hal_srng.c 43 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360
  1. /*
  2. * Copyright (c) 2016-2017 The Linux Foundation. All rights reserved.
  3. *
  4. * Redistribution and use in source and binary forms, with or without
  5. * modification, are permitted provided that the following conditions are
  6. * met:
  7. * * Redistributions of source code must retain the above copyright
  8. * notice, this list of conditions and the following disclaimer.
  9. * * Redistributions in binary form must reproduce the above
  10. * copyright notice, this list of conditions and the following
  11. * disclaimer in the documentation and/or other materials provided
  12. * with the distribution.
  13. * * Neither the name of The Linux Foundation nor the names of its
  14. * contributors may be used to endorse or promote products derived
  15. * from this software without specific prior written permission.
  16. *
  17. * THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED
  18. * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
  19. * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT
  20. * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
  21. * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
  22. * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
  23. * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
  24. * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
  25. * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
  26. * OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
  27. * IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  28. */
  29. #include "hal_api.h"
  30. #include "wcss_version.h"
  31. /**
  32. * Common SRNG register access macros:
  33. * The SRNG registers are distributed accross various UMAC and LMAC HW blocks,
  34. * but the register group and format is exactly same for all rings, with some
  35. * difference between producer rings (these are 'producer rings' with respect
  36. * to HW and refered as 'destination rings' in SW) and consumer rings (these
  37. * are 'consumer rings' with respect to HW and refered as 'source rings' in SW).
  38. * The following macros provide uniform access to all SRNG rings.
  39. */
  40. /* SRNG registers are split among two groups R0 and R2 and following
  41. * definitions identify the group to which each register belongs to
  42. */
  43. #define R0_INDEX 0
  44. #define R2_INDEX 1
  45. #define HWREG_INDEX(_reg_group) _reg_group ## _ ## INDEX
  46. /* Registers in R0 group */
  47. #define BASE_LSB_GROUP R0
  48. #define BASE_MSB_GROUP R0
  49. #define ID_GROUP R0
  50. #define STATUS_GROUP R0
  51. #define MISC_GROUP R0
  52. #define HP_ADDR_LSB_GROUP R0
  53. #define HP_ADDR_MSB_GROUP R0
  54. #define PRODUCER_INT_SETUP_GROUP R0
  55. #define PRODUCER_INT_STATUS_GROUP R0
  56. #define PRODUCER_FULL_COUNTER_GROUP R0
  57. #define MSI1_BASE_LSB_GROUP R0
  58. #define MSI1_BASE_MSB_GROUP R0
  59. #define MSI1_DATA_GROUP R0
  60. #define HP_TP_SW_OFFSET_GROUP R0
  61. #define TP_ADDR_LSB_GROUP R0
  62. #define TP_ADDR_MSB_GROUP R0
  63. #define CONSUMER_INT_SETUP_IX0_GROUP R0
  64. #define CONSUMER_INT_SETUP_IX1_GROUP R0
  65. #define CONSUMER_INT_STATUS_GROUP R0
  66. #define CONSUMER_EMPTY_COUNTER_GROUP R0
  67. #define CONSUMER_PREFETCH_TIMER_GROUP R0
  68. #define CONSUMER_PREFETCH_STATUS_GROUP R0
  69. /* Registers in R2 group */
  70. #define HP_GROUP R2
  71. #define TP_GROUP R2
  72. /**
  73. * Register definitions for all SRNG based rings are same, except few
  74. * differences between source (HW consumer) and destination (HW producer)
  75. * registers. Following macros definitions provide generic access to all
  76. * SRNG based rings.
  77. * For source rings, we will use the register/field definitions of SW2TCL1
  78. * ring defined in the HW header file mac_tcl_reg_seq_hwioreg.h. To setup
  79. * individual fields, SRNG_SM macros should be used with fields specified
  80. * using SRNG_SRC_FLD(<register>, <field>), Register writes should be done
  81. * using SRNG_SRC_REG_WRITE(<hal_srng>, <register>, <value>).
  82. * Similarly for destination rings we will use definitions of REO2SW1 ring
  83. * defined in the register reo_destination_ring.h. To setup individual
  84. * fields SRNG_SM macros should be used with fields specified using
  85. * SRNG_DST_FLD(<register>, <field>). Register writes should be done using
  86. * SRNG_DST_REG_WRITE(<hal_srng>, <register>, <value>).
  87. */
  88. #define SRNG_DST_REG_OFFSET(_reg, _reg_group) \
  89. HWIO_REO_ ## _reg_group ## _REO2SW1_RING_ ## _reg##_ADDR(0)
  90. #define SRNG_SRC_REG_OFFSET(_reg, _reg_group) \
  91. HWIO_TCL_ ## _reg_group ## _SW2TCL1_RING_ ## _reg ## _ADDR(0)
  92. #define _SRNG_DST_FLD(_reg_group, _reg_fld) \
  93. HWIO_REO_ ## _reg_group ## _REO2SW1_RING_ ## _reg_fld
  94. #define _SRNG_SRC_FLD(_reg_group, _reg_fld) \
  95. HWIO_TCL_ ## _reg_group ## _SW2TCL1_RING_ ## _reg_fld
  96. #define _SRNG_FLD(_reg_group, _reg_fld, _dir) \
  97. _SRNG_ ## _dir ## _FLD(_reg_group, _reg_fld)
  98. #define SRNG_DST_FLD(_reg, _f) _SRNG_FLD(_reg ## _GROUP, _reg ## _ ## _f, DST)
  99. #define SRNG_SRC_FLD(_reg, _f) _SRNG_FLD(_reg ## _GROUP, _reg ## _ ## _f, SRC)
  100. #define SRNG_SRC_R0_START_OFFSET SRNG_SRC_REG_OFFSET(BASE_LSB, R0)
  101. #define SRNG_DST_R0_START_OFFSET SRNG_DST_REG_OFFSET(BASE_LSB, R0)
  102. #define SRNG_SRC_R2_START_OFFSET SRNG_SRC_REG_OFFSET(HP, R2)
  103. #define SRNG_DST_R2_START_OFFSET SRNG_DST_REG_OFFSET(HP, R2)
  104. #define SRNG_SRC_START_OFFSET(_reg_group) \
  105. SRNG_SRC_ ## _reg_group ## _START_OFFSET
  106. #define SRNG_DST_START_OFFSET(_reg_group) \
  107. SRNG_DST_ ## _reg_group ## _START_OFFSET
  108. #define SRNG_REG_ADDR(_srng, _reg, _reg_group, _dir) \
  109. ((_srng)->hwreg_base[HWREG_INDEX(_reg_group)] + \
  110. SRNG_ ## _dir ## _REG_OFFSET(_reg, _reg_group) - \
  111. SRNG_ ## _dir ## _START_OFFSET(_reg_group))
  112. #define SRNG_DST_ADDR(_srng, _reg) \
  113. SRNG_REG_ADDR(_srng, _reg, _reg ## _GROUP, DST)
  114. #define SRNG_SRC_ADDR(_srng, _reg) \
  115. SRNG_REG_ADDR(_srng, _reg, _reg ## _GROUP, SRC)
  116. #define SRNG_REG_WRITE(_srng, _reg, _value, _dir) \
  117. hal_write_address_32_mb(_srng->hal_soc, SRNG_ ## _dir ## _ADDR(_srng, _reg), (_value))
  118. #define SRNG_REG_READ(_srng, _reg, _dir) \
  119. hal_read_address_32_mb(_srng->hal_soc, SRNG_ ## _dir ## _ADDR(_srng, _reg))
  120. #define SRNG_SRC_REG_WRITE(_srng, _reg, _value) \
  121. SRNG_REG_WRITE(_srng, _reg, _value, SRC)
  122. #define SRNG_DST_REG_WRITE(_srng, _reg, _value) \
  123. SRNG_REG_WRITE(_srng, _reg, _value, DST)
  124. #define SRNG_SRC_REG_READ(_srng, _reg) \
  125. SRNG_REG_READ(_srng, _reg, SRC)
  126. #define _SRNG_FM(_reg_fld) _reg_fld ## _BMSK
  127. #define _SRNG_FS(_reg_fld) _reg_fld ## _SHFT
  128. #define SRNG_SM(_reg_fld, _val) \
  129. (((_val) << _SRNG_FS(_reg_fld)) & _SRNG_FM(_reg_fld))
  130. #define SRNG_MS(_reg_fld, _val) \
  131. (((_val) & _SRNG_FM(_reg_fld)) >> _SRNG_FS(_reg_fld))
  132. #define SRNG_MAX_SIZE_DWORDS \
  133. (SRNG_MS(SRNG_SRC_FLD(BASE_MSB, RING_SIZE), 0xffffffff))
  134. /**
  135. * HW ring configuration table to identify hardware ring attributes like
  136. * register addresses, number of rings, ring entry size etc., for each type
  137. * of SRNG ring.
  138. *
  139. * Currently there is just one HW ring table, but there could be multiple
  140. * configurations in future based on HW variants from the same wifi3.0 family
  141. * and hence need to be attached with hal_soc based on HW type
  142. */
  143. #define HAL_SRNG_CONFIG(_hal_soc, _ring_type) (&hw_srng_table[_ring_type])
  144. static struct hal_hw_srng_config hw_srng_table[] = {
  145. /* TODO: max_rings can populated by querying HW capabilities */
  146. { /* REO_DST */
  147. .start_ring_id = HAL_SRNG_REO2SW1,
  148. .max_rings = 4,
  149. .entry_size = sizeof(struct reo_destination_ring) >> 2,
  150. .lmac_ring = FALSE,
  151. .ring_dir = HAL_SRNG_DST_RING,
  152. .reg_start = {
  153. HWIO_REO_R0_REO2SW1_RING_BASE_LSB_ADDR(
  154. SEQ_WCSS_UMAC_REO_REG_OFFSET),
  155. HWIO_REO_R2_REO2SW1_RING_HP_ADDR(
  156. SEQ_WCSS_UMAC_REO_REG_OFFSET)
  157. },
  158. .reg_size = {
  159. HWIO_REO_R0_REO2SW2_RING_BASE_LSB_ADDR(0) -
  160. HWIO_REO_R0_REO2SW1_RING_BASE_LSB_ADDR(0),
  161. HWIO_REO_R2_REO2SW2_RING_HP_ADDR(0) -
  162. HWIO_REO_R2_REO2SW1_RING_HP_ADDR(0),
  163. },
  164. },
  165. { /* REO_EXCEPTION */
  166. /* Designating REO2TCL ring as exception ring. This ring is
  167. * similar to other REO2SW rings though it is named as REO2TCL.
  168. * Any of theREO2SW rings can be used as exception ring.
  169. */
  170. .start_ring_id = HAL_SRNG_REO2TCL,
  171. .max_rings = 1,
  172. .entry_size = sizeof(struct reo_destination_ring) >> 2,
  173. .lmac_ring = FALSE,
  174. .ring_dir = HAL_SRNG_DST_RING,
  175. .reg_start = {
  176. HWIO_REO_R0_REO2TCL_RING_BASE_LSB_ADDR(
  177. SEQ_WCSS_UMAC_REO_REG_OFFSET),
  178. HWIO_REO_R2_REO2TCL_RING_HP_ADDR(
  179. SEQ_WCSS_UMAC_REO_REG_OFFSET)
  180. },
  181. /* Single ring - provide ring size if multiple rings of this
  182. * type are supported */
  183. .reg_size = {},
  184. },
  185. { /* REO_REINJECT */
  186. .start_ring_id = HAL_SRNG_SW2REO,
  187. .max_rings = 1,
  188. .entry_size = sizeof(struct reo_entrance_ring) >> 2,
  189. .lmac_ring = FALSE,
  190. .ring_dir = HAL_SRNG_SRC_RING,
  191. .reg_start = {
  192. HWIO_REO_R0_SW2REO_RING_BASE_LSB_ADDR(
  193. SEQ_WCSS_UMAC_REO_REG_OFFSET),
  194. HWIO_REO_R2_SW2REO_RING_HP_ADDR(
  195. SEQ_WCSS_UMAC_REO_REG_OFFSET)
  196. },
  197. /* Single ring - provide ring size if multiple rings of this
  198. * type are supported */
  199. .reg_size = {},
  200. },
  201. { /* REO_CMD */
  202. .start_ring_id = HAL_SRNG_REO_CMD,
  203. .max_rings = 1,
  204. .entry_size = (sizeof(struct tlv_32_hdr) +
  205. sizeof(struct reo_get_queue_stats)) >> 2,
  206. .lmac_ring = FALSE,
  207. .ring_dir = HAL_SRNG_SRC_RING,
  208. .reg_start = {
  209. HWIO_REO_R0_REO_CMD_RING_BASE_LSB_ADDR(
  210. SEQ_WCSS_UMAC_REO_REG_OFFSET),
  211. HWIO_REO_R2_REO_CMD_RING_HP_ADDR(
  212. SEQ_WCSS_UMAC_REO_REG_OFFSET),
  213. },
  214. /* Single ring - provide ring size if multiple rings of this
  215. * type are supported */
  216. .reg_size = {},
  217. },
  218. { /* REO_STATUS */
  219. .start_ring_id = HAL_SRNG_REO_STATUS,
  220. .max_rings = 1,
  221. .entry_size = (sizeof(struct tlv_32_hdr) +
  222. sizeof(struct reo_get_queue_stats_status)) >> 2,
  223. .lmac_ring = FALSE,
  224. .ring_dir = HAL_SRNG_DST_RING,
  225. .reg_start = {
  226. HWIO_REO_R0_REO_STATUS_RING_BASE_LSB_ADDR(
  227. SEQ_WCSS_UMAC_REO_REG_OFFSET),
  228. HWIO_REO_R2_REO_STATUS_RING_HP_ADDR(
  229. SEQ_WCSS_UMAC_REO_REG_OFFSET),
  230. },
  231. /* Single ring - provide ring size if multiple rings of this
  232. * type are supported */
  233. .reg_size = {},
  234. },
  235. { /* TCL_DATA */
  236. .start_ring_id = HAL_SRNG_SW2TCL1,
  237. .max_rings = 3,
  238. .entry_size = (sizeof(struct tlv_32_hdr) +
  239. sizeof(struct tcl_data_cmd)) >> 2,
  240. .lmac_ring = FALSE,
  241. .ring_dir = HAL_SRNG_SRC_RING,
  242. .reg_start = {
  243. HWIO_TCL_R0_SW2TCL1_RING_BASE_LSB_ADDR(
  244. SEQ_WCSS_UMAC_MAC_TCL_REG_OFFSET),
  245. HWIO_TCL_R2_SW2TCL1_RING_HP_ADDR(
  246. SEQ_WCSS_UMAC_MAC_TCL_REG_OFFSET),
  247. },
  248. .reg_size = {
  249. HWIO_TCL_R0_SW2TCL2_RING_BASE_LSB_ADDR(0) -
  250. HWIO_TCL_R0_SW2TCL1_RING_BASE_LSB_ADDR(0),
  251. HWIO_TCL_R2_SW2TCL2_RING_HP_ADDR(0) -
  252. HWIO_TCL_R2_SW2TCL1_RING_HP_ADDR(0),
  253. },
  254. },
  255. { /* TCL_CMD */
  256. .start_ring_id = HAL_SRNG_SW2TCL_CMD,
  257. .max_rings = 1,
  258. .entry_size = (sizeof(struct tlv_32_hdr) +
  259. sizeof(struct tcl_gse_cmd)) >> 2,
  260. .lmac_ring = FALSE,
  261. .ring_dir = HAL_SRNG_SRC_RING,
  262. .reg_start = {
  263. HWIO_TCL_R0_SW2TCL_CMD_RING_BASE_LSB_ADDR(
  264. SEQ_WCSS_UMAC_MAC_TCL_REG_OFFSET),
  265. HWIO_TCL_R2_SW2TCL_CMD_RING_HP_ADDR(
  266. SEQ_WCSS_UMAC_MAC_TCL_REG_OFFSET),
  267. },
  268. /* Single ring - provide ring size if multiple rings of this
  269. * type are supported */
  270. .reg_size = {},
  271. },
  272. { /* TCL_STATUS */
  273. .start_ring_id = HAL_SRNG_TCL_STATUS,
  274. .max_rings = 1,
  275. .entry_size = (sizeof(struct tlv_32_hdr) +
  276. sizeof(struct tcl_status_ring)) >> 2,
  277. .lmac_ring = FALSE,
  278. .ring_dir = HAL_SRNG_DST_RING,
  279. .reg_start = {
  280. HWIO_TCL_R0_TCL_STATUS1_RING_BASE_LSB_ADDR(
  281. SEQ_WCSS_UMAC_MAC_TCL_REG_OFFSET),
  282. HWIO_TCL_R2_TCL_STATUS1_RING_HP_ADDR(
  283. SEQ_WCSS_UMAC_MAC_TCL_REG_OFFSET),
  284. },
  285. /* Single ring - provide ring size if multiple rings of this
  286. * type are supported */
  287. .reg_size = {},
  288. },
  289. { /* CE_SRC */
  290. .start_ring_id = HAL_SRNG_CE_0_SRC,
  291. .max_rings = 12,
  292. .entry_size = sizeof(struct ce_src_desc) >> 2,
  293. .lmac_ring = FALSE,
  294. .ring_dir = HAL_SRNG_SRC_RING,
  295. .reg_start = {
  296. HWIO_WFSS_CE_CHANNEL_DST_R0_DEST_RING_BASE_LSB_ADDR(
  297. SEQ_WCSS_UMAC_WFSS_CE_0_REG_WFSS_CE_0_CHANNEL_SRC_REG_OFFSET),
  298. HWIO_WFSS_CE_CHANNEL_DST_R2_DEST_RING_HP_ADDR(
  299. SEQ_WCSS_UMAC_WFSS_CE_0_REG_WFSS_CE_0_CHANNEL_SRC_REG_OFFSET),
  300. },
  301. .reg_size = {
  302. SEQ_WCSS_UMAC_WFSS_CE_0_REG_WFSS_CE_1_CHANNEL_SRC_REG_OFFSET -
  303. SEQ_WCSS_UMAC_WFSS_CE_0_REG_WFSS_CE_0_CHANNEL_SRC_REG_OFFSET,
  304. SEQ_WCSS_UMAC_WFSS_CE_0_REG_WFSS_CE_1_CHANNEL_SRC_REG_OFFSET -
  305. SEQ_WCSS_UMAC_WFSS_CE_0_REG_WFSS_CE_0_CHANNEL_SRC_REG_OFFSET,
  306. },
  307. },
  308. { /* CE_DST */
  309. .start_ring_id = HAL_SRNG_CE_0_DST,
  310. .max_rings = 12,
  311. .entry_size = 8 >> 2,
  312. /*TODO: entry_size above should actually be
  313. * sizeof(struct ce_dst_desc) >> 2, but couldn't find definition
  314. * of struct ce_dst_desc in HW header files
  315. */
  316. .lmac_ring = FALSE,
  317. .ring_dir = HAL_SRNG_SRC_RING,
  318. .reg_start = {
  319. HWIO_WFSS_CE_CHANNEL_DST_R0_DEST_RING_BASE_LSB_ADDR(
  320. SEQ_WCSS_UMAC_WFSS_CE_0_REG_WFSS_CE_0_CHANNEL_DST_REG_OFFSET),
  321. HWIO_WFSS_CE_CHANNEL_DST_R2_DEST_RING_HP_ADDR(
  322. SEQ_WCSS_UMAC_WFSS_CE_0_REG_WFSS_CE_0_CHANNEL_DST_REG_OFFSET),
  323. },
  324. .reg_size = {
  325. SEQ_WCSS_UMAC_WFSS_CE_0_REG_WFSS_CE_1_CHANNEL_DST_REG_OFFSET -
  326. SEQ_WCSS_UMAC_WFSS_CE_0_REG_WFSS_CE_0_CHANNEL_DST_REG_OFFSET,
  327. SEQ_WCSS_UMAC_WFSS_CE_0_REG_WFSS_CE_1_CHANNEL_DST_REG_OFFSET -
  328. SEQ_WCSS_UMAC_WFSS_CE_0_REG_WFSS_CE_0_CHANNEL_DST_REG_OFFSET,
  329. },
  330. },
  331. { /* CE_DST_STATUS */
  332. .start_ring_id = HAL_SRNG_CE_0_DST_STATUS,
  333. .max_rings = 12,
  334. .entry_size = sizeof(struct ce_stat_desc) >> 2,
  335. .lmac_ring = FALSE,
  336. .ring_dir = HAL_SRNG_DST_RING,
  337. .reg_start = {
  338. HWIO_WFSS_CE_CHANNEL_DST_R0_STATUS_RING_BASE_LSB_ADDR(
  339. SEQ_WCSS_UMAC_WFSS_CE_0_REG_WFSS_CE_0_CHANNEL_DST_REG_OFFSET),
  340. HWIO_WFSS_CE_CHANNEL_DST_R2_STATUS_RING_HP_ADDR(
  341. SEQ_WCSS_UMAC_WFSS_CE_0_REG_WFSS_CE_0_CHANNEL_DST_REG_OFFSET),
  342. },
  343. /* TODO: check destination status ring registers */
  344. .reg_size = {
  345. SEQ_WCSS_UMAC_WFSS_CE_0_REG_WFSS_CE_1_CHANNEL_DST_REG_OFFSET -
  346. SEQ_WCSS_UMAC_WFSS_CE_0_REG_WFSS_CE_0_CHANNEL_DST_REG_OFFSET,
  347. SEQ_WCSS_UMAC_WFSS_CE_0_REG_WFSS_CE_1_CHANNEL_DST_REG_OFFSET -
  348. SEQ_WCSS_UMAC_WFSS_CE_0_REG_WFSS_CE_0_CHANNEL_DST_REG_OFFSET,
  349. },
  350. },
  351. { /* WBM_IDLE_LINK */
  352. .start_ring_id = HAL_SRNG_WBM_IDLE_LINK,
  353. .max_rings = 1,
  354. .entry_size = sizeof(struct wbm_link_descriptor_ring) >> 2,
  355. .lmac_ring = FALSE,
  356. .ring_dir = HAL_SRNG_SRC_RING,
  357. .reg_start = {
  358. HWIO_WBM_R0_WBM_IDLE_LINK_RING_BASE_LSB_ADDR(SEQ_WCSS_UMAC_WBM_REG_OFFSET),
  359. HWIO_WBM_R2_WBM_IDLE_LINK_RING_HP_ADDR(SEQ_WCSS_UMAC_WBM_REG_OFFSET),
  360. },
  361. /* Single ring - provide ring size if multiple rings of this
  362. * type are supported */
  363. .reg_size = {},
  364. },
  365. { /* SW2WBM_RELEASE */
  366. .start_ring_id = HAL_SRNG_WBM_SW_RELEASE,
  367. .max_rings = 1,
  368. .entry_size = sizeof(struct wbm_release_ring) >> 2,
  369. .lmac_ring = FALSE,
  370. .ring_dir = HAL_SRNG_SRC_RING,
  371. .reg_start = {
  372. HWIO_WBM_R0_SW_RELEASE_RING_BASE_LSB_ADDR(SEQ_WCSS_UMAC_WBM_REG_OFFSET),
  373. HWIO_WBM_R2_SW_RELEASE_RING_HP_ADDR(SEQ_WCSS_UMAC_WBM_REG_OFFSET),
  374. },
  375. /* Single ring - provide ring size if multiple rings of this
  376. * type are supported */
  377. .reg_size = {},
  378. },
  379. { /* WBM2SW_RELEASE */
  380. .start_ring_id = HAL_SRNG_WBM2SW0_RELEASE,
  381. .max_rings = 4,
  382. .entry_size = sizeof(struct wbm_release_ring) >> 2,
  383. .lmac_ring = FALSE,
  384. .ring_dir = HAL_SRNG_DST_RING,
  385. .reg_start = {
  386. HWIO_WBM_R0_WBM2SW0_RELEASE_RING_BASE_LSB_ADDR(SEQ_WCSS_UMAC_WBM_REG_OFFSET),
  387. HWIO_WBM_R2_WBM2SW0_RELEASE_RING_HP_ADDR(SEQ_WCSS_UMAC_WBM_REG_OFFSET),
  388. },
  389. .reg_size = {
  390. HWIO_WBM_R0_WBM2SW1_RELEASE_RING_BASE_LSB_ADDR(SEQ_WCSS_UMAC_WBM_REG_OFFSET) -
  391. HWIO_WBM_R0_WBM2SW0_RELEASE_RING_BASE_LSB_ADDR(SEQ_WCSS_UMAC_WBM_REG_OFFSET),
  392. HWIO_WBM_R2_WBM2SW1_RELEASE_RING_HP_ADDR(SEQ_WCSS_UMAC_WBM_REG_OFFSET) -
  393. HWIO_WBM_R2_WBM2SW0_RELEASE_RING_HP_ADDR(SEQ_WCSS_UMAC_WBM_REG_OFFSET),
  394. },
  395. },
  396. { /* RXDMA_BUF */
  397. .start_ring_id = HAL_SRNG_WMAC1_SW2RXDMA0_BUF0,
  398. #ifdef IPA_OFFLOAD
  399. .max_rings = 3,
  400. #else
  401. .max_rings = 2,
  402. #endif
  403. .entry_size = sizeof(struct wbm_buffer_ring) >> 2,
  404. .lmac_ring = TRUE,
  405. .ring_dir = HAL_SRNG_SRC_RING,
  406. /* reg_start is not set because LMAC rings are not accessed
  407. * from host
  408. */
  409. .reg_start = {},
  410. .reg_size = {},
  411. },
  412. { /* RXDMA_DST */
  413. .start_ring_id = HAL_SRNG_WMAC1_RXDMA2SW0,
  414. .max_rings = 1,
  415. .entry_size = sizeof(struct reo_entrance_ring) >> 2,
  416. .lmac_ring = TRUE,
  417. .ring_dir = HAL_SRNG_DST_RING,
  418. /* reg_start is not set because LMAC rings are not accessed
  419. * from host
  420. */
  421. .reg_start = {},
  422. .reg_size = {},
  423. },
  424. { /* RXDMA_MONITOR_BUF */
  425. .start_ring_id = HAL_SRNG_WMAC1_SW2RXDMA2_BUF,
  426. .max_rings = 1,
  427. .entry_size = sizeof(struct wbm_buffer_ring) >> 2,
  428. .lmac_ring = TRUE,
  429. .ring_dir = HAL_SRNG_SRC_RING,
  430. /* reg_start is not set because LMAC rings are not accessed
  431. * from host
  432. */
  433. .reg_start = {},
  434. .reg_size = {},
  435. },
  436. { /* RXDMA_MONITOR_STATUS */
  437. .start_ring_id = HAL_SRNG_WMAC1_SW2RXDMA1_STATBUF,
  438. .max_rings = 1,
  439. .entry_size = sizeof(struct wbm_buffer_ring) >> 2,
  440. .lmac_ring = TRUE,
  441. .ring_dir = HAL_SRNG_SRC_RING,
  442. /* reg_start is not set because LMAC rings are not accessed
  443. * from host
  444. */
  445. .reg_start = {},
  446. .reg_size = {},
  447. },
  448. { /* RXDMA_MONITOR_DST */
  449. .start_ring_id = HAL_SRNG_WMAC1_RXDMA2SW1,
  450. .max_rings = 1,
  451. .entry_size = sizeof(struct reo_entrance_ring) >> 2,
  452. .lmac_ring = TRUE,
  453. .ring_dir = HAL_SRNG_DST_RING,
  454. /* reg_start is not set because LMAC rings are not accessed
  455. * from host
  456. */
  457. .reg_start = {},
  458. .reg_size = {},
  459. },
  460. { /* RXDMA_MONITOR_DESC */
  461. .start_ring_id = HAL_SRNG_WMAC1_SW2RXDMA1_DESC,
  462. .max_rings = 1,
  463. .entry_size = sizeof(struct wbm_buffer_ring) >> 2,
  464. .lmac_ring = TRUE,
  465. .ring_dir = HAL_SRNG_SRC_RING,
  466. /* reg_start is not set because LMAC rings are not accessed
  467. * from host
  468. */
  469. .reg_start = {},
  470. .reg_size = {},
  471. },
  472. { /* DIR_BUF_RX_DMA_SRC */
  473. .start_ring_id = HAL_SRNG_DIR_BUF_RX_SRC_DMA_RING,
  474. .max_rings = 1,
  475. .entry_size = 2,
  476. .lmac_ring = TRUE,
  477. .ring_dir = HAL_SRNG_SRC_RING,
  478. /* reg_start is not set because LMAC rings are not accessed
  479. * from host
  480. */
  481. .reg_start = {},
  482. .reg_size = {},
  483. },
  484. #ifdef WLAN_FEATURE_CIF_CFR
  485. { /* WIFI_POS_SRC */
  486. .start_ring_id = HAL_SRNG_WIFI_POS_SRC_DMA_RING,
  487. .max_rings = 1,
  488. .entry_size = sizeof(wmi_oem_dma_buf_release_entry) >> 2,
  489. .lmac_ring = TRUE,
  490. .ring_dir = HAL_SRNG_SRC_RING,
  491. /* reg_start is not set because LMAC rings are not accessed
  492. * from host
  493. */
  494. .reg_start = {},
  495. .reg_size = {},
  496. },
  497. #endif
  498. };
  499. /**
  500. * hal_get_srng_ring_id() - get the ring id of a descriped ring
  501. * @hal: hal_soc data structure
  502. * @ring_type: type enum describing the ring
  503. * @ring_num: which ring of the ring type
  504. * @mac_id: which mac does the ring belong to (or 0 for non-lmac rings)
  505. *
  506. * Return: the ring id or -EINVAL if the ring does not exist.
  507. */
  508. static int hal_get_srng_ring_id(struct hal_soc *hal, int ring_type,
  509. int ring_num, int mac_id)
  510. {
  511. struct hal_hw_srng_config *ring_config =
  512. HAL_SRNG_CONFIG(hal, ring_type);
  513. int ring_id;
  514. if (ring_num >= ring_config->max_rings) {
  515. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  516. "%s: ring_num exceeded maximum no. of supported rings\n",
  517. __func__);
  518. return -EINVAL;
  519. }
  520. if (ring_config->lmac_ring) {
  521. ring_id = ring_config->start_ring_id + ring_num +
  522. (mac_id * HAL_MAX_RINGS_PER_LMAC);
  523. } else {
  524. ring_id = ring_config->start_ring_id + ring_num;
  525. }
  526. return ring_id;
  527. }
  528. static struct hal_srng *hal_get_srng(struct hal_soc *hal, int ring_id)
  529. {
  530. /* TODO: Should we allocate srng structures dynamically? */
  531. return &(hal->srng_list[ring_id]);
  532. }
  533. #define HP_OFFSET_IN_REG_START 1
  534. #define OFFSET_FROM_HP_TO_TP 4
  535. static void hal_update_srng_hp_tp_address(void *hal_soc,
  536. int shadow_config_index,
  537. int ring_type,
  538. int ring_num)
  539. {
  540. struct hal_srng *srng;
  541. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  542. int ring_id;
  543. ring_id = hal_get_srng_ring_id(hal_soc, ring_type, ring_num, 0);
  544. if (ring_id < 0)
  545. return;
  546. srng = hal_get_srng(hal_soc, ring_id);
  547. if (srng->ring_dir == HAL_SRNG_DST_RING)
  548. srng->u.dst_ring.tp_addr = SHADOW_REGISTER(shadow_config_index)
  549. + hal->dev_base_addr;
  550. else
  551. srng->u.src_ring.hp_addr = SHADOW_REGISTER(shadow_config_index)
  552. + hal->dev_base_addr;
  553. }
  554. QDF_STATUS hal_set_one_shadow_config(void *hal_soc,
  555. int ring_type,
  556. int ring_num)
  557. {
  558. uint32_t target_register;
  559. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  560. struct hal_hw_srng_config *srng_config = &hw_srng_table[ring_type];
  561. int shadow_config_index = hal->num_shadow_registers_configured;
  562. if (shadow_config_index >= MAX_SHADOW_REGISTERS) {
  563. QDF_ASSERT(0);
  564. return QDF_STATUS_E_RESOURCES;
  565. }
  566. hal->num_shadow_registers_configured++;
  567. target_register = srng_config->reg_start[HP_OFFSET_IN_REG_START];
  568. target_register += (srng_config->reg_size[HP_OFFSET_IN_REG_START]
  569. *ring_num);
  570. /* if the ring is a dst ring, we need to shadow the tail pointer */
  571. if (srng_config->ring_dir == HAL_SRNG_DST_RING)
  572. target_register += OFFSET_FROM_HP_TO_TP;
  573. hal->shadow_config[shadow_config_index].addr = target_register;
  574. /* update hp/tp addr in the hal_soc structure*/
  575. hal_update_srng_hp_tp_address(hal_soc, shadow_config_index, ring_type,
  576. ring_num);
  577. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO,
  578. "%s: target_reg %x, shadow_index %x, ring_type %d, ring num %d\n",
  579. __func__, target_register, shadow_config_index,
  580. ring_type, ring_num);
  581. return QDF_STATUS_SUCCESS;
  582. }
  583. QDF_STATUS hal_construct_shadow_config(void *hal_soc)
  584. {
  585. int ring_type, ring_num;
  586. for (ring_type = 0; ring_type < MAX_RING_TYPES; ring_type++) {
  587. struct hal_hw_srng_config *srng_config =
  588. &hw_srng_table[ring_type];
  589. if (ring_type == CE_SRC ||
  590. ring_type == CE_DST ||
  591. ring_type == CE_DST_STATUS)
  592. continue;
  593. if (srng_config->lmac_ring)
  594. continue;
  595. for (ring_num = 0; ring_num < srng_config->max_rings;
  596. ring_num++)
  597. hal_set_one_shadow_config(hal_soc, ring_type, ring_num);
  598. }
  599. return QDF_STATUS_SUCCESS;
  600. }
  601. void hal_get_shadow_config(void *hal_soc,
  602. struct pld_shadow_reg_v2_cfg **shadow_config,
  603. int *num_shadow_registers_configured)
  604. {
  605. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  606. *shadow_config = hal->shadow_config;
  607. *num_shadow_registers_configured =
  608. hal->num_shadow_registers_configured;
  609. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  610. "%s\n", __func__);
  611. }
  612. static void hal_validate_shadow_register(struct hal_soc *hal,
  613. uint32_t *destination,
  614. uint32_t *shadow_address)
  615. {
  616. unsigned int index;
  617. uint32_t *shadow_0_offset = SHADOW_REGISTER(0) + hal->dev_base_addr;
  618. int destination_ba_offset =
  619. ((char *)destination) - (char *)hal->dev_base_addr;
  620. index = shadow_address - shadow_0_offset;
  621. if (index > MAX_SHADOW_REGISTERS) {
  622. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  623. "%s: index %x out of bounds\n", __func__, index);
  624. goto error;
  625. } else if (hal->shadow_config[index].addr != destination_ba_offset) {
  626. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  627. "%s: sanity check failure, expected %x, found %x\n",
  628. __func__, destination_ba_offset,
  629. hal->shadow_config[index].addr);
  630. goto error;
  631. }
  632. return;
  633. error:
  634. qdf_print("%s: baddr %pK, desination %pK, shadow_address %pK s0offset %pK index %x",
  635. __func__, hal->dev_base_addr, destination, shadow_address,
  636. shadow_0_offset, index);
  637. QDF_BUG(0);
  638. return;
  639. }
  640. static void hal_target_based_configure(struct hal_soc *hal)
  641. {
  642. struct hif_target_info *tgt_info =
  643. hif_get_target_info_handle(hal->hif_handle);
  644. switch (tgt_info->target_type) {
  645. case TARGET_TYPE_QCA6290:
  646. hal->use_register_windowing = true;
  647. break;
  648. default:
  649. break;
  650. }
  651. }
  652. /**
  653. * hal_attach - Initalize HAL layer
  654. * @hif_handle: Opaque HIF handle
  655. * @qdf_dev: QDF device
  656. *
  657. * Return: Opaque HAL SOC handle
  658. * NULL on failure (if given ring is not available)
  659. *
  660. * This function should be called as part of HIF initialization (for accessing
  661. * copy engines). DP layer will get hal_soc handle using hif_get_hal_handle()
  662. *
  663. */
  664. void *hal_attach(void *hif_handle, qdf_device_t qdf_dev)
  665. {
  666. struct hal_soc *hal;
  667. int i;
  668. hal = qdf_mem_malloc(sizeof(*hal));
  669. if (!hal) {
  670. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  671. "%s: hal_soc allocation failed\n", __func__);
  672. goto fail0;
  673. }
  674. hal->hif_handle = hif_handle;
  675. hal->dev_base_addr = hif_get_dev_ba(hif_handle);
  676. hal->qdf_dev = qdf_dev;
  677. hal->shadow_rdptr_mem_vaddr = (uint32_t *)qdf_mem_alloc_consistent(
  678. qdf_dev, qdf_dev->dev, sizeof(*(hal->shadow_rdptr_mem_vaddr)) *
  679. HAL_SRNG_ID_MAX, &(hal->shadow_rdptr_mem_paddr));
  680. if (!hal->shadow_rdptr_mem_paddr) {
  681. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  682. "%s: hal->shadow_rdptr_mem_paddr allocation failed\n",
  683. __func__);
  684. goto fail1;
  685. }
  686. hal->shadow_wrptr_mem_vaddr =
  687. (uint32_t *)qdf_mem_alloc_consistent(qdf_dev, qdf_dev->dev,
  688. sizeof(*(hal->shadow_wrptr_mem_vaddr)) * HAL_MAX_LMAC_RINGS,
  689. &(hal->shadow_wrptr_mem_paddr));
  690. if (!hal->shadow_wrptr_mem_vaddr) {
  691. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  692. "%s: hal->shadow_wrptr_mem_vaddr allocation failed\n",
  693. __func__);
  694. goto fail2;
  695. }
  696. for (i = 0; i < HAL_SRNG_ID_MAX; i++) {
  697. hal->srng_list[i].initialized = 0;
  698. hal->srng_list[i].ring_id = i;
  699. }
  700. qdf_spinlock_create(&hal->register_access_lock);
  701. hal->register_window = 0;
  702. hal_target_based_configure(hal);
  703. return (void *)hal;
  704. fail2:
  705. qdf_mem_free_consistent(qdf_dev, qdf_dev->dev,
  706. sizeof(*(hal->shadow_rdptr_mem_vaddr)) * HAL_SRNG_ID_MAX,
  707. hal->shadow_rdptr_mem_vaddr, hal->shadow_rdptr_mem_paddr, 0);
  708. fail1:
  709. qdf_mem_free(hal);
  710. fail0:
  711. return NULL;
  712. }
  713. /**
  714. * hal_mem_info - Retreive hal memory base address
  715. *
  716. * @hal_soc: Opaque HAL SOC handle
  717. * @mem: pointer to structure to be updated with hal mem info
  718. */
  719. void hal_get_meminfo(void *hal_soc, struct hal_mem_info *mem )
  720. {
  721. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  722. mem->dev_base_addr = (void *)hal->dev_base_addr;
  723. mem->shadow_rdptr_mem_vaddr = (void *)hal->shadow_rdptr_mem_vaddr;
  724. mem->shadow_wrptr_mem_vaddr = (void *)hal->shadow_wrptr_mem_vaddr;
  725. mem->shadow_rdptr_mem_paddr = (void *)hal->shadow_rdptr_mem_paddr;
  726. mem->shadow_wrptr_mem_paddr = (void *)hal->shadow_wrptr_mem_paddr;
  727. hif_read_phy_mem_base(hal->hif_handle, (qdf_dma_addr_t *)&mem->dev_base_paddr);
  728. return;
  729. }
  730. /**
  731. * hal_detach - Detach HAL layer
  732. * @hal_soc: HAL SOC handle
  733. *
  734. * Return: Opaque HAL SOC handle
  735. * NULL on failure (if given ring is not available)
  736. *
  737. * This function should be called as part of HIF initialization (for accessing
  738. * copy engines). DP layer will get hal_soc handle using hif_get_hal_handle()
  739. *
  740. */
  741. extern void hal_detach(void *hal_soc)
  742. {
  743. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  744. qdf_mem_free_consistent(hal->qdf_dev, hal->qdf_dev->dev,
  745. sizeof(*(hal->shadow_rdptr_mem_vaddr)) * HAL_SRNG_ID_MAX,
  746. hal->shadow_rdptr_mem_vaddr, hal->shadow_rdptr_mem_paddr, 0);
  747. qdf_mem_free_consistent(hal->qdf_dev, hal->qdf_dev->dev,
  748. sizeof(*(hal->shadow_wrptr_mem_vaddr)) * HAL_MAX_LMAC_RINGS,
  749. hal->shadow_wrptr_mem_vaddr, hal->shadow_wrptr_mem_paddr, 0);
  750. qdf_mem_free(hal);
  751. return;
  752. }
  753. /**
  754. * hal_srng_src_hw_init - Private function to initialize SRNG
  755. * source ring HW
  756. * @hal_soc: HAL SOC handle
  757. * @srng: SRNG ring pointer
  758. */
  759. static inline void hal_srng_src_hw_init(struct hal_soc *hal,
  760. struct hal_srng *srng)
  761. {
  762. uint32_t reg_val = 0;
  763. uint64_t tp_addr = 0;
  764. HIF_DBG("%s: hw_init srng %d", __func__, srng->ring_id);
  765. if (srng->flags & HAL_SRNG_MSI_INTR) {
  766. SRNG_SRC_REG_WRITE(srng, MSI1_BASE_LSB,
  767. srng->msi_addr & 0xffffffff);
  768. reg_val = SRNG_SM(SRNG_SRC_FLD(MSI1_BASE_MSB, ADDR),
  769. (uint64_t)(srng->msi_addr) >> 32) |
  770. SRNG_SM(SRNG_SRC_FLD(MSI1_BASE_MSB,
  771. MSI1_ENABLE), 1);
  772. SRNG_SRC_REG_WRITE(srng, MSI1_BASE_MSB, reg_val);
  773. SRNG_SRC_REG_WRITE(srng, MSI1_DATA, srng->msi_data);
  774. }
  775. SRNG_SRC_REG_WRITE(srng, BASE_LSB, srng->ring_base_paddr & 0xffffffff);
  776. reg_val = SRNG_SM(SRNG_SRC_FLD(BASE_MSB, RING_BASE_ADDR_MSB),
  777. ((uint64_t)(srng->ring_base_paddr) >> 32)) |
  778. SRNG_SM(SRNG_SRC_FLD(BASE_MSB, RING_SIZE),
  779. srng->entry_size * srng->num_entries);
  780. SRNG_SRC_REG_WRITE(srng, BASE_MSB, reg_val);
  781. #if defined(WCSS_VERSION) && \
  782. ((defined(CONFIG_WIN) && (WCSS_VERSION > 81)) || \
  783. (defined(CONFIG_MCL) && (WCSS_VERSION >= 72)))
  784. reg_val = SRNG_SM(SRNG_SRC_FLD(ID, ENTRY_SIZE), srng->entry_size);
  785. #else
  786. reg_val = SRNG_SM(SRNG_SRC_FLD(ID, RING_ID), srng->ring_id) |
  787. SRNG_SM(SRNG_SRC_FLD(ID, ENTRY_SIZE), srng->entry_size);
  788. #endif
  789. SRNG_SRC_REG_WRITE(srng, ID, reg_val);
  790. /**
  791. * Interrupt setup:
  792. * Default interrupt mode is 'pulse'. Need to setup SW_INTERRUPT_MODE
  793. * if level mode is required
  794. */
  795. reg_val = 0;
  796. /*
  797. * WAR - Hawkeye v1 has a hardware bug which requires timer value to be
  798. * programmed in terms of 1us resolution instead of 8us resolution as
  799. * given in MLD.
  800. */
  801. if (srng->intr_timer_thres_us) {
  802. reg_val |= SRNG_SM(SRNG_SRC_FLD(CONSUMER_INT_SETUP_IX0,
  803. INTERRUPT_TIMER_THRESHOLD),
  804. srng->intr_timer_thres_us);
  805. /* For HK v2 this should be (srng->intr_timer_thres_us >> 3) */
  806. }
  807. if (srng->intr_batch_cntr_thres_entries) {
  808. reg_val |= SRNG_SM(SRNG_SRC_FLD(CONSUMER_INT_SETUP_IX0,
  809. BATCH_COUNTER_THRESHOLD),
  810. srng->intr_batch_cntr_thres_entries *
  811. srng->entry_size);
  812. }
  813. SRNG_SRC_REG_WRITE(srng, CONSUMER_INT_SETUP_IX0, reg_val);
  814. reg_val = 0;
  815. if (srng->flags & HAL_SRNG_LOW_THRES_INTR_ENABLE) {
  816. reg_val |= SRNG_SM(SRNG_SRC_FLD(CONSUMER_INT_SETUP_IX1,
  817. LOW_THRESHOLD), srng->u.src_ring.low_threshold);
  818. }
  819. SRNG_SRC_REG_WRITE(srng, CONSUMER_INT_SETUP_IX1, reg_val);
  820. /* As per HW team, TP_ADDR and HP_ADDR for Idle link ring should
  821. * remain 0 to avoid some WBM stability issues. Remote head/tail
  822. * pointers are not required since this ring is completly managed
  823. * by WBM HW */
  824. if (srng->ring_id != HAL_SRNG_WBM_IDLE_LINK) {
  825. tp_addr = (uint64_t)(hal->shadow_rdptr_mem_paddr +
  826. ((unsigned long)(srng->u.src_ring.tp_addr) -
  827. (unsigned long)(hal->shadow_rdptr_mem_vaddr)));
  828. SRNG_SRC_REG_WRITE(srng, TP_ADDR_LSB, tp_addr & 0xffffffff);
  829. SRNG_SRC_REG_WRITE(srng, TP_ADDR_MSB, tp_addr >> 32);
  830. }
  831. /* Initilaize head and tail pointers to indicate ring is empty */
  832. SRNG_SRC_REG_WRITE(srng, HP, 0);
  833. SRNG_SRC_REG_WRITE(srng, TP, 0);
  834. *(srng->u.src_ring.tp_addr) = 0;
  835. reg_val = ((srng->flags & HAL_SRNG_DATA_TLV_SWAP) ?
  836. SRNG_SM(SRNG_SRC_FLD(MISC, DATA_TLV_SWAP_BIT), 1) : 0) |
  837. ((srng->flags & HAL_SRNG_RING_PTR_SWAP) ?
  838. SRNG_SM(SRNG_SRC_FLD(MISC, HOST_FW_SWAP_BIT), 1) : 0) |
  839. ((srng->flags & HAL_SRNG_MSI_SWAP) ?
  840. SRNG_SM(SRNG_SRC_FLD(MISC, MSI_SWAP_BIT), 1) : 0);
  841. /* Loop count is not used for SRC rings */
  842. reg_val |= SRNG_SM(SRNG_SRC_FLD(MISC, LOOPCNT_DISABLE), 1);
  843. /*
  844. * reg_val |= SRNG_SM(SRNG_SRC_FLD(MISC, SRNG_ENABLE), 1);
  845. * todo: update fw_api and replace with above line
  846. * (when SRNG_ENABLE field for the MISC register is available in fw_api)
  847. * (WCSS_UMAC_CE_0_SRC_WFSS_CE_CHANNEL_SRC_R0_SRC_RING_MISC)
  848. */
  849. reg_val |= 0x40;
  850. SRNG_SRC_REG_WRITE(srng, MISC, reg_val);
  851. }
  852. /**
  853. * hal_ce_dst_setup - Initialize CE destination ring registers
  854. * @hal_soc: HAL SOC handle
  855. * @srng: SRNG ring pointer
  856. */
  857. static inline void hal_ce_dst_setup(struct hal_soc *hal, struct hal_srng *srng,
  858. int ring_num)
  859. {
  860. uint32_t reg_val = 0;
  861. uint32_t reg_addr;
  862. struct hal_hw_srng_config *ring_config =
  863. HAL_SRNG_CONFIG(hal, CE_DST);
  864. /* set DEST_MAX_LENGTH according to ce assignment */
  865. reg_addr = HWIO_WFSS_CE_CHANNEL_DST_R0_DEST_CTRL_ADDR(
  866. ring_config->reg_start[R0_INDEX] +
  867. (ring_num * ring_config->reg_size[R0_INDEX]));
  868. reg_val = HAL_REG_READ(hal, reg_addr);
  869. reg_val &= ~HWIO_WFSS_CE_CHANNEL_DST_R0_DEST_CTRL_DEST_MAX_LENGTH_BMSK;
  870. reg_val |= srng->u.dst_ring.max_buffer_length &
  871. HWIO_WFSS_CE_CHANNEL_DST_R0_DEST_CTRL_DEST_MAX_LENGTH_BMSK;
  872. HAL_REG_WRITE(hal, reg_addr, reg_val);
  873. }
  874. /**
  875. * hal_reo_remap_IX0 - Remap REO ring destination
  876. * @hal: HAL SOC handle
  877. * @remap_val: Remap value
  878. */
  879. void hal_reo_remap_IX0(struct hal_soc *hal, uint32_t remap_val)
  880. {
  881. uint32_t reg_offset = HWIO_REO_R0_DESTINATION_RING_CTRL_IX_0_ADDR(
  882. SEQ_WCSS_UMAC_REO_REG_OFFSET);
  883. HAL_REG_WRITE(hal, reg_offset, remap_val);
  884. }
  885. /**
  886. * hal_srng_dst_set_hp_paddr() - Set physical address to dest ring head pointer
  887. * @srng: sring pointer
  888. * @paddr: physical address
  889. */
  890. void hal_srng_dst_set_hp_paddr(struct hal_srng *srng,
  891. uint64_t paddr)
  892. {
  893. SRNG_DST_REG_WRITE(srng, HP_ADDR_LSB,
  894. paddr & 0xffffffff);
  895. SRNG_DST_REG_WRITE(srng, HP_ADDR_MSB,
  896. paddr >> 32);
  897. }
  898. /**
  899. * hal_srng_dst_init_hp() - Initilaize destination ring head pointer
  900. * @srng: sring pointer
  901. * @vaddr: virtual address
  902. */
  903. void hal_srng_dst_init_hp(struct hal_srng *srng,
  904. uint32_t *vaddr)
  905. {
  906. srng->u.dst_ring.hp_addr = vaddr;
  907. SRNG_DST_REG_WRITE(srng, HP, srng->u.dst_ring.cached_hp);
  908. *(srng->u.dst_ring.hp_addr) = srng->u.dst_ring.cached_hp;
  909. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  910. "hp_addr=%pK, cached_hp=%d, hp=%d\n",
  911. (void *)srng->u.dst_ring.hp_addr, srng->u.dst_ring.cached_hp,
  912. *(srng->u.dst_ring.hp_addr));
  913. }
  914. /**
  915. * hal_srng_dst_hw_init - Private function to initialize SRNG
  916. * destination ring HW
  917. * @hal_soc: HAL SOC handle
  918. * @srng: SRNG ring pointer
  919. */
  920. static inline void hal_srng_dst_hw_init(struct hal_soc *hal,
  921. struct hal_srng *srng)
  922. {
  923. uint32_t reg_val = 0;
  924. uint64_t hp_addr = 0;
  925. HIF_DBG("%s: hw_init srng %d", __func__, srng->ring_id);
  926. if (srng->flags & HAL_SRNG_MSI_INTR) {
  927. SRNG_DST_REG_WRITE(srng, MSI1_BASE_LSB,
  928. srng->msi_addr & 0xffffffff);
  929. reg_val = SRNG_SM(SRNG_DST_FLD(MSI1_BASE_MSB, ADDR),
  930. (uint64_t)(srng->msi_addr) >> 32) |
  931. SRNG_SM(SRNG_DST_FLD(MSI1_BASE_MSB,
  932. MSI1_ENABLE), 1);
  933. SRNG_DST_REG_WRITE(srng, MSI1_BASE_MSB, reg_val);
  934. SRNG_DST_REG_WRITE(srng, MSI1_DATA, srng->msi_data);
  935. }
  936. SRNG_DST_REG_WRITE(srng, BASE_LSB, srng->ring_base_paddr & 0xffffffff);
  937. reg_val = SRNG_SM(SRNG_DST_FLD(BASE_MSB, RING_BASE_ADDR_MSB),
  938. ((uint64_t)(srng->ring_base_paddr) >> 32)) |
  939. SRNG_SM(SRNG_DST_FLD(BASE_MSB, RING_SIZE),
  940. srng->entry_size * srng->num_entries);
  941. SRNG_DST_REG_WRITE(srng, BASE_MSB, reg_val);
  942. reg_val = SRNG_SM(SRNG_DST_FLD(ID, RING_ID), srng->ring_id) |
  943. SRNG_SM(SRNG_DST_FLD(ID, ENTRY_SIZE), srng->entry_size);
  944. SRNG_DST_REG_WRITE(srng, ID, reg_val);
  945. /**
  946. * Interrupt setup:
  947. * Default interrupt mode is 'pulse'. Need to setup SW_INTERRUPT_MODE
  948. * if level mode is required
  949. */
  950. reg_val = 0;
  951. if (srng->intr_timer_thres_us) {
  952. reg_val |= SRNG_SM(SRNG_DST_FLD(PRODUCER_INT_SETUP,
  953. INTERRUPT_TIMER_THRESHOLD),
  954. srng->intr_timer_thres_us >> 3);
  955. }
  956. if (srng->intr_batch_cntr_thres_entries) {
  957. reg_val |= SRNG_SM(SRNG_DST_FLD(PRODUCER_INT_SETUP,
  958. BATCH_COUNTER_THRESHOLD),
  959. srng->intr_batch_cntr_thres_entries *
  960. srng->entry_size);
  961. }
  962. SRNG_DST_REG_WRITE(srng, PRODUCER_INT_SETUP, reg_val);
  963. hp_addr = (uint64_t)(hal->shadow_rdptr_mem_paddr +
  964. ((unsigned long)(srng->u.dst_ring.hp_addr) -
  965. (unsigned long)(hal->shadow_rdptr_mem_vaddr)));
  966. SRNG_DST_REG_WRITE(srng, HP_ADDR_LSB, hp_addr & 0xffffffff);
  967. SRNG_DST_REG_WRITE(srng, HP_ADDR_MSB, hp_addr >> 32);
  968. /* Initilaize head and tail pointers to indicate ring is empty */
  969. SRNG_DST_REG_WRITE(srng, HP, 0);
  970. SRNG_DST_REG_WRITE(srng, TP, 0);
  971. *(srng->u.dst_ring.hp_addr) = 0;
  972. reg_val = ((srng->flags & HAL_SRNG_DATA_TLV_SWAP) ?
  973. SRNG_SM(SRNG_DST_FLD(MISC, DATA_TLV_SWAP_BIT), 1) : 0) |
  974. ((srng->flags & HAL_SRNG_RING_PTR_SWAP) ?
  975. SRNG_SM(SRNG_DST_FLD(MISC, HOST_FW_SWAP_BIT), 1) : 0) |
  976. ((srng->flags & HAL_SRNG_MSI_SWAP) ?
  977. SRNG_SM(SRNG_DST_FLD(MISC, MSI_SWAP_BIT), 1) : 0);
  978. /*
  979. * reg_val |= SRNG_SM(SRNG_SRC_FLD(MISC, SRNG_ENABLE), 1);
  980. * todo: update fw_api and replace with above line
  981. * (when SRNG_ENABLE field for the MISC register is available in fw_api)
  982. * (WCSS_UMAC_CE_0_SRC_WFSS_CE_CHANNEL_SRC_R0_SRC_RING_MISC)
  983. */
  984. reg_val |= 0x40;
  985. SRNG_DST_REG_WRITE(srng, MISC, reg_val);
  986. }
  987. /**
  988. * hal_srng_hw_init - Private function to initialize SRNG HW
  989. * @hal_soc: HAL SOC handle
  990. * @srng: SRNG ring pointer
  991. */
  992. static inline void hal_srng_hw_init(struct hal_soc *hal,
  993. struct hal_srng *srng)
  994. {
  995. if (srng->ring_dir == HAL_SRNG_SRC_RING)
  996. hal_srng_src_hw_init(hal, srng);
  997. else
  998. hal_srng_dst_hw_init(hal, srng);
  999. }
  1000. #ifdef CONFIG_SHADOW_V2
  1001. #define ignore_shadow false
  1002. #define CHECK_SHADOW_REGISTERS true
  1003. #else
  1004. #define ignore_shadow true
  1005. #define CHECK_SHADOW_REGISTERS false
  1006. #endif
  1007. /**
  1008. * hal_srng_setup - Initalize HW SRNG ring.
  1009. * @hal_soc: Opaque HAL SOC handle
  1010. * @ring_type: one of the types from hal_ring_type
  1011. * @ring_num: Ring number if there are multiple rings of same type (staring
  1012. * from 0)
  1013. * @mac_id: valid MAC Id should be passed if ring type is one of lmac rings
  1014. * @ring_params: SRNG ring params in hal_srng_params structure.
  1015. * Callers are expected to allocate contiguous ring memory of size
  1016. * 'num_entries * entry_size' bytes and pass the physical and virtual base
  1017. * addresses through 'ring_base_paddr' and 'ring_base_vaddr' in
  1018. * hal_srng_params structure. Ring base address should be 8 byte aligned
  1019. * and size of each ring entry should be queried using the API
  1020. * hal_srng_get_entrysize
  1021. *
  1022. * Return: Opaque pointer to ring on success
  1023. * NULL on failure (if given ring is not available)
  1024. */
  1025. void *hal_srng_setup(void *hal_soc, int ring_type, int ring_num,
  1026. int mac_id, struct hal_srng_params *ring_params)
  1027. {
  1028. int ring_id;
  1029. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  1030. struct hal_srng *srng;
  1031. struct hal_hw_srng_config *ring_config =
  1032. HAL_SRNG_CONFIG(hal, ring_type);
  1033. void *dev_base_addr;
  1034. int i;
  1035. ring_id = hal_get_srng_ring_id(hal_soc, ring_type, ring_num, mac_id);
  1036. if (ring_id < 0)
  1037. return NULL;
  1038. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1039. "%s: mac_id %d ring_id %d\n",
  1040. __func__, mac_id, ring_id);
  1041. srng = hal_get_srng(hal_soc, ring_id);
  1042. if (srng->initialized) {
  1043. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1044. "%s: Ring (ring_type, ring_num) already initialized\n",
  1045. __func__);
  1046. return NULL;
  1047. }
  1048. dev_base_addr = hal->dev_base_addr;
  1049. srng->ring_id = ring_id;
  1050. srng->ring_dir = ring_config->ring_dir;
  1051. srng->ring_base_paddr = ring_params->ring_base_paddr;
  1052. srng->ring_base_vaddr = ring_params->ring_base_vaddr;
  1053. srng->entry_size = ring_config->entry_size;
  1054. srng->num_entries = ring_params->num_entries;
  1055. srng->ring_size = srng->num_entries * srng->entry_size;
  1056. srng->ring_size_mask = srng->ring_size - 1;
  1057. srng->msi_addr = ring_params->msi_addr;
  1058. srng->msi_data = ring_params->msi_data;
  1059. srng->intr_timer_thres_us = ring_params->intr_timer_thres_us;
  1060. srng->intr_batch_cntr_thres_entries =
  1061. ring_params->intr_batch_cntr_thres_entries;
  1062. srng->hal_soc = hal_soc;
  1063. for (i = 0 ; i < MAX_SRNG_REG_GROUPS; i++) {
  1064. srng->hwreg_base[i] = dev_base_addr + ring_config->reg_start[i]
  1065. + (ring_num * ring_config->reg_size[i]);
  1066. }
  1067. /* Zero out the entire ring memory */
  1068. qdf_mem_zero(srng->ring_base_vaddr, (srng->entry_size *
  1069. srng->num_entries) << 2);
  1070. srng->flags = ring_params->flags;
  1071. #ifdef BIG_ENDIAN_HOST
  1072. /* TODO: See if we should we get these flags from caller */
  1073. srng->flags |= HAL_SRNG_DATA_TLV_SWAP;
  1074. srng->flags |= HAL_SRNG_MSI_SWAP;
  1075. srng->flags |= HAL_SRNG_RING_PTR_SWAP;
  1076. #endif
  1077. if (srng->ring_dir == HAL_SRNG_SRC_RING) {
  1078. srng->u.src_ring.hp = 0;
  1079. srng->u.src_ring.reap_hp = srng->ring_size -
  1080. srng->entry_size;
  1081. srng->u.src_ring.tp_addr =
  1082. &(hal->shadow_rdptr_mem_vaddr[ring_id]);
  1083. srng->u.src_ring.low_threshold =
  1084. ring_params->low_threshold * srng->entry_size;
  1085. if (ring_config->lmac_ring) {
  1086. /* For LMAC rings, head pointer updates will be done
  1087. * through FW by writing to a shared memory location
  1088. */
  1089. srng->u.src_ring.hp_addr =
  1090. &(hal->shadow_wrptr_mem_vaddr[ring_id -
  1091. HAL_SRNG_LMAC1_ID_START]);
  1092. srng->flags |= HAL_SRNG_LMAC_RING;
  1093. } else if (ignore_shadow || (srng->u.src_ring.hp_addr == 0)) {
  1094. srng->u.src_ring.hp_addr = SRNG_SRC_ADDR(srng, HP);
  1095. if (CHECK_SHADOW_REGISTERS) {
  1096. QDF_TRACE(QDF_MODULE_ID_TXRX,
  1097. QDF_TRACE_LEVEL_ERROR,
  1098. "%s: Ring (%d, %d) missing shadow config\n",
  1099. __func__, ring_type, ring_num);
  1100. }
  1101. } else {
  1102. hal_validate_shadow_register(hal,
  1103. SRNG_SRC_ADDR(srng, HP),
  1104. srng->u.src_ring.hp_addr);
  1105. }
  1106. } else {
  1107. /* During initialization loop count in all the descriptors
  1108. * will be set to zero, and HW will set it to 1 on completing
  1109. * descriptor update in first loop, and increments it by 1 on
  1110. * subsequent loops (loop count wraps around after reaching
  1111. * 0xffff). The 'loop_cnt' in SW ring state is the expected
  1112. * loop count in descriptors updated by HW (to be processed
  1113. * by SW).
  1114. */
  1115. srng->u.dst_ring.loop_cnt = 1;
  1116. srng->u.dst_ring.tp = 0;
  1117. srng->u.dst_ring.hp_addr =
  1118. &(hal->shadow_rdptr_mem_vaddr[ring_id]);
  1119. if (ring_config->lmac_ring) {
  1120. /* For LMAC rings, tail pointer updates will be done
  1121. * through FW by writing to a shared memory location
  1122. */
  1123. srng->u.dst_ring.tp_addr =
  1124. &(hal->shadow_wrptr_mem_vaddr[ring_id -
  1125. HAL_SRNG_LMAC1_ID_START]);
  1126. srng->flags |= HAL_SRNG_LMAC_RING;
  1127. } else if (ignore_shadow || srng->u.dst_ring.tp_addr == 0) {
  1128. srng->u.dst_ring.tp_addr = SRNG_DST_ADDR(srng, TP);
  1129. if (CHECK_SHADOW_REGISTERS) {
  1130. QDF_TRACE(QDF_MODULE_ID_TXRX,
  1131. QDF_TRACE_LEVEL_ERROR,
  1132. "%s: Ring (%d, %d) missing shadow config\n",
  1133. __func__, ring_type, ring_num);
  1134. }
  1135. } else {
  1136. hal_validate_shadow_register(hal,
  1137. SRNG_DST_ADDR(srng, TP),
  1138. srng->u.dst_ring.tp_addr);
  1139. }
  1140. }
  1141. if (!(ring_config->lmac_ring)) {
  1142. hal_srng_hw_init(hal, srng);
  1143. if (ring_type == CE_DST) {
  1144. srng->u.dst_ring.max_buffer_length = ring_params->max_buffer_length;
  1145. hal_ce_dst_setup(hal, srng, ring_num);
  1146. }
  1147. }
  1148. SRNG_LOCK_INIT(&srng->lock);
  1149. srng->initialized = true;
  1150. return (void *)srng;
  1151. }
  1152. /**
  1153. * hal_srng_cleanup - Deinitialize HW SRNG ring.
  1154. * @hal_soc: Opaque HAL SOC handle
  1155. * @hal_srng: Opaque HAL SRNG pointer
  1156. */
  1157. void hal_srng_cleanup(void *hal_soc, void *hal_srng)
  1158. {
  1159. struct hal_srng *srng = (struct hal_srng *)hal_srng;
  1160. SRNG_LOCK_DESTROY(&srng->lock);
  1161. srng->initialized = 0;
  1162. }
  1163. /**
  1164. * hal_srng_get_entrysize - Returns size of ring entry in bytes
  1165. * @hal_soc: Opaque HAL SOC handle
  1166. * @ring_type: one of the types from hal_ring_type
  1167. *
  1168. */
  1169. uint32_t hal_srng_get_entrysize(void *hal_soc, int ring_type)
  1170. {
  1171. struct hal_hw_srng_config *ring_config =
  1172. HAL_SRNG_CONFIG(hal, ring_type);
  1173. return ring_config->entry_size << 2;
  1174. }
  1175. /**
  1176. * hal_srng_max_entries - Returns maximum possible number of ring entries
  1177. * @hal_soc: Opaque HAL SOC handle
  1178. * @ring_type: one of the types from hal_ring_type
  1179. *
  1180. * Return: Maximum number of entries for the given ring_type
  1181. */
  1182. uint32_t hal_srng_max_entries(void *hal_soc, int ring_type)
  1183. {
  1184. struct hal_hw_srng_config *ring_config = HAL_SRNG_CONFIG(hal, ring_type);
  1185. return SRNG_MAX_SIZE_DWORDS / ring_config->entry_size;
  1186. }
  1187. enum hal_srng_dir hal_srng_get_dir(void *hal_soc, int ring_type)
  1188. {
  1189. struct hal_hw_srng_config *ring_config =
  1190. HAL_SRNG_CONFIG(hal, ring_type);
  1191. return ring_config->ring_dir;
  1192. }
  1193. /**
  1194. * hal_get_srng_params - Retreive SRNG parameters for a given ring from HAL
  1195. *
  1196. * @hal_soc: Opaque HAL SOC handle
  1197. * @hal_ring: Ring pointer (Source or Destination ring)
  1198. * @ring_params: SRNG parameters will be returned through this structure
  1199. */
  1200. extern void hal_get_srng_params(void *hal_soc, void *hal_ring,
  1201. struct hal_srng_params *ring_params)
  1202. {
  1203. struct hal_srng *srng = (struct hal_srng *)hal_ring;
  1204. int i =0;
  1205. ring_params->ring_id = srng->ring_id;
  1206. ring_params->ring_dir = srng->ring_dir;
  1207. ring_params->entry_size = srng->entry_size;
  1208. ring_params->ring_base_paddr = srng->ring_base_paddr;
  1209. ring_params->ring_base_vaddr = srng->ring_base_vaddr;
  1210. ring_params->num_entries = srng->num_entries;
  1211. ring_params->msi_addr = srng->msi_addr;
  1212. ring_params->msi_data = srng->msi_data;
  1213. ring_params->intr_timer_thres_us = srng->intr_timer_thres_us;
  1214. ring_params->intr_batch_cntr_thres_entries =
  1215. srng->intr_batch_cntr_thres_entries;
  1216. ring_params->low_threshold = srng->u.src_ring.low_threshold;
  1217. ring_params->flags = srng->flags;
  1218. ring_params->ring_id = srng->ring_id;
  1219. for (i = 0 ; i < MAX_SRNG_REG_GROUPS; i++)
  1220. ring_params->hwreg_base[i] = srng->hwreg_base[i];
  1221. }