hal_srng.c 49 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753
  1. /*
  2. * Copyright (c) 2016-2021 The Linux Foundation. All rights reserved.
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for
  5. * any purpose with or without fee is hereby granted, provided that the
  6. * above copyright notice and this permission notice appear in all
  7. * copies.
  8. *
  9. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
  10. * WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
  11. * WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
  12. * AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
  13. * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
  14. * PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
  15. * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
  16. * PERFORMANCE OF THIS SOFTWARE.
  17. */
  18. #include "hal_hw_headers.h"
  19. #include "hal_api.h"
  20. #include "hal_reo.h"
  21. #include "target_type.h"
  22. #include "qdf_module.h"
  23. #include "wcss_version.h"
  24. #ifdef QCA_WIFI_QCA8074
  25. void hal_qca6290_attach(struct hal_soc *hal);
  26. #endif
  27. #ifdef QCA_WIFI_QCA8074
  28. void hal_qca8074_attach(struct hal_soc *hal);
  29. #endif
  30. #if defined(QCA_WIFI_QCA8074V2) || defined(QCA_WIFI_QCA6018) || \
  31. defined(QCA_WIFI_QCA9574)
  32. void hal_qca8074v2_attach(struct hal_soc *hal);
  33. #endif
  34. #ifdef QCA_WIFI_QCA6390
  35. void hal_qca6390_attach(struct hal_soc *hal);
  36. #endif
  37. #ifdef QCA_WIFI_QCA6490
  38. void hal_qca6490_attach(struct hal_soc *hal);
  39. #endif
  40. #ifdef QCA_WIFI_QCN9000
  41. void hal_qcn9000_attach(struct hal_soc *hal);
  42. #endif
  43. #ifdef QCA_WIFI_QCN9224
  44. void hal_qcn9224_attach(struct hal_soc *hal);
  45. #endif
  46. #ifdef QCA_WIFI_QCN6122
  47. void hal_qcn6122_attach(struct hal_soc *hal);
  48. #endif
  49. #ifdef QCA_WIFI_QCA6750
  50. void hal_qca6750_attach(struct hal_soc *hal);
  51. #endif
  52. #ifdef QCA_WIFI_QCA5018
  53. void hal_qca5018_attach(struct hal_soc *hal);
  54. #endif
  55. #ifdef QCA_WIFI_WCN7850
  56. void hal_wcn7850_attach(struct hal_soc *hal);
  57. #endif
  58. #ifdef ENABLE_VERBOSE_DEBUG
  59. bool is_hal_verbose_debug_enabled;
  60. #endif
  61. #define HAL_REO_DESTINATION_RING_CTRL_IX_0_ADDR(x) ((x) + 0x4)
  62. #define HAL_REO_DESTINATION_RING_CTRL_IX_1_ADDR(x) ((x) + 0x8)
  63. #define HAL_REO_DESTINATION_RING_CTRL_IX_2_ADDR(x) ((x) + 0xc)
  64. #define HAL_REO_DESTINATION_RING_CTRL_IX_3_ADDR(x) ((x) + 0x10)
  65. #ifdef ENABLE_HAL_REG_WR_HISTORY
  66. struct hal_reg_write_fail_history hal_reg_wr_hist;
  67. void hal_reg_wr_fail_history_add(struct hal_soc *hal_soc,
  68. uint32_t offset,
  69. uint32_t wr_val, uint32_t rd_val)
  70. {
  71. struct hal_reg_write_fail_entry *record;
  72. int idx;
  73. idx = hal_history_get_next_index(&hal_soc->reg_wr_fail_hist->index,
  74. HAL_REG_WRITE_HIST_SIZE);
  75. record = &hal_soc->reg_wr_fail_hist->record[idx];
  76. record->timestamp = qdf_get_log_timestamp();
  77. record->reg_offset = offset;
  78. record->write_val = wr_val;
  79. record->read_val = rd_val;
  80. }
  81. static void hal_reg_write_fail_history_init(struct hal_soc *hal)
  82. {
  83. hal->reg_wr_fail_hist = &hal_reg_wr_hist;
  84. qdf_atomic_set(&hal->reg_wr_fail_hist->index, -1);
  85. }
  86. #else
  87. static void hal_reg_write_fail_history_init(struct hal_soc *hal)
  88. {
  89. }
  90. #endif
  91. /**
  92. * hal_get_srng_ring_id() - get the ring id of a descriped ring
  93. * @hal: hal_soc data structure
  94. * @ring_type: type enum describing the ring
  95. * @ring_num: which ring of the ring type
  96. * @mac_id: which mac does the ring belong to (or 0 for non-lmac rings)
  97. *
  98. * Return: the ring id or -EINVAL if the ring does not exist.
  99. */
  100. static int hal_get_srng_ring_id(struct hal_soc *hal, int ring_type,
  101. int ring_num, int mac_id)
  102. {
  103. struct hal_hw_srng_config *ring_config =
  104. HAL_SRNG_CONFIG(hal, ring_type);
  105. int ring_id;
  106. if (ring_num >= ring_config->max_rings) {
  107. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO,
  108. "%s: ring_num exceeded maximum no. of supported rings",
  109. __func__);
  110. /* TODO: This is a programming error. Assert if this happens */
  111. return -EINVAL;
  112. }
  113. /*
  114. * For BE, dmac_cmn_src_rxbuf_ring is set. If this is set
  115. * and ring is dst and also lmac ring then provide ring id per lmac
  116. */
  117. if (ring_config->lmac_ring &&
  118. (!hal->dmac_cmn_src_rxbuf_ring ||
  119. ring_config->ring_dir == HAL_SRNG_DST_RING)) {
  120. ring_id = (ring_config->start_ring_id + ring_num +
  121. (mac_id * HAL_MAX_RINGS_PER_LMAC));
  122. } else {
  123. ring_id = ring_config->start_ring_id + ring_num;
  124. }
  125. return ring_id;
  126. }
  127. static struct hal_srng *hal_get_srng(struct hal_soc *hal, int ring_id)
  128. {
  129. /* TODO: Should we allocate srng structures dynamically? */
  130. return &(hal->srng_list[ring_id]);
  131. }
  132. #ifndef SHADOW_REG_CONFIG_DISABLED
  133. #define HP_OFFSET_IN_REG_START 1
  134. #define OFFSET_FROM_HP_TO_TP 4
  135. static void hal_update_srng_hp_tp_address(struct hal_soc *hal_soc,
  136. int shadow_config_index,
  137. int ring_type,
  138. int ring_num)
  139. {
  140. struct hal_srng *srng;
  141. int ring_id;
  142. struct hal_hw_srng_config *ring_config =
  143. HAL_SRNG_CONFIG(hal_soc, ring_type);
  144. ring_id = hal_get_srng_ring_id(hal_soc, ring_type, ring_num, 0);
  145. if (ring_id < 0)
  146. return;
  147. srng = hal_get_srng(hal_soc, ring_id);
  148. if (ring_config->ring_dir == HAL_SRNG_DST_RING) {
  149. srng->u.dst_ring.tp_addr = SHADOW_REGISTER(shadow_config_index)
  150. + hal_soc->dev_base_addr;
  151. hal_debug("tp_addr=%pK dev base addr %pK index %u",
  152. srng->u.dst_ring.tp_addr, hal_soc->dev_base_addr,
  153. shadow_config_index);
  154. } else {
  155. srng->u.src_ring.hp_addr = SHADOW_REGISTER(shadow_config_index)
  156. + hal_soc->dev_base_addr;
  157. hal_debug("hp_addr=%pK dev base addr %pK index %u",
  158. srng->u.src_ring.hp_addr,
  159. hal_soc->dev_base_addr, shadow_config_index);
  160. }
  161. }
  162. #endif
  163. #ifdef GENERIC_SHADOW_REGISTER_ACCESS_ENABLE
  164. void hal_set_one_target_reg_config(struct hal_soc *hal,
  165. uint32_t target_reg_offset,
  166. int list_index)
  167. {
  168. int i = list_index;
  169. qdf_assert_always(i < MAX_GENERIC_SHADOW_REG);
  170. hal->list_shadow_reg_config[i].target_register =
  171. target_reg_offset;
  172. hal->num_generic_shadow_regs_configured++;
  173. }
  174. qdf_export_symbol(hal_set_one_target_reg_config);
  175. #define REO_R0_DESTINATION_RING_CTRL_ADDR_OFFSET 0x4
  176. #define MAX_REO_REMAP_SHADOW_REGS 4
  177. QDF_STATUS hal_set_shadow_regs(void *hal_soc)
  178. {
  179. uint32_t target_reg_offset;
  180. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  181. int i;
  182. struct hal_hw_srng_config *srng_config =
  183. &hal->hw_srng_table[WBM2SW_RELEASE];
  184. uint32_t reo_reg_base;
  185. reo_reg_base = hal_get_reo_reg_base_offset(hal_soc);
  186. target_reg_offset =
  187. HAL_REO_DESTINATION_RING_CTRL_IX_0_ADDR(reo_reg_base);
  188. for (i = 0; i < MAX_REO_REMAP_SHADOW_REGS; i++) {
  189. hal_set_one_target_reg_config(hal, target_reg_offset, i);
  190. target_reg_offset += REO_R0_DESTINATION_RING_CTRL_ADDR_OFFSET;
  191. }
  192. target_reg_offset = srng_config->reg_start[HP_OFFSET_IN_REG_START];
  193. target_reg_offset += (srng_config->reg_size[HP_OFFSET_IN_REG_START]
  194. * HAL_IPA_TX_COMP_RING_IDX);
  195. hal_set_one_target_reg_config(hal, target_reg_offset, i);
  196. return QDF_STATUS_SUCCESS;
  197. }
  198. qdf_export_symbol(hal_set_shadow_regs);
  199. QDF_STATUS hal_construct_shadow_regs(void *hal_soc)
  200. {
  201. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  202. int shadow_config_index = hal->num_shadow_registers_configured;
  203. int i;
  204. int num_regs = hal->num_generic_shadow_regs_configured;
  205. for (i = 0; i < num_regs; i++) {
  206. qdf_assert_always(shadow_config_index < MAX_SHADOW_REGISTERS);
  207. hal->shadow_config[shadow_config_index].addr =
  208. hal->list_shadow_reg_config[i].target_register;
  209. hal->list_shadow_reg_config[i].shadow_config_index =
  210. shadow_config_index;
  211. hal->list_shadow_reg_config[i].va =
  212. SHADOW_REGISTER(shadow_config_index) +
  213. (uintptr_t)hal->dev_base_addr;
  214. hal_debug("target_reg %x, shadow register 0x%x shadow_index 0x%x",
  215. hal->shadow_config[shadow_config_index].addr,
  216. SHADOW_REGISTER(shadow_config_index),
  217. shadow_config_index);
  218. shadow_config_index++;
  219. hal->num_shadow_registers_configured++;
  220. }
  221. return QDF_STATUS_SUCCESS;
  222. }
  223. qdf_export_symbol(hal_construct_shadow_regs);
  224. #endif
  225. #ifndef SHADOW_REG_CONFIG_DISABLED
  226. QDF_STATUS hal_set_one_shadow_config(void *hal_soc,
  227. int ring_type,
  228. int ring_num)
  229. {
  230. uint32_t target_register;
  231. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  232. struct hal_hw_srng_config *srng_config = &hal->hw_srng_table[ring_type];
  233. int shadow_config_index = hal->num_shadow_registers_configured;
  234. if (shadow_config_index >= MAX_SHADOW_REGISTERS) {
  235. QDF_ASSERT(0);
  236. return QDF_STATUS_E_RESOURCES;
  237. }
  238. hal->num_shadow_registers_configured++;
  239. target_register = srng_config->reg_start[HP_OFFSET_IN_REG_START];
  240. target_register += (srng_config->reg_size[HP_OFFSET_IN_REG_START]
  241. *ring_num);
  242. /* if the ring is a dst ring, we need to shadow the tail pointer */
  243. if (srng_config->ring_dir == HAL_SRNG_DST_RING)
  244. target_register += OFFSET_FROM_HP_TO_TP;
  245. hal->shadow_config[shadow_config_index].addr = target_register;
  246. /* update hp/tp addr in the hal_soc structure*/
  247. hal_update_srng_hp_tp_address(hal_soc, shadow_config_index, ring_type,
  248. ring_num);
  249. hal_debug("target_reg %x, shadow register 0x%x shadow_index 0x%x, ring_type %d, ring num %d",
  250. target_register,
  251. SHADOW_REGISTER(shadow_config_index),
  252. shadow_config_index,
  253. ring_type, ring_num);
  254. return QDF_STATUS_SUCCESS;
  255. }
  256. qdf_export_symbol(hal_set_one_shadow_config);
  257. QDF_STATUS hal_construct_srng_shadow_regs(void *hal_soc)
  258. {
  259. int ring_type, ring_num;
  260. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  261. for (ring_type = 0; ring_type < MAX_RING_TYPES; ring_type++) {
  262. struct hal_hw_srng_config *srng_config =
  263. &hal->hw_srng_table[ring_type];
  264. if (ring_type == CE_SRC ||
  265. ring_type == CE_DST ||
  266. ring_type == CE_DST_STATUS)
  267. continue;
  268. if (srng_config->lmac_ring)
  269. continue;
  270. for (ring_num = 0; ring_num < srng_config->max_rings;
  271. ring_num++)
  272. hal_set_one_shadow_config(hal_soc, ring_type, ring_num);
  273. }
  274. return QDF_STATUS_SUCCESS;
  275. }
  276. qdf_export_symbol(hal_construct_srng_shadow_regs);
  277. #else
  278. QDF_STATUS hal_construct_srng_shadow_regs(void *hal_soc)
  279. {
  280. return QDF_STATUS_SUCCESS;
  281. }
  282. qdf_export_symbol(hal_construct_srng_shadow_regs);
  283. QDF_STATUS hal_set_one_shadow_config(void *hal_soc, int ring_type,
  284. int ring_num)
  285. {
  286. return QDF_STATUS_SUCCESS;
  287. }
  288. qdf_export_symbol(hal_set_one_shadow_config);
  289. #endif
  290. void hal_get_shadow_config(void *hal_soc,
  291. struct pld_shadow_reg_v2_cfg **shadow_config,
  292. int *num_shadow_registers_configured)
  293. {
  294. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  295. *shadow_config = hal->shadow_config;
  296. *num_shadow_registers_configured =
  297. hal->num_shadow_registers_configured;
  298. }
  299. qdf_export_symbol(hal_get_shadow_config);
  300. static bool hal_validate_shadow_register(struct hal_soc *hal,
  301. uint32_t *destination,
  302. uint32_t *shadow_address)
  303. {
  304. unsigned int index;
  305. uint32_t *shadow_0_offset = SHADOW_REGISTER(0) + hal->dev_base_addr;
  306. int destination_ba_offset =
  307. ((char *)destination) - (char *)hal->dev_base_addr;
  308. index = shadow_address - shadow_0_offset;
  309. if (index >= MAX_SHADOW_REGISTERS) {
  310. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  311. "%s: index %x out of bounds", __func__, index);
  312. goto error;
  313. } else if (hal->shadow_config[index].addr != destination_ba_offset) {
  314. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  315. "%s: sanity check failure, expected %x, found %x",
  316. __func__, destination_ba_offset,
  317. hal->shadow_config[index].addr);
  318. goto error;
  319. }
  320. return true;
  321. error:
  322. qdf_print("baddr %pK, desination %pK, shadow_address %pK s0offset %pK index %x",
  323. hal->dev_base_addr, destination, shadow_address,
  324. shadow_0_offset, index);
  325. QDF_BUG(0);
  326. return false;
  327. }
  328. static void hal_target_based_configure(struct hal_soc *hal)
  329. {
  330. /**
  331. * Indicate Initialization of srngs to avoid force wake
  332. * as umac power collapse is not enabled yet
  333. */
  334. hal->init_phase = true;
  335. switch (hal->target_type) {
  336. #ifdef QCA_WIFI_QCA6290
  337. case TARGET_TYPE_QCA6290:
  338. hal->use_register_windowing = true;
  339. hal_qca6290_attach(hal);
  340. break;
  341. #endif
  342. #ifdef QCA_WIFI_QCA6390
  343. case TARGET_TYPE_QCA6390:
  344. hal->use_register_windowing = true;
  345. hal_qca6390_attach(hal);
  346. break;
  347. #endif
  348. #ifdef QCA_WIFI_QCA6490
  349. case TARGET_TYPE_QCA6490:
  350. hal->use_register_windowing = true;
  351. hal_qca6490_attach(hal);
  352. break;
  353. #endif
  354. #ifdef QCA_WIFI_QCA6750
  355. case TARGET_TYPE_QCA6750:
  356. hal->use_register_windowing = true;
  357. hal->static_window_map = true;
  358. hal_qca6750_attach(hal);
  359. break;
  360. #endif
  361. #ifdef QCA_WIFI_WCN7850
  362. case TARGET_TYPE_WCN7850:
  363. hal->use_register_windowing = true;
  364. hal_wcn7850_attach(hal);
  365. hal->init_phase = false;
  366. break;
  367. #endif
  368. #if defined(QCA_WIFI_QCA8074) && defined(WIFI_TARGET_TYPE_3_0)
  369. case TARGET_TYPE_QCA8074:
  370. hal_qca8074_attach(hal);
  371. break;
  372. #endif
  373. #if defined(QCA_WIFI_QCA8074V2)
  374. case TARGET_TYPE_QCA8074V2:
  375. hal_qca8074v2_attach(hal);
  376. break;
  377. #endif
  378. #if defined(QCA_WIFI_QCA6018)
  379. case TARGET_TYPE_QCA6018:
  380. hal_qca8074v2_attach(hal);
  381. break;
  382. #endif
  383. #if defined(QCA_WIFI_QCA9574)
  384. case TARGET_TYPE_QCA9574:
  385. hal_qca8074v2_attach(hal);
  386. break;
  387. #endif
  388. #if defined(QCA_WIFI_QCN6122)
  389. case TARGET_TYPE_QCN6122:
  390. hal->use_register_windowing = true;
  391. /*
  392. * Static window map is enabled for qcn9000 to use 2mb bar
  393. * size and use multiple windows to write into registers.
  394. */
  395. hal->static_window_map = true;
  396. hal_qcn6122_attach(hal);
  397. break;
  398. #endif
  399. #ifdef QCA_WIFI_QCN9000
  400. case TARGET_TYPE_QCN9000:
  401. hal->use_register_windowing = true;
  402. /*
  403. * Static window map is enabled for qcn9000 to use 2mb bar
  404. * size and use multiple windows to write into registers.
  405. */
  406. hal->static_window_map = true;
  407. hal_qcn9000_attach(hal);
  408. break;
  409. #endif
  410. #ifdef QCA_WIFI_QCA5018
  411. case TARGET_TYPE_QCA5018:
  412. hal->use_register_windowing = true;
  413. hal->static_window_map = true;
  414. hal_qca5018_attach(hal);
  415. break;
  416. #endif
  417. #ifdef QCA_WIFI_QCN9224
  418. case TARGET_TYPE_QCN9224:
  419. hal->use_register_windowing = true;
  420. hal->static_window_map = true;
  421. hal_qcn9224_attach(hal);
  422. break;
  423. #endif
  424. default:
  425. break;
  426. }
  427. }
  428. uint32_t hal_get_target_type(hal_soc_handle_t hal_soc_hdl)
  429. {
  430. struct hal_soc *hal_soc = (struct hal_soc *)hal_soc_hdl;
  431. struct hif_target_info *tgt_info =
  432. hif_get_target_info_handle(hal_soc->hif_handle);
  433. return tgt_info->target_type;
  434. }
  435. qdf_export_symbol(hal_get_target_type);
  436. #if defined(FEATURE_HAL_DELAYED_REG_WRITE)
  437. /**
  438. * hal_is_reg_write_tput_level_high() - throughput level for delayed reg writes
  439. * @hal: hal_soc pointer
  440. *
  441. * Return: true if throughput is high, else false.
  442. */
  443. static inline bool hal_is_reg_write_tput_level_high(struct hal_soc *hal)
  444. {
  445. int bw_level = hif_get_bandwidth_level(hal->hif_handle);
  446. return (bw_level >= PLD_BUS_WIDTH_MEDIUM) ? true : false;
  447. }
  448. static inline
  449. char *hal_fill_reg_write_srng_stats(struct hal_srng *srng,
  450. char *buf, qdf_size_t size)
  451. {
  452. qdf_scnprintf(buf, size, "enq %u deq %u coal %u direct %u",
  453. srng->wstats.enqueues, srng->wstats.dequeues,
  454. srng->wstats.coalesces, srng->wstats.direct);
  455. return buf;
  456. }
  457. /* bytes for local buffer */
  458. #define HAL_REG_WRITE_SRNG_STATS_LEN 100
  459. void hal_dump_reg_write_srng_stats(hal_soc_handle_t hal_soc_hdl)
  460. {
  461. struct hal_srng *srng;
  462. char buf[HAL_REG_WRITE_SRNG_STATS_LEN];
  463. struct hal_soc *hal = (struct hal_soc *)hal_soc_hdl;
  464. srng = hal_get_srng(hal, HAL_SRNG_SW2TCL1);
  465. hal_debug("SW2TCL1: %s",
  466. hal_fill_reg_write_srng_stats(srng, buf, sizeof(buf)));
  467. srng = hal_get_srng(hal, HAL_SRNG_WBM2SW0_RELEASE);
  468. hal_debug("WBM2SW0: %s",
  469. hal_fill_reg_write_srng_stats(srng, buf, sizeof(buf)));
  470. srng = hal_get_srng(hal, HAL_SRNG_REO2SW1);
  471. hal_debug("REO2SW1: %s",
  472. hal_fill_reg_write_srng_stats(srng, buf, sizeof(buf)));
  473. srng = hal_get_srng(hal, HAL_SRNG_REO2SW2);
  474. hal_debug("REO2SW2: %s",
  475. hal_fill_reg_write_srng_stats(srng, buf, sizeof(buf)));
  476. srng = hal_get_srng(hal, HAL_SRNG_REO2SW3);
  477. hal_debug("REO2SW3: %s",
  478. hal_fill_reg_write_srng_stats(srng, buf, sizeof(buf)));
  479. }
  480. void hal_dump_reg_write_stats(hal_soc_handle_t hal_soc_hdl)
  481. {
  482. uint32_t *hist;
  483. struct hal_soc *hal = (struct hal_soc *)hal_soc_hdl;
  484. hist = hal->stats.wstats.sched_delay;
  485. hal_debug("wstats: enq %u deq %u coal %u direct %u q_depth %u max_q %u sched-delay hist %u %u %u %u",
  486. qdf_atomic_read(&hal->stats.wstats.enqueues),
  487. hal->stats.wstats.dequeues,
  488. qdf_atomic_read(&hal->stats.wstats.coalesces),
  489. qdf_atomic_read(&hal->stats.wstats.direct),
  490. qdf_atomic_read(&hal->stats.wstats.q_depth),
  491. hal->stats.wstats.max_q_depth,
  492. hist[REG_WRITE_SCHED_DELAY_SUB_100us],
  493. hist[REG_WRITE_SCHED_DELAY_SUB_1000us],
  494. hist[REG_WRITE_SCHED_DELAY_SUB_5000us],
  495. hist[REG_WRITE_SCHED_DELAY_GT_5000us]);
  496. }
  497. int hal_get_reg_write_pending_work(void *hal_soc)
  498. {
  499. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  500. return qdf_atomic_read(&hal->active_work_cnt);
  501. }
  502. #endif
  503. #ifdef FEATURE_HAL_DELAYED_REG_WRITE
  504. #ifdef MEMORY_DEBUG
  505. /*
  506. * Length of the queue(array) used to hold delayed register writes.
  507. * Must be a multiple of 2.
  508. */
  509. #define HAL_REG_WRITE_QUEUE_LEN 128
  510. #else
  511. #define HAL_REG_WRITE_QUEUE_LEN 32
  512. #endif
  513. /**
  514. * hal_process_reg_write_q_elem() - process a regiter write queue element
  515. * @hal: hal_soc pointer
  516. * @q_elem: pointer to hal regiter write queue element
  517. *
  518. * Return: The value which was written to the address
  519. */
  520. static uint32_t
  521. hal_process_reg_write_q_elem(struct hal_soc *hal,
  522. struct hal_reg_write_q_elem *q_elem)
  523. {
  524. struct hal_srng *srng = q_elem->srng;
  525. uint32_t write_val;
  526. SRNG_LOCK(&srng->lock);
  527. srng->reg_write_in_progress = false;
  528. srng->wstats.dequeues++;
  529. if (srng->ring_dir == HAL_SRNG_SRC_RING) {
  530. q_elem->dequeue_val = srng->u.src_ring.hp;
  531. hal_write_address_32_mb(hal,
  532. srng->u.src_ring.hp_addr,
  533. srng->u.src_ring.hp, false);
  534. write_val = srng->u.src_ring.hp;
  535. } else {
  536. q_elem->dequeue_val = srng->u.dst_ring.tp;
  537. hal_write_address_32_mb(hal,
  538. srng->u.dst_ring.tp_addr,
  539. srng->u.dst_ring.tp, false);
  540. write_val = srng->u.dst_ring.tp;
  541. }
  542. q_elem->valid = 0;
  543. srng->last_dequeue_time = q_elem->dequeue_time;
  544. SRNG_UNLOCK(&srng->lock);
  545. return write_val;
  546. }
  547. /**
  548. * hal_reg_write_fill_sched_delay_hist() - fill reg write delay histogram in hal
  549. * @hal: hal_soc pointer
  550. * @delay: delay in us
  551. *
  552. * Return: None
  553. */
  554. static inline void hal_reg_write_fill_sched_delay_hist(struct hal_soc *hal,
  555. uint64_t delay_us)
  556. {
  557. uint32_t *hist;
  558. hist = hal->stats.wstats.sched_delay;
  559. if (delay_us < 100)
  560. hist[REG_WRITE_SCHED_DELAY_SUB_100us]++;
  561. else if (delay_us < 1000)
  562. hist[REG_WRITE_SCHED_DELAY_SUB_1000us]++;
  563. else if (delay_us < 5000)
  564. hist[REG_WRITE_SCHED_DELAY_SUB_5000us]++;
  565. else
  566. hist[REG_WRITE_SCHED_DELAY_GT_5000us]++;
  567. }
  568. #ifdef SHADOW_WRITE_DELAY
  569. #define SHADOW_WRITE_MIN_DELTA_US 5
  570. #define SHADOW_WRITE_DELAY_US 50
  571. /*
  572. * Never add those srngs which are performance relate.
  573. * The delay itself will hit performance heavily.
  574. */
  575. #define IS_SRNG_MATCH(s) ((s)->ring_id == HAL_SRNG_CE_1_DST_STATUS || \
  576. (s)->ring_id == HAL_SRNG_CE_1_DST)
  577. static inline bool hal_reg_write_need_delay(struct hal_reg_write_q_elem *elem)
  578. {
  579. struct hal_srng *srng = elem->srng;
  580. struct hal_soc *hal;
  581. qdf_time_t now;
  582. qdf_iomem_t real_addr;
  583. if (qdf_unlikely(!srng))
  584. return false;
  585. hal = srng->hal_soc;
  586. if (qdf_unlikely(!hal))
  587. return false;
  588. /* Check if it is target srng, and valid shadow reg */
  589. if (qdf_likely(!IS_SRNG_MATCH(srng)))
  590. return false;
  591. if (srng->ring_dir == HAL_SRNG_SRC_RING)
  592. real_addr = SRNG_SRC_ADDR(srng, HP);
  593. else
  594. real_addr = SRNG_DST_ADDR(srng, TP);
  595. if (!hal_validate_shadow_register(hal, real_addr, elem->addr))
  596. return false;
  597. /* Check the time delta from last write of same srng */
  598. now = qdf_get_log_timestamp();
  599. if (qdf_log_timestamp_to_usecs(now - srng->last_dequeue_time) >
  600. SHADOW_WRITE_MIN_DELTA_US)
  601. return false;
  602. /* Delay dequeue, and record */
  603. qdf_udelay(SHADOW_WRITE_DELAY_US);
  604. srng->wstats.dequeue_delay++;
  605. hal->stats.wstats.dequeue_delay++;
  606. return true;
  607. }
  608. #else
  609. static inline bool hal_reg_write_need_delay(struct hal_reg_write_q_elem *elem)
  610. {
  611. return false;
  612. }
  613. #endif
  614. /**
  615. * hal_reg_write_work() - Worker to process delayed writes
  616. * @arg: hal_soc pointer
  617. *
  618. * Return: None
  619. */
  620. static void hal_reg_write_work(void *arg)
  621. {
  622. int32_t q_depth, write_val;
  623. struct hal_soc *hal = arg;
  624. struct hal_reg_write_q_elem *q_elem;
  625. uint64_t delta_us;
  626. uint8_t ring_id;
  627. uint32_t *addr;
  628. uint32_t num_processed = 0;
  629. q_elem = &hal->reg_write_queue[(hal->read_idx)];
  630. q_elem->work_scheduled_time = qdf_get_log_timestamp();
  631. q_elem->cpu_id = qdf_get_cpu();
  632. /* Make sure q_elem consistent in the memory for multi-cores */
  633. qdf_rmb();
  634. if (!q_elem->valid)
  635. return;
  636. q_depth = qdf_atomic_read(&hal->stats.wstats.q_depth);
  637. if (q_depth > hal->stats.wstats.max_q_depth)
  638. hal->stats.wstats.max_q_depth = q_depth;
  639. if (hif_prevent_link_low_power_states(hal->hif_handle)) {
  640. hal->stats.wstats.prevent_l1_fails++;
  641. return;
  642. }
  643. while (true) {
  644. qdf_rmb();
  645. if (!q_elem->valid)
  646. break;
  647. q_elem->dequeue_time = qdf_get_log_timestamp();
  648. ring_id = q_elem->srng->ring_id;
  649. addr = q_elem->addr;
  650. delta_us = qdf_log_timestamp_to_usecs(q_elem->dequeue_time -
  651. q_elem->enqueue_time);
  652. hal_reg_write_fill_sched_delay_hist(hal, delta_us);
  653. hal->stats.wstats.dequeues++;
  654. qdf_atomic_dec(&hal->stats.wstats.q_depth);
  655. if (hal_reg_write_need_delay(q_elem))
  656. hal_verbose_debug("Delay reg writer for srng 0x%x, addr 0x%pK",
  657. q_elem->srng->ring_id, q_elem->addr);
  658. write_val = hal_process_reg_write_q_elem(hal, q_elem);
  659. hal_verbose_debug("read_idx %u srng 0x%x, addr 0x%pK dequeue_val %u sched delay %llu us",
  660. hal->read_idx, ring_id, addr, write_val, delta_us);
  661. num_processed++;
  662. hal->read_idx = (hal->read_idx + 1) &
  663. (HAL_REG_WRITE_QUEUE_LEN - 1);
  664. q_elem = &hal->reg_write_queue[(hal->read_idx)];
  665. }
  666. hif_allow_link_low_power_states(hal->hif_handle);
  667. /*
  668. * Decrement active_work_cnt by the number of elements dequeued after
  669. * hif_allow_link_low_power_states.
  670. * This makes sure that hif_try_complete_tasks will wait till we make
  671. * the bus access in hif_allow_link_low_power_states. This will avoid
  672. * race condition between delayed register worker and bus suspend
  673. * (system suspend or runtime suspend).
  674. *
  675. * The following decrement should be done at the end!
  676. */
  677. qdf_atomic_sub(num_processed, &hal->active_work_cnt);
  678. }
  679. static void __hal_flush_reg_write_work(struct hal_soc *hal)
  680. {
  681. qdf_cancel_work(&hal->reg_write_work);
  682. }
  683. void hal_flush_reg_write_work(hal_soc_handle_t hal_handle)
  684. { __hal_flush_reg_write_work((struct hal_soc *)hal_handle);
  685. }
  686. /**
  687. * hal_reg_write_enqueue() - enqueue register writes into kworker
  688. * @hal_soc: hal_soc pointer
  689. * @srng: srng pointer
  690. * @addr: iomem address of regiter
  691. * @value: value to be written to iomem address
  692. *
  693. * This function executes from within the SRNG LOCK
  694. *
  695. * Return: None
  696. */
  697. static void hal_reg_write_enqueue(struct hal_soc *hal_soc,
  698. struct hal_srng *srng,
  699. void __iomem *addr,
  700. uint32_t value)
  701. {
  702. struct hal_reg_write_q_elem *q_elem;
  703. uint32_t write_idx;
  704. if (srng->reg_write_in_progress) {
  705. hal_verbose_debug("Already in progress srng ring id 0x%x addr 0x%pK val %u",
  706. srng->ring_id, addr, value);
  707. qdf_atomic_inc(&hal_soc->stats.wstats.coalesces);
  708. srng->wstats.coalesces++;
  709. return;
  710. }
  711. write_idx = qdf_atomic_inc_return(&hal_soc->write_idx);
  712. write_idx = write_idx & (HAL_REG_WRITE_QUEUE_LEN - 1);
  713. q_elem = &hal_soc->reg_write_queue[write_idx];
  714. if (q_elem->valid) {
  715. hal_err("queue full");
  716. QDF_BUG(0);
  717. return;
  718. }
  719. qdf_atomic_inc(&hal_soc->stats.wstats.enqueues);
  720. srng->wstats.enqueues++;
  721. qdf_atomic_inc(&hal_soc->stats.wstats.q_depth);
  722. q_elem->srng = srng;
  723. q_elem->addr = addr;
  724. q_elem->enqueue_val = value;
  725. q_elem->enqueue_time = qdf_get_log_timestamp();
  726. /*
  727. * Before the valid flag is set to true, all the other
  728. * fields in the q_elem needs to be updated in memory.
  729. * Else there is a chance that the dequeuing worker thread
  730. * might read stale entries and process incorrect srng.
  731. */
  732. qdf_wmb();
  733. q_elem->valid = true;
  734. /*
  735. * After all other fields in the q_elem has been updated
  736. * in memory successfully, the valid flag needs to be updated
  737. * in memory in time too.
  738. * Else there is a chance that the dequeuing worker thread
  739. * might read stale valid flag and the work will be bypassed
  740. * for this round. And if there is no other work scheduled
  741. * later, this hal register writing won't be updated any more.
  742. */
  743. qdf_wmb();
  744. srng->reg_write_in_progress = true;
  745. qdf_atomic_inc(&hal_soc->active_work_cnt);
  746. hal_verbose_debug("write_idx %u srng ring id 0x%x addr 0x%pK val %u",
  747. write_idx, srng->ring_id, addr, value);
  748. qdf_queue_work(hal_soc->qdf_dev, hal_soc->reg_write_wq,
  749. &hal_soc->reg_write_work);
  750. }
  751. /**
  752. * hal_delayed_reg_write_init() - Initialization function for delayed reg writes
  753. * @hal_soc: hal_soc pointer
  754. *
  755. * Initialize main data structures to process register writes in a delayed
  756. * workqueue.
  757. *
  758. * Return: QDF_STATUS_SUCCESS on success else a QDF error.
  759. */
  760. static QDF_STATUS hal_delayed_reg_write_init(struct hal_soc *hal)
  761. {
  762. hal->reg_write_wq =
  763. qdf_alloc_high_prior_ordered_workqueue("hal_register_write_wq");
  764. qdf_create_work(0, &hal->reg_write_work, hal_reg_write_work, hal);
  765. hal->reg_write_queue = qdf_mem_malloc(HAL_REG_WRITE_QUEUE_LEN *
  766. sizeof(*hal->reg_write_queue));
  767. if (!hal->reg_write_queue) {
  768. hal_err("unable to allocate memory");
  769. QDF_BUG(0);
  770. return QDF_STATUS_E_NOMEM;
  771. }
  772. /* Initial value of indices */
  773. hal->read_idx = 0;
  774. qdf_atomic_set(&hal->write_idx, -1);
  775. return QDF_STATUS_SUCCESS;
  776. }
  777. /**
  778. * hal_delayed_reg_write_deinit() - De-Initialize delayed reg write processing
  779. * @hal_soc: hal_soc pointer
  780. *
  781. * De-initialize main data structures to process register writes in a delayed
  782. * workqueue.
  783. *
  784. * Return: None
  785. */
  786. static void hal_delayed_reg_write_deinit(struct hal_soc *hal)
  787. {
  788. __hal_flush_reg_write_work(hal);
  789. qdf_flush_workqueue(0, hal->reg_write_wq);
  790. qdf_destroy_workqueue(0, hal->reg_write_wq);
  791. qdf_mem_free(hal->reg_write_queue);
  792. }
  793. #else
  794. static inline QDF_STATUS hal_delayed_reg_write_init(struct hal_soc *hal)
  795. {
  796. return QDF_STATUS_SUCCESS;
  797. }
  798. static inline void hal_delayed_reg_write_deinit(struct hal_soc *hal)
  799. {
  800. }
  801. #endif
  802. #ifdef FEATURE_HAL_DELAYED_REG_WRITE
  803. #ifdef QCA_WIFI_QCA6750
  804. void hal_delayed_reg_write(struct hal_soc *hal_soc,
  805. struct hal_srng *srng,
  806. void __iomem *addr,
  807. uint32_t value)
  808. {
  809. uint8_t vote_access;
  810. switch (srng->ring_type) {
  811. case CE_SRC:
  812. case CE_DST:
  813. case CE_DST_STATUS:
  814. vote_access = hif_get_ep_vote_access(hal_soc->hif_handle,
  815. HIF_EP_VOTE_NONDP_ACCESS);
  816. if ((vote_access == HIF_EP_VOTE_ACCESS_DISABLE) ||
  817. (vote_access == HIF_EP_VOTE_INTERMEDIATE_ACCESS &&
  818. PLD_MHI_STATE_L0 ==
  819. pld_get_mhi_state(hal_soc->qdf_dev->dev))) {
  820. hal_write_address_32_mb(hal_soc, addr, value, false);
  821. qdf_atomic_inc(&hal_soc->stats.wstats.direct);
  822. srng->wstats.direct++;
  823. } else {
  824. hal_reg_write_enqueue(hal_soc, srng, addr, value);
  825. }
  826. break;
  827. default:
  828. if (hif_get_ep_vote_access(hal_soc->hif_handle,
  829. HIF_EP_VOTE_DP_ACCESS) ==
  830. HIF_EP_VOTE_ACCESS_DISABLE ||
  831. hal_is_reg_write_tput_level_high(hal_soc) ||
  832. PLD_MHI_STATE_L0 ==
  833. pld_get_mhi_state(hal_soc->qdf_dev->dev)) {
  834. hal_write_address_32_mb(hal_soc, addr, value, false);
  835. qdf_atomic_inc(&hal_soc->stats.wstats.direct);
  836. srng->wstats.direct++;
  837. } else {
  838. hal_reg_write_enqueue(hal_soc, srng, addr, value);
  839. }
  840. break;
  841. }
  842. }
  843. #else
  844. void hal_delayed_reg_write(struct hal_soc *hal_soc,
  845. struct hal_srng *srng,
  846. void __iomem *addr,
  847. uint32_t value)
  848. {
  849. if (pld_is_device_awake(hal_soc->qdf_dev->dev) ||
  850. hal_is_reg_write_tput_level_high(hal_soc)) {
  851. qdf_atomic_inc(&hal_soc->stats.wstats.direct);
  852. srng->wstats.direct++;
  853. hal_write_address_32_mb(hal_soc, addr, value, false);
  854. } else {
  855. hal_reg_write_enqueue(hal_soc, srng, addr, value);
  856. }
  857. }
  858. #endif
  859. #endif
  860. /**
  861. * hal_attach - Initialize HAL layer
  862. * @hif_handle: Opaque HIF handle
  863. * @qdf_dev: QDF device
  864. *
  865. * Return: Opaque HAL SOC handle
  866. * NULL on failure (if given ring is not available)
  867. *
  868. * This function should be called as part of HIF initialization (for accessing
  869. * copy engines). DP layer will get hal_soc handle using hif_get_hal_handle()
  870. *
  871. */
  872. void *hal_attach(struct hif_opaque_softc *hif_handle, qdf_device_t qdf_dev)
  873. {
  874. struct hal_soc *hal;
  875. int i;
  876. hal = qdf_mem_malloc(sizeof(*hal));
  877. if (!hal) {
  878. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  879. "%s: hal_soc allocation failed", __func__);
  880. goto fail0;
  881. }
  882. hal->hif_handle = hif_handle;
  883. hal->dev_base_addr = hif_get_dev_ba(hif_handle); /* UMAC */
  884. hal->dev_base_addr_ce = hif_get_dev_ba_ce(hif_handle); /* CE */
  885. hal->qdf_dev = qdf_dev;
  886. hal->shadow_rdptr_mem_vaddr = (uint32_t *)qdf_mem_alloc_consistent(
  887. qdf_dev, qdf_dev->dev, sizeof(*(hal->shadow_rdptr_mem_vaddr)) *
  888. HAL_SRNG_ID_MAX, &(hal->shadow_rdptr_mem_paddr));
  889. if (!hal->shadow_rdptr_mem_paddr) {
  890. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  891. "%s: hal->shadow_rdptr_mem_paddr allocation failed",
  892. __func__);
  893. goto fail1;
  894. }
  895. qdf_mem_zero(hal->shadow_rdptr_mem_vaddr,
  896. sizeof(*(hal->shadow_rdptr_mem_vaddr)) * HAL_SRNG_ID_MAX);
  897. hal->shadow_wrptr_mem_vaddr =
  898. (uint32_t *)qdf_mem_alloc_consistent(qdf_dev, qdf_dev->dev,
  899. sizeof(*(hal->shadow_wrptr_mem_vaddr)) * HAL_MAX_LMAC_RINGS,
  900. &(hal->shadow_wrptr_mem_paddr));
  901. if (!hal->shadow_wrptr_mem_vaddr) {
  902. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  903. "%s: hal->shadow_wrptr_mem_vaddr allocation failed",
  904. __func__);
  905. goto fail2;
  906. }
  907. qdf_mem_zero(hal->shadow_wrptr_mem_vaddr,
  908. sizeof(*(hal->shadow_wrptr_mem_vaddr)) * HAL_MAX_LMAC_RINGS);
  909. for (i = 0; i < HAL_SRNG_ID_MAX; i++) {
  910. hal->srng_list[i].initialized = 0;
  911. hal->srng_list[i].ring_id = i;
  912. }
  913. qdf_spinlock_create(&hal->register_access_lock);
  914. hal->register_window = 0;
  915. hal->target_type = hal_get_target_type(hal_soc_to_hal_soc_handle(hal));
  916. hal->ops = qdf_mem_malloc(sizeof(*hal->ops));
  917. if (!hal->ops) {
  918. hal_err("unable to allocable memory for HAL ops");
  919. goto fail3;
  920. }
  921. hal_target_based_configure(hal);
  922. hal_reg_write_fail_history_init(hal);
  923. qdf_minidump_log(hal, sizeof(*hal), "hal_soc");
  924. qdf_atomic_init(&hal->active_work_cnt);
  925. hal_delayed_reg_write_init(hal);
  926. return (void *)hal;
  927. fail3:
  928. qdf_mem_free_consistent(qdf_dev, qdf_dev->dev,
  929. sizeof(*hal->shadow_wrptr_mem_vaddr) *
  930. HAL_MAX_LMAC_RINGS,
  931. hal->shadow_wrptr_mem_vaddr,
  932. hal->shadow_wrptr_mem_paddr, 0);
  933. fail2:
  934. qdf_mem_free_consistent(qdf_dev, qdf_dev->dev,
  935. sizeof(*(hal->shadow_rdptr_mem_vaddr)) * HAL_SRNG_ID_MAX,
  936. hal->shadow_rdptr_mem_vaddr, hal->shadow_rdptr_mem_paddr, 0);
  937. fail1:
  938. qdf_mem_free(hal);
  939. fail0:
  940. return NULL;
  941. }
  942. qdf_export_symbol(hal_attach);
  943. /**
  944. * hal_mem_info - Retrieve hal memory base address
  945. *
  946. * @hal_soc: Opaque HAL SOC handle
  947. * @mem: pointer to structure to be updated with hal mem info
  948. */
  949. void hal_get_meminfo(hal_soc_handle_t hal_soc_hdl, struct hal_mem_info *mem)
  950. {
  951. struct hal_soc *hal = (struct hal_soc *)hal_soc_hdl;
  952. mem->dev_base_addr = (void *)hal->dev_base_addr;
  953. mem->shadow_rdptr_mem_vaddr = (void *)hal->shadow_rdptr_mem_vaddr;
  954. mem->shadow_wrptr_mem_vaddr = (void *)hal->shadow_wrptr_mem_vaddr;
  955. mem->shadow_rdptr_mem_paddr = (void *)hal->shadow_rdptr_mem_paddr;
  956. mem->shadow_wrptr_mem_paddr = (void *)hal->shadow_wrptr_mem_paddr;
  957. hif_read_phy_mem_base((void *)hal->hif_handle,
  958. (qdf_dma_addr_t *)&mem->dev_base_paddr);
  959. mem->lmac_srng_start_id = HAL_SRNG_LMAC1_ID_START;
  960. return;
  961. }
  962. qdf_export_symbol(hal_get_meminfo);
  963. /**
  964. * hal_detach - Detach HAL layer
  965. * @hal_soc: HAL SOC handle
  966. *
  967. * Return: Opaque HAL SOC handle
  968. * NULL on failure (if given ring is not available)
  969. *
  970. * This function should be called as part of HIF initialization (for accessing
  971. * copy engines). DP layer will get hal_soc handle using hif_get_hal_handle()
  972. *
  973. */
  974. extern void hal_detach(void *hal_soc)
  975. {
  976. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  977. hal_delayed_reg_write_deinit(hal);
  978. qdf_mem_free(hal->ops);
  979. qdf_mem_free_consistent(hal->qdf_dev, hal->qdf_dev->dev,
  980. sizeof(*(hal->shadow_rdptr_mem_vaddr)) * HAL_SRNG_ID_MAX,
  981. hal->shadow_rdptr_mem_vaddr, hal->shadow_rdptr_mem_paddr, 0);
  982. qdf_mem_free_consistent(hal->qdf_dev, hal->qdf_dev->dev,
  983. sizeof(*(hal->shadow_wrptr_mem_vaddr)) * HAL_MAX_LMAC_RINGS,
  984. hal->shadow_wrptr_mem_vaddr, hal->shadow_wrptr_mem_paddr, 0);
  985. qdf_minidump_remove(hal, sizeof(*hal), "hal_soc");
  986. qdf_mem_free(hal);
  987. return;
  988. }
  989. qdf_export_symbol(hal_detach);
  990. #define HAL_CE_CHANNEL_DST_DEST_CTRL_ADDR(x) ((x) + 0x000000b0)
  991. #define HAL_CE_CHANNEL_DST_DEST_CTRL_DEST_MAX_LENGTH_BMSK 0x0000ffff
  992. #define HAL_CE_CHANNEL_DST_DEST_RING_CONSUMER_PREFETCH_TIMER_ADDR(x) ((x) + 0x00000040)
  993. #define HAL_CE_CHANNEL_DST_DEST_RING_CONSUMER_PREFETCH_TIMER_RMSK 0x00000007
  994. /**
  995. * hal_ce_dst_setup - Initialize CE destination ring registers
  996. * @hal_soc: HAL SOC handle
  997. * @srng: SRNG ring pointer
  998. */
  999. static inline void hal_ce_dst_setup(struct hal_soc *hal, struct hal_srng *srng,
  1000. int ring_num)
  1001. {
  1002. uint32_t reg_val = 0;
  1003. uint32_t reg_addr;
  1004. struct hal_hw_srng_config *ring_config =
  1005. HAL_SRNG_CONFIG(hal, CE_DST);
  1006. /* set DEST_MAX_LENGTH according to ce assignment */
  1007. reg_addr = HAL_CE_CHANNEL_DST_DEST_CTRL_ADDR(
  1008. ring_config->reg_start[R0_INDEX] +
  1009. (ring_num * ring_config->reg_size[R0_INDEX]));
  1010. reg_val = HAL_REG_READ(hal, reg_addr);
  1011. reg_val &= ~HAL_CE_CHANNEL_DST_DEST_CTRL_DEST_MAX_LENGTH_BMSK;
  1012. reg_val |= srng->u.dst_ring.max_buffer_length &
  1013. HAL_CE_CHANNEL_DST_DEST_CTRL_DEST_MAX_LENGTH_BMSK;
  1014. HAL_REG_WRITE(hal, reg_addr, reg_val);
  1015. if (srng->prefetch_timer) {
  1016. reg_addr = HAL_CE_CHANNEL_DST_DEST_RING_CONSUMER_PREFETCH_TIMER_ADDR(
  1017. ring_config->reg_start[R0_INDEX] +
  1018. (ring_num * ring_config->reg_size[R0_INDEX]));
  1019. reg_val = HAL_REG_READ(hal, reg_addr);
  1020. reg_val &= ~HAL_CE_CHANNEL_DST_DEST_RING_CONSUMER_PREFETCH_TIMER_RMSK;
  1021. reg_val |= srng->prefetch_timer;
  1022. HAL_REG_WRITE(hal, reg_addr, reg_val);
  1023. reg_val = HAL_REG_READ(hal, reg_addr);
  1024. }
  1025. }
  1026. /**
  1027. * hal_reo_read_write_ctrl_ix - Read or write REO_DESTINATION_RING_CTRL_IX
  1028. * @hal: HAL SOC handle
  1029. * @read: boolean value to indicate if read or write
  1030. * @ix0: pointer to store IX0 reg value
  1031. * @ix1: pointer to store IX1 reg value
  1032. * @ix2: pointer to store IX2 reg value
  1033. * @ix3: pointer to store IX3 reg value
  1034. */
  1035. void hal_reo_read_write_ctrl_ix(hal_soc_handle_t hal_soc_hdl, bool read,
  1036. uint32_t *ix0, uint32_t *ix1,
  1037. uint32_t *ix2, uint32_t *ix3)
  1038. {
  1039. uint32_t reg_offset;
  1040. struct hal_soc *hal = (struct hal_soc *)hal_soc_hdl;
  1041. uint32_t reo_reg_base;
  1042. reo_reg_base = hal_get_reo_reg_base_offset(hal_soc_hdl);
  1043. if (read) {
  1044. if (ix0) {
  1045. reg_offset =
  1046. HAL_REO_DESTINATION_RING_CTRL_IX_0_ADDR(
  1047. reo_reg_base);
  1048. *ix0 = HAL_REG_READ(hal, reg_offset);
  1049. }
  1050. if (ix1) {
  1051. reg_offset =
  1052. HAL_REO_DESTINATION_RING_CTRL_IX_1_ADDR(
  1053. reo_reg_base);
  1054. *ix1 = HAL_REG_READ(hal, reg_offset);
  1055. }
  1056. if (ix2) {
  1057. reg_offset =
  1058. HAL_REO_DESTINATION_RING_CTRL_IX_2_ADDR(
  1059. reo_reg_base);
  1060. *ix2 = HAL_REG_READ(hal, reg_offset);
  1061. }
  1062. if (ix3) {
  1063. reg_offset =
  1064. HAL_REO_DESTINATION_RING_CTRL_IX_3_ADDR(
  1065. reo_reg_base);
  1066. *ix3 = HAL_REG_READ(hal, reg_offset);
  1067. }
  1068. } else {
  1069. if (ix0) {
  1070. reg_offset =
  1071. HAL_REO_DESTINATION_RING_CTRL_IX_0_ADDR(
  1072. reo_reg_base);
  1073. HAL_REG_WRITE_CONFIRM_RETRY(hal, reg_offset,
  1074. *ix0, true);
  1075. }
  1076. if (ix1) {
  1077. reg_offset =
  1078. HAL_REO_DESTINATION_RING_CTRL_IX_1_ADDR(
  1079. reo_reg_base);
  1080. HAL_REG_WRITE_CONFIRM_RETRY(hal, reg_offset,
  1081. *ix1, true);
  1082. }
  1083. if (ix2) {
  1084. reg_offset =
  1085. HAL_REO_DESTINATION_RING_CTRL_IX_2_ADDR(
  1086. reo_reg_base);
  1087. HAL_REG_WRITE_CONFIRM_RETRY(hal, reg_offset,
  1088. *ix2, true);
  1089. }
  1090. if (ix3) {
  1091. reg_offset =
  1092. HAL_REO_DESTINATION_RING_CTRL_IX_3_ADDR(
  1093. reo_reg_base);
  1094. HAL_REG_WRITE_CONFIRM_RETRY(hal, reg_offset,
  1095. *ix3, true);
  1096. }
  1097. }
  1098. }
  1099. /**
  1100. * hal_srng_dst_set_hp_paddr_confirm() - Set physical address to dest ring head
  1101. * pointer and confirm that write went through by reading back the value
  1102. * @srng: sring pointer
  1103. * @paddr: physical address
  1104. *
  1105. * Return: None
  1106. */
  1107. void hal_srng_dst_set_hp_paddr_confirm(struct hal_srng *srng, uint64_t paddr)
  1108. {
  1109. SRNG_DST_REG_WRITE_CONFIRM(srng, HP_ADDR_LSB, paddr & 0xffffffff);
  1110. SRNG_DST_REG_WRITE_CONFIRM(srng, HP_ADDR_MSB, paddr >> 32);
  1111. }
  1112. /**
  1113. * hal_srng_dst_init_hp() - Initialize destination ring head
  1114. * pointer
  1115. * @hal_soc: hal_soc handle
  1116. * @srng: sring pointer
  1117. * @vaddr: virtual address
  1118. */
  1119. void hal_srng_dst_init_hp(struct hal_soc_handle *hal_soc,
  1120. struct hal_srng *srng,
  1121. uint32_t *vaddr)
  1122. {
  1123. uint32_t reg_offset;
  1124. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  1125. if (!srng)
  1126. return;
  1127. srng->u.dst_ring.hp_addr = vaddr;
  1128. reg_offset = SRNG_DST_ADDR(srng, HP) - hal->dev_base_addr;
  1129. HAL_REG_WRITE_CONFIRM_RETRY(
  1130. hal, reg_offset, srng->u.dst_ring.cached_hp, true);
  1131. if (vaddr) {
  1132. *srng->u.dst_ring.hp_addr = srng->u.dst_ring.cached_hp;
  1133. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1134. "hp_addr=%pK, cached_hp=%d, hp=%d",
  1135. (void *)srng->u.dst_ring.hp_addr,
  1136. srng->u.dst_ring.cached_hp,
  1137. *srng->u.dst_ring.hp_addr);
  1138. }
  1139. }
  1140. /**
  1141. * hal_srng_hw_init - Private function to initialize SRNG HW
  1142. * @hal_soc: HAL SOC handle
  1143. * @srng: SRNG ring pointer
  1144. */
  1145. static inline void hal_srng_hw_init(struct hal_soc *hal,
  1146. struct hal_srng *srng)
  1147. {
  1148. if (srng->ring_dir == HAL_SRNG_SRC_RING)
  1149. hal_srng_src_hw_init(hal, srng);
  1150. else
  1151. hal_srng_dst_hw_init(hal, srng);
  1152. }
  1153. #ifdef CONFIG_SHADOW_V2
  1154. #define ignore_shadow false
  1155. #define CHECK_SHADOW_REGISTERS true
  1156. #else
  1157. #define ignore_shadow true
  1158. #define CHECK_SHADOW_REGISTERS false
  1159. #endif
  1160. #ifdef WLAN_FEATURE_NEAR_FULL_IRQ
  1161. /**
  1162. * hal_srng_is_near_full_irq_supported() - Check if near full irq is
  1163. * supported on this SRNG
  1164. * @hal_soc: HAL SoC handle
  1165. * @ring_type: SRNG type
  1166. * @ring_num: ring number
  1167. *
  1168. * Return: true, if near full irq is supported for this SRNG
  1169. * false, if near full irq is not supported for this SRNG
  1170. */
  1171. bool hal_srng_is_near_full_irq_supported(hal_soc_handle_t hal_soc,
  1172. int ring_type, int ring_num)
  1173. {
  1174. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  1175. struct hal_hw_srng_config *ring_config =
  1176. HAL_SRNG_CONFIG(hal, ring_type);
  1177. return ring_config->nf_irq_support;
  1178. }
  1179. /**
  1180. * hal_srng_set_msi2_params() - Set MSI2 params to SRNG data structure from
  1181. * ring params
  1182. * @srng: SRNG handle
  1183. * @ring_params: ring params for this SRNG
  1184. *
  1185. * Return: None
  1186. */
  1187. static inline void
  1188. hal_srng_set_msi2_params(struct hal_srng *srng,
  1189. struct hal_srng_params *ring_params)
  1190. {
  1191. srng->msi2_addr = ring_params->msi2_addr;
  1192. srng->msi2_data = ring_params->msi2_data;
  1193. }
  1194. /**
  1195. * hal_srng_get_nf_params() - Get the near full MSI2 params from srng
  1196. * @srng: SRNG handle
  1197. * @ring_params: ring params for this SRNG
  1198. *
  1199. * Return: None
  1200. */
  1201. static inline void
  1202. hal_srng_get_nf_params(struct hal_srng *srng,
  1203. struct hal_srng_params *ring_params)
  1204. {
  1205. ring_params->msi2_addr = srng->msi2_addr;
  1206. ring_params->msi2_data = srng->msi2_data;
  1207. }
  1208. /**
  1209. * hal_srng_set_nf_thresholds() - Set the near full thresholds in SRNG
  1210. * @srng: SRNG handle where the params are to be set
  1211. * @ring_params: ring params, from where threshold is to be fetched
  1212. *
  1213. * Return: None
  1214. */
  1215. static inline void
  1216. hal_srng_set_nf_thresholds(struct hal_srng *srng,
  1217. struct hal_srng_params *ring_params)
  1218. {
  1219. srng->u.dst_ring.nf_irq_support = ring_params->nf_irq_support;
  1220. srng->u.dst_ring.high_thresh = ring_params->high_thresh;
  1221. }
  1222. #else
  1223. static inline void
  1224. hal_srng_set_msi2_params(struct hal_srng *srng,
  1225. struct hal_srng_params *ring_params)
  1226. {
  1227. }
  1228. static inline void
  1229. hal_srng_get_nf_params(struct hal_srng *srng,
  1230. struct hal_srng_params *ring_params)
  1231. {
  1232. }
  1233. static inline void
  1234. hal_srng_set_nf_thresholds(struct hal_srng *srng,
  1235. struct hal_srng_params *ring_params)
  1236. {
  1237. }
  1238. #endif
  1239. #if defined(CLEAR_SW2TCL_CONSUMED_DESC)
  1240. /**
  1241. * hal_srng_last_desc_cleared_init - Initialize SRNG last_desc_cleared ptr
  1242. *
  1243. * @srng: Source ring pointer
  1244. *
  1245. * Return: None
  1246. */
  1247. static inline
  1248. void hal_srng_last_desc_cleared_init(struct hal_srng *srng)
  1249. {
  1250. srng->last_desc_cleared = srng->ring_size - srng->entry_size;
  1251. }
  1252. #else
  1253. static inline
  1254. void hal_srng_last_desc_cleared_init(struct hal_srng *srng)
  1255. {
  1256. }
  1257. #endif /* CLEAR_SW2TCL_CONSUMED_DESC */
  1258. /**
  1259. * hal_srng_setup - Initialize HW SRNG ring.
  1260. * @hal_soc: Opaque HAL SOC handle
  1261. * @ring_type: one of the types from hal_ring_type
  1262. * @ring_num: Ring number if there are multiple rings of same type (staring
  1263. * from 0)
  1264. * @mac_id: valid MAC Id should be passed if ring type is one of lmac rings
  1265. * @ring_params: SRNG ring params in hal_srng_params structure.
  1266. * Callers are expected to allocate contiguous ring memory of size
  1267. * 'num_entries * entry_size' bytes and pass the physical and virtual base
  1268. * addresses through 'ring_base_paddr' and 'ring_base_vaddr' in
  1269. * hal_srng_params structure. Ring base address should be 8 byte aligned
  1270. * and size of each ring entry should be queried using the API
  1271. * hal_srng_get_entrysize
  1272. *
  1273. * Return: Opaque pointer to ring on success
  1274. * NULL on failure (if given ring is not available)
  1275. */
  1276. void *hal_srng_setup(void *hal_soc, int ring_type, int ring_num,
  1277. int mac_id, struct hal_srng_params *ring_params)
  1278. {
  1279. int ring_id;
  1280. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  1281. struct hal_srng *srng;
  1282. struct hal_hw_srng_config *ring_config =
  1283. HAL_SRNG_CONFIG(hal, ring_type);
  1284. void *dev_base_addr;
  1285. int i;
  1286. ring_id = hal_get_srng_ring_id(hal_soc, ring_type, ring_num, mac_id);
  1287. if (ring_id < 0)
  1288. return NULL;
  1289. hal_verbose_debug("mac_id %d ring_id %d", mac_id, ring_id);
  1290. srng = hal_get_srng(hal_soc, ring_id);
  1291. if (srng->initialized) {
  1292. hal_verbose_debug("Ring (ring_type, ring_num) already initialized");
  1293. return NULL;
  1294. }
  1295. dev_base_addr = hal->dev_base_addr;
  1296. srng->ring_id = ring_id;
  1297. srng->ring_type = ring_type;
  1298. srng->ring_dir = ring_config->ring_dir;
  1299. srng->ring_base_paddr = ring_params->ring_base_paddr;
  1300. srng->ring_base_vaddr = ring_params->ring_base_vaddr;
  1301. srng->entry_size = ring_config->entry_size;
  1302. srng->num_entries = ring_params->num_entries;
  1303. srng->ring_size = srng->num_entries * srng->entry_size;
  1304. srng->ring_size_mask = srng->ring_size - 1;
  1305. srng->msi_addr = ring_params->msi_addr;
  1306. srng->msi_data = ring_params->msi_data;
  1307. srng->intr_timer_thres_us = ring_params->intr_timer_thres_us;
  1308. srng->intr_batch_cntr_thres_entries =
  1309. ring_params->intr_batch_cntr_thres_entries;
  1310. srng->prefetch_timer = ring_params->prefetch_timer;
  1311. srng->hal_soc = hal_soc;
  1312. hal_srng_set_msi2_params(srng, ring_params);
  1313. for (i = 0 ; i < MAX_SRNG_REG_GROUPS; i++) {
  1314. srng->hwreg_base[i] = dev_base_addr + ring_config->reg_start[i]
  1315. + (ring_num * ring_config->reg_size[i]);
  1316. }
  1317. /* Zero out the entire ring memory */
  1318. qdf_mem_zero(srng->ring_base_vaddr, (srng->entry_size *
  1319. srng->num_entries) << 2);
  1320. srng->flags = ring_params->flags;
  1321. #ifdef BIG_ENDIAN_HOST
  1322. /* TODO: See if we should we get these flags from caller */
  1323. srng->flags |= HAL_SRNG_DATA_TLV_SWAP;
  1324. srng->flags |= HAL_SRNG_MSI_SWAP;
  1325. srng->flags |= HAL_SRNG_RING_PTR_SWAP;
  1326. #endif
  1327. hal_srng_last_desc_cleared_init(srng);
  1328. if (srng->ring_dir == HAL_SRNG_SRC_RING) {
  1329. srng->u.src_ring.hp = 0;
  1330. srng->u.src_ring.reap_hp = srng->ring_size -
  1331. srng->entry_size;
  1332. srng->u.src_ring.tp_addr =
  1333. &(hal->shadow_rdptr_mem_vaddr[ring_id]);
  1334. srng->u.src_ring.low_threshold =
  1335. ring_params->low_threshold * srng->entry_size;
  1336. if (ring_config->lmac_ring) {
  1337. /* For LMAC rings, head pointer updates will be done
  1338. * through FW by writing to a shared memory location
  1339. */
  1340. srng->u.src_ring.hp_addr =
  1341. &(hal->shadow_wrptr_mem_vaddr[ring_id -
  1342. HAL_SRNG_LMAC1_ID_START]);
  1343. srng->flags |= HAL_SRNG_LMAC_RING;
  1344. } else if (ignore_shadow || (srng->u.src_ring.hp_addr == 0)) {
  1345. srng->u.src_ring.hp_addr =
  1346. hal_get_window_address(hal,
  1347. SRNG_SRC_ADDR(srng, HP));
  1348. if (CHECK_SHADOW_REGISTERS) {
  1349. QDF_TRACE(QDF_MODULE_ID_TXRX,
  1350. QDF_TRACE_LEVEL_ERROR,
  1351. "%s: Ring (%d, %d) missing shadow config",
  1352. __func__, ring_type, ring_num);
  1353. }
  1354. } else {
  1355. hal_validate_shadow_register(hal,
  1356. SRNG_SRC_ADDR(srng, HP),
  1357. srng->u.src_ring.hp_addr);
  1358. }
  1359. } else {
  1360. /* During initialization loop count in all the descriptors
  1361. * will be set to zero, and HW will set it to 1 on completing
  1362. * descriptor update in first loop, and increments it by 1 on
  1363. * subsequent loops (loop count wraps around after reaching
  1364. * 0xffff). The 'loop_cnt' in SW ring state is the expected
  1365. * loop count in descriptors updated by HW (to be processed
  1366. * by SW).
  1367. */
  1368. hal_srng_set_nf_thresholds(srng, ring_params);
  1369. srng->u.dst_ring.loop_cnt = 1;
  1370. srng->u.dst_ring.tp = 0;
  1371. srng->u.dst_ring.hp_addr =
  1372. &(hal->shadow_rdptr_mem_vaddr[ring_id]);
  1373. if (ring_config->lmac_ring) {
  1374. /* For LMAC rings, tail pointer updates will be done
  1375. * through FW by writing to a shared memory location
  1376. */
  1377. srng->u.dst_ring.tp_addr =
  1378. &(hal->shadow_wrptr_mem_vaddr[ring_id -
  1379. HAL_SRNG_LMAC1_ID_START]);
  1380. srng->flags |= HAL_SRNG_LMAC_RING;
  1381. } else if (ignore_shadow || srng->u.dst_ring.tp_addr == 0) {
  1382. srng->u.dst_ring.tp_addr =
  1383. hal_get_window_address(hal,
  1384. SRNG_DST_ADDR(srng, TP));
  1385. if (CHECK_SHADOW_REGISTERS) {
  1386. QDF_TRACE(QDF_MODULE_ID_TXRX,
  1387. QDF_TRACE_LEVEL_ERROR,
  1388. "%s: Ring (%d, %d) missing shadow config",
  1389. __func__, ring_type, ring_num);
  1390. }
  1391. } else {
  1392. hal_validate_shadow_register(hal,
  1393. SRNG_DST_ADDR(srng, TP),
  1394. srng->u.dst_ring.tp_addr);
  1395. }
  1396. }
  1397. if (!(ring_config->lmac_ring)) {
  1398. hal_srng_hw_init(hal, srng);
  1399. if (ring_type == CE_DST) {
  1400. srng->u.dst_ring.max_buffer_length = ring_params->max_buffer_length;
  1401. hal_ce_dst_setup(hal, srng, ring_num);
  1402. }
  1403. }
  1404. SRNG_LOCK_INIT(&srng->lock);
  1405. srng->srng_event = 0;
  1406. srng->initialized = true;
  1407. return (void *)srng;
  1408. }
  1409. qdf_export_symbol(hal_srng_setup);
  1410. /**
  1411. * hal_srng_cleanup - Deinitialize HW SRNG ring.
  1412. * @hal_soc: Opaque HAL SOC handle
  1413. * @hal_srng: Opaque HAL SRNG pointer
  1414. */
  1415. void hal_srng_cleanup(void *hal_soc, hal_ring_handle_t hal_ring_hdl)
  1416. {
  1417. struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
  1418. SRNG_LOCK_DESTROY(&srng->lock);
  1419. srng->initialized = 0;
  1420. }
  1421. qdf_export_symbol(hal_srng_cleanup);
  1422. /**
  1423. * hal_srng_get_entrysize - Returns size of ring entry in bytes
  1424. * @hal_soc: Opaque HAL SOC handle
  1425. * @ring_type: one of the types from hal_ring_type
  1426. *
  1427. */
  1428. uint32_t hal_srng_get_entrysize(void *hal_soc, int ring_type)
  1429. {
  1430. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  1431. struct hal_hw_srng_config *ring_config =
  1432. HAL_SRNG_CONFIG(hal, ring_type);
  1433. return ring_config->entry_size << 2;
  1434. }
  1435. qdf_export_symbol(hal_srng_get_entrysize);
  1436. /**
  1437. * hal_srng_max_entries - Returns maximum possible number of ring entries
  1438. * @hal_soc: Opaque HAL SOC handle
  1439. * @ring_type: one of the types from hal_ring_type
  1440. *
  1441. * Return: Maximum number of entries for the given ring_type
  1442. */
  1443. uint32_t hal_srng_max_entries(void *hal_soc, int ring_type)
  1444. {
  1445. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  1446. struct hal_hw_srng_config *ring_config =
  1447. HAL_SRNG_CONFIG(hal, ring_type);
  1448. return ring_config->max_size / ring_config->entry_size;
  1449. }
  1450. qdf_export_symbol(hal_srng_max_entries);
  1451. enum hal_srng_dir hal_srng_get_dir(void *hal_soc, int ring_type)
  1452. {
  1453. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  1454. struct hal_hw_srng_config *ring_config =
  1455. HAL_SRNG_CONFIG(hal, ring_type);
  1456. return ring_config->ring_dir;
  1457. }
  1458. /**
  1459. * hal_srng_dump - Dump ring status
  1460. * @srng: hal srng pointer
  1461. */
  1462. void hal_srng_dump(struct hal_srng *srng)
  1463. {
  1464. if (srng->ring_dir == HAL_SRNG_SRC_RING) {
  1465. hal_debug("=== SRC RING %d ===", srng->ring_id);
  1466. hal_debug("hp %u, reap_hp %u, tp %u, cached tp %u",
  1467. srng->u.src_ring.hp,
  1468. srng->u.src_ring.reap_hp,
  1469. *srng->u.src_ring.tp_addr,
  1470. srng->u.src_ring.cached_tp);
  1471. } else {
  1472. hal_debug("=== DST RING %d ===", srng->ring_id);
  1473. hal_debug("tp %u, hp %u, cached tp %u, loop_cnt %u",
  1474. srng->u.dst_ring.tp,
  1475. *srng->u.dst_ring.hp_addr,
  1476. srng->u.dst_ring.cached_hp,
  1477. srng->u.dst_ring.loop_cnt);
  1478. }
  1479. }
  1480. /**
  1481. * hal_get_srng_params - Retrieve SRNG parameters for a given ring from HAL
  1482. *
  1483. * @hal_soc: Opaque HAL SOC handle
  1484. * @hal_ring: Ring pointer (Source or Destination ring)
  1485. * @ring_params: SRNG parameters will be returned through this structure
  1486. */
  1487. extern void hal_get_srng_params(hal_soc_handle_t hal_soc_hdl,
  1488. hal_ring_handle_t hal_ring_hdl,
  1489. struct hal_srng_params *ring_params)
  1490. {
  1491. struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
  1492. int i =0;
  1493. ring_params->ring_id = srng->ring_id;
  1494. ring_params->ring_dir = srng->ring_dir;
  1495. ring_params->entry_size = srng->entry_size;
  1496. ring_params->ring_base_paddr = srng->ring_base_paddr;
  1497. ring_params->ring_base_vaddr = srng->ring_base_vaddr;
  1498. ring_params->num_entries = srng->num_entries;
  1499. ring_params->msi_addr = srng->msi_addr;
  1500. ring_params->msi_data = srng->msi_data;
  1501. ring_params->intr_timer_thres_us = srng->intr_timer_thres_us;
  1502. ring_params->intr_batch_cntr_thres_entries =
  1503. srng->intr_batch_cntr_thres_entries;
  1504. ring_params->low_threshold = srng->u.src_ring.low_threshold;
  1505. ring_params->flags = srng->flags;
  1506. ring_params->ring_id = srng->ring_id;
  1507. for (i = 0 ; i < MAX_SRNG_REG_GROUPS; i++)
  1508. ring_params->hwreg_base[i] = srng->hwreg_base[i];
  1509. hal_srng_get_nf_params(srng, ring_params);
  1510. }
  1511. qdf_export_symbol(hal_get_srng_params);
  1512. void hal_set_low_threshold(hal_ring_handle_t hal_ring_hdl,
  1513. uint32_t low_threshold)
  1514. {
  1515. struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
  1516. srng->u.src_ring.low_threshold = low_threshold * srng->entry_size;
  1517. }
  1518. qdf_export_symbol(hal_set_low_threshold);
  1519. #ifdef FORCE_WAKE
  1520. void hal_set_init_phase(hal_soc_handle_t soc, bool init_phase)
  1521. {
  1522. struct hal_soc *hal_soc = (struct hal_soc *)soc;
  1523. hal_soc->init_phase = init_phase;
  1524. }
  1525. #endif /* FORCE_WAKE */