hal_srng.c 52 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870
  1. /*
  2. * Copyright (c) 2016-2021 The Linux Foundation. All rights reserved.
  3. * Copyright (c) 2021-2022 Qualcomm Innovation Center, Inc. All rights reserved.
  4. *
  5. * Permission to use, copy, modify, and/or distribute this software for
  6. * any purpose with or without fee is hereby granted, provided that the
  7. * above copyright notice and this permission notice appear in all
  8. * copies.
  9. *
  10. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
  11. * WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
  12. * WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
  13. * AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
  14. * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
  15. * PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
  16. * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
  17. * PERFORMANCE OF THIS SOFTWARE.
  18. */
  19. #include "hal_hw_headers.h"
  20. #include "hal_api.h"
  21. #include "hal_reo.h"
  22. #include "target_type.h"
  23. #include "qdf_module.h"
  24. #include "wcss_version.h"
  25. #include <qdf_tracepoint.h>
  26. struct tcl_data_cmd gtcl_data_symbol __attribute__((used));
  27. #ifdef QCA_WIFI_QCA8074
  28. void hal_qca6290_attach(struct hal_soc *hal);
  29. #endif
  30. #ifdef QCA_WIFI_QCA8074
  31. void hal_qca8074_attach(struct hal_soc *hal);
  32. #endif
  33. #if defined(QCA_WIFI_QCA8074V2) || defined(QCA_WIFI_QCA6018) || \
  34. defined(QCA_WIFI_QCA9574)
  35. void hal_qca8074v2_attach(struct hal_soc *hal);
  36. #endif
  37. #ifdef QCA_WIFI_QCA6390
  38. void hal_qca6390_attach(struct hal_soc *hal);
  39. #endif
  40. #ifdef QCA_WIFI_QCA6490
  41. void hal_qca6490_attach(struct hal_soc *hal);
  42. #endif
  43. #ifdef QCA_WIFI_QCN9000
  44. void hal_qcn9000_attach(struct hal_soc *hal);
  45. #endif
  46. #ifdef QCA_WIFI_QCN9224
  47. void hal_qcn9224v1_attach(struct hal_soc *hal);
  48. void hal_qcn9224v2_attach(struct hal_soc *hal);
  49. #endif
  50. #ifdef QCA_WIFI_QCN6122
  51. void hal_qcn6122_attach(struct hal_soc *hal);
  52. #endif
  53. #ifdef QCA_WIFI_QCA6750
  54. void hal_qca6750_attach(struct hal_soc *hal);
  55. #endif
  56. #ifdef QCA_WIFI_QCA5018
  57. void hal_qca5018_attach(struct hal_soc *hal);
  58. #endif
  59. #ifdef QCA_WIFI_QCA5332
  60. void hal_qca5332_attach(struct hal_soc *hal);
  61. #endif
  62. #ifdef QCA_WIFI_KIWI
  63. void hal_kiwi_attach(struct hal_soc *hal);
  64. #endif
  65. #ifdef ENABLE_VERBOSE_DEBUG
  66. bool is_hal_verbose_debug_enabled;
  67. #endif
  68. #define HAL_REO_DESTINATION_RING_CTRL_IX_0_ADDR(x) ((x) + 0x4)
  69. #define HAL_REO_DESTINATION_RING_CTRL_IX_1_ADDR(x) ((x) + 0x8)
  70. #define HAL_REO_DESTINATION_RING_CTRL_IX_2_ADDR(x) ((x) + 0xc)
  71. #define HAL_REO_DESTINATION_RING_CTRL_IX_3_ADDR(x) ((x) + 0x10)
  72. #ifdef ENABLE_HAL_REG_WR_HISTORY
  73. struct hal_reg_write_fail_history hal_reg_wr_hist;
  74. void hal_reg_wr_fail_history_add(struct hal_soc *hal_soc,
  75. uint32_t offset,
  76. uint32_t wr_val, uint32_t rd_val)
  77. {
  78. struct hal_reg_write_fail_entry *record;
  79. int idx;
  80. idx = hal_history_get_next_index(&hal_soc->reg_wr_fail_hist->index,
  81. HAL_REG_WRITE_HIST_SIZE);
  82. record = &hal_soc->reg_wr_fail_hist->record[idx];
  83. record->timestamp = qdf_get_log_timestamp();
  84. record->reg_offset = offset;
  85. record->write_val = wr_val;
  86. record->read_val = rd_val;
  87. }
  88. static void hal_reg_write_fail_history_init(struct hal_soc *hal)
  89. {
  90. hal->reg_wr_fail_hist = &hal_reg_wr_hist;
  91. qdf_atomic_set(&hal->reg_wr_fail_hist->index, -1);
  92. }
  93. #else
  94. static void hal_reg_write_fail_history_init(struct hal_soc *hal)
  95. {
  96. }
  97. #endif
  98. /**
  99. * hal_get_srng_ring_id() - get the ring id of a descriped ring
  100. * @hal: hal_soc data structure
  101. * @ring_type: type enum describing the ring
  102. * @ring_num: which ring of the ring type
  103. * @mac_id: which mac does the ring belong to (or 0 for non-lmac rings)
  104. *
  105. * Return: the ring id or -EINVAL if the ring does not exist.
  106. */
  107. static int hal_get_srng_ring_id(struct hal_soc *hal, int ring_type,
  108. int ring_num, int mac_id)
  109. {
  110. struct hal_hw_srng_config *ring_config =
  111. HAL_SRNG_CONFIG(hal, ring_type);
  112. int ring_id;
  113. if (ring_num >= ring_config->max_rings) {
  114. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO,
  115. "%s: ring_num exceeded maximum no. of supported rings",
  116. __func__);
  117. /* TODO: This is a programming error. Assert if this happens */
  118. return -EINVAL;
  119. }
  120. /*
  121. * For BE, dmac_cmn_src_rxbuf_ring is set. If this is set
  122. * and ring is dst and also lmac ring then provide ring id per lmac
  123. */
  124. if (ring_config->lmac_ring &&
  125. (!hal->dmac_cmn_src_rxbuf_ring ||
  126. ring_config->ring_dir == HAL_SRNG_DST_RING)) {
  127. ring_id = (ring_config->start_ring_id + ring_num +
  128. (mac_id * HAL_MAX_RINGS_PER_LMAC));
  129. } else {
  130. ring_id = ring_config->start_ring_id + ring_num;
  131. }
  132. return ring_id;
  133. }
  134. static struct hal_srng *hal_get_srng(struct hal_soc *hal, int ring_id)
  135. {
  136. /* TODO: Should we allocate srng structures dynamically? */
  137. return &(hal->srng_list[ring_id]);
  138. }
  139. #ifndef SHADOW_REG_CONFIG_DISABLED
  140. #define HP_OFFSET_IN_REG_START 1
  141. #define OFFSET_FROM_HP_TO_TP 4
  142. static void hal_update_srng_hp_tp_address(struct hal_soc *hal_soc,
  143. int shadow_config_index,
  144. int ring_type,
  145. int ring_num)
  146. {
  147. struct hal_srng *srng;
  148. int ring_id;
  149. struct hal_hw_srng_config *ring_config =
  150. HAL_SRNG_CONFIG(hal_soc, ring_type);
  151. ring_id = hal_get_srng_ring_id(hal_soc, ring_type, ring_num, 0);
  152. if (ring_id < 0)
  153. return;
  154. srng = hal_get_srng(hal_soc, ring_id);
  155. if (ring_config->ring_dir == HAL_SRNG_DST_RING) {
  156. srng->u.dst_ring.tp_addr = SHADOW_REGISTER(shadow_config_index)
  157. + hal_soc->dev_base_addr;
  158. hal_debug("tp_addr=%pK dev base addr %pK index %u",
  159. srng->u.dst_ring.tp_addr, hal_soc->dev_base_addr,
  160. shadow_config_index);
  161. } else {
  162. srng->u.src_ring.hp_addr = SHADOW_REGISTER(shadow_config_index)
  163. + hal_soc->dev_base_addr;
  164. hal_debug("hp_addr=%pK dev base addr %pK index %u",
  165. srng->u.src_ring.hp_addr,
  166. hal_soc->dev_base_addr, shadow_config_index);
  167. }
  168. }
  169. #endif
  170. #ifdef GENERIC_SHADOW_REGISTER_ACCESS_ENABLE
  171. void hal_set_one_target_reg_config(struct hal_soc *hal,
  172. uint32_t target_reg_offset,
  173. int list_index)
  174. {
  175. int i = list_index;
  176. qdf_assert_always(i < MAX_GENERIC_SHADOW_REG);
  177. hal->list_shadow_reg_config[i].target_register =
  178. target_reg_offset;
  179. hal->num_generic_shadow_regs_configured++;
  180. }
  181. qdf_export_symbol(hal_set_one_target_reg_config);
  182. #define REO_R0_DESTINATION_RING_CTRL_ADDR_OFFSET 0x4
  183. #define MAX_REO_REMAP_SHADOW_REGS 4
  184. QDF_STATUS hal_set_shadow_regs(void *hal_soc)
  185. {
  186. uint32_t target_reg_offset;
  187. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  188. int i;
  189. struct hal_hw_srng_config *srng_config =
  190. &hal->hw_srng_table[WBM2SW_RELEASE];
  191. uint32_t reo_reg_base;
  192. reo_reg_base = hal_get_reo_reg_base_offset(hal_soc);
  193. target_reg_offset =
  194. HAL_REO_DESTINATION_RING_CTRL_IX_0_ADDR(reo_reg_base);
  195. for (i = 0; i < MAX_REO_REMAP_SHADOW_REGS; i++) {
  196. hal_set_one_target_reg_config(hal, target_reg_offset, i);
  197. target_reg_offset += REO_R0_DESTINATION_RING_CTRL_ADDR_OFFSET;
  198. }
  199. target_reg_offset = srng_config->reg_start[HP_OFFSET_IN_REG_START];
  200. target_reg_offset += (srng_config->reg_size[HP_OFFSET_IN_REG_START]
  201. * HAL_IPA_TX_COMP_RING_IDX);
  202. hal_set_one_target_reg_config(hal, target_reg_offset, i);
  203. return QDF_STATUS_SUCCESS;
  204. }
  205. qdf_export_symbol(hal_set_shadow_regs);
  206. QDF_STATUS hal_construct_shadow_regs(void *hal_soc)
  207. {
  208. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  209. int shadow_config_index = hal->num_shadow_registers_configured;
  210. int i;
  211. int num_regs = hal->num_generic_shadow_regs_configured;
  212. for (i = 0; i < num_regs; i++) {
  213. qdf_assert_always(shadow_config_index < MAX_SHADOW_REGISTERS);
  214. hal->shadow_config[shadow_config_index].addr =
  215. hal->list_shadow_reg_config[i].target_register;
  216. hal->list_shadow_reg_config[i].shadow_config_index =
  217. shadow_config_index;
  218. hal->list_shadow_reg_config[i].va =
  219. SHADOW_REGISTER(shadow_config_index) +
  220. (uintptr_t)hal->dev_base_addr;
  221. hal_debug("target_reg %x, shadow register 0x%x shadow_index 0x%x",
  222. hal->shadow_config[shadow_config_index].addr,
  223. SHADOW_REGISTER(shadow_config_index),
  224. shadow_config_index);
  225. shadow_config_index++;
  226. hal->num_shadow_registers_configured++;
  227. }
  228. return QDF_STATUS_SUCCESS;
  229. }
  230. qdf_export_symbol(hal_construct_shadow_regs);
  231. #endif
  232. #ifndef SHADOW_REG_CONFIG_DISABLED
  233. QDF_STATUS hal_set_one_shadow_config(void *hal_soc,
  234. int ring_type,
  235. int ring_num)
  236. {
  237. uint32_t target_register;
  238. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  239. struct hal_hw_srng_config *srng_config = &hal->hw_srng_table[ring_type];
  240. int shadow_config_index = hal->num_shadow_registers_configured;
  241. if (shadow_config_index >= MAX_SHADOW_REGISTERS) {
  242. QDF_ASSERT(0);
  243. return QDF_STATUS_E_RESOURCES;
  244. }
  245. hal->num_shadow_registers_configured++;
  246. target_register = srng_config->reg_start[HP_OFFSET_IN_REG_START];
  247. target_register += (srng_config->reg_size[HP_OFFSET_IN_REG_START]
  248. *ring_num);
  249. /* if the ring is a dst ring, we need to shadow the tail pointer */
  250. if (srng_config->ring_dir == HAL_SRNG_DST_RING)
  251. target_register += OFFSET_FROM_HP_TO_TP;
  252. hal->shadow_config[shadow_config_index].addr = target_register;
  253. /* update hp/tp addr in the hal_soc structure*/
  254. hal_update_srng_hp_tp_address(hal_soc, shadow_config_index, ring_type,
  255. ring_num);
  256. hal_debug("target_reg %x, shadow register 0x%x shadow_index 0x%x, ring_type %d, ring num %d",
  257. target_register,
  258. SHADOW_REGISTER(shadow_config_index),
  259. shadow_config_index,
  260. ring_type, ring_num);
  261. return QDF_STATUS_SUCCESS;
  262. }
  263. qdf_export_symbol(hal_set_one_shadow_config);
  264. QDF_STATUS hal_construct_srng_shadow_regs(void *hal_soc)
  265. {
  266. int ring_type, ring_num;
  267. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  268. for (ring_type = 0; ring_type < MAX_RING_TYPES; ring_type++) {
  269. struct hal_hw_srng_config *srng_config =
  270. &hal->hw_srng_table[ring_type];
  271. if (ring_type == CE_SRC ||
  272. ring_type == CE_DST ||
  273. ring_type == CE_DST_STATUS)
  274. continue;
  275. if (srng_config->lmac_ring)
  276. continue;
  277. for (ring_num = 0; ring_num < srng_config->max_rings;
  278. ring_num++)
  279. hal_set_one_shadow_config(hal_soc, ring_type, ring_num);
  280. }
  281. return QDF_STATUS_SUCCESS;
  282. }
  283. qdf_export_symbol(hal_construct_srng_shadow_regs);
  284. #else
  285. QDF_STATUS hal_construct_srng_shadow_regs(void *hal_soc)
  286. {
  287. return QDF_STATUS_SUCCESS;
  288. }
  289. qdf_export_symbol(hal_construct_srng_shadow_regs);
  290. QDF_STATUS hal_set_one_shadow_config(void *hal_soc, int ring_type,
  291. int ring_num)
  292. {
  293. return QDF_STATUS_SUCCESS;
  294. }
  295. qdf_export_symbol(hal_set_one_shadow_config);
  296. #endif
  297. void hal_get_shadow_config(void *hal_soc,
  298. struct pld_shadow_reg_v2_cfg **shadow_config,
  299. int *num_shadow_registers_configured)
  300. {
  301. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  302. *shadow_config = &hal->shadow_config[0].v2;
  303. *num_shadow_registers_configured =
  304. hal->num_shadow_registers_configured;
  305. }
  306. qdf_export_symbol(hal_get_shadow_config);
  307. #ifdef CONFIG_SHADOW_V3
  308. void hal_get_shadow_v3_config(void *hal_soc,
  309. struct pld_shadow_reg_v3_cfg **shadow_config,
  310. int *num_shadow_registers_configured)
  311. {
  312. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  313. *shadow_config = &hal->shadow_config[0].v3;
  314. *num_shadow_registers_configured =
  315. hal->num_shadow_registers_configured;
  316. }
  317. qdf_export_symbol(hal_get_shadow_v3_config);
  318. #endif
  319. static bool hal_validate_shadow_register(struct hal_soc *hal,
  320. uint32_t *destination,
  321. uint32_t *shadow_address)
  322. {
  323. unsigned int index;
  324. uint32_t *shadow_0_offset = SHADOW_REGISTER(0) + hal->dev_base_addr;
  325. int destination_ba_offset =
  326. ((char *)destination) - (char *)hal->dev_base_addr;
  327. index = shadow_address - shadow_0_offset;
  328. if (index >= MAX_SHADOW_REGISTERS) {
  329. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  330. "%s: index %x out of bounds", __func__, index);
  331. goto error;
  332. } else if (hal->shadow_config[index].addr != destination_ba_offset) {
  333. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  334. "%s: sanity check failure, expected %x, found %x",
  335. __func__, destination_ba_offset,
  336. hal->shadow_config[index].addr);
  337. goto error;
  338. }
  339. return true;
  340. error:
  341. qdf_print("baddr %pK, desination %pK, shadow_address %pK s0offset %pK index %x",
  342. hal->dev_base_addr, destination, shadow_address,
  343. shadow_0_offset, index);
  344. QDF_BUG(0);
  345. return false;
  346. }
  347. static void hal_target_based_configure(struct hal_soc *hal)
  348. {
  349. /**
  350. * Indicate Initialization of srngs to avoid force wake
  351. * as umac power collapse is not enabled yet
  352. */
  353. hal->init_phase = true;
  354. switch (hal->target_type) {
  355. #ifdef QCA_WIFI_QCA6290
  356. case TARGET_TYPE_QCA6290:
  357. hal->use_register_windowing = true;
  358. hal_qca6290_attach(hal);
  359. break;
  360. #endif
  361. #ifdef QCA_WIFI_QCA6390
  362. case TARGET_TYPE_QCA6390:
  363. hal->use_register_windowing = true;
  364. hal_qca6390_attach(hal);
  365. break;
  366. #endif
  367. #ifdef QCA_WIFI_QCA6490
  368. case TARGET_TYPE_QCA6490:
  369. hal->use_register_windowing = true;
  370. hal_qca6490_attach(hal);
  371. break;
  372. #endif
  373. #ifdef QCA_WIFI_QCA6750
  374. case TARGET_TYPE_QCA6750:
  375. hal->use_register_windowing = true;
  376. hal->static_window_map = true;
  377. hal_qca6750_attach(hal);
  378. break;
  379. #endif
  380. #ifdef QCA_WIFI_KIWI
  381. case TARGET_TYPE_KIWI:
  382. case TARGET_TYPE_MANGO:
  383. hal->use_register_windowing = true;
  384. hal_kiwi_attach(hal);
  385. break;
  386. #endif
  387. #if defined(QCA_WIFI_QCA8074) && defined(WIFI_TARGET_TYPE_3_0)
  388. case TARGET_TYPE_QCA8074:
  389. hal_qca8074_attach(hal);
  390. break;
  391. #endif
  392. #if defined(QCA_WIFI_QCA8074V2)
  393. case TARGET_TYPE_QCA8074V2:
  394. hal_qca8074v2_attach(hal);
  395. break;
  396. #endif
  397. #if defined(QCA_WIFI_QCA6018)
  398. case TARGET_TYPE_QCA6018:
  399. hal_qca8074v2_attach(hal);
  400. break;
  401. #endif
  402. #if defined(QCA_WIFI_QCA9574)
  403. case TARGET_TYPE_QCA9574:
  404. hal_qca8074v2_attach(hal);
  405. break;
  406. #endif
  407. #if defined(QCA_WIFI_QCN6122)
  408. case TARGET_TYPE_QCN6122:
  409. hal->use_register_windowing = true;
  410. /*
  411. * Static window map is enabled for qcn9000 to use 2mb bar
  412. * size and use multiple windows to write into registers.
  413. */
  414. hal->static_window_map = true;
  415. hal_qcn6122_attach(hal);
  416. break;
  417. #endif
  418. #ifdef QCA_WIFI_QCN9000
  419. case TARGET_TYPE_QCN9000:
  420. hal->use_register_windowing = true;
  421. /*
  422. * Static window map is enabled for qcn9000 to use 2mb bar
  423. * size and use multiple windows to write into registers.
  424. */
  425. hal->static_window_map = true;
  426. hal_qcn9000_attach(hal);
  427. break;
  428. #endif
  429. #ifdef QCA_WIFI_QCA5018
  430. case TARGET_TYPE_QCA5018:
  431. hal->use_register_windowing = true;
  432. hal->static_window_map = true;
  433. hal_qca5018_attach(hal);
  434. break;
  435. #endif
  436. #ifdef QCA_WIFI_QCN9224
  437. case TARGET_TYPE_QCN9224:
  438. hal->use_register_windowing = true;
  439. hal->static_window_map = true;
  440. if (hal->version == 1)
  441. hal_qcn9224v1_attach(hal);
  442. else
  443. hal_qcn9224v2_attach(hal);
  444. break;
  445. #endif
  446. #ifdef QCA_WIFI_QCA5332
  447. case TARGET_TYPE_QCA5332:
  448. hal->use_register_windowing = true;
  449. hal->static_window_map = true;
  450. hal_qca5332_attach(hal);
  451. break;
  452. #endif
  453. default:
  454. break;
  455. }
  456. }
  457. uint32_t hal_get_target_type(hal_soc_handle_t hal_soc_hdl)
  458. {
  459. struct hal_soc *hal_soc = (struct hal_soc *)hal_soc_hdl;
  460. struct hif_target_info *tgt_info =
  461. hif_get_target_info_handle(hal_soc->hif_handle);
  462. return tgt_info->target_type;
  463. }
  464. qdf_export_symbol(hal_get_target_type);
  465. #if defined(FEATURE_HAL_DELAYED_REG_WRITE)
  466. /**
  467. * hal_is_reg_write_tput_level_high() - throughput level for delayed reg writes
  468. * @hal: hal_soc pointer
  469. *
  470. * Return: true if throughput is high, else false.
  471. */
  472. static inline bool hal_is_reg_write_tput_level_high(struct hal_soc *hal)
  473. {
  474. int bw_level = hif_get_bandwidth_level(hal->hif_handle);
  475. return (bw_level >= PLD_BUS_WIDTH_MEDIUM) ? true : false;
  476. }
  477. static inline
  478. char *hal_fill_reg_write_srng_stats(struct hal_srng *srng,
  479. char *buf, qdf_size_t size)
  480. {
  481. qdf_scnprintf(buf, size, "enq %u deq %u coal %u direct %u",
  482. srng->wstats.enqueues, srng->wstats.dequeues,
  483. srng->wstats.coalesces, srng->wstats.direct);
  484. return buf;
  485. }
  486. /* bytes for local buffer */
  487. #define HAL_REG_WRITE_SRNG_STATS_LEN 100
  488. void hal_dump_reg_write_srng_stats(hal_soc_handle_t hal_soc_hdl)
  489. {
  490. struct hal_srng *srng;
  491. char buf[HAL_REG_WRITE_SRNG_STATS_LEN];
  492. struct hal_soc *hal = (struct hal_soc *)hal_soc_hdl;
  493. srng = hal_get_srng(hal, HAL_SRNG_SW2TCL1);
  494. hal_debug("SW2TCL1: %s",
  495. hal_fill_reg_write_srng_stats(srng, buf, sizeof(buf)));
  496. srng = hal_get_srng(hal, HAL_SRNG_WBM2SW0_RELEASE);
  497. hal_debug("WBM2SW0: %s",
  498. hal_fill_reg_write_srng_stats(srng, buf, sizeof(buf)));
  499. srng = hal_get_srng(hal, HAL_SRNG_REO2SW1);
  500. hal_debug("REO2SW1: %s",
  501. hal_fill_reg_write_srng_stats(srng, buf, sizeof(buf)));
  502. srng = hal_get_srng(hal, HAL_SRNG_REO2SW2);
  503. hal_debug("REO2SW2: %s",
  504. hal_fill_reg_write_srng_stats(srng, buf, sizeof(buf)));
  505. srng = hal_get_srng(hal, HAL_SRNG_REO2SW3);
  506. hal_debug("REO2SW3: %s",
  507. hal_fill_reg_write_srng_stats(srng, buf, sizeof(buf)));
  508. }
  509. void hal_dump_reg_write_stats(hal_soc_handle_t hal_soc_hdl)
  510. {
  511. uint32_t *hist;
  512. struct hal_soc *hal = (struct hal_soc *)hal_soc_hdl;
  513. hist = hal->stats.wstats.sched_delay;
  514. hal_debug("wstats: enq %u deq %u coal %u direct %u q_depth %u max_q %u sched-delay hist %u %u %u %u",
  515. qdf_atomic_read(&hal->stats.wstats.enqueues),
  516. hal->stats.wstats.dequeues,
  517. qdf_atomic_read(&hal->stats.wstats.coalesces),
  518. qdf_atomic_read(&hal->stats.wstats.direct),
  519. qdf_atomic_read(&hal->stats.wstats.q_depth),
  520. hal->stats.wstats.max_q_depth,
  521. hist[REG_WRITE_SCHED_DELAY_SUB_100us],
  522. hist[REG_WRITE_SCHED_DELAY_SUB_1000us],
  523. hist[REG_WRITE_SCHED_DELAY_SUB_5000us],
  524. hist[REG_WRITE_SCHED_DELAY_GT_5000us]);
  525. }
  526. int hal_get_reg_write_pending_work(void *hal_soc)
  527. {
  528. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  529. return qdf_atomic_read(&hal->active_work_cnt);
  530. }
  531. #endif
  532. #ifdef FEATURE_HAL_DELAYED_REG_WRITE
  533. #ifdef MEMORY_DEBUG
  534. /*
  535. * Length of the queue(array) used to hold delayed register writes.
  536. * Must be a multiple of 2.
  537. */
  538. #define HAL_REG_WRITE_QUEUE_LEN 128
  539. #else
  540. #define HAL_REG_WRITE_QUEUE_LEN 32
  541. #endif
  542. /**
  543. * hal_process_reg_write_q_elem() - process a regiter write queue element
  544. * @hal: hal_soc pointer
  545. * @q_elem: pointer to hal regiter write queue element
  546. *
  547. * Return: The value which was written to the address
  548. */
  549. static uint32_t
  550. hal_process_reg_write_q_elem(struct hal_soc *hal,
  551. struct hal_reg_write_q_elem *q_elem)
  552. {
  553. struct hal_srng *srng = q_elem->srng;
  554. uint32_t write_val;
  555. SRNG_LOCK(&srng->lock);
  556. srng->reg_write_in_progress = false;
  557. srng->wstats.dequeues++;
  558. if (srng->ring_dir == HAL_SRNG_SRC_RING) {
  559. q_elem->dequeue_val = srng->u.src_ring.hp;
  560. hal_write_address_32_mb(hal,
  561. srng->u.src_ring.hp_addr,
  562. srng->u.src_ring.hp, false);
  563. write_val = srng->u.src_ring.hp;
  564. } else {
  565. q_elem->dequeue_val = srng->u.dst_ring.tp;
  566. hal_write_address_32_mb(hal,
  567. srng->u.dst_ring.tp_addr,
  568. srng->u.dst_ring.tp, false);
  569. write_val = srng->u.dst_ring.tp;
  570. }
  571. q_elem->valid = 0;
  572. srng->last_dequeue_time = q_elem->dequeue_time;
  573. SRNG_UNLOCK(&srng->lock);
  574. return write_val;
  575. }
  576. /**
  577. * hal_reg_write_fill_sched_delay_hist() - fill reg write delay histogram in hal
  578. * @hal: hal_soc pointer
  579. * @delay: delay in us
  580. *
  581. * Return: None
  582. */
  583. static inline void hal_reg_write_fill_sched_delay_hist(struct hal_soc *hal,
  584. uint64_t delay_us)
  585. {
  586. uint32_t *hist;
  587. hist = hal->stats.wstats.sched_delay;
  588. if (delay_us < 100)
  589. hist[REG_WRITE_SCHED_DELAY_SUB_100us]++;
  590. else if (delay_us < 1000)
  591. hist[REG_WRITE_SCHED_DELAY_SUB_1000us]++;
  592. else if (delay_us < 5000)
  593. hist[REG_WRITE_SCHED_DELAY_SUB_5000us]++;
  594. else
  595. hist[REG_WRITE_SCHED_DELAY_GT_5000us]++;
  596. }
  597. #ifdef SHADOW_WRITE_DELAY
  598. #define SHADOW_WRITE_MIN_DELTA_US 5
  599. #define SHADOW_WRITE_DELAY_US 50
  600. /*
  601. * Never add those srngs which are performance relate.
  602. * The delay itself will hit performance heavily.
  603. */
  604. #define IS_SRNG_MATCH(s) ((s)->ring_id == HAL_SRNG_CE_1_DST_STATUS || \
  605. (s)->ring_id == HAL_SRNG_CE_1_DST)
  606. static inline bool hal_reg_write_need_delay(struct hal_reg_write_q_elem *elem)
  607. {
  608. struct hal_srng *srng = elem->srng;
  609. struct hal_soc *hal;
  610. qdf_time_t now;
  611. qdf_iomem_t real_addr;
  612. if (qdf_unlikely(!srng))
  613. return false;
  614. hal = srng->hal_soc;
  615. if (qdf_unlikely(!hal))
  616. return false;
  617. /* Check if it is target srng, and valid shadow reg */
  618. if (qdf_likely(!IS_SRNG_MATCH(srng)))
  619. return false;
  620. if (srng->ring_dir == HAL_SRNG_SRC_RING)
  621. real_addr = SRNG_SRC_ADDR(srng, HP);
  622. else
  623. real_addr = SRNG_DST_ADDR(srng, TP);
  624. if (!hal_validate_shadow_register(hal, real_addr, elem->addr))
  625. return false;
  626. /* Check the time delta from last write of same srng */
  627. now = qdf_get_log_timestamp();
  628. if (qdf_log_timestamp_to_usecs(now - srng->last_dequeue_time) >
  629. SHADOW_WRITE_MIN_DELTA_US)
  630. return false;
  631. /* Delay dequeue, and record */
  632. qdf_udelay(SHADOW_WRITE_DELAY_US);
  633. srng->wstats.dequeue_delay++;
  634. hal->stats.wstats.dequeue_delay++;
  635. return true;
  636. }
  637. #else
  638. static inline bool hal_reg_write_need_delay(struct hal_reg_write_q_elem *elem)
  639. {
  640. return false;
  641. }
  642. #endif
  643. /**
  644. * hal_reg_write_work() - Worker to process delayed writes
  645. * @arg: hal_soc pointer
  646. *
  647. * Return: None
  648. */
  649. static void hal_reg_write_work(void *arg)
  650. {
  651. int32_t q_depth, write_val;
  652. struct hal_soc *hal = arg;
  653. struct hal_reg_write_q_elem *q_elem;
  654. uint64_t delta_us;
  655. uint8_t ring_id;
  656. uint32_t *addr;
  657. uint32_t num_processed = 0;
  658. q_elem = &hal->reg_write_queue[(hal->read_idx)];
  659. q_elem->work_scheduled_time = qdf_get_log_timestamp();
  660. q_elem->cpu_id = qdf_get_cpu();
  661. /* Make sure q_elem consistent in the memory for multi-cores */
  662. qdf_rmb();
  663. if (!q_elem->valid)
  664. return;
  665. q_depth = qdf_atomic_read(&hal->stats.wstats.q_depth);
  666. if (q_depth > hal->stats.wstats.max_q_depth)
  667. hal->stats.wstats.max_q_depth = q_depth;
  668. if (hif_prevent_link_low_power_states(hal->hif_handle)) {
  669. hal->stats.wstats.prevent_l1_fails++;
  670. return;
  671. }
  672. while (true) {
  673. qdf_rmb();
  674. if (!q_elem->valid)
  675. break;
  676. q_elem->dequeue_time = qdf_get_log_timestamp();
  677. ring_id = q_elem->srng->ring_id;
  678. addr = q_elem->addr;
  679. delta_us = qdf_log_timestamp_to_usecs(q_elem->dequeue_time -
  680. q_elem->enqueue_time);
  681. hal_reg_write_fill_sched_delay_hist(hal, delta_us);
  682. hal->stats.wstats.dequeues++;
  683. qdf_atomic_dec(&hal->stats.wstats.q_depth);
  684. if (hal_reg_write_need_delay(q_elem))
  685. hal_verbose_debug("Delay reg writer for srng 0x%x, addr 0x%pK",
  686. q_elem->srng->ring_id, q_elem->addr);
  687. write_val = hal_process_reg_write_q_elem(hal, q_elem);
  688. hal_verbose_debug("read_idx %u srng 0x%x, addr 0x%pK dequeue_val %u sched delay %llu us",
  689. hal->read_idx, ring_id, addr, write_val, delta_us);
  690. qdf_trace_dp_del_reg_write(ring_id, q_elem->enqueue_val,
  691. q_elem->dequeue_val,
  692. q_elem->enqueue_time,
  693. q_elem->dequeue_time);
  694. num_processed++;
  695. hal->read_idx = (hal->read_idx + 1) &
  696. (HAL_REG_WRITE_QUEUE_LEN - 1);
  697. q_elem = &hal->reg_write_queue[(hal->read_idx)];
  698. }
  699. hif_allow_link_low_power_states(hal->hif_handle);
  700. /*
  701. * Decrement active_work_cnt by the number of elements dequeued after
  702. * hif_allow_link_low_power_states.
  703. * This makes sure that hif_try_complete_tasks will wait till we make
  704. * the bus access in hif_allow_link_low_power_states. This will avoid
  705. * race condition between delayed register worker and bus suspend
  706. * (system suspend or runtime suspend).
  707. *
  708. * The following decrement should be done at the end!
  709. */
  710. qdf_atomic_sub(num_processed, &hal->active_work_cnt);
  711. }
  712. static void __hal_flush_reg_write_work(struct hal_soc *hal)
  713. {
  714. qdf_flush_work(&hal->reg_write_work);
  715. qdf_disable_work(&hal->reg_write_work);
  716. }
  717. void hal_flush_reg_write_work(hal_soc_handle_t hal_handle)
  718. { __hal_flush_reg_write_work((struct hal_soc *)hal_handle);
  719. }
  720. /**
  721. * hal_reg_write_enqueue() - enqueue register writes into kworker
  722. * @hal_soc: hal_soc pointer
  723. * @srng: srng pointer
  724. * @addr: iomem address of regiter
  725. * @value: value to be written to iomem address
  726. *
  727. * This function executes from within the SRNG LOCK
  728. *
  729. * Return: None
  730. */
  731. static void hal_reg_write_enqueue(struct hal_soc *hal_soc,
  732. struct hal_srng *srng,
  733. void __iomem *addr,
  734. uint32_t value)
  735. {
  736. struct hal_reg_write_q_elem *q_elem;
  737. uint32_t write_idx;
  738. if (srng->reg_write_in_progress) {
  739. hal_verbose_debug("Already in progress srng ring id 0x%x addr 0x%pK val %u",
  740. srng->ring_id, addr, value);
  741. qdf_atomic_inc(&hal_soc->stats.wstats.coalesces);
  742. srng->wstats.coalesces++;
  743. return;
  744. }
  745. write_idx = qdf_atomic_inc_return(&hal_soc->write_idx);
  746. write_idx = write_idx & (HAL_REG_WRITE_QUEUE_LEN - 1);
  747. q_elem = &hal_soc->reg_write_queue[write_idx];
  748. if (q_elem->valid) {
  749. hal_err("queue full");
  750. QDF_BUG(0);
  751. return;
  752. }
  753. qdf_atomic_inc(&hal_soc->stats.wstats.enqueues);
  754. srng->wstats.enqueues++;
  755. qdf_atomic_inc(&hal_soc->stats.wstats.q_depth);
  756. q_elem->srng = srng;
  757. q_elem->addr = addr;
  758. q_elem->enqueue_val = value;
  759. q_elem->enqueue_time = qdf_get_log_timestamp();
  760. /*
  761. * Before the valid flag is set to true, all the other
  762. * fields in the q_elem needs to be updated in memory.
  763. * Else there is a chance that the dequeuing worker thread
  764. * might read stale entries and process incorrect srng.
  765. */
  766. qdf_wmb();
  767. q_elem->valid = true;
  768. /*
  769. * After all other fields in the q_elem has been updated
  770. * in memory successfully, the valid flag needs to be updated
  771. * in memory in time too.
  772. * Else there is a chance that the dequeuing worker thread
  773. * might read stale valid flag and the work will be bypassed
  774. * for this round. And if there is no other work scheduled
  775. * later, this hal register writing won't be updated any more.
  776. */
  777. qdf_wmb();
  778. srng->reg_write_in_progress = true;
  779. qdf_atomic_inc(&hal_soc->active_work_cnt);
  780. hal_verbose_debug("write_idx %u srng ring id 0x%x addr 0x%pK val %u",
  781. write_idx, srng->ring_id, addr, value);
  782. qdf_queue_work(hal_soc->qdf_dev, hal_soc->reg_write_wq,
  783. &hal_soc->reg_write_work);
  784. }
  785. /**
  786. * hal_delayed_reg_write_init() - Initialization function for delayed reg writes
  787. * @hal_soc: hal_soc pointer
  788. *
  789. * Initialize main data structures to process register writes in a delayed
  790. * workqueue.
  791. *
  792. * Return: QDF_STATUS_SUCCESS on success else a QDF error.
  793. */
  794. static QDF_STATUS hal_delayed_reg_write_init(struct hal_soc *hal)
  795. {
  796. hal->reg_write_wq =
  797. qdf_alloc_high_prior_ordered_workqueue("hal_register_write_wq");
  798. qdf_create_work(0, &hal->reg_write_work, hal_reg_write_work, hal);
  799. hal->reg_write_queue = qdf_mem_malloc(HAL_REG_WRITE_QUEUE_LEN *
  800. sizeof(*hal->reg_write_queue));
  801. if (!hal->reg_write_queue) {
  802. hal_err("unable to allocate memory");
  803. QDF_BUG(0);
  804. return QDF_STATUS_E_NOMEM;
  805. }
  806. /* Initial value of indices */
  807. hal->read_idx = 0;
  808. qdf_atomic_set(&hal->write_idx, -1);
  809. return QDF_STATUS_SUCCESS;
  810. }
  811. /**
  812. * hal_delayed_reg_write_deinit() - De-Initialize delayed reg write processing
  813. * @hal_soc: hal_soc pointer
  814. *
  815. * De-initialize main data structures to process register writes in a delayed
  816. * workqueue.
  817. *
  818. * Return: None
  819. */
  820. static void hal_delayed_reg_write_deinit(struct hal_soc *hal)
  821. {
  822. __hal_flush_reg_write_work(hal);
  823. qdf_flush_workqueue(0, hal->reg_write_wq);
  824. qdf_destroy_workqueue(0, hal->reg_write_wq);
  825. qdf_mem_free(hal->reg_write_queue);
  826. }
  827. #else
  828. static inline QDF_STATUS hal_delayed_reg_write_init(struct hal_soc *hal)
  829. {
  830. return QDF_STATUS_SUCCESS;
  831. }
  832. static inline void hal_delayed_reg_write_deinit(struct hal_soc *hal)
  833. {
  834. }
  835. #endif
  836. #ifdef FEATURE_HAL_DELAYED_REG_WRITE
  837. #ifdef QCA_WIFI_QCA6750
  838. void hal_delayed_reg_write(struct hal_soc *hal_soc,
  839. struct hal_srng *srng,
  840. void __iomem *addr,
  841. uint32_t value)
  842. {
  843. uint8_t vote_access;
  844. switch (srng->ring_type) {
  845. case CE_SRC:
  846. case CE_DST:
  847. case CE_DST_STATUS:
  848. vote_access = hif_get_ep_vote_access(hal_soc->hif_handle,
  849. HIF_EP_VOTE_NONDP_ACCESS);
  850. if ((vote_access == HIF_EP_VOTE_ACCESS_DISABLE) ||
  851. (vote_access == HIF_EP_VOTE_INTERMEDIATE_ACCESS &&
  852. PLD_MHI_STATE_L0 ==
  853. pld_get_mhi_state(hal_soc->qdf_dev->dev))) {
  854. hal_write_address_32_mb(hal_soc, addr, value, false);
  855. qdf_atomic_inc(&hal_soc->stats.wstats.direct);
  856. srng->wstats.direct++;
  857. } else {
  858. hal_reg_write_enqueue(hal_soc, srng, addr, value);
  859. }
  860. break;
  861. default:
  862. if (hif_get_ep_vote_access(hal_soc->hif_handle,
  863. HIF_EP_VOTE_DP_ACCESS) ==
  864. HIF_EP_VOTE_ACCESS_DISABLE ||
  865. hal_is_reg_write_tput_level_high(hal_soc) ||
  866. PLD_MHI_STATE_L0 ==
  867. pld_get_mhi_state(hal_soc->qdf_dev->dev)) {
  868. hal_write_address_32_mb(hal_soc, addr, value, false);
  869. qdf_atomic_inc(&hal_soc->stats.wstats.direct);
  870. srng->wstats.direct++;
  871. } else {
  872. hal_reg_write_enqueue(hal_soc, srng, addr, value);
  873. }
  874. break;
  875. }
  876. }
  877. #else
  878. void hal_delayed_reg_write(struct hal_soc *hal_soc,
  879. struct hal_srng *srng,
  880. void __iomem *addr,
  881. uint32_t value)
  882. {
  883. if (hal_is_reg_write_tput_level_high(hal_soc) ||
  884. pld_is_device_awake(hal_soc->qdf_dev->dev)) {
  885. qdf_atomic_inc(&hal_soc->stats.wstats.direct);
  886. srng->wstats.direct++;
  887. hal_write_address_32_mb(hal_soc, addr, value, false);
  888. } else {
  889. hal_reg_write_enqueue(hal_soc, srng, addr, value);
  890. }
  891. }
  892. #endif
  893. #endif
  894. /**
  895. * hal_attach - Initialize HAL layer
  896. * @hif_handle: Opaque HIF handle
  897. * @qdf_dev: QDF device
  898. *
  899. * Return: Opaque HAL SOC handle
  900. * NULL on failure (if given ring is not available)
  901. *
  902. * This function should be called as part of HIF initialization (for accessing
  903. * copy engines). DP layer will get hal_soc handle using hif_get_hal_handle()
  904. *
  905. */
  906. void *hal_attach(struct hif_opaque_softc *hif_handle, qdf_device_t qdf_dev)
  907. {
  908. struct hal_soc *hal;
  909. int i;
  910. hal = qdf_mem_malloc(sizeof(*hal));
  911. if (!hal) {
  912. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  913. "%s: hal_soc allocation failed", __func__);
  914. goto fail0;
  915. }
  916. hal->hif_handle = hif_handle;
  917. hal->dev_base_addr = hif_get_dev_ba(hif_handle); /* UMAC */
  918. hal->dev_base_addr_ce = hif_get_dev_ba_ce(hif_handle); /* CE */
  919. hal->qdf_dev = qdf_dev;
  920. hal->shadow_rdptr_mem_vaddr = (uint32_t *)qdf_mem_alloc_consistent(
  921. qdf_dev, qdf_dev->dev, sizeof(*(hal->shadow_rdptr_mem_vaddr)) *
  922. HAL_SRNG_ID_MAX, &(hal->shadow_rdptr_mem_paddr));
  923. if (!hal->shadow_rdptr_mem_paddr) {
  924. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  925. "%s: hal->shadow_rdptr_mem_paddr allocation failed",
  926. __func__);
  927. goto fail1;
  928. }
  929. qdf_mem_zero(hal->shadow_rdptr_mem_vaddr,
  930. sizeof(*(hal->shadow_rdptr_mem_vaddr)) * HAL_SRNG_ID_MAX);
  931. hal->shadow_wrptr_mem_vaddr =
  932. (uint32_t *)qdf_mem_alloc_consistent(qdf_dev, qdf_dev->dev,
  933. sizeof(*(hal->shadow_wrptr_mem_vaddr)) * HAL_MAX_LMAC_RINGS,
  934. &(hal->shadow_wrptr_mem_paddr));
  935. if (!hal->shadow_wrptr_mem_vaddr) {
  936. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  937. "%s: hal->shadow_wrptr_mem_vaddr allocation failed",
  938. __func__);
  939. goto fail2;
  940. }
  941. qdf_mem_zero(hal->shadow_wrptr_mem_vaddr,
  942. sizeof(*(hal->shadow_wrptr_mem_vaddr)) * HAL_MAX_LMAC_RINGS);
  943. for (i = 0; i < HAL_SRNG_ID_MAX; i++) {
  944. hal->srng_list[i].initialized = 0;
  945. hal->srng_list[i].ring_id = i;
  946. }
  947. qdf_spinlock_create(&hal->register_access_lock);
  948. hal->register_window = 0;
  949. hal->target_type = hal_get_target_type(hal_soc_to_hal_soc_handle(hal));
  950. hal->version = hif_get_soc_version(hif_handle);
  951. hal->ops = qdf_mem_malloc(sizeof(*hal->ops));
  952. if (!hal->ops) {
  953. hal_err("unable to allocable memory for HAL ops");
  954. goto fail3;
  955. }
  956. hal_target_based_configure(hal);
  957. hal_reg_write_fail_history_init(hal);
  958. qdf_minidump_log(hal, sizeof(*hal), "hal_soc");
  959. qdf_atomic_init(&hal->active_work_cnt);
  960. hal_delayed_reg_write_init(hal);
  961. hal_reo_shared_qaddr_setup((hal_soc_handle_t)hal);
  962. hif_rtpm_register(HIF_RTPM_ID_HAL_REO_CMD, NULL);
  963. return (void *)hal;
  964. fail3:
  965. qdf_mem_free_consistent(qdf_dev, qdf_dev->dev,
  966. sizeof(*hal->shadow_wrptr_mem_vaddr) *
  967. HAL_MAX_LMAC_RINGS,
  968. hal->shadow_wrptr_mem_vaddr,
  969. hal->shadow_wrptr_mem_paddr, 0);
  970. fail2:
  971. qdf_mem_free_consistent(qdf_dev, qdf_dev->dev,
  972. sizeof(*(hal->shadow_rdptr_mem_vaddr)) * HAL_SRNG_ID_MAX,
  973. hal->shadow_rdptr_mem_vaddr, hal->shadow_rdptr_mem_paddr, 0);
  974. fail1:
  975. qdf_mem_free(hal);
  976. fail0:
  977. return NULL;
  978. }
  979. qdf_export_symbol(hal_attach);
  980. /**
  981. * hal_mem_info - Retrieve hal memory base address
  982. *
  983. * @hal_soc: Opaque HAL SOC handle
  984. * @mem: pointer to structure to be updated with hal mem info
  985. */
  986. void hal_get_meminfo(hal_soc_handle_t hal_soc_hdl, struct hal_mem_info *mem)
  987. {
  988. struct hal_soc *hal = (struct hal_soc *)hal_soc_hdl;
  989. mem->dev_base_addr = (void *)hal->dev_base_addr;
  990. mem->shadow_rdptr_mem_vaddr = (void *)hal->shadow_rdptr_mem_vaddr;
  991. mem->shadow_wrptr_mem_vaddr = (void *)hal->shadow_wrptr_mem_vaddr;
  992. mem->shadow_rdptr_mem_paddr = (void *)hal->shadow_rdptr_mem_paddr;
  993. mem->shadow_wrptr_mem_paddr = (void *)hal->shadow_wrptr_mem_paddr;
  994. hif_read_phy_mem_base((void *)hal->hif_handle,
  995. (qdf_dma_addr_t *)&mem->dev_base_paddr);
  996. mem->lmac_srng_start_id = HAL_SRNG_LMAC1_ID_START;
  997. return;
  998. }
  999. qdf_export_symbol(hal_get_meminfo);
  1000. /**
  1001. * hal_detach - Detach HAL layer
  1002. * @hal_soc: HAL SOC handle
  1003. *
  1004. * Return: Opaque HAL SOC handle
  1005. * NULL on failure (if given ring is not available)
  1006. *
  1007. * This function should be called as part of HIF initialization (for accessing
  1008. * copy engines). DP layer will get hal_soc handle using hif_get_hal_handle()
  1009. *
  1010. */
  1011. extern void hal_detach(void *hal_soc)
  1012. {
  1013. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  1014. hif_rtpm_deregister(HIF_RTPM_ID_HAL_REO_CMD);
  1015. hal_delayed_reg_write_deinit(hal);
  1016. hal_reo_shared_qaddr_detach((hal_soc_handle_t)hal);
  1017. qdf_mem_free(hal->ops);
  1018. qdf_mem_free_consistent(hal->qdf_dev, hal->qdf_dev->dev,
  1019. sizeof(*(hal->shadow_rdptr_mem_vaddr)) * HAL_SRNG_ID_MAX,
  1020. hal->shadow_rdptr_mem_vaddr, hal->shadow_rdptr_mem_paddr, 0);
  1021. qdf_mem_free_consistent(hal->qdf_dev, hal->qdf_dev->dev,
  1022. sizeof(*(hal->shadow_wrptr_mem_vaddr)) * HAL_MAX_LMAC_RINGS,
  1023. hal->shadow_wrptr_mem_vaddr, hal->shadow_wrptr_mem_paddr, 0);
  1024. qdf_minidump_remove(hal, sizeof(*hal), "hal_soc");
  1025. qdf_mem_free(hal);
  1026. return;
  1027. }
  1028. qdf_export_symbol(hal_detach);
  1029. #define HAL_CE_CHANNEL_DST_DEST_CTRL_ADDR(x) ((x) + 0x000000b0)
  1030. #define HAL_CE_CHANNEL_DST_DEST_CTRL_DEST_MAX_LENGTH_BMSK 0x0000ffff
  1031. #define HAL_CE_CHANNEL_DST_DEST_RING_CONSUMER_PREFETCH_TIMER_ADDR(x) ((x) + 0x00000040)
  1032. #define HAL_CE_CHANNEL_DST_DEST_RING_CONSUMER_PREFETCH_TIMER_RMSK 0x00000007
  1033. /**
  1034. * hal_ce_dst_setup - Initialize CE destination ring registers
  1035. * @hal_soc: HAL SOC handle
  1036. * @srng: SRNG ring pointer
  1037. */
  1038. static inline void hal_ce_dst_setup(struct hal_soc *hal, struct hal_srng *srng,
  1039. int ring_num)
  1040. {
  1041. uint32_t reg_val = 0;
  1042. uint32_t reg_addr;
  1043. struct hal_hw_srng_config *ring_config =
  1044. HAL_SRNG_CONFIG(hal, CE_DST);
  1045. /* set DEST_MAX_LENGTH according to ce assignment */
  1046. reg_addr = HAL_CE_CHANNEL_DST_DEST_CTRL_ADDR(
  1047. ring_config->reg_start[R0_INDEX] +
  1048. (ring_num * ring_config->reg_size[R0_INDEX]));
  1049. reg_val = HAL_REG_READ(hal, reg_addr);
  1050. reg_val &= ~HAL_CE_CHANNEL_DST_DEST_CTRL_DEST_MAX_LENGTH_BMSK;
  1051. reg_val |= srng->u.dst_ring.max_buffer_length &
  1052. HAL_CE_CHANNEL_DST_DEST_CTRL_DEST_MAX_LENGTH_BMSK;
  1053. HAL_REG_WRITE(hal, reg_addr, reg_val);
  1054. if (srng->prefetch_timer) {
  1055. reg_addr = HAL_CE_CHANNEL_DST_DEST_RING_CONSUMER_PREFETCH_TIMER_ADDR(
  1056. ring_config->reg_start[R0_INDEX] +
  1057. (ring_num * ring_config->reg_size[R0_INDEX]));
  1058. reg_val = HAL_REG_READ(hal, reg_addr);
  1059. reg_val &= ~HAL_CE_CHANNEL_DST_DEST_RING_CONSUMER_PREFETCH_TIMER_RMSK;
  1060. reg_val |= srng->prefetch_timer;
  1061. HAL_REG_WRITE(hal, reg_addr, reg_val);
  1062. reg_val = HAL_REG_READ(hal, reg_addr);
  1063. }
  1064. }
  1065. /**
  1066. * hal_reo_read_write_ctrl_ix - Read or write REO_DESTINATION_RING_CTRL_IX
  1067. * @hal: HAL SOC handle
  1068. * @read: boolean value to indicate if read or write
  1069. * @ix0: pointer to store IX0 reg value
  1070. * @ix1: pointer to store IX1 reg value
  1071. * @ix2: pointer to store IX2 reg value
  1072. * @ix3: pointer to store IX3 reg value
  1073. */
  1074. void hal_reo_read_write_ctrl_ix(hal_soc_handle_t hal_soc_hdl, bool read,
  1075. uint32_t *ix0, uint32_t *ix1,
  1076. uint32_t *ix2, uint32_t *ix3)
  1077. {
  1078. uint32_t reg_offset;
  1079. struct hal_soc *hal = (struct hal_soc *)hal_soc_hdl;
  1080. uint32_t reo_reg_base;
  1081. reo_reg_base = hal_get_reo_reg_base_offset(hal_soc_hdl);
  1082. if (read) {
  1083. if (ix0) {
  1084. reg_offset =
  1085. HAL_REO_DESTINATION_RING_CTRL_IX_0_ADDR(
  1086. reo_reg_base);
  1087. *ix0 = HAL_REG_READ(hal, reg_offset);
  1088. }
  1089. if (ix1) {
  1090. reg_offset =
  1091. HAL_REO_DESTINATION_RING_CTRL_IX_1_ADDR(
  1092. reo_reg_base);
  1093. *ix1 = HAL_REG_READ(hal, reg_offset);
  1094. }
  1095. if (ix2) {
  1096. reg_offset =
  1097. HAL_REO_DESTINATION_RING_CTRL_IX_2_ADDR(
  1098. reo_reg_base);
  1099. *ix2 = HAL_REG_READ(hal, reg_offset);
  1100. }
  1101. if (ix3) {
  1102. reg_offset =
  1103. HAL_REO_DESTINATION_RING_CTRL_IX_3_ADDR(
  1104. reo_reg_base);
  1105. *ix3 = HAL_REG_READ(hal, reg_offset);
  1106. }
  1107. } else {
  1108. if (ix0) {
  1109. reg_offset =
  1110. HAL_REO_DESTINATION_RING_CTRL_IX_0_ADDR(
  1111. reo_reg_base);
  1112. HAL_REG_WRITE_CONFIRM_RETRY(hal, reg_offset,
  1113. *ix0, true);
  1114. }
  1115. if (ix1) {
  1116. reg_offset =
  1117. HAL_REO_DESTINATION_RING_CTRL_IX_1_ADDR(
  1118. reo_reg_base);
  1119. HAL_REG_WRITE_CONFIRM_RETRY(hal, reg_offset,
  1120. *ix1, true);
  1121. }
  1122. if (ix2) {
  1123. reg_offset =
  1124. HAL_REO_DESTINATION_RING_CTRL_IX_2_ADDR(
  1125. reo_reg_base);
  1126. HAL_REG_WRITE_CONFIRM_RETRY(hal, reg_offset,
  1127. *ix2, true);
  1128. }
  1129. if (ix3) {
  1130. reg_offset =
  1131. HAL_REO_DESTINATION_RING_CTRL_IX_3_ADDR(
  1132. reo_reg_base);
  1133. HAL_REG_WRITE_CONFIRM_RETRY(hal, reg_offset,
  1134. *ix3, true);
  1135. }
  1136. }
  1137. }
  1138. qdf_export_symbol(hal_reo_read_write_ctrl_ix);
  1139. /**
  1140. * hal_srng_dst_set_hp_paddr_confirm() - Set physical address to dest ring head
  1141. * pointer and confirm that write went through by reading back the value
  1142. * @srng: sring pointer
  1143. * @paddr: physical address
  1144. *
  1145. * Return: None
  1146. */
  1147. void hal_srng_dst_set_hp_paddr_confirm(struct hal_srng *srng, uint64_t paddr)
  1148. {
  1149. SRNG_DST_REG_WRITE_CONFIRM(srng, HP_ADDR_LSB, paddr & 0xffffffff);
  1150. SRNG_DST_REG_WRITE_CONFIRM(srng, HP_ADDR_MSB, paddr >> 32);
  1151. }
  1152. qdf_export_symbol(hal_srng_dst_set_hp_paddr_confirm);
  1153. /**
  1154. * hal_srng_dst_init_hp() - Initialize destination ring head
  1155. * pointer
  1156. * @hal_soc: hal_soc handle
  1157. * @srng: sring pointer
  1158. * @vaddr: virtual address
  1159. */
  1160. void hal_srng_dst_init_hp(struct hal_soc_handle *hal_soc,
  1161. struct hal_srng *srng,
  1162. uint32_t *vaddr)
  1163. {
  1164. uint32_t reg_offset;
  1165. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  1166. if (!srng)
  1167. return;
  1168. srng->u.dst_ring.hp_addr = vaddr;
  1169. reg_offset = SRNG_DST_ADDR(srng, HP) - hal->dev_base_addr;
  1170. HAL_REG_WRITE_CONFIRM_RETRY(
  1171. hal, reg_offset, srng->u.dst_ring.cached_hp, true);
  1172. if (vaddr) {
  1173. *srng->u.dst_ring.hp_addr = srng->u.dst_ring.cached_hp;
  1174. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1175. "hp_addr=%pK, cached_hp=%d, hp=%d",
  1176. (void *)srng->u.dst_ring.hp_addr,
  1177. srng->u.dst_ring.cached_hp,
  1178. *srng->u.dst_ring.hp_addr);
  1179. }
  1180. }
  1181. qdf_export_symbol(hal_srng_dst_init_hp);
  1182. /**
  1183. * hal_srng_hw_init - Private function to initialize SRNG HW
  1184. * @hal_soc: HAL SOC handle
  1185. * @srng: SRNG ring pointer
  1186. */
  1187. static inline void hal_srng_hw_init(struct hal_soc *hal,
  1188. struct hal_srng *srng)
  1189. {
  1190. if (srng->ring_dir == HAL_SRNG_SRC_RING)
  1191. hal_srng_src_hw_init(hal, srng);
  1192. else
  1193. hal_srng_dst_hw_init(hal, srng);
  1194. }
  1195. #if defined(CONFIG_SHADOW_V2) || defined(CONFIG_SHADOW_V3)
  1196. #define ignore_shadow false
  1197. #define CHECK_SHADOW_REGISTERS true
  1198. #else
  1199. #define ignore_shadow true
  1200. #define CHECK_SHADOW_REGISTERS false
  1201. #endif
  1202. #ifdef WLAN_FEATURE_NEAR_FULL_IRQ
  1203. /**
  1204. * hal_srng_is_near_full_irq_supported() - Check if near full irq is
  1205. * supported on this SRNG
  1206. * @hal_soc: HAL SoC handle
  1207. * @ring_type: SRNG type
  1208. * @ring_num: ring number
  1209. *
  1210. * Return: true, if near full irq is supported for this SRNG
  1211. * false, if near full irq is not supported for this SRNG
  1212. */
  1213. bool hal_srng_is_near_full_irq_supported(hal_soc_handle_t hal_soc,
  1214. int ring_type, int ring_num)
  1215. {
  1216. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  1217. struct hal_hw_srng_config *ring_config =
  1218. HAL_SRNG_CONFIG(hal, ring_type);
  1219. return ring_config->nf_irq_support;
  1220. }
  1221. /**
  1222. * hal_srng_set_msi2_params() - Set MSI2 params to SRNG data structure from
  1223. * ring params
  1224. * @srng: SRNG handle
  1225. * @ring_params: ring params for this SRNG
  1226. *
  1227. * Return: None
  1228. */
  1229. static inline void
  1230. hal_srng_set_msi2_params(struct hal_srng *srng,
  1231. struct hal_srng_params *ring_params)
  1232. {
  1233. srng->msi2_addr = ring_params->msi2_addr;
  1234. srng->msi2_data = ring_params->msi2_data;
  1235. }
  1236. /**
  1237. * hal_srng_get_nf_params() - Get the near full MSI2 params from srng
  1238. * @srng: SRNG handle
  1239. * @ring_params: ring params for this SRNG
  1240. *
  1241. * Return: None
  1242. */
  1243. static inline void
  1244. hal_srng_get_nf_params(struct hal_srng *srng,
  1245. struct hal_srng_params *ring_params)
  1246. {
  1247. ring_params->msi2_addr = srng->msi2_addr;
  1248. ring_params->msi2_data = srng->msi2_data;
  1249. }
  1250. /**
  1251. * hal_srng_set_nf_thresholds() - Set the near full thresholds in SRNG
  1252. * @srng: SRNG handle where the params are to be set
  1253. * @ring_params: ring params, from where threshold is to be fetched
  1254. *
  1255. * Return: None
  1256. */
  1257. static inline void
  1258. hal_srng_set_nf_thresholds(struct hal_srng *srng,
  1259. struct hal_srng_params *ring_params)
  1260. {
  1261. srng->u.dst_ring.nf_irq_support = ring_params->nf_irq_support;
  1262. srng->u.dst_ring.high_thresh = ring_params->high_thresh;
  1263. }
  1264. #else
  1265. static inline void
  1266. hal_srng_set_msi2_params(struct hal_srng *srng,
  1267. struct hal_srng_params *ring_params)
  1268. {
  1269. }
  1270. static inline void
  1271. hal_srng_get_nf_params(struct hal_srng *srng,
  1272. struct hal_srng_params *ring_params)
  1273. {
  1274. }
  1275. static inline void
  1276. hal_srng_set_nf_thresholds(struct hal_srng *srng,
  1277. struct hal_srng_params *ring_params)
  1278. {
  1279. }
  1280. #endif
  1281. #if defined(CLEAR_SW2TCL_CONSUMED_DESC)
  1282. /**
  1283. * hal_srng_last_desc_cleared_init - Initialize SRNG last_desc_cleared ptr
  1284. *
  1285. * @srng: Source ring pointer
  1286. *
  1287. * Return: None
  1288. */
  1289. static inline
  1290. void hal_srng_last_desc_cleared_init(struct hal_srng *srng)
  1291. {
  1292. srng->last_desc_cleared = srng->ring_size - srng->entry_size;
  1293. }
  1294. #else
  1295. static inline
  1296. void hal_srng_last_desc_cleared_init(struct hal_srng *srng)
  1297. {
  1298. }
  1299. #endif /* CLEAR_SW2TCL_CONSUMED_DESC */
  1300. #ifdef WLAN_DP_SRNG_USAGE_WM_TRACKING
  1301. static inline void hal_srng_update_high_wm_thresholds(struct hal_srng *srng)
  1302. {
  1303. srng->high_wm.bin_thresh[HAL_SRNG_HIGH_WM_BIN_90_to_100] =
  1304. ((srng->num_entries * 90) / 100);
  1305. srng->high_wm.bin_thresh[HAL_SRNG_HIGH_WM_BIN_80_to_90] =
  1306. ((srng->num_entries * 80) / 100);
  1307. srng->high_wm.bin_thresh[HAL_SRNG_HIGH_WM_BIN_70_to_80] =
  1308. ((srng->num_entries * 70) / 100);
  1309. srng->high_wm.bin_thresh[HAL_SRNG_HIGH_WM_BIN_60_to_70] =
  1310. ((srng->num_entries * 60) / 100);
  1311. srng->high_wm.bin_thresh[HAL_SRNG_HIGH_WM_BIN_50_to_60] =
  1312. ((srng->num_entries * 50) / 100);
  1313. /* Below 50% threshold is not needed */
  1314. srng->high_wm.bin_thresh[HAL_SRNG_HIGH_WM_BIN_BELOW_50_PERCENT] = 0;
  1315. hal_info("ring_id: %u, wm_thresh- <50:%u, 50-60:%u, 60-70:%u, 70-80:%u, 80-90:%u, 90-100:%u",
  1316. srng->ring_id,
  1317. srng->high_wm.bin_thresh[HAL_SRNG_HIGH_WM_BIN_BELOW_50_PERCENT],
  1318. srng->high_wm.bin_thresh[HAL_SRNG_HIGH_WM_BIN_50_to_60],
  1319. srng->high_wm.bin_thresh[HAL_SRNG_HIGH_WM_BIN_60_to_70],
  1320. srng->high_wm.bin_thresh[HAL_SRNG_HIGH_WM_BIN_70_to_80],
  1321. srng->high_wm.bin_thresh[HAL_SRNG_HIGH_WM_BIN_80_to_90],
  1322. srng->high_wm.bin_thresh[HAL_SRNG_HIGH_WM_BIN_90_to_100]);
  1323. }
  1324. #else
  1325. static inline void hal_srng_update_high_wm_thresholds(struct hal_srng *srng)
  1326. {
  1327. }
  1328. #endif
  1329. /**
  1330. * hal_srng_setup - Initialize HW SRNG ring.
  1331. * @hal_soc: Opaque HAL SOC handle
  1332. * @ring_type: one of the types from hal_ring_type
  1333. * @ring_num: Ring number if there are multiple rings of same type (staring
  1334. * from 0)
  1335. * @mac_id: valid MAC Id should be passed if ring type is one of lmac rings
  1336. * @ring_params: SRNG ring params in hal_srng_params structure.
  1337. * Callers are expected to allocate contiguous ring memory of size
  1338. * 'num_entries * entry_size' bytes and pass the physical and virtual base
  1339. * addresses through 'ring_base_paddr' and 'ring_base_vaddr' in
  1340. * hal_srng_params structure. Ring base address should be 8 byte aligned
  1341. * and size of each ring entry should be queried using the API
  1342. * hal_srng_get_entrysize
  1343. *
  1344. * Return: Opaque pointer to ring on success
  1345. * NULL on failure (if given ring is not available)
  1346. */
  1347. void *hal_srng_setup(void *hal_soc, int ring_type, int ring_num,
  1348. int mac_id, struct hal_srng_params *ring_params)
  1349. {
  1350. int ring_id;
  1351. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  1352. struct hal_srng *srng;
  1353. struct hal_hw_srng_config *ring_config =
  1354. HAL_SRNG_CONFIG(hal, ring_type);
  1355. void *dev_base_addr;
  1356. int i;
  1357. ring_id = hal_get_srng_ring_id(hal_soc, ring_type, ring_num, mac_id);
  1358. if (ring_id < 0)
  1359. return NULL;
  1360. hal_verbose_debug("mac_id %d ring_id %d", mac_id, ring_id);
  1361. srng = hal_get_srng(hal_soc, ring_id);
  1362. if (srng->initialized) {
  1363. hal_verbose_debug("Ring (ring_type, ring_num) already initialized");
  1364. return NULL;
  1365. }
  1366. dev_base_addr = hal->dev_base_addr;
  1367. srng->ring_id = ring_id;
  1368. srng->ring_type = ring_type;
  1369. srng->ring_dir = ring_config->ring_dir;
  1370. srng->ring_base_paddr = ring_params->ring_base_paddr;
  1371. srng->ring_base_vaddr = ring_params->ring_base_vaddr;
  1372. srng->entry_size = ring_config->entry_size;
  1373. srng->num_entries = ring_params->num_entries;
  1374. srng->ring_size = srng->num_entries * srng->entry_size;
  1375. srng->ring_size_mask = srng->ring_size - 1;
  1376. srng->ring_vaddr_end = srng->ring_base_vaddr + srng->ring_size;
  1377. srng->msi_addr = ring_params->msi_addr;
  1378. srng->msi_data = ring_params->msi_data;
  1379. srng->intr_timer_thres_us = ring_params->intr_timer_thres_us;
  1380. srng->intr_batch_cntr_thres_entries =
  1381. ring_params->intr_batch_cntr_thres_entries;
  1382. srng->prefetch_timer = ring_params->prefetch_timer;
  1383. srng->hal_soc = hal_soc;
  1384. hal_srng_set_msi2_params(srng, ring_params);
  1385. hal_srng_update_high_wm_thresholds(srng);
  1386. for (i = 0 ; i < MAX_SRNG_REG_GROUPS; i++) {
  1387. srng->hwreg_base[i] = dev_base_addr + ring_config->reg_start[i]
  1388. + (ring_num * ring_config->reg_size[i]);
  1389. }
  1390. /* Zero out the entire ring memory */
  1391. qdf_mem_zero(srng->ring_base_vaddr, (srng->entry_size *
  1392. srng->num_entries) << 2);
  1393. srng->flags = ring_params->flags;
  1394. /* For cached descriptors flush and invalidate the memory*/
  1395. if (srng->flags & HAL_SRNG_CACHED_DESC) {
  1396. qdf_nbuf_dma_clean_range(
  1397. srng->ring_base_vaddr,
  1398. srng->ring_base_vaddr +
  1399. ((srng->entry_size * srng->num_entries)));
  1400. qdf_nbuf_dma_inv_range(
  1401. srng->ring_base_vaddr,
  1402. srng->ring_base_vaddr +
  1403. ((srng->entry_size * srng->num_entries)));
  1404. }
  1405. #ifdef BIG_ENDIAN_HOST
  1406. /* TODO: See if we should we get these flags from caller */
  1407. srng->flags |= HAL_SRNG_DATA_TLV_SWAP;
  1408. srng->flags |= HAL_SRNG_MSI_SWAP;
  1409. srng->flags |= HAL_SRNG_RING_PTR_SWAP;
  1410. #endif
  1411. hal_srng_last_desc_cleared_init(srng);
  1412. if (srng->ring_dir == HAL_SRNG_SRC_RING) {
  1413. srng->u.src_ring.hp = 0;
  1414. srng->u.src_ring.reap_hp = srng->ring_size -
  1415. srng->entry_size;
  1416. srng->u.src_ring.tp_addr =
  1417. &(hal->shadow_rdptr_mem_vaddr[ring_id]);
  1418. srng->u.src_ring.low_threshold =
  1419. ring_params->low_threshold * srng->entry_size;
  1420. if (ring_config->lmac_ring) {
  1421. /* For LMAC rings, head pointer updates will be done
  1422. * through FW by writing to a shared memory location
  1423. */
  1424. srng->u.src_ring.hp_addr =
  1425. &(hal->shadow_wrptr_mem_vaddr[ring_id -
  1426. HAL_SRNG_LMAC1_ID_START]);
  1427. srng->flags |= HAL_SRNG_LMAC_RING;
  1428. } else if (ignore_shadow || (srng->u.src_ring.hp_addr == 0)) {
  1429. srng->u.src_ring.hp_addr =
  1430. hal_get_window_address(hal,
  1431. SRNG_SRC_ADDR(srng, HP));
  1432. if (CHECK_SHADOW_REGISTERS) {
  1433. QDF_TRACE(QDF_MODULE_ID_TXRX,
  1434. QDF_TRACE_LEVEL_ERROR,
  1435. "%s: Ring (%d, %d) missing shadow config",
  1436. __func__, ring_type, ring_num);
  1437. }
  1438. } else {
  1439. hal_validate_shadow_register(hal,
  1440. SRNG_SRC_ADDR(srng, HP),
  1441. srng->u.src_ring.hp_addr);
  1442. }
  1443. } else {
  1444. /* During initialization loop count in all the descriptors
  1445. * will be set to zero, and HW will set it to 1 on completing
  1446. * descriptor update in first loop, and increments it by 1 on
  1447. * subsequent loops (loop count wraps around after reaching
  1448. * 0xffff). The 'loop_cnt' in SW ring state is the expected
  1449. * loop count in descriptors updated by HW (to be processed
  1450. * by SW).
  1451. */
  1452. hal_srng_set_nf_thresholds(srng, ring_params);
  1453. srng->u.dst_ring.loop_cnt = 1;
  1454. srng->u.dst_ring.tp = 0;
  1455. srng->u.dst_ring.hp_addr =
  1456. &(hal->shadow_rdptr_mem_vaddr[ring_id]);
  1457. if (ring_config->lmac_ring) {
  1458. /* For LMAC rings, tail pointer updates will be done
  1459. * through FW by writing to a shared memory location
  1460. */
  1461. srng->u.dst_ring.tp_addr =
  1462. &(hal->shadow_wrptr_mem_vaddr[ring_id -
  1463. HAL_SRNG_LMAC1_ID_START]);
  1464. srng->flags |= HAL_SRNG_LMAC_RING;
  1465. } else if (ignore_shadow || srng->u.dst_ring.tp_addr == 0) {
  1466. srng->u.dst_ring.tp_addr =
  1467. hal_get_window_address(hal,
  1468. SRNG_DST_ADDR(srng, TP));
  1469. if (CHECK_SHADOW_REGISTERS) {
  1470. QDF_TRACE(QDF_MODULE_ID_TXRX,
  1471. QDF_TRACE_LEVEL_ERROR,
  1472. "%s: Ring (%d, %d) missing shadow config",
  1473. __func__, ring_type, ring_num);
  1474. }
  1475. } else {
  1476. hal_validate_shadow_register(hal,
  1477. SRNG_DST_ADDR(srng, TP),
  1478. srng->u.dst_ring.tp_addr);
  1479. }
  1480. }
  1481. if (!(ring_config->lmac_ring)) {
  1482. hal_srng_hw_init(hal, srng);
  1483. if (ring_type == CE_DST) {
  1484. srng->u.dst_ring.max_buffer_length = ring_params->max_buffer_length;
  1485. hal_ce_dst_setup(hal, srng, ring_num);
  1486. }
  1487. }
  1488. SRNG_LOCK_INIT(&srng->lock);
  1489. srng->srng_event = 0;
  1490. srng->initialized = true;
  1491. return (void *)srng;
  1492. }
  1493. qdf_export_symbol(hal_srng_setup);
  1494. /**
  1495. * hal_srng_cleanup - Deinitialize HW SRNG ring.
  1496. * @hal_soc: Opaque HAL SOC handle
  1497. * @hal_srng: Opaque HAL SRNG pointer
  1498. */
  1499. void hal_srng_cleanup(void *hal_soc, hal_ring_handle_t hal_ring_hdl)
  1500. {
  1501. struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
  1502. SRNG_LOCK_DESTROY(&srng->lock);
  1503. srng->initialized = 0;
  1504. }
  1505. qdf_export_symbol(hal_srng_cleanup);
  1506. /**
  1507. * hal_srng_get_entrysize - Returns size of ring entry in bytes
  1508. * @hal_soc: Opaque HAL SOC handle
  1509. * @ring_type: one of the types from hal_ring_type
  1510. *
  1511. */
  1512. uint32_t hal_srng_get_entrysize(void *hal_soc, int ring_type)
  1513. {
  1514. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  1515. struct hal_hw_srng_config *ring_config =
  1516. HAL_SRNG_CONFIG(hal, ring_type);
  1517. return ring_config->entry_size << 2;
  1518. }
  1519. qdf_export_symbol(hal_srng_get_entrysize);
  1520. /**
  1521. * hal_srng_max_entries - Returns maximum possible number of ring entries
  1522. * @hal_soc: Opaque HAL SOC handle
  1523. * @ring_type: one of the types from hal_ring_type
  1524. *
  1525. * Return: Maximum number of entries for the given ring_type
  1526. */
  1527. uint32_t hal_srng_max_entries(void *hal_soc, int ring_type)
  1528. {
  1529. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  1530. struct hal_hw_srng_config *ring_config =
  1531. HAL_SRNG_CONFIG(hal, ring_type);
  1532. return ring_config->max_size / ring_config->entry_size;
  1533. }
  1534. qdf_export_symbol(hal_srng_max_entries);
  1535. enum hal_srng_dir hal_srng_get_dir(void *hal_soc, int ring_type)
  1536. {
  1537. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  1538. struct hal_hw_srng_config *ring_config =
  1539. HAL_SRNG_CONFIG(hal, ring_type);
  1540. return ring_config->ring_dir;
  1541. }
  1542. /**
  1543. * hal_srng_dump - Dump ring status
  1544. * @srng: hal srng pointer
  1545. */
  1546. void hal_srng_dump(struct hal_srng *srng)
  1547. {
  1548. if (srng->ring_dir == HAL_SRNG_SRC_RING) {
  1549. hal_debug("=== SRC RING %d ===", srng->ring_id);
  1550. hal_debug("hp %u, reap_hp %u, tp %u, cached tp %u",
  1551. srng->u.src_ring.hp,
  1552. srng->u.src_ring.reap_hp,
  1553. *srng->u.src_ring.tp_addr,
  1554. srng->u.src_ring.cached_tp);
  1555. } else {
  1556. hal_debug("=== DST RING %d ===", srng->ring_id);
  1557. hal_debug("tp %u, hp %u, cached tp %u, loop_cnt %u",
  1558. srng->u.dst_ring.tp,
  1559. *srng->u.dst_ring.hp_addr,
  1560. srng->u.dst_ring.cached_hp,
  1561. srng->u.dst_ring.loop_cnt);
  1562. }
  1563. }
  1564. /**
  1565. * hal_get_srng_params - Retrieve SRNG parameters for a given ring from HAL
  1566. *
  1567. * @hal_soc: Opaque HAL SOC handle
  1568. * @hal_ring: Ring pointer (Source or Destination ring)
  1569. * @ring_params: SRNG parameters will be returned through this structure
  1570. */
  1571. extern void hal_get_srng_params(hal_soc_handle_t hal_soc_hdl,
  1572. hal_ring_handle_t hal_ring_hdl,
  1573. struct hal_srng_params *ring_params)
  1574. {
  1575. struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
  1576. int i =0;
  1577. ring_params->ring_id = srng->ring_id;
  1578. ring_params->ring_dir = srng->ring_dir;
  1579. ring_params->entry_size = srng->entry_size;
  1580. ring_params->ring_base_paddr = srng->ring_base_paddr;
  1581. ring_params->ring_base_vaddr = srng->ring_base_vaddr;
  1582. ring_params->num_entries = srng->num_entries;
  1583. ring_params->msi_addr = srng->msi_addr;
  1584. ring_params->msi_data = srng->msi_data;
  1585. ring_params->intr_timer_thres_us = srng->intr_timer_thres_us;
  1586. ring_params->intr_batch_cntr_thres_entries =
  1587. srng->intr_batch_cntr_thres_entries;
  1588. ring_params->low_threshold = srng->u.src_ring.low_threshold;
  1589. ring_params->flags = srng->flags;
  1590. ring_params->ring_id = srng->ring_id;
  1591. for (i = 0 ; i < MAX_SRNG_REG_GROUPS; i++)
  1592. ring_params->hwreg_base[i] = srng->hwreg_base[i];
  1593. hal_srng_get_nf_params(srng, ring_params);
  1594. }
  1595. qdf_export_symbol(hal_get_srng_params);
  1596. void hal_set_low_threshold(hal_ring_handle_t hal_ring_hdl,
  1597. uint32_t low_threshold)
  1598. {
  1599. struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
  1600. srng->u.src_ring.low_threshold = low_threshold * srng->entry_size;
  1601. }
  1602. qdf_export_symbol(hal_set_low_threshold);
  1603. #ifdef FEATURE_RUNTIME_PM
  1604. void
  1605. hal_srng_rtpm_access_end(hal_soc_handle_t hal_soc_hdl,
  1606. hal_ring_handle_t hal_ring_hdl,
  1607. uint32_t rtpm_id)
  1608. {
  1609. if (qdf_unlikely(!hal_ring_hdl)) {
  1610. qdf_print("Error: Invalid hal_ring\n");
  1611. return;
  1612. }
  1613. if (hif_rtpm_get(HIF_RTPM_GET_ASYNC, rtpm_id) == 0) {
  1614. hal_srng_access_end(hal_soc_hdl, hal_ring_hdl);
  1615. hif_rtpm_put(HIF_RTPM_PUT_ASYNC, rtpm_id);
  1616. } else {
  1617. hal_srng_access_end_reap(hal_soc_hdl, hal_ring_hdl);
  1618. hal_srng_set_event(hal_ring_hdl, HAL_SRNG_FLUSH_EVENT);
  1619. hal_srng_inc_flush_cnt(hal_ring_hdl);
  1620. }
  1621. }
  1622. qdf_export_symbol(hal_srng_rtpm_access_end);
  1623. #endif /* FEATURE_RUNTIME_PM */
  1624. #ifdef FORCE_WAKE
  1625. void hal_set_init_phase(hal_soc_handle_t soc, bool init_phase)
  1626. {
  1627. struct hal_soc *hal_soc = (struct hal_soc *)soc;
  1628. hal_soc->init_phase = init_phase;
  1629. }
  1630. #endif /* FORCE_WAKE */