hal_api_mon.h 27 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962
  1. /*
  2. * Copyright (c) 2017 The Linux Foundation. All rights reserved.
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for
  5. * any purpose with or without fee is hereby granted, provided that the
  6. * above copyright notice and this permission notice appear in all
  7. * copies.
  8. *
  9. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
  10. * WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
  11. * WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
  12. * AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
  13. * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
  14. * PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
  15. * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
  16. * PERFORMANCE OF THIS SOFTWARE.
  17. */
  18. #ifndef _HAL_API_MON_H_
  19. #define _HAL_API_MON_H_
  20. #include "qdf_types.h"
  21. #include "hal_internal.h"
  22. #define HAL_RX_OFFSET(block, field) block##_##field##_OFFSET
  23. #define HAL_RX_LSB(block, field) block##_##field##_LSB
  24. #define HAL_RX_MASk(block, field) block##_##field##_MASK
  25. #define HAL_RX_GET(_ptr, block, field) \
  26. (((*((volatile uint32_t *)_ptr + (HAL_RX_OFFSET(block, field)>>2))) & \
  27. HAL_RX_MASk(block, field)) >> \
  28. HAL_RX_LSB(block, field))
  29. #define HAL_RX_PHY_DATA_RADAR 0x01
  30. #define HAL_SU_MU_CODING_LDPC 0x01
  31. #define HAL_RX_FCS_LEN (4)
  32. #define KEY_EXTIV 0x20
  33. #define HAL_RX_USER_TLV32_TYPE_OFFSET 0x00000000
  34. #define HAL_RX_USER_TLV32_TYPE_LSB 1
  35. #define HAL_RX_USER_TLV32_TYPE_MASK 0x000003FE
  36. #define HAL_RX_USER_TLV32_LEN_OFFSET 0x00000000
  37. #define HAL_RX_USER_TLV32_LEN_LSB 10
  38. #define HAL_RX_USER_TLV32_LEN_MASK 0x003FFC00
  39. #define HAL_RX_USER_TLV32_USERID_OFFSET 0x00000000
  40. #define HAL_RX_USER_TLV32_USERID_LSB 26
  41. #define HAL_RX_USER_TLV32_USERID_MASK 0xFC000000
  42. #define HAL_ALIGN(x, a) HAL_ALIGN_MASK(x, (a)-1)
  43. #define HAL_ALIGN_MASK(x, mask) (typeof(x))(((uint32)(x) + (mask)) & ~(mask))
  44. #define HAL_RX_TLV32_HDR_SIZE 4
  45. #define HAL_RX_GET_USER_TLV32_TYPE(rx_status_tlv_ptr) \
  46. ((*((uint32_t *)(rx_status_tlv_ptr)) & \
  47. HAL_RX_USER_TLV32_TYPE_MASK) >> \
  48. HAL_RX_USER_TLV32_TYPE_LSB)
  49. #define HAL_RX_GET_USER_TLV32_LEN(rx_status_tlv_ptr) \
  50. ((*((uint32_t *)(rx_status_tlv_ptr)) & \
  51. HAL_RX_USER_TLV32_LEN_MASK) >> \
  52. HAL_RX_USER_TLV32_LEN_LSB)
  53. #define HAL_RX_GET_USER_TLV32_USERID(rx_status_tlv_ptr) \
  54. ((*((uint32_t *)(rx_status_tlv_ptr)) & \
  55. HAL_RX_USER_TLV32_USERID_MASK) >> \
  56. HAL_RX_USER_TLV32_USERID_LSB)
  57. #define HAL_TLV_STATUS_PPDU_NOT_DONE 0
  58. #define HAL_TLV_STATUS_PPDU_DONE 1
  59. #define HAL_TLV_STATUS_BUF_DONE 2
  60. #define HAL_MAX_UL_MU_USERS 8
  61. #define HAL_RX_PKT_TYPE_11A 0
  62. #define HAL_RX_PKT_TYPE_11B 1
  63. #define HAL_RX_PKT_TYPE_11N 2
  64. #define HAL_RX_PKT_TYPE_11AC 3
  65. #define HAL_RX_PKT_TYPE_11AX 4
  66. #define HAL_RX_RECEPTION_TYPE_SU 0
  67. #define HAL_RX_RECEPTION_TYPE_MU_MIMO 1
  68. #define HAL_RX_RECEPTION_TYPE_OFDMA 2
  69. #define HAL_RX_RECEPTION_TYPE_MU_OFDMA 3
  70. #define HAL_11B_RATE_0MCS 11
  71. #define HAL_11B_RATE_1MCS 5.5
  72. #define HAL_11B_RATE_2MCS 2
  73. #define HAL_11B_RATE_3MCS 1
  74. #define HAL_11B_RATE_4MCS 11
  75. #define HAL_11B_RATE_5MCS 5.5
  76. #define HAL_11B_RATE_6MCS 2
  77. #define HAL_11A_RATE_0MCS 48
  78. #define HAL_11A_RATE_1MCS 24
  79. #define HAL_11A_RATE_2MCS 12
  80. #define HAL_11A_RATE_3MCS 6
  81. #define HAL_11A_RATE_4MCS 54
  82. #define HAL_11A_RATE_5MCS 36
  83. #define HAL_11A_RATE_6MCS 18
  84. #define HAL_11A_RATE_7MCS 9
  85. #define HE_GI_0_8 0
  86. #define HE_GI_1_6 1
  87. #define HE_GI_3_2 2
  88. #define HE_LTF_1_X 0
  89. #define HE_LTF_2_X 1
  90. #define HE_LTF_4_X 2
  91. #define VHT_SIG_SU_NSS_MASK 0x7
  92. enum {
  93. HAL_HW_RX_DECAP_FORMAT_RAW = 0,
  94. HAL_HW_RX_DECAP_FORMAT_NWIFI,
  95. HAL_HW_RX_DECAP_FORMAT_ETH2,
  96. HAL_HW_RX_DECAP_FORMAT_8023,
  97. };
  98. enum {
  99. DP_PPDU_STATUS_START,
  100. DP_PPDU_STATUS_DONE,
  101. };
  102. static inline
  103. uint32_t HAL_RX_MON_HW_RX_DESC_SIZE(void)
  104. {
  105. /* return the HW_RX_DESC size */
  106. return sizeof(struct rx_pkt_tlvs);
  107. }
  108. static inline
  109. uint8_t *HAL_RX_MON_DEST_GET_DESC(uint8_t *data)
  110. {
  111. return data;
  112. }
  113. static inline
  114. uint32_t HAL_RX_DESC_GET_MPDU_LENGTH_ERR(void *hw_desc_addr)
  115. {
  116. struct rx_attention *rx_attn;
  117. struct rx_pkt_tlvs *rx_desc = (struct rx_pkt_tlvs *)hw_desc_addr;
  118. rx_attn = &rx_desc->attn_tlv.rx_attn;
  119. return HAL_RX_GET(rx_attn, RX_ATTENTION_1, MPDU_LENGTH_ERR);
  120. }
  121. static inline
  122. uint32_t HAL_RX_DESC_GET_MPDU_FCS_ERR(void *hw_desc_addr)
  123. {
  124. struct rx_attention *rx_attn;
  125. struct rx_pkt_tlvs *rx_desc = (struct rx_pkt_tlvs *)hw_desc_addr;
  126. rx_attn = &rx_desc->attn_tlv.rx_attn;
  127. return HAL_RX_GET(rx_attn, RX_ATTENTION_1, FCS_ERR);
  128. }
  129. static inline
  130. uint32_t
  131. HAL_RX_DESC_GET_DECAP_FORMAT(void *hw_desc_addr) {
  132. struct rx_msdu_start *rx_msdu_start;
  133. struct rx_pkt_tlvs *rx_desc = (struct rx_pkt_tlvs *)hw_desc_addr;
  134. rx_msdu_start = &rx_desc->msdu_start_tlv.rx_msdu_start;
  135. return HAL_RX_GET(rx_msdu_start, RX_MSDU_START_2, DECAP_FORMAT);
  136. }
  137. static inline
  138. uint8_t *
  139. HAL_RX_DESC_GET_80211_HDR(void *hw_desc_addr) {
  140. uint8_t *rx_pkt_hdr;
  141. struct rx_pkt_tlvs *rx_desc = (struct rx_pkt_tlvs *)hw_desc_addr;
  142. rx_pkt_hdr = &rx_desc->pkt_hdr_tlv.rx_pkt_hdr[0];
  143. return rx_pkt_hdr;
  144. }
  145. static inline
  146. uint32_t HAL_RX_MON_HW_DESC_GET_PPDUID_GET(void *hw_desc_addr)
  147. {
  148. struct rx_mpdu_info *rx_mpdu_info;
  149. struct rx_pkt_tlvs *rx_desc = (struct rx_pkt_tlvs *)hw_desc_addr;
  150. rx_mpdu_info =
  151. &rx_desc->mpdu_start_tlv.rx_mpdu_start.rx_mpdu_info_details;
  152. return HAL_RX_GET(rx_mpdu_info, RX_MPDU_INFO_0, PHY_PPDU_ID);
  153. }
  154. /* TODO: Move all Rx descriptor functions to hal_rx.h to avoid duplication */
  155. static inline
  156. uint32_t hal_rx_desc_is_first_msdu(void *hw_desc_addr)
  157. {
  158. struct rx_pkt_tlvs *rx_tlvs = (struct rx_pkt_tlvs *)hw_desc_addr;
  159. struct rx_msdu_end *msdu_end = &rx_tlvs->msdu_end_tlv.rx_msdu_end;
  160. return HAL_RX_GET(msdu_end, RX_MSDU_END_5, FIRST_MSDU);
  161. }
  162. #define HAL_RX_BUFFER_ADDR_31_0_GET(buff_addr_info) \
  163. (_HAL_MS((*_OFFSET_TO_WORD_PTR(buff_addr_info, \
  164. BUFFER_ADDR_INFO_0_BUFFER_ADDR_31_0_OFFSET)), \
  165. BUFFER_ADDR_INFO_0_BUFFER_ADDR_31_0_MASK, \
  166. BUFFER_ADDR_INFO_0_BUFFER_ADDR_31_0_LSB))
  167. #define HAL_RX_REO_ENT_BUFFER_ADDR_39_32_GET(reo_ent_desc) \
  168. (HAL_RX_BUFFER_ADDR_39_32_GET(& \
  169. (((struct reo_entrance_ring *)reo_ent_desc) \
  170. ->reo_level_mpdu_frame_info.msdu_link_desc_addr_info)))
  171. #define HAL_RX_REO_ENT_BUFFER_ADDR_31_0_GET(reo_ent_desc) \
  172. (HAL_RX_BUFFER_ADDR_31_0_GET(& \
  173. (((struct reo_entrance_ring *)reo_ent_desc) \
  174. ->reo_level_mpdu_frame_info.msdu_link_desc_addr_info)))
  175. #define HAL_RX_REO_ENT_BUF_COOKIE_GET(reo_ent_desc) \
  176. (HAL_RX_BUF_COOKIE_GET(& \
  177. (((struct reo_entrance_ring *)reo_ent_desc) \
  178. ->reo_level_mpdu_frame_info.msdu_link_desc_addr_info)))
  179. /**
  180. * hal_rx_reo_ent_buf_paddr_get: Gets the physical address and
  181. * cookie from the REO entrance ring element
  182. *
  183. * @ hal_rx_desc_cookie: Opaque cookie pointer used by HAL to get to
  184. * the current descriptor
  185. * @ buf_info: structure to return the buffer information
  186. * @ msdu_cnt: pointer to msdu count in MPDU
  187. * Return: void
  188. */
  189. static inline
  190. void hal_rx_reo_ent_buf_paddr_get(void *rx_desc,
  191. struct hal_buf_info *buf_info,
  192. void **pp_buf_addr_info,
  193. uint32_t *msdu_cnt
  194. )
  195. {
  196. struct reo_entrance_ring *reo_ent_ring =
  197. (struct reo_entrance_ring *)rx_desc;
  198. struct buffer_addr_info *buf_addr_info;
  199. struct rx_mpdu_desc_info *rx_mpdu_desc_info_details;
  200. uint32_t loop_cnt;
  201. rx_mpdu_desc_info_details =
  202. &reo_ent_ring->reo_level_mpdu_frame_info.rx_mpdu_desc_info_details;
  203. *msdu_cnt = HAL_RX_GET(rx_mpdu_desc_info_details,
  204. RX_MPDU_DESC_INFO_0, MSDU_COUNT);
  205. loop_cnt = HAL_RX_GET(reo_ent_ring, REO_ENTRANCE_RING_7, LOOPING_COUNT);
  206. buf_addr_info =
  207. &reo_ent_ring->reo_level_mpdu_frame_info.msdu_link_desc_addr_info;
  208. buf_info->paddr =
  209. (HAL_RX_BUFFER_ADDR_31_0_GET(buf_addr_info) |
  210. ((uint64_t)
  211. (HAL_RX_BUFFER_ADDR_39_32_GET(buf_addr_info)) << 32));
  212. buf_info->sw_cookie = HAL_RX_BUF_COOKIE_GET(buf_addr_info);
  213. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  214. "[%s][%d] ReoAddr=%pK, addrInfo=%pK, paddr=0x%llx, loopcnt=%d\n",
  215. __func__, __LINE__, reo_ent_ring, buf_addr_info,
  216. (unsigned long long)buf_info->paddr, loop_cnt);
  217. *pp_buf_addr_info = (void *)buf_addr_info;
  218. }
  219. static inline
  220. void hal_rx_mon_next_link_desc_get(void *rx_msdu_link_desc,
  221. struct hal_buf_info *buf_info, void **pp_buf_addr_info)
  222. {
  223. struct rx_msdu_link *msdu_link =
  224. (struct rx_msdu_link *)rx_msdu_link_desc;
  225. struct buffer_addr_info *buf_addr_info;
  226. buf_addr_info = &msdu_link->next_msdu_link_desc_addr_info;
  227. buf_info->paddr =
  228. (HAL_RX_BUFFER_ADDR_31_0_GET(buf_addr_info) |
  229. ((uint64_t)
  230. (HAL_RX_BUFFER_ADDR_39_32_GET(buf_addr_info)) << 32));
  231. buf_info->sw_cookie = HAL_RX_BUF_COOKIE_GET(buf_addr_info);
  232. *pp_buf_addr_info = (void *)buf_addr_info;
  233. }
  234. /**
  235. * hal_rx_msdu_link_desc_set: Retrieves MSDU Link Descriptor to WBM
  236. *
  237. * @ soc : HAL version of the SOC pointer
  238. * @ src_srng_desc : void pointer to the WBM Release Ring descriptor
  239. * @ buf_addr_info : void pointer to the buffer_addr_info
  240. *
  241. * Return: void
  242. */
  243. static inline void hal_rx_mon_msdu_link_desc_set(struct hal_soc *soc,
  244. void *src_srng_desc, void *buf_addr_info)
  245. {
  246. struct buffer_addr_info *wbm_srng_buffer_addr_info =
  247. (struct buffer_addr_info *)src_srng_desc;
  248. uint64_t paddr;
  249. struct buffer_addr_info *p_buffer_addr_info =
  250. (struct buffer_addr_info *)buf_addr_info;
  251. paddr =
  252. (HAL_RX_BUFFER_ADDR_31_0_GET(buf_addr_info) |
  253. ((uint64_t)
  254. (HAL_RX_BUFFER_ADDR_39_32_GET(buf_addr_info)) << 32));
  255. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  256. "[%s][%d] src_srng_desc=%pK, buf_addr=0x%llx, cookie=0x%llx\n",
  257. __func__, __LINE__, src_srng_desc, (unsigned long long)paddr,
  258. (unsigned long long)p_buffer_addr_info->sw_buffer_cookie);
  259. /* Structure copy !!! */
  260. *wbm_srng_buffer_addr_info =
  261. *((struct buffer_addr_info *)buf_addr_info);
  262. }
  263. static inline
  264. uint32 hal_get_rx_msdu_link_desc_size(void)
  265. {
  266. return sizeof(struct rx_msdu_link);
  267. }
  268. enum {
  269. HAL_PKT_TYPE_OFDM = 0,
  270. HAL_PKT_TYPE_CCK,
  271. HAL_PKT_TYPE_HT,
  272. HAL_PKT_TYPE_VHT,
  273. HAL_PKT_TYPE_HE,
  274. };
  275. enum {
  276. HAL_SGI_0_8_US,
  277. HAL_SGI_0_4_US,
  278. HAL_SGI_1_6_US,
  279. HAL_SGI_3_2_US,
  280. };
  281. enum {
  282. HAL_FULL_RX_BW_20,
  283. HAL_FULL_RX_BW_40,
  284. HAL_FULL_RX_BW_80,
  285. HAL_FULL_RX_BW_160,
  286. };
  287. enum {
  288. HAL_RX_TYPE_SU,
  289. HAL_RX_TYPE_MU_MIMO,
  290. HAL_RX_TYPE_MU_OFDMA,
  291. HAL_RX_TYPE_MU_OFDMA_MIMO,
  292. };
  293. /**
  294. * hal_rx_mon_hw_desc_get_mpdu_status: Retrieve MPDU status
  295. *
  296. * @ hw_desc_addr: Start address of Rx HW TLVs
  297. * @ rs: Status for monitor mode
  298. *
  299. * Return: void
  300. */
  301. static inline
  302. void hal_rx_mon_hw_desc_get_mpdu_status(void *hw_desc_addr,
  303. struct mon_rx_status *rs)
  304. {
  305. struct rx_msdu_start *rx_msdu_start;
  306. struct rx_pkt_tlvs *rx_desc = (struct rx_pkt_tlvs *)hw_desc_addr;
  307. uint32_t reg_value;
  308. static uint32_t sgi_hw_to_cdp[] = {
  309. CDP_SGI_0_8_US,
  310. CDP_SGI_0_4_US,
  311. CDP_SGI_1_6_US,
  312. CDP_SGI_3_2_US,
  313. };
  314. rx_msdu_start = &rx_desc->msdu_start_tlv.rx_msdu_start;
  315. rs->ant_signal_db = HAL_RX_GET(rx_msdu_start,
  316. RX_MSDU_START_5, USER_RSSI);
  317. rs->is_stbc = HAL_RX_GET(rx_msdu_start, RX_MSDU_START_5, STBC);
  318. reg_value = HAL_RX_GET(rx_msdu_start, RX_MSDU_START_5, SGI);
  319. rs->sgi = sgi_hw_to_cdp[reg_value];
  320. #if !defined(QCA_WIFI_QCA6290_11AX)
  321. rs->nr_ant = HAL_RX_GET(rx_msdu_start, RX_MSDU_START_5, NSS);
  322. #endif
  323. reg_value = HAL_RX_GET(rx_msdu_start, RX_MSDU_START_5, PKT_TYPE);
  324. switch (reg_value) {
  325. case HAL_RX_PKT_TYPE_11N:
  326. rs->ht_flags = 1;
  327. break;
  328. case HAL_RX_PKT_TYPE_11AC:
  329. rs->vht_flags = 1;
  330. reg_value = HAL_RX_GET(rx_msdu_start, RX_MSDU_START_5,
  331. RECEIVE_BANDWIDTH);
  332. rs->vht_flag_values2 = reg_value;
  333. break;
  334. case HAL_RX_PKT_TYPE_11AX:
  335. rs->he_flags = 1;
  336. break;
  337. default:
  338. break;
  339. }
  340. reg_value = HAL_RX_GET(rx_msdu_start, RX_MSDU_START_5, RECEPTION_TYPE);
  341. rs->beamformed = (reg_value == HAL_RX_RECEPTION_TYPE_MU_MIMO) ? 1 : 0;
  342. /* TODO: rs->beamformed should be set for SU beamforming also */
  343. }
  344. struct hal_rx_ppdu_user_info {
  345. };
  346. struct hal_rx_ppdu_common_info {
  347. uint32_t ppdu_id;
  348. uint32_t last_ppdu_id;
  349. uint32_t ppdu_timestamp;
  350. };
  351. struct hal_rx_ppdu_info {
  352. struct hal_rx_ppdu_common_info com_info;
  353. struct hal_rx_ppdu_user_info user_info[HAL_MAX_UL_MU_USERS];
  354. struct mon_rx_status rx_status;
  355. uint8_t *first_msdu_payload;
  356. };
  357. static inline uint32_t
  358. hal_get_rx_status_buf_size(void) {
  359. /* RX status buffer size is hard coded for now */
  360. return 2048;
  361. }
  362. static inline uint8_t*
  363. hal_rx_status_get_next_tlv(uint8_t *rx_tlv) {
  364. uint32_t tlv_len, tlv_tag;
  365. tlv_len = HAL_RX_GET_USER_TLV32_LEN(rx_tlv);
  366. tlv_tag = HAL_RX_GET_USER_TLV32_TYPE(rx_tlv);
  367. /* The actual length of PPDU_END is the combined lenght of many PHY
  368. * TLVs that follow. Skip the TLV header and
  369. * rx_rxpcu_classification_overview that follows the header to get to
  370. * next TLV.
  371. */
  372. if (tlv_tag == WIFIRX_PPDU_END_E)
  373. tlv_len = sizeof(struct rx_rxpcu_classification_overview);
  374. return (uint8_t *)(((unsigned long)(rx_tlv + tlv_len +
  375. HAL_RX_TLV32_HDR_SIZE + 3)) & (~((unsigned long)3)));
  376. }
  377. static inline uint32_t
  378. hal_rx_status_get_tlv_info(void *rx_tlv, struct hal_rx_ppdu_info *ppdu_info)
  379. {
  380. uint32_t tlv_tag, user_id, tlv_len, value;
  381. uint8_t group_id = 0;
  382. uint16_t he_gi = 0;
  383. uint16_t he_ltf = 0;
  384. tlv_tag = HAL_RX_GET_USER_TLV32_TYPE(rx_tlv);
  385. user_id = HAL_RX_GET_USER_TLV32_USERID(rx_tlv);
  386. tlv_len = HAL_RX_GET_USER_TLV32_LEN(rx_tlv);
  387. rx_tlv = (uint8_t *) rx_tlv + HAL_RX_TLV32_HDR_SIZE;
  388. switch (tlv_tag) {
  389. case WIFIRX_PPDU_START_E:
  390. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
  391. "[%s][%d] ppdu_start_e len=%d\n",
  392. __func__, __LINE__, tlv_len);
  393. ppdu_info->com_info.ppdu_id =
  394. HAL_RX_GET(rx_tlv, RX_PPDU_START_0,
  395. PHY_PPDU_ID);
  396. /* TODO: Ensure channel number is set in PHY meta data */
  397. ppdu_info->rx_status.chan_freq =
  398. HAL_RX_GET(rx_tlv, RX_PPDU_START_1,
  399. SW_PHY_META_DATA);
  400. ppdu_info->com_info.ppdu_timestamp =
  401. HAL_RX_GET(rx_tlv, RX_PPDU_START_2,
  402. PPDU_START_TIMESTAMP);
  403. break;
  404. case WIFIRX_PPDU_START_USER_INFO_E:
  405. break;
  406. case WIFIRX_PPDU_END_E:
  407. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
  408. "[%s][%d] ppdu_end_e len=%d\n",
  409. __func__, __LINE__, tlv_len);
  410. /* This is followed by sub-TLVs of PPDU_END */
  411. ppdu_info->rx_status.duration =
  412. HAL_RX_GET(rx_tlv, RXPCU_PPDU_END_INFO_8,
  413. RX_PPDU_DURATION);
  414. break;
  415. case WIFIRXPCU_PPDU_END_INFO_E:
  416. ppdu_info->rx_status.tsft =
  417. HAL_RX_GET(rx_tlv, RXPCU_PPDU_END_INFO_1,
  418. WB_TIMESTAMP_UPPER_32);
  419. ppdu_info->rx_status.tsft = (ppdu_info->rx_status.tsft << 32) |
  420. HAL_RX_GET(rx_tlv, RXPCU_PPDU_END_INFO_0,
  421. WB_TIMESTAMP_LOWER_32);
  422. break;
  423. case WIFIRX_PPDU_END_USER_STATS_E:
  424. {
  425. unsigned long tid = 0;
  426. ppdu_info->rx_status.ast_index =
  427. HAL_RX_GET(rx_tlv, RX_PPDU_END_USER_STATS_4,
  428. AST_INDEX);
  429. tid = HAL_RX_GET(rx_tlv, RX_PPDU_END_USER_STATS_12,
  430. RECEIVED_QOS_DATA_TID_BITMAP);
  431. ppdu_info->rx_status.tid = qdf_find_first_bit(&tid, sizeof(tid)*8);
  432. ppdu_info->rx_status.tcp_msdu_count =
  433. HAL_RX_GET(rx_tlv, RX_PPDU_END_USER_STATS_9,
  434. TCP_MSDU_COUNT) +
  435. HAL_RX_GET(rx_tlv, RX_PPDU_END_USER_STATS_10,
  436. TCP_ACK_MSDU_COUNT);
  437. ppdu_info->rx_status.udp_msdu_count =
  438. HAL_RX_GET(rx_tlv, RX_PPDU_END_USER_STATS_9,
  439. UDP_MSDU_COUNT);
  440. ppdu_info->rx_status.other_msdu_count =
  441. HAL_RX_GET(rx_tlv, RX_PPDU_END_USER_STATS_10,
  442. OTHER_MSDU_COUNT);
  443. ppdu_info->rx_status.first_data_seq_ctrl =
  444. HAL_RX_GET(rx_tlv, RX_PPDU_END_USER_STATS_3,
  445. DATA_SEQUENCE_CONTROL_INFO_VALID);
  446. ppdu_info->rx_status.preamble_type =
  447. HAL_RX_GET(rx_tlv, RX_PPDU_END_USER_STATS_3,
  448. HT_CONTROL_FIELD_PKT_TYPE);
  449. break;
  450. }
  451. case WIFIRX_PPDU_END_USER_STATS_EXT_E:
  452. break;
  453. case WIFIRX_PPDU_END_STATUS_DONE_E:
  454. return HAL_TLV_STATUS_PPDU_DONE;
  455. case WIFIDUMMY_E:
  456. return HAL_TLV_STATUS_BUF_DONE;
  457. case WIFIPHYRX_HT_SIG_E:
  458. {
  459. uint8_t *ht_sig_info = (uint8_t *)rx_tlv +
  460. HAL_RX_OFFSET(PHYRX_HT_SIG_0,
  461. HT_SIG_INFO_PHYRX_HT_SIG_INFO_DETAILS);
  462. value = HAL_RX_GET(ht_sig_info, HT_SIG_INFO_1,
  463. FEC_CODING);
  464. ppdu_info->rx_status.ldpc = (value == HAL_SU_MU_CODING_LDPC) ?
  465. 1 : 0;
  466. ppdu_info->rx_status.mcs = HAL_RX_GET(ht_sig_info,
  467. HT_SIG_INFO_0, MCS);
  468. ppdu_info->rx_status.bw = HAL_RX_GET(ht_sig_info,
  469. HT_SIG_INFO_0, CBW);
  470. break;
  471. }
  472. case WIFIPHYRX_L_SIG_B_E:
  473. {
  474. uint8_t *l_sig_b_info = (uint8_t *)rx_tlv +
  475. HAL_RX_OFFSET(PHYRX_L_SIG_B_0,
  476. L_SIG_B_INFO_PHYRX_L_SIG_B_INFO_DETAILS);
  477. value = HAL_RX_GET(l_sig_b_info, L_SIG_B_INFO_0, RATE);
  478. switch (value) {
  479. case 1:
  480. ppdu_info->rx_status.rate = HAL_11B_RATE_3MCS;
  481. break;
  482. case 2:
  483. ppdu_info->rx_status.rate = HAL_11B_RATE_2MCS;
  484. break;
  485. case 3:
  486. ppdu_info->rx_status.rate = HAL_11B_RATE_1MCS;
  487. break;
  488. case 4:
  489. ppdu_info->rx_status.rate = HAL_11B_RATE_0MCS;
  490. break;
  491. case 5:
  492. ppdu_info->rx_status.rate = HAL_11B_RATE_6MCS;
  493. break;
  494. case 6:
  495. ppdu_info->rx_status.rate = HAL_11B_RATE_5MCS;
  496. break;
  497. case 7:
  498. ppdu_info->rx_status.rate = HAL_11B_RATE_4MCS;
  499. break;
  500. default:
  501. break;
  502. }
  503. break;
  504. }
  505. case WIFIPHYRX_L_SIG_A_E:
  506. {
  507. uint8_t *l_sig_a_info = (uint8_t *)rx_tlv +
  508. HAL_RX_OFFSET(PHYRX_L_SIG_A_0,
  509. L_SIG_A_INFO_PHYRX_L_SIG_A_INFO_DETAILS);
  510. value = HAL_RX_GET(l_sig_a_info, L_SIG_A_INFO_0, RATE);
  511. switch (value) {
  512. case 8:
  513. ppdu_info->rx_status.rate = HAL_11A_RATE_0MCS;
  514. break;
  515. case 9:
  516. ppdu_info->rx_status.rate = HAL_11A_RATE_1MCS;
  517. break;
  518. case 10:
  519. ppdu_info->rx_status.rate = HAL_11A_RATE_2MCS;
  520. break;
  521. case 11:
  522. ppdu_info->rx_status.rate = HAL_11A_RATE_3MCS;
  523. break;
  524. case 12:
  525. ppdu_info->rx_status.rate = HAL_11A_RATE_4MCS;
  526. break;
  527. case 13:
  528. ppdu_info->rx_status.rate = HAL_11A_RATE_5MCS;
  529. break;
  530. case 14:
  531. ppdu_info->rx_status.rate = HAL_11A_RATE_6MCS;
  532. break;
  533. case 15:
  534. ppdu_info->rx_status.rate = HAL_11A_RATE_7MCS;
  535. break;
  536. default:
  537. break;
  538. }
  539. break;
  540. }
  541. case WIFIPHYRX_VHT_SIG_A_E:
  542. {
  543. uint8_t *vht_sig_a_info = (uint8_t *)rx_tlv +
  544. HAL_RX_OFFSET(PHYRX_VHT_SIG_A_0,
  545. VHT_SIG_A_INFO_PHYRX_VHT_SIG_A_INFO_DETAILS);
  546. value = HAL_RX_GET(vht_sig_a_info, VHT_SIG_A_INFO_1,
  547. SU_MU_CODING);
  548. ppdu_info->rx_status.ldpc = (value == HAL_SU_MU_CODING_LDPC) ?
  549. 1 : 0;
  550. group_id = HAL_RX_GET(vht_sig_a_info, VHT_SIG_A_INFO_0, GROUP_ID);
  551. ppdu_info->rx_status.vht_flag_values5 = group_id;
  552. ppdu_info->rx_status.mcs = HAL_RX_GET(vht_sig_a_info,
  553. VHT_SIG_A_INFO_1, MCS);
  554. #if !defined(QCA_WIFI_QCA6290_11AX)
  555. value = HAL_RX_GET(vht_sig_a_info,
  556. VHT_SIG_A_INFO_0, N_STS);
  557. ppdu_info->rx_status.nss = ((value & VHT_SIG_SU_NSS_MASK) + 1);
  558. #else
  559. ppdu_info->rx_status.nss = 0;
  560. #endif
  561. ppdu_info->rx_status.vht_flag_values3[0] =
  562. (((ppdu_info->rx_status.mcs) << 4)
  563. | ppdu_info->rx_status.nss);
  564. ppdu_info->rx_status.bw = HAL_RX_GET(vht_sig_a_info,
  565. VHT_SIG_A_INFO_0, BANDWIDTH);
  566. break;
  567. }
  568. case WIFIPHYRX_HE_SIG_A_SU_E:
  569. {
  570. uint8_t *he_sig_a_su_info = (uint8_t *)rx_tlv +
  571. HAL_RX_OFFSET(PHYRX_HE_SIG_A_SU_0,
  572. HE_SIG_A_SU_INFO_PHYRX_HE_SIG_A_SU_INFO_DETAILS);
  573. ppdu_info->rx_status.he_flags = 1;
  574. value = HAL_RX_GET(he_sig_a_su_info, HE_SIG_A_SU_INFO_0,
  575. FORMAT_INDICATION);
  576. if (value == 0) {
  577. ppdu_info->rx_status.he_data1 =
  578. QDF_MON_STATUS_HE_TRIG_FORMAT_TYPE;
  579. } else {
  580. ppdu_info->rx_status.he_data1 =
  581. QDF_MON_STATUS_HE_SU_OR_EXT_SU_FORMAT_TYPE;
  582. }
  583. /*data1*/
  584. ppdu_info->rx_status.he_data1 |=
  585. QDF_MON_STATUS_HE_BSS_COLOR_KNOWN |
  586. QDF_MON_STATUS_HE_BEAM_CHANGE_KNOWN |
  587. QDF_MON_STATUS_HE_DL_UL_KNOWN |
  588. QDF_MON_STATUS_HE_MCS_KNOWN |
  589. QDF_MON_STATUS_HE_DCM_KNOWN |
  590. QDF_MON_STATUS_HE_CODING_KNOWN |
  591. QDF_MON_STATUS_HE_LDPC_EXTRA_SYMBOL_KNOWN |
  592. QDF_MON_STATUS_HE_STBC_KNOWN |
  593. QDF_MON_STATUS_HE_DATA_BW_RU_KNOWN |
  594. QDF_MON_STATUS_HE_DOPPLER_KNOWN;
  595. /*data2*/
  596. ppdu_info->rx_status.he_data2 =
  597. QDF_MON_STATUS_HE_GI_KNOWN;
  598. ppdu_info->rx_status.he_data2 =
  599. QDF_MON_STATUS_TXBF_KNOWN |
  600. QDF_MON_STATUS_PE_DISAMBIGUITY_KNOWN |
  601. QDF_MON_STATUS_TXOP_KNOWN |
  602. QDF_MON_STATUS_LTF_SYMBOLS_KNOWN |
  603. QDF_MON_STATUS_PRE_FEC_PADDING_KNOWN |
  604. QDF_MON_STATUS_MIDABLE_PERIODICITY_KNOWN;
  605. /*data3*/
  606. value = HAL_RX_GET(he_sig_a_su_info,
  607. HE_SIG_A_SU_INFO_0, BSS_COLOR_ID);
  608. ppdu_info->rx_status.he_data3 = value;
  609. value = HAL_RX_GET(he_sig_a_su_info,
  610. HE_SIG_A_SU_INFO_0, BEAM_CHANGE);
  611. value = value << QDF_MON_STATUS_BEAM_CHANGE_SHIFT;
  612. ppdu_info->rx_status.he_data3 |= value;
  613. value = HAL_RX_GET(he_sig_a_su_info,
  614. HE_SIG_A_SU_INFO_0, DL_UL_FLAG);
  615. value = value << QDF_MON_STATUS_DL_UL_SHIFT;
  616. ppdu_info->rx_status.he_data3 |= value;
  617. value = HAL_RX_GET(he_sig_a_su_info,
  618. HE_SIG_A_SU_INFO_0, TRANSMIT_MCS);
  619. value = value << QDF_MON_STATUS_TRANSMIT_MCS_SHIFT;
  620. ppdu_info->rx_status.he_data3 |= value;
  621. value = HAL_RX_GET(he_sig_a_su_info,
  622. HE_SIG_A_SU_INFO_0, DCM);
  623. value = value << QDF_MON_STATUS_DCM_SHIFT;
  624. ppdu_info->rx_status.he_data3 |= value;
  625. value = HAL_RX_GET(he_sig_a_su_info,
  626. HE_SIG_A_SU_INFO_1, CODING);
  627. value = value << QDF_MON_STATUS_CODING_SHIFT;
  628. ppdu_info->rx_status.he_data3 |= value;
  629. value = HAL_RX_GET(he_sig_a_su_info,
  630. HE_SIG_A_SU_INFO_1,
  631. LDPC_EXTRA_SYMBOL);
  632. value = value << QDF_MON_STATUS_LDPC_EXTRA_SYMBOL_SHIFT;
  633. ppdu_info->rx_status.he_data3 |= value;
  634. value = HAL_RX_GET(he_sig_a_su_info,
  635. HE_SIG_A_SU_INFO_1, STBC);
  636. value = value << QDF_MON_STATUS_STBC_SHIFT;
  637. ppdu_info->rx_status.he_data3 |= value;
  638. /*data4*/
  639. value = HAL_RX_GET(he_sig_a_su_info, HE_SIG_A_SU_INFO_0,
  640. SPATIAL_REUSE);
  641. ppdu_info->rx_status.he_data4 = value;
  642. /*data5*/
  643. value = HAL_RX_GET(he_sig_a_su_info,
  644. HE_SIG_A_SU_INFO_0, TRANSMIT_BW);
  645. ppdu_info->rx_status.he_data5 = value;
  646. value = HAL_RX_GET(he_sig_a_su_info,
  647. HE_SIG_A_SU_INFO_0, CP_LTF_SIZE);
  648. switch (value) {
  649. case 0:
  650. he_gi = HE_GI_0_8;
  651. he_ltf = HE_LTF_1_X;
  652. break;
  653. case 1:
  654. he_gi = HE_GI_0_8;
  655. he_ltf = HE_LTF_2_X;
  656. break;
  657. case 2:
  658. he_gi = HE_GI_1_6;
  659. he_ltf = HE_LTF_2_X;
  660. break;
  661. case 3:
  662. he_gi = HE_GI_3_2;
  663. he_ltf = HE_LTF_4_X;
  664. break;
  665. }
  666. value = he_gi << QDF_MON_STATUS_GI_SHIFT;
  667. ppdu_info->rx_status.he_data5 |= value;
  668. value = he_ltf << QDF_MON_STATUS_HE_LTF_SHIFT;
  669. ppdu_info->rx_status.he_data5 |= value;
  670. value = HAL_RX_GET(he_sig_a_su_info, HE_SIG_A_SU_INFO_1,
  671. PACKET_EXTENSION_A_FACTOR);
  672. value = value << QDF_MON_STATUS_PRE_FEC_PAD_SHIFT;
  673. ppdu_info->rx_status.he_data5 |= value;
  674. value = HAL_RX_GET(he_sig_a_su_info, HE_SIG_A_SU_INFO_1, TXBF);
  675. value = value << QDF_MON_STATUS_TXBF_SHIFT;
  676. ppdu_info->rx_status.he_data5 |= value;
  677. value = HAL_RX_GET(he_sig_a_su_info, HE_SIG_A_SU_INFO_1,
  678. PACKET_EXTENSION_PE_DISAMBIGUITY);
  679. value = value << QDF_MON_STATUS_PE_DISAMBIGUITY_SHIFT;
  680. ppdu_info->rx_status.he_data5 |= value;
  681. /*data6*/
  682. value = HAL_RX_GET(he_sig_a_su_info, HE_SIG_A_SU_INFO_0, NSTS);
  683. value++;
  684. ppdu_info->rx_status.he_data6 = value;
  685. value = HAL_RX_GET(he_sig_a_su_info, HE_SIG_A_SU_INFO_1,
  686. DOPPLER_INDICATION);
  687. value = value << QDF_MON_STATUS_DOPPLER_SHIFT;
  688. ppdu_info->rx_status.he_data6 |= value;
  689. value = HAL_RX_GET(he_sig_a_su_info, HE_SIG_A_SU_INFO_1,
  690. TXOP_DURATION);
  691. value = value << QDF_MON_STATUS_TXOP_SHIFT;
  692. ppdu_info->rx_status.he_data6 |= value;
  693. break;
  694. }
  695. case WIFIPHYRX_HE_SIG_A_MU_DL_E:
  696. ppdu_info->rx_status.he_sig_A1 =
  697. *((uint32_t *)((uint8_t *)rx_tlv +
  698. HAL_RX_OFFSET(PHYRX_HE_SIG_A_MU_DL_0,
  699. HE_SIG_A_MU_DL_INFO_PHYRX_HE_SIG_A_MU_DL_INFO_DETAILS)));
  700. ppdu_info->rx_status.he_sig_A1 |=
  701. QDF_MON_STATUS_HE_SIG_A1_HE_FORMAT_MU;
  702. ppdu_info->rx_status.he_sig_A1_known =
  703. QDF_MON_STATUS_HE_SIG_A1_MU_KNOWN_ALL;
  704. ppdu_info->rx_status.he_sig_A2 =
  705. *((uint32_t *)((uint8_t *)rx_tlv +
  706. HAL_RX_OFFSET(PHYRX_HE_SIG_A_MU_DL_1,
  707. HE_SIG_A_MU_DL_INFO_PHYRX_HE_SIG_A_MU_DL_INFO_DETAILS)));
  708. ppdu_info->rx_status.he_sig_A2_known =
  709. QDF_MON_STATUS_HE_SIG_A2_MU_KNOWN_ALL;
  710. break;
  711. case WIFIPHYRX_HE_SIG_B1_MU_E:
  712. {
  713. uint8_t *he_sig_b1_mu_info = (uint8_t *)rx_tlv +
  714. *((uint32_t *)((uint8_t *)rx_tlv +
  715. HAL_RX_OFFSET(PHYRX_HE_SIG_B1_MU_0,
  716. HE_SIG_B1_MU_INFO_PHYRX_HE_SIG_B1_MU_INFO_DETAILS)));
  717. ppdu_info->rx_status.he_sig_b_common_RU[0] =
  718. HAL_RX_GET(he_sig_b1_mu_info, HE_SIG_B1_MU_INFO_0,
  719. RU_ALLOCATION);
  720. ppdu_info->rx_status.he_sig_b_common_known =
  721. QDF_MON_STATUS_HE_SIG_B_COMMON_KNOWN_RU0;
  722. /* TODO: Check on the availability of other fields in
  723. * sig_b_common
  724. */
  725. break;
  726. }
  727. case WIFIPHYRX_HE_SIG_B2_MU_E:
  728. ppdu_info->rx_status.he_sig_b_user =
  729. *((uint32_t *)((uint8_t *)rx_tlv +
  730. HAL_RX_OFFSET(PHYRX_HE_SIG_B2_MU_0,
  731. HE_SIG_B2_MU_INFO_PHYRX_HE_SIG_B2_MU_INFO_DETAILS)));
  732. ppdu_info->rx_status.he_sig_b_user_known =
  733. QDF_MON_STATUS_HE_SIG_B_USER_KNOWN_SIG_B_ALL;
  734. break;
  735. case WIFIPHYRX_HE_SIG_B2_OFDMA_E:
  736. ppdu_info->rx_status.he_sig_b_user =
  737. *((uint32_t *)((uint8_t *)rx_tlv +
  738. HAL_RX_OFFSET(PHYRX_HE_SIG_B2_OFDMA_0,
  739. HE_SIG_B2_OFDMA_INFO_PHYRX_HE_SIG_B2_OFDMA_INFO_DETAILS)));
  740. ppdu_info->rx_status.he_sig_b_user_known =
  741. QDF_MON_STATUS_HE_SIG_B_USER_KNOWN_SIG_B_ALL;
  742. break;
  743. case WIFIPHYRX_RSSI_LEGACY_E:
  744. {
  745. uint8_t *rssi_info_tlv = (uint8_t *)rx_tlv +
  746. HAL_RX_OFFSET(PHYRX_RSSI_LEGACY_3,
  747. RECEIVE_RSSI_INFO_PRE_RSSI_INFO_DETAILS);
  748. ppdu_info->rx_status.rssi_comb = HAL_RX_GET(rx_tlv,
  749. PHYRX_RSSI_LEGACY_35, RSSI_COMB);
  750. ppdu_info->rx_status.bw = HAL_RX_GET(rx_tlv,
  751. #if !defined(QCA_WIFI_QCA6290_11AX)
  752. PHYRX_RSSI_LEGACY_35, RECEIVE_BANDWIDTH);
  753. #else
  754. PHYRX_RSSI_LEGACY_0, RECEIVE_BANDWIDTH);
  755. #endif
  756. ppdu_info->rx_status.preamble_type = HAL_RX_GET(rx_tlv,
  757. PHYRX_RSSI_LEGACY_0, RECEPTION_TYPE);
  758. ppdu_info->rx_status.he_re = 0;
  759. value = HAL_RX_GET(rssi_info_tlv,
  760. RECEIVE_RSSI_INFO_0, RSSI_PRI20_CHAIN0);
  761. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  762. "RSSI_PRI20_CHAIN0: %d\n", value);
  763. value = HAL_RX_GET(rssi_info_tlv,
  764. RECEIVE_RSSI_INFO_0, RSSI_EXT20_CHAIN0);
  765. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  766. "RSSI_EXT20_CHAIN0: %d\n", value);
  767. value = HAL_RX_GET(rssi_info_tlv,
  768. RECEIVE_RSSI_INFO_0, RSSI_EXT40_LOW20_CHAIN0);
  769. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  770. "RSSI_EXT40_LOW20_CHAIN0: %d\n", value);
  771. value = HAL_RX_GET(rssi_info_tlv,
  772. RECEIVE_RSSI_INFO_0, RSSI_EXT40_HIGH20_CHAIN0);
  773. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  774. "RSSI_EXT40_HIGH20_CHAIN0: %d\n", value);
  775. value = HAL_RX_GET(rssi_info_tlv,
  776. RECEIVE_RSSI_INFO_1, RSSI_EXT80_LOW20_CHAIN0);
  777. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  778. "RSSI_EXT80_LOW20_CHAIN0: %d\n", value);
  779. value = HAL_RX_GET(rssi_info_tlv,
  780. RECEIVE_RSSI_INFO_1, RSSI_EXT80_LOW_HIGH20_CHAIN0);
  781. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  782. "RSSI_EXT80_LOW_HIGH20_CHAIN0: %d\n", value);
  783. value = HAL_RX_GET(rssi_info_tlv,
  784. RECEIVE_RSSI_INFO_1, RSSI_EXT80_HIGH_LOW20_CHAIN0);
  785. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  786. "RSSI_EXT80_HIGH_LOW20_CHAIN0: %d\n", value);
  787. value = HAL_RX_GET(rssi_info_tlv,
  788. RECEIVE_RSSI_INFO_1, RSSI_EXT80_HIGH20_CHAIN0);
  789. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  790. "RSSI_EXT80_HIGH20_CHAIN0: %d\n", value);
  791. break;
  792. }
  793. case WIFIRX_HEADER_E:
  794. ppdu_info->first_msdu_payload = rx_tlv;
  795. break;
  796. case 0:
  797. return HAL_TLV_STATUS_PPDU_DONE;
  798. default:
  799. break;
  800. }
  801. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
  802. "%s TLV type: %d, TLV len:%d\n",
  803. __func__, tlv_tag, tlv_len);
  804. return HAL_TLV_STATUS_PPDU_NOT_DONE;
  805. }
  806. static inline
  807. uint32_t hal_get_rx_status_done_tlv_size(void *hal_soc)
  808. {
  809. return HAL_RX_TLV32_HDR_SIZE;
  810. }
  811. static inline QDF_STATUS
  812. hal_get_rx_status_done(uint8_t *rx_tlv)
  813. {
  814. uint32_t tlv_tag;
  815. tlv_tag = HAL_RX_GET_USER_TLV32_TYPE(rx_tlv);
  816. if (tlv_tag == WIFIRX_STATUS_BUFFER_DONE_E)
  817. return QDF_STATUS_SUCCESS;
  818. else
  819. return QDF_STATUS_E_EMPTY;
  820. }
  821. static inline QDF_STATUS
  822. hal_clear_rx_status_done(uint8_t *rx_tlv)
  823. {
  824. *(uint32_t *)rx_tlv = 0;
  825. return QDF_STATUS_SUCCESS;
  826. }
  827. #endif