wcd939x-mbhc.c 58 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711
  1. // SPDX-License-Identifier: GPL-2.0-only
  2. /*
  3. * Copyright (c) 2018-2019, The Linux Foundation. All rights reserved.
  4. * Copyright (c) 2022-2023, Qualcomm Innovation Center, Inc. All rights reserved.
  5. */
  6. #include <linux/module.h>
  7. #include <linux/init.h>
  8. #include <linux/platform_device.h>
  9. #include <linux/device.h>
  10. #include <linux/printk.h>
  11. #include <linux/ratelimit.h>
  12. #include <linux/kernel.h>
  13. #include <linux/gpio.h>
  14. #include <linux/delay.h>
  15. #include <linux/regmap.h>
  16. #include <linux/timer.h>
  17. #include <sound/pcm.h>
  18. #include <sound/pcm_params.h>
  19. #include <sound/soc.h>
  20. #include <sound/soc-dapm.h>
  21. #include <asoc/wcdcal-hwdep.h>
  22. #include <asoc/wcd-mbhc-v2-api.h>
  23. #include "wcd939x-registers.h"
  24. #include "internal.h"
  25. #if IS_ENABLED(CONFIG_QCOM_WCD_USBSS_I2C)
  26. #include <linux/soc/qcom/wcd939x-i2c.h>
  27. #endif
  28. #define WCD939X_ZDET_SUPPORTED true
  29. /* Z value defined in milliohm */
  30. #define WCD939X_ZDET_VAL_32 32000
  31. #define WCD939X_ZDET_VAL_400 400000
  32. #define WCD939X_ZDET_VAL_1200 1200000
  33. #define WCD939X_ZDET_VAL_100K 100000000
  34. /* Z floating defined in ohms */
  35. #define WCD939X_ZDET_FLOATING_IMPEDANCE 0x0FFFFFFE
  36. #define WCD939X_ZDET_NUM_MEASUREMENTS 900
  37. #define WCD939X_MBHC_GET_C1(c) ((c & 0xC000) >> 14)
  38. #define WCD939X_MBHC_GET_X1(x) (x & 0x3FFF)
  39. /* Z value compared in milliOhm */
  40. #define WCD939X_MBHC_IS_SECOND_RAMP_REQUIRED(z) false
  41. #define WCD939X_MBHC_ZDET_CONST (1071 * 1024)
  42. #define WCD939X_MBHC_MOISTURE_RREF R_24_KOHM
  43. #define OHMS_TO_MILLIOHMS 1000
  44. #define FLOAT_TO_FIXED_XTALK (1UL << 16)
  45. #define MAX_XTALK_ALPHA 255
  46. #define MIN_RL_EFF_MOHMS 1
  47. #define MAX_RL_EFF_MOHMS 900000
  48. #define HD2_CODE_BASE_VALUE 0x1D
  49. #define HD2_CODE_INV_RESOLUTION 4201025
  50. #define FLOAT_TO_FIXED_LINEARIZER (1UL << 12)
  51. #define MIN_TAP_OFFSET -1023
  52. #define MAX_TAP_OFFSET 1023
  53. #define MIN_TAP 0
  54. #define MAX_TAP 1023
  55. #define RDOWN_TIMER_PERIOD_MSEC 100
  56. #define WCD_USBSS_WRITE true
  57. #define WCD_USBSS_READ false
  58. #define WCD_USBSS_EXT_LIN_EN 0x3D
  59. #define WCD_USBSS_EXT_SW_CTRL_1 0x43
  60. #define WCD_USBSS_MG1_BIAS 0x25
  61. #define WCD_USBSS_MG2_BIAS 0x29
  62. static struct wcd_mbhc_register
  63. wcd_mbhc_registers[WCD_MBHC_REG_FUNC_MAX] = {
  64. WCD_MBHC_REGISTER("WCD_MBHC_L_DET_EN",
  65. WCD939X_MBHC_MECH, 0x80, 7, 0),
  66. WCD_MBHC_REGISTER("WCD_MBHC_GND_DET_EN",
  67. WCD939X_MBHC_MECH, 0x40, 6, 0),
  68. WCD_MBHC_REGISTER("WCD_MBHC_MECH_DETECTION_TYPE",
  69. WCD939X_MBHC_MECH, 0x20, 5, 0),
  70. WCD_MBHC_REGISTER("WCD_MBHC_MIC_CLAMP_CTL",
  71. WCD939X_PLUG_DETECT_CTL, 0x30, 4, 0),
  72. WCD_MBHC_REGISTER("WCD_MBHC_ELECT_DETECTION_TYPE",
  73. WCD939X_MBHC_ELECT, 0x08, 3, 0),
  74. WCD_MBHC_REGISTER("WCD_MBHC_HS_L_DET_PULL_UP_CTRL",
  75. WCD939X_MECH_DET_CURRENT, 0x1F, 0, 0),
  76. WCD_MBHC_REGISTER("WCD_MBHC_HS_L_DET_PULL_UP_COMP_CTRL",
  77. WCD939X_MBHC_MECH, 0x04, 2, 0),
  78. WCD_MBHC_REGISTER("WCD_MBHC_HPHL_PLUG_TYPE",
  79. WCD939X_MBHC_MECH, 0x10, 4, 0),
  80. WCD_MBHC_REGISTER("WCD_MBHC_GND_PLUG_TYPE",
  81. WCD939X_MBHC_MECH, 0x08, 3, 0),
  82. WCD_MBHC_REGISTER("WCD_MBHC_SW_HPH_LP_100K_TO_GND",
  83. WCD939X_MBHC_MECH, 0x01, 0, 0),
  84. WCD_MBHC_REGISTER("WCD_MBHC_ELECT_SCHMT_ISRC",
  85. WCD939X_MBHC_ELECT, 0x06, 1, 0),
  86. WCD_MBHC_REGISTER("WCD_MBHC_FSM_EN",
  87. WCD939X_MBHC_ELECT, 0x80, 7, 0),
  88. WCD_MBHC_REGISTER("WCD_MBHC_INSREM_DBNC",
  89. WCD939X_PLUG_DETECT_CTL, 0x0F, 0, 0),
  90. WCD_MBHC_REGISTER("WCD_MBHC_BTN_DBNC",
  91. WCD939X_CTL_1, 0x03, 0, 0),
  92. WCD_MBHC_REGISTER("WCD_MBHC_HS_VREF",
  93. WCD939X_CTL_2, 0x03, 0, 0),
  94. WCD_MBHC_REGISTER("WCD_MBHC_HS_COMP_RESULT",
  95. WCD939X_MBHC_RESULT_3, 0x08, 3, 0),
  96. WCD_MBHC_REGISTER("WCD_MBHC_IN2P_CLAMP_STATE",
  97. WCD939X_MBHC_RESULT_3, 0x10, 4, 0),
  98. WCD_MBHC_REGISTER("WCD_MBHC_MIC_SCHMT_RESULT",
  99. WCD939X_MBHC_RESULT_3, 0x20, 5, 0),
  100. WCD_MBHC_REGISTER("WCD_MBHC_HPHL_SCHMT_RESULT",
  101. WCD939X_MBHC_RESULT_3, 0x80, 7, 0),
  102. WCD_MBHC_REGISTER("WCD_MBHC_HPHR_SCHMT_RESULT",
  103. WCD939X_MBHC_RESULT_3, 0x40, 6, 0),
  104. WCD_MBHC_REGISTER("WCD_MBHC_OCP_FSM_EN",
  105. WCD939X_HPH_OCP_CTL, 0x10, 4, 0),
  106. WCD_MBHC_REGISTER("WCD_MBHC_BTN_RESULT",
  107. WCD939X_MBHC_RESULT_3, 0x07, 0, 0),
  108. WCD_MBHC_REGISTER("WCD_MBHC_BTN_ISRC_CTL",
  109. WCD939X_MBHC_ELECT, 0x70, 4, 0),
  110. WCD_MBHC_REGISTER("WCD_MBHC_ELECT_RESULT",
  111. WCD939X_MBHC_RESULT_3, 0xFF, 0, 0),
  112. WCD_MBHC_REGISTER("WCD_MBHC_MICB_CTRL",
  113. WCD939X_MICB2, 0xC0, 6, 0),
  114. WCD_MBHC_REGISTER("WCD_MBHC_HPH_CNP_WG_TIME",
  115. WCD939X_CNP_WG_TIME, 0xFF, 0, 0),
  116. WCD_MBHC_REGISTER("WCD_MBHC_HPHR_PA_EN",
  117. WCD939X_HPH, 0x40, 6, 0),
  118. WCD_MBHC_REGISTER("WCD_MBHC_HPHL_PA_EN",
  119. WCD939X_HPH, 0x80, 7, 0),
  120. WCD_MBHC_REGISTER("WCD_MBHC_HPH_PA_EN",
  121. WCD939X_HPH, 0xC0, 6, 0),
  122. WCD_MBHC_REGISTER("WCD_MBHC_SWCH_LEVEL_REMOVE",
  123. WCD939X_MBHC_RESULT_3, 0x10, 4, 0),
  124. WCD_MBHC_REGISTER("WCD_MBHC_PULLDOWN_CTRL",
  125. 0, 0, 0, 0),
  126. WCD_MBHC_REGISTER("WCD_MBHC_ANC_DET_EN",
  127. WCD939X_CTL_BCS, 0x02, 1, 0),
  128. WCD_MBHC_REGISTER("WCD_MBHC_FSM_STATUS",
  129. WCD939X_FSM_STATUS, 0x01, 0, 0),
  130. WCD_MBHC_REGISTER("WCD_MBHC_MUX_CTL",
  131. WCD939X_CTL_2, 0x70, 4, 0),
  132. WCD_MBHC_REGISTER("WCD_MBHC_MOISTURE_STATUS",
  133. WCD939X_FSM_STATUS, 0x20, 5, 0),
  134. WCD_MBHC_REGISTER("WCD_MBHC_HPHR_GND",
  135. WCD939X_PA_CTL2, 0x40, 6, 0),
  136. WCD_MBHC_REGISTER("WCD_MBHC_HPHL_GND",
  137. WCD939X_PA_CTL2, 0x10, 4, 0),
  138. WCD_MBHC_REGISTER("WCD_MBHC_HPHL_OCP_DET_EN",
  139. WCD939X_L_TEST, 0x01, 0, 0),
  140. WCD_MBHC_REGISTER("WCD_MBHC_HPHR_OCP_DET_EN",
  141. WCD939X_R_TEST, 0x01, 0, 0),
  142. WCD_MBHC_REGISTER("WCD_MBHC_HPHL_OCP_STATUS",
  143. WCD939X_INTR_STATUS_0, 0x80, 7, 0),
  144. WCD_MBHC_REGISTER("WCD_MBHC_HPHR_OCP_STATUS",
  145. WCD939X_INTR_STATUS_0, 0x20, 5, 0),
  146. WCD_MBHC_REGISTER("WCD_MBHC_ADC_EN",
  147. WCD939X_CTL_1, 0x08, 3, 0),
  148. WCD_MBHC_REGISTER("WCD_MBHC_ADC_COMPLETE", WCD939X_FSM_STATUS,
  149. 0x40, 6, 0),
  150. WCD_MBHC_REGISTER("WCD_MBHC_ADC_TIMEOUT", WCD939X_FSM_STATUS,
  151. 0x80, 7, 0),
  152. WCD_MBHC_REGISTER("WCD_MBHC_ADC_RESULT", WCD939X_ADC_RESULT,
  153. 0xFF, 0, 0),
  154. WCD_MBHC_REGISTER("WCD_MBHC_MICB2_VOUT", WCD939X_MICB2, 0x3F, 0, 0),
  155. WCD_MBHC_REGISTER("WCD_MBHC_ADC_MODE",
  156. WCD939X_CTL_1, 0x10, 4, 0),
  157. WCD_MBHC_REGISTER("WCD_MBHC_DETECTION_DONE",
  158. WCD939X_CTL_1, 0x04, 2, 0),
  159. WCD_MBHC_REGISTER("WCD_MBHC_ELECT_ISRC_EN",
  160. WCD939X_MBHC_ZDET, 0x02, 1, 0),
  161. };
  162. static const struct wcd_mbhc_intr intr_ids = {
  163. .mbhc_sw_intr = WCD939X_IRQ_MBHC_SW_DET,
  164. .mbhc_btn_press_intr = WCD939X_IRQ_MBHC_BUTTON_PRESS_DET,
  165. .mbhc_btn_release_intr = WCD939X_IRQ_MBHC_BUTTON_RELEASE_DET,
  166. .mbhc_hs_ins_intr = WCD939X_IRQ_MBHC_ELECT_INS_REM_LEG_DET,
  167. .mbhc_hs_rem_intr = WCD939X_IRQ_MBHC_ELECT_INS_REM_DET,
  168. .hph_left_ocp = WCD939X_IRQ_HPHL_OCP_INT,
  169. .hph_right_ocp = WCD939X_IRQ_HPHR_OCP_INT,
  170. };
  171. struct wcd939x_mbhc_zdet_param {
  172. u16 ldo_ctl;
  173. u16 noff;
  174. u16 nshift;
  175. u16 btn5;
  176. u16 btn6;
  177. u16 btn7;
  178. };
  179. static int wcd939x_mbhc_request_irq(struct snd_soc_component *component,
  180. int irq, irq_handler_t handler,
  181. const char *name, void *data)
  182. {
  183. struct wcd939x_priv *wcd939x = dev_get_drvdata(component->dev);
  184. return wcd_request_irq(&wcd939x->irq_info, irq, name, handler, data);
  185. }
  186. static void wcd939x_mbhc_irq_control(struct snd_soc_component *component,
  187. int irq, bool enable)
  188. {
  189. struct wcd939x_priv *wcd939x = dev_get_drvdata(component->dev);
  190. if (enable)
  191. wcd_enable_irq(&wcd939x->irq_info, irq);
  192. else
  193. wcd_disable_irq(&wcd939x->irq_info, irq);
  194. }
  195. static int wcd939x_mbhc_free_irq(struct snd_soc_component *component,
  196. int irq, void *data)
  197. {
  198. struct wcd939x_priv *wcd939x = dev_get_drvdata(component->dev);
  199. wcd_free_irq(&wcd939x->irq_info, irq, data);
  200. return 0;
  201. }
  202. static void wcd939x_mbhc_clk_setup(struct snd_soc_component *component,
  203. bool enable)
  204. {
  205. if (enable)
  206. snd_soc_component_update_bits(component, WCD939X_CTL_1,
  207. 0x80, 0x80);
  208. else
  209. snd_soc_component_update_bits(component, WCD939X_CTL_1,
  210. 0x80, 0x00);
  211. }
  212. static int wcd939x_mbhc_btn_to_num(struct snd_soc_component *component)
  213. {
  214. return snd_soc_component_read(component, WCD939X_MBHC_RESULT_3) & 0x7;
  215. }
  216. static void wcd939x_mbhc_mbhc_bias_control(struct snd_soc_component *component,
  217. bool enable)
  218. {
  219. if (enable)
  220. snd_soc_component_update_bits(component, WCD939X_MBHC_ELECT,
  221. 0x01, 0x01);
  222. else
  223. snd_soc_component_update_bits(component, WCD939X_MBHC_ELECT,
  224. 0x01, 0x00);
  225. }
  226. static void wcd939x_mbhc_program_btn_thr(struct snd_soc_component *component,
  227. s16 *btn_low, s16 *btn_high,
  228. int num_btn, bool is_micbias)
  229. {
  230. int i;
  231. int vth;
  232. if (num_btn > WCD_MBHC_DEF_BUTTONS) {
  233. dev_err_ratelimited(component->dev, "%s: invalid number of buttons: %d\n",
  234. __func__, num_btn);
  235. return;
  236. }
  237. for (i = 0; i < num_btn; i++) {
  238. vth = ((btn_high[i] * 2) / 25) & 0x3F;
  239. snd_soc_component_update_bits(component, WCD939X_MBHC_BTN0 + i,
  240. 0xFC, vth << 2);
  241. dev_dbg(component->dev, "%s: btn_high[%d]: %d, vth: %d\n",
  242. __func__, i, btn_high[i], vth);
  243. }
  244. }
  245. static bool wcd939x_mbhc_lock_sleep(struct wcd_mbhc *mbhc, bool lock)
  246. {
  247. struct snd_soc_component *component = mbhc->component;
  248. struct wcd939x_priv *wcd939x = dev_get_drvdata(component->dev);
  249. wcd939x->wakeup((void*)wcd939x, lock);
  250. return true;
  251. }
  252. static int wcd939x_mbhc_register_notifier(struct wcd_mbhc *mbhc,
  253. struct notifier_block *nblock,
  254. bool enable)
  255. {
  256. struct wcd939x_mbhc *wcd939x_mbhc;
  257. wcd939x_mbhc = container_of(mbhc, struct wcd939x_mbhc, wcd_mbhc);
  258. if (enable)
  259. return blocking_notifier_chain_register(&wcd939x_mbhc->notifier,
  260. nblock);
  261. else
  262. return blocking_notifier_chain_unregister(
  263. &wcd939x_mbhc->notifier, nblock);
  264. }
  265. static bool wcd939x_mbhc_micb_en_status(struct wcd_mbhc *mbhc, int micb_num)
  266. {
  267. u8 val = 0;
  268. if (micb_num == MIC_BIAS_2) {
  269. val = ((snd_soc_component_read(mbhc->component,
  270. WCD939X_MICB2) & 0xC0)
  271. >> 6);
  272. if (val == 0x01)
  273. return true;
  274. }
  275. return false;
  276. }
  277. static bool wcd939x_mbhc_hph_pa_on_status(struct snd_soc_component *component)
  278. {
  279. return (snd_soc_component_read(component, WCD939X_HPH) & 0xC0) ?
  280. true : false;
  281. }
  282. static void wcd939x_mbhc_hph_l_pull_up_control(
  283. struct snd_soc_component *component,
  284. int pull_up_cur)
  285. {
  286. /* Default pull up current to 2uA */
  287. if (pull_up_cur > HS_PULLUP_I_OFF || pull_up_cur < HS_PULLUP_I_3P0_UA ||
  288. pull_up_cur == HS_PULLUP_I_DEFAULT)
  289. pull_up_cur = HS_PULLUP_I_2P0_UA;
  290. dev_dbg(component->dev, "%s: HS pull up current:%d\n",
  291. __func__, pull_up_cur);
  292. snd_soc_component_update_bits(component,
  293. WCD939X_MECH_DET_CURRENT,
  294. 0x1F, pull_up_cur);
  295. }
  296. static int wcd939x_mbhc_request_micbias(struct snd_soc_component *component,
  297. int micb_num, int req)
  298. {
  299. int ret = 0;
  300. ret = wcd939x_micbias_control(component, micb_num, req, false);
  301. return ret;
  302. }
  303. static void wcd939x_mbhc_micb_ramp_control(struct snd_soc_component *component,
  304. bool enable)
  305. {
  306. if (enable) {
  307. snd_soc_component_update_bits(component, WCD939X_MICB2_RAMP,
  308. 0x1C, 0x0C);
  309. snd_soc_component_update_bits(component, WCD939X_MICB2_RAMP,
  310. 0x80, 0x80);
  311. } else {
  312. snd_soc_component_update_bits(component, WCD939X_MICB2_RAMP,
  313. 0x80, 0x00);
  314. snd_soc_component_update_bits(component, WCD939X_MICB2_RAMP,
  315. 0x1C, 0x00);
  316. }
  317. }
  318. static struct firmware_cal *wcd939x_get_hwdep_fw_cal(struct wcd_mbhc *mbhc,
  319. enum wcd_cal_type type)
  320. {
  321. struct wcd939x_mbhc *wcd939x_mbhc;
  322. struct firmware_cal *hwdep_cal;
  323. struct snd_soc_component *component = mbhc->component;
  324. wcd939x_mbhc = container_of(mbhc, struct wcd939x_mbhc, wcd_mbhc);
  325. if (!component) {
  326. pr_err_ratelimited("%s: NULL component pointer\n", __func__);
  327. return NULL;
  328. }
  329. hwdep_cal = wcdcal_get_fw_cal(wcd939x_mbhc->fw_data, type);
  330. if (!hwdep_cal)
  331. dev_err_ratelimited(component->dev, "%s: cal not sent by %d\n",
  332. __func__, type);
  333. return hwdep_cal;
  334. }
  335. static int wcd939x_mbhc_micb_ctrl_threshold_mic(
  336. struct snd_soc_component *component,
  337. int micb_num, bool req_en)
  338. {
  339. struct wcd939x_pdata *pdata = dev_get_platdata(component->dev);
  340. int rc, micb_mv;
  341. if (micb_num != MIC_BIAS_2)
  342. return -EINVAL;
  343. /*
  344. * If device tree micbias level is already above the minimum
  345. * voltage needed to detect threshold microphone, then do
  346. * not change the micbias, just return.
  347. */
  348. if (pdata->micbias.micb2_mv >= WCD_MBHC_THR_HS_MICB_MV)
  349. return 0;
  350. micb_mv = req_en ? WCD_MBHC_THR_HS_MICB_MV : pdata->micbias.micb2_mv;
  351. rc = wcd939x_mbhc_micb_adjust_voltage(component, micb_mv, MIC_BIAS_2);
  352. return rc;
  353. }
  354. static inline void wcd939x_mbhc_get_result_params(struct wcd939x_priv *wcd939x,
  355. s16 *d1_a, u16 noff,
  356. int32_t *zdet)
  357. {
  358. int i;
  359. int val, val1;
  360. s16 c1;
  361. s32 x1, d1;
  362. int32_t denom;
  363. int minCode_param[] = {
  364. 3277, 1639, 820, 410, 205, 103, 52, 26
  365. };
  366. struct wcd939x_mbhc *wcd939x_mbhc = wcd939x->mbhc;
  367. regmap_update_bits(wcd939x->regmap, WCD939X_MBHC_ZDET, 0x20, 0x20);
  368. for (i = 0; i < WCD939X_ZDET_NUM_MEASUREMENTS; i++) {
  369. regmap_read(wcd939x->regmap, WCD939X_MBHC_RESULT_2, &val);
  370. if (val & 0x80)
  371. break;
  372. }
  373. val = val << 0x8;
  374. regmap_read(wcd939x->regmap, WCD939X_MBHC_RESULT_1, &val1);
  375. val |= val1;
  376. wcd939x_mbhc->rdown_prev_iter = val;
  377. regmap_update_bits(wcd939x->regmap, WCD939X_MBHC_ZDET, 0x20, 0x00);
  378. x1 = WCD939X_MBHC_GET_X1(val);
  379. c1 = WCD939X_MBHC_GET_C1(val);
  380. /* If ramp is not complete, give additional 5ms */
  381. if ((c1 < 2) && x1)
  382. usleep_range(5000, 5050);
  383. if (!c1 || !x1) {
  384. dev_dbg(wcd939x->dev,
  385. "%s: Impedance detect ramp error, c1=%d, x1=0x%x\n",
  386. __func__, c1, x1);
  387. goto ramp_down;
  388. }
  389. d1 = d1_a[c1];
  390. denom = (x1 * d1) - (1 << (14 - noff));
  391. if (denom > 0)
  392. *zdet = (WCD939X_MBHC_ZDET_CONST * 1000) / denom;
  393. else if (x1 < minCode_param[noff])
  394. *zdet = WCD939X_ZDET_FLOATING_IMPEDANCE;
  395. dev_dbg(wcd939x->dev, "%s: d1=%d, c1=%d, x1=0x%x, z_val=%d(milliOhm)\n",
  396. __func__, d1, c1, x1, *zdet);
  397. ramp_down:
  398. i = 0;
  399. wcd939x_mbhc->rdown_timer_complete = false;
  400. mod_timer(&wcd939x_mbhc->rdown_timer, jiffies + msecs_to_jiffies(RDOWN_TIMER_PERIOD_MSEC));
  401. while (x1) {
  402. regmap_read(wcd939x->regmap,
  403. WCD939X_MBHC_RESULT_1, &val);
  404. regmap_read(wcd939x->regmap,
  405. WCD939X_MBHC_RESULT_2, &val1);
  406. val = val << 0x08;
  407. val |= val1;
  408. x1 = WCD939X_MBHC_GET_X1(val);
  409. i++;
  410. if (i == WCD939X_ZDET_NUM_MEASUREMENTS)
  411. break;
  412. if (wcd939x_mbhc->rdown_timer_complete && wcd939x_mbhc->rdown_prev_iter == val)
  413. break;
  414. wcd939x_mbhc->rdown_prev_iter = val;
  415. }
  416. del_timer(&wcd939x_mbhc->rdown_timer);
  417. }
  418. static void wcd939x_mbhc_zdet_ramp(struct snd_soc_component *component,
  419. struct wcd939x_mbhc_zdet_param *zdet_param,
  420. int32_t *zl, int32_t *zr, s16 *d1_a)
  421. {
  422. struct wcd939x_priv *wcd939x = dev_get_drvdata(component->dev);
  423. int32_t zdet = 0;
  424. snd_soc_component_update_bits(component, WCD939X_ZDET_ANA_CTL, 0xF0,
  425. 0x80 | (zdet_param->ldo_ctl << 4));
  426. snd_soc_component_update_bits(component, WCD939X_MBHC_BTN5, 0xFC,
  427. zdet_param->btn5);
  428. snd_soc_component_update_bits(component, WCD939X_MBHC_BTN6, 0xFC,
  429. zdet_param->btn6);
  430. snd_soc_component_update_bits(component, WCD939X_MBHC_BTN7, 0xFC,
  431. zdet_param->btn7);
  432. snd_soc_component_update_bits(component, WCD939X_ZDET_ANA_CTL,
  433. 0x0F, zdet_param->noff);
  434. snd_soc_component_update_bits(component, WCD939X_ZDET_RAMP_CTL,
  435. 0x0F, zdet_param->nshift);
  436. snd_soc_component_update_bits(component, WCD939X_ZDET_RAMP_CTL,
  437. 0x70, 0x60); /*acc1_min_63 */
  438. if (!zl)
  439. goto z_right;
  440. /* Start impedance measurement for HPH_L */
  441. regmap_update_bits(wcd939x->regmap,
  442. WCD939X_MBHC_ZDET, 0x80, 0x80);
  443. dev_dbg(wcd939x->dev, "%s: ramp for HPH_L, noff = %d\n",
  444. __func__, zdet_param->noff);
  445. wcd939x_mbhc_get_result_params(wcd939x, d1_a, zdet_param->noff, &zdet);
  446. regmap_update_bits(wcd939x->regmap,
  447. WCD939X_MBHC_ZDET, 0x80, 0x00);
  448. *zl = zdet;
  449. z_right:
  450. if (!zr)
  451. return;
  452. /* Start impedance measurement for HPH_R */
  453. regmap_update_bits(wcd939x->regmap,
  454. WCD939X_MBHC_ZDET, 0x40, 0x40);
  455. dev_dbg(wcd939x->dev, "%s: ramp for HPH_R, noff = %d\n",
  456. __func__, zdet_param->noff);
  457. wcd939x_mbhc_get_result_params(wcd939x, d1_a, zdet_param->noff, &zdet);
  458. regmap_update_bits(wcd939x->regmap,
  459. WCD939X_MBHC_ZDET, 0x40, 0x00);
  460. *zr = zdet;
  461. }
  462. static inline void wcd939x_wcd_mbhc_qfuse_cal(
  463. struct snd_soc_component *component,
  464. int32_t *z_val, int flag_l_r)
  465. {
  466. s16 q1;
  467. int q1_cal;
  468. q1 = snd_soc_component_read(component,
  469. WCD939X_EFUSE_REG_21 + flag_l_r);
  470. if (q1 & 0x80)
  471. q1_cal = (10000 - ((q1 & 0x7F) * 10));
  472. else
  473. q1_cal = (10000 + (q1 * 10));
  474. if (q1_cal > 0)
  475. *z_val = ((*z_val) * 10000) / q1_cal;
  476. }
  477. static void rdown_timer_callback(struct timer_list *timer)
  478. {
  479. struct wcd939x_mbhc *wcd939x_mbhc = container_of(timer, struct wcd939x_mbhc, rdown_timer);
  480. wcd939x_mbhc->rdown_timer_complete = true;
  481. }
  482. static void update_hd2_codes(struct regmap *regmap, u32 r_gnd_res_tot_mohms, u32 r_load_eff)
  483. {
  484. u64 hd2_delta = 0;
  485. if (!regmap)
  486. return;
  487. hd2_delta = (HD2_CODE_INV_RESOLUTION * (u64) r_gnd_res_tot_mohms +
  488. FLOAT_TO_FIXED_XTALK * (u64) ((r_gnd_res_tot_mohms + r_load_eff) / 2)) /
  489. (FLOAT_TO_FIXED_XTALK * (u64) (r_gnd_res_tot_mohms + r_load_eff));
  490. if (hd2_delta >= HD2_CODE_BASE_VALUE) {
  491. regmap_update_bits(regmap, WCD939X_RDAC_HD2_CTL_L, 0x1F, 0x00);
  492. regmap_update_bits(regmap, WCD939X_RDAC_HD2_CTL_R, 0x1F, 0x00);
  493. } else {
  494. regmap_update_bits(regmap, WCD939X_RDAC_HD2_CTL_L, 0x1F,
  495. HD2_CODE_BASE_VALUE - hd2_delta);
  496. regmap_update_bits(regmap, WCD939X_RDAC_HD2_CTL_R, 0x1F,
  497. HD2_CODE_BASE_VALUE - hd2_delta);
  498. }
  499. }
  500. static u8 get_xtalk_scale(u32 gain)
  501. {
  502. u8 i;
  503. int target, residue;
  504. if (gain == 0)
  505. return MAX_XTALK_SCALE;
  506. target = FLOAT_TO_FIXED_XTALK / ((int) gain);
  507. residue = target;
  508. for (i = 0; i <= MAX_XTALK_SCALE; i++) {
  509. residue = target - (1 << ((int)((u32) i)));
  510. if (residue < 0)
  511. return i;
  512. }
  513. return MAX_XTALK_SCALE;
  514. }
  515. static u8 get_xtalk_alpha(u32 gain, u8 scale)
  516. {
  517. u32 two_exp_scale, round_offset, alpha;
  518. if (gain == 0)
  519. return MIN_XTALK_ALPHA;
  520. two_exp_scale = 1 << ((u32) scale);
  521. round_offset = FLOAT_TO_FIXED_XTALK / 2;
  522. alpha = (((gain * two_exp_scale - FLOAT_TO_FIXED_XTALK) * 255) + round_offset)
  523. / FLOAT_TO_FIXED_XTALK;
  524. return (alpha <= MAX_XTALK_ALPHA) ? ((u8) alpha) : MAX_XTALK_ALPHA;
  525. }
  526. static u32 get_v_common_gnd_factor(u32 r_gnd_res_tot_mohms, u32 r_load_eff_mohms,
  527. u32 r_aud_res_tot_mohms)
  528. {
  529. /* Proof 1: The numerator does not overflow.
  530. * r_gnd_res_tot_mohms = r_gnd_int_fet_mohms + r_gnd_ext_fet_mohms + r_gnd_par_tot_mohms =
  531. * r_gnd_int_fet_mohms + r_gnd_ext_fet_mohms + r_gnd_par_route1_mohms +
  532. * r_gnd_par_route2_mohms
  533. *
  534. * r_gnd_int_fet_mohms, r_gnd_ext_fet_mohms, r_gnd_par_route{1,2}_mohms are all less
  535. * than MAX_USBCSS_HS_IMPEDANCE_MOHMS
  536. * -->
  537. * FLOAT_TO_FIXED_XTALK * r_gnd_res_tot_mohms <=
  538. * FLOAT_TO_FIXED_XTALK * 4 * MAX_USBCSS_HS_IMPEDANCE_MOHMS =
  539. * (1 << 16) * 4 * 20,000 = 65,536 * 80,000 = 3,932,160,000 <= 2^32 - 1 =
  540. * 4,294,967,295 = U32_MAX
  541. *
  542. * Proof 2: The denominator is greater than 0.
  543. * r_load_eff_mohms >= MIN_RL_EFF_MOHMS = 1 > 0
  544. * -->
  545. * r_load_eff_mohms + r_aud_res_tot_mohms + r_gnd_res_tot_mohms > 0
  546. *
  547. * Proof 3: The deonominator does not overflow.
  548. * r_load_eff_mohms <= MAX_RL_EFF_MOHMS
  549. * r_aud_res_tot_mohms and r_gnd_res_tot_mohms <= MAX_USBCSS_HS_IMPEDANCE_MOHMS
  550. * -->
  551. * r_load_eff_mohms + r_aud_res_tot_mohms + r_gnd_res_tot_mohms <=
  552. * MAX_RL_EFF_MOHMS + 2 * MAX_USBCSS_HS_IMPEDANCE_MOHMS = 900,000 + 2 * 20,000 = 940,000
  553. * <= U32_MAX = 2^32 - 1 = 4,294,967,295
  554. */
  555. return FLOAT_TO_FIXED_XTALK * r_gnd_res_tot_mohms /
  556. (r_load_eff_mohms + r_aud_res_tot_mohms + r_gnd_res_tot_mohms);
  557. }
  558. static u32 get_v_feedback_tap_factor_digital(u32 r_gnd_int_fet_mohms, u32 r_gnd_par_route1_mohms,
  559. u32 r_load_eff_mohms, u32 r_gnd_res_tot_mohms,
  560. u32 r_aud_res_tot_mohms)
  561. {
  562. /* Proof 4: The numerator does not overflow.
  563. * r_gnd_int_fet_mohms and r_gnd_par_route1_mohms <= MAX_USBCSS_HS_IMPEDANCE_MOHMS
  564. * -->
  565. * FLOAT_TO_FIXED_XTALK * (r_gnd_int_fet_mohms + r_gnd_par_route1_mohms) <=
  566. * FLOAT_TO_FIXED_XTALK * 2 * MAX_USBCSS_HS_IMPEDANCE_MOHMS =
  567. * (1 << 16) * 2 * 20,000 = 65,536 * 40,000 = 2,621,440,000 <= 2^32 - 1 =
  568. * 4,294,967,295 = U32_MAX
  569. *
  570. * The denominator is greater than 0: See Proof 2
  571. * The deonominator does not overflow: See Proof 3
  572. */
  573. return FLOAT_TO_FIXED_XTALK * (r_gnd_int_fet_mohms + r_gnd_par_route1_mohms) /
  574. (r_load_eff_mohms + r_gnd_res_tot_mohms + r_aud_res_tot_mohms);
  575. }
  576. static u32 get_v_feedback_tap_factor_analog(u32 r_gnd_par_route2_mohms, u32 r_load_eff_mohms,
  577. u32 r_gnd_res_tot_mohms, u32 r_aud_res_tot_mohms)
  578. {
  579. /* Proof 5: The numerator does not overflow.
  580. * r_gnd_res_tot_mohms = r_gnd_int_fet_mohms + r_gnd_ext_fet_mohms + r_gnd_par_tot_mohms =
  581. * r_gnd_int_fet_mohms + r_gnd_ext_fet_mohms + r_gnd_par_route1_mohms +
  582. * r_gnd_par_route2_mohms
  583. *
  584. * r_gnd_res_tot_mohms - r_gnd_par_route2_mohms =
  585. * r_gnd_int_fet_mohms + r_gnd_ext_fet_mohms + r_gnd_par_route1_mohms
  586. *
  587. * r_gnd_int_fet_mohms, r_gnd_ext_fet_mohms, r_gnd_par_route1_mohms
  588. * <= MAX_USBCSS_HS_IMPEDANCE_MOHMS = 20,000
  589. * -->
  590. * FLOAT_TO_FIXED_XTALK * (r_gnd_int_fet_mohms + r_gnd_ext_fet_mohms +
  591. * r_gnd_par_route1_mohms)
  592. * <= FLOAT_TO_FIXED_XTALK * 3 * MAX_USBCSS_HS_IMPEDANCE_MOHMS =
  593. * (1 << 16) * 3 * 20,000 = 65,536 * 60,000 = 3,932,160,000 <= 2^32 - 1 =
  594. * 4,294,967,295 = U32_MAX
  595. *
  596. * The denominator is greater than 0: See Proof 2
  597. * The deonominator does not overflow: See Proof 3
  598. */
  599. return FLOAT_TO_FIXED_XTALK * (r_gnd_res_tot_mohms - r_gnd_par_route2_mohms) /
  600. (r_load_eff_mohms + r_gnd_res_tot_mohms + r_aud_res_tot_mohms);
  601. }
  602. static u32 get_xtalk_gain(u32 v_common_gnd_factor, u32 v_feedback_tap_factor)
  603. {
  604. return v_common_gnd_factor - v_feedback_tap_factor;
  605. }
  606. static void update_xtalk_scale_and_alpha(struct wcd939x_pdata *pdata, struct regmap *regmap)
  607. {
  608. u32 r_gnd_res_tot_mohms = 0, r_gnd_int_fet_mohms = 0, v_common_gnd_factor = 0;
  609. u32 v_feedback_tap_factor = 0, xtalk_gain = 0;
  610. if (!pdata || pdata->usbcss_hs.xtalk_config == XTALK_NONE)
  611. return;
  612. /* Orientation-dependent ground impedance parameters */
  613. #if IS_ENABLED(CONFIG_QCOM_WCD_USBSS_I2C)
  614. if (wcd_usbss_get_sbu_switch_orientation() == GND_SBU2_ORIENTATION_A) {
  615. r_gnd_res_tot_mohms = pdata->usbcss_hs.r_gnd_sbu2_res_tot_mohms;
  616. r_gnd_int_fet_mohms = pdata->usbcss_hs.r_gnd_sbu2_int_fet_mohms;
  617. } else if (wcd_usbss_get_sbu_switch_orientation() == GND_SBU1_ORIENTATION_B) {
  618. r_gnd_res_tot_mohms = pdata->usbcss_hs.r_gnd_sbu1_res_tot_mohms;
  619. r_gnd_int_fet_mohms = pdata->usbcss_hs.r_gnd_sbu1_int_fet_mohms;
  620. } else {
  621. pdata->usbcss_hs.scale_l = MAX_XTALK_SCALE;
  622. pdata->usbcss_hs.alpha_l = MIN_XTALK_ALPHA;
  623. pdata->usbcss_hs.scale_r = MAX_XTALK_SCALE;
  624. pdata->usbcss_hs.alpha_r = MIN_XTALK_ALPHA;
  625. return;
  626. }
  627. #endif
  628. /* Recall assumptions about L and R channel impedance parameters being equivalent */
  629. /* Xtalk gain calculation */
  630. v_common_gnd_factor = get_v_common_gnd_factor(r_gnd_res_tot_mohms,
  631. pdata->usbcss_hs.r_load_eff_l_mohms,
  632. pdata->usbcss_hs.r_aud_res_tot_l_mohms);
  633. if (pdata->usbcss_hs.xtalk_config == XTALK_ANALOG) {
  634. v_feedback_tap_factor = get_v_feedback_tap_factor_analog(
  635. pdata->usbcss_hs.r_gnd_par_route2_mohms,
  636. pdata->usbcss_hs.r_load_eff_l_mohms,
  637. r_gnd_res_tot_mohms,
  638. pdata->usbcss_hs.r_aud_res_tot_l_mohms);
  639. /* Update HD2 codes for analog xtalk */
  640. update_hd2_codes(regmap, r_gnd_res_tot_mohms, pdata->usbcss_hs.r_load_eff_l_mohms);
  641. } else {
  642. v_feedback_tap_factor = get_v_feedback_tap_factor_digital(
  643. r_gnd_int_fet_mohms,
  644. pdata->usbcss_hs.r_gnd_par_route1_mohms,
  645. pdata->usbcss_hs.r_load_eff_l_mohms,
  646. r_gnd_res_tot_mohms,
  647. pdata->usbcss_hs.r_aud_res_tot_l_mohms);
  648. }
  649. xtalk_gain = get_xtalk_gain(v_common_gnd_factor, v_feedback_tap_factor);
  650. /* Store scale and alpha values */
  651. pdata->usbcss_hs.scale_l = get_xtalk_scale(xtalk_gain);
  652. pdata->usbcss_hs.alpha_l = get_xtalk_alpha(xtalk_gain, pdata->usbcss_hs.scale_l);
  653. pdata->usbcss_hs.scale_r = pdata->usbcss_hs.scale_l;
  654. pdata->usbcss_hs.alpha_r = pdata->usbcss_hs.alpha_l;
  655. }
  656. static void update_ext_fet_res(struct wcd939x_pdata *pdata, u32 r_gnd_ext_fet_mohms)
  657. {
  658. if (!pdata)
  659. return;
  660. pdata->usbcss_hs.r_gnd_ext_fet_mohms = (r_gnd_ext_fet_mohms > MAX_USBCSS_HS_IMPEDANCE_MOHMS)
  661. ? MAX_USBCSS_HS_IMPEDANCE_MOHMS
  662. : r_gnd_ext_fet_mohms;
  663. pdata->usbcss_hs.r_aud_ext_fet_l_mohms = pdata->usbcss_hs.r_gnd_ext_fet_mohms;
  664. pdata->usbcss_hs.r_aud_ext_fet_r_mohms = pdata->usbcss_hs.r_gnd_ext_fet_mohms;
  665. pdata->usbcss_hs.r_gnd_sbu1_res_tot_mohms = get_r_gnd_res_tot_mohms(
  666. pdata->usbcss_hs.r_gnd_sbu1_int_fet_mohms,
  667. pdata->usbcss_hs.r_gnd_ext_fet_mohms,
  668. pdata->usbcss_hs.r_gnd_par_tot_mohms);
  669. pdata->usbcss_hs.r_gnd_sbu2_res_tot_mohms = get_r_gnd_res_tot_mohms(
  670. pdata->usbcss_hs.r_gnd_sbu2_int_fet_mohms,
  671. pdata->usbcss_hs.r_gnd_ext_fet_mohms,
  672. pdata->usbcss_hs.r_gnd_par_tot_mohms);
  673. pdata->usbcss_hs.r_aud_res_tot_l_mohms = get_r_aud_res_tot_mohms(
  674. pdata->usbcss_hs.r_aud_int_fet_l_mohms,
  675. pdata->usbcss_hs.r_aud_ext_fet_l_mohms);
  676. pdata->usbcss_hs.r_aud_res_tot_r_mohms = get_r_aud_res_tot_mohms(
  677. pdata->usbcss_hs.r_aud_int_fet_r_mohms,
  678. pdata->usbcss_hs.r_aud_ext_fet_r_mohms);
  679. }
  680. static void get_linearizer_taps(struct wcd939x_pdata *pdata, u32 *aud_tap, u32 *gnd_tap)
  681. {
  682. u32 r_gnd_res_tot_mohms = 0, r_gnd_int_fet_mohms = 0, v_aud1 = 0, v_aud2 = 0;
  683. u32 v_gnd_denom = 0, v_gnd1 = 0, v_gnd2 = 0, aud_denom = 0, gnd_denom = 0;
  684. if (!pdata)
  685. goto err_data;
  686. #if IS_ENABLED(CONFIG_QCOM_WCD_USBSS_I2C)
  687. /* Orientation-dependent ground impedance parameters */
  688. if (wcd_usbss_get_sbu_switch_orientation() == GND_SBU2_ORIENTATION_A) {
  689. r_gnd_res_tot_mohms = pdata->usbcss_hs.r_gnd_sbu2_res_tot_mohms;
  690. r_gnd_int_fet_mohms = pdata->usbcss_hs.r_gnd_sbu2_int_fet_mohms;
  691. } else if (wcd_usbss_get_sbu_switch_orientation() == GND_SBU1_ORIENTATION_B) {
  692. r_gnd_res_tot_mohms = pdata->usbcss_hs.r_gnd_sbu1_res_tot_mohms;
  693. r_gnd_int_fet_mohms = pdata->usbcss_hs.r_gnd_sbu1_int_fet_mohms;
  694. } else {
  695. goto err_data;
  696. }
  697. #endif
  698. /* Proof 6: Neither aud_denom nor gnd_denom is 0 and neither overflows.
  699. * MIN_K_TIMES_100 = -50 <= MAX_K_TIMES_100 <= 10,000 = k_aud_times_100
  700. * -->
  701. * 0 < 410 = 0.1 * 4,096 = 0.1 * FLOAT_TO_FIXED_LINEARIZER < {aud,gnd}_denom <
  702. * 101 * FLOAT_TO_FIXED_LINEARIZER =
  703. * 101 * (1 << 12) < 413,696 <= 4,294,967,295 = U32_MAX
  704. */
  705. aud_denom = (u32) (FLOAT_TO_FIXED_LINEARIZER +
  706. (FLOAT_TO_FIXED_LINEARIZER * pdata->usbcss_hs.k_aud_times_100 / 100));
  707. gnd_denom = (u32) (FLOAT_TO_FIXED_LINEARIZER +
  708. (FLOAT_TO_FIXED_LINEARIZER * pdata->usbcss_hs.k_gnd_times_100 / 100));
  709. /* Proof 7: v_aud2 does not overflow.
  710. * MIN_RL_EFF_MOHMS = 1 = <= pdata->usbcss_hs.r_load_eff_l_mohms <= MAX_RL_EFF_MOHMS =
  711. * 900,000
  712. *
  713. * pdata->usbcss_hs.r_gnd_par_tot_mohms = r_gnd_par_route1_mohms + r_gnd_par_route2_mohms
  714. * <= 2 * MAX_USBCSS_HS_IMPEDANCE_MOHMS = 4,0000
  715. *
  716. * r_gnd_int_fet_mohms, pdata->usbcss_hs.r_gnd_ext_fet_mohms, r_gnd_par_route1_mohms,
  717. * r_gnd_par_route2_mohms <= MAX_USBCSS_HS_IMPEDANCE_MOHMS = 20,000
  718. * -->
  719. * 1 <= v_aud2 <= MAX_RL_EFF_MOHMS + 4 * MAX_USBCSS_HS_IMPEDANCE_MOHMS =
  720. * 900,000 + 4 * 20,000 = 980,000 <= 4,294,967,295 = U32_MAX
  721. */
  722. v_aud2 = pdata->usbcss_hs.r_load_eff_l_mohms - pdata->usbcss_hs.r3 + r_gnd_int_fet_mohms +
  723. pdata->usbcss_hs.r_gnd_ext_fet_mohms + pdata->usbcss_hs.r_gnd_par_tot_mohms;
  724. /* Proof 8: v_aud1 does not overflow.
  725. * pdata->usbcss_hs.r_aud_ext_fet_l_mohms <= MAX_USBCSS_HS_IMPEDANCE_MOHMS = 20,000
  726. * From Proof 7,
  727. * 1 <= v_aud2 <= MAX_RL_EFF_MOHMS + 4 * MAX_USBCSS_HS_IMPEDANCE_MOHMS <= S32_MAX
  728. * -->
  729. * 1 <= v_aud1 <= MAX_RL_EFF_MOHMS + 5 * MAX_USBCSS_HS_IMPEDANCE_MOHMS =
  730. * 900,000 + 5 * 20,000 = 1,000,000 <= 2,147,483,647 = S32_MAX
  731. */
  732. v_aud1 = v_aud2 + pdata->usbcss_hs.r_aud_ext_fet_l_mohms;
  733. /* Proof 9: The numerator of v_aud1 does not overflow.
  734. * From Proof 8, v_aud1 was less than or equal to 1,000,000
  735. * Thus, the new v_aud1 numerator is less than or equal to
  736. * FLOAT_TO_FIXED_LINEARIZER * 1,000,000 =
  737. * 4,096 * 1,000,000 = 4,096,000,000 <= 4,294,967,295 = U32_MAX
  738. *
  739. * Proof 10: The denominator of v_aud1 is not 0.
  740. * From Proof 8, v_aud1 was greater than or equal to 1 > 0
  741. *
  742. * Proof 11: The denominator does not overflow.
  743. * From Proof 8, v_aud1 was less than or equal to 1,000,000
  744. * Thus, the new v_aud1 denominator is less than or equal to
  745. * 1,000,000 + pdata->usbcss_hs.r_aud_int_fet_l_mohms = 1,000,000 + 20,000 = 1,020,000 <=
  746. * 4,294,967,295 = U32_MAX
  747. */
  748. v_aud1 = FLOAT_TO_FIXED_LINEARIZER * v_aud1 /
  749. (v_aud1 + pdata->usbcss_hs.r_aud_int_fet_l_mohms);
  750. /* Proof 12: The numerator of v_aud2 does not overflow.
  751. * From Proof 7, v_aud2 was less than or equal to 980,000
  752. * Thus, the new v_aud2 numerator is less than or equal to
  753. * FLOAT_TO_FIXED_LINEARIZER * 980,000 =
  754. * 4,096 * 980,000 = 4,014,080,000 <= 4,294,967,295 = U32_MAX
  755. *
  756. * Proof 13: The denominator of v_aud2 is not 0.
  757. * From Proof 7, v_aud2 was greater than or equal to 1 > 0
  758. *
  759. * Proof 14: The denominator does not overflow.
  760. * From Proof 7, v_aud2 was less than or equal to 980,000
  761. * Thus, the new v_aud2 denominator is less than or equal to
  762. * 980,000 + pdata->usbcss_hs.r_aud_int_fet_l_mohms pdata->usbcss_hs.r_aud_int_fet_l_mohms =
  763. * 980,000 + 20,000 + + 20,000 = 1,020,000 <= 4,294,967,295 = U32_MAX
  764. */
  765. v_aud2 = FLOAT_TO_FIXED_LINEARIZER * v_aud2 /
  766. (v_aud2 + pdata->usbcss_hs.r_aud_ext_fet_l_mohms +
  767. pdata->usbcss_hs.r_aud_int_fet_l_mohms);
  768. /* Proof 15: The numerator of aud_tap does not overflow.
  769. * Looking at the formula for v_aud1 from Proofs 9 to 11, the greatest value of v_aud1 is
  770. * FLOAT_TO_FIXED_LINEARIZER = 4,096
  771. * Looking at the formula for v_aud2 from Proofs 12 to 14, the greatest value of v_aud2 is
  772. * FLOAT_TO_FIXED_LINEARIZER = 4,096
  773. * From Proof 6, aud_denom <= 413,696
  774. * Thus, the numerator <= 1,000 * 4,096 + 10 * 10,000 * 4,096 + 413,696 / 2 =
  775. * 4,096,000 + 409,600,000 + 206,848 = 413,902,848 <= 4,294,967,295 = U32_MAX
  776. *
  777. * Proof 16: The denominator of aud_tap is not 0.
  778. * From Proof 6, aud_denom > 410 > 0
  779. *
  780. * Proof 17: The denominator of aud_tap does not overflow
  781. * From Proof 6, aud_denom <= 413,696 <= 4,294,967,295 = U32_MAX
  782. *
  783. * Proof 18: The result of aud_tap does not overflow.
  784. * From Proof 15, the numerator <= 413,902,848 and from Proof 16, the denominator > 410
  785. * Thus, the divsion will be at most 1,009,519.
  786. * pdata->usbcss_hs.aud_tap_offset <= MAX_TAP_OFFSET = 1,023
  787. * The sum will thus be bounded by 1,009,519 + 1,023 = 1,010,542 <= 2,147,483,647 = S32_MAX
  788. * Note: aud_tap won't underflow either since pdata->usbcss_hs.aud_tap_offset >= -1,023
  789. */
  790. *aud_tap = (u32) ((s32) ((1000 * v_aud1 + 10 * pdata->usbcss_hs.k_aud_times_100 * v_aud2
  791. + aud_denom / 2) / aud_denom) + pdata->usbcss_hs.aud_tap_offset);
  792. if (*aud_tap > MAX_TAP)
  793. *aud_tap = MAX_TAP;
  794. else if (*aud_tap < MIN_TAP)
  795. *aud_tap = MIN_TAP;
  796. /* Proof 19: v_gnd_denom does not overflow.
  797. * r_gnd_res_tot_mohms = r_gnd_int_fet_mohms + r_gnd_ext_fet_mohms + r_gnd_par_tot_mohms
  798. *
  799. * r_gnd_int_fet_mohms, r_gnd_ext_fet_mohms, r_gnd_par_tot_mohms,
  800. * pdata->usbcss_hs.r_aud_ext_fet_l_mohms, pdata->usbcss_hs.r_aud_int_fet_l_mohms are all
  801. * <= MAX_USBCSS_HS_IMPEDANCE_MOHMS = 20,000
  802. *
  803. * pdata->usbcss_hs.r_load_eff_l_mohms <= MAX_RL_EFF_MOHMS = 900,000
  804. *
  805. * --> v_gnd_denom <= 3 * 20,000 + 900,000 + 2 * 20,000 = 60,000 + 900,000 + 40,000 =
  806. * 1,000,000 <= 4,294,967,295 = U32_MAX
  807. *
  808. * Proof 20: v_gnd_denom is not 0.
  809. * pdata->usbcss_hs.r_load_eff_l_mohms >= MIN_RL_EFF_MOHMS = 1
  810. * --> v_gnd_denom >= 1 > 0
  811. */
  812. v_gnd_denom = (r_gnd_res_tot_mohms + pdata->usbcss_hs.r_load_eff_l_mohms -
  813. pdata->usbcss_hs.r3 + pdata->usbcss_hs.r_aud_ext_fet_l_mohms +
  814. pdata->usbcss_hs.r_aud_int_fet_l_mohms);
  815. /* Proof 21: v_gnd1 numerator does not overflow.
  816. * r_gnd_int_fet_mohms <= MAX_USBCSS_HS_IMPEDANCE_MOHMS = 20,000
  817. * --> v_gnd1 numerator <= 4,096 * 20,000 = 81,920,000 <= 4,294,967,295 = U32_MAX
  818. *
  819. * v_gnd1 denominator is not 0: See Proof 20
  820. * v_gnd1 denominator does not overflow: See Proof 19
  821. */
  822. v_gnd1 = FLOAT_TO_FIXED_LINEARIZER * r_gnd_int_fet_mohms / v_gnd_denom;
  823. /* Proof 22: v_gnd2 numerator does not overflow.
  824. * r_gnd_int_fet_mohms <= MAX_USBCSS_HS_IMPEDANCE_MOHMS = 20,000
  825. * pdata->usbcss_hs.r_load_eff_l_mohms <= MAX_RL_EFF_MOHMS = 900,000
  826. * --> v_gnd2 numerator <= 4,096 * (20,000 + 900,000) = 4,096 * 920,000 = 3,768,320,000
  827. * <= 4,294,967,295 = U32_MAX
  828. *
  829. * v_gnd2 denominator is not 0: See Proof 20
  830. * v_gnd2 denominator does not overflow: See Proof 19
  831. */
  832. v_gnd2 = FLOAT_TO_FIXED_LINEARIZER * (r_gnd_int_fet_mohms +
  833. pdata->usbcss_hs.r_gnd_ext_fet_mohms) / v_gnd_denom;
  834. /* Proof 23: The numerator of gnd_tap does not overflow.
  835. * Looking at the formula for v_gnd1 from Proof 21, and considering that
  836. * r_gnd_res_tot_mohms = r_gnd_int_fet_mohms + r_gnd_ext_fet_mohms + r_gnd_par_tot_mohms,
  837. * the greatest value of v_gnd1 is FLOAT_TO_FIXED_LINEARIZER = 4,096.
  838. * Looking at the formula for v_aud2 from Proof 22 and again at the definintion of
  839. * r_gnd_res_tot_mohms, the greatest value of v_gnd2 is FLOAT_TO_FIXED_LINEARIZER = 4,096
  840. * From Proof 6, gnd_denom <= 413,696
  841. * Thus, the numerator <= 1,000 * 4,096 + 10 * 10,000 * 4,096 + 413,696 / 2 =
  842. * 4,096,000 + 409,600,000 + 206,848 = 413,902,848 <= 4,294,967,295 = U32_MAX
  843. *
  844. * Proof 24: The denominator of gnd_tap is not 0.
  845. * From Proof 6, gnd_denom > 410 > 0
  846. *
  847. * Proof 25: The denominator of gnd_tap does not overflow
  848. * From Proof 6, gnd_denom <= 413,696 <= 4,294,967,295 = U32_MAX
  849. *
  850. * Proof 26: The result of aud_tap does not overflow.
  851. * From Proof 15, the numerator <= 413,902,848 and from Proof 16, the denominator > 410
  852. * Thus, the divsion will be at most 1,009,519.
  853. * pdata->usbcss_hs.aud_tap_offset <= MAX_TAP_OFFSET = 1,023
  854. * The sum will thus be bounded by 1,009,519 + 1,023 = 1,010,542 <= 2,147,483,647 = S32_MAX
  855. * Note: gnd_tap won't underflow either since pdata->usbcss_hs.aud_tap_offset >= -1,023
  856. */
  857. *gnd_tap = (u32) ((s32) ((1000 * v_gnd1 + 10 * pdata->usbcss_hs.k_gnd_times_100 * v_gnd2
  858. + gnd_denom / 2) / gnd_denom) + pdata->usbcss_hs.gnd_tap_offset);
  859. if (*gnd_tap > MAX_TAP)
  860. *gnd_tap = MAX_TAP;
  861. else if (*gnd_tap < MIN_TAP)
  862. *gnd_tap = MIN_TAP;
  863. return;
  864. err_data:
  865. *aud_tap = 0;
  866. *gnd_tap = 0;
  867. }
  868. static void wcd939x_wcd_mbhc_calc_impedance(struct wcd_mbhc *mbhc, uint32_t *zl, uint32_t *zr)
  869. {
  870. struct snd_soc_component *component = mbhc->component;
  871. struct wcd939x_priv *wcd939x = dev_get_drvdata(component->dev);
  872. struct wcd939x_pdata *pdata = dev_get_platdata(wcd939x->dev);
  873. s16 reg0, reg1, reg2, reg3, reg4;
  874. uint32_t zdiff_val = 0, r_gnd_int_fet_mohms = 0, rl_eff_mohms = 0, r_gnd_ext_fet_mohms = 0;
  875. uint32_t aud_tap = 0, gnd_tap = 0;
  876. uint32_t *zdiff = &zdiff_val;
  877. int32_t z1L, z1R, z1Ls, z1Diff;
  878. int zMono, z_diff1, z_diff2;
  879. bool is_fsm_disable = false;
  880. struct wcd939x_mbhc_zdet_param zdet_param = {4, 0, 6, 0x18, 0x60, 0x78};
  881. struct wcd939x_mbhc_zdet_param *zdet_param_ptr = &zdet_param;
  882. s16 d1[] = {0, 30, 30, 6};
  883. uint32_t cached_regs[4][2] = {{WCD_USBSS_EXT_LIN_EN, 0}, {WCD_USBSS_EXT_SW_CTRL_1, 0},
  884. {WCD_USBSS_MG1_BIAS, 0}, {WCD_USBSS_MG2_BIAS, 0}};
  885. uint32_t l_3_6V_regs[4][2] = {{WCD_USBSS_EXT_LIN_EN, 0x00}, {WCD_USBSS_EXT_SW_CTRL_1, 0x00},
  886. {WCD_USBSS_MG1_BIAS, 0x0E}, {WCD_USBSS_MG2_BIAS, 0x0E}};
  887. uint32_t diff_regs[2][2] = {{WCD_USBSS_EXT_LIN_EN, 0x00}, {WCD_USBSS_EXT_SW_CTRL_1, 0xE8}};
  888. WCD_MBHC_RSC_ASSERT_LOCKED(mbhc);
  889. /* Turn on RX supplies */
  890. if (wcd939x->version == WCD939X_VERSION_2_0) {
  891. /* Start up Buck/Flyback, Enable RX bias, Use MBHC RCO for MBHC Zdet, Enable Vneg */
  892. regmap_update_bits(wcd939x->regmap, WCD939X_ZDET_VNEG_CTL, 0x4C, 0x4C);
  893. /* Wait 100us for settling */
  894. usleep_range(100, 110);
  895. /* Enable VNEGDAC_LDO */
  896. regmap_update_bits(wcd939x->regmap, WCD939X_ZDET_VNEG_CTL, 0x10, 0x10);
  897. /* Wait 100us for settling */
  898. usleep_range(100, 110);
  899. /* Keep PA left/right channels disabled */
  900. regmap_update_bits(wcd939x->regmap, WCD939X_ZDET_VNEG_CTL, 0x01, 0x01);
  901. /* Enable VPOS */
  902. regmap_update_bits(wcd939x->regmap, WCD939X_ZDET_VNEG_CTL, 0x20, 0x20);
  903. /* Wait 500us for settling */
  904. usleep_range(500, 510);
  905. }
  906. #if IS_ENABLED(CONFIG_QCOM_WCD_USBSS_I2C)
  907. /* Cache relevant USB-SS registers */
  908. wcd_usbss_register_update(cached_regs, WCD_USBSS_READ, ARRAY_SIZE(cached_regs));
  909. #endif
  910. /* Store register values */
  911. reg0 = snd_soc_component_read(component, WCD939X_MBHC_BTN5);
  912. reg1 = snd_soc_component_read(component, WCD939X_MBHC_BTN6);
  913. reg2 = snd_soc_component_read(component, WCD939X_MBHC_BTN7);
  914. reg3 = snd_soc_component_read(component, WCD939X_CTL_CLK);
  915. reg4 = snd_soc_component_read(component, WCD939X_ZDET_ANA_CTL);
  916. /* Disable the detection FSM */
  917. if (snd_soc_component_read(component, WCD939X_MBHC_ELECT) & 0x80) {
  918. is_fsm_disable = true;
  919. regmap_update_bits(wcd939x->regmap,
  920. WCD939X_MBHC_ELECT, 0x80, 0x00);
  921. }
  922. /* For NO-jack, disable L_DET_EN before Z-det measurements */
  923. if (mbhc->hphl_swh)
  924. regmap_update_bits(wcd939x->regmap,
  925. WCD939X_MBHC_MECH, 0x80, 0x00);
  926. /* Turn off 100k pull down on HPHL */
  927. regmap_update_bits(wcd939x->regmap,
  928. WCD939X_MBHC_MECH, 0x01, 0x00);
  929. /* Disable surge protection before impedance detection.
  930. * This is done to give correct value for high impedance.
  931. */
  932. regmap_update_bits(wcd939x->regmap,
  933. WCD939X_HPHLR_SURGE_EN, 0xC0, 0x00);
  934. /* 1ms delay needed after disable surge protection */
  935. usleep_range(1000, 1010);
  936. #if IS_ENABLED(CONFIG_QCOM_WCD_USBSS_I2C)
  937. /* Disable sense switch and MIC for USB-C analog platforms */
  938. if (mbhc->mbhc_cfg->enable_usbc_analog) {
  939. wcd_usbss_set_switch_settings_enable(SENSE_SWITCHES, USBSS_SWITCH_DISABLE);
  940. wcd_usbss_set_switch_settings_enable(MIC_SWITCHES, USBSS_SWITCH_DISABLE);
  941. }
  942. #endif
  943. /* L-channel impedance */
  944. #if IS_ENABLED(CONFIG_QCOM_WCD_USBSS_I2C)
  945. wcd_usbss_register_update(l_3_6V_regs, WCD_USBSS_WRITE, ARRAY_SIZE(l_3_6V_regs));
  946. #endif
  947. wcd939x_mbhc_zdet_ramp(component, zdet_param_ptr, &z1L, NULL, d1);
  948. if ((z1L == WCD939X_ZDET_FLOATING_IMPEDANCE) || (z1L > WCD939X_ZDET_VAL_100K)) {
  949. *zl = WCD939X_ZDET_FLOATING_IMPEDANCE;
  950. } else {
  951. *zl = z1L;
  952. wcd939x_wcd_mbhc_qfuse_cal(component, zl, 0);
  953. }
  954. /* Differential measurement for USB-C analog platforms */
  955. if (mbhc->mbhc_cfg->enable_usbc_analog) {
  956. dev_dbg(component->dev, "%s: effective impedance on HPH_L = %d(mohms)\n",
  957. __func__, *zl);
  958. goto diff_impedance;
  959. }
  960. dev_dbg(component->dev, "%s: impedance on HPH_L = %d(mohms)\n",
  961. __func__, *zl);
  962. /* R-channel impedance */
  963. wcd939x_mbhc_zdet_ramp(component, zdet_param_ptr, NULL, &z1R, d1);
  964. if ((z1R == WCD939X_ZDET_FLOATING_IMPEDANCE) || (z1R > WCD939X_ZDET_VAL_100K)) {
  965. *zr = WCD939X_ZDET_FLOATING_IMPEDANCE;
  966. } else {
  967. *zr = z1R;
  968. wcd939x_wcd_mbhc_qfuse_cal(component, zr, 4);
  969. }
  970. dev_dbg(component->dev, "%s: impedance on HPH_R = %d(mohms)\n",
  971. __func__, *zr);
  972. /* Convert from mohms to ohms (rounded) */
  973. *zl = (*zl + OHMS_TO_MILLIOHMS / 2) / OHMS_TO_MILLIOHMS;
  974. *zr = (*zr + OHMS_TO_MILLIOHMS / 2) / OHMS_TO_MILLIOHMS;
  975. goto mono_stereo_detection;
  976. diff_impedance:
  977. #if IS_ENABLED(CONFIG_QCOM_WCD_USBSS_I2C)
  978. /* Disable AGND switch */
  979. wcd_usbss_set_switch_settings_enable(AGND_SWITCHES, USBSS_SWITCH_DISABLE);
  980. wcd_usbss_register_update(diff_regs, WCD_USBSS_WRITE, ARRAY_SIZE(diff_regs));
  981. #endif
  982. /* Enable HPHR NCLAMP */
  983. regmap_update_bits(wcd939x->regmap, WCD939X_HPHLR_SURGE_MISC1, 0x08, 0x08);
  984. /* Diffrential impedance */
  985. wcd939x_mbhc_zdet_ramp(component, zdet_param_ptr, &z1Diff, NULL, d1);
  986. if ((z1Diff == WCD939X_ZDET_FLOATING_IMPEDANCE) || (z1Diff > WCD939X_ZDET_VAL_100K)) {
  987. *zdiff = WCD939X_ZDET_FLOATING_IMPEDANCE;
  988. } else {
  989. *zdiff = z1Diff;
  990. wcd939x_wcd_mbhc_qfuse_cal(component, zdiff, 0);
  991. }
  992. dev_dbg(component->dev, "%s: effective impedance on HPH_diff after calib = %d(mohms)\n",
  993. __func__, *zdiff);
  994. /* Disable HPHR NCLAMP */
  995. regmap_update_bits(wcd939x->regmap, WCD939X_HPHLR_SURGE_MISC1, 0x08, 0x00);
  996. #if IS_ENABLED(CONFIG_QCOM_WCD_USBSS_I2C)
  997. /* Enable AGND switch */
  998. wcd_usbss_set_switch_settings_enable(AGND_SWITCHES, USBSS_SWITCH_ENABLE);
  999. /* Get ground internal resistance based on orientation */
  1000. if (wcd_usbss_get_sbu_switch_orientation() == GND_SBU2_ORIENTATION_A) {
  1001. r_gnd_int_fet_mohms = pdata->usbcss_hs.r_gnd_sbu2_int_fet_mohms;
  1002. } else if (wcd_usbss_get_sbu_switch_orientation() == GND_SBU1_ORIENTATION_B) {
  1003. r_gnd_int_fet_mohms = pdata->usbcss_hs.r_gnd_sbu1_int_fet_mohms;
  1004. } else {
  1005. *zl = 0;
  1006. *zr = 0;
  1007. dev_dbg(component->dev, "%s: Invalid SBU switch orientation\n", __func__);
  1008. goto zdet_complete;
  1009. }
  1010. #endif
  1011. /* Compute external fet and effective load impedance */
  1012. r_gnd_ext_fet_mohms = *zl - *zdiff / 2 + pdata->usbcss_hs.r_surge_mohms / 2 -
  1013. pdata->usbcss_hs.r_gnd_par_tot_mohms - r_gnd_int_fet_mohms;
  1014. rl_eff_mohms = *zdiff / 2 - pdata->usbcss_hs.r_aud_int_fet_r_mohms -
  1015. pdata->usbcss_hs.r_gnd_ext_fet_mohms - pdata->usbcss_hs.r_surge_mohms / 2 -
  1016. pdata->usbcss_hs.r_gnd_par_tot_mohms;
  1017. /* Store values */
  1018. *zl = (rl_eff_mohms - pdata->usbcss_hs.r_conn_par_load_pos_mohms - pdata->usbcss_hs.r3 +
  1019. OHMS_TO_MILLIOHMS / 2) / OHMS_TO_MILLIOHMS;
  1020. *zr = *zl;
  1021. /* Update USBC-SS HS params */
  1022. if (rl_eff_mohms > MAX_RL_EFF_MOHMS)
  1023. rl_eff_mohms = MAX_RL_EFF_MOHMS;
  1024. else if (rl_eff_mohms == 0)
  1025. rl_eff_mohms = MIN_RL_EFF_MOHMS;
  1026. pdata->usbcss_hs.r_load_eff_l_mohms = rl_eff_mohms;
  1027. pdata->usbcss_hs.r_load_eff_r_mohms = rl_eff_mohms;
  1028. update_ext_fet_res(pdata, r_gnd_ext_fet_mohms);
  1029. update_xtalk_scale_and_alpha(pdata, wcd939x->regmap);
  1030. dev_dbg(component->dev, "%s: Xtalk scale is 0x%x and alpha is 0x%x\n",
  1031. __func__, pdata->usbcss_hs.scale_l, pdata->usbcss_hs.alpha_l);
  1032. get_linearizer_taps(pdata, &aud_tap, &gnd_tap);
  1033. #if IS_ENABLED(CONFIG_QCOM_WCD_USBSS_I2C)
  1034. wcd_usbss_set_linearizer_sw_tap(aud_tap, gnd_tap);
  1035. #endif
  1036. dev_dbg(component->dev, "%s: Linearizer aud_tap is 0x%x and gnd_tap is 0x%x\n",
  1037. __func__, aud_tap, gnd_tap);
  1038. mono_stereo_detection:
  1039. /* Mono/stereo detection */
  1040. if ((*zl == WCD939X_ZDET_FLOATING_IMPEDANCE) && (*zr == WCD939X_ZDET_FLOATING_IMPEDANCE)) {
  1041. dev_dbg(component->dev,
  1042. "%s: plug type is invalid or extension cable\n",
  1043. __func__);
  1044. goto zdet_complete;
  1045. }
  1046. if ((*zl == WCD939X_ZDET_FLOATING_IMPEDANCE) ||
  1047. (*zr == WCD939X_ZDET_FLOATING_IMPEDANCE) ||
  1048. ((*zl < WCD_MONO_HS_MIN_THR) && (*zr > WCD_MONO_HS_MIN_THR)) ||
  1049. ((*zl > WCD_MONO_HS_MIN_THR) && (*zr < WCD_MONO_HS_MIN_THR))) {
  1050. dev_dbg(component->dev,
  1051. "%s: Mono plug type with one ch floating or shorted to GND\n",
  1052. __func__);
  1053. mbhc->hph_type = WCD_MBHC_HPH_MONO;
  1054. goto zdet_complete;
  1055. }
  1056. snd_soc_component_update_bits(component, WCD939X_R_ATEST, 0x02, 0x02);
  1057. snd_soc_component_update_bits(component, WCD939X_PA_CTL2, 0x40, 0x01);
  1058. wcd939x_mbhc_zdet_ramp(component, zdet_param_ptr, &z1Ls, NULL, d1);
  1059. snd_soc_component_update_bits(component, WCD939X_PA_CTL2, 0x40, 0x00);
  1060. snd_soc_component_update_bits(component, WCD939X_R_ATEST, 0x02, 0x00);
  1061. z1Ls /= 1000;
  1062. wcd939x_wcd_mbhc_qfuse_cal(component, &z1Ls, 0);
  1063. /* Parallel of left Z and 9 ohm pull down resistor */
  1064. zMono = ((*zl) * 9) / ((*zl) + 9);
  1065. z_diff1 = (z1Ls > zMono) ? (z1Ls - zMono) : (zMono - z1Ls);
  1066. z_diff2 = ((*zl) > z1Ls) ? ((*zl) - z1Ls) : (z1Ls - (*zl));
  1067. if ((z_diff1 * (*zl + z1Ls)) > (z_diff2 * (z1Ls + zMono))) {
  1068. dev_dbg(component->dev, "%s: stereo plug type detected\n",
  1069. __func__);
  1070. mbhc->hph_type = WCD_MBHC_HPH_STEREO;
  1071. } else {
  1072. dev_dbg(component->dev, "%s: MONO plug type detected\n",
  1073. __func__);
  1074. mbhc->hph_type = WCD_MBHC_HPH_MONO;
  1075. }
  1076. zdet_complete:
  1077. #if IS_ENABLED(CONFIG_QCOM_WCD_USBSS_I2C)
  1078. /* Enable sense switch and MIC for USB-C analog platforms */
  1079. if (mbhc->mbhc_cfg->enable_usbc_analog) {
  1080. wcd_usbss_set_switch_settings_enable(SENSE_SWITCHES, USBSS_SWITCH_ENABLE);
  1081. wcd_usbss_set_switch_settings_enable(MIC_SWITCHES, USBSS_SWITCH_ENABLE);
  1082. }
  1083. #endif
  1084. /* Enable surge protection again after impedance detection */
  1085. regmap_update_bits(wcd939x->regmap,
  1086. WCD939X_HPHLR_SURGE_EN, 0xC0, 0xC0);
  1087. snd_soc_component_write(component, WCD939X_MBHC_BTN5, reg0);
  1088. snd_soc_component_write(component, WCD939X_MBHC_BTN6, reg1);
  1089. snd_soc_component_write(component, WCD939X_MBHC_BTN7, reg2);
  1090. /* Turn on 100k pull down on HPHL */
  1091. regmap_update_bits(wcd939x->regmap,
  1092. WCD939X_MBHC_MECH, 0x01, 0x01);
  1093. /* For NO-jack, re-enable L_DET_EN after Z-det measurements */
  1094. if (mbhc->hphl_swh)
  1095. regmap_update_bits(wcd939x->regmap,
  1096. WCD939X_MBHC_MECH, 0x80, 0x80);
  1097. snd_soc_component_write(component, WCD939X_ZDET_ANA_CTL, reg4);
  1098. snd_soc_component_write(component, WCD939X_CTL_CLK, reg3);
  1099. if (is_fsm_disable)
  1100. regmap_update_bits(wcd939x->regmap,
  1101. WCD939X_MBHC_ELECT, 0x80, 0x80);
  1102. #if IS_ENABLED(CONFIG_QCOM_WCD_USBSS_I2C)
  1103. wcd_usbss_register_update(cached_regs, WCD_USBSS_WRITE, ARRAY_SIZE(cached_regs));
  1104. #endif
  1105. /* Turn off RX supplies */
  1106. if (wcd939x->version == WCD939X_VERSION_2_0) {
  1107. /* Set VPOS to be controlled by RX */
  1108. regmap_update_bits(wcd939x->regmap, WCD939X_ZDET_VNEG_CTL, 0x20, 0x00);
  1109. /* Wait 500us for settling */
  1110. usleep_range(500, 510);
  1111. /* Set PA Left/Right channels and VNEGDAC_LDO to be controlled by RX */
  1112. regmap_update_bits(wcd939x->regmap, WCD939X_ZDET_VNEG_CTL, 0x11, 0x00);
  1113. /* Wait 100us for settling */
  1114. usleep_range(100, 110);
  1115. /* Set Vneg mode and enable to be controlled by RX */
  1116. regmap_update_bits(wcd939x->regmap, WCD939X_ZDET_VNEG_CTL, 0x06, 0x00);
  1117. /* Wait 100us for settling */
  1118. usleep_range(100, 110);
  1119. /* Set RX bias to be controlled by RX and set Buck/Flyback back to SWR Rx clock */
  1120. regmap_update_bits(wcd939x->regmap, WCD939X_ZDET_VNEG_CTL, 0x48, 0x00);
  1121. }
  1122. }
  1123. static void wcd939x_mbhc_gnd_det_ctrl(struct snd_soc_component *component,
  1124. bool enable)
  1125. {
  1126. if (enable) {
  1127. snd_soc_component_update_bits(component, WCD939X_MBHC_MECH,
  1128. 0x02, 0x02);
  1129. snd_soc_component_update_bits(component, WCD939X_MBHC_MECH,
  1130. 0x40, 0x40);
  1131. } else {
  1132. snd_soc_component_update_bits(component, WCD939X_MBHC_MECH,
  1133. 0x40, 0x00);
  1134. snd_soc_component_update_bits(component, WCD939X_MBHC_MECH,
  1135. 0x02, 0x00);
  1136. }
  1137. }
  1138. static void wcd939x_mbhc_hph_pull_down_ctrl(struct snd_soc_component *component,
  1139. bool enable)
  1140. {
  1141. if (enable) {
  1142. snd_soc_component_update_bits(component, WCD939X_PA_CTL2,
  1143. 0x40, 0x40);
  1144. snd_soc_component_update_bits(component, WCD939X_PA_CTL2,
  1145. 0x10, 0x10);
  1146. } else {
  1147. snd_soc_component_update_bits(component, WCD939X_PA_CTL2,
  1148. 0x40, 0x00);
  1149. snd_soc_component_update_bits(component, WCD939X_PA_CTL2,
  1150. 0x10, 0x00);
  1151. }
  1152. }
  1153. static void wcd939x_mbhc_moisture_config(struct wcd_mbhc *mbhc)
  1154. {
  1155. struct snd_soc_component *component = mbhc->component;
  1156. if ((mbhc->moist_rref == R_OFF) ||
  1157. (mbhc->mbhc_cfg->enable_usbc_analog)) {
  1158. snd_soc_component_update_bits(component, WCD939X_CTL_2,
  1159. 0x0C, R_OFF << 2);
  1160. return;
  1161. }
  1162. /* Do not enable moisture detection if jack type is NC */
  1163. if (!mbhc->hphl_swh) {
  1164. dev_dbg(component->dev, "%s: disable moisture detection for NC\n",
  1165. __func__);
  1166. snd_soc_component_update_bits(component, WCD939X_CTL_2,
  1167. 0x0C, R_OFF << 2);
  1168. return;
  1169. }
  1170. snd_soc_component_update_bits(component, WCD939X_CTL_2,
  1171. 0x0C, mbhc->moist_rref << 2);
  1172. }
  1173. static void wcd939x_mbhc_moisture_detect_en(struct wcd_mbhc *mbhc, bool enable)
  1174. {
  1175. struct snd_soc_component *component = mbhc->component;
  1176. if (enable)
  1177. snd_soc_component_update_bits(component, WCD939X_CTL_2,
  1178. 0x0C, mbhc->moist_rref << 2);
  1179. else
  1180. snd_soc_component_update_bits(component, WCD939X_CTL_2,
  1181. 0x0C, R_OFF << 2);
  1182. }
  1183. static bool wcd939x_mbhc_get_moisture_status(struct wcd_mbhc *mbhc)
  1184. {
  1185. struct snd_soc_component *component = mbhc->component;
  1186. bool ret = false;
  1187. if ((mbhc->moist_rref == R_OFF) ||
  1188. (mbhc->mbhc_cfg->enable_usbc_analog)) {
  1189. snd_soc_component_update_bits(component, WCD939X_CTL_2,
  1190. 0x0C, R_OFF << 2);
  1191. goto done;
  1192. }
  1193. /* Do not enable moisture detection if jack type is NC */
  1194. if (!mbhc->hphl_swh) {
  1195. dev_dbg(component->dev, "%s: disable moisture detection for NC\n",
  1196. __func__);
  1197. snd_soc_component_update_bits(component, WCD939X_CTL_2,
  1198. 0x0C, R_OFF << 2);
  1199. goto done;
  1200. }
  1201. /*
  1202. * If moisture_en is already enabled, then skip to plug type
  1203. * detection.
  1204. */
  1205. if ((snd_soc_component_read(component, WCD939X_CTL_2) & 0x0C))
  1206. goto done;
  1207. wcd939x_mbhc_moisture_detect_en(mbhc, true);
  1208. /* Read moisture comparator status */
  1209. ret = ((snd_soc_component_read(component, WCD939X_FSM_STATUS)
  1210. & 0x20) ? 0 : 1);
  1211. done:
  1212. return ret;
  1213. }
  1214. static void wcd939x_mbhc_moisture_polling_ctrl(struct wcd_mbhc *mbhc,
  1215. bool enable)
  1216. {
  1217. struct snd_soc_component *component = mbhc->component;
  1218. snd_soc_component_update_bits(component,
  1219. WCD939X_MOISTURE_DET_POLLING_CTRL,
  1220. 0x04, (enable << 2));
  1221. }
  1222. static void wcd939x_mbhc_bcs_enable(struct wcd_mbhc *mbhc,
  1223. bool bcs_enable)
  1224. {
  1225. if (bcs_enable)
  1226. wcd939x_disable_bcs_before_slow_insert(mbhc->component, false);
  1227. else
  1228. wcd939x_disable_bcs_before_slow_insert(mbhc->component, true);
  1229. }
  1230. static void wcd939x_surge_reset_routine(struct wcd_mbhc *mbhc)
  1231. {
  1232. struct wcd939x_priv *wcd939x = snd_soc_component_get_drvdata(mbhc->component);
  1233. regcache_mark_dirty(wcd939x->regmap);
  1234. regcache_sync(wcd939x->regmap);
  1235. }
  1236. static const struct wcd_mbhc_cb mbhc_cb = {
  1237. .request_irq = wcd939x_mbhc_request_irq,
  1238. .irq_control = wcd939x_mbhc_irq_control,
  1239. .free_irq = wcd939x_mbhc_free_irq,
  1240. .clk_setup = wcd939x_mbhc_clk_setup,
  1241. .map_btn_code_to_num = wcd939x_mbhc_btn_to_num,
  1242. .mbhc_bias = wcd939x_mbhc_mbhc_bias_control,
  1243. .set_btn_thr = wcd939x_mbhc_program_btn_thr,
  1244. .lock_sleep = wcd939x_mbhc_lock_sleep,
  1245. .register_notifier = wcd939x_mbhc_register_notifier,
  1246. .micbias_enable_status = wcd939x_mbhc_micb_en_status,
  1247. .hph_pa_on_status = wcd939x_mbhc_hph_pa_on_status,
  1248. .hph_pull_up_control_v2 = wcd939x_mbhc_hph_l_pull_up_control,
  1249. .mbhc_micbias_control = wcd939x_mbhc_request_micbias,
  1250. .mbhc_micb_ramp_control = wcd939x_mbhc_micb_ramp_control,
  1251. .get_hwdep_fw_cal = wcd939x_get_hwdep_fw_cal,
  1252. .mbhc_micb_ctrl_thr_mic = wcd939x_mbhc_micb_ctrl_threshold_mic,
  1253. .compute_impedance = wcd939x_wcd_mbhc_calc_impedance,
  1254. .mbhc_gnd_det_ctrl = wcd939x_mbhc_gnd_det_ctrl,
  1255. .hph_pull_down_ctrl = wcd939x_mbhc_hph_pull_down_ctrl,
  1256. .mbhc_moisture_config = wcd939x_mbhc_moisture_config,
  1257. .mbhc_get_moisture_status = wcd939x_mbhc_get_moisture_status,
  1258. .mbhc_moisture_polling_ctrl = wcd939x_mbhc_moisture_polling_ctrl,
  1259. .mbhc_moisture_detect_en = wcd939x_mbhc_moisture_detect_en,
  1260. .bcs_enable = wcd939x_mbhc_bcs_enable,
  1261. .surge_reset_routine = wcd939x_surge_reset_routine,
  1262. };
  1263. static int wcd939x_get_hph_type(struct snd_kcontrol *kcontrol,
  1264. struct snd_ctl_elem_value *ucontrol)
  1265. {
  1266. struct snd_soc_component *component =
  1267. snd_soc_kcontrol_component(kcontrol);
  1268. struct wcd939x_mbhc *wcd939x_mbhc = wcd939x_soc_get_mbhc(component);
  1269. struct wcd_mbhc *mbhc;
  1270. if (!wcd939x_mbhc) {
  1271. dev_err_ratelimited(component->dev, "%s: mbhc not initialized!\n", __func__);
  1272. return -EINVAL;
  1273. }
  1274. mbhc = &wcd939x_mbhc->wcd_mbhc;
  1275. ucontrol->value.integer.value[0] = (u32) mbhc->hph_type;
  1276. dev_dbg(component->dev, "%s: hph_type = %u\n", __func__, mbhc->hph_type);
  1277. return 0;
  1278. }
  1279. static int wcd939x_hph_impedance_get(struct snd_kcontrol *kcontrol,
  1280. struct snd_ctl_elem_value *ucontrol)
  1281. {
  1282. uint32_t zl, zr;
  1283. bool hphr;
  1284. struct soc_multi_mixer_control *mc;
  1285. struct snd_soc_component *component =
  1286. snd_soc_kcontrol_component(kcontrol);
  1287. struct wcd939x_mbhc *wcd939x_mbhc = wcd939x_soc_get_mbhc(component);
  1288. if (!wcd939x_mbhc) {
  1289. dev_err_ratelimited(component->dev, "%s: mbhc not initialized!\n", __func__);
  1290. return -EINVAL;
  1291. }
  1292. mc = (struct soc_multi_mixer_control *)(kcontrol->private_value);
  1293. hphr = mc->shift;
  1294. wcd_mbhc_get_impedance(&wcd939x_mbhc->wcd_mbhc, &zl, &zr);
  1295. dev_dbg(component->dev, "%s: zl=%u(ohms), zr=%u(ohms)\n", __func__, zl, zr);
  1296. ucontrol->value.integer.value[0] = hphr ? zr : zl;
  1297. return 0;
  1298. }
  1299. static const struct snd_kcontrol_new hph_type_detect_controls[] = {
  1300. SOC_SINGLE_EXT("HPH Type", 0, 0, UINT_MAX, 0,
  1301. wcd939x_get_hph_type, NULL),
  1302. };
  1303. static const struct snd_kcontrol_new impedance_detect_controls[] = {
  1304. SOC_SINGLE_EXT("HPHL Impedance", 0, 0, UINT_MAX, 0,
  1305. wcd939x_hph_impedance_get, NULL),
  1306. SOC_SINGLE_EXT("HPHR Impedance", 0, 1, UINT_MAX, 0,
  1307. wcd939x_hph_impedance_get, NULL),
  1308. };
  1309. /*
  1310. * wcd939x_mbhc_get_impedance: get impedance of headphone
  1311. * left and right channels
  1312. * @wcd939x_mbhc: handle to struct wcd939x_mbhc *
  1313. * @zl: handle to left-ch impedance
  1314. * @zr: handle to right-ch impedance
  1315. * return 0 for success or error code in case of failure
  1316. */
  1317. int wcd939x_mbhc_get_impedance(struct wcd939x_mbhc *wcd939x_mbhc,
  1318. uint32_t *zl, uint32_t *zr)
  1319. {
  1320. if (!wcd939x_mbhc) {
  1321. pr_err_ratelimited("%s: mbhc not initialized!\n", __func__);
  1322. return -EINVAL;
  1323. }
  1324. if (!zl || !zr) {
  1325. pr_err_ratelimited("%s: zl or zr null!\n", __func__);
  1326. return -EINVAL;
  1327. }
  1328. return wcd_mbhc_get_impedance(&wcd939x_mbhc->wcd_mbhc, zl, zr);
  1329. }
  1330. EXPORT_SYMBOL(wcd939x_mbhc_get_impedance);
  1331. /*
  1332. * wcd939x_mbhc_hs_detect: starts mbhc insertion/removal functionality
  1333. * @codec: handle to snd_soc_component *
  1334. * @mbhc_cfg: handle to mbhc configuration structure
  1335. * return 0 if mbhc_start is success or error code in case of failure
  1336. */
  1337. int wcd939x_mbhc_hs_detect(struct snd_soc_component *component,
  1338. struct wcd_mbhc_config *mbhc_cfg)
  1339. {
  1340. struct wcd939x_priv *wcd939x = NULL;
  1341. struct wcd939x_mbhc *wcd939x_mbhc = NULL;
  1342. if (!component) {
  1343. pr_err_ratelimited("%s: component is NULL\n", __func__);
  1344. return -EINVAL;
  1345. }
  1346. wcd939x = snd_soc_component_get_drvdata(component);
  1347. if (!wcd939x) {
  1348. pr_err_ratelimited("%s: wcd939x is NULL\n", __func__);
  1349. return -EINVAL;
  1350. }
  1351. wcd939x_mbhc = wcd939x->mbhc;
  1352. if (!wcd939x_mbhc) {
  1353. dev_err_ratelimited(component->dev, "%s: mbhc not initialized!\n", __func__);
  1354. return -EINVAL;
  1355. }
  1356. return wcd_mbhc_start(&wcd939x_mbhc->wcd_mbhc, mbhc_cfg);
  1357. }
  1358. EXPORT_SYMBOL(wcd939x_mbhc_hs_detect);
  1359. /*
  1360. * wcd939x_mbhc_hs_detect_exit: stop mbhc insertion/removal functionality
  1361. * @component: handle to snd_soc_component *
  1362. */
  1363. void wcd939x_mbhc_hs_detect_exit(struct snd_soc_component *component)
  1364. {
  1365. struct wcd939x_priv *wcd939x = NULL;
  1366. struct wcd939x_mbhc *wcd939x_mbhc = NULL;
  1367. if (!component) {
  1368. pr_err_ratelimited("%s: component is NULL\n", __func__);
  1369. return;
  1370. }
  1371. wcd939x = snd_soc_component_get_drvdata(component);
  1372. if (!wcd939x) {
  1373. pr_err_ratelimited("%s: wcd939x is NULL\n", __func__);
  1374. return;
  1375. }
  1376. wcd939x_mbhc = wcd939x->mbhc;
  1377. if (!wcd939x_mbhc) {
  1378. dev_err_ratelimited(component->dev, "%s: mbhc not initialized!\n", __func__);
  1379. return;
  1380. }
  1381. wcd_mbhc_stop(&wcd939x_mbhc->wcd_mbhc);
  1382. }
  1383. EXPORT_SYMBOL(wcd939x_mbhc_hs_detect_exit);
  1384. /*
  1385. * wcd939x_mbhc_ssr_down: stop mbhc during
  1386. * wcd939x subsystem restart
  1387. * mbhc: pointer to wcd937x_mbhc structure
  1388. * component: handle to snd_soc_component *
  1389. */
  1390. void wcd939x_mbhc_ssr_down(struct wcd939x_mbhc *mbhc,
  1391. struct snd_soc_component *component)
  1392. {
  1393. struct wcd_mbhc *wcd_mbhc = NULL;
  1394. if (!mbhc || !component)
  1395. return;
  1396. wcd_mbhc = &mbhc->wcd_mbhc;
  1397. if (!wcd_mbhc) {
  1398. dev_err_ratelimited(component->dev, "%s: wcd_mbhc is NULL\n", __func__);
  1399. return;
  1400. }
  1401. wcd939x_mbhc_hs_detect_exit(component);
  1402. wcd_mbhc_deinit(wcd_mbhc);
  1403. }
  1404. EXPORT_SYMBOL(wcd939x_mbhc_ssr_down);
  1405. /*
  1406. * wcd939x_mbhc_post_ssr_init: initialize mbhc for
  1407. * wcd939x post subsystem restart
  1408. * @mbhc: poniter to wcd939x_mbhc structure
  1409. * @component: handle to snd_soc_component *
  1410. *
  1411. * return 0 if mbhc_init is success or error code in case of failure
  1412. */
  1413. int wcd939x_mbhc_post_ssr_init(struct wcd939x_mbhc *mbhc,
  1414. struct snd_soc_component *component)
  1415. {
  1416. int ret = 0;
  1417. struct wcd_mbhc *wcd_mbhc = NULL;
  1418. if (!mbhc || !component)
  1419. return -EINVAL;
  1420. wcd_mbhc = &mbhc->wcd_mbhc;
  1421. if (wcd_mbhc == NULL) {
  1422. pr_err("%s: wcd_mbhc is NULL\n", __func__);
  1423. return -EINVAL;
  1424. }
  1425. /* Reset detection type to insertion after SSR recovery */
  1426. snd_soc_component_update_bits(component, WCD939X_MBHC_MECH,
  1427. 0x20, 0x20);
  1428. ret = wcd_mbhc_init(wcd_mbhc, component, &mbhc_cb, &intr_ids,
  1429. wcd_mbhc_registers, WCD939X_ZDET_SUPPORTED);
  1430. if (ret) {
  1431. dev_err(component->dev, "%s: mbhc initialization failed\n",
  1432. __func__);
  1433. goto done;
  1434. }
  1435. done:
  1436. return ret;
  1437. }
  1438. EXPORT_SYMBOL(wcd939x_mbhc_post_ssr_init);
  1439. /*
  1440. * wcd939x_mbhc_init: initialize mbhc for wcd939x
  1441. * @mbhc: poniter to wcd939x_mbhc struct pointer to store the configs
  1442. * @codec: handle to snd_soc_component *
  1443. * @fw_data: handle to firmware data
  1444. *
  1445. * return 0 if mbhc_init is success or error code in case of failure
  1446. */
  1447. int wcd939x_mbhc_init(struct wcd939x_mbhc **mbhc,
  1448. struct snd_soc_component *component,
  1449. struct fw_info *fw_data)
  1450. {
  1451. struct wcd939x_mbhc *wcd939x_mbhc = NULL;
  1452. struct wcd_mbhc *wcd_mbhc = NULL;
  1453. int ret = 0;
  1454. struct wcd939x_pdata *pdata;
  1455. if (!component) {
  1456. pr_err("%s: component is NULL\n", __func__);
  1457. return -EINVAL;
  1458. }
  1459. wcd939x_mbhc = devm_kzalloc(component->dev, sizeof(struct wcd939x_mbhc),
  1460. GFP_KERNEL);
  1461. if (!wcd939x_mbhc)
  1462. return -ENOMEM;
  1463. wcd939x_mbhc->fw_data = fw_data;
  1464. BLOCKING_INIT_NOTIFIER_HEAD(&wcd939x_mbhc->notifier);
  1465. wcd_mbhc = &wcd939x_mbhc->wcd_mbhc;
  1466. if (wcd_mbhc == NULL) {
  1467. pr_err("%s: wcd_mbhc is NULL\n", __func__);
  1468. ret = -EINVAL;
  1469. goto err;
  1470. }
  1471. /* Setting default mbhc detection logic to ADC */
  1472. wcd_mbhc->mbhc_detection_logic = WCD_DETECTION_ADC;
  1473. /* Down ramp timer set-up */
  1474. timer_setup(&wcd939x_mbhc->rdown_timer, rdown_timer_callback, 0);
  1475. wcd939x_mbhc->rdown_prev_iter = 0;
  1476. wcd939x_mbhc->rdown_timer_complete = false;
  1477. pdata = dev_get_platdata(component->dev);
  1478. if (!pdata) {
  1479. dev_err(component->dev, "%s: pdata pointer is NULL\n",
  1480. __func__);
  1481. ret = -EINVAL;
  1482. goto err;
  1483. }
  1484. wcd_mbhc->micb_mv = pdata->micbias.micb2_mv;
  1485. ret = wcd_mbhc_init(wcd_mbhc, component, &mbhc_cb,
  1486. &intr_ids, wcd_mbhc_registers,
  1487. WCD939X_ZDET_SUPPORTED);
  1488. if (ret) {
  1489. dev_err(component->dev, "%s: mbhc initialization failed\n",
  1490. __func__);
  1491. goto err;
  1492. }
  1493. (*mbhc) = wcd939x_mbhc;
  1494. snd_soc_add_component_controls(component, impedance_detect_controls,
  1495. ARRAY_SIZE(impedance_detect_controls));
  1496. snd_soc_add_component_controls(component, hph_type_detect_controls,
  1497. ARRAY_SIZE(hph_type_detect_controls));
  1498. return 0;
  1499. err:
  1500. if (wcd939x_mbhc)
  1501. del_timer(&wcd939x_mbhc->rdown_timer);
  1502. devm_kfree(component->dev, wcd939x_mbhc);
  1503. return ret;
  1504. }
  1505. EXPORT_SYMBOL(wcd939x_mbhc_init);
  1506. /*
  1507. * wcd939x_mbhc_deinit: deinitialize mbhc for wcd939x
  1508. * @codec: handle to snd_soc_component *
  1509. */
  1510. void wcd939x_mbhc_deinit(struct snd_soc_component *component)
  1511. {
  1512. struct wcd939x_priv *wcd939x;
  1513. struct wcd939x_mbhc *wcd939x_mbhc;
  1514. if (!component) {
  1515. pr_err("%s: component is NULL\n", __func__);
  1516. return;
  1517. }
  1518. wcd939x = snd_soc_component_get_drvdata(component);
  1519. if (!wcd939x) {
  1520. pr_err("%s: wcd939x is NULL\n", __func__);
  1521. return;
  1522. }
  1523. wcd939x_mbhc = wcd939x->mbhc;
  1524. if (wcd939x_mbhc) {
  1525. del_timer(&wcd939x_mbhc->rdown_timer);
  1526. wcd_mbhc_deinit(&wcd939x_mbhc->wcd_mbhc);
  1527. devm_kfree(component->dev, wcd939x_mbhc);
  1528. }
  1529. }
  1530. EXPORT_SYMBOL(wcd939x_mbhc_deinit);