hal_srng.c 51 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846
  1. /*
  2. * Copyright (c) 2016-2021 The Linux Foundation. All rights reserved.
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for
  5. * any purpose with or without fee is hereby granted, provided that the
  6. * above copyright notice and this permission notice appear in all
  7. * copies.
  8. *
  9. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
  10. * WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
  11. * WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
  12. * AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
  13. * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
  14. * PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
  15. * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
  16. * PERFORMANCE OF THIS SOFTWARE.
  17. */
  18. #include "hal_hw_headers.h"
  19. #include "hal_api.h"
  20. #include "target_type.h"
  21. #include "wcss_version.h"
  22. #include "qdf_module.h"
  23. #ifdef QCA_WIFI_QCA8074
  24. void hal_qca6290_attach(struct hal_soc *hal);
  25. #endif
  26. #ifdef QCA_WIFI_QCA8074
  27. void hal_qca8074_attach(struct hal_soc *hal);
  28. #endif
  29. #if defined(QCA_WIFI_QCA8074V2) || defined(QCA_WIFI_QCA6018)
  30. void hal_qca8074v2_attach(struct hal_soc *hal);
  31. #endif
  32. #ifdef QCA_WIFI_QCA6390
  33. void hal_qca6390_attach(struct hal_soc *hal);
  34. #endif
  35. #ifdef QCA_WIFI_QCA6490
  36. void hal_qca6490_attach(struct hal_soc *hal);
  37. #endif
  38. #ifdef QCA_WIFI_QCN9000
  39. void hal_qcn9000_attach(struct hal_soc *hal);
  40. #endif
  41. #ifdef QCA_WIFI_QCN6122
  42. void hal_qcn6122_attach(struct hal_soc *hal);
  43. #endif
  44. #ifdef QCA_WIFI_QCA6750
  45. void hal_qca6750_attach(struct hal_soc *hal);
  46. #endif
  47. #ifdef QCA_WIFI_QCA5018
  48. void hal_qca5018_attach(struct hal_soc *hal);
  49. #endif
  50. #ifdef ENABLE_VERBOSE_DEBUG
  51. bool is_hal_verbose_debug_enabled;
  52. #endif
  53. #ifdef ENABLE_HAL_REG_WR_HISTORY
  54. struct hal_reg_write_fail_history hal_reg_wr_hist;
  55. void hal_reg_wr_fail_history_add(struct hal_soc *hal_soc,
  56. uint32_t offset,
  57. uint32_t wr_val, uint32_t rd_val)
  58. {
  59. struct hal_reg_write_fail_entry *record;
  60. int idx;
  61. idx = hal_history_get_next_index(&hal_soc->reg_wr_fail_hist->index,
  62. HAL_REG_WRITE_HIST_SIZE);
  63. record = &hal_soc->reg_wr_fail_hist->record[idx];
  64. record->timestamp = qdf_get_log_timestamp();
  65. record->reg_offset = offset;
  66. record->write_val = wr_val;
  67. record->read_val = rd_val;
  68. }
  69. static void hal_reg_write_fail_history_init(struct hal_soc *hal)
  70. {
  71. hal->reg_wr_fail_hist = &hal_reg_wr_hist;
  72. qdf_atomic_set(&hal->reg_wr_fail_hist->index, -1);
  73. }
  74. #else
  75. static void hal_reg_write_fail_history_init(struct hal_soc *hal)
  76. {
  77. }
  78. #endif
  79. /**
  80. * hal_get_srng_ring_id() - get the ring id of a descriped ring
  81. * @hal: hal_soc data structure
  82. * @ring_type: type enum describing the ring
  83. * @ring_num: which ring of the ring type
  84. * @mac_id: which mac does the ring belong to (or 0 for non-lmac rings)
  85. *
  86. * Return: the ring id or -EINVAL if the ring does not exist.
  87. */
  88. static int hal_get_srng_ring_id(struct hal_soc *hal, int ring_type,
  89. int ring_num, int mac_id)
  90. {
  91. struct hal_hw_srng_config *ring_config =
  92. HAL_SRNG_CONFIG(hal, ring_type);
  93. int ring_id;
  94. if (ring_num >= ring_config->max_rings) {
  95. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO,
  96. "%s: ring_num exceeded maximum no. of supported rings",
  97. __func__);
  98. /* TODO: This is a programming error. Assert if this happens */
  99. return -EINVAL;
  100. }
  101. if (ring_config->lmac_ring) {
  102. ring_id = ring_config->start_ring_id + ring_num +
  103. (mac_id * HAL_MAX_RINGS_PER_LMAC);
  104. } else {
  105. ring_id = ring_config->start_ring_id + ring_num;
  106. }
  107. return ring_id;
  108. }
  109. static struct hal_srng *hal_get_srng(struct hal_soc *hal, int ring_id)
  110. {
  111. /* TODO: Should we allocate srng structures dynamically? */
  112. return &(hal->srng_list[ring_id]);
  113. }
  114. #define HP_OFFSET_IN_REG_START 1
  115. #define OFFSET_FROM_HP_TO_TP 4
  116. static void hal_update_srng_hp_tp_address(struct hal_soc *hal_soc,
  117. int shadow_config_index,
  118. int ring_type,
  119. int ring_num)
  120. {
  121. struct hal_srng *srng;
  122. int ring_id;
  123. struct hal_hw_srng_config *ring_config =
  124. HAL_SRNG_CONFIG(hal_soc, ring_type);
  125. ring_id = hal_get_srng_ring_id(hal_soc, ring_type, ring_num, 0);
  126. if (ring_id < 0)
  127. return;
  128. srng = hal_get_srng(hal_soc, ring_id);
  129. if (ring_config->ring_dir == HAL_SRNG_DST_RING) {
  130. srng->u.dst_ring.tp_addr = SHADOW_REGISTER(shadow_config_index)
  131. + hal_soc->dev_base_addr;
  132. hal_debug("tp_addr=%pK dev base addr %pK index %u",
  133. srng->u.dst_ring.tp_addr, hal_soc->dev_base_addr,
  134. shadow_config_index);
  135. } else {
  136. srng->u.src_ring.hp_addr = SHADOW_REGISTER(shadow_config_index)
  137. + hal_soc->dev_base_addr;
  138. hal_debug("hp_addr=%pK dev base addr %pK index %u",
  139. srng->u.src_ring.hp_addr,
  140. hal_soc->dev_base_addr, shadow_config_index);
  141. }
  142. }
  143. #ifdef GENERIC_SHADOW_REGISTER_ACCESS_ENABLE
  144. void hal_set_one_target_reg_config(struct hal_soc *hal,
  145. uint32_t target_reg_offset,
  146. int list_index)
  147. {
  148. int i = list_index;
  149. qdf_assert_always(i < MAX_GENERIC_SHADOW_REG);
  150. hal->list_shadow_reg_config[i].target_register =
  151. target_reg_offset;
  152. hal->num_generic_shadow_regs_configured++;
  153. }
  154. qdf_export_symbol(hal_set_one_target_reg_config);
  155. #define REO_R0_DESTINATION_RING_CTRL_ADDR_OFFSET 0x4
  156. #define MAX_REO_REMAP_SHADOW_REGS 4
  157. QDF_STATUS hal_set_shadow_regs(void *hal_soc)
  158. {
  159. uint32_t target_reg_offset;
  160. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  161. int i;
  162. struct hal_hw_srng_config *srng_config =
  163. &hal->hw_srng_table[WBM2SW_RELEASE];
  164. target_reg_offset =
  165. HWIO_REO_R0_DESTINATION_RING_CTRL_IX_0_ADDR(
  166. SEQ_WCSS_UMAC_REO_REG_OFFSET);
  167. for (i = 0; i < MAX_REO_REMAP_SHADOW_REGS; i++) {
  168. hal_set_one_target_reg_config(hal, target_reg_offset, i);
  169. target_reg_offset += REO_R0_DESTINATION_RING_CTRL_ADDR_OFFSET;
  170. }
  171. target_reg_offset = srng_config->reg_start[HP_OFFSET_IN_REG_START];
  172. target_reg_offset += (srng_config->reg_size[HP_OFFSET_IN_REG_START]
  173. * HAL_IPA_TX_COMP_RING_IDX);
  174. hal_set_one_target_reg_config(hal, target_reg_offset, i);
  175. return QDF_STATUS_SUCCESS;
  176. }
  177. qdf_export_symbol(hal_set_shadow_regs);
  178. QDF_STATUS hal_construct_shadow_regs(void *hal_soc)
  179. {
  180. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  181. int shadow_config_index = hal->num_shadow_registers_configured;
  182. int i;
  183. int num_regs = hal->num_generic_shadow_regs_configured;
  184. for (i = 0; i < num_regs; i++) {
  185. qdf_assert_always(shadow_config_index < MAX_SHADOW_REGISTERS);
  186. hal->shadow_config[shadow_config_index].addr =
  187. hal->list_shadow_reg_config[i].target_register;
  188. hal->list_shadow_reg_config[i].shadow_config_index =
  189. shadow_config_index;
  190. hal->list_shadow_reg_config[i].va =
  191. SHADOW_REGISTER(shadow_config_index) +
  192. (uintptr_t)hal->dev_base_addr;
  193. hal_debug("target_reg %x, shadow register 0x%x shadow_index 0x%x",
  194. hal->shadow_config[shadow_config_index].addr,
  195. SHADOW_REGISTER(shadow_config_index),
  196. shadow_config_index);
  197. shadow_config_index++;
  198. hal->num_shadow_registers_configured++;
  199. }
  200. return QDF_STATUS_SUCCESS;
  201. }
  202. qdf_export_symbol(hal_construct_shadow_regs);
  203. #endif
  204. QDF_STATUS hal_set_one_shadow_config(void *hal_soc,
  205. int ring_type,
  206. int ring_num)
  207. {
  208. uint32_t target_register;
  209. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  210. struct hal_hw_srng_config *srng_config = &hal->hw_srng_table[ring_type];
  211. int shadow_config_index = hal->num_shadow_registers_configured;
  212. if (shadow_config_index >= MAX_SHADOW_REGISTERS) {
  213. QDF_ASSERT(0);
  214. return QDF_STATUS_E_RESOURCES;
  215. }
  216. hal->num_shadow_registers_configured++;
  217. target_register = srng_config->reg_start[HP_OFFSET_IN_REG_START];
  218. target_register += (srng_config->reg_size[HP_OFFSET_IN_REG_START]
  219. *ring_num);
  220. /* if the ring is a dst ring, we need to shadow the tail pointer */
  221. if (srng_config->ring_dir == HAL_SRNG_DST_RING)
  222. target_register += OFFSET_FROM_HP_TO_TP;
  223. hal->shadow_config[shadow_config_index].addr = target_register;
  224. /* update hp/tp addr in the hal_soc structure*/
  225. hal_update_srng_hp_tp_address(hal_soc, shadow_config_index, ring_type,
  226. ring_num);
  227. hal_debug("target_reg %x, shadow register 0x%x shadow_index 0x%x, ring_type %d, ring num %d",
  228. target_register,
  229. SHADOW_REGISTER(shadow_config_index),
  230. shadow_config_index,
  231. ring_type, ring_num);
  232. return QDF_STATUS_SUCCESS;
  233. }
  234. qdf_export_symbol(hal_set_one_shadow_config);
  235. QDF_STATUS hal_construct_srng_shadow_regs(void *hal_soc)
  236. {
  237. int ring_type, ring_num;
  238. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  239. for (ring_type = 0; ring_type < MAX_RING_TYPES; ring_type++) {
  240. struct hal_hw_srng_config *srng_config =
  241. &hal->hw_srng_table[ring_type];
  242. if (ring_type == CE_SRC ||
  243. ring_type == CE_DST ||
  244. ring_type == CE_DST_STATUS)
  245. continue;
  246. if (srng_config->lmac_ring)
  247. continue;
  248. for (ring_num = 0; ring_num < srng_config->max_rings;
  249. ring_num++)
  250. hal_set_one_shadow_config(hal_soc, ring_type, ring_num);
  251. }
  252. return QDF_STATUS_SUCCESS;
  253. }
  254. qdf_export_symbol(hal_construct_srng_shadow_regs);
  255. void hal_get_shadow_config(void *hal_soc,
  256. struct pld_shadow_reg_v2_cfg **shadow_config,
  257. int *num_shadow_registers_configured)
  258. {
  259. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  260. *shadow_config = hal->shadow_config;
  261. *num_shadow_registers_configured =
  262. hal->num_shadow_registers_configured;
  263. }
  264. qdf_export_symbol(hal_get_shadow_config);
  265. static void hal_validate_shadow_register(struct hal_soc *hal,
  266. uint32_t *destination,
  267. uint32_t *shadow_address)
  268. {
  269. unsigned int index;
  270. uint32_t *shadow_0_offset = SHADOW_REGISTER(0) + hal->dev_base_addr;
  271. int destination_ba_offset =
  272. ((char *)destination) - (char *)hal->dev_base_addr;
  273. index = shadow_address - shadow_0_offset;
  274. if (index >= MAX_SHADOW_REGISTERS) {
  275. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  276. "%s: index %x out of bounds", __func__, index);
  277. goto error;
  278. } else if (hal->shadow_config[index].addr != destination_ba_offset) {
  279. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  280. "%s: sanity check failure, expected %x, found %x",
  281. __func__, destination_ba_offset,
  282. hal->shadow_config[index].addr);
  283. goto error;
  284. }
  285. return;
  286. error:
  287. qdf_print("baddr %pK, desination %pK, shadow_address %pK s0offset %pK index %x",
  288. hal->dev_base_addr, destination, shadow_address,
  289. shadow_0_offset, index);
  290. QDF_BUG(0);
  291. return;
  292. }
  293. static void hal_target_based_configure(struct hal_soc *hal)
  294. {
  295. /**
  296. * Indicate Initialization of srngs to avoid force wake
  297. * as umac power collapse is not enabled yet
  298. */
  299. hal->init_phase = true;
  300. switch (hal->target_type) {
  301. #ifdef QCA_WIFI_QCA6290
  302. case TARGET_TYPE_QCA6290:
  303. hal->use_register_windowing = true;
  304. hal_qca6290_attach(hal);
  305. break;
  306. #endif
  307. #ifdef QCA_WIFI_QCA6390
  308. case TARGET_TYPE_QCA6390:
  309. hal->use_register_windowing = true;
  310. hal_qca6390_attach(hal);
  311. break;
  312. #endif
  313. #ifdef QCA_WIFI_QCA6490
  314. case TARGET_TYPE_QCA6490:
  315. hal->use_register_windowing = true;
  316. hal_qca6490_attach(hal);
  317. break;
  318. #endif
  319. #ifdef QCA_WIFI_QCA6750
  320. case TARGET_TYPE_QCA6750:
  321. hal->use_register_windowing = true;
  322. hal->static_window_map = true;
  323. hal_qca6750_attach(hal);
  324. break;
  325. #endif
  326. #if defined(QCA_WIFI_QCA8074) && defined(WIFI_TARGET_TYPE_3_0)
  327. case TARGET_TYPE_QCA8074:
  328. hal_qca8074_attach(hal);
  329. break;
  330. #endif
  331. #if defined(QCA_WIFI_QCA8074V2)
  332. case TARGET_TYPE_QCA8074V2:
  333. hal_qca8074v2_attach(hal);
  334. break;
  335. #endif
  336. #if defined(QCA_WIFI_QCA6018)
  337. case TARGET_TYPE_QCA6018:
  338. hal_qca8074v2_attach(hal);
  339. break;
  340. #endif
  341. #if defined(QCA_WIFI_QCN6122)
  342. case TARGET_TYPE_QCN6122:
  343. hal->use_register_windowing = true;
  344. /*
  345. * Static window map is enabled for qcn9000 to use 2mb bar
  346. * size and use multiple windows to write into registers.
  347. */
  348. hal->static_window_map = true;
  349. hal_qcn6122_attach(hal);
  350. break;
  351. #endif
  352. #ifdef QCA_WIFI_QCN9000
  353. case TARGET_TYPE_QCN9000:
  354. hal->use_register_windowing = true;
  355. /*
  356. * Static window map is enabled for qcn9000 to use 2mb bar
  357. * size and use multiple windows to write into registers.
  358. */
  359. hal->static_window_map = true;
  360. hal_qcn9000_attach(hal);
  361. break;
  362. #endif
  363. #ifdef QCA_WIFI_QCA5018
  364. case TARGET_TYPE_QCA5018:
  365. hal->use_register_windowing = true;
  366. hal->static_window_map = true;
  367. hal_qca5018_attach(hal);
  368. break;
  369. #endif
  370. default:
  371. break;
  372. }
  373. }
  374. uint32_t hal_get_target_type(hal_soc_handle_t hal_soc_hdl)
  375. {
  376. struct hal_soc *hal_soc = (struct hal_soc *)hal_soc_hdl;
  377. struct hif_target_info *tgt_info =
  378. hif_get_target_info_handle(hal_soc->hif_handle);
  379. return tgt_info->target_type;
  380. }
  381. qdf_export_symbol(hal_get_target_type);
  382. #if defined(FEATURE_HAL_DELAYED_REG_WRITE) || \
  383. defined(FEATURE_HAL_DELAYED_REG_WRITE_V2)
  384. /**
  385. * hal_is_reg_write_tput_level_high() - throughput level for delayed reg writes
  386. * @hal: hal_soc pointer
  387. *
  388. * Return: true if throughput is high, else false.
  389. */
  390. static inline bool hal_is_reg_write_tput_level_high(struct hal_soc *hal)
  391. {
  392. int bw_level = hif_get_bandwidth_level(hal->hif_handle);
  393. return (bw_level >= PLD_BUS_WIDTH_MEDIUM) ? true : false;
  394. }
  395. static inline
  396. char *hal_fill_reg_write_srng_stats(struct hal_srng *srng,
  397. char *buf, qdf_size_t size)
  398. {
  399. qdf_scnprintf(buf, size, "enq %u deq %u coal %u direct %u",
  400. srng->wstats.enqueues, srng->wstats.dequeues,
  401. srng->wstats.coalesces, srng->wstats.direct);
  402. return buf;
  403. }
  404. /* bytes for local buffer */
  405. #define HAL_REG_WRITE_SRNG_STATS_LEN 100
  406. void hal_dump_reg_write_srng_stats(hal_soc_handle_t hal_soc_hdl)
  407. {
  408. struct hal_srng *srng;
  409. char buf[HAL_REG_WRITE_SRNG_STATS_LEN];
  410. struct hal_soc *hal = (struct hal_soc *)hal_soc_hdl;
  411. srng = hal_get_srng(hal, HAL_SRNG_SW2TCL1);
  412. hal_debug("SW2TCL1: %s",
  413. hal_fill_reg_write_srng_stats(srng, buf, sizeof(buf)));
  414. srng = hal_get_srng(hal, HAL_SRNG_WBM2SW0_RELEASE);
  415. hal_debug("WBM2SW0: %s",
  416. hal_fill_reg_write_srng_stats(srng, buf, sizeof(buf)));
  417. srng = hal_get_srng(hal, HAL_SRNG_REO2SW1);
  418. hal_debug("REO2SW1: %s",
  419. hal_fill_reg_write_srng_stats(srng, buf, sizeof(buf)));
  420. srng = hal_get_srng(hal, HAL_SRNG_REO2SW2);
  421. hal_debug("REO2SW2: %s",
  422. hal_fill_reg_write_srng_stats(srng, buf, sizeof(buf)));
  423. srng = hal_get_srng(hal, HAL_SRNG_REO2SW3);
  424. hal_debug("REO2SW3: %s",
  425. hal_fill_reg_write_srng_stats(srng, buf, sizeof(buf)));
  426. }
  427. #ifdef FEATURE_HAL_DELAYED_REG_WRITE_V2
  428. /**
  429. * hal_dump_tcl_stats() - dump the TCL reg write stats
  430. * @hal: hal_soc pointer
  431. *
  432. * Return: None
  433. */
  434. static inline void hal_dump_tcl_stats(struct hal_soc *hal)
  435. {
  436. struct hal_srng *srng = hal_get_srng(hal, HAL_SRNG_SW2TCL1);
  437. uint32_t *hist = hal->tcl_stats.sched_delay;
  438. char buf[HAL_REG_WRITE_SRNG_STATS_LEN];
  439. hal_debug("TCL: %s sched-delay hist %u %u %u %u",
  440. hal_fill_reg_write_srng_stats(srng, buf, sizeof(buf)),
  441. hist[REG_WRITE_SCHED_DELAY_SUB_100us],
  442. hist[REG_WRITE_SCHED_DELAY_SUB_1000us],
  443. hist[REG_WRITE_SCHED_DELAY_SUB_5000us],
  444. hist[REG_WRITE_SCHED_DELAY_GT_5000us]);
  445. hal_debug("wq_dly %u wq_dir %u tim_enq %u tim_dir %u enq_tim_cnt %u dir_tim_cnt %u rst_tim_cnt %u",
  446. hal->tcl_stats.wq_delayed,
  447. hal->tcl_stats.wq_direct,
  448. hal->tcl_stats.timer_enq,
  449. hal->tcl_stats.timer_direct,
  450. hal->tcl_stats.enq_timer_set,
  451. hal->tcl_stats.direct_timer_set,
  452. hal->tcl_stats.timer_reset);
  453. }
  454. #else
  455. static inline void hal_dump_tcl_stats(struct hal_soc *hal)
  456. {
  457. }
  458. #endif
  459. void hal_dump_reg_write_stats(hal_soc_handle_t hal_soc_hdl)
  460. {
  461. uint32_t *hist;
  462. struct hal_soc *hal = (struct hal_soc *)hal_soc_hdl;
  463. hist = hal->stats.wstats.sched_delay;
  464. hal_debug("wstats: enq %u deq %u coal %u direct %u q_depth %u max_q %u sched-delay hist %u %u %u %u",
  465. qdf_atomic_read(&hal->stats.wstats.enqueues),
  466. hal->stats.wstats.dequeues,
  467. qdf_atomic_read(&hal->stats.wstats.coalesces),
  468. qdf_atomic_read(&hal->stats.wstats.direct),
  469. qdf_atomic_read(&hal->stats.wstats.q_depth),
  470. hal->stats.wstats.max_q_depth,
  471. hist[REG_WRITE_SCHED_DELAY_SUB_100us],
  472. hist[REG_WRITE_SCHED_DELAY_SUB_1000us],
  473. hist[REG_WRITE_SCHED_DELAY_SUB_5000us],
  474. hist[REG_WRITE_SCHED_DELAY_GT_5000us]);
  475. hal_dump_tcl_stats(hal);
  476. }
  477. int hal_get_reg_write_pending_work(void *hal_soc)
  478. {
  479. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  480. return qdf_atomic_read(&hal->active_work_cnt);
  481. }
  482. #endif
  483. #ifdef FEATURE_HAL_DELAYED_REG_WRITE
  484. #ifdef MEMORY_DEBUG
  485. /*
  486. * Length of the queue(array) used to hold delayed register writes.
  487. * Must be a multiple of 2.
  488. */
  489. #define HAL_REG_WRITE_QUEUE_LEN 128
  490. #else
  491. #define HAL_REG_WRITE_QUEUE_LEN 32
  492. #endif
  493. /**
  494. * hal_process_reg_write_q_elem() - process a regiter write queue element
  495. * @hal: hal_soc pointer
  496. * @q_elem: pointer to hal regiter write queue element
  497. *
  498. * Return: The value which was written to the address
  499. */
  500. static uint32_t
  501. hal_process_reg_write_q_elem(struct hal_soc *hal,
  502. struct hal_reg_write_q_elem *q_elem)
  503. {
  504. struct hal_srng *srng = q_elem->srng;
  505. uint32_t write_val;
  506. SRNG_LOCK(&srng->lock);
  507. srng->reg_write_in_progress = false;
  508. srng->wstats.dequeues++;
  509. if (srng->ring_dir == HAL_SRNG_SRC_RING) {
  510. q_elem->dequeue_val = srng->u.src_ring.hp;
  511. hal_write_address_32_mb(hal,
  512. srng->u.src_ring.hp_addr,
  513. srng->u.src_ring.hp, false);
  514. write_val = srng->u.src_ring.hp;
  515. } else {
  516. q_elem->dequeue_val = srng->u.dst_ring.tp;
  517. hal_write_address_32_mb(hal,
  518. srng->u.dst_ring.tp_addr,
  519. srng->u.dst_ring.tp, false);
  520. write_val = srng->u.dst_ring.tp;
  521. }
  522. q_elem->valid = 0;
  523. SRNG_UNLOCK(&srng->lock);
  524. return write_val;
  525. }
  526. /**
  527. * hal_reg_write_fill_sched_delay_hist() - fill reg write delay histogram in hal
  528. * @hal: hal_soc pointer
  529. * @delay: delay in us
  530. *
  531. * Return: None
  532. */
  533. static inline void hal_reg_write_fill_sched_delay_hist(struct hal_soc *hal,
  534. uint64_t delay_us)
  535. {
  536. uint32_t *hist;
  537. hist = hal->stats.wstats.sched_delay;
  538. if (delay_us < 100)
  539. hist[REG_WRITE_SCHED_DELAY_SUB_100us]++;
  540. else if (delay_us < 1000)
  541. hist[REG_WRITE_SCHED_DELAY_SUB_1000us]++;
  542. else if (delay_us < 5000)
  543. hist[REG_WRITE_SCHED_DELAY_SUB_5000us]++;
  544. else
  545. hist[REG_WRITE_SCHED_DELAY_GT_5000us]++;
  546. }
  547. /**
  548. * hal_reg_write_work() - Worker to process delayed writes
  549. * @arg: hal_soc pointer
  550. *
  551. * Return: None
  552. */
  553. static void hal_reg_write_work(void *arg)
  554. {
  555. int32_t q_depth, write_val;
  556. struct hal_soc *hal = arg;
  557. struct hal_reg_write_q_elem *q_elem;
  558. uint64_t delta_us;
  559. uint8_t ring_id;
  560. uint32_t *addr;
  561. uint32_t num_processed = 0;
  562. q_elem = &hal->reg_write_queue[(hal->read_idx)];
  563. q_elem->work_scheduled_time = qdf_get_log_timestamp();
  564. /* Make sure q_elem consistent in the memory for multi-cores */
  565. qdf_rmb();
  566. if (!q_elem->valid)
  567. return;
  568. q_depth = qdf_atomic_read(&hal->stats.wstats.q_depth);
  569. if (q_depth > hal->stats.wstats.max_q_depth)
  570. hal->stats.wstats.max_q_depth = q_depth;
  571. if (hif_prevent_link_low_power_states(hal->hif_handle)) {
  572. hal->stats.wstats.prevent_l1_fails++;
  573. return;
  574. }
  575. while (true) {
  576. qdf_rmb();
  577. if (!q_elem->valid)
  578. break;
  579. q_elem->dequeue_time = qdf_get_log_timestamp();
  580. ring_id = q_elem->srng->ring_id;
  581. addr = q_elem->addr;
  582. delta_us = qdf_log_timestamp_to_usecs(q_elem->dequeue_time -
  583. q_elem->enqueue_time);
  584. hal_reg_write_fill_sched_delay_hist(hal, delta_us);
  585. hal->stats.wstats.dequeues++;
  586. qdf_atomic_dec(&hal->stats.wstats.q_depth);
  587. write_val = hal_process_reg_write_q_elem(hal, q_elem);
  588. hal_verbose_debug("read_idx %u srng 0x%x, addr 0x%pK dequeue_val %u sched delay %llu us",
  589. hal->read_idx, ring_id, addr, write_val, delta_us);
  590. num_processed++;
  591. hal->read_idx = (hal->read_idx + 1) &
  592. (HAL_REG_WRITE_QUEUE_LEN - 1);
  593. q_elem = &hal->reg_write_queue[(hal->read_idx)];
  594. }
  595. hif_allow_link_low_power_states(hal->hif_handle);
  596. /*
  597. * Decrement active_work_cnt by the number of elements dequeued after
  598. * hif_allow_link_low_power_states.
  599. * This makes sure that hif_try_complete_tasks will wait till we make
  600. * the bus access in hif_allow_link_low_power_states. This will avoid
  601. * race condition between delayed register worker and bus suspend
  602. * (system suspend or runtime suspend).
  603. *
  604. * The following decrement should be done at the end!
  605. */
  606. qdf_atomic_sub(num_processed, &hal->active_work_cnt);
  607. }
  608. static void __hal_flush_reg_write_work(struct hal_soc *hal)
  609. {
  610. qdf_cancel_work(&hal->reg_write_work);
  611. }
  612. void hal_flush_reg_write_work(hal_soc_handle_t hal_handle)
  613. { __hal_flush_reg_write_work((struct hal_soc *)hal_handle);
  614. }
  615. /**
  616. * hal_reg_write_enqueue() - enqueue register writes into kworker
  617. * @hal_soc: hal_soc pointer
  618. * @srng: srng pointer
  619. * @addr: iomem address of regiter
  620. * @value: value to be written to iomem address
  621. *
  622. * This function executes from within the SRNG LOCK
  623. *
  624. * Return: None
  625. */
  626. static void hal_reg_write_enqueue(struct hal_soc *hal_soc,
  627. struct hal_srng *srng,
  628. void __iomem *addr,
  629. uint32_t value)
  630. {
  631. struct hal_reg_write_q_elem *q_elem;
  632. uint32_t write_idx;
  633. if (srng->reg_write_in_progress) {
  634. hal_verbose_debug("Already in progress srng ring id 0x%x addr 0x%pK val %u",
  635. srng->ring_id, addr, value);
  636. qdf_atomic_inc(&hal_soc->stats.wstats.coalesces);
  637. srng->wstats.coalesces++;
  638. return;
  639. }
  640. write_idx = qdf_atomic_inc_return(&hal_soc->write_idx);
  641. write_idx = write_idx & (HAL_REG_WRITE_QUEUE_LEN - 1);
  642. q_elem = &hal_soc->reg_write_queue[write_idx];
  643. if (q_elem->valid) {
  644. hal_err("queue full");
  645. QDF_BUG(0);
  646. return;
  647. }
  648. qdf_atomic_inc(&hal_soc->stats.wstats.enqueues);
  649. srng->wstats.enqueues++;
  650. qdf_atomic_inc(&hal_soc->stats.wstats.q_depth);
  651. q_elem->srng = srng;
  652. q_elem->addr = addr;
  653. q_elem->enqueue_val = value;
  654. q_elem->enqueue_time = qdf_get_log_timestamp();
  655. /*
  656. * Before the valid flag is set to true, all the other
  657. * fields in the q_elem needs to be updated in memory.
  658. * Else there is a chance that the dequeuing worker thread
  659. * might read stale entries and process incorrect srng.
  660. */
  661. qdf_wmb();
  662. q_elem->valid = true;
  663. /*
  664. * After all other fields in the q_elem has been updated
  665. * in memory successfully, the valid flag needs to be updated
  666. * in memory in time too.
  667. * Else there is a chance that the dequeuing worker thread
  668. * might read stale valid flag and the work will be bypassed
  669. * for this round. And if there is no other work scheduled
  670. * later, this hal register writing won't be updated any more.
  671. */
  672. qdf_wmb();
  673. srng->reg_write_in_progress = true;
  674. qdf_atomic_inc(&hal_soc->active_work_cnt);
  675. hal_verbose_debug("write_idx %u srng ring id 0x%x addr 0x%pK val %u",
  676. write_idx, srng->ring_id, addr, value);
  677. qdf_queue_work(hal_soc->qdf_dev, hal_soc->reg_write_wq,
  678. &hal_soc->reg_write_work);
  679. }
  680. /**
  681. * hal_delayed_reg_write_init() - Initialization function for delayed reg writes
  682. * @hal_soc: hal_soc pointer
  683. *
  684. * Initialize main data structures to process register writes in a delayed
  685. * workqueue.
  686. *
  687. * Return: QDF_STATUS_SUCCESS on success else a QDF error.
  688. */
  689. static QDF_STATUS hal_delayed_reg_write_init(struct hal_soc *hal)
  690. {
  691. hal->reg_write_wq =
  692. qdf_alloc_high_prior_ordered_workqueue("hal_register_write_wq");
  693. qdf_create_work(0, &hal->reg_write_work, hal_reg_write_work, hal);
  694. hal->reg_write_queue = qdf_mem_malloc(HAL_REG_WRITE_QUEUE_LEN *
  695. sizeof(*hal->reg_write_queue));
  696. if (!hal->reg_write_queue) {
  697. hal_err("unable to allocate memory");
  698. QDF_BUG(0);
  699. return QDF_STATUS_E_NOMEM;
  700. }
  701. /* Initial value of indices */
  702. hal->read_idx = 0;
  703. qdf_atomic_set(&hal->write_idx, -1);
  704. return QDF_STATUS_SUCCESS;
  705. }
  706. /**
  707. * hal_delayed_reg_write_deinit() - De-Initialize delayed reg write processing
  708. * @hal_soc: hal_soc pointer
  709. *
  710. * De-initialize main data structures to process register writes in a delayed
  711. * workqueue.
  712. *
  713. * Return: None
  714. */
  715. static void hal_delayed_reg_write_deinit(struct hal_soc *hal)
  716. {
  717. __hal_flush_reg_write_work(hal);
  718. qdf_flush_workqueue(0, hal->reg_write_wq);
  719. qdf_destroy_workqueue(0, hal->reg_write_wq);
  720. qdf_mem_free(hal->reg_write_queue);
  721. }
  722. #else
  723. static inline QDF_STATUS hal_delayed_reg_write_init(struct hal_soc *hal)
  724. {
  725. return QDF_STATUS_SUCCESS;
  726. }
  727. static inline void hal_delayed_reg_write_deinit(struct hal_soc *hal)
  728. {
  729. }
  730. #endif
  731. #ifdef FEATURE_HAL_DELAYED_REG_WRITE_V2
  732. #ifdef MEMORY_DEBUG
  733. /**
  734. * hal_reg_write_get_timestamp() - Function to get the timestamp
  735. *
  736. * Return: return present simestamp
  737. */
  738. static inline qdf_time_t hal_del_reg_write_get_ts(void)
  739. {
  740. return qdf_get_log_timestamp();
  741. }
  742. /**
  743. * hal_del_reg_write_ts_usecs() - Convert the timestamp to micro secs
  744. * @ts: timestamp value to be converted
  745. *
  746. * Return: return the timestamp in micro secs
  747. */
  748. static inline qdf_time_t hal_del_reg_write_ts_usecs(qdf_time_t ts)
  749. {
  750. return qdf_log_timestamp_to_usecs(ts);
  751. }
  752. /**
  753. * hal_tcl_write_fill_sched_delay_hist() - fill TCL reg write delay histogram
  754. * @hal: hal_soc pointer
  755. * @delay: delay in us
  756. *
  757. * Return: None
  758. */
  759. static inline void hal_tcl_write_fill_sched_delay_hist(struct hal_soc *hal)
  760. {
  761. uint32_t *hist;
  762. uint32_t delay_us;
  763. hal->tcl_stats.deq_time = hal_del_reg_write_get_ts();
  764. delay_us = hal_del_reg_write_ts_usecs(hal->tcl_stats.deq_time -
  765. hal->tcl_stats.enq_time);
  766. hist = hal->tcl_stats.sched_delay;
  767. if (delay_us < 100)
  768. hist[REG_WRITE_SCHED_DELAY_SUB_100us]++;
  769. else if (delay_us < 1000)
  770. hist[REG_WRITE_SCHED_DELAY_SUB_1000us]++;
  771. else if (delay_us < 5000)
  772. hist[REG_WRITE_SCHED_DELAY_SUB_5000us]++;
  773. else
  774. hist[REG_WRITE_SCHED_DELAY_GT_5000us]++;
  775. }
  776. #else
  777. static inline qdf_time_t hal_del_reg_write_get_ts(void)
  778. {
  779. return 0;
  780. }
  781. static inline qdf_time_t hal_del_reg_write_ts_usecs(qdf_time_t ts)
  782. {
  783. return 0;
  784. }
  785. static inline void hal_tcl_write_fill_sched_delay_hist(struct hal_soc *hal)
  786. {
  787. }
  788. #endif
  789. /**
  790. * hal_tcl_reg_write_work() - Worker to process delayed SW2TCL1 writes
  791. * @arg: hal_soc pointer
  792. *
  793. * Return: None
  794. */
  795. static void hal_tcl_reg_write_work(void *arg)
  796. {
  797. struct hal_soc *hal = arg;
  798. struct hal_srng *srng = hal_get_srng(hal, HAL_SRNG_SW2TCL1);
  799. SRNG_LOCK(&srng->lock);
  800. srng->wstats.dequeues++;
  801. hal_tcl_write_fill_sched_delay_hist(hal);
  802. /*
  803. * During the tranition of low to high tput scenario, reg write moves
  804. * from delayed to direct write context, there is a little chance that
  805. * worker thread gets scheduled later than direct context write which
  806. * already wrote the latest HP value. This check can catch that case
  807. * and avoid the repetitive writing of the same HP value.
  808. */
  809. if (srng->last_reg_wr_val != srng->u.src_ring.hp) {
  810. srng->last_reg_wr_val = srng->u.src_ring.hp;
  811. if (hal->tcl_direct) {
  812. /*
  813. * TCL reg writes have been moved to direct context and
  814. * the assumption is that PCIe bus stays in Active state
  815. * during high tput, hence its fine to write the HP
  816. * while the SRNG_LOCK is being held.
  817. */
  818. hal->tcl_stats.wq_direct++;
  819. hal_write_address_32_mb(hal, srng->u.src_ring.hp_addr,
  820. srng->last_reg_wr_val, false);
  821. srng->reg_write_in_progress = false;
  822. SRNG_UNLOCK(&srng->lock);
  823. } else {
  824. /*
  825. * TCL reg write to happen in delayed context,
  826. * write operation might take time due to possibility of
  827. * PCIe bus stays in low power state during low tput,
  828. * Hence release the SRNG_LOCK before writing.
  829. */
  830. hal->tcl_stats.wq_delayed++;
  831. srng->reg_write_in_progress = false;
  832. SRNG_UNLOCK(&srng->lock);
  833. hal_write_address_32_mb(hal, srng->u.src_ring.hp_addr,
  834. srng->last_reg_wr_val, false);
  835. }
  836. } else {
  837. srng->reg_write_in_progress = false;
  838. SRNG_UNLOCK(&srng->lock);
  839. }
  840. /*
  841. * Decrement active_work_cnt to make sure that hif_try_complete_tasks
  842. * will wait. This will avoid race condition between delayed register
  843. * worker and bus suspend (system suspend or runtime suspend).
  844. *
  845. * The following decrement should be done at the end!
  846. */
  847. qdf_atomic_dec(&hal->active_work_cnt);
  848. qdf_atomic_set(&hal->tcl_work_active, false);
  849. }
  850. static void __hal_flush_tcl_reg_write_work(struct hal_soc *hal)
  851. {
  852. qdf_cancel_work(&hal->tcl_reg_write_work);
  853. }
  854. /**
  855. * hal_tcl_reg_write_enqueue() - enqueue TCL register writes into kworker
  856. * @hal_soc: hal_soc pointer
  857. * @srng: srng pointer
  858. * @addr: iomem address of regiter
  859. * @value: value to be written to iomem address
  860. *
  861. * This function executes from within the SRNG LOCK
  862. *
  863. * Return: None
  864. */
  865. static void hal_tcl_reg_write_enqueue(struct hal_soc *hal_soc,
  866. struct hal_srng *srng,
  867. void __iomem *addr,
  868. uint32_t value)
  869. {
  870. hal_soc->tcl_stats.enq_time = hal_del_reg_write_get_ts();
  871. if (qdf_queue_work(hal_soc->qdf_dev, hal_soc->tcl_reg_write_wq,
  872. &hal_soc->tcl_reg_write_work)) {
  873. srng->reg_write_in_progress = true;
  874. qdf_atomic_inc(&hal_soc->active_work_cnt);
  875. qdf_atomic_set(&hal_soc->tcl_work_active, true);
  876. srng->wstats.enqueues++;
  877. } else {
  878. hal_soc->tcl_stats.enq_timer_set++;
  879. qdf_timer_mod(&hal_soc->tcl_reg_write_timer, 1);
  880. }
  881. }
  882. /**
  883. * hal_tcl_reg_write_timer() - timer handler to take care of pending TCL writes
  884. * @arg: srng handle
  885. *
  886. * This function handles the pending TCL reg writes missed due to the previous
  887. * scheduled worker running.
  888. *
  889. * Return: None
  890. */
  891. static void hal_tcl_reg_write_timer(void *arg)
  892. {
  893. hal_ring_handle_t srng_hdl = arg;
  894. struct hal_srng *srng;
  895. struct hal_soc *hal;
  896. srng = (struct hal_srng *)srng_hdl;
  897. hal = srng->hal_soc;
  898. if (hif_pm_runtime_get(hal->hif_handle, RTPM_ID_DW_TX_HW_ENQUEUE,
  899. true)) {
  900. hal_srng_set_event(srng_hdl, HAL_SRNG_FLUSH_EVENT);
  901. hal_srng_inc_flush_cnt(srng_hdl);
  902. goto fail;
  903. }
  904. SRNG_LOCK(&srng->lock);
  905. if (hal->tcl_direct) {
  906. /*
  907. * Due to the previous scheduled worker still running,
  908. * direct reg write cannot be performed, so posted the
  909. * pending writes to timer context.
  910. */
  911. if (srng->last_reg_wr_val != srng->u.src_ring.hp) {
  912. srng->last_reg_wr_val = srng->u.src_ring.hp;
  913. srng->wstats.direct++;
  914. hal->tcl_stats.timer_direct++;
  915. hal_write_address_32_mb(hal, srng->u.src_ring.hp_addr,
  916. srng->last_reg_wr_val, false);
  917. }
  918. } else {
  919. /*
  920. * Due to the previous scheduled worker still running,
  921. * queue_work from delayed context would fail,
  922. * so retry from timer context.
  923. */
  924. if (qdf_queue_work(hal->qdf_dev, hal->tcl_reg_write_wq,
  925. &hal->tcl_reg_write_work)) {
  926. srng->reg_write_in_progress = true;
  927. qdf_atomic_inc(&hal->active_work_cnt);
  928. qdf_atomic_set(&hal->tcl_work_active, true);
  929. srng->wstats.enqueues++;
  930. hal->tcl_stats.timer_enq++;
  931. } else {
  932. if (srng->last_reg_wr_val != srng->u.src_ring.hp) {
  933. hal->tcl_stats.timer_reset++;
  934. qdf_timer_mod(&hal->tcl_reg_write_timer, 1);
  935. }
  936. }
  937. }
  938. SRNG_UNLOCK(&srng->lock);
  939. hif_pm_runtime_put(hal->hif_handle, RTPM_ID_DW_TX_HW_ENQUEUE);
  940. fail:
  941. return;
  942. }
  943. /**
  944. * hal_delayed_tcl_reg_write_init() - Initialization for delayed TCL reg writes
  945. * @hal_soc: hal_soc pointer
  946. *
  947. * Initialize main data structures to process TCL register writes in a delayed
  948. * workqueue.
  949. *
  950. * Return: QDF_STATUS_SUCCESS on success else a QDF error.
  951. */
  952. static QDF_STATUS hal_delayed_tcl_reg_write_init(struct hal_soc *hal)
  953. {
  954. struct hal_srng *srng = hal_get_srng(hal, HAL_SRNG_SW2TCL1);
  955. QDF_STATUS status;
  956. hal->tcl_reg_write_wq =
  957. qdf_alloc_high_prior_ordered_workqueue("hal_tcl_reg_write_wq");
  958. if (!hal->tcl_reg_write_wq) {
  959. hal_err("hal_tcl_reg_write_wq alloc failed");
  960. return QDF_STATUS_E_NOMEM;
  961. }
  962. status = qdf_create_work(0, &hal->tcl_reg_write_work,
  963. hal_tcl_reg_write_work, hal);
  964. if (status != QDF_STATUS_SUCCESS) {
  965. hal_err("tcl_reg_write_work create failed");
  966. goto fail;
  967. }
  968. status = qdf_timer_init(hal->qdf_dev, &hal->tcl_reg_write_timer,
  969. hal_tcl_reg_write_timer, (void *)srng,
  970. QDF_TIMER_TYPE_WAKE_APPS);
  971. if (status != QDF_STATUS_SUCCESS) {
  972. hal_err("tcl_reg_write_timer init failed");
  973. goto fail;
  974. }
  975. qdf_atomic_init(&hal->tcl_work_active);
  976. return QDF_STATUS_SUCCESS;
  977. fail:
  978. qdf_destroy_workqueue(0, hal->tcl_reg_write_wq);
  979. return status;
  980. }
  981. /**
  982. * hal_delayed_tcl_reg_write_deinit() - De-Initialize delayed TCL reg writes
  983. * @hal_soc: hal_soc pointer
  984. *
  985. * De-initialize main data structures to process TCL register writes in a
  986. * delayed workqueue.
  987. *
  988. * Return: None
  989. */
  990. static void hal_delayed_tcl_reg_write_deinit(struct hal_soc *hal)
  991. {
  992. qdf_timer_stop(&hal->tcl_reg_write_timer);
  993. qdf_timer_free(&hal->tcl_reg_write_timer);
  994. __hal_flush_tcl_reg_write_work(hal);
  995. qdf_flush_workqueue(0, hal->tcl_reg_write_wq);
  996. qdf_destroy_workqueue(0, hal->tcl_reg_write_wq);
  997. }
  998. #else
  999. static inline QDF_STATUS hal_delayed_tcl_reg_write_init(struct hal_soc *hal)
  1000. {
  1001. return QDF_STATUS_SUCCESS;
  1002. }
  1003. static inline void hal_delayed_tcl_reg_write_deinit(struct hal_soc *hal)
  1004. {
  1005. }
  1006. #endif
  1007. #ifdef FEATURE_HAL_DELAYED_REG_WRITE_V2
  1008. void hal_delayed_reg_write(struct hal_soc *hal_soc,
  1009. struct hal_srng *srng,
  1010. void __iomem *addr,
  1011. uint32_t value)
  1012. {
  1013. switch (srng->ring_type) {
  1014. case TCL_DATA:
  1015. if (hal_is_reg_write_tput_level_high(hal_soc)) {
  1016. hal_soc->tcl_direct = true;
  1017. if (srng->reg_write_in_progress ||
  1018. !qdf_atomic_read(&hal_soc->tcl_work_active)) {
  1019. /*
  1020. * Now the delayed work have either completed
  1021. * the writing or not even scheduled and would
  1022. * be blocked by SRNG_LOCK, hence it is fine to
  1023. * do direct write here.
  1024. */
  1025. srng->last_reg_wr_val = srng->u.src_ring.hp;
  1026. srng->wstats.direct++;
  1027. hal_write_address_32_mb(hal_soc, addr,
  1028. srng->last_reg_wr_val,
  1029. false);
  1030. } else {
  1031. hal_soc->tcl_stats.direct_timer_set++;
  1032. qdf_timer_mod(&hal_soc->tcl_reg_write_timer, 1);
  1033. }
  1034. } else {
  1035. hal_soc->tcl_direct = false;
  1036. if (srng->reg_write_in_progress) {
  1037. srng->wstats.coalesces++;
  1038. } else {
  1039. hal_tcl_reg_write_enqueue(hal_soc, srng,
  1040. addr, value);
  1041. }
  1042. }
  1043. break;
  1044. default:
  1045. qdf_atomic_inc(&hal_soc->stats.wstats.direct);
  1046. srng->wstats.direct++;
  1047. hal_write_address_32_mb(hal_soc, addr, value, false);
  1048. break;
  1049. }
  1050. }
  1051. #else
  1052. #ifdef FEATURE_HAL_DELAYED_REG_WRITE
  1053. void hal_delayed_reg_write(struct hal_soc *hal_soc,
  1054. struct hal_srng *srng,
  1055. void __iomem *addr,
  1056. uint32_t value)
  1057. {
  1058. if (pld_is_device_awake(hal_soc->qdf_dev->dev) ||
  1059. hal_is_reg_write_tput_level_high(hal_soc)) {
  1060. qdf_atomic_inc(&hal_soc->stats.wstats.direct);
  1061. srng->wstats.direct++;
  1062. hal_write_address_32_mb(hal_soc, addr, value, false);
  1063. } else {
  1064. hal_reg_write_enqueue(hal_soc, srng, addr, value);
  1065. }
  1066. }
  1067. #endif
  1068. #endif
  1069. /**
  1070. * hal_attach - Initialize HAL layer
  1071. * @hif_handle: Opaque HIF handle
  1072. * @qdf_dev: QDF device
  1073. *
  1074. * Return: Opaque HAL SOC handle
  1075. * NULL on failure (if given ring is not available)
  1076. *
  1077. * This function should be called as part of HIF initialization (for accessing
  1078. * copy engines). DP layer will get hal_soc handle using hif_get_hal_handle()
  1079. *
  1080. */
  1081. void *hal_attach(struct hif_opaque_softc *hif_handle, qdf_device_t qdf_dev)
  1082. {
  1083. struct hal_soc *hal;
  1084. int i;
  1085. hal = qdf_mem_malloc(sizeof(*hal));
  1086. if (!hal) {
  1087. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1088. "%s: hal_soc allocation failed", __func__);
  1089. goto fail0;
  1090. }
  1091. hal->hif_handle = hif_handle;
  1092. hal->dev_base_addr = hif_get_dev_ba(hif_handle); /* UMAC */
  1093. hal->dev_base_addr_ce = hif_get_dev_ba_ce(hif_handle); /* CE */
  1094. hal->qdf_dev = qdf_dev;
  1095. hal->shadow_rdptr_mem_vaddr = (uint32_t *)qdf_mem_alloc_consistent(
  1096. qdf_dev, qdf_dev->dev, sizeof(*(hal->shadow_rdptr_mem_vaddr)) *
  1097. HAL_SRNG_ID_MAX, &(hal->shadow_rdptr_mem_paddr));
  1098. if (!hal->shadow_rdptr_mem_paddr) {
  1099. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1100. "%s: hal->shadow_rdptr_mem_paddr allocation failed",
  1101. __func__);
  1102. goto fail1;
  1103. }
  1104. qdf_mem_zero(hal->shadow_rdptr_mem_vaddr,
  1105. sizeof(*(hal->shadow_rdptr_mem_vaddr)) * HAL_SRNG_ID_MAX);
  1106. hal->shadow_wrptr_mem_vaddr =
  1107. (uint32_t *)qdf_mem_alloc_consistent(qdf_dev, qdf_dev->dev,
  1108. sizeof(*(hal->shadow_wrptr_mem_vaddr)) * HAL_MAX_LMAC_RINGS,
  1109. &(hal->shadow_wrptr_mem_paddr));
  1110. if (!hal->shadow_wrptr_mem_vaddr) {
  1111. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1112. "%s: hal->shadow_wrptr_mem_vaddr allocation failed",
  1113. __func__);
  1114. goto fail2;
  1115. }
  1116. qdf_mem_zero(hal->shadow_wrptr_mem_vaddr,
  1117. sizeof(*(hal->shadow_wrptr_mem_vaddr)) * HAL_MAX_LMAC_RINGS);
  1118. for (i = 0; i < HAL_SRNG_ID_MAX; i++) {
  1119. hal->srng_list[i].initialized = 0;
  1120. hal->srng_list[i].ring_id = i;
  1121. }
  1122. qdf_spinlock_create(&hal->register_access_lock);
  1123. hal->register_window = 0;
  1124. hal->target_type = hal_get_target_type(hal_soc_to_hal_soc_handle(hal));
  1125. hal_target_based_configure(hal);
  1126. hal_reg_write_fail_history_init(hal);
  1127. qdf_minidump_log(hal, sizeof(*hal), "hal_soc");
  1128. qdf_atomic_init(&hal->active_work_cnt);
  1129. hal_delayed_reg_write_init(hal);
  1130. hal_delayed_tcl_reg_write_init(hal);
  1131. return (void *)hal;
  1132. fail2:
  1133. qdf_mem_free_consistent(qdf_dev, qdf_dev->dev,
  1134. sizeof(*(hal->shadow_rdptr_mem_vaddr)) * HAL_SRNG_ID_MAX,
  1135. hal->shadow_rdptr_mem_vaddr, hal->shadow_rdptr_mem_paddr, 0);
  1136. fail1:
  1137. qdf_mem_free(hal);
  1138. fail0:
  1139. return NULL;
  1140. }
  1141. qdf_export_symbol(hal_attach);
  1142. /**
  1143. * hal_mem_info - Retrieve hal memory base address
  1144. *
  1145. * @hal_soc: Opaque HAL SOC handle
  1146. * @mem: pointer to structure to be updated with hal mem info
  1147. */
  1148. void hal_get_meminfo(hal_soc_handle_t hal_soc_hdl, struct hal_mem_info *mem)
  1149. {
  1150. struct hal_soc *hal = (struct hal_soc *)hal_soc_hdl;
  1151. mem->dev_base_addr = (void *)hal->dev_base_addr;
  1152. mem->shadow_rdptr_mem_vaddr = (void *)hal->shadow_rdptr_mem_vaddr;
  1153. mem->shadow_wrptr_mem_vaddr = (void *)hal->shadow_wrptr_mem_vaddr;
  1154. mem->shadow_rdptr_mem_paddr = (void *)hal->shadow_rdptr_mem_paddr;
  1155. mem->shadow_wrptr_mem_paddr = (void *)hal->shadow_wrptr_mem_paddr;
  1156. hif_read_phy_mem_base((void *)hal->hif_handle,
  1157. (qdf_dma_addr_t *)&mem->dev_base_paddr);
  1158. return;
  1159. }
  1160. qdf_export_symbol(hal_get_meminfo);
  1161. /**
  1162. * hal_detach - Detach HAL layer
  1163. * @hal_soc: HAL SOC handle
  1164. *
  1165. * Return: Opaque HAL SOC handle
  1166. * NULL on failure (if given ring is not available)
  1167. *
  1168. * This function should be called as part of HIF initialization (for accessing
  1169. * copy engines). DP layer will get hal_soc handle using hif_get_hal_handle()
  1170. *
  1171. */
  1172. extern void hal_detach(void *hal_soc)
  1173. {
  1174. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  1175. hal_delayed_reg_write_deinit(hal);
  1176. hal_delayed_tcl_reg_write_deinit(hal);
  1177. qdf_mem_free_consistent(hal->qdf_dev, hal->qdf_dev->dev,
  1178. sizeof(*(hal->shadow_rdptr_mem_vaddr)) * HAL_SRNG_ID_MAX,
  1179. hal->shadow_rdptr_mem_vaddr, hal->shadow_rdptr_mem_paddr, 0);
  1180. qdf_mem_free_consistent(hal->qdf_dev, hal->qdf_dev->dev,
  1181. sizeof(*(hal->shadow_wrptr_mem_vaddr)) * HAL_MAX_LMAC_RINGS,
  1182. hal->shadow_wrptr_mem_vaddr, hal->shadow_wrptr_mem_paddr, 0);
  1183. qdf_minidump_remove(hal, sizeof(*hal), "hal_soc");
  1184. qdf_mem_free(hal);
  1185. return;
  1186. }
  1187. qdf_export_symbol(hal_detach);
  1188. /**
  1189. * hal_ce_dst_setup - Initialize CE destination ring registers
  1190. * @hal_soc: HAL SOC handle
  1191. * @srng: SRNG ring pointer
  1192. */
  1193. static inline void hal_ce_dst_setup(struct hal_soc *hal, struct hal_srng *srng,
  1194. int ring_num)
  1195. {
  1196. uint32_t reg_val = 0;
  1197. uint32_t reg_addr;
  1198. struct hal_hw_srng_config *ring_config =
  1199. HAL_SRNG_CONFIG(hal, CE_DST);
  1200. /* set DEST_MAX_LENGTH according to ce assignment */
  1201. reg_addr = HWIO_WFSS_CE_CHANNEL_DST_R0_DEST_CTRL_ADDR(
  1202. ring_config->reg_start[R0_INDEX] +
  1203. (ring_num * ring_config->reg_size[R0_INDEX]));
  1204. reg_val = HAL_REG_READ(hal, reg_addr);
  1205. reg_val &= ~HWIO_WFSS_CE_CHANNEL_DST_R0_DEST_CTRL_DEST_MAX_LENGTH_BMSK;
  1206. reg_val |= srng->u.dst_ring.max_buffer_length &
  1207. HWIO_WFSS_CE_CHANNEL_DST_R0_DEST_CTRL_DEST_MAX_LENGTH_BMSK;
  1208. HAL_REG_WRITE(hal, reg_addr, reg_val);
  1209. if (srng->prefetch_timer) {
  1210. reg_addr = HWIO_WFSS_CE_CHANNEL_DST_R0_DEST_RING_CONSUMER_PREFETCH_TIMER_ADDR(
  1211. ring_config->reg_start[R0_INDEX] +
  1212. (ring_num * ring_config->reg_size[R0_INDEX]));
  1213. reg_val = HAL_REG_READ(hal, reg_addr);
  1214. reg_val &= ~HWIO_WFSS_CE_CHANNEL_DST_R0_DEST_RING_CONSUMER_PREFETCH_TIMER_RMSK;
  1215. reg_val |= srng->prefetch_timer;
  1216. HAL_REG_WRITE(hal, reg_addr, reg_val);
  1217. reg_val = HAL_REG_READ(hal, reg_addr);
  1218. }
  1219. }
  1220. /**
  1221. * hal_reo_read_write_ctrl_ix - Read or write REO_DESTINATION_RING_CTRL_IX
  1222. * @hal: HAL SOC handle
  1223. * @read: boolean value to indicate if read or write
  1224. * @ix0: pointer to store IX0 reg value
  1225. * @ix1: pointer to store IX1 reg value
  1226. * @ix2: pointer to store IX2 reg value
  1227. * @ix3: pointer to store IX3 reg value
  1228. */
  1229. void hal_reo_read_write_ctrl_ix(hal_soc_handle_t hal_soc_hdl, bool read,
  1230. uint32_t *ix0, uint32_t *ix1,
  1231. uint32_t *ix2, uint32_t *ix3)
  1232. {
  1233. uint32_t reg_offset;
  1234. struct hal_soc *hal = (struct hal_soc *)hal_soc_hdl;
  1235. if (read) {
  1236. if (ix0) {
  1237. reg_offset =
  1238. HWIO_REO_R0_DESTINATION_RING_CTRL_IX_0_ADDR(
  1239. SEQ_WCSS_UMAC_REO_REG_OFFSET);
  1240. *ix0 = HAL_REG_READ(hal, reg_offset);
  1241. }
  1242. if (ix1) {
  1243. reg_offset =
  1244. HWIO_REO_R0_DESTINATION_RING_CTRL_IX_1_ADDR(
  1245. SEQ_WCSS_UMAC_REO_REG_OFFSET);
  1246. *ix1 = HAL_REG_READ(hal, reg_offset);
  1247. }
  1248. if (ix2) {
  1249. reg_offset =
  1250. HWIO_REO_R0_DESTINATION_RING_CTRL_IX_2_ADDR(
  1251. SEQ_WCSS_UMAC_REO_REG_OFFSET);
  1252. *ix2 = HAL_REG_READ(hal, reg_offset);
  1253. }
  1254. if (ix3) {
  1255. reg_offset =
  1256. HWIO_REO_R0_DESTINATION_RING_CTRL_IX_3_ADDR(
  1257. SEQ_WCSS_UMAC_REO_REG_OFFSET);
  1258. *ix3 = HAL_REG_READ(hal, reg_offset);
  1259. }
  1260. } else {
  1261. if (ix0) {
  1262. reg_offset =
  1263. HWIO_REO_R0_DESTINATION_RING_CTRL_IX_0_ADDR(
  1264. SEQ_WCSS_UMAC_REO_REG_OFFSET);
  1265. HAL_REG_WRITE_CONFIRM_RETRY(hal, reg_offset,
  1266. *ix0, true);
  1267. }
  1268. if (ix1) {
  1269. reg_offset =
  1270. HWIO_REO_R0_DESTINATION_RING_CTRL_IX_1_ADDR(
  1271. SEQ_WCSS_UMAC_REO_REG_OFFSET);
  1272. HAL_REG_WRITE_CONFIRM_RETRY(hal, reg_offset,
  1273. *ix1, true);
  1274. }
  1275. if (ix2) {
  1276. reg_offset =
  1277. HWIO_REO_R0_DESTINATION_RING_CTRL_IX_2_ADDR(
  1278. SEQ_WCSS_UMAC_REO_REG_OFFSET);
  1279. HAL_REG_WRITE_CONFIRM_RETRY(hal, reg_offset,
  1280. *ix2, true);
  1281. }
  1282. if (ix3) {
  1283. reg_offset =
  1284. HWIO_REO_R0_DESTINATION_RING_CTRL_IX_3_ADDR(
  1285. SEQ_WCSS_UMAC_REO_REG_OFFSET);
  1286. HAL_REG_WRITE_CONFIRM_RETRY(hal, reg_offset,
  1287. *ix3, true);
  1288. }
  1289. }
  1290. }
  1291. /**
  1292. * hal_srng_dst_set_hp_paddr_confirm() - Set physical address to dest ring head
  1293. * pointer and confirm that write went through by reading back the value
  1294. * @srng: sring pointer
  1295. * @paddr: physical address
  1296. *
  1297. * Return: None
  1298. */
  1299. void hal_srng_dst_set_hp_paddr_confirm(struct hal_srng *srng, uint64_t paddr)
  1300. {
  1301. SRNG_DST_REG_WRITE_CONFIRM(srng, HP_ADDR_LSB, paddr & 0xffffffff);
  1302. SRNG_DST_REG_WRITE_CONFIRM(srng, HP_ADDR_MSB, paddr >> 32);
  1303. }
  1304. /**
  1305. * hal_srng_dst_init_hp() - Initialize destination ring head
  1306. * pointer
  1307. * @hal_soc: hal_soc handle
  1308. * @srng: sring pointer
  1309. * @vaddr: virtual address
  1310. */
  1311. void hal_srng_dst_init_hp(struct hal_soc_handle *hal_soc,
  1312. struct hal_srng *srng,
  1313. uint32_t *vaddr)
  1314. {
  1315. uint32_t reg_offset;
  1316. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  1317. if (!srng)
  1318. return;
  1319. srng->u.dst_ring.hp_addr = vaddr;
  1320. reg_offset = SRNG_DST_ADDR(srng, HP) - hal->dev_base_addr;
  1321. HAL_REG_WRITE_CONFIRM_RETRY(
  1322. hal, reg_offset, srng->u.dst_ring.cached_hp, true);
  1323. if (vaddr) {
  1324. *srng->u.dst_ring.hp_addr = srng->u.dst_ring.cached_hp;
  1325. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1326. "hp_addr=%pK, cached_hp=%d, hp=%d",
  1327. (void *)srng->u.dst_ring.hp_addr,
  1328. srng->u.dst_ring.cached_hp,
  1329. *srng->u.dst_ring.hp_addr);
  1330. }
  1331. }
  1332. /**
  1333. * hal_srng_hw_init - Private function to initialize SRNG HW
  1334. * @hal_soc: HAL SOC handle
  1335. * @srng: SRNG ring pointer
  1336. */
  1337. static inline void hal_srng_hw_init(struct hal_soc *hal,
  1338. struct hal_srng *srng)
  1339. {
  1340. if (srng->ring_dir == HAL_SRNG_SRC_RING)
  1341. hal_srng_src_hw_init(hal, srng);
  1342. else
  1343. hal_srng_dst_hw_init(hal, srng);
  1344. }
  1345. #ifdef CONFIG_SHADOW_V2
  1346. #define ignore_shadow false
  1347. #define CHECK_SHADOW_REGISTERS true
  1348. #else
  1349. #define ignore_shadow true
  1350. #define CHECK_SHADOW_REGISTERS false
  1351. #endif
  1352. /**
  1353. * hal_srng_setup - Initialize HW SRNG ring.
  1354. * @hal_soc: Opaque HAL SOC handle
  1355. * @ring_type: one of the types from hal_ring_type
  1356. * @ring_num: Ring number if there are multiple rings of same type (staring
  1357. * from 0)
  1358. * @mac_id: valid MAC Id should be passed if ring type is one of lmac rings
  1359. * @ring_params: SRNG ring params in hal_srng_params structure.
  1360. * Callers are expected to allocate contiguous ring memory of size
  1361. * 'num_entries * entry_size' bytes and pass the physical and virtual base
  1362. * addresses through 'ring_base_paddr' and 'ring_base_vaddr' in
  1363. * hal_srng_params structure. Ring base address should be 8 byte aligned
  1364. * and size of each ring entry should be queried using the API
  1365. * hal_srng_get_entrysize
  1366. *
  1367. * Return: Opaque pointer to ring on success
  1368. * NULL on failure (if given ring is not available)
  1369. */
  1370. void *hal_srng_setup(void *hal_soc, int ring_type, int ring_num,
  1371. int mac_id, struct hal_srng_params *ring_params)
  1372. {
  1373. int ring_id;
  1374. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  1375. struct hal_srng *srng;
  1376. struct hal_hw_srng_config *ring_config =
  1377. HAL_SRNG_CONFIG(hal, ring_type);
  1378. void *dev_base_addr;
  1379. int i;
  1380. ring_id = hal_get_srng_ring_id(hal_soc, ring_type, ring_num, mac_id);
  1381. if (ring_id < 0)
  1382. return NULL;
  1383. hal_verbose_debug("mac_id %d ring_id %d", mac_id, ring_id);
  1384. srng = hal_get_srng(hal_soc, ring_id);
  1385. if (srng->initialized) {
  1386. hal_verbose_debug("Ring (ring_type, ring_num) already initialized");
  1387. return NULL;
  1388. }
  1389. dev_base_addr = hal->dev_base_addr;
  1390. srng->ring_id = ring_id;
  1391. srng->ring_type = ring_type;
  1392. srng->ring_dir = ring_config->ring_dir;
  1393. srng->ring_base_paddr = ring_params->ring_base_paddr;
  1394. srng->ring_base_vaddr = ring_params->ring_base_vaddr;
  1395. srng->entry_size = ring_config->entry_size;
  1396. srng->num_entries = ring_params->num_entries;
  1397. srng->ring_size = srng->num_entries * srng->entry_size;
  1398. srng->ring_size_mask = srng->ring_size - 1;
  1399. srng->msi_addr = ring_params->msi_addr;
  1400. srng->msi_data = ring_params->msi_data;
  1401. srng->intr_timer_thres_us = ring_params->intr_timer_thres_us;
  1402. srng->intr_batch_cntr_thres_entries =
  1403. ring_params->intr_batch_cntr_thres_entries;
  1404. srng->prefetch_timer = ring_params->prefetch_timer;
  1405. srng->hal_soc = hal_soc;
  1406. for (i = 0 ; i < MAX_SRNG_REG_GROUPS; i++) {
  1407. srng->hwreg_base[i] = dev_base_addr + ring_config->reg_start[i]
  1408. + (ring_num * ring_config->reg_size[i]);
  1409. }
  1410. /* Zero out the entire ring memory */
  1411. qdf_mem_zero(srng->ring_base_vaddr, (srng->entry_size *
  1412. srng->num_entries) << 2);
  1413. srng->flags = ring_params->flags;
  1414. #ifdef BIG_ENDIAN_HOST
  1415. /* TODO: See if we should we get these flags from caller */
  1416. srng->flags |= HAL_SRNG_DATA_TLV_SWAP;
  1417. srng->flags |= HAL_SRNG_MSI_SWAP;
  1418. srng->flags |= HAL_SRNG_RING_PTR_SWAP;
  1419. #endif
  1420. if (srng->ring_dir == HAL_SRNG_SRC_RING) {
  1421. srng->u.src_ring.hp = 0;
  1422. srng->u.src_ring.reap_hp = srng->ring_size -
  1423. srng->entry_size;
  1424. srng->u.src_ring.tp_addr =
  1425. &(hal->shadow_rdptr_mem_vaddr[ring_id]);
  1426. srng->u.src_ring.low_threshold =
  1427. ring_params->low_threshold * srng->entry_size;
  1428. if (ring_config->lmac_ring) {
  1429. /* For LMAC rings, head pointer updates will be done
  1430. * through FW by writing to a shared memory location
  1431. */
  1432. srng->u.src_ring.hp_addr =
  1433. &(hal->shadow_wrptr_mem_vaddr[ring_id -
  1434. HAL_SRNG_LMAC1_ID_START]);
  1435. srng->flags |= HAL_SRNG_LMAC_RING;
  1436. } else if (ignore_shadow || (srng->u.src_ring.hp_addr == 0)) {
  1437. srng->u.src_ring.hp_addr =
  1438. hal_get_window_address(hal,
  1439. SRNG_SRC_ADDR(srng, HP));
  1440. if (CHECK_SHADOW_REGISTERS) {
  1441. QDF_TRACE(QDF_MODULE_ID_TXRX,
  1442. QDF_TRACE_LEVEL_ERROR,
  1443. "%s: Ring (%d, %d) missing shadow config",
  1444. __func__, ring_type, ring_num);
  1445. }
  1446. } else {
  1447. hal_validate_shadow_register(hal,
  1448. SRNG_SRC_ADDR(srng, HP),
  1449. srng->u.src_ring.hp_addr);
  1450. }
  1451. } else {
  1452. /* During initialization loop count in all the descriptors
  1453. * will be set to zero, and HW will set it to 1 on completing
  1454. * descriptor update in first loop, and increments it by 1 on
  1455. * subsequent loops (loop count wraps around after reaching
  1456. * 0xffff). The 'loop_cnt' in SW ring state is the expected
  1457. * loop count in descriptors updated by HW (to be processed
  1458. * by SW).
  1459. */
  1460. srng->u.dst_ring.loop_cnt = 1;
  1461. srng->u.dst_ring.tp = 0;
  1462. srng->u.dst_ring.hp_addr =
  1463. &(hal->shadow_rdptr_mem_vaddr[ring_id]);
  1464. if (ring_config->lmac_ring) {
  1465. /* For LMAC rings, tail pointer updates will be done
  1466. * through FW by writing to a shared memory location
  1467. */
  1468. srng->u.dst_ring.tp_addr =
  1469. &(hal->shadow_wrptr_mem_vaddr[ring_id -
  1470. HAL_SRNG_LMAC1_ID_START]);
  1471. srng->flags |= HAL_SRNG_LMAC_RING;
  1472. } else if (ignore_shadow || srng->u.dst_ring.tp_addr == 0) {
  1473. srng->u.dst_ring.tp_addr =
  1474. hal_get_window_address(hal,
  1475. SRNG_DST_ADDR(srng, TP));
  1476. if (CHECK_SHADOW_REGISTERS) {
  1477. QDF_TRACE(QDF_MODULE_ID_TXRX,
  1478. QDF_TRACE_LEVEL_ERROR,
  1479. "%s: Ring (%d, %d) missing shadow config",
  1480. __func__, ring_type, ring_num);
  1481. }
  1482. } else {
  1483. hal_validate_shadow_register(hal,
  1484. SRNG_DST_ADDR(srng, TP),
  1485. srng->u.dst_ring.tp_addr);
  1486. }
  1487. }
  1488. if (!(ring_config->lmac_ring)) {
  1489. hal_srng_hw_init(hal, srng);
  1490. if (ring_type == CE_DST) {
  1491. srng->u.dst_ring.max_buffer_length = ring_params->max_buffer_length;
  1492. hal_ce_dst_setup(hal, srng, ring_num);
  1493. }
  1494. }
  1495. SRNG_LOCK_INIT(&srng->lock);
  1496. srng->srng_event = 0;
  1497. srng->initialized = true;
  1498. return (void *)srng;
  1499. }
  1500. qdf_export_symbol(hal_srng_setup);
  1501. /**
  1502. * hal_srng_cleanup - Deinitialize HW SRNG ring.
  1503. * @hal_soc: Opaque HAL SOC handle
  1504. * @hal_srng: Opaque HAL SRNG pointer
  1505. */
  1506. void hal_srng_cleanup(void *hal_soc, hal_ring_handle_t hal_ring_hdl)
  1507. {
  1508. struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
  1509. SRNG_LOCK_DESTROY(&srng->lock);
  1510. srng->initialized = 0;
  1511. }
  1512. qdf_export_symbol(hal_srng_cleanup);
  1513. /**
  1514. * hal_srng_get_entrysize - Returns size of ring entry in bytes
  1515. * @hal_soc: Opaque HAL SOC handle
  1516. * @ring_type: one of the types from hal_ring_type
  1517. *
  1518. */
  1519. uint32_t hal_srng_get_entrysize(void *hal_soc, int ring_type)
  1520. {
  1521. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  1522. struct hal_hw_srng_config *ring_config =
  1523. HAL_SRNG_CONFIG(hal, ring_type);
  1524. return ring_config->entry_size << 2;
  1525. }
  1526. qdf_export_symbol(hal_srng_get_entrysize);
  1527. /**
  1528. * hal_srng_max_entries - Returns maximum possible number of ring entries
  1529. * @hal_soc: Opaque HAL SOC handle
  1530. * @ring_type: one of the types from hal_ring_type
  1531. *
  1532. * Return: Maximum number of entries for the given ring_type
  1533. */
  1534. uint32_t hal_srng_max_entries(void *hal_soc, int ring_type)
  1535. {
  1536. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  1537. struct hal_hw_srng_config *ring_config =
  1538. HAL_SRNG_CONFIG(hal, ring_type);
  1539. return ring_config->max_size / ring_config->entry_size;
  1540. }
  1541. qdf_export_symbol(hal_srng_max_entries);
  1542. enum hal_srng_dir hal_srng_get_dir(void *hal_soc, int ring_type)
  1543. {
  1544. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  1545. struct hal_hw_srng_config *ring_config =
  1546. HAL_SRNG_CONFIG(hal, ring_type);
  1547. return ring_config->ring_dir;
  1548. }
  1549. /**
  1550. * hal_srng_dump - Dump ring status
  1551. * @srng: hal srng pointer
  1552. */
  1553. void hal_srng_dump(struct hal_srng *srng)
  1554. {
  1555. if (srng->ring_dir == HAL_SRNG_SRC_RING) {
  1556. hal_debug("=== SRC RING %d ===", srng->ring_id);
  1557. hal_debug("hp %u, reap_hp %u, tp %u, cached tp %u",
  1558. srng->u.src_ring.hp,
  1559. srng->u.src_ring.reap_hp,
  1560. *srng->u.src_ring.tp_addr,
  1561. srng->u.src_ring.cached_tp);
  1562. } else {
  1563. hal_debug("=== DST RING %d ===", srng->ring_id);
  1564. hal_debug("tp %u, hp %u, cached tp %u, loop_cnt %u",
  1565. srng->u.dst_ring.tp,
  1566. *srng->u.dst_ring.hp_addr,
  1567. srng->u.dst_ring.cached_hp,
  1568. srng->u.dst_ring.loop_cnt);
  1569. }
  1570. }
  1571. /**
  1572. * hal_get_srng_params - Retrieve SRNG parameters for a given ring from HAL
  1573. *
  1574. * @hal_soc: Opaque HAL SOC handle
  1575. * @hal_ring: Ring pointer (Source or Destination ring)
  1576. * @ring_params: SRNG parameters will be returned through this structure
  1577. */
  1578. extern void hal_get_srng_params(hal_soc_handle_t hal_soc_hdl,
  1579. hal_ring_handle_t hal_ring_hdl,
  1580. struct hal_srng_params *ring_params)
  1581. {
  1582. struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
  1583. int i =0;
  1584. ring_params->ring_id = srng->ring_id;
  1585. ring_params->ring_dir = srng->ring_dir;
  1586. ring_params->entry_size = srng->entry_size;
  1587. ring_params->ring_base_paddr = srng->ring_base_paddr;
  1588. ring_params->ring_base_vaddr = srng->ring_base_vaddr;
  1589. ring_params->num_entries = srng->num_entries;
  1590. ring_params->msi_addr = srng->msi_addr;
  1591. ring_params->msi_data = srng->msi_data;
  1592. ring_params->intr_timer_thres_us = srng->intr_timer_thres_us;
  1593. ring_params->intr_batch_cntr_thres_entries =
  1594. srng->intr_batch_cntr_thres_entries;
  1595. ring_params->low_threshold = srng->u.src_ring.low_threshold;
  1596. ring_params->flags = srng->flags;
  1597. ring_params->ring_id = srng->ring_id;
  1598. for (i = 0 ; i < MAX_SRNG_REG_GROUPS; i++)
  1599. ring_params->hwreg_base[i] = srng->hwreg_base[i];
  1600. }
  1601. qdf_export_symbol(hal_get_srng_params);
  1602. void hal_set_low_threshold(hal_ring_handle_t hal_ring_hdl,
  1603. uint32_t low_threshold)
  1604. {
  1605. struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
  1606. srng->u.src_ring.low_threshold = low_threshold * srng->entry_size;
  1607. }
  1608. qdf_export_symbol(hal_set_low_threshold);
  1609. #ifdef FORCE_WAKE
  1610. void hal_set_init_phase(hal_soc_handle_t soc, bool init_phase)
  1611. {
  1612. struct hal_soc *hal_soc = (struct hal_soc *)soc;
  1613. hal_soc->init_phase = init_phase;
  1614. }
  1615. #endif /* FORCE_WAKE */