_file *fl, uint64_t phys,
size_t size, uint32_t flags, int locked)
{
int err = 0;
struct fastrpc_apps *me = &gfa;
int tgid = 0;
int destVM[1] = {VMID_HLOS};
int destVMperm[1] = {PERM_READ | PERM_WRITE | PERM_EXEC};
int cid = -1;
if (!fl) {
err = -EBADF;
goto bail;
}
cid = fl->cid;
VERIFY(err, VALID_FASTRPC_CID(cid));
if (err) {
err = -ECHRNG;
ADSPRPC_ERR(
"invalid channel 0x%zx set for session\n",
cid);
goto bail;
}
if (flags == ADSP_MMAP_HEAP_ADDR) {
struct fastrpc_ioctl_invoke_async ioctl;
remote_arg_t ra[2];
int err = 0;
struct {
uint8_t skey;
} routargs;
tgid = fl->tgid;
ra[0].buf.pv = (void *)&tgid;
ra[0].buf.len = sizeof(tgid);
ra[1].buf.pv = (void *)&routargs;
ra[1].buf.len = sizeof(routargs);
ioctl.inv.handle = FASTRPC_STATIC_HANDLE_PROCESS_GROUP;
ioctl.inv.sc = REMOTE_SCALARS_MAKE(9, 1, 1);
ioctl.inv.pra = ra;
ioctl.fds = NULL;
ioctl.attrs = NULL;
ioctl.crc = NULL;
ioctl.perf_kernel = NULL;
ioctl.perf_dsp = NULL;
ioctl.job = NULL;
if (locked) {
mutex_unlock(&fl->map_mutex);
mutex_unlock(&me->channel[cid].smd_mutex);
}
VERIFY(err, 0 == (err = fastrpc_internal_invoke(fl,
FASTRPC_MODE_PARALLEL, KERNEL_MSG_WITH_ZERO_PID, &ioctl)));
if (locked) {
mutex_lock(&me->channel[cid].smd_mutex);
mutex_lock(&fl->map_mutex);
}
if (err)
goto bail;
} else if (flags == ADSP_MMAP_REMOTE_HEAP_ADDR) {
if (me->channel[cid].rhvm.vmid) {
err = hyp_assign_phys(phys,
(uint64_t)size,
me->channel[cid].rhvm.vmid,
me->channel[cid].rhvm.vmcount,
destVM, destVMperm, 1);
if (err) {
ADSPRPC_ERR(
"rh hyp unassign failed with %d for phys 0x%llx, size %zu\n",
err, phys, size);
err = -EADDRNOTAVAIL;
goto bail;
}
}
}
bail:
return err;
}
static int fastrpc_munmap_on_dsp(struct fastrpc_file *fl, uintptr_t raddr,
uint64_t phys, size_t size, uint32_t flags)
{
int err = 0;
VERIFY(err, 0 == (err = fastrpc_unmap_on_dsp(fl, raddr, phys,
size, flags)));
if (err)
goto bail;
if (flags == ADSP_MMAP_HEAP_ADDR ||
flags == ADSP_MMAP_REMOTE_HEAP_ADDR) {
VERIFY(err, !(err = fastrpc_munmap_on_dsp_rh(fl, phys,
size, flags, 0)));
if (err)
goto bail;
}
bail:
return err;
}
static int fastrpc_mmap_remove_ssr(struct fastrpc_file *fl, int locked)
{
struct fastrpc_mmap *match = NULL, *map = NULL;
struct hlist_node *n = NULL;
int err = 0, ret = 0;
struct fastrpc_apps *me = &gfa;
struct qcom_dump_segment ramdump_segments_rh;
struct list_head head;
unsigned long irq_flags = 0;
INIT_LIST_HEAD(&head);
VERIFY(err, fl->cid == RH_CID);
if (err) {
err = -EBADR;
goto bail;
}
do {
match = NULL;
spin_lock_irqsave(&me->hlock, irq_flags);
hlist_for_each_entry_safe(map, n, &me->maps, hn) {
match = map;
hlist_del_init(&map->hn);
break;
}
spin_unlock_irqrestore(&me->hlock, irq_flags);
if (match) {
err = fastrpc_munmap_on_dsp_rh(fl, match->phys,
match->size, match->flags, locked);
if (err)
goto bail;
memset(&ramdump_segments_rh, 0, sizeof(ramdump_segments_rh));
ramdump_segments_rh.da = match->phys;
ramdump_segments_rh.va = (void *)page_address((struct page *)match->va);
ramdump_segments_rh.size = match->size;
INIT_LIST_HEAD(&head);
list_add(&ramdump_segments_rh.node, &head);
if (me->dev && dump_enabled()) {
ret = qcom_elf_dump(&head, me->dev, ELF_CLASS);
if (ret < 0)
pr_err("adsprpc: %s: unable to dump heap (err %d)\n",
__func__, ret);
}
if (!locked)
mutex_lock(&fl->map_mutex);
fastrpc_mmap_free(match, 0);
if (!locked)
mutex_unlock(&fl->map_mutex);
}
} while (match);
bail:
if (err && match) {
if (!locked)
mutex_lock(&fl->map_mutex);
fastrpc_mmap_add(match);
if (!locked)
mutex_unlock(&fl->map_mutex);
}
return err;
}
static int fastrpc_mmap_remove_pdr(struct fastrpc_file *fl)
{
struct fastrpc_apps *me = &gfa;
int session = 0, err = 0, cid = -1;
if (!fl) {
err = -EBADF;
goto bail;
}
err = fastrpc_get_spd_session(fl->servloc_name,
&session, &cid);
if (err)
goto bail;
VERIFY(err, cid == fl->cid);
if (err) {
err = -EBADR;
goto bail;
}
if (atomic_read(&me->channel[cid].spd[session].ispdup) == 0) {
err = -ENOTCONN;
goto bail;
}
if (me->channel[cid].spd[session].pdrcount !=
me->channel[cid].spd[session].prevpdrcount) {
err = fastrpc_mmap_remove_ssr(fl, 0);
if (err)
ADSPRPC_WARN("failed to unmap remote heap (err %d)\n",
err);
me->channel[cid].spd[session].prevpdrcount =
me->channel[cid].spd[session].pdrcount;
}
bail:
return err;
}
static inline void get_fastrpc_ioctl_mmap_64(
struct fastrpc_ioctl_mmap_64 *mmap64,
struct fastrpc_ioctl_mmap *immap)
{
immap->fd = mmap64->fd;
immap->flags = mmap64->flags;
immap->vaddrin = (uintptr_t)mmap64->vaddrin;
immap->size = mmap64->size;
}
static inline void put_fastrpc_ioctl_mmap_64(
struct fastrpc_ioctl_mmap_64 *mmap64,
struct fastrpc_ioctl_mmap *immap)
{
mmap64->vaddrout = (uint64_t)immap->vaddrout;
}
static inline void get_fastrpc_ioctl_munmap_64(
struct fastrpc_ioctl_munmap_64 *munmap64,
struct fastrpc_ioctl_munmap *imunmap)
{
imunmap->vaddrout = (uintptr_t)munmap64->vaddrout;
imunmap->size = munmap64->size;
}
int fastrpc_internal_munmap(struct fastrpc_file *fl,
struct fastrpc_ioctl_munmap *ud)
{
int err = 0;
struct fastrpc_mmap *map = NULL;
struct fastrpc_buf *rbuf = NULL, *free = NULL;
struct hlist_node *n;
VERIFY(err, fl->dsp_proc_init == 1);
if (err) {
ADSPRPC_ERR(
"user application %s trying to unmap without initialization\n",
current->comm);
err = -EHOSTDOWN;
return err;
}
mutex_lock(&fl->internal_map_mutex);
spin_lock(&fl->hlock);
hlist_for_each_entry_safe(rbuf, n, &fl->remote_bufs, hn_rem) {
if (rbuf->raddr && ((rbuf->flags == ADSP_MMAP_ADD_PAGES) ||
(rbuf->flags == ADSP_MMAP_ADD_PAGES_LLC))) {
if ((rbuf->raddr == ud->vaddrout) &&
(rbuf->size == ud->size)) {
free = rbuf;
break;
}
}
}
spin_unlock(&fl->hlock);
if (free) {
VERIFY(err, !(err = fastrpc_munmap_on_dsp(fl, free->raddr,
free->phys, free->size, free->flags)));
if (err)
goto bail;
fastrpc_buf_free(rbuf, 0);
mutex_unlock(&fl->internal_map_mutex);
return err;
}
mutex_lock(&fl->map_mutex);
VERIFY(err, !(err = fastrpc_mmap_remove(fl, -1, ud->vaddrout,
ud->size, &map)));
mutex_unlock(&fl->map_mutex);
if (err)
goto bail;
VERIFY(err, map != NULL);
if (err) {
err = -EINVAL;
goto bail;
}
VERIFY(err, !(err = fastrpc_munmap_on_dsp(fl, map->raddr,
map->phys, map->size, map->flags)));
if (err)
goto bail;
mutex_lock(&fl->map_mutex);
fastrpc_mmap_free(map, 0);
mutex_unlock(&fl->map_mutex);
bail:
if (err && map) {
mutex_lock(&fl->map_mutex);
fastrpc_mmap_add(map);
mutex_unlock(&fl->map_mutex);
}
mutex_unlock(&fl->internal_map_mutex);
return err;
}
/*
* fastrpc_internal_munmap_fd can only be used for buffers
* mapped with persist attributes. This can only be called
* once for any persist buffer
*/
static int fastrpc_internal_munmap_fd(struct fastrpc_file *fl,
struct fastrpc_ioctl_munmap_fd *ud)
{
int err = 0;
struct fastrpc_mmap *map = NULL;
VERIFY(err, (fl && ud));
if (err) {
err = -EINVAL;
return err;
}
VERIFY(err, fl->dsp_proc_init == 1);
if (err) {
ADSPRPC_ERR(
"user application %s trying to unmap without initialization\n",
current->comm);
err = -EHOSTDOWN;
return err;
}
mutex_lock(&fl->internal_map_mutex);
mutex_lock(&fl->map_mutex);
err = fastrpc_mmap_find(fl, ud->fd, NULL, ud->va, ud->len, 0, 0, &map);
if (err) {
ADSPRPC_ERR(
"mapping not found to unmap fd 0x%x, va 0x%llx, len 0x%x, err %d\n",
ud->fd, (unsigned long long)ud->va,
(unsigned int)ud->len, err);
mutex_unlock(&fl->map_mutex);
goto bail;
}
if (map && (map->attr & FASTRPC_ATTR_KEEP_MAP)) {
map->attr = map->attr & (~FASTRPC_ATTR_KEEP_MAP);
fastrpc_mmap_free(map, 0);
}
mutex_unlock(&fl->map_mutex);
bail:
mutex_unlock(&fl->internal_map_mutex);
return err;
}
int fastrpc_internal_mem_map(struct fastrpc_file *fl,
struct fastrpc_ioctl_mem_map *ud)
{
int err = 0;
struct fastrpc_mmap *map = NULL;
VERIFY(err, fl->dsp_proc_init == 1);
if (err) {
pr_err("adsprpc: ERROR: %s: user application %s trying to map without initialization\n",
__func__, current->comm);
err = EBADR;
goto bail;
}
/* create SMMU mapping */
mutex_lock(&fl->map_mutex);
VERIFY(err, !(err = fastrpc_mmap_create(fl, ud->m.fd, NULL, ud->m.attrs,
ud->m.vaddrin, ud->m.length,
ud->m.flags, &map)));
mutex_unlock(&fl->map_mutex);
if (err)
goto bail;
if (map->raddr) {
err = -EEXIST;
goto bail;
}
/* create DSP mapping */
VERIFY(err, !(err = fastrpc_mem_map_to_dsp(fl, ud->m.fd, ud->m.offset,
ud->m.flags, map->va, map->phys, map->size, &map->raddr)));
if (err)
goto bail;
ud->m.vaddrout = map->raddr;
bail:
if (err) {
ADSPRPC_ERR("failed to map fd %d, len 0x%x, flags %d, map %pK, err %d\n",
ud->m.fd, ud->m.length, ud->m.flags, map, err);
if (map) {
mutex_lock(&fl->map_mutex);
fastrpc_mmap_free(map, 0);
mutex_unlock(&fl->map_mutex);
}
}
return err;
}
int fastrpc_internal_mem_unmap(struct fastrpc_file *fl,
struct fastrpc_ioctl_mem_unmap *ud)
{
int err = 0;
struct fastrpc_mmap *map = NULL;
size_t map_size = 0;
VERIFY(err, fl->dsp_proc_init == 1);
if (err) {
pr_err("adsprpc: ERROR: %s: user application %s trying to map without initialization\n",
__func__, current->comm);
err = EBADR;
goto bail;
}
mutex_lock(&fl->map_mutex);
VERIFY(err, !(err = fastrpc_mmap_remove(fl, ud->um.fd,
(uintptr_t)ud->um.vaddr, ud->um.length, &map)));
mutex_unlock(&fl->map_mutex);
if (err)
goto bail;
VERIFY(err, map->flags == FASTRPC_MAP_FD ||
map->flags == FASTRPC_MAP_FD_DELAYED ||
map->flags == FASTRPC_MAP_STATIC);
if (err) {
err = -EBADMSG;
goto bail;
}
map_size = map->size;
/* remove mapping on DSP */
VERIFY(err, !(err = fastrpc_mem_unmap_to_dsp(fl, map->fd, map->flags,
map->raddr, map->phys, map->size)));
if (err)
goto bail;
/* remove SMMU mapping */
mutex_lock(&fl->map_mutex);
fastrpc_mmap_free(map, 0);
mutex_unlock(&fl->map_mutex);
map = NULL;
bail:
if (err) {
ADSPRPC_ERR(
"failed to unmap fd %d addr 0x%llx length %zu map size %zu err 0x%x\n",
ud->um.fd, ud->um.vaddr, ud->um.length, map_size, err);
/* Add back to map list in case of error to unmap on DSP */
if (map) {
mutex_lock(&fl->map_mutex);
fastrpc_mmap_add(map);
mutex_unlock(&fl->map_mutex);
}
}
return err;
}
int fastrpc_internal_mmap(struct fastrpc_file *fl,
struct fastrpc_ioctl_mmap *ud)
{
struct fastrpc_mmap *map = NULL;
struct fastrpc_buf *rbuf = NULL;
unsigned long dma_attr = 0;
uintptr_t raddr = 0;
int err = 0;
VERIFY(err, fl->dsp_proc_init == 1);
if (err) {
ADSPRPC_ERR(
"user application %s trying to map without initialization\n",
current->comm);
err = -EHOSTDOWN;
return err;
}
mutex_lock(&fl->internal_map_mutex);
/* Pages for unsigned PD's user-heap should be allocated in userspace */
if (((ud->flags == ADSP_MMAP_ADD_PAGES) ||
(ud->flags == ADSP_MMAP_ADD_PAGES_LLC)) && !fl->is_unsigned_pd) {
if (ud->vaddrin) {
err = -EINVAL;
ADSPRPC_ERR(
"adding user allocated pages is not supported\n");
goto bail;
}
dma_attr = DMA_ATTR_DELAYED_UNMAP | DMA_ATTR_NO_KERNEL_MAPPING;
if (ud->flags == ADSP_MMAP_ADD_PAGES_LLC)
dma_attr |= DMA_ATTR_SYS_CACHE_ONLY;
err = fastrpc_buf_alloc(fl, ud->size, dma_attr, ud->flags,
USERHEAP_BUF, &rbuf);
if (err)
goto bail;
err = fastrpc_mmap_on_dsp(fl, ud->flags, 0,
rbuf->phys, rbuf->size, 0, &raddr);
if (err)
goto bail;
rbuf->raddr = raddr;
} else {
uintptr_t va_to_dsp;
if (fl->is_unsigned_pd && ud->flags == ADSP_MMAP_REMOTE_HEAP_ADDR) {
err = -EINVAL;
ADSPRPC_ERR(
"Secure memory allocation is not supported in unsigned PD");
goto bail;
}
mutex_lock(&fl->map_mutex);
VERIFY(err, !(err = fastrpc_mmap_create(fl, ud->fd, NULL, 0,
(uintptr_t)ud->vaddrin, ud->size,
ud->flags, &map)));
mutex_unlock(&fl->map_mutex);
if (err)
goto bail;
if (ud->flags == ADSP_MMAP_HEAP_ADDR ||
ud->flags == ADSP_MMAP_REMOTE_HEAP_ADDR)
va_to_dsp = 0;
else
va_to_dsp = (uintptr_t)map->va;
VERIFY(err, 0 == (err = fastrpc_mmap_on_dsp(fl, ud->flags,
va_to_dsp, map->phys, map->size, map->refs, &raddr)));
if (err)
goto bail;
map->raddr = raddr;
}
ud->vaddrout = raddr;
bail:
if (err) {
if (map) {
mutex_lock(&fl->map_mutex);
fastrpc_mmap_free(map, 0);
mutex_unlock(&fl->map_mutex);
}
if (!IS_ERR_OR_NULL(rbuf))
fastrpc_buf_free(rbuf, 0);
}
mutex_unlock(&fl->internal_map_mutex);
return err;
}
static void fastrpc_context_list_dtor(struct fastrpc_file *fl);
static int fastrpc_session_alloc_locked(struct fastrpc_channel_ctx *chan,
int secure, struct fastrpc_session_ctx **session)
{
struct fastrpc_apps *me = &gfa;
uint64_t idx = 0;
int err = 0;
if (chan->sesscount) {
for (idx = 0; idx < chan->sesscount; ++idx) {
if (!chan->session[idx].used &&
chan->session[idx].smmu.secure == secure) {
chan->session[idx].used = 1;
break;
}
}
if (idx >= chan->sesscount) {
err = -EUSERS;
goto bail;
}
chan->session[idx].smmu.faults = 0;
} else {
VERIFY(err, me->dev != NULL);
if (err) {
err = -ENODEV;
goto bail;
}
chan->session[0].dev = me->dev;
chan->session[0].smmu.dev = me->dev;
}
*session = &chan->session[idx];
bail:
return err;
}
static void handle_remote_signal(uint64_t msg, int cid)
{
struct fastrpc_apps *me = &gfa;
uint32_t pid = msg >> 32;
uint32_t signal_id = msg & 0xffffffff;
struct fastrpc_file *fl = NULL;
struct hlist_node *n = NULL;
unsigned long irq_flags = 0;
DSPSIGNAL_VERBOSE("Received queue signal %llx: PID %u, signal %u\n", msg, pid, signal_id);
if (signal_id >= DSPSIGNAL_NUM_SIGNALS) {
ADSPRPC_ERR("Received bad signal %u for PID %u\n", signal_id, pid);
return;
}
spin_lock_irqsave(&me->hlock, irq_flags);
hlist_for_each_entry_safe(fl, n, &me->drivers, hn) {
if ((fl->tgid == pid) && (fl->cid == cid)) {
unsigned long fflags = 0;
spin_lock_irqsave(&fl->dspsignals_lock, fflags);
if (fl->signal_groups[signal_id / DSPSIGNAL_GROUP_SIZE]) {
struct fastrpc_dspsignal *group =
fl->signal_groups[signal_id / DSPSIGNAL_GROUP_SIZE];
struct fastrpc_dspsignal *sig =
&group[signal_id % DSPSIGNAL_GROUP_SIZE];
if ((sig->state == DSPSIGNAL_STATE_PENDING) ||
(sig->state == DSPSIGNAL_STATE_SIGNALED)) {
DSPSIGNAL_VERBOSE("Signaling signal %u for PID %u\n",
signal_id, pid);
complete(&sig->comp);
sig->state = DSPSIGNAL_STATE_SIGNALED;
} else if (sig->state == DSPSIGNAL_STATE_UNUSED) {
ADSPRPC_ERR("Received unknown signal %u for PID %u\n",
signal_id, pid);
}
} else {
ADSPRPC_ERR("Received unknown signal %u for PID %u\n",
signal_id, pid);
}
spin_unlock_irqrestore(&fl->dspsignals_lock, fflags);
break;
}
}
spin_unlock_irqrestore(&me->hlock, irq_flags);
}
int fastrpc_handle_rpc_response(void *data, int len, int cid)
{
struct smq_invoke_rsp *rsp = (struct smq_invoke_rsp *)data;
struct smq_notif_rspv3 *notif = (struct smq_notif_rspv3 *)data;
struct smq_invoke_rspv2 *rspv2 = NULL;
struct smq_invoke_ctx *ctx = NULL;
struct fastrpc_apps *me = &gfa;
uint32_t index, rsp_flags = 0, early_wake_time = 0, ver = 0;
int err = 0, ignore_rsp_err = 0;
struct fastrpc_channel_ctx *chan = NULL;
unsigned long irq_flags = 0;
int64_t ns = 0;
uint64_t xo_time_in_us = 0;
xo_time_in_us = CONVERT_CNT_TO_US(__arch_counter_get_cntvct());
if (len == sizeof(uint64_t)) {
/*
* dspsignal message from the DSP
*/
handle_remote_signal(*((uint64_t *)data), cid);
goto bail;
}
chan = &me->channel[cid];
VERIFY(err, (rsp && len >= sizeof(*rsp)));
if (err) {
err = -EINVAL;
goto bail;
}
if (notif->ctx == FASTRPC_NOTIF_CTX_RESERVED) {
VERIFY(err, (notif->type == STATUS_RESPONSE &&
len >= sizeof(*notif)));
if (err)
goto bail;
fastrpc_notif_find_process(cid, notif);
goto bail;
}
if (len >= sizeof(struct smq_invoke_rspv2))
rspv2 = (struct smq_invoke_rspv2 *)data;
if (rspv2) {
early_wake_time = rspv2->early_wake_time;
rsp_flags = rspv2->flags;
ver = rspv2->version;
}
trace_fastrpc_transport_response(cid, rsp->ctx,
rsp->retval, rsp_flags, early_wake_time);
ns = get_timestamp_in_ns();
fastrpc_update_rxmsg_buf(chan, rsp->ctx, rsp->retval,
rsp_flags, early_wake_time, ver, ns, xo_time_in_us);
index = (uint32_t)GET_TABLE_IDX_FROM_CTXID(rsp->ctx);
VERIFY(err, index < FASTRPC_CTX_MAX);
if (err)
goto bail;
spin_lock_irqsave(&chan->ctxlock, irq_flags);
ctx = chan->ctxtable[index];
VERIFY(err, !IS_ERR_OR_NULL(ctx) &&
(ctx->ctxid == GET_CTXID_FROM_RSP_CTX(rsp->ctx)) &&
ctx->magic == FASTRPC_CTX_MAGIC);
if (err) {
/*
* Received an anticipatory COMPLETE_SIGNAL from DSP for a
* context after CPU successfully polling on memory and
* completed processing of context. Ignore the message.
* Also ignore response for a call which was already
* completed by update of poll memory and the context was
* removed from the table and possibly reused for another call.
*/
ignore_rsp_err = ((rsp_flags == COMPLETE_SIGNAL) || !ctx ||
(ctx && (ctx->ctxid != GET_CTXID_FROM_RSP_CTX(rsp->ctx)))) ? 1 : 0;
goto bail_unlock;
}
if (rspv2) {
VERIFY(err, rspv2->version == FASTRPC_RSP_VERSION2);
if (err)
goto bail_unlock;
}
VERIFY(err, VALID_FASTRPC_CID(ctx->fl->cid));
if (err) {
err = -ECHRNG;
goto bail_unlock;
}
context_notify_user(ctx, rsp->retval, rsp_flags, early_wake_time);
bail_unlock:
spin_unlock_irqrestore(&chan->ctxlock, irq_flags);
bail:
if (err) {
err = -ENOKEY;
if (!ignore_rsp_err)
ADSPRPC_ERR(
"invalid response data %pK, len %d from remote subsystem err %d\n",
data, len, err);
else {
err = 0;
me->duplicate_rsp_err_cnt++;
}
}
return err;
}
static int fastrpc_session_alloc(struct fastrpc_channel_ctx *chan, int secure,
struct fastrpc_session_ctx **session)
{
int err = 0;
mutex_lock(&chan->smd_mutex);
if (!*session)
err = fastrpc_session_alloc_locked(chan, secure, session);
mutex_unlock(&chan->smd_mutex);
if (err == -EUSERS) {
ADSPRPC_WARN(
"max concurrent sessions limit (%d) already reached on %s err %d\n",
chan->sesscount, chan->subsys, err);
}
return err;
}
static void fastrpc_session_free(struct fastrpc_channel_ctx *chan,
struct fastrpc_session_ctx *session)
{
mutex_lock(&chan->smd_mutex);
session->used = 0;
mutex_unlock(&chan->smd_mutex);
}
static int fastrpc_file_free(struct fastrpc_file *fl)
{
struct hlist_node *n = NULL;
struct fastrpc_mmap *map = NULL, *lmap = NULL;
unsigned long flags;
int cid;
struct fastrpc_apps *me = &gfa;
bool is_driver_closed = false;
int err = 0;
unsigned long irq_flags = 0;
bool is_locked = false;
int i;
if (!fl)
return 0;
cid = fl->cid;
spin_lock_irqsave(&me->hlock, irq_flags);
if (fl->device) {
fl->device->dev_close = true;
if (fl->device->refs == 0) {
is_driver_closed = true;
hlist_del_init(&fl->device->hn);
}
}
fl->file_close = FASTRPC_PROCESS_EXIT_START;
spin_unlock_irqrestore(&me->hlock, irq_flags);
(void)fastrpc_release_current_dsp_process(fl);
spin_lock_irqsave(&fl->apps->hlock, irq_flags);
is_locked = true;
if (!fl->is_ramdump_pend) {
goto skip_dump_wait;
}
is_locked = false;
spin_unlock_irqrestore(&fl->apps->hlock, irq_flags);
wait_for_completion(&fl->work);
skip_dump_wait:
if (!is_locked) {
spin_lock_irqsave(&fl->apps->hlock, irq_flags);
is_locked = true;
}
hlist_del_init(&fl->hn);
fl->is_ramdump_pend = false;
fl->in_process_create = false;
is_locked = false;
spin_unlock_irqrestore(&fl->apps->hlock, irq_flags);
if (!fl->sctx) {
kfree(fl);
return 0;
}
//Dummy wake up to exit Async worker thread
spin_lock_irqsave(&fl->aqlock, flags);
atomic_add(1, &fl->async_queue_job_count);
wake_up_interruptible(&fl->async_wait_queue);
spin_unlock_irqrestore(&fl->aqlock, flags);
// Dummy wake up to exit notification worker thread
spin_lock_irqsave(&fl->proc_state_notif.nqlock, flags);
atomic_add(1, &fl->proc_state_notif.notif_queue_count);
wake_up_interruptible(&fl->proc_state_notif.notif_wait_queue);
spin_unlock_irqrestore(&fl->proc_state_notif.nqlock, flags);
if (!IS_ERR_OR_NULL(fl->init_mem))
fastrpc_buf_free(fl->init_mem, 0);
fastrpc_context_list_dtor(fl);
fastrpc_cached_buf_list_free(fl);
if (!IS_ERR_OR_NULL(fl->hdr_bufs))
kfree(fl->hdr_bufs);
if (!IS_ERR_OR_NULL(fl->pers_hdr_buf))
fastrpc_buf_free(fl->pers_hdr_buf, 0);
mutex_lock(&fl->map_mutex);
do {
lmap = NULL;
hlist_for_each_entry_safe(map, n, &fl->maps, hn) {
hlist_del_init(&map->hn);
lmap = map;
break;
}
fastrpc_mmap_free(lmap, 1);
} while (lmap);
mutex_unlock(&fl->map_mutex);
if (fl->device && is_driver_closed)
device_unregister(&fl->device->dev);
VERIFY(err, VALID_FASTRPC_CID(cid));
if (!err && fl->sctx)
fastrpc_session_free(&fl->apps->channel[cid], fl->sctx);
if (!err && fl->secsctx)
fastrpc_session_free(&fl->apps->channel[cid], fl->secsctx);
for (i = 0; i < (DSPSIGNAL_NUM_SIGNALS / DSPSIGNAL_GROUP_SIZE); i++)
kfree(fl->signal_groups[i]);
mutex_destroy(&fl->signal_create_mutex);
fastrpc_remote_buf_list_free(fl);
mutex_destroy(&fl->map_mutex);
mutex_destroy(&fl->internal_map_mutex);
kfree(fl->dev_pm_qos_req);
kfree(fl->gidlist.gids);
kfree(fl);
return 0;
}
static int fastrpc_device_release(struct inode *inode, struct file *file)
{
struct fastrpc_file *fl = (struct fastrpc_file *)file->private_data;
struct fastrpc_apps *me = &gfa;
u32 ii;
if (!fl)
return 0;
if (fl->qos_request && fl->dev_pm_qos_req) {
for (ii = 0; ii < me->silvercores.corecount; ii++) {
if (!dev_pm_qos_request_active(&fl->dev_pm_qos_req[ii]))
continue;
dev_pm_qos_remove_request(&fl->dev_pm_qos_req[ii]);
}
}
debugfs_remove(fl->debugfs_file);
fastrpc_file_free(fl);
file->private_data = NULL;
return 0;
}
static ssize_t fastrpc_debugfs_read(struct file *filp, char __user *buffer,
size_t count, loff_t *position)
{
struct fastrpc_apps *me = &gfa;
struct fastrpc_file *fl = filp->private_data;
struct hlist_node *n;
struct fastrpc_buf *buf = NULL;
struct fastrpc_mmap *map = NULL;
struct fastrpc_mmap *gmaps = NULL;
struct smq_invoke_ctx *ictx = NULL;
struct fastrpc_channel_ctx *chan = NULL;
unsigned int len = 0;
int i, j, sess_used = 0, ret = 0;
char *fileinfo = NULL;
char single_line[] = "----------------";
char title[] = "=========================";
unsigned long irq_flags = 0;
fileinfo = kzalloc(DEBUGFS_SIZE, GFP_KERNEL);
if (!fileinfo) {
ret = -ENOMEM;
goto bail;
}
if (fl == NULL) {
len += scnprintf(fileinfo + len, DEBUGFS_SIZE - len,
"\n%s %s %s\n", title, " CHANNEL INFO ", title);
len += scnprintf(fileinfo + len, DEBUGFS_SIZE - len,
"%-7s|%-10s|%-14s|%-9s|%-13s\n",
"subsys", "sesscount", "issubsystemup",
"ssrcount", "session_used");
len += scnprintf(fileinfo + len, DEBUGFS_SIZE - len,
"-%s%s%s%s-\n", single_line, single_line,
single_line, single_line);
for (i = 0; i < NUM_CHANNELS; i++) {
sess_used = 0;
chan = &gcinfo[i];
len += scnprintf(fileinfo + len,
DEBUGFS_SIZE - len, "%-7s", chan->subsys);
len += scnprintf(fileinfo + len,
DEBUGFS_SIZE - len, "|%-10u",
chan->sesscount);
len += scnprintf(fileinfo + len,
DEBUGFS_SIZE - len, "|%-14d",
chan->issubsystemup);
len += scnprintf(fileinfo + len,
DEBUGFS_SIZE - len, "|%-9u",
chan->ssrcount);
for (j = 0; j < chan->sesscount; j++)
sess_used += chan->session[j].used;
len += scnprintf(fileinfo + len,
DEBUGFS_SIZE - len, "|%-13d\n", sess_used);
}
len += scnprintf(fileinfo + len, DEBUGFS_SIZE - len,
"\n%s%s%s\n", "=============",
" CMA HEAP ", "==============");
len += scnprintf(fileinfo + len,
DEBUGFS_SIZE - len, "%-20s|%-20s\n", "addr", "size");
len += scnprintf(fileinfo + len,
DEBUGFS_SIZE - len, "--%s%s---\n",
single_line, single_line);
len += scnprintf(fileinfo + len, DEBUGFS_SIZE - len,
"\n==========%s %s %s===========\n",
title, " GMAPS ", title);
len += scnprintf(fileinfo + len, DEBUGFS_SIZE - len,
"%-20s|%-20s|%-20s|%-20s\n",
"fd", "phys", "size", "va");
len += scnprintf(fileinfo + len, DEBUGFS_SIZE - len,
"%s%s%s%s%s\n", single_line, single_line,
single_line, single_line, single_line);
spin_lock_irqsave(&me->hlock, irq_flags);
hlist_for_each_entry_safe(gmaps, n, &me->maps, hn) {
len += scnprintf(fileinfo + len, DEBUGFS_SIZE - len,
"%-20d|0x%-18llX|0x%-18X|0x%-20lX\n\n",
gmaps->fd, gmaps->phys,
(uint32_t)gmaps->size,
gmaps->va);
}
spin_unlock_irqrestore(&me->hlock, irq_flags);
len += scnprintf(fileinfo + len, DEBUGFS_SIZE - len,
"%-20s|%-20s|%-20s|%-20s\n",
"len", "refs", "raddr", "flags");
len += scnprintf(fileinfo + len, DEBUGFS_SIZE - len,
"%s%s%s%s%s\n", single_line, single_line,
single_line, single_line, single_line);
spin_lock_irqsave(&me->hlock, irq_flags);
hlist_for_each_entry_safe(gmaps, n, &me->maps, hn) {
len += scnprintf(fileinfo + len, DEBUGFS_SIZE - len,
"0x%-18X|%-20d|%-20lu|%-20u\n",
(uint32_t)gmaps->len, gmaps->refs,
gmaps->raddr, gmaps->flags);
}
spin_unlock_irqrestore(&me->hlock, irq_flags);
} else {
len += scnprintf(fileinfo + len, DEBUGFS_SIZE - len,
"\n%s %13s %d\n", "cid", ":", fl->cid);
len += scnprintf(fileinfo + len, DEBUGFS_SIZE - len,
"%s %12s %d\n", "tgid", ":", fl->tgid);
len += scnprintf(fileinfo + len, DEBUGFS_SIZE - len,
"%s %7s %d\n", "sessionid", ":", fl->sessionid);
len += scnprintf(fileinfo + len, DEBUGFS_SIZE - len,
"%s %8s %u\n", "ssrcount", ":", fl->ssrcount);
len += scnprintf(fileinfo + len, DEBUGFS_SIZE - len,
"%s %14s %d\n", "pd", ":", fl->pd);
len += scnprintf(fileinfo + len, DEBUGFS_SIZE - len,
"%s %9s %s\n", "servloc_name", ":", fl->servloc_name);
len += scnprintf(fileinfo + len, DEBUGFS_SIZE - len,
"%s %6s %d\n", "file_close", ":", fl->file_close);
len += scnprintf(fileinfo + len, DEBUGFS_SIZE - len,
"%s %9s %d\n", "profile", ":", fl->profile);
if (fl->sctx) {
len += scnprintf(fileinfo + len, DEBUGFS_SIZE - len,
"%s %3s %d\n", "smmu.coherent", ":",
fl->sctx->smmu.coherent);
len += scnprintf(fileinfo + len, DEBUGFS_SIZE - len,
"%s %4s %d\n", "smmu.enabled", ":",
fl->sctx->smmu.enabled);
len += scnprintf(fileinfo + len, DEBUGFS_SIZE - len,
"%s %9s %d\n", "smmu.cb", ":", fl->sctx->smmu.cb);
len += scnprintf(fileinfo + len, DEBUGFS_SIZE - len,
"%s %5s %d\n", "smmu.secure", ":",
fl->sctx->smmu.secure);
len += scnprintf(fileinfo + len, DEBUGFS_SIZE - len,
"%s %5s %d\n", "smmu.faults", ":",
fl->sctx->smmu.faults);
}
len += scnprintf(fileinfo + len, DEBUGFS_SIZE - len,
"\n=======%s %s %s======\n", title,
" LIST OF MAPS ", title);
len += scnprintf(fileinfo + len, DEBUGFS_SIZE - len,
"%-20s|%-20s|%-20s\n", "va", "phys", "size");
len += scnprintf(fileinfo + len, DEBUGFS_SIZE - len,
"%s%s%s%s%s\n",
single_line, single_line, single_line,
single_line, single_line);
mutex_lock(&fl->map_mutex);
hlist_for_each_entry_safe(map, n, &fl->maps, hn) {
len += scnprintf(fileinfo + len, DEBUGFS_SIZE - len,
"0x%-20lX|0x%-20llX|0x%-20zu\n\n",
map->va, map->phys,
map->size);
}
mutex_unlock(&fl->map_mutex);
len += scnprintf(fileinfo + len, DEBUGFS_SIZE - len,
"%-20s|%-20s|%-20s|%-20s\n",
"len", "refs",
"raddr");
len += scnprintf(fileinfo + len, DEBUGFS_SIZE - len,
"%s%s%s%s%s\n",
single_line, single_line, single_line,
single_line, single_line);
mutex_lock(&fl->map_mutex);
hlist_for_each_entry_safe(map, n, &fl->maps, hn) {
len += scnprintf(fileinfo + len, DEBUGFS_SIZE - len,
"%-20zu|%-20d|0x%-20lX|%-20d\n\n",
map->len, map->refs, map->raddr);
}
mutex_unlock(&fl->map_mutex);
len += scnprintf(fileinfo + len, DEBUGFS_SIZE - len,
"%-20s|%-20s\n", "secure", "attr");
len += scnprintf(fileinfo + len, DEBUGFS_SIZE - len,
"%s%s%s%s%s\n",
single_line, single_line, single_line,
single_line, single_line);
mutex_lock(&fl->map_mutex);
hlist_for_each_entry_safe(map, n, &fl->maps, hn) {
len += scnprintf(fileinfo + len, DEBUGFS_SIZE - len,
"%-20d|0x%-20lX\n\n",
map->secure, map->attr);
}
mutex_unlock(&fl->map_mutex);
len += scnprintf(fileinfo + len, DEBUGFS_SIZE - len,
"\n======%s %s %s======\n", title,
" LIST OF BUFS ", title);
spin_lock(&fl->hlock);
len += scnprintf(fileinfo + len, DEBUGFS_SIZE - len,
"%-19s|%-19s|%-19s\n",
"virt", "phys", "size");
len += scnprintf(fileinfo + len, DEBUGFS_SIZE - len,
"%s%s%s%s%s\n", single_line, single_line,
single_line, single_line, single_line);
hlist_for_each_entry_safe(buf, n, &fl->cached_bufs, hn) {
len += scnprintf(fileinfo + len,
DEBUGFS_SIZE - len,
"0x%-17p|0x%-17llX|%-19zu\n",
buf->virt, (uint64_t)buf->phys, buf->size);
}
len += scnprintf(fileinfo + len, DEBUGFS_SIZE - len,
"\n======%s %s %s======\n", title,
" LIST OF REMOTE BUFS ", title);
len += scnprintf(fileinfo + len, DEBUGFS_SIZE - len,
"%-19s|%-19s|%-19s|%-19s\n",
"virt", "phys", "size", "flags");
len += scnprintf(fileinfo + len, DEBUGFS_SIZE - len,
"%s%s%s%s%s\n", single_line, single_line,
single_line, single_line, single_line);
hlist_for_each_entry_safe(buf, n, &fl->remote_bufs, hn_rem) {
len += scnprintf(fileinfo + len,
DEBUGFS_SIZE - len,
"0x%-17p|0x%-17llX|%-19zu|0x%-17llX\n",
buf->virt, (uint64_t)buf->phys, buf->size, buf->flags);
}
len += scnprintf(fileinfo + len, DEBUGFS_SIZE - len,
"\n%s %s %s\n", title,
" LIST OF PENDING SMQCONTEXTS ", title);
len += scnprintf(fileinfo + len, DEBUGFS_SIZE - len,
"%-20s|%-10s|%-10s|%-10s|%-20s\n",
"sc", "pid", "tgid", "used", "ctxid");
len += scnprintf(fileinfo + len, DEBUGFS_SIZE - len,
"%s%s%s%s%s\n", single_line, single_line,
single_line, single_line, single_line);
hlist_for_each_entry_safe(ictx, n, &fl->clst.pending, hn) {
len += scnprintf(fileinfo + len, DEBUGFS_SIZE - len,
"0x%-18X|%-10d|%-10d|%-10zu|0x%-20llX\n\n",
ictx->sc, ictx->pid, ictx->tgid,
ictx->used, ictx->ctxid);
}
len += scnprintf(fileinfo + len, DEBUGFS_SIZE - len,
"\n%s %s %s\n", title,
" LIST OF INTERRUPTED SMQCONTEXTS ", title);
len += scnprintf(fileinfo + len, DEBUGFS_SIZE - len,
"%-20s|%-10s|%-10s|%-10s|%-20s\n",
"sc", "pid", "tgid", "used", "ctxid");
len += scnprintf(fileinfo + len, DEBUGFS_SIZE - len,
"%s%s%s%s%s\n", single_line, single_line,
single_line, single_line, single_line);
hlist_for_each_entry_safe(ictx, n, &fl->clst.interrupted, hn) {
len += scnprintf(fileinfo + len, DEBUGFS_SIZE - len,
"%-20u|%-20d|%-20d|%-20zu|0x%-20llX\n\n",
ictx->sc, ictx->pid, ictx->tgid,
ictx->used, ictx->ctxid);
}
spin_unlock(&fl->hlock);
}
if (len > DEBUGFS_SIZE)
len = DEBUGFS_SIZE;
ret = simple_read_from_buffer(buffer, count, position, fileinfo, len);
kfree(fileinfo);
bail:
return ret;
}
static const struct file_operations debugfs_fops = {
.open = simple_open,
.read = fastrpc_debugfs_read,
};
static int fastrpc_channel_open(struct fastrpc_file *fl, uint32_t flags)
{
struct fastrpc_apps *me = &gfa;
int cid = -1, err = 0;
VERIFY(err, fl && fl->sctx && fl->cid >= 0 && fl->cid < NUM_CHANNELS);
if (err) {
ADSPRPC_ERR("kernel session not initialized yet for %s\n",
current->comm);
err = -EBADR;
return err;
}
cid = fl->cid;
err = fastrpc_wait_for_transport_interrupt(cid, flags);
if (err)
goto bail;
err = verify_transport_device(cid, fl->trusted_vm);
if (err)
goto bail;
mutex_lock(&me->channel[cid].smd_mutex);
if (me->channel[cid].ssrcount !=
me->channel[cid].prevssrcount) {
if (!me->channel[cid].issubsystemup) {
err = -ECONNREFUSED;
mutex_unlock(&me->channel[cid].smd_mutex);
goto bail;
}
}
fl->ssrcount = me->channel[cid].ssrcount;
if (cid == ADSP_DOMAIN_ID && me->channel[cid].ssrcount !=
me->channel[cid].prevssrcount) {
mutex_lock(&fl->map_mutex);
err = fastrpc_mmap_remove_ssr(fl, 1);
mutex_unlock(&fl->map_mutex);
if (err)
ADSPRPC_WARN(
"failed to unmap remote heap for %s (err %d)\n",
me->channel[cid].subsys, err);
me->channel[cid].prevssrcount =
me->channel[cid].ssrcount;
}
mutex_unlock(&me->channel[cid].smd_mutex);
bail:
return err;
}
static inline void fastrpc_register_wakeup_source(struct device *dev,
const char *client_name, struct wakeup_source **device_wake_source)
{
struct wakeup_source *wake_source = NULL;
wake_source = wakeup_source_register(dev, client_name);
if (IS_ERR_OR_NULL(wake_source)) {
ADSPRPC_ERR(
"wakeup_source_register failed for dev %s, client %s with err %ld\n",
dev_name(dev), client_name, PTR_ERR(wake_source));
return;
}
*device_wake_source = wake_source;
}
static int fastrpc_device_open(struct inode *inode, struct file *filp)
{
int err = 0;
struct fastrpc_file *fl = NULL;
struct fastrpc_apps *me = &gfa;
unsigned long irq_flags = 0;
/*
* Indicates the device node opened
* MINOR_NUM_DEV or MINOR_NUM_SECURE_DEV
*/
int dev_minor = MINOR(inode->i_rdev);
VERIFY(err, ((dev_minor == MINOR_NUM_DEV) ||
(dev_minor == MINOR_NUM_SECURE_DEV)));
if (err) {
ADSPRPC_ERR("Invalid dev minor num %d\n",
dev_minor);
return err;
}
VERIFY(err, NULL != (fl = kzalloc(sizeof(*fl), GFP_KERNEL)));
if (err) {
err = -ENOMEM;
return err;
}
context_list_ctor(&fl->clst);
spin_lock_init(&fl->hlock);
spin_lock_init(&fl->aqlock);
spin_lock_init(&fl->proc_state_notif.nqlock);
INIT_HLIST_HEAD(&fl->maps);
INIT_HLIST_HEAD(&fl->cached_bufs);
fl->num_cached_buf = 0;
INIT_HLIST_HEAD(&fl->remote_bufs);
init_waitqueue_head(&fl->async_wait_queue);
init_waitqueue_head(&fl->proc_state_notif.notif_wait_queue);
INIT_HLIST_NODE(&fl->hn);
fl->sessionid = 0;
fl->tgid_open = current->tgid;
fl->apps = me;
fl->mode = FASTRPC_MODE_SERIAL;
fl->cid = -1;
fl->dev_minor = dev_minor;
fl->init_mem = NULL;
fl->qos_request = 0;
fl->dsp_proc_init = 0;
fl->is_ramdump_pend = false;
fl->in_process_create = false;
fl->is_unsigned_pd = false;
fl->is_compat = false;
init_completion(&fl->work);
fl->file_close = FASTRPC_PROCESS_DEFAULT_STATE;
filp->private_data = fl;
mutex_init(&fl->internal_map_mutex);
mutex_init(&fl->map_mutex);
spin_lock_irqsave(&me->hlock, irq_flags);
hlist_add_head(&fl->hn, &me->drivers);
spin_unlock_irqrestore(&me->hlock, irq_flags);
fl->dev_pm_qos_req = kcalloc(me->silvercores.corecount,
sizeof(struct dev_pm_qos_request),
GFP_KERNEL);
spin_lock_init(&fl->dspsignals_lock);
mutex_init(&fl->signal_create_mutex);
return 0;
}
static int fastrpc_get_process_gids(struct gid_list *gidlist)
{
struct group_info *group_info = get_current_groups();
int i = 0, err = 0, num_gids = group_info->ngroups + 1;
unsigned int *gids = NULL;
gids = kcalloc(num_gids, sizeof(unsigned int), GFP_KERNEL);
if (!gids) {
err = -ENOMEM;
goto bail;
}
/* Get the real GID */
gids[0] = __kgid_val(current_gid());
/* Get the supplemental GIDs */
for (i = 1; i < num_gids; i++)
gids[i] = __kgid_val(group_info->gid[i - 1]);
sort(gids, num_gids, sizeof(*gids), uint_cmp_func, NULL);
gidlist->gids = gids;
gidlist->gidcount = num_gids;
bail:
if (err)
kfree(gids);
return err;
}
static int fastrpc_set_process_info(struct fastrpc_file *fl, uint32_t cid)
{
int err = 0, buf_size = 0;
char strpid[PID_SIZE];
char cur_comm[TASK_COMM_LEN];
memcpy(cur_comm, current->comm, TASK_COMM_LEN);
cur_comm[TASK_COMM_LEN-1] = '\0';
fl->tgid = current->tgid;
/*
* Third-party apps don't have permission to open the fastrpc device, so
* it is opened on their behalf by DSP HAL. This is detected by
* comparing current PID with the one stored during device open.
*/
if (current->tgid != fl->tgid_open)
fl->untrusted_process = true;
snprintf(strpid, PID_SIZE, "%d", current->pid);
if (debugfs_root) {
VERIFY(err, VALID_FASTRPC_CID(cid));
if (err) {
err = -ECHRNG;
goto bail;
}
buf_size = strlen(cur_comm) + strlen("_") + strlen(strpid)
+ strlen("_") + strlen(__TOSTR__(NUM_CHANNELS)) + 1;
spin_lock(&fl->hlock);
if (fl->debug_buf_alloced_attempted) {
spin_unlock(&fl->hlock);
return err;
}
fl->debug_buf_alloced_attempted = 1;
spin_unlock(&fl->hlock);
fl->debug_buf = kzalloc(buf_size, GFP_KERNEL);
if (!fl->debug_buf) {
err = -ENOMEM;
return err;
}
snprintf(fl->debug_buf, buf_size, "%.10s%s%d%s%d",
cur_comm, "_", current->pid, "_", cid);
fl->debugfs_file = debugfs_create_file(fl->debug_buf, 0644,
debugfs_root, fl, &debugfs_fops);
if (IS_ERR_OR_NULL(fl->debugfs_file)) {
pr_warn("Error: %s: %s: failed to create debugfs file %s\n",
cur_comm, __func__, fl->debug_buf);
fl->debugfs_file = NULL;
}
kfree(fl->debug_buf);
fl->debug_buf = NULL;
}
bail:
return err;
}
int fastrpc_get_info(struct fastrpc_file *fl, uint32_t *info)
{
int err = 0;
uint32_t cid = *info;
struct fastrpc_apps *me = &gfa;
VERIFY(err, fl != NULL);
if (err) {
err = -EBADF;
goto bail;
}
fastrpc_get_process_gids(&fl->gidlist);
err = fastrpc_set_process_info(fl, cid);
if (err)
goto bail;
if (fl->cid == -1) {
struct fastrpc_channel_ctx *chan = NULL;
VERIFY(err, cid < NUM_CHANNELS);
if (err) {
err = -ECHRNG;
goto bail;
}
chan = &me->channel[cid];
/* Check to see if the device node is non-secure */
if (fl->dev_minor == MINOR_NUM_DEV) {
/*
* If an app is trying to offload to a secure remote
* channel by opening the non-secure device node, allow
* the access if the subsystem supports unsigned
* offload. Untrusted apps will be restricted from
* offloading to signed PD using DSP HAL.
*/
if (chan->secure == SECURE_CHANNEL
&& !chan->unsigned_support) {
ADSPRPC_ERR(
"cannot use domain %d with non-secure device\n",
cid);
err = -EACCES;
goto bail;
}
}
fl->cid = cid;
fl->ssrcount = fl->apps->channel[cid].ssrcount;
mutex_lock(&fl->apps->channel[cid].smd_mutex);
err = fastrpc_session_alloc_locked(&fl->apps->channel[cid],
0, &fl->sctx);
mutex_unlock(&fl->apps->channel[cid].smd_mutex);
if (err == -EUSERS) {
ADSPRPC_WARN(
"max concurrent sessions limit (%d) already reached on %s err %d\n",
chan->sesscount, chan->subsys, err);
}
if (err)
goto bail;
}
VERIFY(err, fl->sctx != NULL);
if (err) {
err = -EBADR;
goto bail;
}
*info = (fl->sctx->smmu.enabled ? 1 : 0);
bail:
return err;
}
static int fastrpc_manage_poll_mode(struct fastrpc_file *fl, uint32_t enable, uint32_t timeout)
{
int err = 0;
const unsigned int MAX_POLL_TIMEOUT_US = 10000;
if ((fl->cid != CDSP_DOMAIN_ID) || (fl->proc_flags != FASTRPC_INIT_CREATE)) {
err = -EPERM;
ADSPRPC_ERR("flags %d, cid %d, poll mode allowed only for dynamic CDSP process\n",
fl->proc_flags, fl->cid);
goto bail;
}
if (timeout > MAX_POLL_TIMEOUT_US) {
err = -EBADMSG;
ADSPRPC_ERR("poll timeout %u is greater than max allowed value %u\n",
timeout, MAX_POLL_TIMEOUT_US);
goto bail;
}
spin_lock(&fl->hlock);
if (enable) {
fl->poll_mode = true;
fl->poll_timeout = timeout;
} else {
fl->poll_mode = false;
fl->poll_timeout = 0;
}
spin_unlock(&fl->hlock);
ADSPRPC_INFO("updated poll mode to %d, timeout %u\n", enable, timeout);
bail:
return err;
}
int fastrpc_internal_control(struct fastrpc_file *fl,
struct fastrpc_ioctl_control *cp)
{
int err = 0;
unsigned int latency;
struct fastrpc_apps *me = &gfa;
u32 silver_core_count = me->silvercores.corecount, ii = 0, cpu;
VERIFY(err, !IS_ERR_OR_NULL(fl) && !IS_ERR_OR_NULL(fl->apps));
if (err) {
err = -EBADF;
goto bail;
}
VERIFY(err, !IS_ERR_OR_NULL(cp));
if (err) {
err = -EINVAL;
goto bail;
}
switch (cp->req) {
case FASTRPC_CONTROL_LATENCY:
latency = cp->lp.enable == FASTRPC_LATENCY_CTRL_ENB ?
fl->apps->latency : PM_QOS_RESUME_LATENCY_DEFAULT_VALUE;
VERIFY(err, latency != 0);
if (err) {
err = -EINVAL;
goto bail;
}
VERIFY(err, me->silvercores.coreno && fl->dev_pm_qos_req);
if (err) {
err = -EINVAL;
goto bail;
}
for (ii = 0; ii < silver_core_count; ii++) {
cpu = me->silvercores.coreno[ii];
if (!fl->qos_request) {
err = dev_pm_qos_add_request(
get_cpu_device(cpu),
&fl->dev_pm_qos_req[ii],
DEV_PM_QOS_RESUME_LATENCY,
latency);
} else {
err = dev_pm_qos_update_request(
&fl->dev_pm_qos_req[ii],
latency);
}
/* PM QoS request APIs return 0 or 1 on success */
if (err < 0) {
ADSPRPC_WARN("QoS with lat %u failed for CPU %d, err %d, req %d\n",
latency, cpu, err, fl->qos_request);
break;
}
}
if (err >= 0) {
fl->qos_request = 1;
err = 0;
}
/* Ensure CPU feature map updated to DSP for early WakeUp */
fastrpc_send_cpuinfo_to_dsp(fl);
break;
case FASTRPC_CONTROL_KALLOC:
cp->kalloc.kalloc_support = 1;
break;
case FASTRPC_CONTROL_WAKELOCK:
if (fl->dev_minor != MINOR_NUM_SECURE_DEV) {
ADSPRPC_ERR(
"PM voting not allowed for non-secure device node %d\n",
fl->dev_minor);
err = -EPERM;
goto bail;
}
fl->wake_enable = cp->wp.enable;
break;
case FASTRPC_CONTROL_PM:
if (!fl->wake_enable) {
/* Kernel PM voting not requested by this application */
err = -EACCES;
goto bail;
}
if (cp->pm.timeout > MAX_PM_TIMEOUT_MS)
fl->ws_timeout = MAX_PM_TIMEOUT_MS;
else
fl->ws_timeout = cp->pm.timeout;
VERIFY(err, VALID_FASTRPC_CID(fl->cid));
if (err) {
err = -ECHRNG;
goto bail;
}
fastrpc_pm_awake(fl, gcinfo[fl->cid].secure);
break;
case FASTRPC_CONTROL_DSPPROCESS_CLEAN:
(void)fastrpc_release_current_dsp_process(fl);
break;
case FASTRPC_CONTROL_RPC_POLL:
err = fastrpc_manage_poll_mode(fl, cp->lp.enable, cp->lp.latency);
if (err)
goto bail;
break;
default:
err = -EBADRQC;
break;
}
bail:
return err;
}
static int fastrpc_check_pd_status(struct fastrpc_file *fl, char *sloc_name)
{
int err = 0, session = -1, cid = -1;
struct fastrpc_apps *me = &gfa;
if (fl->servloc_name && sloc_name
&& !strcmp(fl->servloc_name, sloc_name)) {
err = fastrpc_get_spd_session(sloc_name, &session, &cid);
if (err || cid != fl->cid)
goto bail;
if (!strcmp(fl->servloc_name,
AUDIO_PDR_SERVICE_LOCATION_CLIENT_NAME) || !strcmp(fl->servloc_name,
SENSORS_PDR_ADSP_SERVICE_LOCATION_CLIENT_NAME) ||
!strcmp(fl->servloc_name,
SENSORS_PDR_SLPI_SERVICE_LOCATION_CLIENT_NAME)) {
err = wait_event_interruptible(
me->channel[cid].spd[session].wait_for_pdup,
atomic_read(&me->channel[cid].spd[session].ispdup));
goto bail;
}
}
bail:
return err;
}
int fastrpc_setmode(unsigned long ioctl_param,
struct fastrpc_file *fl)
{
int err = 0;
switch ((uint32_t)ioctl_param) {
case FASTRPC_MODE_PARALLEL:
case FASTRPC_MODE_SERIAL:
fl->mode = (uint32_t)ioctl_param;
break;
case FASTRPC_MODE_PROFILE:
fl->profile = (uint32_t)ioctl_param;
break;
case FASTRPC_MODE_SESSION:
if (fl->untrusted_process) {
err = -EPERM;
ADSPRPC_ERR(
"multiple sessions not allowed for untrusted apps\n");
goto bail;
}
fl->sessionid = 1;
fl->tgid |= SESSION_ID_MASK;
break;
default:
err = -ENOTTY;
break;
}
bail:
return err;
}
int fastrpc_control(struct fastrpc_ioctl_control *cp,
void *param, struct fastrpc_file *fl)
{
int err = 0;
K_COPY_FROM_USER(err, 0, cp, param,
sizeof(*cp));
if (err) {
err = -EFAULT;
goto bail;
}
VERIFY(err, 0 == (err = fastrpc_internal_control(fl, cp)));
if (err)
goto bail;
if (cp->req == FASTRPC_CONTROL_KALLOC) {
K_COPY_TO_USER(err, 0, param, cp, sizeof(*cp));
if (err) {
err = -EFAULT;
goto bail;
}
}
bail:
return err;
}
static int fastrpc_get_dsp_info(
struct fastrpc_ioctl_capability *cap,
void *param, struct fastrpc_file *fl)
{
int err = 0;
K_COPY_FROM_USER(err, 0, cap, param,
sizeof(struct fastrpc_ioctl_capability));
VERIFY(err, cap->domain < NUM_CHANNELS);
if (err) {
err = -ECHRNG;
goto bail;
}
cap->capability = 0;
err = fastrpc_get_info_from_kernel(cap, fl);
if (err)
goto bail;
K_COPY_TO_USER(err, 0, &((struct fastrpc_ioctl_capability *)
param)->capability, &cap->capability, sizeof(cap->capability));
bail:
return err;
}
int fastrpc_dspsignal_signal(struct fastrpc_file *fl,
struct fastrpc_ioctl_dspsignal_signal *sig)
{
int err = 0, cid = -1;
struct fastrpc_channel_ctx *channel_ctx = NULL;
uint64_t msg = 0;
// We don't check if the signal has even been allocated since we don't
// track outgoing signals in the driver. The userspace library does a
// basic sanity check and any security validation needs to be done by
// the recipient.
DSPSIGNAL_VERBOSE("Send signal PID %u, signal %u\n",
(unsigned int)fl->tgid, (unsigned int)sig->signal_id);
VERIFY(err, sig->signal_id < DSPSIGNAL_NUM_SIGNALS);
if (err) {
ADSPRPC_ERR("Sending bad signal %u for PID %u",
sig->signal_id, (unsigned int)fl->tgid);
err = -EBADR;
goto bail;
}
cid = fl->cid;
VERIFY(err, VALID_FASTRPC_CID(cid) && fl->sctx != NULL);
if (err) {
err = -EBADR;
goto bail;
}
channel_ctx = &fl->apps->channel[cid];
mutex_lock(&channel_ctx->smd_mutex);
if (fl->ssrcount != channel_ctx->ssrcount) {
err = -ECONNRESET;
mutex_unlock(&channel_ctx->smd_mutex);
goto bail;
}
msg = (((uint64_t)fl->tgid) << 32) | ((uint64_t)sig->signal_id);
err = fastrpc_transport_send(cid, (void *)&msg, sizeof(msg), fl->trusted_vm);
mutex_unlock(&channel_ctx->smd_mutex);
bail:
return err;
}
int fastrpc_dspsignal_wait(struct fastrpc_file *fl,
struct fastrpc_ioctl_dspsignal_wait *wait)
{
int err = 0, cid = -1;
unsigned long timeout = usecs_to_jiffies(wait->timeout_usec);
uint32_t signal_id = wait->signal_id;
struct fastrpc_dspsignal *s = NULL;
long ret = 0;
unsigned long irq_flags = 0;
DSPSIGNAL_VERBOSE("Wait for signal %u\n", signal_id);
VERIFY(err, signal_id < DSPSIGNAL_NUM_SIGNALS);
if (err) {
ADSPRPC_ERR("Waiting on bad signal %u", signal_id);
err = -EINVAL;
goto bail;
}
cid = fl->cid;
VERIFY(err, VALID_FASTRPC_CID(cid) && fl->sctx != NULL);
if (err) {
err = -EBADR;
goto bail;
}
spin_lock_irqsave(&fl->dspsignals_lock, irq_flags);
if (fl->signal_groups[signal_id / DSPSIGNAL_GROUP_SIZE] != NULL) {
struct fastrpc_dspsignal *group =
fl->signal_groups[signal_id / DSPSIGNAL_GROUP_SIZE];
s = &group[signal_id % DSPSIGNAL_GROUP_SIZE];
}
if ((s == NULL) || (s->state == DSPSIGNAL_STATE_UNUSED)) {
spin_unlock_irqrestore(&fl->dspsignals_lock, irq_flags);
ADSPRPC_ERR("Unknown signal id %u\n", signal_id);
err = -ENOENT;
goto bail;
}
if (s->state != DSPSIGNAL_STATE_PENDING) {
if ((s->state == DSPSIGNAL_STATE_CANCELED) || (s->state == DSPSIGNAL_STATE_UNUSED))
err = -EINTR;
spin_unlock_irqrestore(&fl->dspsignals_lock, irq_flags);
DSPSIGNAL_VERBOSE("Signal %u in state %u, complete wait immediately",
signal_id, s->state);
goto bail;
}
spin_unlock_irqrestore(&fl->dspsignals_lock, irq_flags);
if (timeout != 0xffffffff)
ret = wait_for_completion_interruptible_timeout(&s->comp, timeout);
else
ret = wait_for_completion_interruptible(&s->comp);
if (ret == 0) {
DSPSIGNAL_VERBOSE("Wait for signal %u timed out\n", signal_id);
err = -ETIMEDOUT;
goto bail;
} else if (ret < 0) {
ADSPRPC_ERR("Wait for signal %u failed %d\n", signal_id, (int)ret);
err = ret;
goto bail;
}
spin_lock_irqsave(&fl->dspsignals_lock, irq_flags);
if (s->state == DSPSIGNAL_STATE_SIGNALED) {
s->state = DSPSIGNAL_STATE_PENDING;
DSPSIGNAL_VERBOSE("Signal %u completed\n", signal_id);
} else if ((s->state == DSPSIGNAL_STATE_CANCELED) || (s->state == DSPSIGNAL_STATE_UNUSED)) {
DSPSIGNAL_VERBOSE("Signal %u cancelled or destroyed\n", signal_id);
err = -EINTR;
}
spin_unlock_irqrestore(&fl->dspsignals_lock, irq_flags);
bail:
return err;
}
int fastrpc_dspsignal_create(struct fastrpc_file *fl,
struct fastrpc_ioctl_dspsignal_create *create)
{
int err = 0, cid = -1;
uint32_t signal_id = create->signal_id;
struct fastrpc_dspsignal *group, *sig;
unsigned long irq_flags = 0;
VERIFY(err, signal_id < DSPSIGNAL_NUM_SIGNALS);
if (err) {
err = -EINVAL;
goto bail;
}
cid = fl->cid;
VERIFY(err, VALID_FASTRPC_CID(cid) && fl->sctx != NULL);
if (err) {
err = -EBADR;
goto bail;
}
// Use a separate mutex for creating signals. This avoids holding on
// to a spinlock if we need to allocate a whole group of signals. The
// mutex ensures nobody else will allocate the same group.
mutex_lock(&fl->signal_create_mutex);
spin_lock_irqsave(&fl->dspsignals_lock, irq_flags);
group = fl->signal_groups[signal_id / DSPSIGNAL_GROUP_SIZE];
if (group == NULL) {
int i;
// Release the spinlock while we allocate a new group but take
// it back before taking the group into use. No other code
// allocates groups so the mutex is sufficient.
spin_unlock_irqrestore(&fl->dspsignals_lock, irq_flags);
VERIFY(err, (group = kzalloc(DSPSIGNAL_GROUP_SIZE * sizeof(*group),
GFP_KERNEL)) != NULL);
if (err) {
ADSPRPC_ERR("Unable to allocate signal group\n");
err = -ENOMEM;
mutex_unlock(&fl->signal_create_mutex);
goto bail;
}
for (i = 0; i < DSPSIGNAL_GROUP_SIZE; i++) {
sig = &group[i];
init_completion(&sig->comp);
sig->state = DSPSIGNAL_STATE_UNUSED;
}
spin_lock_irqsave(&fl->dspsignals_lock, irq_flags);
fl->signal_groups[signal_id / DSPSIGNAL_GROUP_SIZE] = group;
}
sig = &group[signal_id % DSPSIGNAL_GROUP_SIZE];
if (sig->state != DSPSIGNAL_STATE_UNUSED) {
err = -EBUSY;
spin_unlock_irqrestore(&fl->dspsignals_lock, irq_flags);
mutex_unlock(&fl->signal_create_mutex);
ADSPRPC_ERR("Attempting to create signal %u already in use (state %u)\n",
signal_id, sig->state);
goto bail;
}
sig->state = DSPSIGNAL_STATE_PENDING;
reinit_completion(&sig->comp);
spin_unlock_irqrestore(&fl->dspsignals_lock, irq_flags);
mutex_unlock(&fl->signal_create_mutex);
DSPSIGNAL_VERBOSE("Signal %u created\n", signal_id);
bail:
return err;
}
int fastrpc_dspsignal_destroy(struct fastrpc_file *fl,
struct fastrpc_ioctl_dspsignal_destroy *destroy)
{
int err = 0, cid = -1;
uint32_t signal_id = destroy->signal_id;
struct fastrpc_dspsignal *s = NULL;
unsigned long irq_flags = 0;
DSPSIGNAL_VERBOSE("Destroy signal %u\n", signal_id);
VERIFY(err, signal_id < DSPSIGNAL_NUM_SIGNALS);
if (err) {
err = -EINVAL;
goto bail;
}
cid = fl->cid;
VERIFY(err, VALID_FASTRPC_CID(cid) && fl->sctx != NULL);
if (err) {
err = -EBADR;
goto bail;
}
spin_lock_irqsave(&fl->dspsignals_lock, irq_flags);
if (fl->signal_groups[signal_id / DSPSIGNAL_GROUP_SIZE] != NULL) {
struct fastrpc_dspsignal *group =
fl->signal_groups[signal_id / DSPSIGNAL_GROUP_SIZE];
s = &group[signal_id % DSPSIGNAL_GROUP_SIZE];
}
if ((s == NULL) || (s->state == DSPSIGNAL_STATE_UNUSED)) {
spin_unlock_irqrestore(&fl->dspsignals_lock, irq_flags);
ADSPRPC_ERR("Attempting to destroy unused signal %u\n", signal_id);
err = -ENOENT;
goto bail;
}
s->state = DSPSIGNAL_STATE_UNUSED;
complete_all(&s->comp);
spin_unlock_irqrestore(&fl->dspsignals_lock, irq_flags);
DSPSIGNAL_VERBOSE("Signal %u destroyed\n", signal_id);
bail:
return err;
}
int fastrpc_dspsignal_cancel_wait(struct fastrpc_file *fl,
struct fastrpc_ioctl_dspsignal_cancel_wait *cancel)
{
int err = 0, cid = -1;
uint32_t signal_id = cancel->signal_id;
struct fastrpc_dspsignal *s = NULL;
unsigned long irq_flags = 0;
DSPSIGNAL_VERBOSE("Cancel wait for signal %u\n", signal_id);
VERIFY(err, signal_id < DSPSIGNAL_NUM_SIGNALS);
if (err) {
err = -EINVAL;
goto bail;
}
cid = fl->cid;
VERIFY(err, VALID_FASTRPC_CID(cid) && fl->sctx != NULL);
if (err) {
err = -EBADR;
goto bail;
}
spin_lock_irqsave(&fl->dspsignals_lock, irq_flags);
if (fl->signal_groups[signal_id / DSPSIGNAL_GROUP_SIZE] != NULL) {
struct fastrpc_dspsignal *group =
fl->signal_groups[signal_id / DSPSIGNAL_GROUP_SIZE];
s = &group[signal_id % DSPSIGNAL_GROUP_SIZE];
}
if ((s == NULL) || (s->state == DSPSIGNAL_STATE_UNUSED)) {
spin_unlock_irqrestore(&fl->dspsignals_lock, irq_flags);
ADSPRPC_ERR("Attempting to cancel unused signal %u\n", signal_id);
err = -ENOENT;
goto bail;
}
if (s->state != DSPSIGNAL_STATE_CANCELED) {
s->state = DSPSIGNAL_STATE_CANCELED;
complete_all(&s->comp);
}
spin_unlock_irqrestore(&fl->dspsignals_lock, irq_flags);
DSPSIGNAL_VERBOSE("Signal %u cancelled\n", signal_id);
bail:
return err;
}
static inline int fastrpc_mmap_device_ioctl(struct fastrpc_file *fl,
unsigned int ioctl_num, union fastrpc_ioctl_param *p,
void *param)
{
union {
struct fastrpc_ioctl_mmap mmap;
struct fastrpc_ioctl_munmap munmap;
} i;
int err = 0;
switch (ioctl_num) {
case FASTRPC_IOCTL_MEM_MAP:
K_COPY_FROM_USER(err, 0, &p->mem_map, param,
sizeof(p->mem_map));
if (err) {
err = -EFAULT;
goto bail;
}
VERIFY(err, 0 == (err = fastrpc_internal_mem_map(fl,
&p->mem_map)));
if (err)
goto bail;
K_COPY_TO_USER(err, 0, param, &p->mem_map, sizeof(p->mem_map));
if (err) {
err = -EFAULT;
goto bail;
}
break;
case FASTRPC_IOCTL_MEM_UNMAP:
K_COPY_FROM_USER(err, 0, &p->mem_unmap, param,
sizeof(p->mem_unmap));
if (err) {
err = -EFAULT;
goto bail;
}
VERIFY(err, 0 == (err = fastrpc_internal_mem_unmap(fl,
&p->mem_unmap)));
if (err)
goto bail;
K_COPY_TO_USER(err, 0, param, &p->mem_unmap,
sizeof(p->mem_unmap));
if (err) {
err = -EFAULT;
goto bail;
}
break;
case FASTRPC_IOCTL_MMAP:
K_COPY_FROM_USER(err, 0, &p->mmap, param,
sizeof(p->mmap));
if (err) {
err = -EFAULT;
goto bail;
}
VERIFY(err, 0 == (err = fastrpc_internal_mmap(fl, &p->mmap)));
if (err)
goto bail;
K_COPY_TO_USER(err, 0, param, &p->mmap, sizeof(p->mmap));
if (err) {
err = -EFAULT;
goto bail;
}
break;
case FASTRPC_IOCTL_MUNMAP:
K_COPY_FROM_USER(err, 0, &p->munmap, param,
sizeof(p->munmap));
if (err) {
err = -EFAULT;
goto bail;
}
VERIFY(err, 0 == (err = fastrpc_internal_munmap(fl,
&p->munmap)));
if (err)
goto bail;
break;
case FASTRPC_IOCTL_MMAP_64:
K_COPY_FROM_USER(err, 0, &p->mmap64, param,
sizeof(p->mmap64));
if (err) {
err = -EFAULT;
goto bail;
}
get_fastrpc_ioctl_mmap_64(&p->mmap64, &i.mmap);
VERIFY(err, 0 == (err = fastrpc_internal_mmap(fl, &i.mmap)));
if (err)
goto bail;
put_fastrpc_ioctl_mmap_64(&p->mmap64, &i.mmap);
K_COPY_TO_USER(err, 0, param, &p->mmap64, sizeof(p->mmap64));
if (err) {
err = -EFAULT;
goto bail;
}
break;
case FASTRPC_IOCTL_MUNMAP_64:
K_COPY_FROM_USER(err, 0, &p->munmap64, param,
sizeof(p->munmap64));
if (err) {
err = -EFAULT;
goto bail;
}
get_fastrpc_ioctl_munmap_64(&p->munmap64, &i.munmap);
VERIFY(err, 0 == (err = fastrpc_internal_munmap(fl,
&i.munmap)));
if (err)
goto bail;
break;
case FASTRPC_IOCTL_MUNMAP_FD:
K_COPY_FROM_USER(err, 0, &p->munmap_fd, param,
sizeof(p->munmap_fd));
if (err) {
err = -EFAULT;
goto bail;
}
VERIFY(err, 0 == (err = fastrpc_internal_munmap_fd(fl,
&p->munmap_fd)));
if (err)
goto bail;
break;
default:
err = -ENOTTY;
pr_info("bad ioctl: %d\n", ioctl_num);
break;
}
bail:
return err;
}
static long fastrpc_device_ioctl(struct file *file, unsigned int ioctl_num,
unsigned long ioctl_param)
{
union fastrpc_ioctl_param p;
void *param = (char *)ioctl_param;
struct fastrpc_file *fl = (struct fastrpc_file *)file->private_data;
int size = 0, err = 0;
uint32_t info;
p.inv.fds = NULL;
p.inv.attrs = NULL;
p.inv.crc = NULL;
p.inv.perf_kernel = NULL;
p.inv.perf_dsp = NULL;
p.inv.job = NULL;
if (fl->servloc_name) {
err = fastrpc_check_pd_status(fl,
AUDIO_PDR_SERVICE_LOCATION_CLIENT_NAME);
err |= fastrpc_check_pd_status(fl,
SENSORS_PDR_ADSP_SERVICE_LOCATION_CLIENT_NAME);
err |= fastrpc_check_pd_status(fl,
SENSORS_PDR_SLPI_SERVICE_LOCATION_CLIENT_NAME);
if (err)
goto bail;
}
spin_lock(&fl->hlock);
if (fl->file_close >= FASTRPC_PROCESS_EXIT_START) {
err = -ESHUTDOWN;
pr_warn("adsprpc: fastrpc_device_release is happening, So not sending any new requests to DSP\n");
spin_unlock(&fl->hlock);
goto bail;
}
spin_unlock(&fl->hlock);
switch (ioctl_num) {
case FASTRPC_IOCTL_INVOKE:
size = sizeof(struct fastrpc_ioctl_invoke);
fallthrough;
case FASTRPC_IOCTL_INVOKE_FD:
if (!size)
size = sizeof(struct fastrpc_ioctl_invoke_fd);
fallthrough;
case FASTRPC_IOCTL_INVOKE_ATTRS:
if (!size)
size = sizeof(struct fastrpc_ioctl_invoke_attrs);
fallthrough;
case FASTRPC_IOCTL_INVOKE_CRC:
if (!size)
size = sizeof(struct fastrpc_ioctl_invoke_crc);
fallthrough;
case FASTRPC_IOCTL_INVOKE_PERF:
if (!size)
size = sizeof(struct fastrpc_ioctl_invoke_perf);
trace_fastrpc_msg("invoke: begin");
K_COPY_FROM_USER(err, 0, &p.inv, param, size);
if (err) {
err = -EFAULT;
goto bail;
}
VERIFY(err, 0 == (err = fastrpc_internal_invoke(fl, fl->mode,
USER_MSG, &p.inv)));
trace_fastrpc_msg("invoke: end");
if (err)
goto bail;
break;
case FASTRPC_IOCTL_INVOKE2:
K_COPY_FROM_USER(err, 0, &p.inv2, param,
sizeof(struct fastrpc_ioctl_invoke2));
if (err) {
err = -EFAULT;
goto bail;
}
VERIFY(err, 0 == (err = fastrpc_internal_invoke2(fl, &p.inv2)));
if (err)
goto bail;
break;
case FASTRPC_IOCTL_SETMODE:
err = fastrpc_setmode(ioctl_param, fl);
break;
case FASTRPC_IOCTL_CONTROL:
err = fastrpc_control(&p.cp, param, fl);
break;
case FASTRPC_IOCTL_GETINFO:
K_COPY_FROM_USER(err, 0, &info, param, sizeof(info));
if (err) {
err = -EFAULT;
goto bail;
}
VERIFY(err, 0 == (err = fastrpc_get_info(fl, &info)));
if (err)
goto bail;
K_COPY_TO_USER(err, 0, param, &info, sizeof(info));
if (err) {
err = -EFAULT;
goto bail;
}
break;
case FASTRPC_IOCTL_INIT:
p.init.attrs = 0;
p.init.siglen = 0;
size = sizeof(struct fastrpc_ioctl_init);
fallthrough;
case FASTRPC_IOCTL_INIT_ATTRS:
if (!size)
size = sizeof(struct fastrpc_ioctl_init_attrs);
K_COPY_FROM_USER(err, 0, &p.init, param, size);
if (err) {
err = -EFAULT;
goto bail;
}
VERIFY(err, 0 == (err = fastrpc_init_process(fl, &p.init)));
if (err)
goto bail;
break;
case FASTRPC_IOCTL_GET_DSP_INFO:
err = fastrpc_get_dsp_info(&p.cap, param, fl);
break;
case FASTRPC_IOCTL_MEM_MAP:
fallthrough;
case FASTRPC_IOCTL_MEM_UNMAP:
fallthrough;
case FASTRPC_IOCTL_MMAP:
fallthrough;
case FASTRPC_IOCTL_MUNMAP:
fallthrough;
case FASTRPC_IOCTL_MMAP_64:
fallthrough;
case FASTRPC_IOCTL_MUNMAP_64:
fallthrough;
case FASTRPC_IOCTL_MUNMAP_FD:
err = fastrpc_mmap_device_ioctl(fl, ioctl_num, &p, param);
break;
case FASTRPC_IOCTL_DSPSIGNAL_SIGNAL:
K_COPY_FROM_USER(err, 0, &p.sig, param,
sizeof(struct fastrpc_ioctl_dspsignal_signal));
if (err) {
err = -EFAULT;
goto bail;
}
VERIFY(err, 0 == (err = fastrpc_dspsignal_signal(fl, &p.sig)));
if (err)
goto bail;
break;
case FASTRPC_IOCTL_DSPSIGNAL_WAIT:
K_COPY_FROM_USER(err, 0, &p.wait, param,
sizeof(struct fastrpc_ioctl_dspsignal_wait));
if (err) {
err = -EFAULT;
goto bail;
}
VERIFY(err, 0 == (err = fastrpc_dspsignal_wait(fl, &p.wait)));
if (err)
goto bail;
break;
case FASTRPC_IOCTL_DSPSIGNAL_CREATE:
K_COPY_FROM_USER(err, 0, &p.cre, param,
sizeof(struct fastrpc_ioctl_dspsignal_create));
if (err) {
err = -EFAULT;
goto bail;
}
VERIFY(err, 0 == (err = fastrpc_dspsignal_create(fl, &p.cre)));
if (err)
goto bail;
break;
case FASTRPC_IOCTL_DSPSIGNAL_DESTROY:
K_COPY_FROM_USER(err, 0, &p.des, param,
sizeof(struct fastrpc_ioctl_dspsignal_destroy));
if (err) {
err = -EFAULT;
goto bail;
}
VERIFY(err, 0 == (err = fastrpc_dspsignal_destroy(fl, &p.des)));
if (err)
goto bail;
break;
case FASTRPC_IOCTL_DSPSIGNAL_CANCEL_WAIT:
K_COPY_FROM_USER(err, 0, &p.canc, param,
sizeof(struct fastrpc_ioctl_dspsignal_cancel_wait));
if (err) {
err = -EFAULT;
goto bail;
}
VERIFY(err, 0 == (err = fastrpc_dspsignal_cancel_wait(fl, &p.canc)));
if (err)
goto bail;
break;
default:
err = -ENOTTY;
pr_info("bad ioctl: %d\n", ioctl_num);
break;
}
bail:
return err;
}
/*
* fastrpc_smq_ctx_detail : Store smq_invoke_ctx structure parameter.
* Input :
* structure smq_invoke_ctx
* void* mini_dump_buff
*/
static void fastrpc_smq_ctx_detail(struct smq_invoke_ctx *smq_ctx, int cid, void *mini_dump_buff)
{
int i = 0;
remote_arg64_t *rpra = NULL;
struct fastrpc_mmap *map = NULL;
if (!smq_ctx)
return;
if (smq_ctx->buf && smq_ctx->buf->virt)
rpra = smq_ctx->buf->virt;
for (i = 0; rpra &&
i < (REMOTE_SCALARS_INBUFS(smq_ctx->sc) + REMOTE_SCALARS_OUTBUFS(smq_ctx->sc));
++i) {
map = smq_ctx->maps[i];
if (map) {
scnprintf(mini_dump_buff + strlen(mini_dump_buff),
MINI_DUMP_DBG_SIZE - strlen(mini_dump_buff),
smq_invoke_ctx_params, fastrpc_mmap_params,
smq_ctx->pid, smq_ctx->tgid, smq_ctx->handle,
smq_ctx->sc, smq_ctx->fl, smq_ctx->fds,
smq_ctx->magic, map->fd, map->flags, map->buf,
map->phys, map->size, map->va,
map->raddr, map->len, map->refs,
map->secure);
} else {
scnprintf(mini_dump_buff + strlen(mini_dump_buff),
MINI_DUMP_DBG_SIZE - strlen(mini_dump_buff),
smq_invoke_ctx_params, smq_ctx->pid, smq_ctx->tgid,
smq_ctx->handle, smq_ctx->sc, smq_ctx->fl, smq_ctx->fds,
smq_ctx->magic);
}
break;
}
}
/*
* fastrpc_print_fastrpcbuf : Print fastrpc_buf structure parameter.
* Input :
* structure fastrpc_buf
* void* buffer
*/
static void fastrpc_print_fastrpcbuf(struct fastrpc_buf *buf, void *buffer)
{
if (!buf || !buffer)
return;
scnprintf(buffer + strlen(buffer),
MINI_DUMP_DBG_SIZE - strlen(buffer),
fastrpc_buf_params, buf->fl, buf->phys,
buf->virt, buf->size, buf->dma_attr, buf->raddr,
buf->flags, buf->type, buf->in_use);
}
/*
* fastrpc_print_debug_data : Print debug structure variable in CMA memory.
* Input cid: Channel id
*/
static void fastrpc_print_debug_data(int cid)
{
unsigned int i = 0, count = 0, gmsg_log_iter = 3, err = 0, len = 0;
unsigned int tx_index = 0, rx_index = 0;
unsigned long flags = 0;
char *gmsg_log_tx = NULL;
char *gmsg_log_rx = NULL;
void *mini_dump_buff = NULL;
struct fastrpc_apps *me = &gfa;
struct smq_invoke_rspv2 *rsp = NULL;
struct fastrpc_file *fl = NULL;
struct fastrpc_channel_ctx *chan = NULL;
struct hlist_node *n = NULL;
struct smq_invoke_ctx *ictx = NULL;
struct fastrpc_tx_msg *tx_msg = NULL;
struct fastrpc_buf *buf = NULL;
struct fastrpc_mmap *map = NULL;
unsigned long irq_flags = 0;
VERIFY(err, NULL != (gmsg_log_tx = kzalloc(MD_GMSG_BUFFER, GFP_KERNEL)));
if (err) {
err = -ENOMEM;
return;
}
VERIFY(err, NULL != (gmsg_log_rx = kzalloc(MD_GMSG_BUFFER, GFP_KERNEL)));
if (err) {
err = -ENOMEM;
return;
}
chan = &me->channel[cid];
if ((!chan) || (!chan->buf))
return;
mini_dump_buff = chan->buf->virt;
if (!mini_dump_buff)
return;
if (chan) {
tx_index = chan->gmsg_log.tx_index;
rx_index = chan->gmsg_log.rx_index;
}
spin_lock_irqsave(&me->hlock, irq_flags);
hlist_for_each_entry_safe(fl, n, &me->drivers, hn) {
if (fl->cid == cid) {
scnprintf(mini_dump_buff +
strlen(mini_dump_buff),
MINI_DUMP_DBG_SIZE -
strlen(mini_dump_buff),
"\nfastrpc_file : %p\n", fl);
scnprintf(mini_dump_buff +
strlen(mini_dump_buff),
MINI_DUMP_DBG_SIZE -
strlen(mini_dump_buff),
fastrpc_file_params, fl->tgid,
fl->cid, fl->ssrcount, fl->pd,
fl->profile, fl->mode,
fl->tgid_open, fl->num_cached_buf,
fl->num_pers_hdrs, fl->sessionid,
fl->servloc_name, fl->file_close,
fl->dsp_proc_init, fl->apps,
fl->qos_request, fl->dev_minor,
fl->debug_buf,
fl->debug_buf_alloced_attempted,
fl->wake_enable,
fl->ws_timeout,
fl->untrusted_process);
scnprintf(mini_dump_buff +
strlen(mini_dump_buff),
MINI_DUMP_DBG_SIZE -
strlen(mini_dump_buff),
"\nSession Maps\n");
hlist_for_each_entry_safe(map, n, &fl->maps, hn) {
scnprintf(mini_dump_buff +
strlen(mini_dump_buff),
MINI_DUMP_DBG_SIZE -
strlen(mini_dump_buff),
fastrpc_mmap_params,
map->fd,
map->flags, map->buf,
map->phys, map->size,
map->va, map->raddr,
map->len, map->refs,
map->secure);
}
scnprintf(mini_dump_buff + strlen(mini_dump_buff),
MINI_DUMP_DBG_SIZE - strlen(mini_dump_buff),
"\ncached_bufs\n");
hlist_for_each_entry_safe(buf, n, &fl->cached_bufs, hn) {
fastrpc_print_fastrpcbuf(buf, mini_dump_buff);
}
scnprintf(mini_dump_buff + strlen(mini_dump_buff),
MINI_DUMP_DBG_SIZE - strlen(mini_dump_buff),
"\ninit_mem: %p\n", fl->init_mem);
fastrpc_print_fastrpcbuf(fl->init_mem, mini_dump_buff);
scnprintf(mini_dump_buff + strlen(mini_dump_buff),
MINI_DUMP_DBG_SIZE - strlen(mini_dump_buff),
"\npers_hdr_buf: %p\n", fl->pers_hdr_buf);
fastrpc_print_fastrpcbuf(fl->pers_hdr_buf, mini_dump_buff);
snprintf(mini_dump_buff + strlen(mini_dump_buff),
MINI_DUMP_DBG_SIZE - strlen(mini_dump_buff),
"\nhdr_bufs: %p\n", fl->hdr_bufs);
fastrpc_print_fastrpcbuf(fl->hdr_bufs, mini_dump_buff);
if (fl->debugfs_file) {
scnprintf(mini_dump_buff + strlen(mini_dump_buff),
MINI_DUMP_DBG_SIZE - strlen(mini_dump_buff),
"\nfl->debugfs_file.d_iname : %s\n",
fl->debugfs_file->d_iname);
}
if (fl->sctx) {
scnprintf(mini_dump_buff + strlen(mini_dump_buff),
MINI_DUMP_DBG_SIZE - strlen(mini_dump_buff),
"\nfl->sctx->smmu.cb : %d\n",
fl->sctx->smmu.cb);
}
if (fl->secsctx) {
scnprintf(mini_dump_buff + strlen(mini_dump_buff),
MINI_DUMP_DBG_SIZE - strlen(mini_dump_buff),
"\nfl->secsctx->smmu.cb : %d\n",
fl->secsctx->smmu.cb);
}
spin_lock(&fl->hlock);
scnprintf(mini_dump_buff +
strlen(mini_dump_buff),
MINI_DUMP_DBG_SIZE -
strlen(mini_dump_buff),
"\nPending Ctx:\n");
hlist_for_each_entry_safe(ictx, n, &fl->clst.pending, hn) {
fastrpc_smq_ctx_detail(ictx,
cid, mini_dump_buff);
}
scnprintf(mini_dump_buff +
strlen(mini_dump_buff),
MINI_DUMP_DBG_SIZE -
strlen(mini_dump_buff),
"\nInterrupted Ctx:\n");
hlist_for_each_entry_safe(ictx, n,
&fl->clst.interrupted,
hn) {
fastrpc_smq_ctx_detail(ictx,
cid, mini_dump_buff);
}
spin_unlock(&fl->hlock);
}
}
spin_unlock_irqrestore(&me->hlock, irq_flags);
spin_lock_irqsave(&chan->gmsg_log.lock, flags);
if (rx_index) {
for (i = rx_index, count = 0, len = 0 ; i > 0 &&
count <= gmsg_log_iter; i--, count++) {
rsp = &chan->gmsg_log.rx_msgs[i].rsp;
len += scnprintf(gmsg_log_rx + len, MD_GMSG_BUFFER - len,
"ctx: 0x%x, retval: %d, flags: %d, early_wake_time: %d, version: %d\n",
rsp->ctx, rsp->retval, rsp->flags,
rsp->early_wake_time, rsp->version);
}
}
if (tx_index) {
for (i = tx_index, count = 0, len = 0;
i > 0 && count <= gmsg_log_iter;
i--, count++) {
tx_msg = &chan->gmsg_log.tx_msgs[i];
len += scnprintf(gmsg_log_tx + len, MD_GMSG_BUFFER - len,
"pid: %d, tid: %d, ctx: 0x%x, handle: 0x%x, sc: 0x%x, addr: 0x%x, size:%d\n",
tx_msg->msg.pid,
tx_msg->msg.tid,
tx_msg->msg.invoke.header.ctx,
tx_msg->msg.invoke.header.handle,
tx_msg->msg.invoke.header.sc,
tx_msg->msg.invoke.page.addr,
tx_msg->msg.invoke.page.size);
}
}
spin_unlock_irqrestore(&chan->gmsg_log.lock, flags);
scnprintf(mini_dump_buff + strlen(mini_dump_buff),
MINI_DUMP_DBG_SIZE - strlen(mini_dump_buff),
"gmsg_log_tx:\n%s\n", gmsg_log_tx);
scnprintf(mini_dump_buff + strlen(mini_dump_buff),
MINI_DUMP_DBG_SIZE - strlen(mini_dump_buff),
"gmsg_log_rx:\n %s\n", gmsg_log_rx);
if (chan && chan->buf)
chan->buf->size = strlen(mini_dump_buff);
kfree(gmsg_log_tx);
kfree(gmsg_log_rx);
}
static int fastrpc_restart_notifier_cb(struct notifier_block *nb,
unsigned long code,
void *data)
{
struct fastrpc_apps *me = &gfa;
struct fastrpc_channel_ctx *ctx;
int cid = -1;
ctx = container_of(nb, struct fastrpc_channel_ctx, nb);
cid = ctx - &me->channel[0];
switch (code) {
case QCOM_SSR_BEFORE_SHUTDOWN:
fastrpc_rproc_trace_events(gcinfo[cid].subsys,
"QCOM_SSR_BEFORE_SHUTDOWN", "fastrpc_restart_notifier-enter");
pr_info("adsprpc: %s: %s subsystem is restarting\n",
__func__, gcinfo[cid].subsys);
mutex_lock(&me->channel[cid].smd_mutex);
ctx->ssrcount++;
ctx->issubsystemup = 0;
mutex_unlock(&me->channel[cid].smd_mutex);
if (cid == RH_CID)
me->staticpd_flags = 0;
break;
case QCOM_SSR_AFTER_SHUTDOWN:
fastrpc_rproc_trace_events(gcinfo[cid].subsys,
"QCOM_SSR_AFTER_SHUTDOWN", "fastrpc_restart_notifier-enter");
pr_info("adsprpc: %s: received RAMDUMP notification for %s\n",
__func__, gcinfo[cid].subsys);
break;
case QCOM_SSR_BEFORE_POWERUP:
fastrpc_rproc_trace_events(gcinfo[cid].subsys,
"QCOM_SSR_BEFORE_POWERUP", "fastrpc_restart_notifier-enter");
/* Skip ram dump collection in first boot */
if (cid == CDSP_DOMAIN_ID && dump_enabled() &&
ctx->ssrcount) {
mutex_lock(&me->channel[cid].smd_mutex);
fastrpc_print_debug_data(cid);
mutex_unlock(&me->channel[cid].smd_mutex);
fastrpc_ramdump_collection(cid);
}
fastrpc_notify_drivers(me, cid);
break;
case QCOM_SSR_AFTER_POWERUP:
fastrpc_rproc_trace_events(gcinfo[cid].subsys,
"QCOM_SSR_AFTER_POWERUP", "fastrpc_restart_notifier-enter");
pr_info("adsprpc: %s: %s subsystem is up\n",
__func__, gcinfo[cid].subsys);
ctx->issubsystemup = 1;
break;
default:
break;
}
fastrpc_rproc_trace_events(dev_name(me->dev), "fastrpc_restart_notifier", "exit");
return NOTIFY_DONE;
}
static void fastrpc_pdr_cb(int state, char *service_path, void *priv)
{
struct fastrpc_apps *me = &gfa;
struct fastrpc_static_pd *spd;
int err = 0;
spd = priv;
VERIFY(err, spd);
if (err)
goto bail;
switch (state) {
case SERVREG_SERVICE_STATE_DOWN:
pr_info("adsprpc: %s: %s (%s) is down for PDR on %s\n",
__func__, spd->spdname,
spd->servloc_name,
gcinfo[spd->cid].subsys);
mutex_lock(&me->channel[spd->cid].smd_mutex);
spd->pdrcount++;
atomic_set(&spd->ispdup, 0);
mutex_unlock(&me->channel[spd->cid].smd_mutex);
if (!strcmp(spd->servloc_name,
AUDIO_PDR_SERVICE_LOCATION_CLIENT_NAME))
me->staticpd_flags = 0;
fastrpc_notify_pdr_drivers(me, spd->servloc_name);
break;
case SERVREG_SERVICE_STATE_UP:
pr_info("adsprpc: %s: %s (%s) is up for PDR on %s\n",
__func__, spd->spdname,
spd->servloc_name,
gcinfo[spd->cid].subsys);
atomic_set(&spd->ispdup, 1);
wake_up_interruptible(&spd->wait_for_pdup);
break;
default:
break;
}
bail:
if (err) {
pr_err("adsprpc: %s: failed for path %s, state %d, spd %pK\n",
__func__, service_path, state, spd);
}
}
static const struct file_operations fops = {
.open = fastrpc_device_open,
.release = fastrpc_device_release,
.unlocked_ioctl = fastrpc_device_ioctl,
/* Only DSP service 64-bit app will interface with fastrpc TVM driver.
* There is not need to support 32-bit fastrpc driver on TVM.
*/
#if IS_ENABLED(CONFIG_MSM_ADSPRPC_TRUSTED)
.compat_ioctl = NULL,
#else
.compat_ioctl = compat_fastrpc_device_ioctl,
#endif
};
static const struct of_device_id fastrpc_match_table[] = {
{ .compatible = "qcom,msm-fastrpc-adsp", },
{ .compatible = "qcom,msm-fastrpc-compute", },
{ .compatible = "qcom,msm-fastrpc-compute-cb", },
{ .compatible = "qcom,msm-adsprpc-mem-region", },
{}
};
static int fastrpc_cb_probe(struct device *dev)
{
struct fastrpc_channel_ctx *chan;
struct fastrpc_session_ctx *sess;
struct of_phandle_args iommuspec;
struct fastrpc_apps *me = &gfa;
const char *name;
int err = 0, cid = -1, i = 0;
u32 sharedcb_count = 0, j = 0;
uint32_t dma_addr_pool[2] = {0, 0};
VERIFY(err, NULL != (name = of_get_property(dev->of_node,
"label", NULL)));
if (err) {
err = -EINVAL;
goto bail;
}
for (i = 0; i < NUM_CHANNELS; i++) {
if (!gcinfo[i].name)
continue;
if (!strcmp(name, gcinfo[i].name))
break;
}
VERIFY(err, i < NUM_CHANNELS);
if (err) {
err = -ECHRNG;
goto bail;
}
cid = i;
chan = &gcinfo[i];
VERIFY(err, chan->sesscount < NUM_SESSIONS);
if (err) {
err = -EINVAL;
goto bail;
}
err = of_parse_phandle_with_args(dev->of_node, "iommus",
"#iommu-cells", 0, &iommuspec);
if (err) {
pr_err("Error: adsprpc: %s: parsing iommu arguments failed for %s with err %d\n",
__func__, dev_name(dev), err);
goto bail;
}
sess = &chan->session[chan->sesscount];
sess->used = 0;
sess->smmu.coherent = of_property_read_bool(dev->of_node,
"dma-coherent");
sess->smmu.secure = of_property_read_bool(dev->of_node,
"qcom,secure-context-bank");
sess->smmu.cb = iommuspec.args[0] & 0xf;
sess->smmu.dev = dev;
sess->smmu.dev_name = dev_name(dev);
sess->smmu.enabled = 1;
if (!sess->smmu.dev->dma_parms)
sess->smmu.dev->dma_parms = devm_kzalloc(sess->smmu.dev,
sizeof(*sess->smmu.dev->dma_parms), GFP_KERNEL);
dma_set_max_seg_size(sess->smmu.dev, DMA_BIT_MASK(32));
dma_set_seg_boundary(sess->smmu.dev, (unsigned long)DMA_BIT_MASK(64));
of_property_read_u32_array(dev->of_node, "qcom,iommu-dma-addr-pool",
dma_addr_pool, 2);
me->max_size_limit = (dma_addr_pool[1] == 0 ? 0x78000000 :
dma_addr_pool[1]);
if (of_get_property(dev->of_node, "shared-cb", NULL) != NULL) {
err = of_property_read_u32(dev->of_node, "shared-cb",
&sharedcb_count);
if (err)
goto bail;
if (sharedcb_count > 0) {
struct fastrpc_session_ctx *dup_sess;
for (j = 1; j < sharedcb_count &&
chan->sesscount < NUM_SESSIONS; j++) {
chan->sesscount++;
dup_sess = &chan->session[chan->sesscount];
memcpy(dup_sess, sess,
sizeof(struct fastrpc_session_ctx));
}
}
}
chan->sesscount++;
if (debugfs_root && !debugfs_global_file) {
debugfs_global_file = debugfs_create_file("global", 0644,
debugfs_root, NULL, &debugfs_fops);
if (IS_ERR_OR_NULL(debugfs_global_file)) {
pr_warn("Error: %s: %s: failed to create debugfs global file\n",
current->comm, __func__);
debugfs_global_file = NULL;
}
}
bail:
return err;
}
static void init_secure_vmid_list(struct device *dev, char *prop_name,
struct secure_vm *destvm)
{
int err = 0;
u32 len = 0, i = 0;
u32 *rhvmlist = NULL;
u32 *rhvmpermlist = NULL;
if (!of_find_property(dev->of_node, prop_name, &len))
goto bail;
if (len == 0)
goto bail;
len /= sizeof(u32);
VERIFY(err, NULL != (rhvmlist = kcalloc(len, sizeof(u32), GFP_KERNEL)));
if (err)
goto bail;
VERIFY(err, NULL != (rhvmpermlist = kcalloc(len, sizeof(u32),
GFP_KERNEL)));
if (err)
goto bail;
for (i = 0; i < len; i++) {
err = of_property_read_u32_index(dev->of_node, prop_name, i,
&rhvmlist[i]);
if (err) {
pr_err("Error: adsprpc: %s: failed to read VMID\n",
__func__);
goto bail;
}
ADSPRPC_INFO("secure VMID = %d\n",
rhvmlist[i]);
rhvmpermlist[i] = PERM_READ | PERM_WRITE | PERM_EXEC;
}
destvm->vmid = rhvmlist;
destvm->vmperm = rhvmpermlist;
destvm->vmcount = len;
bail:
if (err) {
kfree(rhvmlist);
kfree(rhvmpermlist);
}
}
static void init_qos_cores_list(struct device *dev, char *prop_name,
struct qos_cores *silvercores)
{
int err = 0;
u32 len = 0, i = 0;
u32 *coreslist = NULL;
if (!of_find_property(dev->of_node, prop_name, &len))
goto bail;
if (len == 0)
goto bail;
len /= sizeof(u32);
VERIFY(err, NULL != (coreslist = kcalloc(len, sizeof(u32),
GFP_KERNEL)));
if (err)
goto bail;
for (i = 0; i < len; i++) {
err = of_property_read_u32_index(dev->of_node, prop_name, i,
&coreslist[i]);
if (err) {
pr_err("adsprpc: %s: failed to read QOS cores list\n",
__func__);
goto bail;
}
}
silvercores->coreno = coreslist;
silvercores->corecount = len;
bail:
if (err)
kfree(coreslist);
}
static void fastrpc_init_privileged_gids(struct device *dev, char *prop_name,
struct gid_list *gidlist)
{
int err = 0;
u32 len = 0, i = 0;
u32 *gids = NULL;
if (!of_find_property(dev->of_node, prop_name, &len))
goto bail;
if (len == 0)
goto bail;
len /= sizeof(u32);
gids = kcalloc(len, sizeof(u32), GFP_KERNEL);
if (!gids) {
err = ENOMEM;
goto bail;
}
for (i = 0; i < len; i++) {
err = of_property_read_u32_index(dev->of_node, prop_name,
i, &gids[i]);
if (err) {
pr_err("Error: adsprpc: %s: failed to read GID %u\n",
__func__, i);
goto bail;
}
pr_info("adsprpc: %s: privileged GID: %u\n", __func__, gids[i]);
}
sort(gids, len, sizeof(*gids), uint_cmp_func, NULL);
gidlist->gids = gids;
gidlist->gidcount = len;
bail:
if (err)
kfree(gids);
}
static void configure_secure_channels(uint32_t secure_domains)
{
struct fastrpc_apps *me = &gfa;
int ii = 0;
/*
* secure_domains contains the bitmask of the secure channels
* Bit 0 - ADSP
* Bit 1 - MDSP
* Bit 2 - SLPI
* Bit 3 - CDSP
*/
for (ii = ADSP_DOMAIN_ID; ii <= CDSP_DOMAIN_ID; ++ii) {
int secure = (secure_domains >> ii) & 0x01;
me->channel[ii].secure = secure;
ADSPRPC_INFO("domain %d configured as secure %d\n", ii, secure);
}
}
/*
* This function is used to create the service locator required for
* registering for remote process restart (PDR) notifications if that
* PDR property has been enabled in the fastrpc node on the DTSI.
*/
static int fastrpc_setup_service_locator(struct device *dev,
const char *propname,
char *client_name, char *service_name,
char *service_path)
{
int err = 0, session = -1, cid = -1;
struct fastrpc_apps *me = &gfa;
struct pdr_handle *handle = NULL;
struct pdr_service *service = NULL;
if (of_property_read_bool(dev->of_node, propname)) {
err = fastrpc_get_spd_session(client_name, &session, &cid);
if (err)
goto bail;
/* Register the service locator's callback function */
handle = pdr_handle_alloc(fastrpc_pdr_cb, &me->channel[cid].spd[session]);
if (IS_ERR_OR_NULL(handle)) {
err = PTR_ERR(handle);
goto bail;
}
me->channel[cid].spd[session].pdrhandle = handle;
service = pdr_add_lookup(handle, service_name, service_path);
if (IS_ERR_OR_NULL(service)) {
err = PTR_ERR(service);
goto bail;
}
pr_info("adsprpc: %s: pdr_add_lookup enabled for %s (%s, %s), DTSI (%s)\n",
__func__, service_name, client_name, service_path, propname);
}
bail:
if (err) {
pr_warn("adsprpc: %s: failed for %s (%s, %s), DTSI (%s) with err %d\n",
__func__, service_name, client_name, service_path, propname, err);
}
return err;
}
/*
* remote_cdsp_status_show - Updates the buffer with remote cdsp status
* by reading the fastrpc node.
* @dev : pointer to device node.
* @attr: pointer to device attribute.
* @buf : Output parameter to be updated with remote cdsp status.
* Return : bytes written to buffer.
*/
static ssize_t remote_cdsp_status_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct fastrpc_apps *me = &gfa;
/*
* Default remote DSP status: 0
* driver possibly not probed yet or not the main device.
*/
if (!dev || !dev->driver ||
!of_device_is_compatible(dev->of_node, "qcom,msm-fastrpc-compute")) {
ADSPRPC_ERR("Driver not probed yet or not the main device\n");
return 0;
}
return scnprintf(buf, PAGE_SIZE, "%d",
me->remote_cdsp_status);
}
/* Remote cdsp status attribute declaration as read only */
static DEVICE_ATTR_RO(remote_cdsp_status);
/* Declaring attribute for remote dsp */
static struct attribute *msm_remote_dsp_attrs[] = {
&dev_attr_remote_cdsp_status.attr,
NULL
};
/* Defining remote dsp attributes in attributes group */
static struct attribute_group msm_remote_dsp_attr_group = {
.attrs = msm_remote_dsp_attrs,
};
static int fastrpc_probe(struct platform_device *pdev)
{
int err = 0;
struct fastrpc_apps *me = &gfa;
struct device *dev = &pdev->dev;
int ret = 0;
uint32_t secure_domains = 0;
if (of_device_is_compatible(dev->of_node,
"qcom,msm-fastrpc-compute")) {
err = sysfs_create_group(&pdev->dev.kobj, &msm_remote_dsp_attr_group);
if (err) {
ADSPRPC_ERR(
"Initialization of sysfs create group failed with %d\n",
err);
goto bail;
}
init_secure_vmid_list(dev, "qcom,adsp-remoteheap-vmid",
&gcinfo[0].rhvm);
fastrpc_init_privileged_gids(dev, "qcom,fastrpc-gids",
&me->gidlist);
init_qos_cores_list(dev, "qcom,qos-cores",
&me->silvercores);
of_property_read_u32(dev->of_node, "qcom,rpc-latency-us",
&me->latency);
if (of_get_property(dev->of_node,
"qcom,secure-domains", NULL) != NULL) {
VERIFY(err, !of_property_read_u32(dev->of_node,
"qcom,secure-domains",
&secure_domains));
if (!err)
configure_secure_channels(secure_domains);
else
pr_info("adsprpc: unable to read the domain configuration from dts\n");
}
}
if (of_device_is_compatible(dev->of_node,
"qcom,msm-fastrpc-compute-cb"))
return fastrpc_cb_probe(dev);
if (of_device_is_compatible(dev->of_node,
"qcom,msm-adsprpc-mem-region")) {
me->dev = dev;
ret = of_reserved_mem_device_init_by_idx(dev, dev->of_node, 0);
if (ret) {
pr_warn("adsprpc: Error: %s: initialization of memory region adsp_mem failed with %d\n",
__func__, ret);
}
goto bail;
}
me->legacy_remote_heap = of_property_read_bool(dev->of_node,
"qcom,fastrpc-legacy-remote-heap");
err = fastrpc_setup_service_locator(dev, AUDIO_PDR_ADSP_DTSI_PROPERTY_NAME,
AUDIO_PDR_SERVICE_LOCATION_CLIENT_NAME,
AUDIO_PDR_ADSP_SERVICE_NAME, ADSP_AUDIOPD_NAME);
if (err)
goto bail;
err = fastrpc_setup_service_locator(dev, SENSORS_PDR_ADSP_DTSI_PROPERTY_NAME,
SENSORS_PDR_ADSP_SERVICE_LOCATION_CLIENT_NAME,
SENSORS_PDR_ADSP_SERVICE_NAME, ADSP_SENSORPD_NAME);
if (err)
goto bail;
err = fastrpc_setup_service_locator(dev, SENSORS_PDR_SLPI_DTSI_PROPERTY_NAME,
SENSORS_PDR_SLPI_SERVICE_LOCATION_CLIENT_NAME,
SENSORS_PDR_SLPI_SERVICE_NAME, SLPI_SENSORPD_NAME);
if (err)
goto bail;
err = of_platform_populate(pdev->dev.of_node,
fastrpc_match_table,
NULL, &pdev->dev);
if (err)
goto bail;
bail:
return err;
}
static void fastrpc_deinit(void)
{
struct fastrpc_channel_ctx *chan = gcinfo;
struct fastrpc_apps *me = &gfa;
int i, j;
for (i = 0; i < NUM_CHANNELS; i++, chan++) {
for (j = 0; j < NUM_SESSIONS; j++) {
struct fastrpc_session_ctx *sess = &chan->session[j];
if (sess->smmu.dev)
sess->smmu.dev = NULL;
}
kfree(chan->rhvm.vmid);
kfree(chan->rhvm.vmperm);
fastrpc_transport_session_deinit(i);
mutex_destroy(&chan->smd_mutex);
}
if (me->transport_initialized)
fastrpc_transport_deinit();
me->transport_initialized = 0;
mutex_destroy(&me->mut_uid);
}
static struct platform_driver fastrpc_driver = {
.probe = fastrpc_probe,
.driver = {
.name = "fastrpc",
.of_match_table = fastrpc_match_table,
.suppress_bind_attrs = true,
},
};
union fastrpc_dev_param {
struct fastrpc_dev_map_dma *map;
struct fastrpc_dev_unmap_dma *unmap;
};
long fastrpc_driver_invoke(struct fastrpc_device *dev, unsigned int invoke_num,
unsigned long invoke_param)
{
int err = 0;
union fastrpc_dev_param p;
struct fastrpc_file *fl = NULL;
struct fastrpc_mmap *map = NULL;
struct fastrpc_apps *me = &gfa;
uintptr_t raddr = 0;
unsigned long irq_flags = 0;
switch (invoke_num) {
case FASTRPC_DEV_MAP_DMA:
p.map = (struct fastrpc_dev_map_dma *)invoke_param;
spin_lock_irqsave(&me->hlock, irq_flags);
/* Verify if fastrpc device is closed*/
VERIFY(err, dev && !dev->dev_close);
if (err) {
err = -ESRCH;
spin_unlock_irqrestore(&me->hlock, irq_flags);
break;
}
fl = dev->fl;
spin_lock(&fl->hlock);
/* Verify if fastrpc file is being closed, holding device lock*/
if (fl->file_close) {
err = -ESRCH;
spin_unlock(&fl->hlock);
spin_unlock_irqrestore(&me->hlock, irq_flags);
break;
}
spin_unlock(&fl->hlock);
spin_unlock_irqrestore(&me->hlock, irq_flags);
mutex_lock(&fl->internal_map_mutex);
mutex_lock(&fl->map_mutex);
/* Map DMA buffer on SMMU device*/
err = fastrpc_mmap_create(fl, -1, p.map->buf,
p.map->attrs, 0, p.map->size,
ADSP_MMAP_DMA_BUFFER, &map);
mutex_unlock(&fl->map_mutex);
if (err) {
mutex_unlock(&fl->internal_map_mutex);
break;
}
/* Map DMA buffer on DSP*/
VERIFY(err, 0 == (err = fastrpc_mmap_on_dsp(fl,
map->flags, 0, map->phys, map->size, map->refs, &raddr)));
if (err) {
mutex_unlock(&fl->internal_map_mutex);
break;
}
map->raddr = raddr;
mutex_unlock(&fl->internal_map_mutex);
p.map->v_dsp_addr = raddr;
break;
case FASTRPC_DEV_UNMAP_DMA:
p.unmap = (struct fastrpc_dev_unmap_dma *)invoke_param;
spin_lock_irqsave(&me->hlock, irq_flags);
/* Verify if fastrpc device is closed*/
VERIFY(err, dev && !dev->dev_close);
if (err) {
err = -ESRCH;
spin_unlock_irqrestore(&me->hlock, irq_flags);
break;
}
fl = dev->fl;
spin_lock(&fl->hlock);
/* Verify if fastrpc file is being closed, holding device lock*/
if (fl->file_close) {
err = -ESRCH;
spin_unlock(&fl->hlock);
spin_unlock_irqrestore(&me->hlock, irq_flags);
break;
}
spin_unlock(&fl->hlock);
spin_unlock_irqrestore(&me->hlock, irq_flags);
mutex_lock(&fl->internal_map_mutex);
mutex_lock(&fl->map_mutex);
if (!fastrpc_mmap_find(fl, -1, p.unmap->buf, 0, 0, ADSP_MMAP_DMA_BUFFER, 0, &map)) {
/* Un-map DMA buffer on DSP*/
mutex_unlock(&fl->map_mutex);
VERIFY(err, !(err = fastrpc_munmap_on_dsp(fl, map->raddr,
map->phys, map->size, map->flags)));
if (err) {
mutex_unlock(&fl->internal_map_mutex);
break;
}
fastrpc_mmap_free(map, 0);
}
mutex_unlock(&fl->map_mutex);
mutex_unlock(&fl->internal_map_mutex);
break;
default:
err = -ENOTTY;
break;
}
return err;
}
EXPORT_SYMBOL(fastrpc_driver_invoke);
static struct device fastrpc_bus = {
.init_name = "fastrpc"
};
static int fastrpc_bus_match(struct device *dev, struct device_driver *driver)
{
struct fastrpc_driver *frpc_driver = to_fastrpc_driver(driver);
struct fastrpc_device *frpc_device = to_fastrpc_device(dev);
if (frpc_device->handle == frpc_driver->handle)
return 1;
return 0;
}
static int fastrpc_bus_probe(struct device *dev)
{
struct fastrpc_apps *me = &gfa;
struct fastrpc_device *frpc_dev = to_fastrpc_device(dev);
struct fastrpc_driver *frpc_drv = to_fastrpc_driver(dev->driver);
unsigned long irq_flags = 0;
if (frpc_drv && frpc_drv->probe) {
spin_lock_irqsave(&me->hlock, irq_flags);
if (frpc_dev->dev_close) {
spin_unlock_irqrestore(&me->hlock, irq_flags);
return 0;
}
frpc_dev->refs++;
frpc_drv->device = dev;
spin_unlock_irqrestore(&me->hlock, irq_flags);
return frpc_drv->probe(frpc_dev);
}
return 0;
}
static void fastrpc_bus_remove(struct device *dev)
{
struct fastrpc_driver *frpc_drv = to_fastrpc_driver(dev->driver);
if (frpc_drv && frpc_drv->callback)
frpc_drv->callback(to_fastrpc_device(dev), FASTRPC_PROC_DOWN);
}
static struct bus_type fastrpc_bus_type = {
.name = "fastrpc",
.match = fastrpc_bus_match,
.probe = fastrpc_bus_probe,
.remove = fastrpc_bus_remove,
};
static void fastrpc_dev_release(struct device *dev)
{
kfree(to_fastrpc_device(dev));
}
static int fastrpc_device_create(struct fastrpc_file *fl)
{
int err = 0;
struct fastrpc_device *frpc_dev;
struct fastrpc_apps *me = &gfa;
unsigned long irq_flags = 0;
frpc_dev = kzalloc(sizeof(*frpc_dev), GFP_KERNEL);
if (!frpc_dev) {
err = -ENOMEM;
goto bail;
}
frpc_dev->dev.parent = &fastrpc_bus;
frpc_dev->dev.bus = &fastrpc_bus_type;
dev_set_name(&frpc_dev->dev, "%s-%d-%d",
dev_name(frpc_dev->dev.parent), fl->tgid, fl->cid);
frpc_dev->dev.release = fastrpc_dev_release;
frpc_dev->fl = fl;
frpc_dev->handle = fl->tgid;
err = device_register(&frpc_dev->dev);
if (err) {
put_device(&frpc_dev->dev);
ADSPRPC_ERR("fastrpc device register failed for process %d with error %d\n",
fl->tgid, err);
goto bail;
}
fl->device = frpc_dev;
spin_lock_irqsave(&me->hlock, irq_flags);
hlist_add_head(&frpc_dev->hn, &me->frpc_devices);
spin_unlock_irqrestore(&me->hlock, irq_flags);
bail:
return err;
}
void fastrpc_driver_unregister(struct fastrpc_driver *frpc_driver)
{
struct fastrpc_apps *me = &gfa;
struct device *dev = NULL;
struct fastrpc_device *frpc_dev = NULL;
bool is_device_closed = false;
unsigned long irq_flags = 0;
spin_lock_irqsave(&me->hlock, irq_flags);
dev = frpc_driver->device;
if (dev) {
frpc_dev = to_fastrpc_device(dev);
if (frpc_dev->refs > 0)
frpc_dev->refs--;
else
ADSPRPC_ERR("Fastrpc device for driver %s is already freed\n",
frpc_driver->driver.name);
if (frpc_dev->dev_close) {
hlist_del_init(&frpc_dev->hn);
is_device_closed = true;
}
}
hlist_del_init(&frpc_driver->hn);
spin_unlock_irqrestore(&me->hlock, irq_flags);
if (is_device_closed) {
ADSPRPC_INFO("un-registering fastrpc device with handle %d\n",
frpc_dev->handle);
device_unregister(dev);
}
driver_unregister(&frpc_driver->driver);
ADSPRPC_INFO("Un-registering fastrpc driver %s with handle %d\n",
frpc_driver->driver.name, frpc_driver->handle);
}
EXPORT_SYMBOL(fastrpc_driver_unregister);
int fastrpc_driver_register(struct fastrpc_driver *frpc_driver)
{
int err = 0;
struct fastrpc_apps *me = &gfa;
unsigned long irq_flags = 0;
frpc_driver->driver.bus = &fastrpc_bus_type;
frpc_driver->driver.owner = THIS_MODULE;
err = driver_register(&frpc_driver->driver);
if (err) {
ADSPRPC_ERR("fastrpc driver %s failed to register with error %d\n",
frpc_driver->driver.name, err);
goto bail;
}
ADSPRPC_INFO("fastrpc driver %s registered with handle %d\n",
frpc_driver->driver.name, frpc_driver->handle);
spin_lock_irqsave(&me->hlock, irq_flags);
hlist_add_head(&frpc_driver->hn, &me->frpc_drivers);
spin_unlock_irqrestore(&me->hlock, irq_flags);
bail:
return err;
}
EXPORT_SYMBOL(fastrpc_driver_register);
static int __init fastrpc_device_init(void)
{
struct fastrpc_apps *me = &gfa;
int err = 0, i;
uintptr_t attr = 0;
dma_addr_t region_phys = 0;
void *region_vaddr = NULL;
struct fastrpc_buf *buf = NULL;
debugfs_root = debugfs_create_dir("adsprpc", NULL);
if (IS_ERR_OR_NULL(debugfs_root)) {
pr_warn("Error: %s: %s: failed to create debugfs root dir\n",
current->comm, __func__);
debugfs_remove_recursive(debugfs_root);
debugfs_root = NULL;
}
memset(me, 0, sizeof(*me));
fastrpc_init(me);
fastrpc_get_dsp_status(me);
me->dev = NULL;
me->legacy_remote_heap = false;
err = bus_register(&fastrpc_bus_type);
if (err) {
ADSPRPC_ERR("fastrpc bus register failed with err %d\n",
err);
goto bus_register_bail;
}
err = device_register(&fastrpc_bus);
if (err) {
ADSPRPC_ERR("fastrpc bus device register failed with err %d\n",
err);
goto bus_device_register_bail;
}
me->fastrpc_bus_register = true;
VERIFY(err, 0 == platform_driver_register(&fastrpc_driver));
if (err)
goto register_bail;
VERIFY(err, 0 == alloc_chrdev_region(&me->dev_no, 0, NUM_CHANNELS,
DEVICE_NAME));
if (err)
goto alloc_chrdev_bail;
cdev_init(&me->cdev, &fops);
me->cdev.owner = THIS_MODULE;
VERIFY(err, 0 == cdev_add(&me->cdev, MKDEV(MAJOR(me->dev_no), 0),
NUM_DEVICES));
if (err)
goto cdev_init_bail;
me->class = class_create(THIS_MODULE, "fastrpc");
VERIFY(err, !IS_ERR(me->class));
if (err)
goto class_create_bail;
me->compat = (fops.compat_ioctl == NULL) ? 0 : 1;
/*
* Create devices and register with sysfs
* Create first device with minor number 0
*/
me->non_secure_dev = device_create(me->class, NULL,
MKDEV(MAJOR(me->dev_no), MINOR_NUM_DEV),
NULL, DEVICE_NAME);
VERIFY(err, !IS_ERR_OR_NULL(me->non_secure_dev));
if (err) {
err = -ENODEV;
goto device_create_bail;
}
/* Create secure device with minor number for secure device */
me->secure_dev = device_create(me->class, NULL,
MKDEV(MAJOR(me->dev_no), MINOR_NUM_SECURE_DEV),
NULL, DEVICE_NAME_SECURE);
VERIFY(err, !IS_ERR_OR_NULL(me->secure_dev));
if (err)
goto device_create_bail;
for (i = 0; i < NUM_CHANNELS; i++) {
me->jobid[i] = 1;
me->channel[i].dev = me->secure_dev;
me->channel[i].ssrcount = 0;
me->channel[i].prevssrcount = 0;
me->channel[i].issubsystemup = 1;
me->channel[i].rh_dump_dev = NULL;
me->channel[i].nb.notifier_call = fastrpc_restart_notifier_cb;
me->channel[i].handle = qcom_register_ssr_notifier(
gcinfo[i].subsys,
&me->channel[i].nb);
if (i == CDSP_DOMAIN_ID) {
me->channel[i].dev = me->non_secure_dev;
err = fastrpc_alloc_cma_memory(&region_phys,
&region_vaddr,
MINI_DUMP_DBG_SIZE,
(unsigned long)attr);
if (err)
ADSPRPC_WARN("%s: CMA alloc failed err 0x%x\n",
__func__, err);
VERIFY(err, NULL != (buf = kzalloc(sizeof(*buf), GFP_KERNEL)));
if (err) {
err = -ENOMEM;
ADSPRPC_WARN("%s: CMA alloc failed err 0x%x\n",
__func__, err);
}
INIT_HLIST_NODE(&buf->hn);
buf->virt = region_vaddr;
buf->phys = (uintptr_t)region_phys;
buf->size = MINI_DUMP_DBG_SIZE;
buf->dma_attr = attr;
buf->raddr = 0;
ktime_get_real_ts64(&buf->buf_start_time);
me->channel[i].buf = buf;
}
if (IS_ERR_OR_NULL(me->channel[i].handle))
pr_warn("adsprpc: %s: SSR notifier register failed for %s with err %d\n",
__func__, gcinfo[i].subsys,
PTR_ERR(me->channel[i].handle));
else
pr_info("adsprpc: %s: SSR notifier registered for %s\n",
__func__, gcinfo[i].subsys);
}
err = fastrpc_transport_init();
if (err)
goto device_create_bail;
me->transport_initialized = 1;
fastrpc_register_wakeup_source(me->non_secure_dev,
FASTRPC_NON_SECURE_WAKE_SOURCE_CLIENT_NAME,
&me->wake_source);
fastrpc_register_wakeup_source(me->secure_dev,
FASTRPC_SECURE_WAKE_SOURCE_CLIENT_NAME,
&me->wake_source_secure);
return 0;
device_create_bail:
for (i = 0; i < NUM_CHANNELS; i++) {
if (me->channel[i].handle)
qcom_unregister_ssr_notifier(me->channel[i].handle,
&me->channel[i].nb);
}
if (!IS_ERR_OR_NULL(me->non_secure_dev))
device_destroy(me->class, MKDEV(MAJOR(me->dev_no),
MINOR_NUM_DEV));
if (!IS_ERR_OR_NULL(me->secure_dev))
device_destroy(me->class, MKDEV(MAJOR(me->dev_no),
MINOR_NUM_SECURE_DEV));
class_destroy(me->class);
class_create_bail:
cdev_del(&me->cdev);
cdev_init_bail:
unregister_chrdev_region(me->dev_no, NUM_CHANNELS);
alloc_chrdev_bail:
platform_driver_unregister(&fastrpc_driver);
register_bail:
device_unregister(&fastrpc_bus);
bus_device_register_bail:
bus_unregister(&fastrpc_bus_type);
bus_register_bail:
fastrpc_deinit();
return err;
}
static void __exit fastrpc_device_exit(void)
{
struct fastrpc_apps *me = &gfa;
int i;
fastrpc_file_list_dtor(me);
fastrpc_deinit();
wakeup_source_unregister(me->wake_source);
wakeup_source_unregister(me->wake_source_secure);
for (i = 0; i < NUM_CHANNELS; i++) {
if (i == CDSP_DOMAIN_ID)
kfree(me->channel[i].buf);
if (!gcinfo[i].name)
continue;
qcom_unregister_ssr_notifier(me->channel[i].handle,
&me->channel[i].nb);
}
/* Destroy the secure and non secure devices */
device_destroy(me->class, MKDEV(MAJOR(me->dev_no), MINOR_NUM_DEV));
device_destroy(me->class, MKDEV(MAJOR(me->dev_no),
MINOR_NUM_SECURE_DEV));
of_reserved_mem_device_release(me->dev);
class_destroy(me->class);
cdev_del(&me->cdev);
unregister_chrdev_region(me->dev_no, NUM_CHANNELS);
if (me->transport_initialized)
fastrpc_transport_deinit();
me->transport_initialized = 0;
if (me->fastrpc_bus_register) {
bus_unregister(&fastrpc_bus_type);
device_unregister(&fastrpc_bus);
}
kfree(me->gidlist.gids);
debugfs_remove_recursive(debugfs_root);
}
module_init(fastrpc_device_init);
module_exit(fastrpc_device_exit);
MODULE_LICENSE("GPL v2");