dp_rx.c 71 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610
  1. /*
  2. * Copyright (c) 2016-2020 The Linux Foundation. All rights reserved.
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for
  5. * any purpose with or without fee is hereby granted, provided that the
  6. * above copyright notice and this permission notice appear in all
  7. * copies.
  8. *
  9. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
  10. * WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
  11. * WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
  12. * AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
  13. * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
  14. * PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
  15. * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
  16. * PERFORMANCE OF THIS SOFTWARE.
  17. */
  18. #include "hal_hw_headers.h"
  19. #include "dp_types.h"
  20. #include "dp_rx.h"
  21. #include "dp_peer.h"
  22. #include "hal_rx.h"
  23. #include "hal_api.h"
  24. #include "qdf_nbuf.h"
  25. #ifdef MESH_MODE_SUPPORT
  26. #include "if_meta_hdr.h"
  27. #endif
  28. #include "dp_internal.h"
  29. #include "dp_rx_mon.h"
  30. #include "dp_ipa.h"
  31. #ifdef FEATURE_WDS
  32. #include "dp_txrx_wds.h"
  33. #endif
  34. #ifdef ATH_RX_PRI_SAVE
  35. #define DP_RX_TID_SAVE(_nbuf, _tid) \
  36. (qdf_nbuf_set_priority(_nbuf, _tid))
  37. #else
  38. #define DP_RX_TID_SAVE(_nbuf, _tid)
  39. #endif
  40. #ifdef DP_RX_DISABLE_NDI_MDNS_FORWARDING
  41. static inline
  42. bool dp_rx_check_ndi_mdns_fwding(struct dp_peer *ta_peer, qdf_nbuf_t nbuf)
  43. {
  44. if (ta_peer->vdev->opmode == wlan_op_mode_ndi &&
  45. qdf_nbuf_is_ipv6_mdns_pkt(nbuf)) {
  46. DP_STATS_INC(ta_peer, rx.intra_bss.mdns_no_fwd, 1);
  47. return false;
  48. }
  49. return true;
  50. }
  51. #else
  52. static inline
  53. bool dp_rx_check_ndi_mdns_fwding(struct dp_peer *ta_peer, qdf_nbuf_t nbuf)
  54. {
  55. return true;
  56. }
  57. #endif
  58. static inline bool dp_rx_check_ap_bridge(struct dp_vdev *vdev)
  59. {
  60. return vdev->ap_bridge_enabled;
  61. }
  62. #ifdef DUP_RX_DESC_WAR
  63. void dp_rx_dump_info_and_assert(struct dp_soc *soc,
  64. hal_ring_handle_t hal_ring,
  65. hal_ring_desc_t ring_desc,
  66. struct dp_rx_desc *rx_desc)
  67. {
  68. void *hal_soc = soc->hal_soc;
  69. hal_srng_dump_ring_desc(hal_soc, hal_ring, ring_desc);
  70. dp_rx_desc_dump(rx_desc);
  71. }
  72. #else
  73. void dp_rx_dump_info_and_assert(struct dp_soc *soc,
  74. hal_ring_handle_t hal_ring_hdl,
  75. hal_ring_desc_t ring_desc,
  76. struct dp_rx_desc *rx_desc)
  77. {
  78. hal_soc_handle_t hal_soc = soc->hal_soc;
  79. dp_rx_desc_dump(rx_desc);
  80. hal_srng_dump_ring_desc(hal_soc, hal_ring_hdl, ring_desc);
  81. hal_srng_dump_ring(hal_soc, hal_ring_hdl);
  82. qdf_assert_always(0);
  83. }
  84. #endif
  85. /*
  86. * dp_rx_buffers_replenish() - replenish rxdma ring with rx nbufs
  87. * called during dp rx initialization
  88. * and at the end of dp_rx_process.
  89. *
  90. * @soc: core txrx main context
  91. * @mac_id: mac_id which is one of 3 mac_ids
  92. * @dp_rxdma_srng: dp rxdma circular ring
  93. * @rx_desc_pool: Pointer to free Rx descriptor pool
  94. * @num_req_buffers: number of buffer to be replenished
  95. * @desc_list: list of descs if called from dp_rx_process
  96. * or NULL during dp rx initialization or out of buffer
  97. * interrupt.
  98. * @tail: tail of descs list
  99. * Return: return success or failure
  100. */
  101. QDF_STATUS dp_rx_buffers_replenish(struct dp_soc *dp_soc, uint32_t mac_id,
  102. struct dp_srng *dp_rxdma_srng,
  103. struct rx_desc_pool *rx_desc_pool,
  104. uint32_t num_req_buffers,
  105. union dp_rx_desc_list_elem_t **desc_list,
  106. union dp_rx_desc_list_elem_t **tail)
  107. {
  108. uint32_t num_alloc_desc;
  109. uint16_t num_desc_to_free = 0;
  110. struct dp_pdev *dp_pdev = dp_get_pdev_for_mac_id(dp_soc, mac_id);
  111. uint32_t num_entries_avail;
  112. uint32_t count;
  113. int sync_hw_ptr = 1;
  114. qdf_dma_addr_t paddr;
  115. qdf_nbuf_t rx_netbuf;
  116. void *rxdma_ring_entry;
  117. union dp_rx_desc_list_elem_t *next;
  118. QDF_STATUS ret;
  119. void *rxdma_srng;
  120. rxdma_srng = dp_rxdma_srng->hal_srng;
  121. if (!rxdma_srng) {
  122. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  123. "rxdma srng not initialized");
  124. DP_STATS_INC(dp_pdev, replenish.rxdma_err, num_req_buffers);
  125. return QDF_STATUS_E_FAILURE;
  126. }
  127. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  128. "requested %d buffers for replenish", num_req_buffers);
  129. hal_srng_access_start(dp_soc->hal_soc, rxdma_srng);
  130. num_entries_avail = hal_srng_src_num_avail(dp_soc->hal_soc,
  131. rxdma_srng,
  132. sync_hw_ptr);
  133. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  134. "no of available entries in rxdma ring: %d",
  135. num_entries_avail);
  136. if (!(*desc_list) && (num_entries_avail >
  137. ((dp_rxdma_srng->num_entries * 3) / 4))) {
  138. num_req_buffers = num_entries_avail;
  139. } else if (num_entries_avail < num_req_buffers) {
  140. num_desc_to_free = num_req_buffers - num_entries_avail;
  141. num_req_buffers = num_entries_avail;
  142. }
  143. if (qdf_unlikely(!num_req_buffers)) {
  144. num_desc_to_free = num_req_buffers;
  145. hal_srng_access_end(dp_soc->hal_soc, rxdma_srng);
  146. goto free_descs;
  147. }
  148. /*
  149. * if desc_list is NULL, allocate the descs from freelist
  150. */
  151. if (!(*desc_list)) {
  152. num_alloc_desc = dp_rx_get_free_desc_list(dp_soc, mac_id,
  153. rx_desc_pool,
  154. num_req_buffers,
  155. desc_list,
  156. tail);
  157. if (!num_alloc_desc) {
  158. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  159. "no free rx_descs in freelist");
  160. DP_STATS_INC(dp_pdev, err.desc_alloc_fail,
  161. num_req_buffers);
  162. hal_srng_access_end(dp_soc->hal_soc, rxdma_srng);
  163. return QDF_STATUS_E_NOMEM;
  164. }
  165. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  166. "%d rx desc allocated", num_alloc_desc);
  167. num_req_buffers = num_alloc_desc;
  168. }
  169. count = 0;
  170. while (count < num_req_buffers) {
  171. rx_netbuf = qdf_nbuf_alloc(dp_soc->osdev,
  172. RX_BUFFER_SIZE,
  173. RX_BUFFER_RESERVATION,
  174. RX_BUFFER_ALIGNMENT,
  175. FALSE);
  176. if (qdf_unlikely(!rx_netbuf)) {
  177. DP_STATS_INC(dp_pdev, replenish.nbuf_alloc_fail, 1);
  178. break;
  179. }
  180. ret = qdf_nbuf_map_single(dp_soc->osdev, rx_netbuf,
  181. QDF_DMA_FROM_DEVICE);
  182. if (qdf_unlikely(QDF_IS_STATUS_ERROR(ret))) {
  183. qdf_nbuf_free(rx_netbuf);
  184. DP_STATS_INC(dp_pdev, replenish.map_err, 1);
  185. continue;
  186. }
  187. paddr = qdf_nbuf_get_frag_paddr(rx_netbuf, 0);
  188. dp_ipa_handle_rx_buf_smmu_mapping(dp_soc, rx_netbuf, true);
  189. /*
  190. * check if the physical address of nbuf->data is
  191. * less then 0x50000000 then free the nbuf and try
  192. * allocating new nbuf. We can try for 100 times.
  193. * this is a temp WAR till we fix it properly.
  194. */
  195. ret = check_x86_paddr(dp_soc, &rx_netbuf, &paddr, dp_pdev);
  196. if (ret == QDF_STATUS_E_FAILURE) {
  197. DP_STATS_INC(dp_pdev, replenish.x86_fail, 1);
  198. break;
  199. }
  200. count++;
  201. rxdma_ring_entry = hal_srng_src_get_next(dp_soc->hal_soc,
  202. rxdma_srng);
  203. qdf_assert_always(rxdma_ring_entry);
  204. next = (*desc_list)->next;
  205. dp_rx_desc_prep(&((*desc_list)->rx_desc), rx_netbuf);
  206. /* rx_desc.in_use should be zero at this time*/
  207. qdf_assert_always((*desc_list)->rx_desc.in_use == 0);
  208. (*desc_list)->rx_desc.in_use = 1;
  209. dp_verbose_debug("rx_netbuf=%pK, buf=%pK, paddr=0x%llx, cookie=%d",
  210. rx_netbuf, qdf_nbuf_data(rx_netbuf),
  211. (unsigned long long)paddr,
  212. (*desc_list)->rx_desc.cookie);
  213. hal_rxdma_buff_addr_info_set(rxdma_ring_entry, paddr,
  214. (*desc_list)->rx_desc.cookie,
  215. rx_desc_pool->owner);
  216. *desc_list = next;
  217. }
  218. hal_srng_access_end(dp_soc->hal_soc, rxdma_srng);
  219. dp_verbose_debug("replenished buffers %d, rx desc added back to free list %u",
  220. count, num_desc_to_free);
  221. DP_STATS_INC_PKT(dp_pdev, replenish.pkts, count,
  222. (RX_BUFFER_SIZE * count));
  223. free_descs:
  224. DP_STATS_INC(dp_pdev, buf_freelist, num_desc_to_free);
  225. /*
  226. * add any available free desc back to the free list
  227. */
  228. if (*desc_list)
  229. dp_rx_add_desc_list_to_free_list(dp_soc, desc_list, tail,
  230. mac_id, rx_desc_pool);
  231. return QDF_STATUS_SUCCESS;
  232. }
  233. /*
  234. * dp_rx_deliver_raw() - process RAW mode pkts and hand over the
  235. * pkts to RAW mode simulation to
  236. * decapsulate the pkt.
  237. *
  238. * @vdev: vdev on which RAW mode is enabled
  239. * @nbuf_list: list of RAW pkts to process
  240. * @peer: peer object from which the pkt is rx
  241. *
  242. * Return: void
  243. */
  244. void
  245. dp_rx_deliver_raw(struct dp_vdev *vdev, qdf_nbuf_t nbuf_list,
  246. struct dp_peer *peer)
  247. {
  248. qdf_nbuf_t deliver_list_head = NULL;
  249. qdf_nbuf_t deliver_list_tail = NULL;
  250. qdf_nbuf_t nbuf;
  251. nbuf = nbuf_list;
  252. while (nbuf) {
  253. qdf_nbuf_t next = qdf_nbuf_next(nbuf);
  254. DP_RX_LIST_APPEND(deliver_list_head, deliver_list_tail, nbuf);
  255. DP_STATS_INC(vdev->pdev, rx_raw_pkts, 1);
  256. DP_STATS_INC_PKT(peer, rx.raw, 1, qdf_nbuf_len(nbuf));
  257. /*
  258. * reset the chfrag_start and chfrag_end bits in nbuf cb
  259. * as this is a non-amsdu pkt and RAW mode simulation expects
  260. * these bit s to be 0 for non-amsdu pkt.
  261. */
  262. if (qdf_nbuf_is_rx_chfrag_start(nbuf) &&
  263. qdf_nbuf_is_rx_chfrag_end(nbuf)) {
  264. qdf_nbuf_set_rx_chfrag_start(nbuf, 0);
  265. qdf_nbuf_set_rx_chfrag_end(nbuf, 0);
  266. }
  267. nbuf = next;
  268. }
  269. vdev->osif_rsim_rx_decap(vdev->osif_vdev, &deliver_list_head,
  270. &deliver_list_tail, (struct cdp_peer*) peer);
  271. vdev->osif_rx(vdev->osif_vdev, deliver_list_head);
  272. }
  273. #ifdef DP_LFR
  274. /*
  275. * In case of LFR, data of a new peer might be sent up
  276. * even before peer is added.
  277. */
  278. static inline struct dp_vdev *
  279. dp_get_vdev_from_peer(struct dp_soc *soc,
  280. uint16_t peer_id,
  281. struct dp_peer *peer,
  282. struct hal_rx_mpdu_desc_info mpdu_desc_info)
  283. {
  284. struct dp_vdev *vdev;
  285. uint8_t vdev_id;
  286. if (unlikely(!peer)) {
  287. if (peer_id != HTT_INVALID_PEER) {
  288. vdev_id = DP_PEER_METADATA_VDEV_ID_GET(
  289. mpdu_desc_info.peer_meta_data);
  290. QDF_TRACE(QDF_MODULE_ID_DP,
  291. QDF_TRACE_LEVEL_DEBUG,
  292. FL("PeerID %d not found use vdevID %d"),
  293. peer_id, vdev_id);
  294. vdev = dp_get_vdev_from_soc_vdev_id_wifi3(soc,
  295. vdev_id);
  296. } else {
  297. QDF_TRACE(QDF_MODULE_ID_DP,
  298. QDF_TRACE_LEVEL_DEBUG,
  299. FL("Invalid PeerID %d"),
  300. peer_id);
  301. return NULL;
  302. }
  303. } else {
  304. vdev = peer->vdev;
  305. }
  306. return vdev;
  307. }
  308. #else
  309. static inline struct dp_vdev *
  310. dp_get_vdev_from_peer(struct dp_soc *soc,
  311. uint16_t peer_id,
  312. struct dp_peer *peer,
  313. struct hal_rx_mpdu_desc_info mpdu_desc_info)
  314. {
  315. if (unlikely(!peer)) {
  316. QDF_TRACE(QDF_MODULE_ID_DP,
  317. QDF_TRACE_LEVEL_DEBUG,
  318. FL("Peer not found for peerID %d"),
  319. peer_id);
  320. return NULL;
  321. } else {
  322. return peer->vdev;
  323. }
  324. }
  325. #endif
  326. #ifndef FEATURE_WDS
  327. static void
  328. dp_rx_da_learn(struct dp_soc *soc,
  329. uint8_t *rx_tlv_hdr,
  330. struct dp_peer *ta_peer,
  331. qdf_nbuf_t nbuf)
  332. {
  333. }
  334. #endif
  335. /*
  336. * dp_rx_intrabss_fwd() - Implements the Intra-BSS forwarding logic
  337. *
  338. * @soc: core txrx main context
  339. * @ta_peer : source peer entry
  340. * @rx_tlv_hdr : start address of rx tlvs
  341. * @nbuf : nbuf that has to be intrabss forwarded
  342. *
  343. * Return: bool: true if it is forwarded else false
  344. */
  345. static bool
  346. dp_rx_intrabss_fwd(struct dp_soc *soc,
  347. struct dp_peer *ta_peer,
  348. uint8_t *rx_tlv_hdr,
  349. qdf_nbuf_t nbuf)
  350. {
  351. uint16_t da_idx;
  352. uint16_t len;
  353. uint8_t is_frag;
  354. struct dp_peer *da_peer;
  355. struct dp_ast_entry *ast_entry;
  356. qdf_nbuf_t nbuf_copy;
  357. uint8_t tid = qdf_nbuf_get_tid_val(nbuf);
  358. uint8_t ring_id = QDF_NBUF_CB_RX_CTX_ID(nbuf);
  359. struct cdp_tid_rx_stats *tid_stats = &ta_peer->vdev->pdev->stats.
  360. tid_stats.tid_rx_stats[ring_id][tid];
  361. /* check if the destination peer is available in peer table
  362. * and also check if the source peer and destination peer
  363. * belong to the same vap and destination peer is not bss peer.
  364. */
  365. if ((qdf_nbuf_is_da_valid(nbuf) && !qdf_nbuf_is_da_mcbc(nbuf))) {
  366. da_idx = hal_rx_msdu_end_da_idx_get(soc->hal_soc, rx_tlv_hdr);
  367. ast_entry = soc->ast_table[da_idx];
  368. if (!ast_entry)
  369. return false;
  370. if (ast_entry->type == CDP_TXRX_AST_TYPE_DA) {
  371. ast_entry->is_active = TRUE;
  372. return false;
  373. }
  374. da_peer = ast_entry->peer;
  375. if (!da_peer)
  376. return false;
  377. /* TA peer cannot be same as peer(DA) on which AST is present
  378. * this indicates a change in topology and that AST entries
  379. * are yet to be updated.
  380. */
  381. if (da_peer == ta_peer)
  382. return false;
  383. if (da_peer->vdev == ta_peer->vdev && !da_peer->bss_peer) {
  384. len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
  385. is_frag = qdf_nbuf_is_frag(nbuf);
  386. memset(nbuf->cb, 0x0, sizeof(nbuf->cb));
  387. /* linearize the nbuf just before we send to
  388. * dp_tx_send()
  389. */
  390. if (qdf_unlikely(is_frag)) {
  391. if (qdf_nbuf_linearize(nbuf) == -ENOMEM)
  392. return false;
  393. nbuf = qdf_nbuf_unshare(nbuf);
  394. if (!nbuf) {
  395. DP_STATS_INC_PKT(ta_peer,
  396. rx.intra_bss.fail,
  397. 1,
  398. len);
  399. /* return true even though the pkt is
  400. * not forwarded. Basically skb_unshare
  401. * failed and we want to continue with
  402. * next nbuf.
  403. */
  404. tid_stats->fail_cnt[INTRABSS_DROP]++;
  405. return true;
  406. }
  407. }
  408. if (!dp_tx_send((struct cdp_soc_t *)soc,
  409. ta_peer->vdev->vdev_id, nbuf)) {
  410. DP_STATS_INC_PKT(ta_peer, rx.intra_bss.pkts, 1,
  411. len);
  412. return true;
  413. } else {
  414. DP_STATS_INC_PKT(ta_peer, rx.intra_bss.fail, 1,
  415. len);
  416. tid_stats->fail_cnt[INTRABSS_DROP]++;
  417. return false;
  418. }
  419. }
  420. }
  421. /* if it is a broadcast pkt (eg: ARP) and it is not its own
  422. * source, then clone the pkt and send the cloned pkt for
  423. * intra BSS forwarding and original pkt up the network stack
  424. * Note: how do we handle multicast pkts. do we forward
  425. * all multicast pkts as is or let a higher layer module
  426. * like igmpsnoop decide whether to forward or not with
  427. * Mcast enhancement.
  428. */
  429. else if (qdf_unlikely((qdf_nbuf_is_da_mcbc(nbuf) &&
  430. !ta_peer->bss_peer))) {
  431. if (!dp_rx_check_ndi_mdns_fwding(ta_peer, nbuf))
  432. goto end;
  433. nbuf_copy = qdf_nbuf_copy(nbuf);
  434. if (!nbuf_copy)
  435. goto end;
  436. len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
  437. memset(nbuf_copy->cb, 0x0, sizeof(nbuf_copy->cb));
  438. /* Set cb->ftype to intrabss FWD */
  439. qdf_nbuf_set_tx_ftype(nbuf_copy, CB_FTYPE_INTRABSS_FWD);
  440. if (dp_tx_send((struct cdp_soc_t *)soc,
  441. ta_peer->vdev->vdev_id, nbuf_copy)) {
  442. DP_STATS_INC_PKT(ta_peer, rx.intra_bss.fail, 1, len);
  443. tid_stats->fail_cnt[INTRABSS_DROP]++;
  444. qdf_nbuf_free(nbuf_copy);
  445. } else {
  446. DP_STATS_INC_PKT(ta_peer, rx.intra_bss.pkts, 1, len);
  447. tid_stats->intrabss_cnt++;
  448. }
  449. }
  450. end:
  451. /* return false as we have to still send the original pkt
  452. * up the stack
  453. */
  454. return false;
  455. }
  456. #ifdef MESH_MODE_SUPPORT
  457. /**
  458. * dp_rx_fill_mesh_stats() - Fills the mesh per packet receive stats
  459. *
  460. * @vdev: DP Virtual device handle
  461. * @nbuf: Buffer pointer
  462. * @rx_tlv_hdr: start of rx tlv header
  463. * @peer: pointer to peer
  464. *
  465. * This function allocated memory for mesh receive stats and fill the
  466. * required stats. Stores the memory address in skb cb.
  467. *
  468. * Return: void
  469. */
  470. void dp_rx_fill_mesh_stats(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
  471. uint8_t *rx_tlv_hdr, struct dp_peer *peer)
  472. {
  473. struct mesh_recv_hdr_s *rx_info = NULL;
  474. uint32_t pkt_type;
  475. uint32_t nss;
  476. uint32_t rate_mcs;
  477. uint32_t bw;
  478. /* fill recv mesh stats */
  479. rx_info = qdf_mem_malloc(sizeof(struct mesh_recv_hdr_s));
  480. /* upper layers are resposible to free this memory */
  481. if (!rx_info) {
  482. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  483. "Memory allocation failed for mesh rx stats");
  484. DP_STATS_INC(vdev->pdev, mesh_mem_alloc, 1);
  485. return;
  486. }
  487. rx_info->rs_flags = MESH_RXHDR_VER1;
  488. if (qdf_nbuf_is_rx_chfrag_start(nbuf))
  489. rx_info->rs_flags |= MESH_RX_FIRST_MSDU;
  490. if (qdf_nbuf_is_rx_chfrag_end(nbuf))
  491. rx_info->rs_flags |= MESH_RX_LAST_MSDU;
  492. if (hal_rx_attn_msdu_get_is_decrypted(rx_tlv_hdr)) {
  493. rx_info->rs_flags |= MESH_RX_DECRYPTED;
  494. rx_info->rs_keyix = hal_rx_msdu_get_keyid(rx_tlv_hdr);
  495. if (vdev->osif_get_key)
  496. vdev->osif_get_key(vdev->osif_vdev,
  497. &rx_info->rs_decryptkey[0],
  498. &peer->mac_addr.raw[0],
  499. rx_info->rs_keyix);
  500. }
  501. rx_info->rs_rssi = hal_rx_msdu_start_get_rssi(rx_tlv_hdr);
  502. rx_info->rs_channel = hal_rx_msdu_start_get_freq(rx_tlv_hdr);
  503. pkt_type = hal_rx_msdu_start_get_pkt_type(rx_tlv_hdr);
  504. rate_mcs = hal_rx_msdu_start_rate_mcs_get(rx_tlv_hdr);
  505. bw = hal_rx_msdu_start_bw_get(rx_tlv_hdr);
  506. nss = hal_rx_msdu_start_nss_get(vdev->pdev->soc->hal_soc, rx_tlv_hdr);
  507. rx_info->rs_ratephy1 = rate_mcs | (nss << 0x8) | (pkt_type << 16) |
  508. (bw << 24);
  509. qdf_nbuf_set_rx_fctx_type(nbuf, (void *)rx_info, CB_FTYPE_MESH_RX_INFO);
  510. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO_MED,
  511. FL("Mesh rx stats: flags %x, rssi %x, chn %x, rate %x, kix %x"),
  512. rx_info->rs_flags,
  513. rx_info->rs_rssi,
  514. rx_info->rs_channel,
  515. rx_info->rs_ratephy1,
  516. rx_info->rs_keyix);
  517. }
  518. /**
  519. * dp_rx_filter_mesh_packets() - Filters mesh unwanted packets
  520. *
  521. * @vdev: DP Virtual device handle
  522. * @nbuf: Buffer pointer
  523. * @rx_tlv_hdr: start of rx tlv header
  524. *
  525. * This checks if the received packet is matching any filter out
  526. * catogery and and drop the packet if it matches.
  527. *
  528. * Return: status(0 indicates drop, 1 indicate to no drop)
  529. */
  530. QDF_STATUS dp_rx_filter_mesh_packets(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
  531. uint8_t *rx_tlv_hdr)
  532. {
  533. union dp_align_mac_addr mac_addr;
  534. struct dp_soc *soc = vdev->pdev->soc;
  535. if (qdf_unlikely(vdev->mesh_rx_filter)) {
  536. if (vdev->mesh_rx_filter & MESH_FILTER_OUT_FROMDS)
  537. if (hal_rx_mpdu_get_fr_ds(soc->hal_soc,
  538. rx_tlv_hdr))
  539. return QDF_STATUS_SUCCESS;
  540. if (vdev->mesh_rx_filter & MESH_FILTER_OUT_TODS)
  541. if (hal_rx_mpdu_get_to_ds(soc->hal_soc,
  542. rx_tlv_hdr))
  543. return QDF_STATUS_SUCCESS;
  544. if (vdev->mesh_rx_filter & MESH_FILTER_OUT_NODS)
  545. if (!hal_rx_mpdu_get_fr_ds(soc->hal_soc,
  546. rx_tlv_hdr) &&
  547. !hal_rx_mpdu_get_to_ds(soc->hal_soc,
  548. rx_tlv_hdr))
  549. return QDF_STATUS_SUCCESS;
  550. if (vdev->mesh_rx_filter & MESH_FILTER_OUT_RA) {
  551. if (hal_rx_mpdu_get_addr1(soc->hal_soc,
  552. rx_tlv_hdr,
  553. &mac_addr.raw[0]))
  554. return QDF_STATUS_E_FAILURE;
  555. if (!qdf_mem_cmp(&mac_addr.raw[0],
  556. &vdev->mac_addr.raw[0],
  557. QDF_MAC_ADDR_SIZE))
  558. return QDF_STATUS_SUCCESS;
  559. }
  560. if (vdev->mesh_rx_filter & MESH_FILTER_OUT_TA) {
  561. if (hal_rx_mpdu_get_addr2(soc->hal_soc,
  562. rx_tlv_hdr,
  563. &mac_addr.raw[0]))
  564. return QDF_STATUS_E_FAILURE;
  565. if (!qdf_mem_cmp(&mac_addr.raw[0],
  566. &vdev->mac_addr.raw[0],
  567. QDF_MAC_ADDR_SIZE))
  568. return QDF_STATUS_SUCCESS;
  569. }
  570. }
  571. return QDF_STATUS_E_FAILURE;
  572. }
  573. #else
  574. void dp_rx_fill_mesh_stats(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
  575. uint8_t *rx_tlv_hdr, struct dp_peer *peer)
  576. {
  577. }
  578. QDF_STATUS dp_rx_filter_mesh_packets(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
  579. uint8_t *rx_tlv_hdr)
  580. {
  581. return QDF_STATUS_E_FAILURE;
  582. }
  583. #endif
  584. #ifdef FEATURE_NAC_RSSI
  585. /**
  586. * dp_rx_nac_filter(): Function to perform filtering of non-associated
  587. * clients
  588. * @pdev: DP pdev handle
  589. * @rx_pkt_hdr: Rx packet Header
  590. *
  591. * return: dp_vdev*
  592. */
  593. static
  594. struct dp_vdev *dp_rx_nac_filter(struct dp_pdev *pdev,
  595. uint8_t *rx_pkt_hdr)
  596. {
  597. struct ieee80211_frame *wh;
  598. struct dp_neighbour_peer *peer = NULL;
  599. wh = (struct ieee80211_frame *)rx_pkt_hdr;
  600. if ((wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) != IEEE80211_FC1_DIR_TODS)
  601. return NULL;
  602. qdf_spin_lock_bh(&pdev->neighbour_peer_mutex);
  603. TAILQ_FOREACH(peer, &pdev->neighbour_peers_list,
  604. neighbour_peer_list_elem) {
  605. if (qdf_mem_cmp(&peer->neighbour_peers_macaddr.raw[0],
  606. wh->i_addr2, QDF_MAC_ADDR_SIZE) == 0) {
  607. QDF_TRACE(
  608. QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  609. FL("NAC configuration matched for mac-%2x:%2x:%2x:%2x:%2x:%2x"),
  610. peer->neighbour_peers_macaddr.raw[0],
  611. peer->neighbour_peers_macaddr.raw[1],
  612. peer->neighbour_peers_macaddr.raw[2],
  613. peer->neighbour_peers_macaddr.raw[3],
  614. peer->neighbour_peers_macaddr.raw[4],
  615. peer->neighbour_peers_macaddr.raw[5]);
  616. qdf_spin_unlock_bh(&pdev->neighbour_peer_mutex);
  617. return pdev->monitor_vdev;
  618. }
  619. }
  620. qdf_spin_unlock_bh(&pdev->neighbour_peer_mutex);
  621. return NULL;
  622. }
  623. /**
  624. * dp_rx_process_invalid_peer(): Function to pass invalid peer list to umac
  625. * @soc: DP SOC handle
  626. * @mpdu: mpdu for which peer is invalid
  627. * @mac_id: mac_id which is one of 3 mac_ids(Assuming mac_id and
  628. * pool_id has same mapping)
  629. *
  630. * return: integer type
  631. */
  632. uint8_t dp_rx_process_invalid_peer(struct dp_soc *soc, qdf_nbuf_t mpdu,
  633. uint8_t mac_id)
  634. {
  635. struct dp_invalid_peer_msg msg;
  636. struct dp_vdev *vdev = NULL;
  637. struct dp_pdev *pdev = NULL;
  638. struct ieee80211_frame *wh;
  639. qdf_nbuf_t curr_nbuf, next_nbuf;
  640. uint8_t *rx_tlv_hdr = qdf_nbuf_data(mpdu);
  641. uint8_t *rx_pkt_hdr = hal_rx_pkt_hdr_get(rx_tlv_hdr);
  642. rx_pkt_hdr = hal_rx_pkt_hdr_get(rx_tlv_hdr);
  643. if (!HAL_IS_DECAP_FORMAT_RAW(soc->hal_soc, rx_tlv_hdr)) {
  644. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  645. "Drop decapped frames");
  646. goto free;
  647. }
  648. wh = (struct ieee80211_frame *)rx_pkt_hdr;
  649. if (!DP_FRAME_IS_DATA(wh)) {
  650. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  651. "NAWDS valid only for data frames");
  652. goto free;
  653. }
  654. if (qdf_nbuf_len(mpdu) < sizeof(struct ieee80211_frame)) {
  655. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  656. "Invalid nbuf length");
  657. goto free;
  658. }
  659. pdev = dp_get_pdev_for_mac_id(soc, mac_id);
  660. if (!pdev || qdf_unlikely(pdev->is_pdev_down)) {
  661. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  662. "PDEV %s", !pdev ? "not found" : "down");
  663. goto free;
  664. }
  665. if (pdev->filter_neighbour_peers) {
  666. /* Next Hop scenario not yet handle */
  667. vdev = dp_rx_nac_filter(pdev, rx_pkt_hdr);
  668. if (vdev) {
  669. dp_rx_mon_deliver(soc, pdev->pdev_id,
  670. pdev->invalid_peer_head_msdu,
  671. pdev->invalid_peer_tail_msdu);
  672. pdev->invalid_peer_head_msdu = NULL;
  673. pdev->invalid_peer_tail_msdu = NULL;
  674. return 0;
  675. }
  676. }
  677. TAILQ_FOREACH(vdev, &pdev->vdev_list, vdev_list_elem) {
  678. if (qdf_mem_cmp(wh->i_addr1, vdev->mac_addr.raw,
  679. QDF_MAC_ADDR_SIZE) == 0) {
  680. goto out;
  681. }
  682. }
  683. if (!vdev) {
  684. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  685. "VDEV not found");
  686. goto free;
  687. }
  688. out:
  689. msg.wh = wh;
  690. qdf_nbuf_pull_head(mpdu, RX_PKT_TLVS_LEN);
  691. msg.nbuf = mpdu;
  692. msg.vdev_id = vdev->vdev_id;
  693. if (pdev->soc->cdp_soc.ol_ops->rx_invalid_peer)
  694. pdev->soc->cdp_soc.ol_ops->rx_invalid_peer(
  695. (struct cdp_ctrl_objmgr_psoc *)soc->ctrl_psoc,
  696. pdev->pdev_id, &msg);
  697. free:
  698. /* Drop and free packet */
  699. curr_nbuf = mpdu;
  700. while (curr_nbuf) {
  701. next_nbuf = qdf_nbuf_next(curr_nbuf);
  702. qdf_nbuf_free(curr_nbuf);
  703. curr_nbuf = next_nbuf;
  704. }
  705. return 0;
  706. }
  707. /**
  708. * dp_rx_process_invalid_peer_wrapper(): Function to wrap invalid peer handler
  709. * @soc: DP SOC handle
  710. * @mpdu: mpdu for which peer is invalid
  711. * @mpdu_done: if an mpdu is completed
  712. * @mac_id: mac_id which is one of 3 mac_ids(Assuming mac_id and
  713. * pool_id has same mapping)
  714. *
  715. * return: integer type
  716. */
  717. void dp_rx_process_invalid_peer_wrapper(struct dp_soc *soc,
  718. qdf_nbuf_t mpdu, bool mpdu_done,
  719. uint8_t mac_id)
  720. {
  721. /* Only trigger the process when mpdu is completed */
  722. if (mpdu_done)
  723. dp_rx_process_invalid_peer(soc, mpdu, mac_id);
  724. }
  725. #else
  726. uint8_t dp_rx_process_invalid_peer(struct dp_soc *soc, qdf_nbuf_t mpdu,
  727. uint8_t mac_id)
  728. {
  729. qdf_nbuf_t curr_nbuf, next_nbuf;
  730. struct dp_pdev *pdev;
  731. struct dp_vdev *vdev = NULL;
  732. struct ieee80211_frame *wh;
  733. uint8_t *rx_tlv_hdr = qdf_nbuf_data(mpdu);
  734. uint8_t *rx_pkt_hdr = hal_rx_pkt_hdr_get(rx_tlv_hdr);
  735. wh = (struct ieee80211_frame *)rx_pkt_hdr;
  736. if (!DP_FRAME_IS_DATA(wh)) {
  737. QDF_TRACE_ERROR_RL(QDF_MODULE_ID_DP,
  738. "only for data frames");
  739. goto free;
  740. }
  741. if (qdf_nbuf_len(mpdu) < sizeof(struct ieee80211_frame)) {
  742. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  743. "Invalid nbuf length");
  744. goto free;
  745. }
  746. pdev = dp_get_pdev_for_mac_id(soc, mac_id);
  747. if (!pdev) {
  748. QDF_TRACE(QDF_MODULE_ID_DP,
  749. QDF_TRACE_LEVEL_ERROR,
  750. "PDEV not found");
  751. goto free;
  752. }
  753. qdf_spin_lock_bh(&pdev->vdev_list_lock);
  754. DP_PDEV_ITERATE_VDEV_LIST(pdev, vdev) {
  755. if (qdf_mem_cmp(wh->i_addr1, vdev->mac_addr.raw,
  756. QDF_MAC_ADDR_SIZE) == 0) {
  757. qdf_spin_unlock_bh(&pdev->vdev_list_lock);
  758. goto out;
  759. }
  760. }
  761. qdf_spin_unlock_bh(&pdev->vdev_list_lock);
  762. if (!vdev) {
  763. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  764. "VDEV not found");
  765. goto free;
  766. }
  767. out:
  768. if (soc->cdp_soc.ol_ops->rx_invalid_peer)
  769. soc->cdp_soc.ol_ops->rx_invalid_peer(vdev->vdev_id, wh);
  770. free:
  771. /* reset the head and tail pointers */
  772. pdev = dp_get_pdev_for_mac_id(soc, mac_id);
  773. if (pdev) {
  774. pdev->invalid_peer_head_msdu = NULL;
  775. pdev->invalid_peer_tail_msdu = NULL;
  776. }
  777. /* Drop and free packet */
  778. curr_nbuf = mpdu;
  779. while (curr_nbuf) {
  780. next_nbuf = qdf_nbuf_next(curr_nbuf);
  781. qdf_nbuf_free(curr_nbuf);
  782. curr_nbuf = next_nbuf;
  783. }
  784. return 0;
  785. }
  786. void dp_rx_process_invalid_peer_wrapper(struct dp_soc *soc,
  787. qdf_nbuf_t mpdu, bool mpdu_done,
  788. uint8_t mac_id)
  789. {
  790. /* Process the nbuf */
  791. dp_rx_process_invalid_peer(soc, mpdu, mac_id);
  792. }
  793. #endif
  794. #ifdef RECEIVE_OFFLOAD
  795. /**
  796. * dp_rx_print_offload_info() - Print offload info from RX TLV
  797. * @soc: dp soc handle
  798. * @rx_tlv: RX TLV for which offload information is to be printed
  799. *
  800. * Return: None
  801. */
  802. static void dp_rx_print_offload_info(struct dp_soc *soc, uint8_t *rx_tlv)
  803. {
  804. dp_verbose_debug("----------------------RX DESC LRO/GRO----------------------");
  805. dp_verbose_debug("lro_eligible 0x%x", HAL_RX_TLV_GET_LRO_ELIGIBLE(rx_tlv));
  806. dp_verbose_debug("pure_ack 0x%x", HAL_RX_TLV_GET_TCP_PURE_ACK(rx_tlv));
  807. dp_verbose_debug("chksum 0x%x", hal_rx_tlv_get_tcp_chksum(soc->hal_soc,
  808. rx_tlv));
  809. dp_verbose_debug("TCP seq num 0x%x", HAL_RX_TLV_GET_TCP_SEQ(rx_tlv));
  810. dp_verbose_debug("TCP ack num 0x%x", HAL_RX_TLV_GET_TCP_ACK(rx_tlv));
  811. dp_verbose_debug("TCP window 0x%x", HAL_RX_TLV_GET_TCP_WIN(rx_tlv));
  812. dp_verbose_debug("TCP protocol 0x%x", HAL_RX_TLV_GET_TCP_PROTO(rx_tlv));
  813. dp_verbose_debug("TCP offset 0x%x", HAL_RX_TLV_GET_TCP_OFFSET(rx_tlv));
  814. dp_verbose_debug("toeplitz 0x%x", HAL_RX_TLV_GET_FLOW_ID_TOEPLITZ(rx_tlv));
  815. dp_verbose_debug("---------------------------------------------------------");
  816. }
  817. /**
  818. * dp_rx_fill_gro_info() - Fill GRO info from RX TLV into skb->cb
  819. * @soc: DP SOC handle
  820. * @rx_tlv: RX TLV received for the msdu
  821. * @msdu: msdu for which GRO info needs to be filled
  822. * @rx_ol_pkt_cnt: counter to be incremented for GRO eligible packets
  823. *
  824. * Return: None
  825. */
  826. static
  827. void dp_rx_fill_gro_info(struct dp_soc *soc, uint8_t *rx_tlv,
  828. qdf_nbuf_t msdu, uint32_t *rx_ol_pkt_cnt)
  829. {
  830. if (!wlan_cfg_is_gro_enabled(soc->wlan_cfg_ctx))
  831. return;
  832. /* Filling up RX offload info only for TCP packets */
  833. if (!HAL_RX_TLV_GET_TCP_PROTO(rx_tlv))
  834. return;
  835. *rx_ol_pkt_cnt = *rx_ol_pkt_cnt + 1;
  836. QDF_NBUF_CB_RX_LRO_ELIGIBLE(msdu) =
  837. HAL_RX_TLV_GET_LRO_ELIGIBLE(rx_tlv);
  838. QDF_NBUF_CB_RX_TCP_PURE_ACK(msdu) =
  839. HAL_RX_TLV_GET_TCP_PURE_ACK(rx_tlv);
  840. QDF_NBUF_CB_RX_TCP_CHKSUM(msdu) =
  841. hal_rx_tlv_get_tcp_chksum(soc->hal_soc,
  842. rx_tlv);
  843. QDF_NBUF_CB_RX_TCP_SEQ_NUM(msdu) =
  844. HAL_RX_TLV_GET_TCP_SEQ(rx_tlv);
  845. QDF_NBUF_CB_RX_TCP_ACK_NUM(msdu) =
  846. HAL_RX_TLV_GET_TCP_ACK(rx_tlv);
  847. QDF_NBUF_CB_RX_TCP_WIN(msdu) =
  848. HAL_RX_TLV_GET_TCP_WIN(rx_tlv);
  849. QDF_NBUF_CB_RX_TCP_PROTO(msdu) =
  850. HAL_RX_TLV_GET_TCP_PROTO(rx_tlv);
  851. QDF_NBUF_CB_RX_IPV6_PROTO(msdu) =
  852. HAL_RX_TLV_GET_IPV6(rx_tlv);
  853. QDF_NBUF_CB_RX_TCP_OFFSET(msdu) =
  854. HAL_RX_TLV_GET_TCP_OFFSET(rx_tlv);
  855. QDF_NBUF_CB_RX_FLOW_ID(msdu) =
  856. HAL_RX_TLV_GET_FLOW_ID_TOEPLITZ(rx_tlv);
  857. dp_rx_print_offload_info(soc, rx_tlv);
  858. }
  859. #else
  860. static void dp_rx_fill_gro_info(struct dp_soc *soc, uint8_t *rx_tlv,
  861. qdf_nbuf_t msdu, uint32_t *rx_ol_pkt_cnt)
  862. {
  863. }
  864. #endif /* RECEIVE_OFFLOAD */
  865. /**
  866. * dp_rx_adjust_nbuf_len() - set appropriate msdu length in nbuf.
  867. *
  868. * @nbuf: pointer to msdu.
  869. * @mpdu_len: mpdu length
  870. *
  871. * Return: returns true if nbuf is last msdu of mpdu else retuns false.
  872. */
  873. static inline bool dp_rx_adjust_nbuf_len(qdf_nbuf_t nbuf, uint16_t *mpdu_len)
  874. {
  875. bool last_nbuf;
  876. if (*mpdu_len > (RX_BUFFER_SIZE - RX_PKT_TLVS_LEN)) {
  877. qdf_nbuf_set_pktlen(nbuf, RX_BUFFER_SIZE);
  878. last_nbuf = false;
  879. } else {
  880. qdf_nbuf_set_pktlen(nbuf, (*mpdu_len + RX_PKT_TLVS_LEN));
  881. last_nbuf = true;
  882. }
  883. *mpdu_len -= (RX_BUFFER_SIZE - RX_PKT_TLVS_LEN);
  884. return last_nbuf;
  885. }
  886. /**
  887. * dp_rx_sg_create() - create a frag_list for MSDUs which are spread across
  888. * multiple nbufs.
  889. * @nbuf: pointer to the first msdu of an amsdu.
  890. * @rx_tlv_hdr: pointer to the start of RX TLV headers.
  891. *
  892. *
  893. * This function implements the creation of RX frag_list for cases
  894. * where an MSDU is spread across multiple nbufs.
  895. *
  896. * Return: returns the head nbuf which contains complete frag_list.
  897. */
  898. qdf_nbuf_t dp_rx_sg_create(qdf_nbuf_t nbuf, uint8_t *rx_tlv_hdr)
  899. {
  900. qdf_nbuf_t parent, frag_list, next = NULL;
  901. uint16_t frag_list_len = 0;
  902. uint16_t mpdu_len;
  903. bool last_nbuf;
  904. mpdu_len = hal_rx_msdu_start_msdu_len_get(rx_tlv_hdr);
  905. /*
  906. * this is a case where the complete msdu fits in one single nbuf.
  907. * in this case HW sets both start and end bit and we only need to
  908. * reset these bits for RAW mode simulator to decap the pkt
  909. */
  910. if (qdf_nbuf_is_rx_chfrag_start(nbuf) &&
  911. qdf_nbuf_is_rx_chfrag_end(nbuf)) {
  912. qdf_nbuf_set_pktlen(nbuf, mpdu_len + RX_PKT_TLVS_LEN);
  913. qdf_nbuf_pull_head(nbuf, RX_PKT_TLVS_LEN);
  914. return nbuf;
  915. }
  916. /*
  917. * This is a case where we have multiple msdus (A-MSDU) spread across
  918. * multiple nbufs. here we create a fraglist out of these nbufs.
  919. *
  920. * the moment we encounter a nbuf with continuation bit set we
  921. * know for sure we have an MSDU which is spread across multiple
  922. * nbufs. We loop through and reap nbufs till we reach last nbuf.
  923. */
  924. parent = nbuf;
  925. frag_list = nbuf->next;
  926. nbuf = nbuf->next;
  927. /*
  928. * set the start bit in the first nbuf we encounter with continuation
  929. * bit set. This has the proper mpdu length set as it is the first
  930. * msdu of the mpdu. this becomes the parent nbuf and the subsequent
  931. * nbufs will form the frag_list of the parent nbuf.
  932. */
  933. qdf_nbuf_set_rx_chfrag_start(parent, 1);
  934. last_nbuf = dp_rx_adjust_nbuf_len(parent, &mpdu_len);
  935. /*
  936. * this is where we set the length of the fragments which are
  937. * associated to the parent nbuf. We iterate through the frag_list
  938. * till we hit the last_nbuf of the list.
  939. */
  940. do {
  941. last_nbuf = dp_rx_adjust_nbuf_len(nbuf, &mpdu_len);
  942. qdf_nbuf_pull_head(nbuf, RX_PKT_TLVS_LEN);
  943. frag_list_len += qdf_nbuf_len(nbuf);
  944. if (last_nbuf) {
  945. next = nbuf->next;
  946. nbuf->next = NULL;
  947. break;
  948. }
  949. nbuf = nbuf->next;
  950. } while (!last_nbuf);
  951. qdf_nbuf_set_rx_chfrag_start(nbuf, 0);
  952. qdf_nbuf_append_ext_list(parent, frag_list, frag_list_len);
  953. parent->next = next;
  954. qdf_nbuf_pull_head(parent, RX_PKT_TLVS_LEN);
  955. return parent;
  956. }
  957. /**
  958. * dp_rx_compute_delay() - Compute and fill in all timestamps
  959. * to pass in correct fields
  960. *
  961. * @vdev: pdev handle
  962. * @tx_desc: tx descriptor
  963. * @tid: tid value
  964. * Return: none
  965. */
  966. void dp_rx_compute_delay(struct dp_vdev *vdev, qdf_nbuf_t nbuf)
  967. {
  968. uint8_t ring_id = QDF_NBUF_CB_RX_CTX_ID(nbuf);
  969. int64_t current_ts = qdf_ktime_to_ms(qdf_ktime_get());
  970. uint32_t to_stack = qdf_nbuf_get_timedelta_ms(nbuf);
  971. uint8_t tid = qdf_nbuf_get_tid_val(nbuf);
  972. uint32_t interframe_delay =
  973. (uint32_t)(current_ts - vdev->prev_rx_deliver_tstamp);
  974. dp_update_delay_stats(vdev->pdev, to_stack, tid,
  975. CDP_DELAY_STATS_REAP_STACK, ring_id);
  976. /*
  977. * Update interframe delay stats calculated at deliver_data_ol point.
  978. * Value of vdev->prev_rx_deliver_tstamp will be 0 for 1st frame, so
  979. * interframe delay will not be calculate correctly for 1st frame.
  980. * On the other side, this will help in avoiding extra per packet check
  981. * of vdev->prev_rx_deliver_tstamp.
  982. */
  983. dp_update_delay_stats(vdev->pdev, interframe_delay, tid,
  984. CDP_DELAY_STATS_RX_INTERFRAME, ring_id);
  985. vdev->prev_rx_deliver_tstamp = current_ts;
  986. }
  987. /**
  988. * dp_rx_drop_nbuf_list() - drop an nbuf list
  989. * @pdev: dp pdev reference
  990. * @buf_list: buffer list to be dropepd
  991. *
  992. * Return: int (number of bufs dropped)
  993. */
  994. static inline int dp_rx_drop_nbuf_list(struct dp_pdev *pdev,
  995. qdf_nbuf_t buf_list)
  996. {
  997. struct cdp_tid_rx_stats *stats = NULL;
  998. uint8_t tid = 0, ring_id = 0;
  999. int num_dropped = 0;
  1000. qdf_nbuf_t buf, next_buf;
  1001. buf = buf_list;
  1002. while (buf) {
  1003. ring_id = QDF_NBUF_CB_RX_CTX_ID(buf);
  1004. next_buf = qdf_nbuf_queue_next(buf);
  1005. tid = qdf_nbuf_get_tid_val(buf);
  1006. stats = &pdev->stats.tid_stats.tid_rx_stats[ring_id][tid];
  1007. stats->fail_cnt[INVALID_PEER_VDEV]++;
  1008. stats->delivered_to_stack--;
  1009. qdf_nbuf_free(buf);
  1010. buf = next_buf;
  1011. num_dropped++;
  1012. }
  1013. return num_dropped;
  1014. }
  1015. #ifdef PEER_CACHE_RX_PKTS
  1016. /**
  1017. * dp_rx_flush_rx_cached() - flush cached rx frames
  1018. * @peer: peer
  1019. * @drop: flag to drop frames or forward to net stack
  1020. *
  1021. * Return: None
  1022. */
  1023. void dp_rx_flush_rx_cached(struct dp_peer *peer, bool drop)
  1024. {
  1025. struct dp_peer_cached_bufq *bufqi;
  1026. struct dp_rx_cached_buf *cache_buf = NULL;
  1027. ol_txrx_rx_fp data_rx = NULL;
  1028. int num_buff_elem;
  1029. QDF_STATUS status;
  1030. if (qdf_atomic_inc_return(&peer->flush_in_progress) > 1) {
  1031. qdf_atomic_dec(&peer->flush_in_progress);
  1032. return;
  1033. }
  1034. qdf_spin_lock_bh(&peer->peer_info_lock);
  1035. if (peer->state >= OL_TXRX_PEER_STATE_CONN && peer->vdev->osif_rx)
  1036. data_rx = peer->vdev->osif_rx;
  1037. else
  1038. drop = true;
  1039. qdf_spin_unlock_bh(&peer->peer_info_lock);
  1040. bufqi = &peer->bufq_info;
  1041. qdf_spin_lock_bh(&bufqi->bufq_lock);
  1042. qdf_list_remove_front(&bufqi->cached_bufq,
  1043. (qdf_list_node_t **)&cache_buf);
  1044. while (cache_buf) {
  1045. num_buff_elem = QDF_NBUF_CB_RX_NUM_ELEMENTS_IN_LIST(
  1046. cache_buf->buf);
  1047. bufqi->entries -= num_buff_elem;
  1048. qdf_spin_unlock_bh(&bufqi->bufq_lock);
  1049. if (drop) {
  1050. bufqi->dropped = dp_rx_drop_nbuf_list(peer->vdev->pdev,
  1051. cache_buf->buf);
  1052. } else {
  1053. /* Flush the cached frames to OSIF DEV */
  1054. status = data_rx(peer->vdev->osif_vdev, cache_buf->buf);
  1055. if (status != QDF_STATUS_SUCCESS)
  1056. bufqi->dropped = dp_rx_drop_nbuf_list(
  1057. peer->vdev->pdev,
  1058. cache_buf->buf);
  1059. }
  1060. qdf_mem_free(cache_buf);
  1061. cache_buf = NULL;
  1062. qdf_spin_lock_bh(&bufqi->bufq_lock);
  1063. qdf_list_remove_front(&bufqi->cached_bufq,
  1064. (qdf_list_node_t **)&cache_buf);
  1065. }
  1066. qdf_spin_unlock_bh(&bufqi->bufq_lock);
  1067. qdf_atomic_dec(&peer->flush_in_progress);
  1068. }
  1069. /**
  1070. * dp_rx_enqueue_rx() - cache rx frames
  1071. * @peer: peer
  1072. * @rx_buf_list: cache buffer list
  1073. *
  1074. * Return: None
  1075. */
  1076. static QDF_STATUS
  1077. dp_rx_enqueue_rx(struct dp_peer *peer, qdf_nbuf_t rx_buf_list)
  1078. {
  1079. struct dp_rx_cached_buf *cache_buf;
  1080. struct dp_peer_cached_bufq *bufqi = &peer->bufq_info;
  1081. int num_buff_elem;
  1082. QDF_TRACE_DEBUG_RL(QDF_MODULE_ID_TXRX, "bufq->curr %d bufq->drops %d",
  1083. bufqi->entries, bufqi->dropped);
  1084. if (!peer->valid) {
  1085. bufqi->dropped = dp_rx_drop_nbuf_list(peer->vdev->pdev,
  1086. rx_buf_list);
  1087. return QDF_STATUS_E_INVAL;
  1088. }
  1089. qdf_spin_lock_bh(&bufqi->bufq_lock);
  1090. if (bufqi->entries >= bufqi->thresh) {
  1091. bufqi->dropped = dp_rx_drop_nbuf_list(peer->vdev->pdev,
  1092. rx_buf_list);
  1093. qdf_spin_unlock_bh(&bufqi->bufq_lock);
  1094. return QDF_STATUS_E_RESOURCES;
  1095. }
  1096. qdf_spin_unlock_bh(&bufqi->bufq_lock);
  1097. num_buff_elem = QDF_NBUF_CB_RX_NUM_ELEMENTS_IN_LIST(rx_buf_list);
  1098. cache_buf = qdf_mem_malloc_atomic(sizeof(*cache_buf));
  1099. if (!cache_buf) {
  1100. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1101. "Failed to allocate buf to cache rx frames");
  1102. bufqi->dropped = dp_rx_drop_nbuf_list(peer->vdev->pdev,
  1103. rx_buf_list);
  1104. return QDF_STATUS_E_NOMEM;
  1105. }
  1106. cache_buf->buf = rx_buf_list;
  1107. qdf_spin_lock_bh(&bufqi->bufq_lock);
  1108. qdf_list_insert_back(&bufqi->cached_bufq,
  1109. &cache_buf->node);
  1110. bufqi->entries += num_buff_elem;
  1111. qdf_spin_unlock_bh(&bufqi->bufq_lock);
  1112. return QDF_STATUS_SUCCESS;
  1113. }
  1114. static inline
  1115. bool dp_rx_is_peer_cache_bufq_supported(void)
  1116. {
  1117. return true;
  1118. }
  1119. #else
  1120. static inline
  1121. bool dp_rx_is_peer_cache_bufq_supported(void)
  1122. {
  1123. return false;
  1124. }
  1125. static inline QDF_STATUS
  1126. dp_rx_enqueue_rx(struct dp_peer *peer, qdf_nbuf_t rx_buf_list)
  1127. {
  1128. return QDF_STATUS_SUCCESS;
  1129. }
  1130. #endif
  1131. static inline void dp_rx_deliver_to_stack(struct dp_vdev *vdev,
  1132. struct dp_peer *peer,
  1133. qdf_nbuf_t nbuf_head,
  1134. qdf_nbuf_t nbuf_tail)
  1135. {
  1136. /*
  1137. * highly unlikely to have a vdev without a registered rx
  1138. * callback function. if so let us free the nbuf_list.
  1139. */
  1140. if (qdf_unlikely(!vdev->osif_rx)) {
  1141. if (dp_rx_is_peer_cache_bufq_supported())
  1142. dp_rx_enqueue_rx(peer, nbuf_head);
  1143. else
  1144. dp_rx_drop_nbuf_list(vdev->pdev, nbuf_head);
  1145. return;
  1146. }
  1147. if (qdf_unlikely(vdev->rx_decap_type == htt_cmn_pkt_type_raw) ||
  1148. (vdev->rx_decap_type == htt_cmn_pkt_type_native_wifi)) {
  1149. vdev->osif_rsim_rx_decap(vdev->osif_vdev, &nbuf_head,
  1150. &nbuf_tail, (struct cdp_peer *) peer);
  1151. }
  1152. vdev->osif_rx(vdev->osif_vdev, nbuf_head);
  1153. }
  1154. /**
  1155. * dp_rx_cksum_offload() - set the nbuf checksum as defined by hardware.
  1156. * @nbuf: pointer to the first msdu of an amsdu.
  1157. * @rx_tlv_hdr: pointer to the start of RX TLV headers.
  1158. *
  1159. * The ipsumed field of the skb is set based on whether HW validated the
  1160. * IP/TCP/UDP checksum.
  1161. *
  1162. * Return: void
  1163. */
  1164. static inline void dp_rx_cksum_offload(struct dp_pdev *pdev,
  1165. qdf_nbuf_t nbuf,
  1166. uint8_t *rx_tlv_hdr)
  1167. {
  1168. qdf_nbuf_rx_cksum_t cksum = {0};
  1169. bool ip_csum_err = hal_rx_attn_ip_cksum_fail_get(rx_tlv_hdr);
  1170. bool tcp_udp_csum_er = hal_rx_attn_tcp_udp_cksum_fail_get(rx_tlv_hdr);
  1171. if (qdf_likely(!ip_csum_err && !tcp_udp_csum_er)) {
  1172. cksum.l4_result = QDF_NBUF_RX_CKSUM_TCP_UDP_UNNECESSARY;
  1173. qdf_nbuf_set_rx_cksum(nbuf, &cksum);
  1174. } else {
  1175. DP_STATS_INCC(pdev, err.ip_csum_err, 1, ip_csum_err);
  1176. DP_STATS_INCC(pdev, err.tcp_udp_csum_err, 1, tcp_udp_csum_er);
  1177. }
  1178. }
  1179. /**
  1180. * dp_rx_msdu_stats_update() - update per msdu stats.
  1181. * @soc: core txrx main context
  1182. * @nbuf: pointer to the first msdu of an amsdu.
  1183. * @rx_tlv_hdr: pointer to the start of RX TLV headers.
  1184. * @peer: pointer to the peer object.
  1185. * @ring_id: reo dest ring number on which pkt is reaped.
  1186. * @tid_stats: per tid rx stats.
  1187. *
  1188. * update all the per msdu stats for that nbuf.
  1189. * Return: void
  1190. */
  1191. static void dp_rx_msdu_stats_update(struct dp_soc *soc,
  1192. qdf_nbuf_t nbuf,
  1193. uint8_t *rx_tlv_hdr,
  1194. struct dp_peer *peer,
  1195. uint8_t ring_id,
  1196. struct cdp_tid_rx_stats *tid_stats)
  1197. {
  1198. bool is_ampdu, is_not_amsdu;
  1199. uint32_t sgi, mcs, tid, nss, bw, reception_type, pkt_type;
  1200. struct dp_vdev *vdev = peer->vdev;
  1201. qdf_ether_header_t *eh;
  1202. uint16_t msdu_len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
  1203. is_not_amsdu = qdf_nbuf_is_rx_chfrag_start(nbuf) &
  1204. qdf_nbuf_is_rx_chfrag_end(nbuf);
  1205. DP_STATS_INC_PKT(peer, rx.rcvd_reo[ring_id], 1, msdu_len);
  1206. DP_STATS_INCC(peer, rx.non_amsdu_cnt, 1, is_not_amsdu);
  1207. DP_STATS_INCC(peer, rx.amsdu_cnt, 1, !is_not_amsdu);
  1208. DP_STATS_INCC(peer, rx.rx_retries, 1, qdf_nbuf_is_rx_retry_flag(nbuf));
  1209. tid_stats->msdu_cnt++;
  1210. if (qdf_unlikely(qdf_nbuf_is_da_mcbc(nbuf) &&
  1211. (vdev->rx_decap_type == htt_cmn_pkt_type_ethernet))) {
  1212. eh = (qdf_ether_header_t *)qdf_nbuf_data(nbuf);
  1213. DP_STATS_INC_PKT(peer, rx.multicast, 1, msdu_len);
  1214. tid_stats->mcast_msdu_cnt++;
  1215. if (QDF_IS_ADDR_BROADCAST(eh->ether_dhost)) {
  1216. DP_STATS_INC_PKT(peer, rx.bcast, 1, msdu_len);
  1217. tid_stats->bcast_msdu_cnt++;
  1218. }
  1219. }
  1220. /*
  1221. * currently we can return from here as we have similar stats
  1222. * updated at per ppdu level instead of msdu level
  1223. */
  1224. if (!soc->process_rx_status)
  1225. return;
  1226. is_ampdu = hal_rx_mpdu_info_ampdu_flag_get(rx_tlv_hdr);
  1227. DP_STATS_INCC(peer, rx.ampdu_cnt, 1, is_ampdu);
  1228. DP_STATS_INCC(peer, rx.non_ampdu_cnt, 1, !(is_ampdu));
  1229. sgi = hal_rx_msdu_start_sgi_get(rx_tlv_hdr);
  1230. mcs = hal_rx_msdu_start_rate_mcs_get(rx_tlv_hdr);
  1231. tid = qdf_nbuf_get_tid_val(nbuf);
  1232. bw = hal_rx_msdu_start_bw_get(rx_tlv_hdr);
  1233. reception_type = hal_rx_msdu_start_reception_type_get(soc->hal_soc,
  1234. rx_tlv_hdr);
  1235. nss = hal_rx_msdu_start_nss_get(soc->hal_soc, rx_tlv_hdr);
  1236. pkt_type = hal_rx_msdu_start_get_pkt_type(rx_tlv_hdr);
  1237. DP_STATS_INC(peer, rx.bw[bw], 1);
  1238. /*
  1239. * only if nss > 0 and pkt_type is 11N/AC/AX,
  1240. * then increase index [nss - 1] in array counter.
  1241. */
  1242. if (nss > 0 && (pkt_type == DOT11_N ||
  1243. pkt_type == DOT11_AC ||
  1244. pkt_type == DOT11_AX))
  1245. DP_STATS_INC(peer, rx.nss[nss - 1], 1);
  1246. DP_STATS_INC(peer, rx.sgi_count[sgi], 1);
  1247. DP_STATS_INCC(peer, rx.err.mic_err, 1,
  1248. hal_rx_mpdu_end_mic_err_get(rx_tlv_hdr));
  1249. DP_STATS_INCC(peer, rx.err.decrypt_err, 1,
  1250. hal_rx_mpdu_end_decrypt_err_get(rx_tlv_hdr));
  1251. DP_STATS_INC(peer, rx.wme_ac_type[TID_TO_WME_AC(tid)], 1);
  1252. DP_STATS_INC(peer, rx.reception_type[reception_type], 1);
  1253. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[MAX_MCS - 1], 1,
  1254. ((mcs >= MAX_MCS_11A) && (pkt_type == DOT11_A)));
  1255. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[mcs], 1,
  1256. ((mcs <= MAX_MCS_11A) && (pkt_type == DOT11_A)));
  1257. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[MAX_MCS - 1], 1,
  1258. ((mcs >= MAX_MCS_11B) && (pkt_type == DOT11_B)));
  1259. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[mcs], 1,
  1260. ((mcs <= MAX_MCS_11B) && (pkt_type == DOT11_B)));
  1261. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[MAX_MCS - 1], 1,
  1262. ((mcs >= MAX_MCS_11A) && (pkt_type == DOT11_N)));
  1263. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[mcs], 1,
  1264. ((mcs <= MAX_MCS_11A) && (pkt_type == DOT11_N)));
  1265. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[MAX_MCS - 1], 1,
  1266. ((mcs >= MAX_MCS_11AC) && (pkt_type == DOT11_AC)));
  1267. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[mcs], 1,
  1268. ((mcs <= MAX_MCS_11AC) && (pkt_type == DOT11_AC)));
  1269. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[MAX_MCS - 1], 1,
  1270. ((mcs >= MAX_MCS) && (pkt_type == DOT11_AX)));
  1271. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[mcs], 1,
  1272. ((mcs < MAX_MCS) && (pkt_type == DOT11_AX)));
  1273. if ((soc->process_rx_status) &&
  1274. hal_rx_attn_first_mpdu_get(rx_tlv_hdr)) {
  1275. #if defined(FEATURE_PERPKT_INFO) && WDI_EVENT_ENABLE
  1276. if (!vdev->pdev)
  1277. return;
  1278. dp_wdi_event_handler(WDI_EVENT_UPDATE_DP_STATS, vdev->pdev->soc,
  1279. &peer->stats, peer->peer_ids[0],
  1280. UPDATE_PEER_STATS,
  1281. vdev->pdev->pdev_id);
  1282. #endif
  1283. }
  1284. }
  1285. static inline bool is_sa_da_idx_valid(struct dp_soc *soc,
  1286. uint8_t *rx_tlv_hdr,
  1287. qdf_nbuf_t nbuf)
  1288. {
  1289. if ((qdf_nbuf_is_sa_valid(nbuf) &&
  1290. (hal_rx_msdu_end_sa_idx_get(soc->hal_soc, rx_tlv_hdr) >
  1291. wlan_cfg_get_max_ast_idx(soc->wlan_cfg_ctx))) ||
  1292. (!qdf_nbuf_is_da_mcbc(nbuf) &&
  1293. qdf_nbuf_is_da_valid(nbuf) &&
  1294. (hal_rx_msdu_end_da_idx_get(soc->hal_soc, rx_tlv_hdr) >
  1295. wlan_cfg_get_max_ast_idx(soc->wlan_cfg_ctx))))
  1296. return false;
  1297. return true;
  1298. }
  1299. #ifndef WDS_VENDOR_EXTENSION
  1300. int dp_wds_rx_policy_check(uint8_t *rx_tlv_hdr,
  1301. struct dp_vdev *vdev,
  1302. struct dp_peer *peer)
  1303. {
  1304. return 1;
  1305. }
  1306. #endif
  1307. #ifdef RX_DESC_DEBUG_CHECK
  1308. /**
  1309. * dp_rx_desc_nbuf_sanity_check - Add sanity check to catch REO rx_desc paddr
  1310. * corruption
  1311. *
  1312. * @ring_desc: REO ring descriptor
  1313. * @rx_desc: Rx descriptor
  1314. *
  1315. * Return: NONE
  1316. */
  1317. static inline
  1318. void dp_rx_desc_nbuf_sanity_check(hal_ring_desc_t ring_desc,
  1319. struct dp_rx_desc *rx_desc)
  1320. {
  1321. struct hal_buf_info hbi;
  1322. hal_rx_reo_buf_paddr_get(ring_desc, &hbi);
  1323. /* Sanity check for possible buffer paddr corruption */
  1324. qdf_assert_always((&hbi)->paddr ==
  1325. qdf_nbuf_get_frag_paddr(rx_desc->nbuf, 0));
  1326. }
  1327. #else
  1328. static inline
  1329. void dp_rx_desc_nbuf_sanity_check(hal_ring_desc_t ring_desc,
  1330. struct dp_rx_desc *rx_desc)
  1331. {
  1332. }
  1333. #endif
  1334. #ifdef WLAN_FEATURE_RX_SOFTIRQ_TIME_LIMIT
  1335. static inline
  1336. bool dp_rx_reap_loop_pkt_limit_hit(struct dp_soc *soc, int num_reaped)
  1337. {
  1338. bool limit_hit = false;
  1339. struct wlan_cfg_dp_soc_ctxt *cfg = soc->wlan_cfg_ctx;
  1340. limit_hit =
  1341. (num_reaped >= cfg->rx_reap_loop_pkt_limit) ? true : false;
  1342. if (limit_hit)
  1343. DP_STATS_INC(soc, rx.reap_loop_pkt_limit_hit, 1)
  1344. return limit_hit;
  1345. }
  1346. static inline bool dp_rx_enable_eol_data_check(struct dp_soc *soc)
  1347. {
  1348. return soc->wlan_cfg_ctx->rx_enable_eol_data_check;
  1349. }
  1350. #else
  1351. static inline
  1352. bool dp_rx_reap_loop_pkt_limit_hit(struct dp_soc *soc, int num_reaped)
  1353. {
  1354. return false;
  1355. }
  1356. static inline bool dp_rx_enable_eol_data_check(struct dp_soc *soc)
  1357. {
  1358. return false;
  1359. }
  1360. #endif /* WLAN_FEATURE_RX_SOFTIRQ_TIME_LIMIT */
  1361. /**
  1362. * dp_is_special_data() - check is the pkt special like eapol, dhcp, etc
  1363. *
  1364. * @nbuf: pkt skb pointer
  1365. *
  1366. * Return: true if matched, false if not
  1367. */
  1368. static inline
  1369. bool dp_is_special_data(qdf_nbuf_t nbuf)
  1370. {
  1371. if (qdf_nbuf_is_ipv4_arp_pkt(nbuf) ||
  1372. qdf_nbuf_is_ipv4_dhcp_pkt(nbuf) ||
  1373. qdf_nbuf_is_ipv4_eapol_pkt(nbuf) ||
  1374. qdf_nbuf_is_ipv6_dhcp_pkt(nbuf))
  1375. return true;
  1376. else
  1377. return false;
  1378. }
  1379. #ifdef DP_RX_PKT_NO_PEER_DELIVER
  1380. /**
  1381. * dp_rx_deliver_to_stack_no_peer() - try deliver rx data even if
  1382. * no corresbonding peer found
  1383. * @soc: core txrx main context
  1384. * @nbuf: pkt skb pointer
  1385. *
  1386. * This function will try to deliver some RX special frames to stack
  1387. * even there is no peer matched found. for instance, LFR case, some
  1388. * eapol data will be sent to host before peer_map done.
  1389. *
  1390. * Return: None
  1391. */
  1392. static inline
  1393. void dp_rx_deliver_to_stack_no_peer(struct dp_soc *soc, qdf_nbuf_t nbuf)
  1394. {
  1395. uint16_t peer_id;
  1396. uint8_t vdev_id;
  1397. struct dp_vdev *vdev;
  1398. uint32_t l2_hdr_offset = 0;
  1399. uint16_t msdu_len = 0;
  1400. uint32_t pkt_len = 0;
  1401. uint8_t *rx_tlv_hdr;
  1402. peer_id = QDF_NBUF_CB_RX_PEER_ID(nbuf);
  1403. if (peer_id > soc->max_peers)
  1404. goto deliver_fail;
  1405. vdev_id = QDF_NBUF_CB_RX_VDEV_ID(nbuf);
  1406. vdev = dp_get_vdev_from_soc_vdev_id_wifi3(soc, vdev_id);
  1407. if (!vdev || !vdev->osif_rx)
  1408. goto deliver_fail;
  1409. rx_tlv_hdr = qdf_nbuf_data(nbuf);
  1410. l2_hdr_offset =
  1411. hal_rx_msdu_end_l3_hdr_padding_get(soc->hal_soc, rx_tlv_hdr);
  1412. msdu_len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
  1413. pkt_len = msdu_len + l2_hdr_offset + RX_PKT_TLVS_LEN;
  1414. if (qdf_unlikely(qdf_nbuf_is_frag(nbuf))) {
  1415. qdf_nbuf_pull_head(nbuf, RX_PKT_TLVS_LEN);
  1416. } else {
  1417. qdf_nbuf_set_pktlen(nbuf, pkt_len);
  1418. qdf_nbuf_pull_head(nbuf,
  1419. RX_PKT_TLVS_LEN +
  1420. l2_hdr_offset);
  1421. }
  1422. /* only allow special frames */
  1423. if (!dp_is_special_data(nbuf))
  1424. goto deliver_fail;
  1425. vdev->osif_rx(vdev->osif_vdev, nbuf);
  1426. DP_STATS_INC(soc, rx.err.pkt_delivered_no_peer, 1);
  1427. return;
  1428. deliver_fail:
  1429. DP_STATS_INC_PKT(soc, rx.err.rx_invalid_peer, 1,
  1430. QDF_NBUF_CB_RX_PKT_LEN(nbuf));
  1431. qdf_nbuf_free(nbuf);
  1432. }
  1433. #else
  1434. static inline
  1435. void dp_rx_deliver_to_stack_no_peer(struct dp_soc *soc, qdf_nbuf_t nbuf)
  1436. {
  1437. DP_STATS_INC_PKT(soc, rx.err.rx_invalid_peer, 1,
  1438. QDF_NBUF_CB_RX_PKT_LEN(nbuf));
  1439. qdf_nbuf_free(nbuf);
  1440. }
  1441. #endif
  1442. /**
  1443. * dp_rx_srng_get_num_pending() - get number of pending entries
  1444. * @hal_soc: hal soc opaque pointer
  1445. * @hal_ring: opaque pointer to the HAL Rx Ring
  1446. * @num_entries: number of entries in the hal_ring.
  1447. * @near_full: pointer to a boolean. This is set if ring is near full.
  1448. *
  1449. * The function returns the number of entries in a destination ring which are
  1450. * yet to be reaped. The function also checks if the ring is near full.
  1451. * If more than half of the ring needs to be reaped, the ring is considered
  1452. * approaching full.
  1453. * The function useses hal_srng_dst_num_valid_locked to get the number of valid
  1454. * entries. It should not be called within a SRNG lock. HW pointer value is
  1455. * synced into cached_hp.
  1456. *
  1457. * Return: Number of pending entries if any
  1458. */
  1459. static
  1460. uint32_t dp_rx_srng_get_num_pending(hal_soc_handle_t hal_soc,
  1461. hal_ring_handle_t hal_ring_hdl,
  1462. uint32_t num_entries,
  1463. bool *near_full)
  1464. {
  1465. uint32_t num_pending = 0;
  1466. num_pending = hal_srng_dst_num_valid_locked(hal_soc,
  1467. hal_ring_hdl,
  1468. true);
  1469. if (num_entries && (num_pending >= num_entries >> 1))
  1470. *near_full = true;
  1471. else
  1472. *near_full = false;
  1473. return num_pending;
  1474. }
  1475. /**
  1476. * dp_rx_process() - Brain of the Rx processing functionality
  1477. * Called from the bottom half (tasklet/NET_RX_SOFTIRQ)
  1478. * @int_ctx: per interrupt context
  1479. * @hal_ring: opaque pointer to the HAL Rx Ring, which will be serviced
  1480. * @reo_ring_num: ring number (0, 1, 2 or 3) of the reo ring.
  1481. * @quota: No. of units (packets) that can be serviced in one shot.
  1482. *
  1483. * This function implements the core of Rx functionality. This is
  1484. * expected to handle only non-error frames.
  1485. *
  1486. * Return: uint32_t: No. of elements processed
  1487. */
  1488. uint32_t dp_rx_process(struct dp_intr *int_ctx, hal_ring_handle_t hal_ring_hdl,
  1489. uint8_t reo_ring_num, uint32_t quota)
  1490. {
  1491. hal_ring_desc_t ring_desc;
  1492. hal_soc_handle_t hal_soc;
  1493. struct dp_rx_desc *rx_desc = NULL;
  1494. qdf_nbuf_t nbuf, next;
  1495. bool near_full;
  1496. union dp_rx_desc_list_elem_t *head[MAX_PDEV_CNT];
  1497. union dp_rx_desc_list_elem_t *tail[MAX_PDEV_CNT];
  1498. uint32_t num_pending;
  1499. uint32_t rx_bufs_used = 0, rx_buf_cookie;
  1500. uint32_t l2_hdr_offset = 0;
  1501. uint16_t msdu_len = 0;
  1502. uint16_t peer_id;
  1503. uint8_t vdev_id;
  1504. struct dp_peer *peer;
  1505. struct dp_vdev *vdev;
  1506. uint32_t pkt_len = 0;
  1507. struct hal_rx_mpdu_desc_info mpdu_desc_info;
  1508. struct hal_rx_msdu_desc_info msdu_desc_info;
  1509. enum hal_reo_error_status error;
  1510. uint32_t peer_mdata;
  1511. uint8_t *rx_tlv_hdr;
  1512. uint32_t rx_bufs_reaped[MAX_PDEV_CNT];
  1513. uint8_t mac_id = 0;
  1514. struct dp_pdev *pdev;
  1515. struct dp_pdev *rx_pdev;
  1516. struct dp_srng *dp_rxdma_srng;
  1517. struct rx_desc_pool *rx_desc_pool;
  1518. struct dp_soc *soc = int_ctx->soc;
  1519. uint8_t ring_id = 0;
  1520. uint8_t core_id = 0;
  1521. struct cdp_tid_rx_stats *tid_stats;
  1522. qdf_nbuf_t nbuf_head;
  1523. qdf_nbuf_t nbuf_tail;
  1524. qdf_nbuf_t deliver_list_head;
  1525. qdf_nbuf_t deliver_list_tail;
  1526. uint32_t num_rx_bufs_reaped = 0;
  1527. uint32_t intr_id;
  1528. struct hif_opaque_softc *scn;
  1529. int32_t tid = 0;
  1530. bool is_prev_msdu_last = true;
  1531. uint32_t num_entries_avail = 0;
  1532. uint32_t rx_ol_pkt_cnt = 0;
  1533. uint32_t num_entries = 0;
  1534. DP_HIST_INIT();
  1535. qdf_assert_always(soc && hal_ring_hdl);
  1536. hal_soc = soc->hal_soc;
  1537. qdf_assert_always(hal_soc);
  1538. scn = soc->hif_handle;
  1539. hif_pm_runtime_mark_dp_rx_busy(scn);
  1540. intr_id = int_ctx->dp_intr_id;
  1541. num_entries = hal_srng_get_num_entries(hal_soc, hal_ring_hdl);
  1542. more_data:
  1543. /* reset local variables here to be re-used in the function */
  1544. nbuf_head = NULL;
  1545. nbuf_tail = NULL;
  1546. deliver_list_head = NULL;
  1547. deliver_list_tail = NULL;
  1548. peer = NULL;
  1549. vdev = NULL;
  1550. num_rx_bufs_reaped = 0;
  1551. qdf_mem_zero(rx_bufs_reaped, sizeof(rx_bufs_reaped));
  1552. qdf_mem_zero(&mpdu_desc_info, sizeof(mpdu_desc_info));
  1553. qdf_mem_zero(&msdu_desc_info, sizeof(msdu_desc_info));
  1554. qdf_mem_zero(head, sizeof(head));
  1555. qdf_mem_zero(tail, sizeof(tail));
  1556. if (qdf_unlikely(dp_srng_access_start(int_ctx, soc, hal_ring_hdl))) {
  1557. /*
  1558. * Need API to convert from hal_ring pointer to
  1559. * Ring Type / Ring Id combo
  1560. */
  1561. DP_STATS_INC(soc, rx.err.hal_ring_access_fail, 1);
  1562. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1563. FL("HAL RING Access Failed -- %pK"), hal_ring_hdl);
  1564. goto done;
  1565. }
  1566. /*
  1567. * start reaping the buffers from reo ring and queue
  1568. * them in per vdev queue.
  1569. * Process the received pkts in a different per vdev loop.
  1570. */
  1571. while (qdf_likely(quota &&
  1572. (ring_desc = hal_srng_dst_peek(hal_soc,
  1573. hal_ring_hdl)))) {
  1574. error = HAL_RX_ERROR_STATUS_GET(ring_desc);
  1575. ring_id = hal_srng_ring_id_get(hal_ring_hdl);
  1576. if (qdf_unlikely(error == HAL_REO_ERROR_DETECTED)) {
  1577. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1578. FL("HAL RING 0x%pK:error %d"), hal_ring_hdl, error);
  1579. DP_STATS_INC(soc, rx.err.hal_reo_error[ring_id], 1);
  1580. /* Don't know how to deal with this -- assert */
  1581. qdf_assert(0);
  1582. }
  1583. rx_buf_cookie = HAL_RX_REO_BUF_COOKIE_GET(ring_desc);
  1584. rx_desc = dp_rx_cookie_2_va_rxdma_buf(soc, rx_buf_cookie);
  1585. qdf_assert(rx_desc);
  1586. /*
  1587. * this is a unlikely scenario where the host is reaping
  1588. * a descriptor which it already reaped just a while ago
  1589. * but is yet to replenish it back to HW.
  1590. * In this case host will dump the last 128 descriptors
  1591. * including the software descriptor rx_desc and assert.
  1592. */
  1593. if (qdf_unlikely(!rx_desc->in_use)) {
  1594. DP_STATS_INC(soc, rx.err.hal_reo_dest_dup, 1);
  1595. dp_info_rl("Reaping rx_desc not in use!");
  1596. dp_rx_dump_info_and_assert(soc, hal_ring_hdl,
  1597. ring_desc, rx_desc);
  1598. /* ignore duplicate RX desc and continue to process */
  1599. /* Pop out the descriptor */
  1600. hal_srng_dst_get_next(hal_soc, hal_ring_hdl);
  1601. continue;
  1602. }
  1603. if (qdf_unlikely(!dp_rx_desc_check_magic(rx_desc))) {
  1604. dp_err("Invalid rx_desc cookie=%d", rx_buf_cookie);
  1605. DP_STATS_INC(soc, rx.err.rx_desc_invalid_magic, 1);
  1606. dp_rx_dump_info_and_assert(soc, hal_ring_hdl,
  1607. ring_desc, rx_desc);
  1608. }
  1609. dp_rx_desc_nbuf_sanity_check(ring_desc, rx_desc);
  1610. /* TODO */
  1611. /*
  1612. * Need a separate API for unmapping based on
  1613. * phyiscal address
  1614. */
  1615. qdf_nbuf_unmap_single(soc->osdev, rx_desc->nbuf,
  1616. QDF_DMA_FROM_DEVICE);
  1617. rx_desc->unmapped = 1;
  1618. core_id = smp_processor_id();
  1619. DP_STATS_INC(soc, rx.ring_packets[core_id][ring_id], 1);
  1620. /* Get MPDU DESC info */
  1621. hal_rx_mpdu_desc_info_get(ring_desc, &mpdu_desc_info);
  1622. /* Get MSDU DESC info */
  1623. hal_rx_msdu_desc_info_get(ring_desc, &msdu_desc_info);
  1624. if (mpdu_desc_info.mpdu_flags & HAL_MPDU_F_RETRY_BIT)
  1625. qdf_nbuf_set_rx_retry_flag(rx_desc->nbuf, 1);
  1626. if (qdf_unlikely(mpdu_desc_info.mpdu_flags &
  1627. HAL_MPDU_F_RAW_AMPDU)) {
  1628. /* previous msdu has end bit set, so current one is
  1629. * the new MPDU
  1630. */
  1631. if (is_prev_msdu_last) {
  1632. is_prev_msdu_last = false;
  1633. /* Get number of entries available in HW ring */
  1634. num_entries_avail =
  1635. hal_srng_dst_num_valid(hal_soc,
  1636. hal_ring_hdl, 1);
  1637. /* For new MPDU check if we can read complete
  1638. * MPDU by comparing the number of buffers
  1639. * available and number of buffers needed to
  1640. * reap this MPDU
  1641. */
  1642. if (((msdu_desc_info.msdu_len /
  1643. (RX_BUFFER_SIZE - RX_PKT_TLVS_LEN) + 1)) >
  1644. num_entries_avail)
  1645. break;
  1646. } else {
  1647. if (msdu_desc_info.msdu_flags &
  1648. HAL_MSDU_F_LAST_MSDU_IN_MPDU)
  1649. is_prev_msdu_last = true;
  1650. }
  1651. qdf_nbuf_set_raw_frame(rx_desc->nbuf, 1);
  1652. }
  1653. /* Pop out the descriptor*/
  1654. hal_srng_dst_get_next(hal_soc, hal_ring_hdl);
  1655. rx_bufs_reaped[rx_desc->pool_id]++;
  1656. peer_mdata = mpdu_desc_info.peer_meta_data;
  1657. QDF_NBUF_CB_RX_PEER_ID(rx_desc->nbuf) =
  1658. DP_PEER_METADATA_PEER_ID_GET(peer_mdata);
  1659. QDF_NBUF_CB_RX_VDEV_ID(rx_desc->nbuf) =
  1660. DP_PEER_METADATA_VDEV_ID_GET(peer_mdata);
  1661. /*
  1662. * save msdu flags first, last and continuation msdu in
  1663. * nbuf->cb, also save mcbc, is_da_valid, is_sa_valid and
  1664. * length to nbuf->cb. This ensures the info required for
  1665. * per pkt processing is always in the same cache line.
  1666. * This helps in improving throughput for smaller pkt
  1667. * sizes.
  1668. */
  1669. if (msdu_desc_info.msdu_flags & HAL_MSDU_F_FIRST_MSDU_IN_MPDU)
  1670. qdf_nbuf_set_rx_chfrag_start(rx_desc->nbuf, 1);
  1671. if (msdu_desc_info.msdu_flags & HAL_MSDU_F_MSDU_CONTINUATION)
  1672. qdf_nbuf_set_rx_chfrag_cont(rx_desc->nbuf, 1);
  1673. if (msdu_desc_info.msdu_flags & HAL_MSDU_F_LAST_MSDU_IN_MPDU)
  1674. qdf_nbuf_set_rx_chfrag_end(rx_desc->nbuf, 1);
  1675. if (msdu_desc_info.msdu_flags & HAL_MSDU_F_DA_IS_MCBC)
  1676. qdf_nbuf_set_da_mcbc(rx_desc->nbuf, 1);
  1677. if (msdu_desc_info.msdu_flags & HAL_MSDU_F_DA_IS_VALID)
  1678. qdf_nbuf_set_da_valid(rx_desc->nbuf, 1);
  1679. if (msdu_desc_info.msdu_flags & HAL_MSDU_F_SA_IS_VALID)
  1680. qdf_nbuf_set_sa_valid(rx_desc->nbuf, 1);
  1681. qdf_nbuf_set_tid_val(rx_desc->nbuf,
  1682. HAL_RX_REO_QUEUE_NUMBER_GET(ring_desc));
  1683. QDF_NBUF_CB_RX_PKT_LEN(rx_desc->nbuf) = msdu_desc_info.msdu_len;
  1684. QDF_NBUF_CB_RX_CTX_ID(rx_desc->nbuf) = reo_ring_num;
  1685. DP_RX_LIST_APPEND(nbuf_head, nbuf_tail, rx_desc->nbuf);
  1686. /*
  1687. * if continuation bit is set then we have MSDU spread
  1688. * across multiple buffers, let us not decrement quota
  1689. * till we reap all buffers of that MSDU.
  1690. */
  1691. if (qdf_likely(!qdf_nbuf_is_rx_chfrag_cont(rx_desc->nbuf)))
  1692. quota -= 1;
  1693. dp_rx_add_to_free_desc_list(&head[rx_desc->pool_id],
  1694. &tail[rx_desc->pool_id],
  1695. rx_desc);
  1696. num_rx_bufs_reaped++;
  1697. if (dp_rx_reap_loop_pkt_limit_hit(soc, num_rx_bufs_reaped))
  1698. break;
  1699. }
  1700. done:
  1701. dp_srng_access_end(int_ctx, soc, hal_ring_hdl);
  1702. for (mac_id = 0; mac_id < MAX_PDEV_CNT; mac_id++) {
  1703. /*
  1704. * continue with next mac_id if no pkts were reaped
  1705. * from that pool
  1706. */
  1707. if (!rx_bufs_reaped[mac_id])
  1708. continue;
  1709. pdev = soc->pdev_list[mac_id];
  1710. dp_rxdma_srng = &pdev->rx_refill_buf_ring;
  1711. rx_desc_pool = &soc->rx_desc_buf[mac_id];
  1712. dp_rx_buffers_replenish(soc, mac_id, dp_rxdma_srng,
  1713. rx_desc_pool, rx_bufs_reaped[mac_id],
  1714. &head[mac_id], &tail[mac_id]);
  1715. }
  1716. dp_verbose_debug("replenished %u\n", rx_bufs_reaped[0]);
  1717. /* Peer can be NULL is case of LFR */
  1718. if (qdf_likely(peer))
  1719. vdev = NULL;
  1720. /*
  1721. * BIG loop where each nbuf is dequeued from global queue,
  1722. * processed and queued back on a per vdev basis. These nbufs
  1723. * are sent to stack as and when we run out of nbufs
  1724. * or a new nbuf dequeued from global queue has a different
  1725. * vdev when compared to previous nbuf.
  1726. */
  1727. nbuf = nbuf_head;
  1728. while (nbuf) {
  1729. next = nbuf->next;
  1730. rx_tlv_hdr = qdf_nbuf_data(nbuf);
  1731. vdev_id = QDF_NBUF_CB_RX_VDEV_ID(nbuf);
  1732. if (deliver_list_head && vdev && (vdev->vdev_id != vdev_id)) {
  1733. dp_rx_deliver_to_stack(vdev, peer, deliver_list_head,
  1734. deliver_list_tail);
  1735. deliver_list_head = NULL;
  1736. deliver_list_tail = NULL;
  1737. }
  1738. /* Get TID from struct cb->tid_val, save to tid */
  1739. if (qdf_nbuf_is_rx_chfrag_start(nbuf))
  1740. tid = qdf_nbuf_get_tid_val(nbuf);
  1741. peer_id = QDF_NBUF_CB_RX_PEER_ID(nbuf);
  1742. peer = dp_peer_find_by_id(soc, peer_id);
  1743. if (peer) {
  1744. QDF_NBUF_CB_DP_TRACE_PRINT(nbuf) = false;
  1745. qdf_dp_trace_set_track(nbuf, QDF_RX);
  1746. QDF_NBUF_CB_RX_DP_TRACE(nbuf) = 1;
  1747. QDF_NBUF_CB_RX_PACKET_TRACK(nbuf) =
  1748. QDF_NBUF_RX_PKT_DATA_TRACK;
  1749. }
  1750. rx_bufs_used++;
  1751. if (qdf_likely(peer)) {
  1752. vdev = peer->vdev;
  1753. } else {
  1754. nbuf->next = NULL;
  1755. dp_rx_deliver_to_stack_no_peer(soc, nbuf);
  1756. nbuf = next;
  1757. continue;
  1758. }
  1759. if (qdf_unlikely(!vdev)) {
  1760. qdf_nbuf_free(nbuf);
  1761. nbuf = next;
  1762. DP_STATS_INC(soc, rx.err.invalid_vdev, 1);
  1763. dp_peer_unref_del_find_by_id(peer);
  1764. continue;
  1765. }
  1766. rx_pdev = vdev->pdev;
  1767. DP_RX_TID_SAVE(nbuf, tid);
  1768. if (qdf_unlikely(rx_pdev->delay_stats_flag))
  1769. qdf_nbuf_set_timestamp(nbuf);
  1770. ring_id = QDF_NBUF_CB_RX_CTX_ID(nbuf);
  1771. tid_stats =
  1772. &rx_pdev->stats.tid_stats.tid_rx_stats[ring_id][tid];
  1773. /*
  1774. * Check if DMA completed -- msdu_done is the last bit
  1775. * to be written
  1776. */
  1777. if (qdf_unlikely(!qdf_nbuf_is_raw_frame(nbuf) &&
  1778. !hal_rx_attn_msdu_done_get(rx_tlv_hdr))) {
  1779. dp_err("MSDU DONE failure");
  1780. DP_STATS_INC(soc, rx.err.msdu_done_fail, 1);
  1781. hal_rx_dump_pkt_tlvs(hal_soc, rx_tlv_hdr,
  1782. QDF_TRACE_LEVEL_INFO);
  1783. tid_stats->fail_cnt[MSDU_DONE_FAILURE]++;
  1784. qdf_nbuf_free(nbuf);
  1785. qdf_assert(0);
  1786. nbuf = next;
  1787. continue;
  1788. }
  1789. DP_HIST_PACKET_COUNT_INC(vdev->pdev->pdev_id);
  1790. /*
  1791. * First IF condition:
  1792. * 802.11 Fragmented pkts are reinjected to REO
  1793. * HW block as SG pkts and for these pkts we only
  1794. * need to pull the RX TLVS header length.
  1795. * Second IF condition:
  1796. * The below condition happens when an MSDU is spread
  1797. * across multiple buffers. This can happen in two cases
  1798. * 1. The nbuf size is smaller then the received msdu.
  1799. * ex: we have set the nbuf size to 2048 during
  1800. * nbuf_alloc. but we received an msdu which is
  1801. * 2304 bytes in size then this msdu is spread
  1802. * across 2 nbufs.
  1803. *
  1804. * 2. AMSDUs when RAW mode is enabled.
  1805. * ex: 1st MSDU is in 1st nbuf and 2nd MSDU is spread
  1806. * across 1st nbuf and 2nd nbuf and last MSDU is
  1807. * spread across 2nd nbuf and 3rd nbuf.
  1808. *
  1809. * for these scenarios let us create a skb frag_list and
  1810. * append these buffers till the last MSDU of the AMSDU
  1811. * Third condition:
  1812. * This is the most likely case, we receive 802.3 pkts
  1813. * decapsulated by HW, here we need to set the pkt length.
  1814. */
  1815. if (qdf_unlikely(qdf_nbuf_is_frag(nbuf))) {
  1816. bool is_mcbc, is_sa_vld, is_da_vld;
  1817. is_mcbc = hal_rx_msdu_end_da_is_mcbc_get(soc->hal_soc,
  1818. rx_tlv_hdr);
  1819. is_sa_vld =
  1820. hal_rx_msdu_end_sa_is_valid_get(soc->hal_soc,
  1821. rx_tlv_hdr);
  1822. is_da_vld =
  1823. hal_rx_msdu_end_da_is_valid_get(soc->hal_soc,
  1824. rx_tlv_hdr);
  1825. qdf_nbuf_set_da_mcbc(nbuf, is_mcbc);
  1826. qdf_nbuf_set_da_valid(nbuf, is_da_vld);
  1827. qdf_nbuf_set_sa_valid(nbuf, is_sa_vld);
  1828. qdf_nbuf_pull_head(nbuf, RX_PKT_TLVS_LEN);
  1829. } else if (qdf_nbuf_is_raw_frame(nbuf)) {
  1830. msdu_len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
  1831. nbuf = dp_rx_sg_create(nbuf, rx_tlv_hdr);
  1832. DP_STATS_INC(vdev->pdev, rx_raw_pkts, 1);
  1833. DP_STATS_INC_PKT(peer, rx.raw, 1, msdu_len);
  1834. next = nbuf->next;
  1835. } else {
  1836. l2_hdr_offset =
  1837. hal_rx_msdu_end_l3_hdr_padding_get(soc->hal_soc,
  1838. rx_tlv_hdr);
  1839. msdu_len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
  1840. pkt_len = msdu_len + l2_hdr_offset + RX_PKT_TLVS_LEN;
  1841. qdf_nbuf_set_pktlen(nbuf, pkt_len);
  1842. qdf_nbuf_pull_head(nbuf,
  1843. RX_PKT_TLVS_LEN +
  1844. l2_hdr_offset);
  1845. }
  1846. /*
  1847. * process frame for mulitpass phrase processing
  1848. */
  1849. if (qdf_unlikely(vdev->multipass_en)) {
  1850. dp_rx_multipass_process(peer, nbuf, tid);
  1851. }
  1852. if (!dp_wds_rx_policy_check(rx_tlv_hdr, vdev, peer)) {
  1853. QDF_TRACE(QDF_MODULE_ID_DP,
  1854. QDF_TRACE_LEVEL_ERROR,
  1855. FL("Policy Check Drop pkt"));
  1856. tid_stats->fail_cnt[POLICY_CHECK_DROP]++;
  1857. /* Drop & free packet */
  1858. qdf_nbuf_free(nbuf);
  1859. /* Statistics */
  1860. nbuf = next;
  1861. dp_peer_unref_del_find_by_id(peer);
  1862. continue;
  1863. }
  1864. if (qdf_unlikely(peer && (peer->nawds_enabled) &&
  1865. (qdf_nbuf_is_da_mcbc(nbuf)) &&
  1866. (hal_rx_get_mpdu_mac_ad4_valid(soc->hal_soc,
  1867. rx_tlv_hdr) ==
  1868. false))) {
  1869. tid_stats->fail_cnt[NAWDS_MCAST_DROP]++;
  1870. DP_STATS_INC(peer, rx.nawds_mcast_drop, 1);
  1871. qdf_nbuf_free(nbuf);
  1872. nbuf = next;
  1873. dp_peer_unref_del_find_by_id(peer);
  1874. continue;
  1875. }
  1876. if (soc->process_rx_status)
  1877. dp_rx_cksum_offload(vdev->pdev, nbuf, rx_tlv_hdr);
  1878. /* Update the protocol tag in SKB based on CCE metadata */
  1879. dp_rx_update_protocol_tag(soc, vdev, nbuf, rx_tlv_hdr,
  1880. reo_ring_num, false, true);
  1881. /* Update the flow tag in SKB based on FSE metadata */
  1882. dp_rx_update_flow_tag(soc, vdev, nbuf, rx_tlv_hdr, true);
  1883. dp_rx_msdu_stats_update(soc, nbuf, rx_tlv_hdr, peer,
  1884. ring_id, tid_stats);
  1885. if (qdf_unlikely(vdev->mesh_vdev)) {
  1886. if (dp_rx_filter_mesh_packets(vdev, nbuf, rx_tlv_hdr)
  1887. == QDF_STATUS_SUCCESS) {
  1888. QDF_TRACE(QDF_MODULE_ID_DP,
  1889. QDF_TRACE_LEVEL_INFO_MED,
  1890. FL("mesh pkt filtered"));
  1891. tid_stats->fail_cnt[MESH_FILTER_DROP]++;
  1892. DP_STATS_INC(vdev->pdev, dropped.mesh_filter,
  1893. 1);
  1894. qdf_nbuf_free(nbuf);
  1895. nbuf = next;
  1896. dp_peer_unref_del_find_by_id(peer);
  1897. continue;
  1898. }
  1899. dp_rx_fill_mesh_stats(vdev, nbuf, rx_tlv_hdr, peer);
  1900. }
  1901. if (qdf_likely(vdev->rx_decap_type ==
  1902. htt_cmn_pkt_type_ethernet) &&
  1903. qdf_likely(!vdev->mesh_vdev)) {
  1904. /* WDS Destination Address Learning */
  1905. dp_rx_da_learn(soc, rx_tlv_hdr, peer, nbuf);
  1906. /* Due to HW issue, sometimes we see that the sa_idx
  1907. * and da_idx are invalid with sa_valid and da_valid
  1908. * bits set
  1909. *
  1910. * in this case we also see that value of
  1911. * sa_sw_peer_id is set as 0
  1912. *
  1913. * Drop the packet if sa_idx and da_idx OOB or
  1914. * sa_sw_peerid is 0
  1915. */
  1916. if (!is_sa_da_idx_valid(soc, rx_tlv_hdr, nbuf)) {
  1917. qdf_nbuf_free(nbuf);
  1918. nbuf = next;
  1919. DP_STATS_INC(soc, rx.err.invalid_sa_da_idx, 1);
  1920. dp_peer_unref_del_find_by_id(peer);
  1921. continue;
  1922. }
  1923. /* WDS Source Port Learning */
  1924. if (qdf_likely(vdev->wds_enabled))
  1925. dp_rx_wds_srcport_learn(soc, rx_tlv_hdr,
  1926. peer, nbuf);
  1927. /* Intrabss-fwd */
  1928. if (dp_rx_check_ap_bridge(vdev))
  1929. if (dp_rx_intrabss_fwd(soc,
  1930. peer,
  1931. rx_tlv_hdr,
  1932. nbuf)) {
  1933. nbuf = next;
  1934. dp_peer_unref_del_find_by_id(peer);
  1935. tid_stats->intrabss_cnt++;
  1936. continue; /* Get next desc */
  1937. }
  1938. }
  1939. dp_rx_fill_gro_info(soc, rx_tlv_hdr, nbuf, &rx_ol_pkt_cnt);
  1940. DP_RX_LIST_APPEND(deliver_list_head,
  1941. deliver_list_tail,
  1942. nbuf);
  1943. DP_STATS_INC_PKT(peer, rx.to_stack, 1,
  1944. QDF_NBUF_CB_RX_PKT_LEN(nbuf));
  1945. tid_stats->delivered_to_stack++;
  1946. nbuf = next;
  1947. dp_peer_unref_del_find_by_id(peer);
  1948. }
  1949. if (qdf_likely(deliver_list_head)) {
  1950. if (qdf_likely(peer))
  1951. dp_rx_deliver_to_stack(vdev, peer, deliver_list_head,
  1952. deliver_list_tail);
  1953. else {
  1954. nbuf = deliver_list_head;
  1955. while (nbuf) {
  1956. next = nbuf->next;
  1957. nbuf->next = NULL;
  1958. dp_rx_deliver_to_stack_no_peer(soc, nbuf);
  1959. nbuf = next;
  1960. }
  1961. }
  1962. }
  1963. if (dp_rx_enable_eol_data_check(soc) && rx_bufs_used) {
  1964. if (quota) {
  1965. num_pending =
  1966. dp_rx_srng_get_num_pending(hal_soc,
  1967. hal_ring_hdl,
  1968. num_entries,
  1969. &near_full);
  1970. if (num_pending) {
  1971. DP_STATS_INC(soc, rx.hp_oos2, 1);
  1972. if (!hif_exec_should_yield(scn, intr_id))
  1973. goto more_data;
  1974. if (qdf_unlikely(near_full)) {
  1975. DP_STATS_INC(soc, rx.near_full, 1);
  1976. goto more_data;
  1977. }
  1978. }
  1979. }
  1980. if (vdev && vdev->osif_gro_flush && rx_ol_pkt_cnt) {
  1981. vdev->osif_gro_flush(vdev->osif_vdev,
  1982. reo_ring_num);
  1983. }
  1984. }
  1985. /* Update histogram statistics by looping through pdev's */
  1986. DP_RX_HIST_STATS_PER_PDEV();
  1987. return rx_bufs_used; /* Assume no scale factor for now */
  1988. }
  1989. QDF_STATUS dp_rx_vdev_detach(struct dp_vdev *vdev)
  1990. {
  1991. QDF_STATUS ret;
  1992. if (vdev->osif_rx_flush) {
  1993. ret = vdev->osif_rx_flush(vdev->osif_vdev, vdev->vdev_id);
  1994. if (!ret) {
  1995. dp_err("Failed to flush rx pkts for vdev %d\n",
  1996. vdev->vdev_id);
  1997. return ret;
  1998. }
  1999. }
  2000. return QDF_STATUS_SUCCESS;
  2001. }
  2002. /**
  2003. * dp_rx_pdev_detach() - detach dp rx
  2004. * @pdev: core txrx pdev context
  2005. *
  2006. * This function will detach DP RX into main device context
  2007. * will free DP Rx resources.
  2008. *
  2009. * Return: void
  2010. */
  2011. void
  2012. dp_rx_pdev_detach(struct dp_pdev *pdev)
  2013. {
  2014. uint8_t pdev_id = pdev->pdev_id;
  2015. struct dp_soc *soc = pdev->soc;
  2016. struct rx_desc_pool *rx_desc_pool;
  2017. rx_desc_pool = &soc->rx_desc_buf[pdev_id];
  2018. if (rx_desc_pool->pool_size != 0) {
  2019. if (!dp_is_soc_reinit(soc))
  2020. dp_rx_desc_nbuf_and_pool_free(soc, pdev_id,
  2021. rx_desc_pool);
  2022. else
  2023. dp_rx_desc_nbuf_free(soc, rx_desc_pool);
  2024. }
  2025. return;
  2026. }
  2027. static QDF_STATUS
  2028. dp_pdev_nbuf_alloc_and_map(struct dp_soc *dp_soc, qdf_nbuf_t *nbuf,
  2029. struct dp_pdev *dp_pdev)
  2030. {
  2031. qdf_dma_addr_t paddr;
  2032. QDF_STATUS ret = QDF_STATUS_E_FAILURE;
  2033. *nbuf = qdf_nbuf_alloc(dp_soc->osdev, RX_BUFFER_SIZE,
  2034. RX_BUFFER_RESERVATION, RX_BUFFER_ALIGNMENT,
  2035. FALSE);
  2036. if (!(*nbuf)) {
  2037. dp_err("nbuf alloc failed");
  2038. DP_STATS_INC(dp_pdev, replenish.nbuf_alloc_fail, 1);
  2039. return ret;
  2040. }
  2041. ret = qdf_nbuf_map_single(dp_soc->osdev, *nbuf,
  2042. QDF_DMA_FROM_DEVICE);
  2043. if (qdf_unlikely(QDF_IS_STATUS_ERROR(ret))) {
  2044. qdf_nbuf_free(*nbuf);
  2045. dp_err("nbuf map failed");
  2046. DP_STATS_INC(dp_pdev, replenish.map_err, 1);
  2047. return ret;
  2048. }
  2049. paddr = qdf_nbuf_get_frag_paddr(*nbuf, 0);
  2050. ret = check_x86_paddr(dp_soc, nbuf, &paddr, dp_pdev);
  2051. if (ret == QDF_STATUS_E_FAILURE) {
  2052. qdf_nbuf_unmap_single(dp_soc->osdev, *nbuf,
  2053. QDF_DMA_FROM_DEVICE);
  2054. qdf_nbuf_free(*nbuf);
  2055. dp_err("nbuf check x86 failed");
  2056. DP_STATS_INC(dp_pdev, replenish.x86_fail, 1);
  2057. return ret;
  2058. }
  2059. return QDF_STATUS_SUCCESS;
  2060. }
  2061. QDF_STATUS
  2062. dp_pdev_rx_buffers_attach(struct dp_soc *dp_soc, uint32_t mac_id,
  2063. struct dp_srng *dp_rxdma_srng,
  2064. struct rx_desc_pool *rx_desc_pool,
  2065. uint32_t num_req_buffers)
  2066. {
  2067. struct dp_pdev *dp_pdev = dp_get_pdev_for_mac_id(dp_soc, mac_id);
  2068. hal_ring_handle_t rxdma_srng = dp_rxdma_srng->hal_srng;
  2069. union dp_rx_desc_list_elem_t *next;
  2070. void *rxdma_ring_entry;
  2071. qdf_dma_addr_t paddr;
  2072. qdf_nbuf_t *rx_nbuf_arr;
  2073. uint32_t nr_descs, nr_nbuf = 0, nr_nbuf_total = 0;
  2074. uint32_t buffer_index, nbuf_ptrs_per_page;
  2075. qdf_nbuf_t nbuf;
  2076. QDF_STATUS ret;
  2077. int page_idx, total_pages;
  2078. union dp_rx_desc_list_elem_t *desc_list = NULL;
  2079. union dp_rx_desc_list_elem_t *tail = NULL;
  2080. if (qdf_unlikely(!rxdma_srng)) {
  2081. DP_STATS_INC(dp_pdev, replenish.rxdma_err, num_req_buffers);
  2082. return QDF_STATUS_E_FAILURE;
  2083. }
  2084. dp_debug("requested %u RX buffers for driver attach", num_req_buffers);
  2085. nr_descs = dp_rx_get_free_desc_list(dp_soc, mac_id, rx_desc_pool,
  2086. num_req_buffers, &desc_list, &tail);
  2087. if (!nr_descs) {
  2088. dp_err("no free rx_descs in freelist");
  2089. DP_STATS_INC(dp_pdev, err.desc_alloc_fail, num_req_buffers);
  2090. return QDF_STATUS_E_NOMEM;
  2091. }
  2092. dp_debug("got %u RX descs for driver attach", nr_descs);
  2093. /*
  2094. * Try to allocate pointers to the nbuf one page at a time.
  2095. * Take pointers that can fit in one page of memory and
  2096. * iterate through the total descriptors that need to be
  2097. * allocated in order of pages. Reuse the pointers that
  2098. * have been allocated to fit in one page across each
  2099. * iteration to index into the nbuf.
  2100. */
  2101. total_pages = (nr_descs * sizeof(*rx_nbuf_arr)) / PAGE_SIZE;
  2102. /*
  2103. * Add an extra page to store the remainder if any
  2104. */
  2105. if ((nr_descs * sizeof(*rx_nbuf_arr)) % PAGE_SIZE)
  2106. total_pages++;
  2107. rx_nbuf_arr = qdf_mem_malloc(PAGE_SIZE);
  2108. if (!rx_nbuf_arr) {
  2109. dp_err("failed to allocate nbuf array");
  2110. DP_STATS_INC(dp_pdev, replenish.rxdma_err, num_req_buffers);
  2111. QDF_BUG(0);
  2112. return QDF_STATUS_E_NOMEM;
  2113. }
  2114. nbuf_ptrs_per_page = PAGE_SIZE / sizeof(*rx_nbuf_arr);
  2115. for (page_idx = 0; page_idx < total_pages; page_idx++) {
  2116. qdf_mem_zero(rx_nbuf_arr, PAGE_SIZE);
  2117. for (nr_nbuf = 0; nr_nbuf < nbuf_ptrs_per_page; nr_nbuf++) {
  2118. /*
  2119. * The last page of buffer pointers may not be required
  2120. * completely based on the number of descriptors. Below
  2121. * check will ensure we are allocating only the
  2122. * required number of descriptors.
  2123. */
  2124. if (nr_nbuf_total >= nr_descs)
  2125. break;
  2126. ret = dp_pdev_nbuf_alloc_and_map(dp_soc,
  2127. &rx_nbuf_arr[nr_nbuf],
  2128. dp_pdev);
  2129. if (QDF_IS_STATUS_ERROR(ret))
  2130. break;
  2131. nr_nbuf_total++;
  2132. }
  2133. hal_srng_access_start(dp_soc->hal_soc, rxdma_srng);
  2134. for (buffer_index = 0; buffer_index < nr_nbuf; buffer_index++) {
  2135. rxdma_ring_entry =
  2136. hal_srng_src_get_next(dp_soc->hal_soc,
  2137. rxdma_srng);
  2138. qdf_assert_always(rxdma_ring_entry);
  2139. next = desc_list->next;
  2140. nbuf = rx_nbuf_arr[buffer_index];
  2141. paddr = qdf_nbuf_get_frag_paddr(nbuf, 0);
  2142. dp_rx_desc_prep(&desc_list->rx_desc, nbuf);
  2143. desc_list->rx_desc.in_use = 1;
  2144. hal_rxdma_buff_addr_info_set(rxdma_ring_entry, paddr,
  2145. desc_list->rx_desc.cookie,
  2146. rx_desc_pool->owner);
  2147. dp_ipa_handle_rx_buf_smmu_mapping(dp_soc, nbuf, true);
  2148. desc_list = next;
  2149. }
  2150. hal_srng_access_end(dp_soc->hal_soc, rxdma_srng);
  2151. }
  2152. dp_info("filled %u RX buffers for driver attach", nr_nbuf_total);
  2153. qdf_mem_free(rx_nbuf_arr);
  2154. if (!nr_nbuf_total) {
  2155. dp_err("No nbuf's allocated");
  2156. QDF_BUG(0);
  2157. return QDF_STATUS_E_RESOURCES;
  2158. }
  2159. DP_STATS_INC_PKT(dp_pdev, replenish.pkts, nr_nbuf,
  2160. RX_BUFFER_SIZE * nr_nbuf_total);
  2161. return QDF_STATUS_SUCCESS;
  2162. }
  2163. /**
  2164. * dp_rx_attach() - attach DP RX
  2165. * @pdev: core txrx pdev context
  2166. *
  2167. * This function will attach a DP RX instance into the main
  2168. * device (SOC) context. Will allocate dp rx resource and
  2169. * initialize resources.
  2170. *
  2171. * Return: QDF_STATUS_SUCCESS: success
  2172. * QDF_STATUS_E_RESOURCES: Error return
  2173. */
  2174. QDF_STATUS
  2175. dp_rx_pdev_attach(struct dp_pdev *pdev)
  2176. {
  2177. uint8_t pdev_id = pdev->pdev_id;
  2178. struct dp_soc *soc = pdev->soc;
  2179. uint32_t rxdma_entries;
  2180. uint32_t rx_sw_desc_weight;
  2181. struct dp_srng *dp_rxdma_srng;
  2182. struct rx_desc_pool *rx_desc_pool;
  2183. QDF_STATUS ret_val;
  2184. if (wlan_cfg_get_dp_pdev_nss_enabled(pdev->wlan_cfg_ctx)) {
  2185. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
  2186. "nss-wifi<4> skip Rx refil %d", pdev_id);
  2187. return QDF_STATUS_SUCCESS;
  2188. }
  2189. pdev = soc->pdev_list[pdev_id];
  2190. dp_rxdma_srng = &pdev->rx_refill_buf_ring;
  2191. rxdma_entries = dp_rxdma_srng->num_entries;
  2192. soc->process_rx_status = CONFIG_PROCESS_RX_STATUS;
  2193. rx_desc_pool = &soc->rx_desc_buf[pdev_id];
  2194. rx_sw_desc_weight = wlan_cfg_get_dp_soc_rx_sw_desc_weight(soc->wlan_cfg_ctx);
  2195. dp_rx_desc_pool_alloc(soc, pdev_id,
  2196. rx_sw_desc_weight * rxdma_entries,
  2197. rx_desc_pool);
  2198. rx_desc_pool->owner = DP_WBM2SW_RBM;
  2199. /* For Rx buffers, WBM release ring is SW RING 3,for all pdev's */
  2200. ret_val = dp_rx_fst_attach(soc, pdev);
  2201. if ((ret_val != QDF_STATUS_SUCCESS) &&
  2202. (ret_val != QDF_STATUS_E_NOSUPPORT)) {
  2203. QDF_TRACE(QDF_MODULE_ID_ANY, QDF_TRACE_LEVEL_ERROR,
  2204. "RX Flow Search Table attach failed: pdev %d err %d",
  2205. pdev_id, ret_val);
  2206. return ret_val;
  2207. }
  2208. return dp_pdev_rx_buffers_attach(soc, pdev_id, dp_rxdma_srng,
  2209. rx_desc_pool, rxdma_entries - 1);
  2210. }
  2211. /*
  2212. * dp_rx_nbuf_prepare() - prepare RX nbuf
  2213. * @soc: core txrx main context
  2214. * @pdev: core txrx pdev context
  2215. *
  2216. * This function alloc & map nbuf for RX dma usage, retry it if failed
  2217. * until retry times reaches max threshold or succeeded.
  2218. *
  2219. * Return: qdf_nbuf_t pointer if succeeded, NULL if failed.
  2220. */
  2221. qdf_nbuf_t
  2222. dp_rx_nbuf_prepare(struct dp_soc *soc, struct dp_pdev *pdev)
  2223. {
  2224. uint8_t *buf;
  2225. int32_t nbuf_retry_count;
  2226. QDF_STATUS ret;
  2227. qdf_nbuf_t nbuf = NULL;
  2228. for (nbuf_retry_count = 0; nbuf_retry_count <
  2229. QDF_NBUF_ALLOC_MAP_RETRY_THRESHOLD;
  2230. nbuf_retry_count++) {
  2231. /* Allocate a new skb */
  2232. nbuf = qdf_nbuf_alloc(soc->osdev,
  2233. RX_BUFFER_SIZE,
  2234. RX_BUFFER_RESERVATION,
  2235. RX_BUFFER_ALIGNMENT,
  2236. FALSE);
  2237. if (!nbuf) {
  2238. DP_STATS_INC(pdev,
  2239. replenish.nbuf_alloc_fail, 1);
  2240. continue;
  2241. }
  2242. buf = qdf_nbuf_data(nbuf);
  2243. memset(buf, 0, RX_BUFFER_SIZE);
  2244. ret = qdf_nbuf_map_single(soc->osdev, nbuf,
  2245. QDF_DMA_FROM_DEVICE);
  2246. /* nbuf map failed */
  2247. if (qdf_unlikely(QDF_IS_STATUS_ERROR(ret))) {
  2248. qdf_nbuf_free(nbuf);
  2249. DP_STATS_INC(pdev, replenish.map_err, 1);
  2250. continue;
  2251. }
  2252. /* qdf_nbuf alloc and map succeeded */
  2253. break;
  2254. }
  2255. /* qdf_nbuf still alloc or map failed */
  2256. if (qdf_unlikely(nbuf_retry_count >=
  2257. QDF_NBUF_ALLOC_MAP_RETRY_THRESHOLD))
  2258. return NULL;
  2259. return nbuf;
  2260. }