dsi_pll_5nm.c 47 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596
  1. // SPDX-License-Identifier: GPL-2.0-only
  2. /*
  3. * Copyright (c) 2016-2021, The Linux Foundation. All rights reserved.
  4. * Copyright (c) 2022 Qualcomm Innovation Center, Inc. All rights reserved.
  5. */
  6. #include <linux/kernel.h>
  7. #include <linux/err.h>
  8. #include <linux/iopoll.h>
  9. #include <linux/delay.h>
  10. #include <linux/of.h>
  11. #include <linux/platform_device.h>
  12. #include "dsi_pll_5nm.h"
  13. #define VCO_DELAY_USEC 1
  14. #define MHZ_250 250000000UL
  15. #define MHZ_500 500000000UL
  16. #define MHZ_1000 1000000000UL
  17. #define MHZ_1100 1100000000UL
  18. #define MHZ_1900 1900000000UL
  19. #define MHZ_3000 3000000000UL
  20. struct dsi_pll_regs {
  21. u32 pll_prop_gain_rate;
  22. u32 pll_lockdet_rate;
  23. u32 decimal_div_start;
  24. u32 frac_div_start_low;
  25. u32 frac_div_start_mid;
  26. u32 frac_div_start_high;
  27. u32 pll_clock_inverters;
  28. u32 ssc_stepsize_low;
  29. u32 ssc_stepsize_high;
  30. u32 ssc_div_per_low;
  31. u32 ssc_div_per_high;
  32. u32 ssc_adjper_low;
  33. u32 ssc_adjper_high;
  34. u32 ssc_control;
  35. };
  36. struct dsi_pll_config {
  37. u32 ref_freq;
  38. bool div_override;
  39. u32 output_div;
  40. bool ignore_frac;
  41. bool disable_prescaler;
  42. bool enable_ssc;
  43. bool ssc_center;
  44. u32 dec_bits;
  45. u32 frac_bits;
  46. u32 lock_timer;
  47. u32 ssc_freq;
  48. u32 ssc_offset;
  49. u32 ssc_adj_per;
  50. u32 thresh_cycles;
  51. u32 refclk_cycles;
  52. };
  53. struct dsi_pll_5nm {
  54. struct dsi_pll_resource *rsc;
  55. struct dsi_pll_config pll_configuration;
  56. struct dsi_pll_regs reg_setup;
  57. bool cphy_enabled;
  58. };
  59. static inline bool dsi_pll_5nm_is_hw_revision(
  60. struct dsi_pll_resource *rsc)
  61. {
  62. return (rsc->pll_revision == DSI_PLL_5NM) ?
  63. true : false;
  64. }
  65. static inline void dsi_pll_set_pll_post_div(struct dsi_pll_resource *pll, u32
  66. pll_post_div)
  67. {
  68. u32 pll_post_div_val = 0;
  69. if (pll_post_div == 1)
  70. pll_post_div_val = 0;
  71. if (pll_post_div == 2)
  72. pll_post_div_val = 1;
  73. if (pll_post_div == 4)
  74. pll_post_div_val = 2;
  75. if (pll_post_div == 8)
  76. pll_post_div_val = 3;
  77. DSI_PLL_REG_W(pll->pll_base, PLL_PLL_OUTDIV_RATE, pll_post_div_val);
  78. if (pll->slave)
  79. DSI_PLL_REG_W(pll->slave->pll_base, PLL_PLL_OUTDIV_RATE,
  80. pll_post_div_val);
  81. }
  82. static inline int dsi_pll_get_pll_post_div(struct dsi_pll_resource *pll)
  83. {
  84. u32 reg_val;
  85. reg_val = DSI_PLL_REG_R(pll->pll_base, PLL_PLL_OUTDIV_RATE);
  86. return (1 << reg_val);
  87. }
  88. static inline void dsi_pll_set_phy_post_div(struct dsi_pll_resource *pll, u32
  89. phy_post_div)
  90. {
  91. u32 reg_val = 0;
  92. reg_val = DSI_PLL_REG_R(pll->phy_base, PHY_CMN_CLK_CFG0);
  93. reg_val &= ~0x0F;
  94. reg_val |= phy_post_div;
  95. DSI_PLL_REG_W(pll->phy_base, PHY_CMN_CLK_CFG0, reg_val);
  96. /* For slave PLL, this divider always should be set to 1 */
  97. if (pll->slave) {
  98. reg_val = DSI_PLL_REG_R(pll->phy_base, PHY_CMN_CLK_CFG0);
  99. reg_val &= ~0x0F;
  100. reg_val |= 0x1;
  101. DSI_PLL_REG_W(pll->slave->phy_base, PHY_CMN_CLK_CFG0, reg_val);
  102. }
  103. }
  104. static inline int dsi_pll_get_phy_post_div(struct dsi_pll_resource *pll)
  105. {
  106. u32 reg_val = 0;
  107. reg_val = DSI_PLL_REG_R(pll->phy_base, PHY_CMN_CLK_CFG0);
  108. return (reg_val & 0xF);
  109. }
  110. static inline void dsi_pll_set_dsi_clk(struct dsi_pll_resource *pll, u32
  111. dsi_clk)
  112. {
  113. u32 reg_val = 0;
  114. reg_val = DSI_PLL_REG_R(pll->phy_base, PHY_CMN_CLK_CFG1);
  115. reg_val &= ~0x3;
  116. reg_val |= dsi_clk;
  117. DSI_PLL_REG_W(pll->phy_base, PHY_CMN_CLK_CFG1, reg_val);
  118. if (pll->slave) {
  119. reg_val = DSI_PLL_REG_R(pll->slave->phy_base, PHY_CMN_CLK_CFG1);
  120. reg_val &= ~0x3;
  121. reg_val |= dsi_clk;
  122. DSI_PLL_REG_W(pll->slave->phy_base, PHY_CMN_CLK_CFG1, reg_val);
  123. }
  124. }
  125. static inline int dsi_pll_get_dsi_clk(struct dsi_pll_resource *pll)
  126. {
  127. u32 reg_val;
  128. reg_val = DSI_PLL_REG_R(pll->phy_base, PHY_CMN_CLK_CFG1);
  129. return (reg_val & 0x3);
  130. }
  131. static inline void dsi_pll_set_pclk_div(struct dsi_pll_resource *pll, u32
  132. pclk_div)
  133. {
  134. u32 reg_val = 0;
  135. reg_val = DSI_PLL_REG_R(pll->phy_base, PHY_CMN_CLK_CFG0);
  136. reg_val &= ~0xF0;
  137. reg_val |= (pclk_div << 4);
  138. DSI_PLL_REG_W(pll->phy_base, PHY_CMN_CLK_CFG0, reg_val);
  139. if (pll->slave) {
  140. reg_val = DSI_PLL_REG_R(pll->slave->phy_base, PHY_CMN_CLK_CFG0);
  141. reg_val &= ~0xF0;
  142. reg_val |= (pclk_div << 4);
  143. DSI_PLL_REG_W(pll->slave->phy_base, PHY_CMN_CLK_CFG0, reg_val);
  144. }
  145. }
  146. static inline int dsi_pll_get_pclk_div(struct dsi_pll_resource *pll)
  147. {
  148. u32 reg_val;
  149. reg_val = DSI_PLL_REG_R(pll->phy_base, PHY_CMN_CLK_CFG0);
  150. return ((reg_val & 0xF0) >> 4);
  151. }
  152. static struct dsi_pll_resource *pll_rsc_db[DSI_PLL_MAX];
  153. static struct dsi_pll_5nm plls[DSI_PLL_MAX];
  154. static void dsi_pll_config_slave(struct dsi_pll_resource *rsc)
  155. {
  156. u32 reg;
  157. struct dsi_pll_resource *orsc = pll_rsc_db[DSI_PLL_1];
  158. if (!rsc)
  159. return;
  160. /* Only DSI PLL0 can act as a master */
  161. if (rsc->index != DSI_PLL_0)
  162. return;
  163. /* default configuration: source is either internal or ref clock */
  164. rsc->slave = NULL;
  165. if (!orsc) {
  166. DSI_PLL_WARN(rsc,
  167. "slave PLL unavilable, assuming standalone config\n");
  168. return;
  169. }
  170. /* check to see if the source of DSI1 PLL bitclk is set to external */
  171. reg = DSI_PLL_REG_R(orsc->phy_base, PHY_CMN_CLK_CFG1);
  172. reg &= (BIT(2) | BIT(3));
  173. if (reg == 0x04)
  174. rsc->slave = pll_rsc_db[DSI_PLL_1]; /* external source */
  175. DSI_PLL_DBG(rsc, "Slave PLL %s\n",
  176. rsc->slave ? "configured" : "absent");
  177. }
  178. static void dsi_pll_setup_config(struct dsi_pll_5nm *pll,
  179. struct dsi_pll_resource *rsc)
  180. {
  181. struct dsi_pll_config *config = &pll->pll_configuration;
  182. config->ref_freq = 19200000;
  183. config->output_div = 1;
  184. config->dec_bits = 8;
  185. config->frac_bits = 18;
  186. config->lock_timer = 64;
  187. config->ssc_freq = 31500;
  188. config->ssc_offset = 4800;
  189. config->ssc_adj_per = 2;
  190. config->thresh_cycles = 32;
  191. config->refclk_cycles = 256;
  192. config->div_override = false;
  193. config->ignore_frac = false;
  194. config->disable_prescaler = false;
  195. config->enable_ssc = rsc->ssc_en;
  196. config->ssc_center = rsc->ssc_center;
  197. if (config->enable_ssc) {
  198. if (rsc->ssc_freq)
  199. config->ssc_freq = rsc->ssc_freq;
  200. if (rsc->ssc_ppm)
  201. config->ssc_offset = rsc->ssc_ppm;
  202. }
  203. }
  204. static void dsi_pll_calc_dec_frac(struct dsi_pll_5nm *pll,
  205. struct dsi_pll_resource *rsc)
  206. {
  207. struct dsi_pll_config *config = &pll->pll_configuration;
  208. struct dsi_pll_regs *regs = &pll->reg_setup;
  209. u64 fref = rsc->vco_ref_clk_rate;
  210. u64 pll_freq;
  211. u64 divider;
  212. u64 dec, dec_multiple;
  213. u32 frac;
  214. u64 multiplier;
  215. pll_freq = rsc->vco_current_rate;
  216. if (config->disable_prescaler)
  217. divider = fref;
  218. else
  219. divider = fref * 2;
  220. multiplier = 1 << config->frac_bits;
  221. dec_multiple = div_u64(pll_freq * multiplier, divider);
  222. div_u64_rem(dec_multiple, multiplier, &frac);
  223. dec = div_u64(dec_multiple, multiplier);
  224. switch (rsc->pll_revision) {
  225. case DSI_PLL_5NM:
  226. default:
  227. if (pll_freq <= 1000000000ULL)
  228. regs->pll_clock_inverters = 0xA0;
  229. else if (pll_freq <= 2500000000ULL)
  230. regs->pll_clock_inverters = 0x20;
  231. else if (pll_freq <= 3500000000ULL)
  232. regs->pll_clock_inverters = 0x00;
  233. else
  234. regs->pll_clock_inverters = 0x40;
  235. break;
  236. }
  237. regs->pll_lockdet_rate = config->lock_timer;
  238. regs->decimal_div_start = dec;
  239. regs->frac_div_start_low = (frac & 0xff);
  240. regs->frac_div_start_mid = (frac & 0xff00) >> 8;
  241. regs->frac_div_start_high = (frac & 0x30000) >> 16;
  242. regs->pll_prop_gain_rate = 10;
  243. }
  244. static void dsi_pll_calc_ssc(struct dsi_pll_5nm *pll,
  245. struct dsi_pll_resource *rsc)
  246. {
  247. struct dsi_pll_config *config = &pll->pll_configuration;
  248. struct dsi_pll_regs *regs = &pll->reg_setup;
  249. u32 ssc_per;
  250. u32 ssc_mod;
  251. u64 ssc_step_size;
  252. u64 frac;
  253. if (!config->enable_ssc) {
  254. DSI_PLL_DBG(rsc, "SSC not enabled\n");
  255. return;
  256. }
  257. ssc_per = DIV_ROUND_CLOSEST(config->ref_freq, config->ssc_freq) / 2 - 1;
  258. ssc_mod = (ssc_per + 1) % (config->ssc_adj_per + 1);
  259. ssc_per -= ssc_mod;
  260. frac = regs->frac_div_start_low |
  261. (regs->frac_div_start_mid << 8) |
  262. (regs->frac_div_start_high << 16);
  263. ssc_step_size = regs->decimal_div_start;
  264. ssc_step_size *= (1 << config->frac_bits);
  265. ssc_step_size += frac;
  266. ssc_step_size *= config->ssc_offset;
  267. ssc_step_size *= (config->ssc_adj_per + 1);
  268. ssc_step_size = div_u64(ssc_step_size, (ssc_per + 1));
  269. ssc_step_size = DIV_ROUND_CLOSEST_ULL(ssc_step_size, 1000000);
  270. regs->ssc_div_per_low = ssc_per & 0xFF;
  271. regs->ssc_div_per_high = (ssc_per & 0xFF00) >> 8;
  272. regs->ssc_stepsize_low = (u32)(ssc_step_size & 0xFF);
  273. regs->ssc_stepsize_high = (u32)((ssc_step_size & 0xFF00) >> 8);
  274. regs->ssc_adjper_low = config->ssc_adj_per & 0xFF;
  275. regs->ssc_adjper_high = (config->ssc_adj_per & 0xFF00) >> 8;
  276. regs->ssc_control = config->ssc_center ? SSC_CENTER : 0;
  277. DSI_PLL_DBG(rsc, "SCC: Dec:%d, frac:%llu, frac_bits:%d\n",
  278. regs->decimal_div_start, frac, config->frac_bits);
  279. DSI_PLL_DBG(rsc, "SSC: div_per:0x%X, stepsize:0x%X, adjper:0x%X\n",
  280. ssc_per, (u32)ssc_step_size, config->ssc_adj_per);
  281. }
  282. static void dsi_pll_ssc_commit(struct dsi_pll_5nm *pll,
  283. struct dsi_pll_resource *rsc)
  284. {
  285. void __iomem *pll_base = rsc->pll_base;
  286. struct dsi_pll_regs *regs = &pll->reg_setup;
  287. if (pll->pll_configuration.enable_ssc) {
  288. DSI_PLL_DBG(rsc, "SSC is enabled\n");
  289. DSI_PLL_REG_W(pll_base, PLL_SSC_STEPSIZE_LOW_1,
  290. regs->ssc_stepsize_low);
  291. DSI_PLL_REG_W(pll_base, PLL_SSC_STEPSIZE_HIGH_1,
  292. regs->ssc_stepsize_high);
  293. DSI_PLL_REG_W(pll_base, PLL_SSC_DIV_PER_LOW_1,
  294. regs->ssc_div_per_low);
  295. DSI_PLL_REG_W(pll_base, PLL_SSC_DIV_PER_HIGH_1,
  296. regs->ssc_div_per_high);
  297. DSI_PLL_REG_W(pll_base, PLL_SSC_ADJPER_LOW_1,
  298. regs->ssc_adjper_low);
  299. DSI_PLL_REG_W(pll_base, PLL_SSC_ADJPER_HIGH_1,
  300. regs->ssc_adjper_high);
  301. DSI_PLL_REG_W(pll_base, PLL_SSC_CONTROL,
  302. SSC_EN | regs->ssc_control);
  303. }
  304. }
  305. static void dsi_pll_config_hzindep_reg(struct dsi_pll_5nm *pll,
  306. struct dsi_pll_resource *rsc)
  307. {
  308. void __iomem *pll_base = rsc->pll_base;
  309. u64 vco_rate = rsc->vco_current_rate;
  310. switch (rsc->pll_revision) {
  311. case DSI_PLL_5NM:
  312. default:
  313. if (vco_rate < 3100000000ULL)
  314. DSI_PLL_REG_W(pll_base,
  315. PLL_ANALOG_CONTROLS_FIVE_1, 0x01);
  316. else
  317. DSI_PLL_REG_W(pll_base,
  318. PLL_ANALOG_CONTROLS_FIVE_1, 0x03);
  319. if (vco_rate < 1520000000ULL)
  320. DSI_PLL_REG_W(pll_base, PLL_VCO_CONFIG_1, 0x08);
  321. else if (vco_rate < 2990000000ULL)
  322. DSI_PLL_REG_W(pll_base, PLL_VCO_CONFIG_1, 0x00);
  323. else
  324. DSI_PLL_REG_W(pll_base, PLL_VCO_CONFIG_1, 0x01);
  325. break;
  326. }
  327. DSI_PLL_REG_W(pll_base, PLL_ANALOG_CONTROLS_FIVE, 0x01);
  328. DSI_PLL_REG_W(pll_base, PLL_ANALOG_CONTROLS_TWO, 0x03);
  329. DSI_PLL_REG_W(pll_base, PLL_ANALOG_CONTROLS_THREE, 0x00);
  330. DSI_PLL_REG_W(pll_base, PLL_DSM_DIVIDER, 0x00);
  331. DSI_PLL_REG_W(pll_base, PLL_FEEDBACK_DIVIDER, 0x4e);
  332. DSI_PLL_REG_W(pll_base, PLL_CALIBRATION_SETTINGS, 0x40);
  333. DSI_PLL_REG_W(pll_base, PLL_BAND_SEL_CAL_SETTINGS_THREE, 0xba);
  334. DSI_PLL_REG_W(pll_base, PLL_FREQ_DETECT_SETTINGS_ONE, 0x0c);
  335. DSI_PLL_REG_W(pll_base, PLL_OUTDIV, 0x00);
  336. DSI_PLL_REG_W(pll_base, PLL_CORE_OVERRIDE, 0x00);
  337. DSI_PLL_REG_W(pll_base, PLL_PLL_DIGITAL_TIMERS_TWO, 0x08);
  338. DSI_PLL_REG_W(pll_base, PLL_PLL_PROP_GAIN_RATE_1, 0x0a);
  339. DSI_PLL_REG_W(pll_base, PLL_PLL_BAND_SEL_RATE_1, 0xc0);
  340. DSI_PLL_REG_W(pll_base, PLL_PLL_INT_GAIN_IFILT_BAND_1, 0x84);
  341. DSI_PLL_REG_W(pll_base, PLL_PLL_INT_GAIN_IFILT_BAND_1, 0x82);
  342. DSI_PLL_REG_W(pll_base, PLL_PLL_FL_INT_GAIN_PFILT_BAND_1, 0x4c);
  343. DSI_PLL_REG_W(pll_base, PLL_PLL_LOCK_OVERRIDE, 0x80);
  344. DSI_PLL_REG_W(pll_base, PLL_PFILT, 0x29);
  345. DSI_PLL_REG_W(pll_base, PLL_PFILT, 0x2f);
  346. DSI_PLL_REG_W(pll_base, PLL_IFILT, 0x2a);
  347. switch (rsc->pll_revision) {
  348. case DSI_PLL_5NM:
  349. default:
  350. DSI_PLL_REG_W(pll_base, PLL_IFILT, 0x3F);
  351. break;
  352. }
  353. DSI_PLL_REG_W(pll_base, PLL_PERF_OPTIMIZE, 0x22);
  354. if (rsc->slave)
  355. DSI_PLL_REG_W(rsc->slave->pll_base, PLL_PERF_OPTIMIZE, 0x22);
  356. }
  357. static void dsi_pll_init_val(struct dsi_pll_resource *rsc)
  358. {
  359. void __iomem *pll_base = rsc->pll_base;
  360. DSI_PLL_REG_W(pll_base, PLL_ANALOG_CONTROLS_ONE, 0x00000000);
  361. DSI_PLL_REG_W(pll_base, PLL_INT_LOOP_SETTINGS, 0x0000003F);
  362. DSI_PLL_REG_W(pll_base, PLL_INT_LOOP_SETTINGS_TWO, 0x00000000);
  363. DSI_PLL_REG_W(pll_base, PLL_ANALOG_CONTROLS_FOUR, 0x00000000);
  364. DSI_PLL_REG_W(pll_base, PLL_INT_LOOP_CONTROLS, 0x00000080);
  365. DSI_PLL_REG_W(pll_base, PLL_SYSTEM_MUXES, 0x00000000);
  366. DSI_PLL_REG_W(pll_base, PLL_FREQ_UPDATE_CONTROL_OVERRIDES, 0x00000000);
  367. DSI_PLL_REG_W(pll_base, PLL_CMODE, 0x00000010);
  368. DSI_PLL_REG_W(pll_base, PLL_PSM_CTRL, 0x00000020);
  369. DSI_PLL_REG_W(pll_base, PLL_RSM_CTRL, 0x00000010);
  370. DSI_PLL_REG_W(pll_base, PLL_VCO_TUNE_MAP, 0x00000002);
  371. DSI_PLL_REG_W(pll_base, PLL_PLL_CNTRL, 0x0000001C);
  372. DSI_PLL_REG_W(pll_base, PLL_BAND_SEL_CAL_TIMER_LOW, 0x00000000);
  373. DSI_PLL_REG_W(pll_base, PLL_BAND_SEL_CAL_TIMER_HIGH, 0x00000002);
  374. DSI_PLL_REG_W(pll_base, PLL_BAND_SEL_CAL_SETTINGS, 0x00000020);
  375. DSI_PLL_REG_W(pll_base, PLL_BAND_SEL_MIN, 0x00000000);
  376. DSI_PLL_REG_W(pll_base, PLL_BAND_SEL_MAX, 0x000000FF);
  377. DSI_PLL_REG_W(pll_base, PLL_BAND_SEL_PFILT, 0x00000000);
  378. DSI_PLL_REG_W(pll_base, PLL_BAND_SEL_IFILT, 0x0000000A);
  379. DSI_PLL_REG_W(pll_base, PLL_BAND_SEL_CAL_SETTINGS_TWO, 0x00000025);
  380. DSI_PLL_REG_W(pll_base, PLL_BAND_SEL_CAL_SETTINGS_THREE, 0x000000BA);
  381. DSI_PLL_REG_W(pll_base, PLL_BAND_SEL_CAL_SETTINGS_FOUR, 0x0000004F);
  382. DSI_PLL_REG_W(pll_base, PLL_BAND_SEL_ICODE_HIGH, 0x0000000A);
  383. DSI_PLL_REG_W(pll_base, PLL_BAND_SEL_ICODE_LOW, 0x00000000);
  384. DSI_PLL_REG_W(pll_base, PLL_FREQ_DETECT_SETTINGS_ONE, 0x0000000C);
  385. DSI_PLL_REG_W(pll_base, PLL_FREQ_DETECT_THRESH, 0x00000020);
  386. DSI_PLL_REG_W(pll_base, PLL_FREQ_DET_REFCLK_HIGH, 0x00000000);
  387. DSI_PLL_REG_W(pll_base, PLL_FREQ_DET_REFCLK_LOW, 0x000000FF);
  388. DSI_PLL_REG_W(pll_base, PLL_FREQ_DET_PLLCLK_HIGH, 0x00000010);
  389. DSI_PLL_REG_W(pll_base, PLL_FREQ_DET_PLLCLK_LOW, 0x00000046);
  390. DSI_PLL_REG_W(pll_base, PLL_PLL_GAIN, 0x00000054);
  391. DSI_PLL_REG_W(pll_base, PLL_ICODE_LOW, 0x00000000);
  392. DSI_PLL_REG_W(pll_base, PLL_ICODE_HIGH, 0x00000000);
  393. DSI_PLL_REG_W(pll_base, PLL_LOCKDET, 0x00000040);
  394. DSI_PLL_REG_W(pll_base, PLL_FASTLOCK_CONTROL, 0x00000004);
  395. DSI_PLL_REG_W(pll_base, PLL_PASS_OUT_OVERRIDE_ONE, 0x00000000);
  396. DSI_PLL_REG_W(pll_base, PLL_PASS_OUT_OVERRIDE_TWO, 0x00000000);
  397. DSI_PLL_REG_W(pll_base, PLL_CORE_OVERRIDE, 0x00000000);
  398. DSI_PLL_REG_W(pll_base, PLL_CORE_INPUT_OVERRIDE, 0x00000010);
  399. DSI_PLL_REG_W(pll_base, PLL_RATE_CHANGE, 0x00000000);
  400. DSI_PLL_REG_W(pll_base, PLL_PLL_DIGITAL_TIMERS, 0x00000008);
  401. DSI_PLL_REG_W(pll_base, PLL_PLL_DIGITAL_TIMERS_TWO, 0x00000008);
  402. DSI_PLL_REG_W(pll_base, PLL_DEC_FRAC_MUXES, 0x00000000);
  403. DSI_PLL_REG_W(pll_base, PLL_MASH_CONTROL, 0x00000003);
  404. DSI_PLL_REG_W(pll_base, PLL_SSC_STEPSIZE_LOW, 0x00000000);
  405. DSI_PLL_REG_W(pll_base, PLL_SSC_STEPSIZE_HIGH, 0x00000000);
  406. DSI_PLL_REG_W(pll_base, PLL_SSC_DIV_PER_LOW, 0x00000000);
  407. DSI_PLL_REG_W(pll_base, PLL_SSC_DIV_PER_HIGH, 0x00000000);
  408. DSI_PLL_REG_W(pll_base, PLL_SSC_ADJPER_LOW, 0x00000000);
  409. DSI_PLL_REG_W(pll_base, PLL_SSC_ADJPER_HIGH, 0x00000000);
  410. DSI_PLL_REG_W(pll_base, PLL_SSC_MUX_CONTROL, 0x00000000);
  411. DSI_PLL_REG_W(pll_base, PLL_SSC_STEPSIZE_LOW_1, 0x00000000);
  412. DSI_PLL_REG_W(pll_base, PLL_SSC_STEPSIZE_HIGH_1, 0x00000000);
  413. DSI_PLL_REG_W(pll_base, PLL_SSC_DIV_PER_LOW_1, 0x00000000);
  414. DSI_PLL_REG_W(pll_base, PLL_SSC_DIV_PER_HIGH_1, 0x00000000);
  415. DSI_PLL_REG_W(pll_base, PLL_SSC_ADJPER_LOW_1, 0x00000000);
  416. DSI_PLL_REG_W(pll_base, PLL_SSC_ADJPER_HIGH_1, 0x00000000);
  417. DSI_PLL_REG_W(pll_base, PLL_SSC_STEPSIZE_LOW_2, 0x00000000);
  418. DSI_PLL_REG_W(pll_base, PLL_SSC_STEPSIZE_HIGH_2, 0x00000000);
  419. DSI_PLL_REG_W(pll_base, PLL_SSC_DIV_PER_LOW_2, 0x00000000);
  420. DSI_PLL_REG_W(pll_base, PLL_SSC_DIV_PER_HIGH_2, 0x00000000);
  421. DSI_PLL_REG_W(pll_base, PLL_SSC_ADJPER_LOW_2, 0x00000000);
  422. DSI_PLL_REG_W(pll_base, PLL_SSC_ADJPER_HIGH_2, 0x00000000);
  423. DSI_PLL_REG_W(pll_base, PLL_SSC_CONTROL, 0x00000000);
  424. DSI_PLL_REG_W(pll_base, PLL_PLL_OUTDIV_RATE, 0x00000000);
  425. DSI_PLL_REG_W(pll_base, PLL_PLL_LOCKDET_RATE_1, 0x00000040);
  426. DSI_PLL_REG_W(pll_base, PLL_PLL_LOCKDET_RATE_2, 0x00000040);
  427. DSI_PLL_REG_W(pll_base, PLL_PLL_PROP_GAIN_RATE_1, 0x0000000C);
  428. DSI_PLL_REG_W(pll_base, PLL_PLL_PROP_GAIN_RATE_2, 0x0000000A);
  429. DSI_PLL_REG_W(pll_base, PLL_PLL_BAND_SEL_RATE_1, 0x000000C0);
  430. DSI_PLL_REG_W(pll_base, PLL_PLL_BAND_SEL_RATE_2, 0x00000000);
  431. DSI_PLL_REG_W(pll_base, PLL_PLL_INT_GAIN_IFILT_BAND_1, 0x00000054);
  432. DSI_PLL_REG_W(pll_base, PLL_PLL_INT_GAIN_IFILT_BAND_2, 0x00000054);
  433. DSI_PLL_REG_W(pll_base, PLL_PLL_FL_INT_GAIN_PFILT_BAND_1, 0x0000004C);
  434. DSI_PLL_REG_W(pll_base, PLL_PLL_FL_INT_GAIN_PFILT_BAND_2, 0x0000004C);
  435. DSI_PLL_REG_W(pll_base, PLL_PLL_FASTLOCK_EN_BAND, 0x00000003);
  436. DSI_PLL_REG_W(pll_base, PLL_FREQ_TUNE_ACCUM_INIT_MID, 0x00000000);
  437. DSI_PLL_REG_W(pll_base, PLL_FREQ_TUNE_ACCUM_INIT_HIGH, 0x00000000);
  438. DSI_PLL_REG_W(pll_base, PLL_FREQ_TUNE_ACCUM_INIT_MUX, 0x00000000);
  439. DSI_PLL_REG_W(pll_base, PLL_PLL_LOCK_OVERRIDE, 0x00000080);
  440. DSI_PLL_REG_W(pll_base, PLL_PLL_LOCK_DELAY, 0x00000006);
  441. DSI_PLL_REG_W(pll_base, PLL_PLL_LOCK_MIN_DELAY, 0x00000019);
  442. DSI_PLL_REG_W(pll_base, PLL_CLOCK_INVERTERS, 0x00000000);
  443. DSI_PLL_REG_W(pll_base, PLL_SPARE_AND_JPC_OVERRIDES, 0x00000000);
  444. DSI_PLL_REG_W(pll_base, PLL_BIAS_CONTROL_1, 0x00000040);
  445. DSI_PLL_REG_W(pll_base, PLL_BIAS_CONTROL_2, 0x00000020);
  446. DSI_PLL_REG_W(pll_base, PLL_ALOG_OBSV_BUS_CTRL_1, 0x00000000);
  447. DSI_PLL_REG_W(pll_base, PLL_COMMON_STATUS_ONE, 0x00000000);
  448. DSI_PLL_REG_W(pll_base, PLL_COMMON_STATUS_TWO, 0x00000000);
  449. DSI_PLL_REG_W(pll_base, PLL_BAND_SEL_CAL, 0x00000000);
  450. DSI_PLL_REG_W(pll_base, PLL_ICODE_ACCUM_STATUS_LOW, 0x00000000);
  451. DSI_PLL_REG_W(pll_base, PLL_ICODE_ACCUM_STATUS_HIGH, 0x00000000);
  452. DSI_PLL_REG_W(pll_base, PLL_FD_OUT_LOW, 0x00000000);
  453. DSI_PLL_REG_W(pll_base, PLL_FD_OUT_HIGH, 0x00000000);
  454. DSI_PLL_REG_W(pll_base, PLL_ALOG_OBSV_BUS_STATUS_1, 0x00000000);
  455. DSI_PLL_REG_W(pll_base, PLL_PLL_MISC_CONFIG, 0x00000000);
  456. DSI_PLL_REG_W(pll_base, PLL_FLL_CONFIG, 0x00000002);
  457. DSI_PLL_REG_W(pll_base, PLL_FLL_FREQ_ACQ_TIME, 0x00000011);
  458. DSI_PLL_REG_W(pll_base, PLL_FLL_CODE0, 0x00000000);
  459. DSI_PLL_REG_W(pll_base, PLL_FLL_CODE1, 0x00000000);
  460. DSI_PLL_REG_W(pll_base, PLL_FLL_GAIN0, 0x00000080);
  461. DSI_PLL_REG_W(pll_base, PLL_FLL_GAIN1, 0x00000000);
  462. DSI_PLL_REG_W(pll_base, PLL_SW_RESET, 0x00000000);
  463. DSI_PLL_REG_W(pll_base, PLL_FAST_PWRUP, 0x00000000);
  464. DSI_PLL_REG_W(pll_base, PLL_LOCKTIME0, 0x00000000);
  465. DSI_PLL_REG_W(pll_base, PLL_LOCKTIME1, 0x00000000);
  466. DSI_PLL_REG_W(pll_base, PLL_DEBUG_BUS_SEL, 0x00000000);
  467. DSI_PLL_REG_W(pll_base, PLL_DEBUG_BUS0, 0x00000000);
  468. DSI_PLL_REG_W(pll_base, PLL_DEBUG_BUS1, 0x00000000);
  469. DSI_PLL_REG_W(pll_base, PLL_DEBUG_BUS2, 0x00000000);
  470. DSI_PLL_REG_W(pll_base, PLL_DEBUG_BUS3, 0x00000000);
  471. DSI_PLL_REG_W(pll_base, PLL_ANALOG_FLL_CONTROL_OVERRIDES, 0x00000000);
  472. DSI_PLL_REG_W(pll_base, PLL_VCO_CONFIG, 0x00000000);
  473. DSI_PLL_REG_W(pll_base, PLL_VCO_CAL_CODE1_MODE0_STATUS, 0x00000000);
  474. DSI_PLL_REG_W(pll_base, PLL_VCO_CAL_CODE1_MODE1_STATUS, 0x00000000);
  475. DSI_PLL_REG_W(pll_base, PLL_RESET_SM_STATUS, 0x00000000);
  476. DSI_PLL_REG_W(pll_base, PLL_TDC_OFFSET, 0x00000000);
  477. DSI_PLL_REG_W(pll_base, PLL_PS3_PWRDOWN_CONTROLS, 0x0000001D);
  478. DSI_PLL_REG_W(pll_base, PLL_PS4_PWRDOWN_CONTROLS, 0x0000001C);
  479. DSI_PLL_REG_W(pll_base, PLL_PLL_RST_CONTROLS, 0x000000FF);
  480. DSI_PLL_REG_W(pll_base, PLL_GEAR_BAND_SELECT_CONTROLS, 0x00000022);
  481. DSI_PLL_REG_W(pll_base, PLL_PSM_CLK_CONTROLS, 0x00000009);
  482. DSI_PLL_REG_W(pll_base, PLL_SYSTEM_MUXES_2, 0x00000000);
  483. DSI_PLL_REG_W(pll_base, PLL_VCO_CONFIG_1, 0x00000000);
  484. DSI_PLL_REG_W(pll_base, PLL_VCO_CONFIG_2, 0x00000000);
  485. DSI_PLL_REG_W(pll_base, PLL_CLOCK_INVERTERS_1, 0x00000040);
  486. DSI_PLL_REG_W(pll_base, PLL_CLOCK_INVERTERS_2, 0x00000000);
  487. DSI_PLL_REG_W(pll_base, PLL_CMODE_1, 0x00000010);
  488. DSI_PLL_REG_W(pll_base, PLL_CMODE_2, 0x00000010);
  489. DSI_PLL_REG_W(pll_base, PLL_ANALOG_CONTROLS_FIVE_2, 0x00000003);
  490. }
  491. static void dsi_pll_detect_phy_mode(struct dsi_pll_5nm *pll,
  492. struct dsi_pll_resource *rsc)
  493. {
  494. u32 reg_val;
  495. reg_val = DSI_PLL_REG_R(rsc->phy_base, PHY_CMN_GLBL_CTRL);
  496. pll->cphy_enabled = (reg_val & BIT(6)) ? true : false;
  497. }
  498. static void dsi_pll_commit(struct dsi_pll_5nm *pll,
  499. struct dsi_pll_resource *rsc)
  500. {
  501. void __iomem *pll_base = rsc->pll_base;
  502. struct dsi_pll_regs *reg = &pll->reg_setup;
  503. DSI_PLL_REG_W(pll_base, PLL_CORE_INPUT_OVERRIDE, 0x12);
  504. DSI_PLL_REG_W(pll_base, PLL_DECIMAL_DIV_START_1,
  505. reg->decimal_div_start);
  506. DSI_PLL_REG_W(pll_base, PLL_FRAC_DIV_START_LOW_1,
  507. reg->frac_div_start_low);
  508. DSI_PLL_REG_W(pll_base, PLL_FRAC_DIV_START_MID_1,
  509. reg->frac_div_start_mid);
  510. DSI_PLL_REG_W(pll_base, PLL_FRAC_DIV_START_HIGH_1,
  511. reg->frac_div_start_high);
  512. DSI_PLL_REG_W(pll_base, PLL_PLL_LOCKDET_RATE_1, reg->pll_lockdet_rate);
  513. DSI_PLL_REG_W(pll_base, PLL_PLL_LOCK_DELAY, 0x06);
  514. DSI_PLL_REG_W(pll_base, PLL_CMODE_1,
  515. pll->cphy_enabled ? 0x00 : 0x10);
  516. DSI_PLL_REG_W(pll_base, PLL_CLOCK_INVERTERS_1,
  517. reg->pll_clock_inverters);
  518. }
  519. static int dsi_pll_5nm_lock_status(struct dsi_pll_resource *pll)
  520. {
  521. int rc;
  522. u32 status;
  523. u32 const delay_us = 100;
  524. u32 const timeout_us = 5000;
  525. rc = DSI_READ_POLL_TIMEOUT_ATOMIC_GEN(pll->pll_base, pll->index, PLL_COMMON_STATUS_ONE,
  526. status,
  527. ((status & BIT(0)) > 0),
  528. delay_us,
  529. timeout_us);
  530. if (rc)
  531. DSI_PLL_ERR(pll, "lock failed, status=0x%08x\n", status);
  532. return rc;
  533. }
  534. static void dsi_pll_disable_pll_bias(struct dsi_pll_resource *rsc)
  535. {
  536. u32 data = DSI_PLL_REG_R(rsc->phy_base, PHY_CMN_CTRL_0);
  537. DSI_PLL_REG_W(rsc->pll_base, PLL_SYSTEM_MUXES, 0);
  538. DSI_PLL_REG_W(rsc->phy_base, PHY_CMN_CTRL_0, data & ~BIT(5));
  539. ndelay(250);
  540. }
  541. static void dsi_pll_enable_pll_bias(struct dsi_pll_resource *rsc)
  542. {
  543. u32 data = DSI_PLL_REG_R(rsc->phy_base, PHY_CMN_CTRL_0);
  544. DSI_PLL_REG_W(rsc->phy_base, PHY_CMN_CTRL_0, data | BIT(5));
  545. DSI_PLL_REG_W(rsc->pll_base, PLL_SYSTEM_MUXES, 0xc0);
  546. ndelay(250);
  547. }
  548. static void dsi_pll_disable_global_clk(struct dsi_pll_resource *rsc)
  549. {
  550. u32 data;
  551. data = DSI_PLL_REG_R(rsc->phy_base, PHY_CMN_CLK_CFG1);
  552. DSI_PLL_REG_W(rsc->phy_base, PHY_CMN_CLK_CFG1, (data & ~BIT(5)));
  553. }
  554. static void dsi_pll_enable_global_clk(struct dsi_pll_resource *rsc)
  555. {
  556. u32 data;
  557. DSI_PLL_REG_W(rsc->phy_base, PHY_CMN_CTRL_3, 0x04);
  558. data = DSI_PLL_REG_R(rsc->phy_base, PHY_CMN_CLK_CFG1);
  559. /* Turn on clk_en_sel bit prior to resync toggle fifo */
  560. DSI_PLL_REG_W(rsc->phy_base, PHY_CMN_CLK_CFG1, (data | BIT(5) |
  561. BIT(4)));
  562. }
  563. static void dsi_pll_phy_dig_reset(struct dsi_pll_resource *rsc)
  564. {
  565. /*
  566. * Reset the PHY digital domain. This would be needed when
  567. * coming out of a CX or analog rail power collapse while
  568. * ensuring that the pads maintain LP00 or LP11 state
  569. */
  570. DSI_PLL_REG_W(rsc->phy_base, PHY_CMN_GLBL_DIGTOP_SPARE4, BIT(0));
  571. wmb(); /* Ensure that the reset is asserted */
  572. DSI_PLL_REG_W(rsc->phy_base, PHY_CMN_GLBL_DIGTOP_SPARE4, 0x0);
  573. wmb(); /* Ensure that the reset is deasserted */
  574. }
  575. static void dsi_pll_disable_sub(struct dsi_pll_resource *rsc)
  576. {
  577. DSI_PLL_REG_W(rsc->phy_base, PHY_CMN_RBUF_CTRL, 0);
  578. dsi_pll_disable_pll_bias(rsc);
  579. }
  580. static void dsi_pll_unprepare_stub(struct clk_hw *hw)
  581. {
  582. return;
  583. }
  584. static int dsi_pll_prepare_stub(struct clk_hw *hw)
  585. {
  586. return 0;
  587. }
  588. static int dsi_pll_set_rate_stub(struct clk_hw *hw, unsigned long rate,
  589. unsigned long parent_rate)
  590. {
  591. return 0;
  592. }
  593. static long dsi_pll_byteclk_round_rate(struct clk_hw *hw, unsigned long rate,
  594. unsigned long *parent_rate)
  595. {
  596. struct dsi_pll_clk *pll = to_pll_clk_hw(hw);
  597. struct dsi_pll_resource *pll_res = pll->priv;
  598. return pll_res->byteclk_rate;
  599. }
  600. static long dsi_pll_pclk_round_rate(struct clk_hw *hw, unsigned long rate,
  601. unsigned long *parent_rate)
  602. {
  603. struct dsi_pll_clk *pll = to_pll_clk_hw(hw);
  604. struct dsi_pll_resource *pll_res = pll->priv;
  605. return pll_res->pclk_rate;
  606. }
  607. static unsigned long dsi_pll_vco_recalc_rate(struct dsi_pll_resource *pll)
  608. {
  609. u64 ref_clk;
  610. u64 multiplier;
  611. u32 frac;
  612. u32 dec;
  613. u32 pll_post_div;
  614. u64 pll_freq, tmp64;
  615. u64 vco_rate;
  616. struct dsi_pll_5nm *pll_5nm;
  617. struct dsi_pll_config *config;
  618. ref_clk = pll->vco_ref_clk_rate;
  619. pll_5nm = pll->priv;
  620. if (!pll_5nm) {
  621. DSI_PLL_ERR(pll, "pll configuration not found\n");
  622. return -EINVAL;
  623. }
  624. config = &pll_5nm->pll_configuration;
  625. dec = DSI_PLL_REG_R(pll->pll_base, PLL_DECIMAL_DIV_START_1);
  626. dec &= 0xFF;
  627. frac = DSI_PLL_REG_R(pll->pll_base, PLL_FRAC_DIV_START_LOW_1);
  628. frac |= ((DSI_PLL_REG_R(pll->pll_base, PLL_FRAC_DIV_START_MID_1) & 0xFF)
  629. << 8);
  630. frac |= ((DSI_PLL_REG_R(pll->pll_base, PLL_FRAC_DIV_START_HIGH_1) & 0x3)
  631. << 16);
  632. multiplier = 1 << config->frac_bits;
  633. pll_freq = dec * (ref_clk * 2);
  634. tmp64 = (ref_clk * 2 * frac);
  635. pll_freq += div_u64(tmp64, multiplier);
  636. pll_post_div = dsi_pll_get_pll_post_div(pll);
  637. vco_rate = div_u64(pll_freq, pll_post_div);
  638. return vco_rate;
  639. }
  640. static unsigned long dsi_pll_byteclk_recalc_rate(struct clk_hw *hw,
  641. unsigned long parent_rate)
  642. {
  643. struct dsi_pll_clk *byte_pll = to_pll_clk_hw(hw);
  644. struct dsi_pll_resource *pll = NULL;
  645. u64 vco_rate = 0;
  646. u64 byte_rate = 0;
  647. u32 phy_post_div;
  648. if (!byte_pll->priv) {
  649. DSI_PLL_INFO(pll, "pll priv is null\n");
  650. return 0;
  651. }
  652. pll = byte_pll->priv;
  653. /*
  654. * In the case when byteclk rate is set, the recalculation function
  655. * should return the current rate. Recalc rate is also called during
  656. * clock registration, during which the function should reverse
  657. * calculate clock rates that were set as part of UEFI.
  658. */
  659. if (pll->byteclk_rate != 0) {
  660. DSI_PLL_DBG(pll, "returning byte clk rate = %lld %lld\n",
  661. pll->byteclk_rate, parent_rate);
  662. return pll->byteclk_rate;
  663. }
  664. vco_rate = dsi_pll_vco_recalc_rate(pll);
  665. phy_post_div = dsi_pll_get_phy_post_div(pll);
  666. byte_rate = div_u64(vco_rate, phy_post_div);
  667. if (pll->type == DSI_PHY_TYPE_DPHY)
  668. byte_rate = div_u64(byte_rate, 8);
  669. else
  670. byte_rate = div_u64(byte_rate, 7);
  671. return byte_rate;
  672. }
  673. static unsigned long dsi_pll_pclk_recalc_rate(struct clk_hw *hw,
  674. unsigned long parent_rate)
  675. {
  676. struct dsi_pll_clk *pix_pll = to_pll_clk_hw(hw);
  677. struct dsi_pll_resource *pll = NULL;
  678. u64 vco_rate = 0;
  679. u64 pclk_rate = 0;
  680. u32 phy_post_div, pclk_div;
  681. if (!pix_pll->priv) {
  682. DSI_PLL_INFO(pll, "pll priv is null\n");
  683. return 0;
  684. }
  685. pll = pix_pll->priv;
  686. /*
  687. * In the case when pclk rate is set, the recalculation function
  688. * should return the current rate. Recalc rate is also called during
  689. * clock registration, during which the function should reverse
  690. * calculate the clock rates that were set as part of UEFI.
  691. */
  692. if (pll->pclk_rate != 0) {
  693. DSI_PLL_DBG(pll, "returning pclk rate = %lld %lld\n",
  694. pll->pclk_rate, parent_rate);
  695. return pll->pclk_rate;
  696. }
  697. vco_rate = dsi_pll_vco_recalc_rate(pll);
  698. if (pll->type == DSI_PHY_TYPE_DPHY) {
  699. phy_post_div = dsi_pll_get_phy_post_div(pll);
  700. pclk_rate = div_u64(vco_rate, phy_post_div);
  701. pclk_rate = div_u64(pclk_rate, 2);
  702. pclk_div = dsi_pll_get_pclk_div(pll);
  703. pclk_rate = div_u64(pclk_rate, pclk_div);
  704. } else {
  705. pclk_rate = vco_rate * 2;
  706. pclk_rate = div_u64(pclk_rate, 7);
  707. pclk_div = dsi_pll_get_pclk_div(pll);
  708. pclk_rate = div_u64(pclk_rate, pclk_div);
  709. }
  710. return pclk_rate;
  711. }
  712. static const struct clk_ops pll_byteclk_ops = {
  713. .recalc_rate = dsi_pll_byteclk_recalc_rate,
  714. .set_rate = dsi_pll_set_rate_stub,
  715. .round_rate = dsi_pll_byteclk_round_rate,
  716. .prepare = dsi_pll_prepare_stub,
  717. .unprepare = dsi_pll_unprepare_stub,
  718. };
  719. static const struct clk_ops pll_pclk_ops = {
  720. .recalc_rate = dsi_pll_pclk_recalc_rate,
  721. .set_rate = dsi_pll_set_rate_stub,
  722. .round_rate = dsi_pll_pclk_round_rate,
  723. .prepare = dsi_pll_prepare_stub,
  724. .unprepare = dsi_pll_unprepare_stub,
  725. };
  726. /*
  727. * Clock tree for generating DSI byte and pclk.
  728. *
  729. *
  730. * +-------------------------------+ +----------------------------+
  731. * | dsi_phy_pll_out_byteclk | | dsi_phy_pll_out_dsiclk |
  732. * +---------------+---------------+ +--------------+-------------+
  733. * | |
  734. * | |
  735. * v v
  736. * dsi_byte_clk dsi_pclk
  737. *
  738. *
  739. */
  740. static struct dsi_pll_clk dsi0_phy_pll_out_byteclk = {
  741. .hw.init = &(struct clk_init_data){
  742. .name = "dsi0_phy_pll_out_byteclk",
  743. .ops = &pll_byteclk_ops,
  744. },
  745. };
  746. static struct dsi_pll_clk dsi1_phy_pll_out_byteclk = {
  747. .hw.init = &(struct clk_init_data){
  748. .name = "dsi1_phy_pll_out_byteclk",
  749. .ops = &pll_byteclk_ops,
  750. },
  751. };
  752. static struct dsi_pll_clk dsi0_phy_pll_out_dsiclk = {
  753. .hw.init = &(struct clk_init_data){
  754. .name = "dsi0_phy_pll_out_dsiclk",
  755. .ops = &pll_pclk_ops,
  756. },
  757. };
  758. static struct dsi_pll_clk dsi1_phy_pll_out_dsiclk = {
  759. .hw.init = &(struct clk_init_data){
  760. .name = "dsi1_phy_pll_out_dsiclk",
  761. .ops = &pll_pclk_ops,
  762. },
  763. };
  764. int dsi_pll_clock_register_5nm(struct platform_device *pdev,
  765. struct dsi_pll_resource *pll_res)
  766. {
  767. int rc = 0, ndx;
  768. struct clk *clk;
  769. struct clk_onecell_data *clk_data;
  770. int num_clks = 4;
  771. if (!pdev || !pdev->dev.of_node ||
  772. !pll_res || !pll_res->pll_base || !pll_res->phy_base) {
  773. DSI_PLL_ERR(pll_res, "Invalid params\n");
  774. return -EINVAL;
  775. }
  776. ndx = pll_res->index;
  777. if (ndx >= DSI_PLL_MAX) {
  778. DSI_PLL_ERR(pll_res, "not supported\n");
  779. return -EINVAL;
  780. }
  781. pll_rsc_db[ndx] = pll_res;
  782. plls[ndx].rsc = pll_res;
  783. pll_res->priv = &plls[ndx];
  784. pll_res->vco_delay = VCO_DELAY_USEC;
  785. pll_res->vco_min_rate = 600000000;
  786. pll_res->vco_ref_clk_rate = 19200000UL;
  787. dsi_pll_setup_config(pll_res->priv, pll_res);
  788. clk_data = devm_kzalloc(&pdev->dev, sizeof(struct clk_onecell_data),
  789. GFP_KERNEL);
  790. if (!clk_data)
  791. return -ENOMEM;
  792. clk_data->clks = devm_kzalloc(&pdev->dev, (num_clks *
  793. sizeof(struct clk *)), GFP_KERNEL);
  794. if (!clk_data->clks)
  795. return -ENOMEM;
  796. clk_data->clk_num = num_clks;
  797. /* Establish client data */
  798. if (ndx == 0) {
  799. dsi0_phy_pll_out_byteclk.priv = pll_res;
  800. dsi0_phy_pll_out_dsiclk.priv = pll_res;
  801. clk = devm_clk_register(&pdev->dev,
  802. &dsi0_phy_pll_out_byteclk.hw);
  803. if (IS_ERR(clk)) {
  804. DSI_PLL_ERR(pll_res,
  805. "clk registration failed for DSI clock\n");
  806. rc = -EINVAL;
  807. goto clk_register_fail;
  808. }
  809. clk_data->clks[0] = clk;
  810. clk = devm_clk_register(&pdev->dev,
  811. &dsi0_phy_pll_out_dsiclk.hw);
  812. if (IS_ERR(clk)) {
  813. DSI_PLL_ERR(pll_res,
  814. "clk registration failed for DSI clock\n");
  815. rc = -EINVAL;
  816. goto clk_register_fail;
  817. }
  818. clk_data->clks[1] = clk;
  819. rc = of_clk_add_provider(pdev->dev.of_node,
  820. of_clk_src_onecell_get, clk_data);
  821. } else {
  822. dsi1_phy_pll_out_byteclk.priv = pll_res;
  823. dsi1_phy_pll_out_dsiclk.priv = pll_res;
  824. clk = devm_clk_register(&pdev->dev,
  825. &dsi1_phy_pll_out_byteclk.hw);
  826. if (IS_ERR(clk)) {
  827. DSI_PLL_ERR(pll_res,
  828. "clk registration failed for DSI clock\n");
  829. rc = -EINVAL;
  830. goto clk_register_fail;
  831. }
  832. clk_data->clks[2] = clk;
  833. clk = devm_clk_register(&pdev->dev,
  834. &dsi1_phy_pll_out_dsiclk.hw);
  835. if (IS_ERR(clk)) {
  836. DSI_PLL_ERR(pll_res,
  837. "clk registration failed for DSI clock\n");
  838. rc = -EINVAL;
  839. goto clk_register_fail;
  840. }
  841. clk_data->clks[3] = clk;
  842. rc = of_clk_add_provider(pdev->dev.of_node,
  843. of_clk_src_onecell_get, clk_data);
  844. }
  845. if (!rc) {
  846. DSI_PLL_INFO(pll_res, "Registered clocks successfully\n");
  847. return rc;
  848. }
  849. clk_register_fail:
  850. return rc;
  851. }
  852. static int dsi_pll_5nm_set_byteclk_div(struct dsi_pll_resource *pll,
  853. bool commit)
  854. {
  855. int i = 0;
  856. int table_size;
  857. u32 pll_post_div = 0, phy_post_div = 0;
  858. struct dsi_pll_div_table *table;
  859. u64 bitclk_rate;
  860. u64 const phy_rate_split = 1500000000UL;
  861. if (pll->type == DSI_PHY_TYPE_DPHY) {
  862. bitclk_rate = pll->byteclk_rate * 8;
  863. if (bitclk_rate <= phy_rate_split) {
  864. table = pll_5nm_dphy_lb;
  865. table_size = ARRAY_SIZE(pll_5nm_dphy_lb);
  866. } else {
  867. table = pll_5nm_dphy_hb;
  868. table_size = ARRAY_SIZE(pll_5nm_dphy_hb);
  869. }
  870. } else {
  871. bitclk_rate = pll->byteclk_rate * 7;
  872. if (bitclk_rate <= phy_rate_split) {
  873. table = pll_5nm_cphy_lb;
  874. table_size = ARRAY_SIZE(pll_5nm_cphy_lb);
  875. } else {
  876. table = pll_5nm_cphy_hb;
  877. table_size = ARRAY_SIZE(pll_5nm_cphy_hb);
  878. }
  879. }
  880. for (i = 0; i < table_size; i++) {
  881. if ((table[i].min_hz <= bitclk_rate) &&
  882. (bitclk_rate <= table[i].max_hz)) {
  883. pll_post_div = table[i].pll_div;
  884. phy_post_div = table[i].phy_div;
  885. break;
  886. }
  887. }
  888. DSI_PLL_DBG(pll, "bit clk rate: %llu, pll_post_div: %d, phy_post_div: %d\n",
  889. bitclk_rate, pll_post_div, phy_post_div);
  890. if (commit) {
  891. dsi_pll_set_pll_post_div(pll, pll_post_div);
  892. dsi_pll_set_phy_post_div(pll, phy_post_div);
  893. }
  894. pll->vco_rate = bitclk_rate * pll_post_div * phy_post_div;
  895. return 0;
  896. }
  897. static int dsi_pll_calc_dphy_pclk_div(struct dsi_pll_resource *pll)
  898. {
  899. u32 m_val, n_val; /* M and N values of MND trio */
  900. u32 pclk_div;
  901. if (pll->bpp == 30 && pll->lanes == 4) {
  902. /* RGB101010 */
  903. m_val = 2;
  904. n_val = 3;
  905. } else if (pll->bpp == 18 && pll->lanes == 2) {
  906. /* RGB666_packed */
  907. m_val = 2;
  908. n_val = 9;
  909. } else if (pll->bpp == 18 && pll->lanes == 4) {
  910. /* RGB666_packed */
  911. m_val = 4;
  912. n_val = 9;
  913. } else if (pll->bpp == 16 && pll->lanes == 3) {
  914. /* RGB565 */
  915. m_val = 3;
  916. n_val = 8;
  917. } else {
  918. m_val = 1;
  919. n_val = 1;
  920. }
  921. /* Calculating pclk_div assuming dsiclk_sel to be 1 */
  922. pclk_div = pll->bpp;
  923. pclk_div = mult_frac(pclk_div, m_val, n_val);
  924. do_div(pclk_div, 2);
  925. do_div(pclk_div, pll->lanes);
  926. DSI_PLL_DBG(pll, "bpp: %d, lanes: %d, m_val: %u, n_val: %u, pclk_div: %u\n",
  927. pll->bpp, pll->lanes, m_val, n_val, pclk_div);
  928. return pclk_div;
  929. }
  930. static int dsi_pll_calc_cphy_pclk_div(struct dsi_pll_resource *pll)
  931. {
  932. u32 m_val, n_val; /* M and N values of MND trio */
  933. u32 pclk_div;
  934. u32 phy_post_div = dsi_pll_get_phy_post_div(pll);
  935. if (pll->bpp == 24 && pll->lanes == 2) {
  936. /*
  937. * RGB888 or DSC is enabled
  938. * Skipping DSC enabled check
  939. */
  940. m_val = 2;
  941. n_val = 3;
  942. } else if (pll->bpp == 30) {
  943. /* RGB101010 */
  944. if (pll->lanes == 1) {
  945. m_val = 4;
  946. n_val = 15;
  947. } else {
  948. m_val = 16;
  949. n_val = 35;
  950. }
  951. } else if (pll->bpp == 18) {
  952. /* RGB666_packed */
  953. if (pll->lanes == 1) {
  954. m_val = 8;
  955. n_val = 63;
  956. } else if (pll->lanes == 2) {
  957. m_val = 16;
  958. n_val = 63;
  959. } else if (pll->lanes == 3) {
  960. m_val = 8;
  961. n_val = 21;
  962. } else {
  963. m_val = 1;
  964. n_val = 1;
  965. }
  966. } else if (pll->bpp == 16 && pll->lanes == 3) {
  967. /* RGB565 */
  968. m_val = 3;
  969. n_val = 7;
  970. } else {
  971. m_val = 1;
  972. n_val = 1;
  973. }
  974. /* Calculating pclk_div assuming dsiclk_sel to be 3 */
  975. pclk_div = pll->bpp * phy_post_div;
  976. pclk_div = mult_frac(pclk_div, m_val, n_val);
  977. do_div(pclk_div, 8);
  978. do_div(pclk_div, pll->lanes);
  979. DSI_PLL_DBG(pll, "bpp: %d, lanes: %d, m_val: %u, n_val: %u, phy_post_div: %u pclk_div: %u\n",
  980. pll->bpp, pll->lanes, m_val, n_val, phy_post_div, pclk_div);
  981. return pclk_div;
  982. }
  983. static int dsi_pll_5nm_set_pclk_div(struct dsi_pll_resource *pll, bool commit)
  984. {
  985. int dsi_clk = 0, pclk_div = 0;
  986. u64 pclk_src_rate;
  987. u32 pll_post_div;
  988. u32 phy_post_div;
  989. pll_post_div = dsi_pll_get_pll_post_div(pll);
  990. pclk_src_rate = div_u64(pll->vco_rate, pll_post_div);
  991. if (pll->type == DSI_PHY_TYPE_DPHY) {
  992. dsi_clk = 0x1;
  993. phy_post_div = dsi_pll_get_phy_post_div(pll);
  994. pclk_src_rate = div_u64(pclk_src_rate, phy_post_div);
  995. pclk_src_rate = div_u64(pclk_src_rate, 2);
  996. pclk_div = dsi_pll_calc_dphy_pclk_div(pll);
  997. } else {
  998. dsi_clk = 0x3;
  999. pclk_src_rate *= 2;
  1000. pclk_src_rate = div_u64(pclk_src_rate, 7);
  1001. pclk_div = dsi_pll_calc_cphy_pclk_div(pll);
  1002. }
  1003. pll->pclk_rate = div_u64(pclk_src_rate, pclk_div);
  1004. DSI_PLL_DBG(pll, "pclk rate: %llu, dsi_clk: %d, pclk_div: %d\n",
  1005. pll->pclk_rate, dsi_clk, pclk_div);
  1006. if (commit) {
  1007. dsi_pll_set_dsi_clk(pll, dsi_clk);
  1008. dsi_pll_set_pclk_div(pll, pclk_div);
  1009. }
  1010. return 0;
  1011. }
  1012. static int dsi_pll_5nm_vco_set_rate(struct dsi_pll_resource *pll_res)
  1013. {
  1014. struct dsi_pll_5nm *pll;
  1015. pll = pll_res->priv;
  1016. if (!pll) {
  1017. DSI_PLL_ERR(pll_res, "pll configuration not found\n");
  1018. return -EINVAL;
  1019. }
  1020. DSI_PLL_DBG(pll_res, "rate=%lu\n", pll_res->vco_rate);
  1021. pll_res->vco_current_rate = pll_res->vco_rate;
  1022. dsi_pll_detect_phy_mode(pll, pll_res);
  1023. dsi_pll_calc_dec_frac(pll, pll_res);
  1024. dsi_pll_calc_ssc(pll, pll_res);
  1025. dsi_pll_commit(pll, pll_res);
  1026. dsi_pll_config_hzindep_reg(pll, pll_res);
  1027. dsi_pll_ssc_commit(pll, pll_res);
  1028. /* flush, ensure all register writes are done*/
  1029. wmb();
  1030. return 0;
  1031. }
  1032. static int dsi_pll_read_stored_trim_codes(struct dsi_pll_resource *pll_res,
  1033. unsigned long vco_clk_rate)
  1034. {
  1035. int i;
  1036. bool found = false;
  1037. if (!pll_res->dfps)
  1038. return -EINVAL;
  1039. for (i = 0; i < pll_res->dfps->vco_rate_cnt; i++) {
  1040. struct dfps_codes_info *codes_info =
  1041. &pll_res->dfps->codes_dfps[i];
  1042. DSI_PLL_DBG(pll_res, "valid=%d vco_rate=%d, code %d %d %d\n",
  1043. codes_info->is_valid, codes_info->clk_rate,
  1044. codes_info->pll_codes.pll_codes_1,
  1045. codes_info->pll_codes.pll_codes_2,
  1046. codes_info->pll_codes.pll_codes_3);
  1047. if (vco_clk_rate != codes_info->clk_rate &&
  1048. codes_info->is_valid)
  1049. continue;
  1050. pll_res->cache_pll_trim_codes[0] =
  1051. codes_info->pll_codes.pll_codes_1;
  1052. pll_res->cache_pll_trim_codes[1] =
  1053. codes_info->pll_codes.pll_codes_2;
  1054. pll_res->cache_pll_trim_codes[2] =
  1055. codes_info->pll_codes.pll_codes_3;
  1056. found = true;
  1057. break;
  1058. }
  1059. if (!found)
  1060. return -EINVAL;
  1061. DSI_PLL_DBG(pll_res, "trim_code_0=0x%x trim_code_1=0x%x trim_code_2=0x%x\n",
  1062. pll_res->cache_pll_trim_codes[0],
  1063. pll_res->cache_pll_trim_codes[1],
  1064. pll_res->cache_pll_trim_codes[2]);
  1065. return 0;
  1066. }
  1067. static void dsi_pll_5nm_dynamic_refresh(struct dsi_pll_5nm *pll,
  1068. struct dsi_pll_resource *rsc)
  1069. {
  1070. u32 data;
  1071. u32 offset = DSI_PHY_TO_PLL_OFFSET;
  1072. u32 upper_addr = 0;
  1073. u32 upper_addr2 = 0;
  1074. struct dsi_pll_regs *reg = &pll->reg_setup;
  1075. data = DSI_PLL_REG_R(rsc->phy_base, PHY_CMN_CLK_CFG1);
  1076. data &= ~BIT(5);
  1077. DSI_DYN_PLL_REG_W(rsc->dyn_pll_base, DSI_DYNAMIC_REFRESH_PLL_CTRL0,
  1078. PHY_CMN_CLK_CFG1, PHY_CMN_PLL_CNTRL, data, 0);
  1079. upper_addr |= (upper_8_bit(PHY_CMN_CLK_CFG1) << 0);
  1080. upper_addr |= (upper_8_bit(PHY_CMN_PLL_CNTRL) << 1);
  1081. DSI_DYN_PLL_REG_W(rsc->dyn_pll_base, DSI_DYNAMIC_REFRESH_PLL_CTRL1,
  1082. PHY_CMN_RBUF_CTRL,
  1083. (PLL_CORE_INPUT_OVERRIDE + offset),
  1084. 0, 0x12);
  1085. upper_addr |= (upper_8_bit(PHY_CMN_RBUF_CTRL) << 2);
  1086. upper_addr |= (upper_8_bit(PLL_CORE_INPUT_OVERRIDE + offset) << 3);
  1087. DSI_DYN_PLL_REG_W(rsc->dyn_pll_base, DSI_DYNAMIC_REFRESH_PLL_CTRL2,
  1088. (PLL_DECIMAL_DIV_START_1 + offset),
  1089. (PLL_FRAC_DIV_START_LOW_1 + offset),
  1090. reg->decimal_div_start, reg->frac_div_start_low);
  1091. upper_addr |= (upper_8_bit(PLL_DECIMAL_DIV_START_1 + offset) << 4);
  1092. upper_addr |= (upper_8_bit(PLL_FRAC_DIV_START_LOW_1 + offset) << 5);
  1093. DSI_DYN_PLL_REG_W(rsc->dyn_pll_base, DSI_DYNAMIC_REFRESH_PLL_CTRL3,
  1094. (PLL_FRAC_DIV_START_MID_1 + offset),
  1095. (PLL_FRAC_DIV_START_HIGH_1 + offset),
  1096. reg->frac_div_start_mid, reg->frac_div_start_high);
  1097. upper_addr |= (upper_8_bit(PLL_FRAC_DIV_START_MID_1 + offset) << 6);
  1098. upper_addr |= (upper_8_bit(PLL_FRAC_DIV_START_HIGH_1 + offset) << 7);
  1099. DSI_DYN_PLL_REG_W(rsc->dyn_pll_base, DSI_DYNAMIC_REFRESH_PLL_CTRL4,
  1100. (PLL_SYSTEM_MUXES + offset),
  1101. (PLL_PLL_LOCKDET_RATE_1 + offset),
  1102. 0xc0, 0x10);
  1103. upper_addr |= (upper_8_bit(PLL_SYSTEM_MUXES + offset) << 8);
  1104. upper_addr |= (upper_8_bit(PLL_PLL_LOCKDET_RATE_1 + offset) << 9);
  1105. data = DSI_PLL_REG_R(rsc->pll_base, PLL_PLL_OUTDIV_RATE) & 0x03;
  1106. DSI_DYN_PLL_REG_W(rsc->dyn_pll_base, DSI_DYNAMIC_REFRESH_PLL_CTRL5,
  1107. (PLL_PLL_OUTDIV_RATE + offset),
  1108. (PLL_PLL_LOCK_DELAY + offset),
  1109. data, 0x06);
  1110. upper_addr |= (upper_8_bit(PLL_PLL_OUTDIV_RATE + offset) << 10);
  1111. upper_addr |= (upper_8_bit(PLL_PLL_LOCK_DELAY + offset) << 11);
  1112. DSI_DYN_PLL_REG_W(rsc->dyn_pll_base, DSI_DYNAMIC_REFRESH_PLL_CTRL6,
  1113. (PLL_CMODE_1 + offset),
  1114. (PLL_CLOCK_INVERTERS_1 + offset),
  1115. pll->cphy_enabled ? 0x00 : 0x10,
  1116. reg->pll_clock_inverters);
  1117. upper_addr |= (upper_8_bit(PLL_CMODE_1 + offset) << 12);
  1118. upper_addr |= (upper_8_bit(PLL_CLOCK_INVERTERS_1 + offset) << 13);
  1119. data = DSI_PLL_REG_R(rsc->pll_base, PLL_VCO_CONFIG_1);
  1120. DSI_DYN_PLL_REG_W(rsc->dyn_pll_base, DSI_DYNAMIC_REFRESH_PLL_CTRL7,
  1121. (PLL_ANALOG_CONTROLS_FIVE_1 + offset),
  1122. (PLL_VCO_CONFIG_1 + offset),
  1123. 0x01, data);
  1124. upper_addr |= (upper_8_bit(PLL_ANALOG_CONTROLS_FIVE_1 + offset) << 14);
  1125. upper_addr |= (upper_8_bit(PLL_VCO_CONFIG_1 + offset) << 15);
  1126. DSI_DYN_PLL_REG_W(rsc->dyn_pll_base, DSI_DYNAMIC_REFRESH_PLL_CTRL8,
  1127. (PLL_ANALOG_CONTROLS_FIVE + offset),
  1128. (PLL_ANALOG_CONTROLS_TWO + offset), 0x01, 0x03);
  1129. upper_addr |= (upper_8_bit(PLL_ANALOG_CONTROLS_FIVE + offset) << 16);
  1130. upper_addr |= (upper_8_bit(PLL_ANALOG_CONTROLS_TWO + offset) << 17);
  1131. DSI_DYN_PLL_REG_W(rsc->dyn_pll_base, DSI_DYNAMIC_REFRESH_PLL_CTRL9,
  1132. (PLL_ANALOG_CONTROLS_THREE + offset),
  1133. (PLL_DSM_DIVIDER + offset),
  1134. rsc->cache_pll_trim_codes[2], 0x00);
  1135. upper_addr |= (upper_8_bit(PLL_ANALOG_CONTROLS_THREE + offset) << 18);
  1136. upper_addr |= (upper_8_bit(PLL_DSM_DIVIDER + offset) << 19);
  1137. DSI_DYN_PLL_REG_W(rsc->dyn_pll_base, DSI_DYNAMIC_REFRESH_PLL_CTRL10,
  1138. (PLL_FEEDBACK_DIVIDER + offset),
  1139. (PLL_CALIBRATION_SETTINGS + offset), 0x4E, 0x40);
  1140. upper_addr |= (upper_8_bit(PLL_FEEDBACK_DIVIDER + offset) << 20);
  1141. upper_addr |= (upper_8_bit(PLL_CALIBRATION_SETTINGS + offset) << 21);
  1142. DSI_DYN_PLL_REG_W(rsc->dyn_pll_base, DSI_DYNAMIC_REFRESH_PLL_CTRL11,
  1143. (PLL_BAND_SEL_CAL_SETTINGS_THREE + offset),
  1144. (PLL_FREQ_DETECT_SETTINGS_ONE + offset), 0xBA, 0x0C);
  1145. upper_addr |= (upper_8_bit(PLL_BAND_SEL_CAL_SETTINGS_THREE + offset)
  1146. << 22);
  1147. upper_addr |= (upper_8_bit(PLL_FREQ_DETECT_SETTINGS_ONE + offset)
  1148. << 23);
  1149. DSI_DYN_PLL_REG_W(rsc->dyn_pll_base, DSI_DYNAMIC_REFRESH_PLL_CTRL12,
  1150. (PLL_OUTDIV + offset),
  1151. (PLL_CORE_OVERRIDE + offset), 0, 0);
  1152. upper_addr |= (upper_8_bit(PLL_OUTDIV + offset) << 24);
  1153. upper_addr |= (upper_8_bit(PLL_CORE_OVERRIDE + offset) << 25);
  1154. DSI_DYN_PLL_REG_W(rsc->dyn_pll_base, DSI_DYNAMIC_REFRESH_PLL_CTRL13,
  1155. (PLL_PLL_DIGITAL_TIMERS_TWO + offset),
  1156. (PLL_PLL_PROP_GAIN_RATE_1 + offset),
  1157. 0x08, reg->pll_prop_gain_rate);
  1158. upper_addr |= (upper_8_bit(PLL_PLL_DIGITAL_TIMERS_TWO + offset) << 26);
  1159. upper_addr |= (upper_8_bit(PLL_PLL_PROP_GAIN_RATE_1 + offset) << 27);
  1160. DSI_DYN_PLL_REG_W(rsc->dyn_pll_base, DSI_DYNAMIC_REFRESH_PLL_CTRL14,
  1161. (PLL_PLL_BAND_SEL_RATE_1 + offset),
  1162. (PLL_PLL_INT_GAIN_IFILT_BAND_1 + offset),
  1163. 0xC0, 0x82);
  1164. upper_addr |= (upper_8_bit(PLL_PLL_BAND_SEL_RATE_1 + offset) << 28);
  1165. upper_addr |= (upper_8_bit(PLL_PLL_INT_GAIN_IFILT_BAND_1 + offset)
  1166. << 29);
  1167. DSI_DYN_PLL_REG_W(rsc->dyn_pll_base, DSI_DYNAMIC_REFRESH_PLL_CTRL15,
  1168. (PLL_PLL_FL_INT_GAIN_PFILT_BAND_1 + offset),
  1169. (PLL_PLL_LOCK_OVERRIDE + offset),
  1170. 0x4c, 0x80);
  1171. upper_addr |= (upper_8_bit(PLL_PLL_FL_INT_GAIN_PFILT_BAND_1 + offset)
  1172. << 30);
  1173. upper_addr |= (upper_8_bit(PLL_PLL_LOCK_OVERRIDE + offset) << 31);
  1174. DSI_DYN_PLL_REG_W(rsc->dyn_pll_base, DSI_DYNAMIC_REFRESH_PLL_CTRL16,
  1175. (PLL_PFILT + offset),
  1176. (PLL_IFILT + offset),
  1177. 0x29, 0x3f);
  1178. upper_addr2 |= (upper_8_bit(PLL_PFILT + offset) << 0);
  1179. upper_addr2 |= (upper_8_bit(PLL_IFILT + offset) << 1);
  1180. DSI_DYN_PLL_REG_W(rsc->dyn_pll_base, DSI_DYNAMIC_REFRESH_PLL_CTRL17,
  1181. (PLL_SYSTEM_MUXES + offset),
  1182. (PLL_CALIBRATION_SETTINGS + offset),
  1183. 0xe0, 0x44);
  1184. upper_addr2 |= (upper_8_bit(PLL_BAND_SEL_CAL + offset) << 2);
  1185. upper_addr2 |= (upper_8_bit(PLL_CALIBRATION_SETTINGS + offset) << 3);
  1186. data = DSI_PLL_REG_R(rsc->phy_base, PHY_CMN_CLK_CFG0);
  1187. DSI_DYN_PLL_REG_W(rsc->dyn_pll_base, DSI_DYNAMIC_REFRESH_PLL_CTRL18,
  1188. PHY_CMN_CTRL_2, PHY_CMN_CLK_CFG0, 0x40, data);
  1189. if (rsc->slave)
  1190. DSI_DYN_PLL_REG_W(rsc->slave->dyn_pll_base,
  1191. DSI_DYNAMIC_REFRESH_PLL_CTRL10,
  1192. PHY_CMN_CLK_CFG0, PHY_CMN_CTRL_0,
  1193. data, 0x7f);
  1194. DSI_DYN_PLL_REG_W(rsc->dyn_pll_base, DSI_DYNAMIC_REFRESH_PLL_CTRL27,
  1195. PHY_CMN_PLL_CNTRL, PHY_CMN_PLL_CNTRL, 0x01, 0x01);
  1196. DSI_DYN_PLL_REG_W(rsc->dyn_pll_base, DSI_DYNAMIC_REFRESH_PLL_CTRL28,
  1197. PHY_CMN_PLL_CNTRL, PHY_CMN_PLL_CNTRL, 0x01, 0x01);
  1198. DSI_DYN_PLL_REG_W(rsc->dyn_pll_base, DSI_DYNAMIC_REFRESH_PLL_CTRL29,
  1199. PHY_CMN_PLL_CNTRL, PHY_CMN_PLL_CNTRL, 0x01, 0x01);
  1200. data = DSI_PLL_REG_R(rsc->phy_base, PHY_CMN_CLK_CFG1) | BIT(5);
  1201. DSI_DYN_PLL_REG_W(rsc->dyn_pll_base, DSI_DYNAMIC_REFRESH_PLL_CTRL30,
  1202. PHY_CMN_CLK_CFG1, PHY_CMN_RBUF_CTRL, data, 0x01);
  1203. DSI_DYN_PLL_REG_W(rsc->dyn_pll_base, DSI_DYNAMIC_REFRESH_PLL_CTRL31,
  1204. PHY_CMN_CLK_CFG1, PHY_CMN_CLK_CFG1, data, data);
  1205. if (rsc->slave) {
  1206. data = DSI_PLL_REG_R(rsc->slave->phy_base, PHY_CMN_CLK_CFG1) |
  1207. BIT(5);
  1208. DSI_DYN_PLL_REG_W(rsc->slave->dyn_pll_base,
  1209. DSI_DYNAMIC_REFRESH_PLL_CTRL30,
  1210. PHY_CMN_CLK_CFG1, PHY_CMN_RBUF_CTRL,
  1211. data, 0x01);
  1212. DSI_DYN_PLL_REG_W(rsc->slave->dyn_pll_base,
  1213. DSI_DYNAMIC_REFRESH_PLL_CTRL31,
  1214. PHY_CMN_CLK_CFG1, PHY_CMN_CLK_CFG1,
  1215. data, data);
  1216. }
  1217. DSI_PLL_REG_W(rsc->dyn_pll_base,
  1218. DSI_DYNAMIC_REFRESH_PLL_UPPER_ADDR, upper_addr);
  1219. DSI_PLL_REG_W(rsc->dyn_pll_base,
  1220. DSI_DYNAMIC_REFRESH_PLL_UPPER_ADDR2, upper_addr2);
  1221. wmb(); /* commit register writes */
  1222. }
  1223. static int dsi_pll_5nm_dynamic_clk_vco_set_rate(struct dsi_pll_resource *rsc)
  1224. {
  1225. int rc;
  1226. struct dsi_pll_5nm *pll;
  1227. u32 rate;
  1228. if (!rsc) {
  1229. DSI_PLL_ERR(rsc, "pll resource not found\n");
  1230. return -EINVAL;
  1231. }
  1232. rate = rsc->vco_rate;
  1233. pll = rsc->priv;
  1234. if (!pll) {
  1235. DSI_PLL_ERR(rsc, "pll configuration not found\n");
  1236. return -EINVAL;
  1237. }
  1238. rc = dsi_pll_read_stored_trim_codes(rsc, rate);
  1239. if (rc) {
  1240. DSI_PLL_ERR(rsc, "cannot find pll codes rate=%ld\n", rate);
  1241. return -EINVAL;
  1242. }
  1243. DSI_PLL_DBG(rsc, "ndx=%d, rate=%lu\n", rsc->index, rate);
  1244. rsc->vco_current_rate = rate;
  1245. dsi_pll_calc_dec_frac(pll, rsc);
  1246. /* program dynamic refresh control registers */
  1247. dsi_pll_5nm_dynamic_refresh(pll, rsc);
  1248. return 0;
  1249. }
  1250. static int dsi_pll_5nm_enable(struct dsi_pll_resource *rsc)
  1251. {
  1252. int rc = 0;
  1253. /* Start PLL */
  1254. DSI_PLL_REG_W(rsc->phy_base, PHY_CMN_PLL_CNTRL, 0x01);
  1255. /*
  1256. * ensure all PLL configurations are written prior to checking
  1257. * for PLL lock.
  1258. */
  1259. wmb();
  1260. /* Check for PLL lock */
  1261. rc = dsi_pll_5nm_lock_status(rsc);
  1262. if (rc) {
  1263. DSI_PLL_ERR(rsc, "lock failed\n");
  1264. goto error;
  1265. }
  1266. /*
  1267. * assert power on reset for PHY digital in case the PLL is
  1268. * enabled after CX of analog domain power collapse. This needs
  1269. * to be done before enabling the global clk.
  1270. */
  1271. dsi_pll_phy_dig_reset(rsc);
  1272. if (rsc->slave)
  1273. dsi_pll_phy_dig_reset(rsc->slave);
  1274. dsi_pll_enable_global_clk(rsc);
  1275. if (rsc->slave)
  1276. dsi_pll_enable_global_clk(rsc->slave);
  1277. /* flush, ensure all register writes are done*/
  1278. wmb();
  1279. error:
  1280. return rc;
  1281. }
  1282. static int dsi_pll_5nm_disable(struct dsi_pll_resource *rsc)
  1283. {
  1284. int rc = 0;
  1285. DSI_PLL_DBG(rsc, "stop PLL\n");
  1286. /*
  1287. * To avoid any stray glitches while
  1288. * abruptly powering down the PLL
  1289. * make sure to gate the clock using
  1290. * the clock enable bit before powering
  1291. * down the PLL
  1292. */
  1293. dsi_pll_disable_global_clk(rsc);
  1294. DSI_PLL_REG_W(rsc->phy_base, PHY_CMN_PLL_CNTRL, 0);
  1295. dsi_pll_disable_sub(rsc);
  1296. if (rsc->slave) {
  1297. dsi_pll_disable_global_clk(rsc->slave);
  1298. dsi_pll_disable_sub(rsc->slave);
  1299. }
  1300. /* flush, ensure all register writes are done*/
  1301. wmb();
  1302. return rc;
  1303. }
  1304. int dsi_pll_5nm_configure(void *pll, bool commit)
  1305. {
  1306. int rc = 0;
  1307. struct dsi_pll_resource *rsc = (struct dsi_pll_resource *)pll;
  1308. dsi_pll_config_slave(rsc);
  1309. /* PLL power needs to be enabled before accessing PLL registers */
  1310. dsi_pll_enable_pll_bias(rsc);
  1311. if (rsc->slave)
  1312. dsi_pll_enable_pll_bias(rsc->slave);
  1313. if (commit)
  1314. dsi_pll_init_val(rsc);
  1315. rc = dsi_pll_5nm_set_byteclk_div(rsc, commit);
  1316. if (commit) {
  1317. rc = dsi_pll_5nm_set_pclk_div(rsc, commit);
  1318. rc = dsi_pll_5nm_vco_set_rate(rsc);
  1319. } else {
  1320. rc = dsi_pll_5nm_dynamic_clk_vco_set_rate(rsc);
  1321. }
  1322. return 0;
  1323. }
  1324. int dsi_pll_5nm_toggle(void *pll, bool prepare)
  1325. {
  1326. int rc = 0;
  1327. struct dsi_pll_resource *pll_res = (struct dsi_pll_resource *)pll;
  1328. if (!pll_res) {
  1329. DSI_PLL_ERR(pll_res, "dsi pll resources are not available\n");
  1330. return -EINVAL;
  1331. }
  1332. if (prepare) {
  1333. rc = dsi_pll_5nm_enable(pll_res);
  1334. if (rc)
  1335. DSI_PLL_ERR(pll_res, "enable failed: %d\n", rc);
  1336. } else {
  1337. rc = dsi_pll_5nm_disable(pll_res);
  1338. if (rc)
  1339. DSI_PLL_ERR(pll_res, "disable failed: %d\n", rc);
  1340. }
  1341. return rc;
  1342. }