Files
android_kernel_samsung_sm86…/msm/sde/sde_hw_catalog.c

5064 line
138 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (c) 2015-2020, The Linux Foundation. All rights reserved.
*/
#define pr_fmt(fmt) "[drm:%s:%d] " fmt, __func__, __LINE__
#include <linux/slab.h>
#include <linux/of_address.h>
#include <linux/platform_device.h>
#include <linux/soc/qcom/llcc-qcom.h>
#include <linux/pm_qos.h>
#include "sde_hw_mdss.h"
#include "sde_hw_catalog.h"
#include "sde_hw_catalog_format.h"
#include "sde_kms.h"
#include "sde_hw_uidle.h"
#include "sde_connector.h"
/*************************************************************
* MACRO DEFINITION
*************************************************************/
/**
* Max hardware block in certain hardware. For ex: sspp pipes
* can have QSEED, pcc, igc, pa, csc, qos entries, etc. This count is
* 64 based on software design. It should be increased if any of the
* hardware block has more subblocks.
*/
#define MAX_SDE_HW_BLK 64
/* each entry will have register address and bit offset in that register */
#define MAX_BIT_OFFSET 2
/* max table size for dts property lists, increase if tables grow larger */
#define MAX_SDE_DT_TABLE_SIZE 64
/* default line width for sspp, mixer, ds (input), dsc, wb */
#define DEFAULT_SDE_LINE_WIDTH 2048
/* default output line width for ds */
#define DEFAULT_SDE_OUTPUT_LINE_WIDTH 2560
/* max mixer blend stages */
#define DEFAULT_SDE_MIXER_BLENDSTAGES 7
/*
* max bank bit for macro tile and ubwc format.
* this value is left shifted and written to register
*/
#define DEFAULT_SDE_HIGHEST_BANK_BIT 0x02
/* No UBWC */
#define DEFAULT_SDE_UBWC_NONE 0x0
/* default ubwc static config register value */
#define DEFAULT_SDE_UBWC_STATIC 0x0
/* default ubwc swizzle register value */
#define DEFAULT_SDE_UBWC_SWIZZLE 0x0
/* default ubwc macrotile mode value */
#define DEFAULT_SDE_UBWC_MACROTILE_MODE 0x0
/* default hardware block size if dtsi entry is not present */
#define DEFAULT_SDE_HW_BLOCK_LEN 0x100
/* total number of intf - dp, dsi, hdmi */
#define INTF_COUNT 3
#define MAX_UPSCALE_RATIO 20
#define MAX_DOWNSCALE_RATIO 4
#define SSPP_UNITY_SCALE 1
#define MAX_DOWNSCALE_RATIO_INROT_NOPD_RT_NUMERATOR 11
#define MAX_DOWNSCALE_RATIO_INROT_NOPD_RT_DENOMINATOR 5
#define MAX_DOWNSCALE_RATIO_INROT_PD_RT_NUMERATOR 4
#define MAX_DOWNSCALE_RATIO_INROT_PD_RT_DENOMINATOR 1
#define MAX_DOWNSCALE_RATIO_INROT_NRT_DEFAULT 4
#define MAX_PRE_ROT_HEIGHT_INLINE_ROT_DEFAULT 1088
#define MAX_HORZ_DECIMATION 4
#define MAX_VERT_DECIMATION 4
#define MAX_SPLIT_DISPLAY_CTL 2
#define MAX_PP_SPLIT_DISPLAY_CTL 1
#define MDSS_BASE_OFFSET 0x0
#define ROT_LM_OFFSET 3
#define LINE_LM_OFFSET 5
#define LINE_MODE_WB_OFFSET 2
/**
* these configurations are decided based on max mdp clock. It accounts
* for max and min display resolution based on virtual hardware resource
* support.
*/
#define MAX_DISPLAY_HEIGHT_WITH_DECIMATION 2160
#define MAX_DISPLAY_HEIGHT 5760
#define MIN_DISPLAY_HEIGHT 0
#define MIN_DISPLAY_WIDTH 0
/* maximum XIN halt timeout in usec */
#define VBIF_XIN_HALT_TIMEOUT 0x4000
#define DEFAULT_PIXEL_RAM_SIZE (50 * 1024)
/* access property value based on prop_type and hardware index */
#define PROP_VALUE_ACCESS(p, i, j) ((p + i)->value[j])
/*
* access element within PROP_TYPE_BIT_OFFSET_ARRAYs based on prop_type,
* hardware index and offset array index
*/
#define PROP_BITVALUE_ACCESS(p, i, j, k) ((p + i)->bit_value[j][k])
#define DEFAULT_SBUF_HEADROOM (20)
#define DEFAULT_SBUF_PREFILL (128)
/*
* Default parameter values
*/
#define DEFAULT_MAX_BW_HIGH 7000000
#define DEFAULT_MAX_BW_LOW 7000000
#define DEFAULT_UNDERSIZED_PREFILL_LINES 2
#define DEFAULT_XTRA_PREFILL_LINES 2
#define DEFAULT_DEST_SCALE_PREFILL_LINES 3
#define DEFAULT_MACROTILE_PREFILL_LINES 4
#define DEFAULT_YUV_NV12_PREFILL_LINES 8
#define DEFAULT_LINEAR_PREFILL_LINES 1
#define DEFAULT_DOWNSCALING_PREFILL_LINES 1
#define DEFAULT_CORE_IB_FF "6.0"
#define DEFAULT_CORE_CLK_FF "1.0"
#define DEFAULT_COMP_RATIO_RT \
"NV12/5/1/1.23 AB24/5/1/1.23 XB24/5/1/1.23"
#define DEFAULT_COMP_RATIO_NRT \
"NV12/5/1/1.25 AB24/5/1/1.25 XB24/5/1/1.25"
#define DEFAULT_MAX_PER_PIPE_BW 2400000
#define DEFAULT_AMORTIZABLE_THRESHOLD 25
#define DEFAULT_MNOC_PORTS 2
#define DEFAULT_AXI_BUS_WIDTH 32
#define DEFAULT_CPU_MASK 0
#define DEFAULT_CPU_DMA_LATENCY PM_QOS_DEFAULT_VALUE
/* Uidle values */
#define SDE_UIDLE_FAL10_EXIT_CNT 128
#define SDE_UIDLE_FAL10_EXIT_DANGER 4
#define SDE_UIDLE_FAL10_DANGER 6
#define SDE_UIDLE_FAL10_TARGET_IDLE 50
#define SDE_UIDLE_FAL1_TARGET_IDLE 40
#define SDE_UIDLE_FAL10_THRESHOLD_60 12
#define SDE_UIDLE_FAL10_THRESHOLD_90 13
#define SDE_UIDLE_MAX_DWNSCALE 1500
#define SDE_UIDLE_MAX_FPS_60 60
#define SDE_UIDLE_MAX_FPS_90 90
/*************************************************************
* DTSI PROPERTY INDEX
*************************************************************/
enum {
SDE_HW_VERSION,
SDE_HW_PROP_MAX,
};
enum {
HW_OFF,
HW_LEN,
HW_DISP,
HW_PROP_MAX,
};
enum sde_prop {
SDE_OFF,
SDE_LEN,
SSPP_LINEWIDTH,
VIG_SSPP_LINEWIDTH,
SCALING_LINEWIDTH,
MIXER_LINEWIDTH,
MIXER_BLEND,
WB_LINEWIDTH,
WB_LINEWIDTH_LINEAR,
BANK_BIT,
UBWC_VERSION,
UBWC_STATIC,
UBWC_SWIZZLE,
QSEED_SW_LIB_REV,
QSEED_HW_VERSION,
CSC_TYPE,
PANIC_PER_PIPE,
SRC_SPLIT,
DIM_LAYER,
SMART_DMA_REV,
IDLE_PC,
DEST_SCALER,
SMART_PANEL_ALIGN_MODE,
MACROTILE_MODE,
UBWC_BW_CALC_VERSION,
PIPE_ORDER_VERSION,
SEC_SID_MASK,
BASE_LAYER,
TRUSTED_VM_ENV,
MAX_TRUSTED_VM_DISPLAYS,
SDE_PROP_MAX,
};
enum {
PERF_MAX_BW_LOW,
PERF_MAX_BW_HIGH,
PERF_MIN_CORE_IB,
PERF_MIN_LLCC_IB,
PERF_MIN_DRAM_IB,
PERF_CORE_IB_FF,
PERF_CORE_CLK_FF,
PERF_COMP_RATIO_RT,
PERF_COMP_RATIO_NRT,
PERF_UNDERSIZED_PREFILL_LINES,
PERF_DEST_SCALE_PREFILL_LINES,
PERF_MACROTILE_PREFILL_LINES,
PERF_YUV_NV12_PREFILL_LINES,
PERF_LINEAR_PREFILL_LINES,
PERF_DOWNSCALING_PREFILL_LINES,
PERF_XTRA_PREFILL_LINES,
PERF_AMORTIZABLE_THRESHOLD,
PERF_NUM_MNOC_PORTS,
PERF_AXI_BUS_WIDTH,
PERF_CDP_SETTING,
PERF_CPU_MASK,
CPU_MASK_PERF,
PERF_CPU_DMA_LATENCY,
PERF_CPU_IRQ_LATENCY,
PERF_PROP_MAX,
};
enum {
QOS_REFRESH_RATES,
QOS_DANGER_LUT,
QOS_SAFE_LUT,
QOS_CREQ_LUT_LINEAR,
QOS_CREQ_LUT_MACROTILE,
QOS_CREQ_LUT_NRT,
QOS_CREQ_LUT_CWB,
QOS_CREQ_LUT_MACROTILE_QSEED,
QOS_CREQ_LUT_LINEAR_QSEED,
QOS_PROP_MAX,
};
enum {
SSPP_OFF,
SSPP_SIZE,
SSPP_TYPE,
SSPP_XIN,
SSPP_CLK_CTRL,
SSPP_CLK_STATUS,
SSPP_SCALE_SIZE,
SSPP_VIG_BLOCKS,
SSPP_RGB_BLOCKS,
SSPP_DMA_BLOCKS,
SSPP_EXCL_RECT,
SSPP_SMART_DMA,
SSPP_MAX_PER_PIPE_BW,
SSPP_MAX_PER_PIPE_BW_HIGH,
SSPP_PROP_MAX,
};
enum {
VIG_QSEED_OFF,
VIG_QSEED_LEN,
VIG_CSC_OFF,
VIG_HSIC_PROP,
VIG_MEMCOLOR_PROP,
VIG_PCC_PROP,
VIG_GAMUT_PROP,
VIG_IGC_PROP,
VIG_INVERSE_PMA,
VIG_PROP_MAX,
};
enum {
RGB_SCALER_OFF,
RGB_SCALER_LEN,
RGB_PCC_PROP,
RGB_PROP_MAX,
};
enum {
DMA_IGC_PROP,
DMA_GC_PROP,
DMA_DGM_INVERSE_PMA,
DMA_CSC_OFF,
DMA_PROP_MAX,
};
enum {
INTF_OFF,
INTF_LEN,
INTF_PREFETCH,
INTF_TYPE,
INTF_TE_IRQ,
INTF_PROP_MAX,
};
enum {
PP_OFF,
PP_LEN,
TE_OFF,
TE_LEN,
TE2_OFF,
TE2_LEN,
PP_SLAVE,
DITHER_OFF,
DITHER_LEN,
DITHER_VER,
PP_MERGE_3D_ID,
PP_PROP_MAX,
};
enum {
DSC_OFF,
DSC_LEN,
DSC_PAIR_MASK,
DSC_REV,
DSC_ENC,
DSC_ENC_LEN,
DSC_CTL,
DSC_CTL_LEN,
DSC_422,
DSC_LINEWIDTH,
DSC_PROP_MAX,
};
enum {
VDC_OFF,
VDC_LEN,
VDC_REV,
VDC_ENC,
VDC_ENC_LEN,
VDC_CTL,
VDC_CTL_LEN,
VDC_PROP_MAX,
};
enum {
DS_TOP_OFF,
DS_TOP_LEN,
DS_TOP_INPUT_LINEWIDTH,
DS_TOP_OUTPUT_LINEWIDTH,
DS_TOP_PROP_MAX,
};
enum {
DS_OFF,
DS_LEN,
DS_PROP_MAX,
};
enum {
DSPP_TOP_OFF,
DSPP_TOP_SIZE,
DSPP_TOP_PROP_MAX,
};
enum {
DSPP_OFF,
DSPP_SIZE,
DSPP_BLOCKS,
DSPP_PROP_MAX,
};
enum {
DSPP_IGC_PROP,
DSPP_PCC_PROP,
DSPP_GC_PROP,
DSPP_HSIC_PROP,
DSPP_MEMCOLOR_PROP,
DSPP_SIXZONE_PROP,
DSPP_GAMUT_PROP,
DSPP_DITHER_PROP,
DSPP_HIST_PROP,
DSPP_VLUT_PROP,
DSPP_BLOCKS_PROP_MAX,
};
enum {
AD_OFF,
AD_VERSION,
AD_PROP_MAX,
};
enum {
LTM_OFF,
LTM_VERSION,
LTM_PROP_MAX,
};
enum {
RC_OFF,
RC_LEN,
RC_VERSION,
RC_MEM_TOTAL_SIZE,
RC_PROP_MAX,
};
enum {
SPR_OFF,
SPR_LEN,
SPR_VERSION,
SPR_PROP_MAX,
};
enum {
DEMURA_OFF,
DEMURA_LEN,
DEMURA_VERSION,
DEMURA_PROP_MAX,
};
enum {
MIXER_OFF,
MIXER_LEN,
MIXER_PAIR_MASK,
MIXER_BLOCKS,
MIXER_DISP,
MIXER_CWB,
MIXER_PROP_MAX,
};
enum {
MIXER_GC_PROP,
MIXER_BLOCKS_PROP_MAX,
};
enum {
MIXER_BLEND_OP_OFF,
MIXER_BLEND_PROP_MAX,
};
enum {
WB_OFF,
WB_LEN,
WB_ID,
WB_XIN_ID,
WB_CLK_CTRL,
WB_CLK_STATUS,
WB_PROP_MAX,
};
enum {
VBIF_OFF,
VBIF_LEN,
VBIF_ID,
VBIF_DEFAULT_OT_RD_LIMIT,
VBIF_DEFAULT_OT_WR_LIMIT,
VBIF_DYNAMIC_OT_RD_LIMIT,
VBIF_DYNAMIC_OT_WR_LIMIT,
VBIF_MEMTYPE_0,
VBIF_MEMTYPE_1,
VBIF_QOS_RT_REMAP,
VBIF_QOS_NRT_REMAP,
VBIF_QOS_CWB_REMAP,
VBIF_QOS_LUTDMA_REMAP,
VBIF_PROP_MAX,
};
enum {
UIDLE_OFF,
UIDLE_LEN,
UIDLE_PROP_MAX,
};
enum {
CACHE_CONTROLLER,
CACHE_CONTROLLER_PROP_MAX,
};
enum {
REG_DMA_OFF,
REG_DMA_ID,
REG_DMA_VERSION,
REG_DMA_TRIGGER_OFF,
REG_DMA_BROADCAST_DISABLED,
REG_DMA_XIN_ID,
REG_DMA_CLK_CTRL,
REG_DMA_PROP_MAX
};
/*************************************************************
* dts property definition
*************************************************************/
enum prop_type {
PROP_TYPE_BOOL,
PROP_TYPE_U32,
PROP_TYPE_U32_ARRAY,
PROP_TYPE_STRING,
PROP_TYPE_STRING_ARRAY,
PROP_TYPE_BIT_OFFSET_ARRAY,
PROP_TYPE_NODE,
};
struct sde_prop_type {
/* use property index from enum property for readability purpose */
u8 id;
/* it should be property name based on dtsi documentation */
char *prop_name;
/**
* if property is marked mandatory then it will fail parsing
* when property is not present
*/
u32 is_mandatory;
/* property type based on "enum prop_type" */
enum prop_type type;
};
struct sde_prop_value {
u32 value[MAX_SDE_HW_BLK];
u32 bit_value[MAX_SDE_HW_BLK][MAX_BIT_OFFSET];
};
/**
* struct sde_dt_props - stores dts properties read from a sde_prop_type table
* @exists: Array of bools indicating if the given prop name was present
* @counts: Count of the number of valid values for the property
* @values: Array storing the count[i] property values
*
* Must use the sde_[get|put]_dt_props APIs to allocate/free this object.
*/
struct sde_dt_props {
bool exists[MAX_SDE_DT_TABLE_SIZE];
int counts[MAX_SDE_DT_TABLE_SIZE];
struct sde_prop_value *values;
};
/*************************************************************
* dts property list
*************************************************************/
static struct sde_prop_type sde_hw_prop[] = {
{SDE_HW_VERSION, "qcom,sde-hw-version", false, PROP_TYPE_U32},
};
static struct sde_prop_type sde_prop[] = {
{SDE_OFF, "qcom,sde-off", true, PROP_TYPE_U32},
{SDE_LEN, "qcom,sde-len", false, PROP_TYPE_U32},
{SSPP_LINEWIDTH, "qcom,sde-sspp-linewidth", false, PROP_TYPE_U32},
{VIG_SSPP_LINEWIDTH, "qcom,sde-vig-sspp-linewidth", false, PROP_TYPE_U32},
{SCALING_LINEWIDTH, "qcom,sde-scaling-linewidth", false, PROP_TYPE_U32},
{MIXER_LINEWIDTH, "qcom,sde-mixer-linewidth", false, PROP_TYPE_U32},
{MIXER_BLEND, "qcom,sde-mixer-blendstages", false, PROP_TYPE_U32},
{WB_LINEWIDTH, "qcom,sde-wb-linewidth", false, PROP_TYPE_U32},
{WB_LINEWIDTH_LINEAR, "qcom,sde-wb-linewidth-linear",
false, PROP_TYPE_U32},
{BANK_BIT, "qcom,sde-highest-bank-bit", false,
PROP_TYPE_BIT_OFFSET_ARRAY},
{UBWC_VERSION, "qcom,sde-ubwc-version", false, PROP_TYPE_U32},
{UBWC_STATIC, "qcom,sde-ubwc-static", false, PROP_TYPE_U32},
{UBWC_SWIZZLE, "qcom,sde-ubwc-swizzle", false, PROP_TYPE_U32},
{QSEED_SW_LIB_REV, "qcom,sde-qseed-sw-lib-rev", false,
PROP_TYPE_STRING},
{QSEED_HW_VERSION, "qcom,sde-qseed-scalar-version", false,
PROP_TYPE_U32},
{CSC_TYPE, "qcom,sde-csc-type", false, PROP_TYPE_STRING},
{PANIC_PER_PIPE, "qcom,sde-panic-per-pipe", false, PROP_TYPE_BOOL},
{SRC_SPLIT, "qcom,sde-has-src-split", false, PROP_TYPE_BOOL},
{DIM_LAYER, "qcom,sde-has-dim-layer", false, PROP_TYPE_BOOL},
{SMART_DMA_REV, "qcom,sde-smart-dma-rev", false, PROP_TYPE_STRING},
{IDLE_PC, "qcom,sde-has-idle-pc", false, PROP_TYPE_BOOL},
{DEST_SCALER, "qcom,sde-has-dest-scaler", false, PROP_TYPE_BOOL},
{SMART_PANEL_ALIGN_MODE, "qcom,sde-smart-panel-align-mode",
false, PROP_TYPE_U32},
{MACROTILE_MODE, "qcom,sde-macrotile-mode", false, PROP_TYPE_U32},
{UBWC_BW_CALC_VERSION, "qcom,sde-ubwc-bw-calc-version", false,
PROP_TYPE_U32},
{PIPE_ORDER_VERSION, "qcom,sde-pipe-order-version", false,
PROP_TYPE_U32},
{SEC_SID_MASK, "qcom,sde-secure-sid-mask", false, PROP_TYPE_U32_ARRAY},
{BASE_LAYER, "qcom,sde-mixer-stage-base-layer", false, PROP_TYPE_BOOL},
{TRUSTED_VM_ENV, "qcom,sde-trusted-vm-env", false, PROP_TYPE_BOOL},
{MAX_TRUSTED_VM_DISPLAYS, "qcom,sde-max-trusted-vm-displays", false,
PROP_TYPE_U32},
};
static struct sde_prop_type sde_perf_prop[] = {
{PERF_MAX_BW_LOW, "qcom,sde-max-bw-low-kbps", false, PROP_TYPE_U32},
{PERF_MAX_BW_HIGH, "qcom,sde-max-bw-high-kbps", false, PROP_TYPE_U32},
{PERF_MIN_CORE_IB, "qcom,sde-min-core-ib-kbps", false, PROP_TYPE_U32},
{PERF_MIN_LLCC_IB, "qcom,sde-min-llcc-ib-kbps", false, PROP_TYPE_U32},
{PERF_MIN_DRAM_IB, "qcom,sde-min-dram-ib-kbps", false, PROP_TYPE_U32},
{PERF_CORE_IB_FF, "qcom,sde-core-ib-ff", false, PROP_TYPE_STRING},
{PERF_CORE_CLK_FF, "qcom,sde-core-clk-ff", false, PROP_TYPE_STRING},
{PERF_COMP_RATIO_RT, "qcom,sde-comp-ratio-rt", false,
PROP_TYPE_STRING},
{PERF_COMP_RATIO_NRT, "qcom,sde-comp-ratio-nrt", false,
PROP_TYPE_STRING},
{PERF_UNDERSIZED_PREFILL_LINES, "qcom,sde-undersizedprefill-lines",
false, PROP_TYPE_U32},
{PERF_DEST_SCALE_PREFILL_LINES, "qcom,sde-dest-scaleprefill-lines",
false, PROP_TYPE_U32},
{PERF_MACROTILE_PREFILL_LINES, "qcom,sde-macrotileprefill-lines",
false, PROP_TYPE_U32},
{PERF_YUV_NV12_PREFILL_LINES, "qcom,sde-yuv-nv12prefill-lines",
false, PROP_TYPE_U32},
{PERF_LINEAR_PREFILL_LINES, "qcom,sde-linearprefill-lines",
false, PROP_TYPE_U32},
{PERF_DOWNSCALING_PREFILL_LINES, "qcom,sde-downscalingprefill-lines",
false, PROP_TYPE_U32},
{PERF_XTRA_PREFILL_LINES, "qcom,sde-xtra-prefill-lines",
false, PROP_TYPE_U32},
{PERF_AMORTIZABLE_THRESHOLD, "qcom,sde-amortizable-threshold",
false, PROP_TYPE_U32},
{PERF_NUM_MNOC_PORTS, "qcom,sde-num-mnoc-ports",
false, PROP_TYPE_U32},
{PERF_AXI_BUS_WIDTH, "qcom,sde-axi-bus-width",
false, PROP_TYPE_U32},
{PERF_CDP_SETTING, "qcom,sde-cdp-setting", false,
PROP_TYPE_U32_ARRAY},
{PERF_CPU_MASK, "qcom,sde-qos-cpu-mask", false, PROP_TYPE_U32},
{CPU_MASK_PERF, "qcom,sde-qos-cpu-mask-performance", false,
PROP_TYPE_U32},
{PERF_CPU_DMA_LATENCY, "qcom,sde-qos-cpu-dma-latency", false,
PROP_TYPE_U32},
{PERF_CPU_IRQ_LATENCY, "qcom,sde-qos-cpu-irq-latency", false,
PROP_TYPE_U32},
};
static struct sde_prop_type sde_qos_prop[] = {
{QOS_REFRESH_RATES, "qcom,sde-qos-refresh-rates", false,
PROP_TYPE_U32_ARRAY},
{QOS_DANGER_LUT, "qcom,sde-danger-lut", false, PROP_TYPE_U32_ARRAY},
{QOS_SAFE_LUT, "qcom,sde-safe-lut", false, PROP_TYPE_U32_ARRAY},
{QOS_CREQ_LUT_LINEAR, "qcom,sde-qos-lut-linear", false,
PROP_TYPE_U32_ARRAY},
{QOS_CREQ_LUT_MACROTILE, "qcom,sde-qos-lut-macrotile", false,
PROP_TYPE_U32_ARRAY},
{QOS_CREQ_LUT_NRT, "qcom,sde-qos-lut-nrt", false,
PROP_TYPE_U32_ARRAY},
{QOS_CREQ_LUT_CWB, "qcom,sde-qos-lut-cwb", false,
PROP_TYPE_U32_ARRAY},
{QOS_CREQ_LUT_MACROTILE_QSEED, "qcom,sde-qos-lut-macrotile-qseed",
false, PROP_TYPE_U32_ARRAY},
{QOS_CREQ_LUT_LINEAR_QSEED, "qcom,sde-qos-lut-linear-qseed",
false, PROP_TYPE_U32_ARRAY},
};
static struct sde_prop_type sspp_prop[] = {
{SSPP_OFF, "qcom,sde-sspp-off", true, PROP_TYPE_U32_ARRAY},
{SSPP_SIZE, "qcom,sde-sspp-src-size", false, PROP_TYPE_U32},
{SSPP_TYPE, "qcom,sde-sspp-type", true, PROP_TYPE_STRING_ARRAY},
{SSPP_XIN, "qcom,sde-sspp-xin-id", true, PROP_TYPE_U32_ARRAY},
{SSPP_CLK_CTRL, "qcom,sde-sspp-clk-ctrl", false,
PROP_TYPE_BIT_OFFSET_ARRAY},
{SSPP_CLK_STATUS, "qcom,sde-sspp-clk-status", false,
PROP_TYPE_BIT_OFFSET_ARRAY},
{SSPP_SCALE_SIZE, "qcom,sde-sspp-scale-size", false, PROP_TYPE_U32},
{SSPP_VIG_BLOCKS, "qcom,sde-sspp-vig-blocks", false, PROP_TYPE_NODE},
{SSPP_RGB_BLOCKS, "qcom,sde-sspp-rgb-blocks", false, PROP_TYPE_NODE},
{SSPP_DMA_BLOCKS, "qcom,sde-sspp-dma-blocks", false, PROP_TYPE_NODE},
{SSPP_EXCL_RECT, "qcom,sde-sspp-excl-rect", false, PROP_TYPE_U32_ARRAY},
{SSPP_SMART_DMA, "qcom,sde-sspp-smart-dma-priority", false,
PROP_TYPE_U32_ARRAY},
{SSPP_MAX_PER_PIPE_BW, "qcom,sde-max-per-pipe-bw-kbps", false,
PROP_TYPE_U32_ARRAY},
{SSPP_MAX_PER_PIPE_BW_HIGH, "qcom,sde-max-per-pipe-bw-high-kbps", false,
PROP_TYPE_U32_ARRAY},
};
static struct sde_prop_type vig_prop[] = {
{VIG_QSEED_OFF, "qcom,sde-vig-qseed-off", false, PROP_TYPE_U32},
{VIG_QSEED_LEN, "qcom,sde-vig-qseed-size", false, PROP_TYPE_U32},
{VIG_CSC_OFF, "qcom,sde-vig-csc-off", false, PROP_TYPE_U32},
{VIG_HSIC_PROP, "qcom,sde-vig-hsic", false, PROP_TYPE_U32_ARRAY},
{VIG_MEMCOLOR_PROP, "qcom,sde-vig-memcolor", false,
PROP_TYPE_U32_ARRAY},
{VIG_PCC_PROP, "qcom,sde-vig-pcc", false, PROP_TYPE_U32_ARRAY},
{VIG_GAMUT_PROP, "qcom,sde-vig-gamut", false, PROP_TYPE_U32_ARRAY},
{VIG_IGC_PROP, "qcom,sde-vig-igc", false, PROP_TYPE_U32_ARRAY},
{VIG_INVERSE_PMA, "qcom,sde-vig-inverse-pma", false, PROP_TYPE_BOOL},
};
static struct sde_prop_type rgb_prop[] = {
{RGB_SCALER_OFF, "qcom,sde-rgb-scaler-off", false, PROP_TYPE_U32},
{RGB_SCALER_LEN, "qcom,sde-rgb-scaler-size", false, PROP_TYPE_U32},
{RGB_PCC_PROP, "qcom,sde-rgb-pcc", false, PROP_TYPE_U32_ARRAY},
};
static struct sde_prop_type dma_prop[] = {
{DMA_IGC_PROP, "qcom,sde-dma-igc", false, PROP_TYPE_U32_ARRAY},
{DMA_GC_PROP, "qcom,sde-dma-gc", false, PROP_TYPE_U32_ARRAY},
{DMA_DGM_INVERSE_PMA, "qcom,sde-dma-inverse-pma", false,
PROP_TYPE_BOOL},
{DMA_CSC_OFF, "qcom,sde-dma-csc-off", false, PROP_TYPE_U32},
};
static struct sde_prop_type ctl_prop[] = {
{HW_OFF, "qcom,sde-ctl-off", true, PROP_TYPE_U32_ARRAY},
{HW_LEN, "qcom,sde-ctl-size", false, PROP_TYPE_U32},
{HW_DISP, "qcom,sde-ctl-display-pref", false, PROP_TYPE_STRING_ARRAY},
};
struct sde_prop_type mixer_blend_prop[] = {
{MIXER_BLEND_OP_OFF, "qcom,sde-mixer-blend-op-off", true,
PROP_TYPE_U32_ARRAY},
};
static struct sde_prop_type mixer_prop[] = {
{MIXER_OFF, "qcom,sde-mixer-off", true, PROP_TYPE_U32_ARRAY},
{MIXER_LEN, "qcom,sde-mixer-size", false, PROP_TYPE_U32},
{MIXER_PAIR_MASK, "qcom,sde-mixer-pair-mask", true,
PROP_TYPE_U32_ARRAY},
{MIXER_BLOCKS, "qcom,sde-mixer-blocks", false, PROP_TYPE_NODE},
{MIXER_DISP, "qcom,sde-mixer-display-pref", false,
PROP_TYPE_STRING_ARRAY},
{MIXER_CWB, "qcom,sde-mixer-cwb-pref", false,
PROP_TYPE_STRING_ARRAY},
};
static struct sde_prop_type mixer_blocks_prop[] = {
{MIXER_GC_PROP, "qcom,sde-mixer-gc", false, PROP_TYPE_U32_ARRAY},
};
static struct sde_prop_type dspp_top_prop[] = {
{DSPP_TOP_OFF, "qcom,sde-dspp-top-off", true, PROP_TYPE_U32},
{DSPP_TOP_SIZE, "qcom,sde-dspp-top-size", false, PROP_TYPE_U32},
};
static struct sde_prop_type dspp_prop[] = {
{DSPP_OFF, "qcom,sde-dspp-off", true, PROP_TYPE_U32_ARRAY},
{DSPP_SIZE, "qcom,sde-dspp-size", false, PROP_TYPE_U32},
{DSPP_BLOCKS, "qcom,sde-dspp-blocks", false, PROP_TYPE_NODE},
};
static struct sde_prop_type dspp_blocks_prop[] = {
{DSPP_IGC_PROP, "qcom,sde-dspp-igc", false, PROP_TYPE_U32_ARRAY},
{DSPP_PCC_PROP, "qcom,sde-dspp-pcc", false, PROP_TYPE_U32_ARRAY},
{DSPP_GC_PROP, "qcom,sde-dspp-gc", false, PROP_TYPE_U32_ARRAY},
{DSPP_HSIC_PROP, "qcom,sde-dspp-hsic", false, PROP_TYPE_U32_ARRAY},
{DSPP_MEMCOLOR_PROP, "qcom,sde-dspp-memcolor", false,
PROP_TYPE_U32_ARRAY},
{DSPP_SIXZONE_PROP, "qcom,sde-dspp-sixzone", false,
PROP_TYPE_U32_ARRAY},
{DSPP_GAMUT_PROP, "qcom,sde-dspp-gamut", false, PROP_TYPE_U32_ARRAY},
{DSPP_DITHER_PROP, "qcom,sde-dspp-dither", false, PROP_TYPE_U32_ARRAY},
{DSPP_HIST_PROP, "qcom,sde-dspp-hist", false, PROP_TYPE_U32_ARRAY},
{DSPP_VLUT_PROP, "qcom,sde-dspp-vlut", false, PROP_TYPE_U32_ARRAY},
};
static struct sde_prop_type ad_prop[] = {
{AD_OFF, "qcom,sde-dspp-ad-off", false, PROP_TYPE_U32_ARRAY},
{AD_VERSION, "qcom,sde-dspp-ad-version", false, PROP_TYPE_U32},
};
static struct sde_prop_type ltm_prop[] = {
{LTM_OFF, "qcom,sde-dspp-ltm-off", false, PROP_TYPE_U32_ARRAY},
{LTM_VERSION, "qcom,sde-dspp-ltm-version", false, PROP_TYPE_U32},
};
static struct sde_prop_type rc_prop[] = {
{RC_OFF, "qcom,sde-dspp-rc-off", false, PROP_TYPE_U32_ARRAY},
{RC_LEN, "qcom,sde-dspp-rc-size", false, PROP_TYPE_U32},
{RC_VERSION, "qcom,sde-dspp-rc-version", false, PROP_TYPE_U32},
{RC_MEM_TOTAL_SIZE, "qcom,sde-dspp-rc-mem-size", false, PROP_TYPE_U32},
};
static struct sde_prop_type spr_prop[] = {
{SPR_OFF, "qcom,sde-dspp-spr-off", false, PROP_TYPE_U32_ARRAY},
{SPR_LEN, "qcom,sde-dspp-spr-size", false, PROP_TYPE_U32},
{SPR_VERSION, "qcom,sde-dspp-spr-version", false, PROP_TYPE_U32},
};
static struct sde_prop_type ds_top_prop[] = {
{DS_TOP_OFF, "qcom,sde-dest-scaler-top-off", false, PROP_TYPE_U32},
{DS_TOP_LEN, "qcom,sde-dest-scaler-top-size", false, PROP_TYPE_U32},
{DS_TOP_INPUT_LINEWIDTH, "qcom,sde-max-dest-scaler-input-linewidth",
false, PROP_TYPE_U32},
{DS_TOP_OUTPUT_LINEWIDTH, "qcom,sde-max-dest-scaler-output-linewidth",
false, PROP_TYPE_U32},
};
static struct sde_prop_type ds_prop[] = {
{DS_OFF, "qcom,sde-dest-scaler-off", false, PROP_TYPE_U32_ARRAY},
{DS_LEN, "qcom,sde-dest-scaler-size", false, PROP_TYPE_U32},
};
static struct sde_prop_type pp_prop[] = {
{PP_OFF, "qcom,sde-pp-off", true, PROP_TYPE_U32_ARRAY},
{PP_LEN, "qcom,sde-pp-size", false, PROP_TYPE_U32},
{TE_OFF, "qcom,sde-te-off", false, PROP_TYPE_U32_ARRAY},
{TE_LEN, "qcom,sde-te-size", false, PROP_TYPE_U32},
{TE2_OFF, "qcom,sde-te2-off", false, PROP_TYPE_U32_ARRAY},
{TE2_LEN, "qcom,sde-te2-size", false, PROP_TYPE_U32},
{PP_SLAVE, "qcom,sde-pp-slave", false, PROP_TYPE_U32_ARRAY},
{DITHER_OFF, "qcom,sde-dither-off", false, PROP_TYPE_U32_ARRAY},
{DITHER_LEN, "qcom,sde-dither-size", false, PROP_TYPE_U32},
{DITHER_VER, "qcom,sde-dither-version", false, PROP_TYPE_U32},
{PP_MERGE_3D_ID, "qcom,sde-pp-merge-3d-id", false, PROP_TYPE_U32_ARRAY},
};
static struct sde_prop_type dsc_prop[] = {
{DSC_OFF, "qcom,sde-dsc-off", false, PROP_TYPE_U32_ARRAY},
{DSC_LEN, "qcom,sde-dsc-size", false, PROP_TYPE_U32},
{DSC_PAIR_MASK, "qcom,sde-dsc-pair-mask", false, PROP_TYPE_U32_ARRAY},
{DSC_REV, "qcom,sde-dsc-hw-rev", false, PROP_TYPE_STRING},
{DSC_ENC, "qcom,sde-dsc-enc", false, PROP_TYPE_U32_ARRAY},
{DSC_ENC_LEN, "qcom,sde-dsc-enc-size", false, PROP_TYPE_U32},
{DSC_CTL, "qcom,sde-dsc-ctl", false, PROP_TYPE_U32_ARRAY},
{DSC_CTL_LEN, "qcom,sde-dsc-ctl-size", false, PROP_TYPE_U32},
{DSC_422, "qcom,sde-dsc-native422-supp", false, PROP_TYPE_U32_ARRAY},
{DSC_LINEWIDTH, "qcom,sde-dsc-linewidth", false, PROP_TYPE_U32},
};
static struct sde_prop_type vdc_prop[] = {
{VDC_OFF, "qcom,sde-vdc-off", false, PROP_TYPE_U32_ARRAY},
{VDC_LEN, "qcom,sde-vdc-size", false, PROP_TYPE_U32},
{VDC_REV, "qcom,sde-vdc-hw-rev", false, PROP_TYPE_STRING},
{VDC_ENC, "qcom,sde-vdc-enc", false, PROP_TYPE_U32_ARRAY},
{VDC_ENC_LEN, "qcom,sde-vdc-enc-size", false, PROP_TYPE_U32},
{VDC_CTL, "qcom,sde-vdc-ctl", false, PROP_TYPE_U32_ARRAY},
{VDC_CTL_LEN, "qcom,sde-vdc-ctl-size", false, PROP_TYPE_U32},
};
static struct sde_prop_type cdm_prop[] = {
{HW_OFF, "qcom,sde-cdm-off", false, PROP_TYPE_U32_ARRAY},
{HW_LEN, "qcom,sde-cdm-size", false, PROP_TYPE_U32},
};
static struct sde_prop_type intf_prop[] = {
{INTF_OFF, "qcom,sde-intf-off", true, PROP_TYPE_U32_ARRAY},
{INTF_LEN, "qcom,sde-intf-size", false, PROP_TYPE_U32},
{INTF_PREFETCH, "qcom,sde-intf-max-prefetch-lines", false,
PROP_TYPE_U32_ARRAY},
{INTF_TYPE, "qcom,sde-intf-type", false, PROP_TYPE_STRING_ARRAY},
{INTF_TE_IRQ, "qcom,sde-intf-tear-irq-off", false, PROP_TYPE_U32_ARRAY},
};
static struct sde_prop_type wb_prop[] = {
{WB_OFF, "qcom,sde-wb-off", false, PROP_TYPE_U32_ARRAY},
{WB_LEN, "qcom,sde-wb-size", false, PROP_TYPE_U32},
{WB_ID, "qcom,sde-wb-id", false, PROP_TYPE_U32_ARRAY},
{WB_XIN_ID, "qcom,sde-wb-xin-id", false, PROP_TYPE_U32_ARRAY},
{WB_CLK_CTRL, "qcom,sde-wb-clk-ctrl", false,
PROP_TYPE_BIT_OFFSET_ARRAY},
{WB_CLK_STATUS, "qcom,sde-wb-clk-status", false,
PROP_TYPE_BIT_OFFSET_ARRAY},
};
static struct sde_prop_type vbif_prop[] = {
{VBIF_OFF, "qcom,sde-vbif-off", true, PROP_TYPE_U32_ARRAY},
{VBIF_LEN, "qcom,sde-vbif-size", false, PROP_TYPE_U32},
{VBIF_ID, "qcom,sde-vbif-id", false, PROP_TYPE_U32_ARRAY},
{VBIF_DEFAULT_OT_RD_LIMIT, "qcom,sde-vbif-default-ot-rd-limit", false,
PROP_TYPE_U32},
{VBIF_DEFAULT_OT_WR_LIMIT, "qcom,sde-vbif-default-ot-wr-limit", false,
PROP_TYPE_U32},
{VBIF_DYNAMIC_OT_RD_LIMIT, "qcom,sde-vbif-dynamic-ot-rd-limit", false,
PROP_TYPE_U32_ARRAY},
{VBIF_DYNAMIC_OT_WR_LIMIT, "qcom,sde-vbif-dynamic-ot-wr-limit", false,
PROP_TYPE_U32_ARRAY},
{VBIF_MEMTYPE_0, "qcom,sde-vbif-memtype-0", false, PROP_TYPE_U32_ARRAY},
{VBIF_MEMTYPE_1, "qcom,sde-vbif-memtype-1", false, PROP_TYPE_U32_ARRAY},
{VBIF_QOS_RT_REMAP, "qcom,sde-vbif-qos-rt-remap", false,
PROP_TYPE_U32_ARRAY},
{VBIF_QOS_NRT_REMAP, "qcom,sde-vbif-qos-nrt-remap", false,
PROP_TYPE_U32_ARRAY},
{VBIF_QOS_CWB_REMAP, "qcom,sde-vbif-qos-cwb-remap", false,
PROP_TYPE_U32_ARRAY},
{VBIF_QOS_LUTDMA_REMAP, "qcom,sde-vbif-qos-lutdma-remap", false,
PROP_TYPE_U32_ARRAY},
};
static struct sde_prop_type uidle_prop[] = {
{UIDLE_OFF, "qcom,sde-uidle-off", false, PROP_TYPE_U32},
{UIDLE_LEN, "qcom,sde-uidle-size", false, PROP_TYPE_U32},
};
static struct sde_prop_type cache_prop[] = {
{CACHE_CONTROLLER, "qcom,llcc-v2", false, PROP_TYPE_NODE},
};
static struct sde_prop_type reg_dma_prop[REG_DMA_PROP_MAX] = {
[REG_DMA_OFF] = {REG_DMA_OFF, "qcom,sde-reg-dma-off", false,
PROP_TYPE_U32_ARRAY},
[REG_DMA_ID] = {REG_DMA_ID, "qcom,sde-reg-dma-id", false,
PROP_TYPE_U32_ARRAY},
[REG_DMA_VERSION] = {REG_DMA_VERSION, "qcom,sde-reg-dma-version",
false, PROP_TYPE_U32},
[REG_DMA_TRIGGER_OFF] = {REG_DMA_TRIGGER_OFF,
"qcom,sde-reg-dma-trigger-off", false,
PROP_TYPE_U32},
[REG_DMA_BROADCAST_DISABLED] = {REG_DMA_BROADCAST_DISABLED,
"qcom,sde-reg-dma-broadcast-disabled", false, PROP_TYPE_BOOL},
[REG_DMA_XIN_ID] = {REG_DMA_XIN_ID,
"qcom,sde-reg-dma-xin-id", false, PROP_TYPE_U32},
[REG_DMA_CLK_CTRL] = {REG_DMA_CLK_CTRL,
"qcom,sde-reg-dma-clk-ctrl", false, PROP_TYPE_BIT_OFFSET_ARRAY},
};
static struct sde_prop_type merge_3d_prop[] = {
{HW_OFF, "qcom,sde-merge-3d-off", false, PROP_TYPE_U32_ARRAY},
{HW_LEN, "qcom,sde-merge-3d-size", false, PROP_TYPE_U32},
};
static struct sde_prop_type qdss_prop[] = {
{HW_OFF, "qcom,sde-qdss-off", false, PROP_TYPE_U32_ARRAY},
{HW_LEN, "qcom,sde-qdss-size", false, PROP_TYPE_U32},
};
static struct sde_prop_type demura_prop[] = {
[DEMURA_OFF] = {DEMURA_OFF, "qcom,sde-dspp-demura-off", false,
PROP_TYPE_U32_ARRAY},
[DEMURA_LEN] = {DEMURA_LEN, "qcom,sde-dspp-demura-size", false,
PROP_TYPE_U32},
[DEMURA_VERSION] = {DEMURA_VERSION, "qcom,sde-dspp-demura-version",
false, PROP_TYPE_U32},
};
/*************************************************************
* static API list
*************************************************************/
static int _parse_dt_u32_handler(struct device_node *np,
char *prop_name, u32 *offsets, int len, bool mandatory)
{
int rc = -EINVAL;
if (len > MAX_SDE_HW_BLK) {
SDE_ERROR(
"prop: %s tries out of bound access for u32 array read len: %d\n",
prop_name, len);
return -E2BIG;
}
rc = of_property_read_u32_array(np, prop_name, offsets, len);
if (rc && mandatory)
SDE_ERROR("mandatory prop: %s u32 array read len:%d\n",
prop_name, len);
else if (rc)
SDE_DEBUG("optional prop: %s u32 array read len:%d\n",
prop_name, len);
return rc;
}
static int _parse_dt_bit_offset(struct device_node *np,
char *prop_name, struct sde_prop_value *prop_value, u32 prop_index,
u32 count, bool mandatory)
{
int rc = 0, len, i, j;
const u32 *arr;
arr = of_get_property(np, prop_name, &len);
if (arr) {
len /= sizeof(u32);
len &= ~0x1;
if (len > (MAX_SDE_HW_BLK * MAX_BIT_OFFSET)) {
SDE_ERROR(
"prop: %s len: %d will lead to out of bound access\n",
prop_name, len / MAX_BIT_OFFSET);
return -E2BIG;
}
for (i = 0, j = 0; i < len; j++) {
PROP_BITVALUE_ACCESS(prop_value, prop_index, j, 0) =
be32_to_cpu(arr[i]);
i++;
PROP_BITVALUE_ACCESS(prop_value, prop_index, j, 1) =
be32_to_cpu(arr[i]);
i++;
}
} else {
if (mandatory) {
SDE_ERROR("error mandatory property '%s' not found\n",
prop_name);
rc = -EINVAL;
} else {
SDE_DEBUG("error optional property '%s' not found\n",
prop_name);
}
}
return rc;
}
static int _validate_dt_entry(struct device_node *np,
struct sde_prop_type *sde_prop, u32 prop_size, int *prop_count,
int *off_count)
{
int rc = 0, i, val;
struct device_node *snp = NULL;
if (off_count) {
*off_count = of_property_count_u32_elems(np,
sde_prop[0].prop_name);
if ((*off_count > MAX_BLOCKS) || (*off_count < 0)) {
if (sde_prop[0].is_mandatory) {
SDE_ERROR(
"invalid hw offset prop name:%s count: %d\n",
sde_prop[0].prop_name, *off_count);
rc = -EINVAL;
}
*off_count = 0;
memset(prop_count, 0, sizeof(int) * prop_size);
return rc;
}
}
for (i = 0; i < prop_size; i++) {
switch (sde_prop[i].type) {
case PROP_TYPE_U32:
rc = of_property_read_u32(np, sde_prop[i].prop_name,
&val);
if (!rc)
prop_count[i] = 1;
break;
case PROP_TYPE_U32_ARRAY:
prop_count[i] = of_property_count_u32_elems(np,
sde_prop[i].prop_name);
if (prop_count[i] < 0)
rc = prop_count[i];
break;
case PROP_TYPE_STRING_ARRAY:
prop_count[i] = of_property_count_strings(np,
sde_prop[i].prop_name);
if (prop_count[i] < 0)
rc = prop_count[i];
break;
case PROP_TYPE_BIT_OFFSET_ARRAY:
of_get_property(np, sde_prop[i].prop_name, &val);
prop_count[i] = val / (MAX_BIT_OFFSET * sizeof(u32));
break;
case PROP_TYPE_NODE:
snp = of_get_child_by_name(np,
sde_prop[i].prop_name);
if (!snp)
rc = -EINVAL;
break;
case PROP_TYPE_BOOL:
/**
* No special handling for bool properties here.
* They will always exist, with value indicating
* if the given key is present or not.
*/
prop_count[i] = 1;
break;
default:
SDE_DEBUG("invalid property type:%d\n",
sde_prop[i].type);
break;
}
SDE_DEBUG(
"prop id:%d prop name:%s prop type:%d prop_count:%d\n",
i, sde_prop[i].prop_name,
sde_prop[i].type, prop_count[i]);
if (rc && sde_prop[i].is_mandatory &&
((sde_prop[i].type == PROP_TYPE_U32) ||
(sde_prop[i].type == PROP_TYPE_NODE))) {
SDE_ERROR("prop:%s not present\n",
sde_prop[i].prop_name);
goto end;
} else if (sde_prop[i].type == PROP_TYPE_U32 ||
sde_prop[i].type == PROP_TYPE_BOOL ||
sde_prop[i].type == PROP_TYPE_NODE) {
rc = 0;
continue;
}
if (off_count && (prop_count[i] != *off_count) &&
sde_prop[i].is_mandatory) {
SDE_ERROR(
"prop:%s count:%d is different compared to offset array:%d\n",
sde_prop[i].prop_name,
prop_count[i], *off_count);
rc = -EINVAL;
goto end;
} else if (off_count && prop_count[i] != *off_count) {
SDE_DEBUG(
"prop:%s count:%d is different compared to offset array:%d\n",
sde_prop[i].prop_name,
prop_count[i], *off_count);
rc = 0;
}
if (prop_count[i] < 0) {
prop_count[i] = 0;
if (sde_prop[i].is_mandatory) {
SDE_ERROR("prop:%s count:%d is negative\n",
sde_prop[i].prop_name, prop_count[i]);
rc = -EINVAL;
} else {
rc = 0;
SDE_DEBUG("prop:%s count:%d is negative\n",
sde_prop[i].prop_name, prop_count[i]);
}
}
}
end:
return rc;
}
static int _read_dt_entry(struct device_node *np,
struct sde_prop_type *sde_prop, u32 prop_size, int *prop_count,
bool *prop_exists,
struct sde_prop_value *prop_value)
{
int rc = 0, i, j;
for (i = 0; i < prop_size; i++) {
prop_exists[i] = true;
switch (sde_prop[i].type) {
case PROP_TYPE_U32:
rc = of_property_read_u32(np, sde_prop[i].prop_name,
&PROP_VALUE_ACCESS(prop_value, i, 0));
SDE_DEBUG(
"prop id:%d prop name:%s prop type:%d value:0x%x\n",
i, sde_prop[i].prop_name,
sde_prop[i].type,
PROP_VALUE_ACCESS(prop_value, i, 0));
if (rc)
prop_exists[i] = false;
break;
case PROP_TYPE_BOOL:
PROP_VALUE_ACCESS(prop_value, i, 0) =
of_property_read_bool(np,
sde_prop[i].prop_name);
SDE_DEBUG(
"prop id:%d prop name:%s prop type:%d value:0x%x\n",
i, sde_prop[i].prop_name,
sde_prop[i].type,
PROP_VALUE_ACCESS(prop_value, i, 0));
break;
case PROP_TYPE_U32_ARRAY:
rc = _parse_dt_u32_handler(np, sde_prop[i].prop_name,
&PROP_VALUE_ACCESS(prop_value, i, 0),
prop_count[i], sde_prop[i].is_mandatory);
if (rc && sde_prop[i].is_mandatory) {
SDE_ERROR(
"%s prop validation success but read failed\n",
sde_prop[i].prop_name);
prop_exists[i] = false;
goto end;
} else {
if (rc)
prop_exists[i] = false;
/* only for debug purpose */
SDE_DEBUG(
"prop id:%d prop name:%s prop type:%d",
i, sde_prop[i].prop_name,
sde_prop[i].type);
for (j = 0; j < prop_count[i]; j++)
SDE_DEBUG(" value[%d]:0x%x ", j,
PROP_VALUE_ACCESS(prop_value, i,
j));
SDE_DEBUG("\n");
}
break;
case PROP_TYPE_BIT_OFFSET_ARRAY:
rc = _parse_dt_bit_offset(np, sde_prop[i].prop_name,
prop_value, i, prop_count[i],
sde_prop[i].is_mandatory);
if (rc && sde_prop[i].is_mandatory) {
SDE_ERROR(
"%s prop validation success but read failed\n",
sde_prop[i].prop_name);
prop_exists[i] = false;
goto end;
} else {
if (rc)
prop_exists[i] = false;
SDE_DEBUG(
"prop id:%d prop name:%s prop type:%d",
i, sde_prop[i].prop_name,
sde_prop[i].type);
for (j = 0; j < prop_count[i]; j++)
SDE_DEBUG(
"count[%d]: bit:0x%x off:0x%x\n", j,
PROP_BITVALUE_ACCESS(prop_value,
i, j, 0),
PROP_BITVALUE_ACCESS(prop_value,
i, j, 1));
SDE_DEBUG("\n");
}
break;
case PROP_TYPE_NODE:
/* Node will be parsed in calling function */
rc = 0;
break;
default:
SDE_DEBUG("invalid property type:%d\n",
sde_prop[i].type);
break;
}
rc = 0;
}
end:
return rc;
}
/**
* sde_get_dt_props - allocate and return prop counts, exists & values arrays
* @np - device node
* @prop_max - <BLK>_PROP_MAX enum, this will be number of values allocated
* @sde_prop - pointer to prop table
* @prop_size - size of prop table
* @off_count - pointer to callers off_count
*
* @Returns - valid pointer or -ve error code (can never return NULL)
* If a non-NULL off_count pointer is given, the value it points to will be
* updated with the number of elements in the offset array (entry 0 in table).
* Caller MUST free this object using sde_put_dt_props after parsing values.
*/
static struct sde_dt_props *sde_get_dt_props(struct device_node *np,
size_t prop_max, struct sde_prop_type *sde_prop,
u32 prop_size, u32 *off_count)
{
struct sde_dt_props *props;
int rc = -ENOMEM;
props = kzalloc(sizeof(*props), GFP_KERNEL);
if (!props)
return ERR_PTR(rc);
props->values = kcalloc(prop_max, sizeof(*props->values),
GFP_KERNEL);
if (!props->values)
goto free_props;
rc = _validate_dt_entry(np, sde_prop, prop_size, props->counts,
off_count);
if (rc)
goto free_vals;
rc = _read_dt_entry(np, sde_prop, prop_size, props->counts,
props->exists, props->values);
if (rc)
goto free_vals;
return props;
free_vals:
kfree(props->values);
free_props:
kfree(props);
return ERR_PTR(rc);
}
/* sde_put_dt_props - free an sde_dt_props object obtained with "get" */
static void sde_put_dt_props(struct sde_dt_props *props)
{
if (!props)
return;
kfree(props->values);
kfree(props);
}
static int _add_to_irq_offset_list(struct sde_mdss_cfg *sde_cfg,
enum sde_intr_hwblk_type blk_type, u32 instance, u32 offset)
{
struct sde_intr_irq_offsets *item = NULL;
bool err = false;
switch (blk_type) {
case SDE_INTR_HWBLK_TOP:
if (instance >= SDE_INTR_TOP_MAX)
err = true;
break;
case SDE_INTR_HWBLK_INTF:
if (instance >= INTF_MAX)
err = true;
break;
case SDE_INTR_HWBLK_AD4:
if (instance >= AD_MAX)
err = true;
break;
case SDE_INTR_HWBLK_INTF_TEAR:
if (instance >= INTF_MAX)
err = true;
break;
case SDE_INTR_HWBLK_LTM:
if (instance >= LTM_MAX)
err = true;
break;
default:
SDE_ERROR("invalid hwblk_type: %d", blk_type);
return -EINVAL;
}
if (err) {
SDE_ERROR("unable to map instance %d for blk type %d",
instance, blk_type);
return -EINVAL;
}
/* Check for existing list entry */
item = sde_hw_intr_list_lookup(sde_cfg, blk_type, instance);
if (IS_ERR_OR_NULL(item)) {
SDE_DEBUG("adding intr type %d idx %d offset 0x%x\n",
blk_type, instance, offset);
} else if (item->base_offset == offset) {
SDE_INFO("duplicate intr %d/%d offset 0x%x, skipping\n",
blk_type, instance, offset);
return 0;
} else {
SDE_ERROR("type %d, idx %d in list with offset 0x%x != 0x%x\n",
blk_type, instance, item->base_offset, offset);
return -EINVAL;
}
item = kzalloc(sizeof(*item), GFP_KERNEL);
if (!item) {
SDE_ERROR("memory allocation failed!\n");
return -ENOMEM;
}
INIT_LIST_HEAD(&item->list);
item->type = blk_type;
item->instance_idx = instance;
item->base_offset = offset;
list_add_tail(&item->list, &sde_cfg->irq_offset_list);
return 0;
}
static void _sde_sspp_setup_vigs_pp(struct sde_dt_props *props,
struct sde_mdss_cfg *sde_cfg, struct sde_sspp_cfg *sspp)
{
struct sde_sspp_sub_blks *sblk = sspp->sblk;
sblk->csc_blk.id = SDE_SSPP_CSC;
snprintf(sblk->csc_blk.name, SDE_HW_BLK_NAME_LEN,
"sspp_csc%u", sspp->id - SSPP_VIG0);
if (sde_cfg->csc_type == SDE_SSPP_CSC) {
set_bit(SDE_SSPP_CSC, &sspp->features);
sblk->csc_blk.base = PROP_VALUE_ACCESS(props->values,
VIG_CSC_OFF, 0);
} else if (sde_cfg->csc_type == SDE_SSPP_CSC_10BIT) {
set_bit(SDE_SSPP_CSC_10BIT, &sspp->features);
sblk->csc_blk.base = PROP_VALUE_ACCESS(props->values,
VIG_CSC_OFF, 0);
}
sblk->hsic_blk.id = SDE_SSPP_HSIC;
snprintf(sblk->hsic_blk.name, SDE_HW_BLK_NAME_LEN,
"sspp_hsic%u", sspp->id - SSPP_VIG0);
if (props->exists[VIG_HSIC_PROP]) {
sblk->hsic_blk.base = PROP_VALUE_ACCESS(props->values,
VIG_HSIC_PROP, 0);
sblk->hsic_blk.version = PROP_VALUE_ACCESS(
props->values, VIG_HSIC_PROP, 1);
sblk->hsic_blk.len = 0;
set_bit(SDE_SSPP_HSIC, &sspp->features);
}
sblk->memcolor_blk.id = SDE_SSPP_MEMCOLOR;
snprintf(sblk->memcolor_blk.name, SDE_HW_BLK_NAME_LEN,
"sspp_memcolor%u", sspp->id - SSPP_VIG0);
if (props->exists[VIG_MEMCOLOR_PROP]) {
sblk->memcolor_blk.base = PROP_VALUE_ACCESS(
props->values, VIG_MEMCOLOR_PROP, 0);
sblk->memcolor_blk.version = PROP_VALUE_ACCESS(
props->values, VIG_MEMCOLOR_PROP, 1);
sblk->memcolor_blk.len = 0;
set_bit(SDE_SSPP_MEMCOLOR, &sspp->features);
}
sblk->pcc_blk.id = SDE_SSPP_PCC;
snprintf(sblk->pcc_blk.name, SDE_HW_BLK_NAME_LEN,
"sspp_pcc%u", sspp->id - SSPP_VIG0);
if (props->exists[VIG_PCC_PROP]) {
sblk->pcc_blk.base = PROP_VALUE_ACCESS(props->values,
VIG_PCC_PROP, 0);
sblk->pcc_blk.version = PROP_VALUE_ACCESS(props->values,
VIG_PCC_PROP, 1);
sblk->pcc_blk.len = 0;
set_bit(SDE_SSPP_PCC, &sspp->features);
}
if (props->exists[VIG_GAMUT_PROP]) {
sblk->gamut_blk.id = SDE_SSPP_VIG_GAMUT;
snprintf(sblk->gamut_blk.name, SDE_HW_BLK_NAME_LEN,
"sspp_vig_gamut%u", sspp->id - SSPP_VIG0);
sblk->gamut_blk.base = PROP_VALUE_ACCESS(props->values,
VIG_GAMUT_PROP, 0);
sblk->gamut_blk.version = PROP_VALUE_ACCESS(
props->values, VIG_GAMUT_PROP, 1);
sblk->gamut_blk.len = 0;
set_bit(SDE_SSPP_VIG_GAMUT, &sspp->features);
}
if (props->exists[VIG_IGC_PROP]) {
sblk->igc_blk[0].id = SDE_SSPP_VIG_IGC;
snprintf(sblk->igc_blk[0].name, SDE_HW_BLK_NAME_LEN,
"sspp_vig_igc%u", sspp->id - SSPP_VIG0);
sblk->igc_blk[0].base = PROP_VALUE_ACCESS(props->values,
VIG_IGC_PROP, 0);
sblk->igc_blk[0].version = PROP_VALUE_ACCESS(
props->values, VIG_IGC_PROP, 1);
sblk->igc_blk[0].len = 0;
set_bit(SDE_SSPP_VIG_IGC, &sspp->features);
}
if (props->exists[VIG_INVERSE_PMA])
set_bit(SDE_SSPP_INVERSE_PMA, &sspp->features);
}
static int _sde_sspp_setup_vigs(struct device_node *np,
struct sde_mdss_cfg *sde_cfg)
{
int i;
struct sde_dt_props *props;
struct device_node *snp = NULL;
struct sde_sc_cfg *sc_cfg = sde_cfg->sc_cfg;
int vig_count = 0;
const char *type;
snp = of_get_child_by_name(np, sspp_prop[SSPP_VIG_BLOCKS].prop_name);
if (!snp)
return 0;
props = sde_get_dt_props(snp, VIG_PROP_MAX, vig_prop,
ARRAY_SIZE(vig_prop), NULL);
if (IS_ERR(props))
return PTR_ERR(props);
for (i = 0; i < sde_cfg->sspp_count; ++i) {
struct sde_sspp_cfg *sspp = sde_cfg->sspp + i;
struct sde_sspp_sub_blks *sblk = sspp->sblk;
of_property_read_string_index(np,
sspp_prop[SSPP_TYPE].prop_name, i, &type);
if (strcmp(type, "vig"))
continue;
sblk->maxlinewidth = sde_cfg->vig_sspp_linewidth;
sblk->scaling_linewidth = sde_cfg->scaling_linewidth;
sblk->maxupscale = MAX_UPSCALE_RATIO;
sblk->maxdwnscale = MAX_DOWNSCALE_RATIO;
sspp->id = SSPP_VIG0 + vig_count;
snprintf(sspp->name, SDE_HW_BLK_NAME_LEN, "sspp_%u",
sspp->id - SSPP_VIG0);
sspp->clk_ctrl = SDE_CLK_CTRL_VIG0 + vig_count;
sspp->type = SSPP_TYPE_VIG;
set_bit(SDE_PERF_SSPP_QOS, &sspp->perf_features);
if (sde_cfg->vbif_qos_nlvl == 8)
set_bit(SDE_PERF_SSPP_QOS_8LVL, &sspp->perf_features);
vig_count++;
sblk->format_list = sde_cfg->vig_formats;
sblk->virt_format_list = sde_cfg->virt_vig_formats;
if ((sde_cfg->qseed_sw_lib_rev == SDE_SSPP_SCALER_QSEED2) ||
(sde_cfg->qseed_sw_lib_rev == SDE_SSPP_SCALER_QSEED3) ||
(sde_cfg->qseed_sw_lib_rev == SDE_SSPP_SCALER_QSEED3LITE)) {
set_bit(sde_cfg->qseed_sw_lib_rev, &sspp->features);
sblk->scaler_blk.id = sde_cfg->qseed_sw_lib_rev;
sblk->scaler_blk.base = PROP_VALUE_ACCESS(props->values,
VIG_QSEED_OFF, 0);
sblk->scaler_blk.len = PROP_VALUE_ACCESS(props->values,
VIG_QSEED_LEN, 0);
snprintf(sblk->scaler_blk.name, SDE_HW_BLK_NAME_LEN,
"sspp_scaler%u", sspp->id - SSPP_VIG0);
}
_sde_sspp_setup_vigs_pp(props, sde_cfg, sspp);
if (sde_cfg->true_inline_rot_rev > 0) {
set_bit(SDE_SSPP_TRUE_INLINE_ROT, &sspp->features);
sblk->in_rot_format_list = sde_cfg->inline_rot_formats;
sblk->in_rot_maxheight =
MAX_PRE_ROT_HEIGHT_INLINE_ROT_DEFAULT;
}
if (IS_SDE_INLINE_ROT_REV_200(sde_cfg->true_inline_rot_rev)) {
set_bit(SDE_SSPP_PREDOWNSCALE, &sspp->features);
sblk->in_rot_maxdwnscale_rt_num =
MAX_DOWNSCALE_RATIO_INROT_PD_RT_NUMERATOR;
sblk->in_rot_maxdwnscale_rt_denom =
MAX_DOWNSCALE_RATIO_INROT_PD_RT_DENOMINATOR;
sblk->in_rot_maxdwnscale_nrt =
MAX_DOWNSCALE_RATIO_INROT_NRT_DEFAULT;
sblk->in_rot_maxdwnscale_rt_nopd_num =
MAX_DOWNSCALE_RATIO_INROT_NOPD_RT_NUMERATOR;
sblk->in_rot_maxdwnscale_rt_nopd_denom =
MAX_DOWNSCALE_RATIO_INROT_NOPD_RT_DENOMINATOR;
} else if (IS_SDE_INLINE_ROT_REV_100(
sde_cfg->true_inline_rot_rev)) {
sblk->in_rot_maxdwnscale_rt_num =
MAX_DOWNSCALE_RATIO_INROT_NOPD_RT_NUMERATOR;
sblk->in_rot_maxdwnscale_rt_denom =
MAX_DOWNSCALE_RATIO_INROT_NOPD_RT_DENOMINATOR;
sblk->in_rot_maxdwnscale_nrt =
MAX_DOWNSCALE_RATIO_INROT_NRT_DEFAULT;
}
if (sc_cfg[SDE_SYS_CACHE_ROT].has_sys_cache) {
set_bit(SDE_PERF_SSPP_SYS_CACHE, &sspp->perf_features);
sblk->llcc_scid =
sc_cfg[SDE_SYS_CACHE_ROT].llcc_scid;
sblk->llcc_slice_size =
sc_cfg[SDE_SYS_CACHE_ROT].llcc_slice_size;
}
if (sde_cfg->inline_disable_const_clr)
set_bit(SDE_SSPP_INLINE_CONST_CLR, &sspp->features);
}
sde_put_dt_props(props);
return 0;
}
static void _sde_sspp_setup_rgbs_pp(struct sde_dt_props *props,
struct sde_mdss_cfg *sde_cfg, struct sde_sspp_cfg *sspp)
{
struct sde_sspp_sub_blks *sblk = sspp->sblk;
sblk->pcc_blk.id = SDE_SSPP_PCC;
if (props->exists[RGB_PCC_PROP]) {
sblk->pcc_blk.base = PROP_VALUE_ACCESS(props->values,
RGB_PCC_PROP, 0);
sblk->pcc_blk.version = PROP_VALUE_ACCESS(props->values,
RGB_PCC_PROP, 1);
sblk->pcc_blk.len = 0;
set_bit(SDE_SSPP_PCC, &sspp->features);
}
}
static int _sde_sspp_setup_rgbs(struct device_node *np,
struct sde_mdss_cfg *sde_cfg)
{
int i;
struct sde_dt_props *props;
struct device_node *snp = NULL;
int rgb_count = 0;
const char *type;
snp = of_get_child_by_name(np, sspp_prop[SSPP_RGB_BLOCKS].prop_name);
if (!snp)
return 0;
props = sde_get_dt_props(snp, RGB_PROP_MAX, rgb_prop,
ARRAY_SIZE(rgb_prop), NULL);
if (IS_ERR(props))
return PTR_ERR(props);
for (i = 0; i < sde_cfg->sspp_count; ++i) {
struct sde_sspp_cfg *sspp = sde_cfg->sspp + i;
struct sde_sspp_sub_blks *sblk = sspp->sblk;
of_property_read_string_index(np,
sspp_prop[SSPP_TYPE].prop_name, i, &type);
if (strcmp(type, "rgb"))
continue;
sblk->maxupscale = MAX_UPSCALE_RATIO;
sblk->maxdwnscale = MAX_DOWNSCALE_RATIO;
sspp->id = SSPP_RGB0 + rgb_count;
snprintf(sspp->name, SDE_HW_BLK_NAME_LEN, "sspp_%u",
sspp->id - SSPP_VIG0);
sspp->clk_ctrl = SDE_CLK_CTRL_RGB0 + rgb_count;
sspp->type = SSPP_TYPE_RGB;
set_bit(SDE_PERF_SSPP_QOS, &sspp->perf_features);
if (sde_cfg->vbif_qos_nlvl == 8)
set_bit(SDE_PERF_SSPP_QOS_8LVL, &sspp->perf_features);
rgb_count++;
if ((sde_cfg->qseed_sw_lib_rev == SDE_SSPP_SCALER_QSEED2) ||
(sde_cfg->qseed_sw_lib_rev == SDE_SSPP_SCALER_QSEED3)) {
set_bit(SDE_SSPP_SCALER_RGB, &sspp->features);
sblk->scaler_blk.id = sde_cfg->qseed_sw_lib_rev;
sblk->scaler_blk.base = PROP_VALUE_ACCESS(props->values,
RGB_SCALER_OFF, 0);
sblk->scaler_blk.len = PROP_VALUE_ACCESS(props->values,
RGB_SCALER_LEN, 0);
snprintf(sblk->scaler_blk.name, SDE_HW_BLK_NAME_LEN,
"sspp_scaler%u", sspp->id - SSPP_VIG0);
}
_sde_sspp_setup_rgbs_pp(props, sde_cfg, sspp);
sblk->format_list = sde_cfg->dma_formats;
sblk->virt_format_list = NULL;
}
sde_put_dt_props(props);
return 0;
}
static void _sde_sspp_setup_cursor(struct sde_mdss_cfg *sde_cfg,
struct sde_sspp_cfg *sspp, struct sde_sspp_sub_blks *sblk,
struct sde_prop_value *prop_value, u32 *cursor_count)
{
if (!IS_SDE_MAJOR_MINOR_SAME(sde_cfg->hwversion, SDE_HW_VER_300))
SDE_ERROR("invalid sspp type %d, xin id %d\n",
sspp->type, sspp->xin_id);
set_bit(SDE_SSPP_CURSOR, &sspp->features);
sblk->maxupscale = SSPP_UNITY_SCALE;
sblk->maxdwnscale = SSPP_UNITY_SCALE;
sblk->format_list = sde_cfg->cursor_formats;
sblk->virt_format_list = NULL;
sspp->id = SSPP_CURSOR0 + *cursor_count;
snprintf(sspp->name, SDE_HW_BLK_NAME_LEN, "sspp_%u",
sspp->id - SSPP_VIG0);
sspp->clk_ctrl = SDE_CLK_CTRL_CURSOR0 + *cursor_count;
sspp->type = SSPP_TYPE_CURSOR;
(*cursor_count)++;
}
static void _sde_sspp_setup_dgm(struct sde_sspp_cfg *sspp,
const struct sde_dt_props *props, const char *name,
struct sde_pp_blk *blk, u32 type, u32 prop, bool versioned)
{
blk->id = type;
blk->len = 0;
set_bit(type, &sspp->features);
blk->base = PROP_VALUE_ACCESS(props->values, prop, 0);
snprintf(blk->name, SDE_HW_BLK_NAME_LEN, "%s%u", name,
sspp->id - SSPP_DMA0);
if (versioned)
blk->version = PROP_VALUE_ACCESS(props->values, prop, 1);
}
static int _sde_sspp_setup_dmas(struct device_node *np,
struct sde_mdss_cfg *sde_cfg)
{
int i = 0, j;
int rc = 0, dma_count = 0, dgm_count = 0;
struct sde_dt_props *props[SSPP_SUBBLK_COUNT_MAX] = {NULL, NULL};
struct device_node *snp = NULL;
const char *type;
snp = of_get_child_by_name(np, sspp_prop[SSPP_DMA_BLOCKS].prop_name);
if (snp) {
dgm_count = of_get_child_count(snp);
if (dgm_count > 0) {
struct device_node *dgm_snp;
if (dgm_count > SSPP_SUBBLK_COUNT_MAX)
dgm_count = SSPP_SUBBLK_COUNT_MAX;
for_each_child_of_node(snp, dgm_snp) {
if (i >= SSPP_SUBBLK_COUNT_MAX)
break;
props[i] = sde_get_dt_props(dgm_snp,
DMA_PROP_MAX, dma_prop,
ARRAY_SIZE(dma_prop), NULL);
if (IS_ERR(props[i])) {
rc = PTR_ERR(props[i]);
props[i] = NULL;
goto end;
}
i++;
}
}
}
for (i = 0; i < sde_cfg->sspp_count; ++i) {
struct sde_sspp_cfg *sspp = sde_cfg->sspp + i;
struct sde_sspp_sub_blks *sblk = sspp->sblk;
of_property_read_string_index(np,
sspp_prop[SSPP_TYPE].prop_name, i, &type);
if (strcmp(type, "dma"))
continue;
sblk->maxupscale = SSPP_UNITY_SCALE;
sblk->maxdwnscale = SSPP_UNITY_SCALE;
sblk->format_list = sde_cfg->dma_formats;
sblk->virt_format_list = sde_cfg->dma_formats;
sspp->id = SSPP_DMA0 + dma_count;
sspp->clk_ctrl = SDE_CLK_CTRL_DMA0 + dma_count;
snprintf(sspp->name, SDE_HW_BLK_NAME_LEN, "sspp_%u",
sspp->id - SSPP_VIG0);
sspp->type = SSPP_TYPE_DMA;
set_bit(SDE_PERF_SSPP_QOS, &sspp->perf_features);
if (sde_cfg->vbif_qos_nlvl == 8)
set_bit(SDE_PERF_SSPP_QOS_8LVL, &sspp->perf_features);
dma_count++;
sblk->num_igc_blk = dgm_count;
sblk->num_gc_blk = dgm_count;
sblk->num_dgm_csc_blk = dgm_count;
for (j = 0; j < dgm_count; j++) {
if (props[j]->exists[DMA_IGC_PROP])
_sde_sspp_setup_dgm(sspp, props[j],
"sspp_dma_igc", &sblk->igc_blk[j],
SDE_SSPP_DMA_IGC, DMA_IGC_PROP, true);
if (props[j]->exists[DMA_GC_PROP])
_sde_sspp_setup_dgm(sspp, props[j],
"sspp_dma_gc", &sblk->gc_blk[j],
SDE_SSPP_DMA_GC, DMA_GC_PROP, true);
if (PROP_VALUE_ACCESS(props[j]->values,
DMA_DGM_INVERSE_PMA, 0))
set_bit(SDE_SSPP_DGM_INVERSE_PMA,
&sspp->features);
if (props[j]->exists[DMA_CSC_OFF])
_sde_sspp_setup_dgm(sspp, props[j],
"sspp_dgm_csc", &sblk->dgm_csc_blk[j],
SDE_SSPP_DGM_CSC, DMA_CSC_OFF, false);
}
}
end:
for (i = 0; i < dgm_count; i++)
sde_put_dt_props(props[i]);
return rc;
}
static void sde_sspp_set_features(struct sde_mdss_cfg *sde_cfg,
const struct sde_dt_props *props)
{
int i;
for (i = 0; i < sde_cfg->sspp_count; ++i) {
struct sde_sspp_cfg *sspp = sde_cfg->sspp + i;
struct sde_sspp_sub_blks *sblk = sspp->sblk;
sblk->maxlinewidth = sde_cfg->max_sspp_linewidth;
sblk->smart_dma_priority =
PROP_VALUE_ACCESS(props->values, SSPP_SMART_DMA, i);
if (sblk->smart_dma_priority && sde_cfg->smart_dma_rev)
set_bit(sde_cfg->smart_dma_rev, &sspp->features);
sblk->src_blk.id = SDE_SSPP_SRC;
set_bit(SDE_SSPP_SRC, &sspp->features);
if (sde_cfg->has_cdp)
set_bit(SDE_PERF_SSPP_CDP, &sspp->perf_features);
if (sde_cfg->ts_prefill_rev == 1) {
set_bit(SDE_PERF_SSPP_TS_PREFILL, &sspp->perf_features);
} else if (sde_cfg->ts_prefill_rev == 2) {
set_bit(SDE_PERF_SSPP_TS_PREFILL, &sspp->perf_features);
set_bit(SDE_PERF_SSPP_TS_PREFILL_REC1,
&sspp->perf_features);
}
if (sde_cfg->uidle_cfg.uidle_rev)
set_bit(SDE_PERF_SSPP_UIDLE, &sspp->perf_features);
if (sde_cfg->sc_cfg[SDE_SYS_CACHE_DISP].has_sys_cache)
set_bit(SDE_PERF_SSPP_SYS_CACHE, &sspp->perf_features);
if (sde_cfg->has_decimation) {
sblk->maxhdeciexp = MAX_HORZ_DECIMATION;
sblk->maxvdeciexp = MAX_VERT_DECIMATION;
} else {
sblk->maxhdeciexp = 0;
sblk->maxvdeciexp = 0;
}
sblk->pixel_ram_size = DEFAULT_PIXEL_RAM_SIZE;
if (PROP_VALUE_ACCESS(props->values, SSPP_EXCL_RECT, i) == 1)
set_bit(SDE_SSPP_EXCL_RECT, &sspp->features);
if (props->exists[SSPP_MAX_PER_PIPE_BW])
sblk->max_per_pipe_bw = PROP_VALUE_ACCESS(props->values,
SSPP_MAX_PER_PIPE_BW, i);
else
sblk->max_per_pipe_bw = DEFAULT_MAX_PER_PIPE_BW;
if (props->exists[SSPP_MAX_PER_PIPE_BW_HIGH])
sblk->max_per_pipe_bw_high =
PROP_VALUE_ACCESS(props->values,
SSPP_MAX_PER_PIPE_BW_HIGH, i);
else
sblk->max_per_pipe_bw_high = sblk->max_per_pipe_bw;
}
}
static int _sde_sspp_setup_cmn(struct device_node *np,
struct sde_mdss_cfg *sde_cfg)
{
int rc = 0, off_count, i, j;
struct sde_dt_props *props;
const char *type;
struct sde_sspp_cfg *sspp;
struct sde_sspp_sub_blks *sblk;
u32 cursor_count = 0;
props = sde_get_dt_props(np, SSPP_PROP_MAX, sspp_prop,
ARRAY_SIZE(sspp_prop), &off_count);
if (IS_ERR(props))
return PTR_ERR(props);
if (off_count > MAX_BLOCKS) {
SDE_ERROR("%d off_count exceeds MAX_BLOCKS, limiting to %d\n",
off_count, MAX_BLOCKS);
off_count = MAX_BLOCKS;
}
sde_cfg->sspp_count = off_count;
/* create all sub blocks before populating them */
for (i = 0; i < off_count; i++) {
sspp = sde_cfg->sspp + i;
sblk = kzalloc(sizeof(*sblk), GFP_KERNEL);
if (!sblk) {
rc = -ENOMEM;
/* catalog deinit will release the allocated blocks */
goto end;
}
sspp->sblk = sblk;
}
sde_sspp_set_features(sde_cfg, props);
for (i = 0; i < off_count; i++) {
sspp = sde_cfg->sspp + i;
sblk = sspp->sblk;
sspp->base = PROP_VALUE_ACCESS(props->values, SSPP_OFF, i);
sspp->len = PROP_VALUE_ACCESS(props->values, SSPP_SIZE, 0);
of_property_read_string_index(np,
sspp_prop[SSPP_TYPE].prop_name, i, &type);
if (!strcmp(type, "cursor")) {
/* No prop values for cursor pipes */
_sde_sspp_setup_cursor(sde_cfg, sspp, sblk, NULL,
&cursor_count);
}
snprintf(sblk->src_blk.name, SDE_HW_BLK_NAME_LEN, "sspp_src_%u",
sspp->id - SSPP_VIG0);
if (sspp->clk_ctrl >= SDE_CLK_CTRL_MAX) {
SDE_ERROR("%s: invalid clk ctrl: %d\n",
sblk->src_blk.name, sspp->clk_ctrl);
rc = -EINVAL;
goto end;
}
sspp->xin_id = PROP_VALUE_ACCESS(props->values, SSPP_XIN, i);
sblk->src_blk.len = PROP_VALUE_ACCESS(props->values, SSPP_SIZE,
0);
for (j = 0; j < sde_cfg->mdp_count; j++) {
sde_cfg->mdp[j].clk_ctrls[sspp->clk_ctrl].reg_off =
PROP_BITVALUE_ACCESS(props->values,
SSPP_CLK_CTRL, i, 0);
sde_cfg->mdp[j].clk_ctrls[sspp->clk_ctrl].bit_off =
PROP_BITVALUE_ACCESS(props->values,
SSPP_CLK_CTRL, i, 1);
sde_cfg->mdp[j].clk_status[sspp->clk_ctrl].reg_off =
PROP_BITVALUE_ACCESS(props->values,
SSPP_CLK_STATUS, i, 0);
sde_cfg->mdp[j].clk_status[sspp->clk_ctrl].bit_off =
PROP_BITVALUE_ACCESS(props->values,
SSPP_CLK_STATUS, i, 1);
}
SDE_DEBUG("xin:%d ram:%d clk%d:%x/%d\n",
sspp->xin_id, sblk->pixel_ram_size, sspp->clk_ctrl,
sde_cfg->mdp[0].clk_ctrls[sspp->clk_ctrl].reg_off,
sde_cfg->mdp[0].clk_ctrls[sspp->clk_ctrl].bit_off);
}
end:
sde_put_dt_props(props);
return rc;
}
static int sde_sspp_parse_dt(struct device_node *np,
struct sde_mdss_cfg *sde_cfg)
{
int rc;
rc = _sde_sspp_setup_cmn(np, sde_cfg);
if (rc)
return rc;
rc = _sde_sspp_setup_vigs(np, sde_cfg);
if (rc)
return rc;
rc = _sde_sspp_setup_rgbs(np, sde_cfg);
if (rc)
return rc;
rc = _sde_sspp_setup_dmas(np, sde_cfg);
return rc;
}
static int sde_ctl_parse_dt(struct device_node *np,
struct sde_mdss_cfg *sde_cfg)
{
int i;
struct sde_dt_props *props;
struct sde_ctl_cfg *ctl;
u32 off_count;
if (!sde_cfg) {
SDE_ERROR("invalid argument input param\n");
return -EINVAL;
}
props = sde_get_dt_props(np, HW_PROP_MAX, ctl_prop,
ARRAY_SIZE(ctl_prop), &off_count);
if (IS_ERR(props))
return PTR_ERR(props);
sde_cfg->ctl_count = off_count;
for (i = 0; i < off_count; i++) {
const char *disp_pref = NULL;
ctl = sde_cfg->ctl + i;
ctl->base = PROP_VALUE_ACCESS(props->values, HW_OFF, i);
ctl->len = PROP_VALUE_ACCESS(props->values, HW_LEN, 0);
ctl->id = CTL_0 + i;
snprintf(ctl->name, SDE_HW_BLK_NAME_LEN, "ctl_%u",
ctl->id - CTL_0);
of_property_read_string_index(np,
ctl_prop[HW_DISP].prop_name, i, &disp_pref);
if (disp_pref && !strcmp(disp_pref, "primary"))
set_bit(SDE_CTL_PRIMARY_PREF, &ctl->features);
if ((i < MAX_SPLIT_DISPLAY_CTL) &&
!(IS_SDE_CTL_REV_100(sde_cfg->ctl_rev)))
set_bit(SDE_CTL_SPLIT_DISPLAY, &ctl->features);
if (i < MAX_PP_SPLIT_DISPLAY_CTL)
set_bit(SDE_CTL_PINGPONG_SPLIT, &ctl->features);
if (IS_SDE_CTL_REV_100(sde_cfg->ctl_rev))
set_bit(SDE_CTL_ACTIVE_CFG, &ctl->features);
if (SDE_UIDLE_MAJOR(sde_cfg->uidle_cfg.uidle_rev))
set_bit(SDE_CTL_UIDLE, &ctl->features);
if (SDE_HW_MAJOR(sde_cfg->hwversion) >=
SDE_HW_MAJOR(SDE_HW_VER_700))
set_bit(SDE_CTL_UNIFIED_DSPP_FLUSH, &ctl->features);
}
sde_put_dt_props(props);
return 0;
}
void sde_hw_mixer_set_preference(struct sde_mdss_cfg *sde_cfg, u32 num_lm,
uint32_t disp_type)
{
u32 i, cnt = 0, sec_cnt = 0;
if (disp_type == SDE_CONNECTOR_PRIMARY) {
for (i = 0; i < sde_cfg->mixer_count; i++) {
/* Check if lm was previously set for secondary */
/* Clear pref, primary has higher priority */
if (sde_cfg->mixer[i].features &
BIT(SDE_DISP_SECONDARY_PREF)) {
clear_bit(SDE_DISP_SECONDARY_PREF,
&sde_cfg->mixer[i].features);
sec_cnt++;
}
clear_bit(SDE_DISP_PRIMARY_PREF,
&sde_cfg->mixer[i].features);
/* Set lm for primary pref */
if (cnt < num_lm) {
set_bit(SDE_DISP_PRIMARY_PREF,
&sde_cfg->mixer[i].features);
cnt++;
}
/*
* When all primary prefs have been set,
* and if 2 lms are required for secondary
* preference must be set with an lm pair
*/
if (cnt == num_lm && sec_cnt > 1 &&
!test_bit(sde_cfg->mixer[i+1].id,
&sde_cfg->mixer[i].lm_pair_mask))
continue;
/* After primary pref is set, now re apply secondary */
if (cnt >= num_lm && cnt < (num_lm + sec_cnt)) {
set_bit(SDE_DISP_SECONDARY_PREF,
&sde_cfg->mixer[i].features);
cnt++;
}
}
} else if (disp_type == SDE_CONNECTOR_SECONDARY) {
for (i = 0; i < sde_cfg->mixer_count; i++) {
clear_bit(SDE_DISP_SECONDARY_PREF,
&sde_cfg->mixer[i].features);
/*
* If 2 lms are required for secondary
* preference must be set with an lm pair
*/
if (cnt == 0 && num_lm > 1 &&
!test_bit(sde_cfg->mixer[i+1].id,
&sde_cfg->mixer[i].lm_pair_mask))
continue;
if (cnt < num_lm && !(sde_cfg->mixer[i].features &
BIT(SDE_DISP_PRIMARY_PREF))) {
set_bit(SDE_DISP_SECONDARY_PREF,
&sde_cfg->mixer[i].features);
cnt++;
}
}
}
}
static int sde_mixer_parse_dt(struct device_node *np,
struct sde_mdss_cfg *sde_cfg)
{
int rc = 0, i, j;
u32 off_count, blend_off_count, max_blendstages, lm_pair_mask;
struct sde_lm_cfg *mixer;
struct sde_lm_sub_blks *sblk;
int pp_count, dspp_count, ds_count, mixer_count;
u32 pp_idx, dspp_idx, ds_idx;
u32 mixer_base;
struct device_node *snp = NULL;
struct sde_dt_props *props, *blend_props, *blocks_props = NULL;
if (!sde_cfg) {
SDE_ERROR("invalid argument input param\n");
return -EINVAL;
}
max_blendstages = sde_cfg->max_mixer_blendstages;
props = sde_get_dt_props(np, MIXER_PROP_MAX, mixer_prop,
ARRAY_SIZE(mixer_prop), &off_count);
if (IS_ERR(props))
return PTR_ERR(props);
pp_count = sde_cfg->pingpong_count;
dspp_count = sde_cfg->dspp_count;
ds_count = sde_cfg->ds_count;
/* get mixer feature dt properties if they exist */
snp = of_get_child_by_name(np, mixer_prop[MIXER_BLOCKS].prop_name);
if (snp) {
blocks_props = sde_get_dt_props(snp, MIXER_PROP_MAX,
mixer_blocks_prop,
ARRAY_SIZE(mixer_blocks_prop), NULL);
if (IS_ERR(blocks_props)) {
rc = PTR_ERR(blocks_props);
goto put_props;
}
}
/* get the blend_op register offsets */
blend_props = sde_get_dt_props(np, MIXER_BLEND_PROP_MAX,
mixer_blend_prop, ARRAY_SIZE(mixer_blend_prop),
&blend_off_count);
if (IS_ERR(blend_props)) {
rc = PTR_ERR(blend_props);
goto put_blocks;
}
for (i = 0, mixer_count = 0, pp_idx = 0, dspp_idx = 0,
ds_idx = 0; i < off_count; i++) {
const char *disp_pref = NULL;
const char *cwb_pref = NULL;
mixer_base = PROP_VALUE_ACCESS(props->values, MIXER_OFF, i);
if (!mixer_base)
continue;
mixer = sde_cfg->mixer + mixer_count;
sblk = kzalloc(sizeof(*sblk), GFP_KERNEL);
if (!sblk) {
rc = -ENOMEM;
/* catalog deinit will release the allocated blocks */
goto end;
}
mixer->sblk = sblk;
mixer->base = mixer_base;
mixer->len = !props->exists[MIXER_LEN] ?
DEFAULT_SDE_HW_BLOCK_LEN :
PROP_VALUE_ACCESS(props->values, MIXER_LEN, 0);
mixer->id = LM_0 + i;
snprintf(mixer->name, SDE_HW_BLK_NAME_LEN, "lm_%u",
mixer->id - LM_0);
lm_pair_mask = PROP_VALUE_ACCESS(props->values,
MIXER_PAIR_MASK, i);
if (lm_pair_mask)
mixer->lm_pair_mask = 1 << lm_pair_mask;
sblk->maxblendstages = max_blendstages;
sblk->maxwidth = sde_cfg->max_mixer_width;
for (j = 0; j < blend_off_count; j++)
sblk->blendstage_base[j] =
PROP_VALUE_ACCESS(blend_props->values,
MIXER_BLEND_OP_OFF, j);
if (sde_cfg->has_src_split)
set_bit(SDE_MIXER_SOURCESPLIT, &mixer->features);
if (sde_cfg->has_dim_layer)
set_bit(SDE_DIM_LAYER, &mixer->features);
if (sde_cfg->has_mixer_combined_alpha)
set_bit(SDE_MIXER_COMBINED_ALPHA, &mixer->features);
of_property_read_string_index(np,
mixer_prop[MIXER_DISP].prop_name, i, &disp_pref);
if (disp_pref && !strcmp(disp_pref, "primary"))
set_bit(SDE_DISP_PRIMARY_PREF, &mixer->features);
of_property_read_string_index(np,
mixer_prop[MIXER_CWB].prop_name, i, &cwb_pref);
if (cwb_pref && !strcmp(cwb_pref, "cwb"))
set_bit(SDE_DISP_CWB_PREF, &mixer->features);
mixer->pingpong = pp_count > 0 ? pp_idx + PINGPONG_0
: PINGPONG_MAX;
mixer->dspp = dspp_count > 0 ? dspp_idx + DSPP_0
: DSPP_MAX;
mixer->ds = ds_count > 0 ? ds_idx + DS_0 : DS_MAX;
pp_count--;
dspp_count--;
ds_count--;
pp_idx++;
dspp_idx++;
ds_idx++;
mixer_count++;
sblk->gc.id = SDE_MIXER_GC;
if (blocks_props && blocks_props->exists[MIXER_GC_PROP]) {
sblk->gc.base = PROP_VALUE_ACCESS(blocks_props->values,
MIXER_GC_PROP, 0);
sblk->gc.version = PROP_VALUE_ACCESS(
blocks_props->values, MIXER_GC_PROP,
1);
sblk->gc.len = 0;
set_bit(SDE_MIXER_GC, &mixer->features);
}
}
sde_cfg->mixer_count = mixer_count;
end:
sde_put_dt_props(blend_props);
put_blocks:
sde_put_dt_props(blocks_props);
put_props:
sde_put_dt_props(props);
return rc;
}
static int sde_intf_parse_dt(struct device_node *np,
struct sde_mdss_cfg *sde_cfg)
{
int rc, prop_count[INTF_PROP_MAX], i;
struct sde_prop_value *prop_value = NULL;
bool prop_exists[INTF_PROP_MAX];
u32 off_count;
u32 dsi_count = 0, none_count = 0, hdmi_count = 0, dp_count = 0;
const char *type;
struct sde_intf_cfg *intf;
if (!sde_cfg) {
SDE_ERROR("invalid argument\n");
rc = -EINVAL;
goto end;
}
prop_value = kzalloc(INTF_PROP_MAX *
sizeof(struct sde_prop_value), GFP_KERNEL);
if (!prop_value) {
rc = -ENOMEM;
goto end;
}
rc = _validate_dt_entry(np, intf_prop, ARRAY_SIZE(intf_prop),
prop_count, &off_count);
if (rc)
goto end;
sde_cfg->intf_count = off_count;
rc = _read_dt_entry(np, intf_prop, ARRAY_SIZE(intf_prop), prop_count,
prop_exists, prop_value);
if (rc)
goto end;
for (i = 0; i < off_count; i++) {
intf = sde_cfg->intf + i;
intf->base = PROP_VALUE_ACCESS(prop_value, INTF_OFF, i);
intf->len = PROP_VALUE_ACCESS(prop_value, INTF_LEN, 0);
intf->id = INTF_0 + i;
snprintf(intf->name, SDE_HW_BLK_NAME_LEN, "intf_%u",
intf->id - INTF_0);
if (!prop_exists[INTF_LEN])
intf->len = DEFAULT_SDE_HW_BLOCK_LEN;
rc = _add_to_irq_offset_list(sde_cfg, SDE_INTR_HWBLK_INTF,
intf->id, intf->base);
if (rc)
goto end;
intf->prog_fetch_lines_worst_case =
!prop_exists[INTF_PREFETCH] ?
sde_cfg->perf.min_prefill_lines :
PROP_VALUE_ACCESS(prop_value, INTF_PREFETCH, i);
of_property_read_string_index(np,
intf_prop[INTF_TYPE].prop_name, i, &type);
if (!strcmp(type, "dsi")) {
intf->type = INTF_DSI;
intf->controller_id = dsi_count;
dsi_count++;
} else if (!strcmp(type, "hdmi")) {
intf->type = INTF_HDMI;
intf->controller_id = hdmi_count;
hdmi_count++;
} else if (!strcmp(type, "dp")) {
intf->type = INTF_DP;
intf->controller_id = dp_count;
dp_count++;
} else {
intf->type = INTF_NONE;
intf->controller_id = none_count;
none_count++;
}
if (IS_SDE_CTL_REV_100(sde_cfg->ctl_rev))
set_bit(SDE_INTF_INPUT_CTRL, &intf->features);
if (prop_exists[INTF_TE_IRQ])
intf->te_irq_offset = PROP_VALUE_ACCESS(prop_value,
INTF_TE_IRQ, i);
if (intf->te_irq_offset) {
rc = _add_to_irq_offset_list(sde_cfg,
SDE_INTR_HWBLK_INTF_TEAR,
intf->id, intf->te_irq_offset);
if (rc)
goto end;
set_bit(SDE_INTF_TE, &intf->features);
}
if (SDE_HW_MAJOR(sde_cfg->hwversion) >=
SDE_HW_MAJOR(SDE_HW_VER_700))
set_bit(SDE_INTF_TE_ALIGN_VSYNC, &intf->features);
}
end:
kfree(prop_value);
return rc;
}
static int sde_wb_parse_dt(struct device_node *np, struct sde_mdss_cfg *sde_cfg)
{
int rc, prop_count[WB_PROP_MAX], i, j;
struct sde_prop_value *prop_value = NULL;
bool prop_exists[WB_PROP_MAX];
u32 off_count, major_version;
struct sde_wb_cfg *wb;
struct sde_wb_sub_blocks *sblk;
if (!sde_cfg) {
SDE_ERROR("invalid argument\n");
rc = -EINVAL;
goto end;
}
prop_value = kzalloc(WB_PROP_MAX *
sizeof(struct sde_prop_value), GFP_KERNEL);
if (!prop_value) {
rc = -ENOMEM;
goto end;
}
rc = _validate_dt_entry(np, wb_prop, ARRAY_SIZE(wb_prop), prop_count,
&off_count);
if (rc)
goto end;
sde_cfg->wb_count = off_count;
rc = _read_dt_entry(np, wb_prop, ARRAY_SIZE(wb_prop), prop_count,
prop_exists, prop_value);
if (rc)
goto end;
major_version = SDE_HW_MAJOR(sde_cfg->hwversion);
for (i = 0; i < off_count; i++) {
wb = sde_cfg->wb + i;
sblk = kzalloc(sizeof(*sblk), GFP_KERNEL);
if (!sblk) {
rc = -ENOMEM;
/* catalog deinit will release the allocated blocks */
goto end;
}
wb->sblk = sblk;
wb->base = PROP_VALUE_ACCESS(prop_value, WB_OFF, i);
wb->id = WB_0 + PROP_VALUE_ACCESS(prop_value, WB_ID, i);
snprintf(wb->name, SDE_HW_BLK_NAME_LEN, "wb_%u",
wb->id - WB_0);
wb->clk_ctrl = SDE_CLK_CTRL_WB0 +
PROP_VALUE_ACCESS(prop_value, WB_ID, i);
wb->xin_id = PROP_VALUE_ACCESS(prop_value, WB_XIN_ID, i);
if (wb->clk_ctrl >= SDE_CLK_CTRL_MAX) {
SDE_ERROR("%s: invalid clk ctrl: %d\n",
wb->name, wb->clk_ctrl);
rc = -EINVAL;
goto end;
}
if (IS_SDE_MAJOR_MINOR_SAME((sde_cfg->hwversion),
SDE_HW_VER_170))
wb->vbif_idx = VBIF_NRT;
else
wb->vbif_idx = VBIF_RT;
wb->len = PROP_VALUE_ACCESS(prop_value, WB_LEN, 0);
if (!prop_exists[WB_LEN])
wb->len = DEFAULT_SDE_HW_BLOCK_LEN;
sblk->maxlinewidth = sde_cfg->max_wb_linewidth;
sblk->maxlinewidth_linear = sde_cfg->max_wb_linewidth_linear;
if (wb->id >= LINE_MODE_WB_OFFSET)
set_bit(SDE_WB_LINE_MODE, &wb->features);
else
set_bit(SDE_WB_BLOCK_MODE, &wb->features);
set_bit(SDE_WB_TRAFFIC_SHAPER, &wb->features);
set_bit(SDE_WB_YUV_CONFIG, &wb->features);
if (sde_cfg->has_cdp)
set_bit(SDE_WB_CDP, &wb->features);
set_bit(SDE_WB_QOS, &wb->features);
if (sde_cfg->vbif_qos_nlvl == 8)
set_bit(SDE_WB_QOS_8LVL, &wb->features);
if (sde_cfg->has_wb_ubwc)
set_bit(SDE_WB_UBWC, &wb->features);
set_bit(SDE_WB_XY_ROI_OFFSET, &wb->features);
if (IS_SDE_CTL_REV_100(sde_cfg->ctl_rev))
set_bit(SDE_WB_INPUT_CTRL, &wb->features);
if (sde_cfg->has_cwb_support) {
set_bit(SDE_WB_HAS_CWB, &wb->features);
if (IS_SDE_CTL_REV_100(sde_cfg->ctl_rev))
set_bit(SDE_WB_CWB_CTRL, &wb->features);
if (major_version >= SDE_HW_MAJOR(SDE_HW_VER_700)) {
sde_cfg->cwb_blk_off = 0x6A200;
sde_cfg->cwb_blk_stride = 0x1000;
} else {
sde_cfg->cwb_blk_off = 0x83000;
sde_cfg->cwb_blk_stride = 0x100;
}
}
for (j = 0; j < sde_cfg->mdp_count; j++) {
sde_cfg->mdp[j].clk_ctrls[wb->clk_ctrl].reg_off =
PROP_BITVALUE_ACCESS(prop_value,
WB_CLK_CTRL, i, 0);
sde_cfg->mdp[j].clk_ctrls[wb->clk_ctrl].bit_off =
PROP_BITVALUE_ACCESS(prop_value,
WB_CLK_CTRL, i, 1);
sde_cfg->mdp[j].clk_status[wb->clk_ctrl].reg_off =
PROP_BITVALUE_ACCESS(prop_value,
WB_CLK_STATUS, i, 0);
sde_cfg->mdp[j].clk_status[wb->clk_ctrl].bit_off =
PROP_BITVALUE_ACCESS(prop_value,
WB_CLK_STATUS, i, 1);
}
wb->format_list = sde_cfg->wb_formats;
SDE_DEBUG(
"wb:%d xin:%d vbif:%d clk%d:%x/%d\n",
wb->id - WB_0,
wb->xin_id,
wb->vbif_idx,
wb->clk_ctrl,
sde_cfg->mdp[0].clk_ctrls[wb->clk_ctrl].reg_off,
sde_cfg->mdp[0].clk_ctrls[wb->clk_ctrl].bit_off);
}
end:
kfree(prop_value);
return rc;
}
static int sde_dspp_top_parse_dt(struct device_node *np,
struct sde_mdss_cfg *sde_cfg)
{
int rc, prop_count[DSPP_TOP_PROP_MAX];
bool prop_exists[DSPP_TOP_PROP_MAX];
struct sde_prop_value *prop_value = NULL;
u32 off_count;
if (!sde_cfg) {
SDE_ERROR("invalid argument\n");
rc = -EINVAL;
goto end;
}
prop_value = kzalloc(DSPP_TOP_PROP_MAX *
sizeof(struct sde_prop_value), GFP_KERNEL);
if (!prop_value) {
rc = -ENOMEM;
goto end;
}
rc = _validate_dt_entry(np, dspp_top_prop, ARRAY_SIZE(dspp_top_prop),
prop_count, &off_count);
if (rc)
goto end;
rc = _read_dt_entry(np, dspp_top_prop, ARRAY_SIZE(dspp_top_prop),
prop_count, prop_exists, prop_value);
if (rc)
goto end;
if (off_count != 1) {
SDE_ERROR("invalid dspp_top off_count:%d\n", off_count);
rc = -EINVAL;
goto end;
}
sde_cfg->dspp_top.base =
PROP_VALUE_ACCESS(prop_value, DSPP_TOP_OFF, 0);
sde_cfg->dspp_top.len =
PROP_VALUE_ACCESS(prop_value, DSPP_TOP_SIZE, 0);
snprintf(sde_cfg->dspp_top.name, SDE_HW_BLK_NAME_LEN, "dspp_top");
end:
kfree(prop_value);
return rc;
}
static int _sde_ad_parse_dt(struct device_node *np,
struct sde_mdss_cfg *sde_cfg)
{
int rc = 0;
int off_count, i;
struct sde_dt_props *props;
props = sde_get_dt_props(np, AD_PROP_MAX, ad_prop,
ARRAY_SIZE(ad_prop), &off_count);
if (IS_ERR(props))
return PTR_ERR(props);
sde_cfg->ad_count = off_count;
if (off_count > sde_cfg->dspp_count) {
SDE_ERROR("limiting %d AD blocks to %d DSPP instances\n",
off_count, sde_cfg->dspp_count);
sde_cfg->ad_count = sde_cfg->dspp_count;
}
for (i = 0; i < sde_cfg->dspp_count; i++) {
struct sde_dspp_cfg *dspp = &sde_cfg->dspp[i];
struct sde_dspp_sub_blks *sblk = sde_cfg->dspp[i].sblk;
sblk->ad.id = SDE_DSPP_AD;
if (!props->exists[AD_OFF])
continue;
if (i < off_count) {
sblk->ad.base = PROP_VALUE_ACCESS(props->values,
AD_OFF, i);
sblk->ad.version = PROP_VALUE_ACCESS(props->values,
AD_VERSION, 0);
set_bit(SDE_DSPP_AD, &dspp->features);
rc = _add_to_irq_offset_list(sde_cfg,
SDE_INTR_HWBLK_AD4, dspp->id,
dspp->base + sblk->ad.base);
if (rc)
goto end;
}
}
end:
sde_put_dt_props(props);
return rc;
}
static int _sde_ltm_parse_dt(struct device_node *np,
struct sde_mdss_cfg *sde_cfg)
{
int rc = 0;
int off_count, i;
struct sde_dt_props *props;
props = sde_get_dt_props(np, LTM_PROP_MAX, ltm_prop,
ARRAY_SIZE(ltm_prop), &off_count);
if (IS_ERR(props))
return PTR_ERR(props);
sde_cfg->ltm_count = off_count;
if (off_count > sde_cfg->dspp_count) {
SDE_ERROR("limiting %d LTM blocks to %d DSPP instances\n",
off_count, sde_cfg->dspp_count);
sde_cfg->ltm_count = sde_cfg->dspp_count;
}
for (i = 0; i < sde_cfg->dspp_count; i++) {
struct sde_dspp_cfg *dspp = &sde_cfg->dspp[i];
struct sde_dspp_sub_blks *sblk = sde_cfg->dspp[i].sblk;
sblk->ltm.id = SDE_DSPP_LTM;
if (!props->exists[LTM_OFF])
continue;
if (i < off_count) {
sblk->ltm.base = PROP_VALUE_ACCESS(props->values,
LTM_OFF, i);
sblk->ltm.version = PROP_VALUE_ACCESS(props->values,
LTM_VERSION, 0);
set_bit(SDE_DSPP_LTM, &dspp->features);
rc = _add_to_irq_offset_list(sde_cfg,
SDE_INTR_HWBLK_LTM, dspp->id,
dspp->base + sblk->ltm.base);
if (rc)
goto end;
}
}
end:
sde_put_dt_props(props);
return rc;
}
static int _sde_dspp_demura_parse_dt(struct device_node *np,
struct sde_mdss_cfg *sde_cfg)
{
int off_count, i;
struct sde_dt_props *props;
struct sde_dspp_cfg *dspp;
struct sde_dspp_sub_blks *sblk;
props = sde_get_dt_props(np, DEMURA_PROP_MAX, demura_prop,
ARRAY_SIZE(demura_prop), &off_count);
if (IS_ERR(props))
return PTR_ERR(props);
sde_cfg->demura_count = off_count;
if (off_count > sde_cfg->dspp_count) {
SDE_ERROR("limiting %d demura blocks to %d DSPP instances\n",
off_count, sde_cfg->dspp_count);
sde_cfg->demura_count = sde_cfg->dspp_count;
}
for (i = 0; i < sde_cfg->dspp_count; i++) {
dspp = &sde_cfg->dspp[i];
sblk = sde_cfg->dspp[i].sblk;
sblk->demura.id = SDE_DSPP_DEMURA;
if (props->exists[DEMURA_OFF] && i < off_count) {
sblk->demura.base = PROP_VALUE_ACCESS(props->values,
DEMURA_OFF, i);
sblk->demura.len = PROP_VALUE_ACCESS(props->values,
DEMURA_LEN, 0);
sblk->demura.version = PROP_VALUE_ACCESS(props->values,
DEMURA_VERSION, 0);
set_bit(SDE_DSPP_DEMURA, &dspp->features);
}
}
sde_put_dt_props(props);
return 0;
}
static int _sde_dspp_spr_parse_dt(struct device_node *np,
struct sde_mdss_cfg *sde_cfg)
{
int off_count, i;
struct sde_dt_props *props;
struct sde_dspp_cfg *dspp;
struct sde_dspp_sub_blks *sblk;
props = sde_get_dt_props(np, SPR_PROP_MAX, spr_prop,
ARRAY_SIZE(spr_prop), &off_count);
if (IS_ERR(props))
return PTR_ERR(props);
sde_cfg->spr_count = off_count;
if (off_count > sde_cfg->dspp_count) {
SDE_ERROR("limiting %d spr blocks to %d DSPP instances\n",
off_count, sde_cfg->dspp_count);
sde_cfg->spr_count = sde_cfg->dspp_count;
}
for (i = 0; i < sde_cfg->dspp_count; i++) {
dspp = &sde_cfg->dspp[i];
sblk = sde_cfg->dspp[i].sblk;
sblk->spr.id = SDE_DSPP_SPR;
if (props->exists[SPR_OFF] && i < off_count) {
sblk->spr.base = PROP_VALUE_ACCESS(props->values,
SPR_OFF, i);
sblk->spr.len = PROP_VALUE_ACCESS(props->values,
SPR_LEN, 0);
sblk->spr.version = PROP_VALUE_ACCESS(props->values,
SPR_VERSION, 0);
set_bit(SDE_DSPP_SPR, &dspp->features);
}
}
sde_put_dt_props(props);
return 0;
}
static int _sde_rc_parse_dt(struct device_node *np,
struct sde_mdss_cfg *sde_cfg)
{
int off_count, i;
struct sde_dt_props *props;
props = sde_get_dt_props(np, RC_PROP_MAX, rc_prop,
ARRAY_SIZE(rc_prop), &off_count);
if (IS_ERR(props))
return PTR_ERR(props);
sde_cfg->rc_count = off_count;
if (off_count > sde_cfg->dspp_count) {
SDE_ERROR("limiting %d RC blocks to %d DSPP instances\n",
off_count, sde_cfg->dspp_count);
sde_cfg->rc_count = sde_cfg->dspp_count;
}
for (i = 0; i < sde_cfg->dspp_count; i++) {
struct sde_dspp_cfg *dspp = &sde_cfg->dspp[i];
struct sde_dspp_sub_blks *sblk = sde_cfg->dspp[i].sblk;
sblk->rc.id = SDE_DSPP_RC;
if (!props->exists[RC_OFF])
continue;
if (i < off_count) {
sblk->rc.base = PROP_VALUE_ACCESS(props->values,
RC_OFF, i);
sblk->rc.len = PROP_VALUE_ACCESS(props->values,
RC_LEN, 0);
sblk->rc.version = PROP_VALUE_ACCESS(props->values,
RC_VERSION, 0);
sblk->rc.mem_total_size = PROP_VALUE_ACCESS(
props->values, RC_MEM_TOTAL_SIZE, 0);
sblk->rc.idx = i;
set_bit(SDE_DSPP_RC, &dspp->features);
}
}
sde_put_dt_props(props);
return 0;
}
static void _sde_init_dspp_sblk(struct sde_dspp_cfg *dspp,
struct sde_pp_blk *pp_blk, int prop_id, int blk_id,
struct sde_dt_props *props)
{
pp_blk->id = prop_id;
if (props->exists[blk_id]) {
pp_blk->base = PROP_VALUE_ACCESS(props->values,
blk_id, 0);
pp_blk->version = PROP_VALUE_ACCESS(props->values,
blk_id, 1);
pp_blk->len = 0;
set_bit(prop_id, &dspp->features);
}
}
static int _sde_dspp_sblks_parse_dt(struct device_node *np,
struct sde_mdss_cfg *sde_cfg)
{
int i;
struct device_node *snp = NULL;
struct sde_dt_props *props;
snp = of_get_child_by_name(np, dspp_prop[DSPP_BLOCKS].prop_name);
if (!snp)
return 0;
props = sde_get_dt_props(snp, DSPP_BLOCKS_PROP_MAX,
dspp_blocks_prop, ARRAY_SIZE(dspp_blocks_prop),
NULL);
if (IS_ERR(props))
return PTR_ERR(props);
for (i = 0; i < sde_cfg->dspp_count; i++) {
struct sde_dspp_cfg *dspp = &sde_cfg->dspp[i];
struct sde_dspp_sub_blks *sblk = sde_cfg->dspp[i].sblk;
_sde_init_dspp_sblk(dspp, &sblk->igc, SDE_DSPP_IGC,
DSPP_IGC_PROP, props);
_sde_init_dspp_sblk(dspp, &sblk->pcc, SDE_DSPP_PCC,
DSPP_PCC_PROP, props);
_sde_init_dspp_sblk(dspp, &sblk->gc, SDE_DSPP_GC,
DSPP_GC_PROP, props);
_sde_init_dspp_sblk(dspp, &sblk->gamut, SDE_DSPP_GAMUT,
DSPP_GAMUT_PROP, props);
_sde_init_dspp_sblk(dspp, &sblk->dither, SDE_DSPP_DITHER,
DSPP_DITHER_PROP, props);
_sde_init_dspp_sblk(dspp, &sblk->hist, SDE_DSPP_HIST,
DSPP_HIST_PROP, props);
_sde_init_dspp_sblk(dspp, &sblk->hsic, SDE_DSPP_HSIC,
DSPP_HSIC_PROP, props);
_sde_init_dspp_sblk(dspp, &sblk->memcolor, SDE_DSPP_MEMCOLOR,
DSPP_MEMCOLOR_PROP, props);
_sde_init_dspp_sblk(dspp, &sblk->sixzone, SDE_DSPP_SIXZONE,
DSPP_SIXZONE_PROP, props);
_sde_init_dspp_sblk(dspp, &sblk->vlut, SDE_DSPP_VLUT,
DSPP_VLUT_PROP, props);
}
sde_put_dt_props(props);
return 0;
}
static int _sde_dspp_cmn_parse_dt(struct device_node *np,
struct sde_mdss_cfg *sde_cfg)
{
int rc = 0;
int i, off_count;
struct sde_dt_props *props;
struct sde_dspp_sub_blks *sblk;
props = sde_get_dt_props(np, DSPP_PROP_MAX, dspp_prop,
ARRAY_SIZE(dspp_prop), &off_count);
if (IS_ERR(props))
return PTR_ERR(props);
if (off_count > MAX_BLOCKS) {
SDE_ERROR("off_count %d exceeds MAX_BLOCKS, limiting to %d\n",
off_count, MAX_BLOCKS);
off_count = MAX_BLOCKS;
}
sde_cfg->dspp_count = off_count;
for (i = 0; i < sde_cfg->dspp_count; i++) {
sde_cfg->dspp[i].base = PROP_VALUE_ACCESS(props->values,
DSPP_OFF, i);
sde_cfg->dspp[i].len = PROP_VALUE_ACCESS(props->values,
DSPP_SIZE, 0);
sde_cfg->dspp[i].id = DSPP_0 + i;
snprintf(sde_cfg->dspp[i].name, SDE_HW_BLK_NAME_LEN, "dspp_%d",
i);
/* create an empty sblk for each dspp */
sblk = kzalloc(sizeof(*sblk), GFP_KERNEL);
if (!sblk) {
rc = -ENOMEM;
/* catalog deinit will release the allocated blocks */
goto end;
}
sde_cfg->dspp[i].sblk = sblk;
}
end:
sde_put_dt_props(props);
return rc;
}
static int sde_dspp_parse_dt(struct device_node *np,
struct sde_mdss_cfg *sde_cfg)
{
int rc;
rc = _sde_dspp_cmn_parse_dt(np, sde_cfg);
if (rc)
goto end;
rc = _sde_dspp_sblks_parse_dt(np, sde_cfg);
if (rc)
goto end;
rc = _sde_ad_parse_dt(np, sde_cfg);
if (rc)
goto end;
rc = _sde_ltm_parse_dt(np, sde_cfg);
if (rc)
goto end;
rc = _sde_dspp_spr_parse_dt(np, sde_cfg);
if (rc)
goto end;
rc = _sde_dspp_demura_parse_dt(np, sde_cfg);
if (rc)
goto end;
rc = _sde_rc_parse_dt(np, sde_cfg);
end:
return rc;
}
static int sde_ds_parse_dt(struct device_node *np,
struct sde_mdss_cfg *sde_cfg)
{
int rc, prop_count[DS_PROP_MAX], top_prop_count[DS_TOP_PROP_MAX], i;
struct sde_prop_value *prop_value = NULL, *top_prop_value = NULL;
bool prop_exists[DS_PROP_MAX], top_prop_exists[DS_TOP_PROP_MAX];
u32 off_count = 0, top_off_count = 0;
struct sde_ds_cfg *ds;
struct sde_ds_top_cfg *ds_top = NULL;
if (!sde_cfg) {
SDE_ERROR("invalid argument\n");
rc = -EINVAL;
goto end;
}
if (!sde_cfg->mdp[0].has_dest_scaler) {
SDE_DEBUG("dest scaler feature not supported\n");
rc = 0;
goto end;
}
/* Parse the dest scaler top register offset and capabilities */
top_prop_value = kzalloc(DS_TOP_PROP_MAX *
sizeof(struct sde_prop_value), GFP_KERNEL);
if (!top_prop_value) {
rc = -ENOMEM;
goto end;
}
rc = _validate_dt_entry(np, ds_top_prop,
ARRAY_SIZE(ds_top_prop),
top_prop_count, &top_off_count);
if (rc)
goto end;
rc = _read_dt_entry(np, ds_top_prop,
ARRAY_SIZE(ds_top_prop), top_prop_count,
top_prop_exists, top_prop_value);
if (rc)
goto end;
/* Parse the offset of each dest scaler block */
prop_value = kcalloc(DS_PROP_MAX,
sizeof(struct sde_prop_value), GFP_KERNEL);
if (!prop_value) {
rc = -ENOMEM;
goto end;
}
rc = _validate_dt_entry(np, ds_prop, ARRAY_SIZE(ds_prop), prop_count,
&off_count);
if (rc)
goto end;
sde_cfg->ds_count = off_count;
rc = _read_dt_entry(np, ds_prop, ARRAY_SIZE(ds_prop), prop_count,
prop_exists, prop_value);
if (rc)
goto end;
if (!off_count)
goto end;
ds_top = kzalloc(sizeof(struct sde_ds_top_cfg), GFP_KERNEL);
if (!ds_top) {
rc = -ENOMEM;
goto end;
}
ds_top->id = DS_TOP;
snprintf(ds_top->name, SDE_HW_BLK_NAME_LEN, "ds_top_%u",
ds_top->id - DS_TOP);
ds_top->base = PROP_VALUE_ACCESS(top_prop_value, DS_TOP_OFF, 0);
ds_top->len = PROP_VALUE_ACCESS(top_prop_value, DS_TOP_LEN, 0);
ds_top->maxupscale = MAX_UPSCALE_RATIO;
ds_top->maxinputwidth = PROP_VALUE_ACCESS(top_prop_value,
DS_TOP_INPUT_LINEWIDTH, 0);
if (!top_prop_exists[DS_TOP_INPUT_LINEWIDTH])
ds_top->maxinputwidth = DEFAULT_SDE_LINE_WIDTH;
ds_top->maxoutputwidth = PROP_VALUE_ACCESS(top_prop_value,
DS_TOP_OUTPUT_LINEWIDTH, 0);
if (!top_prop_exists[DS_TOP_OUTPUT_LINEWIDTH])
ds_top->maxoutputwidth = DEFAULT_SDE_OUTPUT_LINE_WIDTH;
for (i = 0; i < off_count; i++) {
ds = sde_cfg->ds + i;
ds->top = ds_top;
ds->base = PROP_VALUE_ACCESS(prop_value, DS_OFF, i);
ds->id = DS_0 + i;
ds->len = PROP_VALUE_ACCESS(prop_value, DS_LEN, 0);
snprintf(ds->name, SDE_HW_BLK_NAME_LEN, "ds_%u",
ds->id - DS_0);
if (!prop_exists[DS_LEN])
ds->len = DEFAULT_SDE_HW_BLOCK_LEN;
if (sde_cfg->qseed_sw_lib_rev == SDE_SSPP_SCALER_QSEED3)
set_bit(SDE_SSPP_SCALER_QSEED3, &ds->features);
else if (sde_cfg->qseed_sw_lib_rev ==
SDE_SSPP_SCALER_QSEED3LITE)
set_bit(SDE_SSPP_SCALER_QSEED3LITE, &ds->features);
}
end:
kfree(top_prop_value);
kfree(prop_value);
return rc;
};
static int sde_dsc_parse_dt(struct device_node *np,
struct sde_mdss_cfg *sde_cfg)
{
int rc, prop_count[MAX_BLOCKS], i;
struct sde_prop_value *prop_value;
bool prop_exists[DSC_PROP_MAX];
u32 off_count, dsc_pair_mask, dsc_rev;
const char *rev;
struct sde_dsc_cfg *dsc;
struct sde_dsc_sub_blks *sblk;
if (!sde_cfg) {
SDE_ERROR("invalid argument\n");
return -EINVAL;
}
prop_value = kzalloc(DSC_PROP_MAX *
sizeof(struct sde_prop_value), GFP_KERNEL);
if (!prop_value)
return -ENOMEM;
rc = _validate_dt_entry(np, dsc_prop, ARRAY_SIZE(dsc_prop), prop_count,
&off_count);
if (rc)
goto end;
sde_cfg->dsc_count = off_count;
rc = of_property_read_string(np, dsc_prop[DSC_REV].prop_name, &rev);
if (!rc && !strcmp(rev, "dsc_1_2"))
dsc_rev = SDE_DSC_HW_REV_1_2;
else if (!rc && !strcmp(rev, "dsc_1_1"))
dsc_rev = SDE_DSC_HW_REV_1_1;
else
/* default configuration */
dsc_rev = SDE_DSC_HW_REV_1_1;
rc = _read_dt_entry(np, dsc_prop, ARRAY_SIZE(dsc_prop), prop_count,
prop_exists, prop_value);
if (rc)
goto end;
sde_cfg->max_dsc_width = prop_exists[DSC_LINEWIDTH] ?
PROP_VALUE_ACCESS(prop_value, DSC_LINEWIDTH, 0) :
DEFAULT_SDE_LINE_WIDTH;
for (i = 0; i < off_count; i++) {
dsc = sde_cfg->dsc + i;
sblk = kzalloc(sizeof(*sblk), GFP_KERNEL);
if (!sblk) {
rc = -ENOMEM;
/* catalog deinit will release the allocated blocks */
goto end;
}
dsc->sblk = sblk;
dsc->base = PROP_VALUE_ACCESS(prop_value, DSC_OFF, i);
dsc->id = DSC_0 + i;
dsc->len = PROP_VALUE_ACCESS(prop_value, DSC_LEN, 0);
snprintf(dsc->name, SDE_HW_BLK_NAME_LEN, "dsc_%u",
dsc->id - DSC_0);
if (!prop_exists[DSC_LEN])
dsc->len = DEFAULT_SDE_HW_BLOCK_LEN;
if (IS_SDE_CTL_REV_100(sde_cfg->ctl_rev))
set_bit(SDE_DSC_OUTPUT_CTRL, &dsc->features);
dsc_pair_mask = PROP_VALUE_ACCESS(prop_value,
DSC_PAIR_MASK, i);
if (dsc_pair_mask)
set_bit(dsc_pair_mask, dsc->dsc_pair_mask);
if (dsc_rev == SDE_DSC_HW_REV_1_2) {
sblk->enc.base = PROP_VALUE_ACCESS(prop_value,
DSC_ENC, i);
sblk->enc.len = PROP_VALUE_ACCESS(prop_value,
DSC_ENC_LEN, 0);
sblk->ctl.base = PROP_VALUE_ACCESS(prop_value,
DSC_CTL, i);
sblk->ctl.len = PROP_VALUE_ACCESS(prop_value,
DSC_CTL_LEN, 0);
set_bit(SDE_DSC_HW_REV_1_2, &dsc->features);
if (PROP_VALUE_ACCESS(prop_value, DSC_422, i))
set_bit(SDE_DSC_NATIVE_422_EN,
&dsc->features);
} else {
set_bit(SDE_DSC_HW_REV_1_1, &dsc->features);
}
}
end:
kfree(prop_value);
return rc;
};
static int sde_vdc_parse_dt(struct device_node *np,
struct sde_mdss_cfg *sde_cfg)
{
int rc, prop_count[MAX_BLOCKS], i;
struct sde_prop_value *prop_value = NULL;
bool prop_exists[VDC_PROP_MAX];
u32 off_count, vdc_rev;
const char *rev;
struct sde_vdc_cfg *vdc;
struct sde_vdc_sub_blks *sblk;
if (!sde_cfg) {
SDE_ERROR("invalid argument\n");
rc = -EINVAL;
goto end;
}
prop_value = kzalloc(VDC_PROP_MAX *
sizeof(struct sde_prop_value), GFP_KERNEL);
if (!prop_value) {
rc = -ENOMEM;
goto end;
}
rc = _validate_dt_entry(np, vdc_prop, ARRAY_SIZE(vdc_prop), prop_count,
&off_count);
if (rc)
goto end;
sde_cfg->vdc_count = off_count;
rc = of_property_read_string(np, vdc_prop[VDC_REV].prop_name, &rev);
if ((rc == -EINVAL) || (rc == -ENODATA)) {
vdc_rev = SDE_VDC_HW_REV_1_2;
rc = 0;
} else if (!rc && !strcmp(rev, "vdc_1_2")) {
vdc_rev = SDE_VDC_HW_REV_1_2;
rc = 0;
} else {
SDE_ERROR("invalid vdc configuration\n");
goto end;
}
rc = _read_dt_entry(np, vdc_prop, ARRAY_SIZE(vdc_prop), prop_count,
prop_exists, prop_value);
if (rc)
goto end;
for (i = 0; i < off_count; i++) {
vdc = sde_cfg->vdc + i;
sblk = kzalloc(sizeof(*sblk), GFP_KERNEL);
if (!sblk) {
rc = -ENOMEM;
/* catalog deinit will release the allocated blocks */
goto end;
}
vdc->sblk = sblk;
vdc->base = PROP_VALUE_ACCESS(prop_value, VDC_OFF, i);
vdc->id = VDC_0 + i;
vdc->len = PROP_VALUE_ACCESS(prop_value, VDC_LEN, 0);
snprintf(vdc->name, SDE_HW_BLK_NAME_LEN, "vdc_%u",
vdc->id - VDC_0);
if (!prop_exists[VDC_LEN])
vdc->len = DEFAULT_SDE_HW_BLOCK_LEN;
sblk->enc.base = PROP_VALUE_ACCESS(prop_value,
VDC_ENC, i);
sblk->enc.len = PROP_VALUE_ACCESS(prop_value,
VDC_ENC_LEN, 0);
sblk->ctl.base = PROP_VALUE_ACCESS(prop_value,
VDC_CTL, i);
sblk->ctl.len = PROP_VALUE_ACCESS(prop_value,
VDC_CTL_LEN, 0);
set_bit(vdc_rev, &vdc->features);
}
end:
kfree(prop_value);
return rc;
};
static int sde_cdm_parse_dt(struct device_node *np,
struct sde_mdss_cfg *sde_cfg)
{
int rc, prop_count[HW_PROP_MAX], i;
struct sde_prop_value *prop_value = NULL;
bool prop_exists[HW_PROP_MAX];
u32 off_count;
struct sde_cdm_cfg *cdm;
if (!sde_cfg) {
SDE_ERROR("invalid argument\n");
rc = -EINVAL;
goto end;
}
prop_value = kzalloc(HW_PROP_MAX *
sizeof(struct sde_prop_value), GFP_KERNEL);
if (!prop_value) {
rc = -ENOMEM;
goto end;
}
rc = _validate_dt_entry(np, cdm_prop, ARRAY_SIZE(cdm_prop), prop_count,
&off_count);
if (rc)
goto end;
sde_cfg->cdm_count = off_count;
rc = _read_dt_entry(np, cdm_prop, ARRAY_SIZE(cdm_prop), prop_count,
prop_exists, prop_value);
if (rc)
goto end;
for (i = 0; i < off_count; i++) {
cdm = sde_cfg->cdm + i;
cdm->base = PROP_VALUE_ACCESS(prop_value, HW_OFF, i);
cdm->id = CDM_0 + i;
snprintf(cdm->name, SDE_HW_BLK_NAME_LEN, "cdm_%u",
cdm->id - CDM_0);
cdm->len = PROP_VALUE_ACCESS(prop_value, HW_LEN, 0);
/* intf3 and wb2 for cdm block */
cdm->wb_connect = sde_cfg->wb_count ? BIT(WB_2) : BIT(31);
cdm->intf_connect = sde_cfg->intf_count ? BIT(INTF_3) : BIT(31);
if (IS_SDE_CTL_REV_100(sde_cfg->ctl_rev))
set_bit(SDE_CDM_INPUT_CTRL, &cdm->features);
}
end:
kfree(prop_value);
return rc;
}
static int sde_uidle_parse_dt(struct device_node *np,
struct sde_mdss_cfg *sde_cfg)
{
int rc = 0, prop_count[UIDLE_PROP_MAX];
bool prop_exists[UIDLE_PROP_MAX];
struct sde_prop_value *prop_value = NULL;
u32 off_count;
if (!sde_cfg) {
SDE_ERROR("invalid argument\n");
return -EINVAL;
}
if (!sde_cfg->uidle_cfg.uidle_rev)
return 0;
prop_value = kcalloc(UIDLE_PROP_MAX,
sizeof(struct sde_prop_value), GFP_KERNEL);
if (!prop_value)
return -ENOMEM;
rc = _validate_dt_entry(np, uidle_prop, ARRAY_SIZE(uidle_prop),
prop_count, &off_count);
if (rc)
goto end;
rc = _read_dt_entry(np, uidle_prop, ARRAY_SIZE(uidle_prop), prop_count,
prop_exists, prop_value);
if (rc)
goto end;
if (!prop_exists[UIDLE_LEN] || !prop_exists[UIDLE_OFF]) {
SDE_DEBUG("offset/len missing, will disable uidle:%d,%d\n",
prop_exists[UIDLE_LEN], prop_exists[UIDLE_OFF]);
rc = -EINVAL;
goto end;
}
sde_cfg->uidle_cfg.id = UIDLE;
sde_cfg->uidle_cfg.base =
PROP_VALUE_ACCESS(prop_value, UIDLE_OFF, 0);
sde_cfg->uidle_cfg.len =
PROP_VALUE_ACCESS(prop_value, UIDLE_LEN, 0);
/* validate */
if (!sde_cfg->uidle_cfg.base || !sde_cfg->uidle_cfg.len) {
SDE_ERROR("invalid reg/len [%d, %d], will disable uidle\n",
sde_cfg->uidle_cfg.base, sde_cfg->uidle_cfg.len);
rc = -EINVAL;
}
end:
if (rc && sde_cfg->uidle_cfg.uidle_rev) {
SDE_DEBUG("wrong dt entries, will disable uidle\n");
sde_cfg->uidle_cfg.uidle_rev = 0;
}
kfree(prop_value);
/* optional feature, so always return success */
return 0;
}
static int sde_cache_parse_dt(struct device_node *np,
struct sde_mdss_cfg *sde_cfg)
{
struct llcc_slice_desc *slice;
struct platform_device *pdev;
struct of_phandle_args phargs;
struct sde_sc_cfg *sc_cfg = sde_cfg->sc_cfg;
struct sde_dt_props *props;
int rc = 0;
u32 off_count;
if (!sde_cfg) {
SDE_ERROR("invalid argument\n");
return -EINVAL;
}
props = sde_get_dt_props(np, CACHE_CONTROLLER_PROP_MAX, cache_prop,
ARRAY_SIZE(cache_prop), &off_count);
if (IS_ERR_OR_NULL(props))
return PTR_ERR(props);
if (!props->exists[CACHE_CONTROLLER]) {
SDE_DEBUG("cache controller missing, will disable img cache:%d",
props->exists[CACHE_CONTROLLER]);
rc = 0;
goto end;
}
slice = llcc_slice_getd(LLCC_DISP);
if (IS_ERR_OR_NULL(slice)) {
SDE_ERROR("failed to get system cache %ld\n",
PTR_ERR(slice));
} else {
sc_cfg[SDE_SYS_CACHE_DISP].has_sys_cache = true;
sc_cfg[SDE_SYS_CACHE_DISP].llcc_scid = llcc_get_slice_id(slice);
sc_cfg[SDE_SYS_CACHE_DISP].llcc_slice_size =
llcc_get_slice_size(slice);
SDE_DEBUG("img cache scid:%d slice_size:%zu kb\n",
sc_cfg[SDE_SYS_CACHE_DISP].llcc_scid,
sc_cfg[SDE_SYS_CACHE_DISP].llcc_slice_size);
llcc_slice_putd(slice);
}
/* Read inline rot node */
rc = of_parse_phandle_with_args(np,
"qcom,sde-inline-rotator", "#list-cells", 0, &phargs);
if (rc) {
/*
* This is not a fatal error, system cache can be disabled
* in device tree
*/
SDE_DEBUG("sys cache will be disabled rc:%d\n", rc);
rc = 0;
goto end;
}
if (!phargs.np || !phargs.args_count) {
SDE_ERROR("wrong phandle args %d %d\n",
!phargs.np, !phargs.args_count);
rc = -EINVAL;
goto end;
}
pdev = of_find_device_by_node(phargs.np);
if (!pdev) {
SDE_ERROR("invalid sde rotator node\n");
goto end;
}
slice = llcc_slice_getd(LLCC_ROTATOR);
if (IS_ERR_OR_NULL(slice)) {
SDE_ERROR("failed to get rotator slice!\n");
rc = -EINVAL;
goto cleanup;
}
sc_cfg[SDE_SYS_CACHE_ROT].llcc_scid = llcc_get_slice_id(slice);
sc_cfg[SDE_SYS_CACHE_ROT].llcc_slice_size =
llcc_get_slice_size(slice);
llcc_slice_putd(slice);
sc_cfg[SDE_SYS_CACHE_ROT].has_sys_cache = true;
SDE_DEBUG("rotator llcc scid:%d slice_size:%zukb\n",
sc_cfg[SDE_SYS_CACHE_ROT].llcc_scid,
sc_cfg[SDE_SYS_CACHE_ROT].llcc_slice_size);
cleanup:
of_node_put(phargs.np);
end:
sde_put_dt_props(props);
return rc;
}
static int _sde_vbif_populate_ot_parsing(struct sde_vbif_cfg *vbif,
struct sde_prop_value *prop_value, int *prop_count)
{
int j, k;
vbif->default_ot_rd_limit = PROP_VALUE_ACCESS(prop_value,
VBIF_DEFAULT_OT_RD_LIMIT, 0);
SDE_DEBUG("default_ot_rd_limit=%u\n",
vbif->default_ot_rd_limit);
vbif->default_ot_wr_limit = PROP_VALUE_ACCESS(prop_value,
VBIF_DEFAULT_OT_WR_LIMIT, 0);
SDE_DEBUG("default_ot_wr_limit=%u\n",
vbif->default_ot_wr_limit);
vbif->dynamic_ot_rd_tbl.count =
prop_count[VBIF_DYNAMIC_OT_RD_LIMIT] / 2;
SDE_DEBUG("dynamic_ot_rd_tbl.count=%u\n",
vbif->dynamic_ot_rd_tbl.count);
if (vbif->dynamic_ot_rd_tbl.count) {
vbif->dynamic_ot_rd_tbl.cfg = kcalloc(
vbif->dynamic_ot_rd_tbl.count,
sizeof(struct sde_vbif_dynamic_ot_cfg),
GFP_KERNEL);
if (!vbif->dynamic_ot_rd_tbl.cfg)
return -ENOMEM;
}
for (j = 0, k = 0; j < vbif->dynamic_ot_rd_tbl.count; j++) {
vbif->dynamic_ot_rd_tbl.cfg[j].pps = (u64)
PROP_VALUE_ACCESS(prop_value,
VBIF_DYNAMIC_OT_RD_LIMIT, k++);
vbif->dynamic_ot_rd_tbl.cfg[j].ot_limit =
PROP_VALUE_ACCESS(prop_value,
VBIF_DYNAMIC_OT_RD_LIMIT, k++);
SDE_DEBUG("dynamic_ot_rd_tbl[%d].cfg=<%llu %u>\n", j,
vbif->dynamic_ot_rd_tbl.cfg[j].pps,
vbif->dynamic_ot_rd_tbl.cfg[j].ot_limit);
}
vbif->dynamic_ot_wr_tbl.count =
prop_count[VBIF_DYNAMIC_OT_WR_LIMIT] / 2;
SDE_DEBUG("dynamic_ot_wr_tbl.count=%u\n",
vbif->dynamic_ot_wr_tbl.count);
if (vbif->dynamic_ot_wr_tbl.count) {
vbif->dynamic_ot_wr_tbl.cfg = kcalloc(
vbif->dynamic_ot_wr_tbl.count,
sizeof(struct sde_vbif_dynamic_ot_cfg),
GFP_KERNEL);
if (!vbif->dynamic_ot_wr_tbl.cfg)
return -ENOMEM;
}
for (j = 0, k = 0; j < vbif->dynamic_ot_wr_tbl.count; j++) {
vbif->dynamic_ot_wr_tbl.cfg[j].pps = (u64)
PROP_VALUE_ACCESS(prop_value,
VBIF_DYNAMIC_OT_WR_LIMIT, k++);
vbif->dynamic_ot_wr_tbl.cfg[j].ot_limit =
PROP_VALUE_ACCESS(prop_value,
VBIF_DYNAMIC_OT_WR_LIMIT, k++);
SDE_DEBUG("dynamic_ot_wr_tbl[%d].cfg=<%llu %u>\n", j,
vbif->dynamic_ot_wr_tbl.cfg[j].pps,
vbif->dynamic_ot_wr_tbl.cfg[j].ot_limit);
}
if (vbif->default_ot_rd_limit || vbif->default_ot_wr_limit ||
vbif->dynamic_ot_rd_tbl.count ||
vbif->dynamic_ot_wr_tbl.count)
set_bit(SDE_VBIF_QOS_OTLIM, &vbif->features);
return 0;
}
static int _sde_vbif_populate_qos_parsing(struct sde_mdss_cfg *sde_cfg,
struct sde_vbif_cfg *vbif, struct sde_prop_value *prop_value,
int *prop_count)
{
int i, j;
int prop_index = VBIF_QOS_RT_REMAP;
for (i = VBIF_RT_CLIENT;
((i < VBIF_MAX_CLIENT) && (prop_index < VBIF_PROP_MAX));
i++, prop_index++) {
vbif->qos_tbl[i].npriority_lvl = prop_count[prop_index];
SDE_DEBUG("qos_tbl[%d].npriority_lvl=%u\n",
i, vbif->qos_tbl[i].npriority_lvl);
if (vbif->qos_tbl[i].npriority_lvl == sde_cfg->vbif_qos_nlvl) {
vbif->qos_tbl[i].priority_lvl = kcalloc(
vbif->qos_tbl[i].npriority_lvl,
sizeof(u32), GFP_KERNEL);
if (!vbif->qos_tbl[i].priority_lvl)
return -ENOMEM;
} else if (vbif->qos_tbl[i].npriority_lvl) {
vbif->qos_tbl[i].npriority_lvl = 0;
vbif->qos_tbl[i].priority_lvl = NULL;
SDE_ERROR("invalid qos table for client:%d, prop:%d\n",
i, prop_index);
}
for (j = 0; j < vbif->qos_tbl[i].npriority_lvl; j++) {
vbif->qos_tbl[i].priority_lvl[j] =
PROP_VALUE_ACCESS(prop_value, prop_index, j);
SDE_DEBUG("client:%d, prop:%d, lvl[%d]=%u\n",
i, prop_index, j,
vbif->qos_tbl[i].priority_lvl[j]);
}
if (vbif->qos_tbl[i].npriority_lvl)
set_bit(SDE_VBIF_QOS_REMAP, &vbif->features);
}
return 0;
}
static int _sde_vbif_populate(struct sde_mdss_cfg *sde_cfg,
struct sde_vbif_cfg *vbif, struct sde_prop_value *prop_value,
int *prop_count, u32 vbif_len, int i)
{
int j, k, rc;
vbif = sde_cfg->vbif + i;
vbif->base = PROP_VALUE_ACCESS(prop_value, VBIF_OFF, i);
vbif->len = vbif_len;
vbif->id = VBIF_0 + PROP_VALUE_ACCESS(prop_value, VBIF_ID, i);
snprintf(vbif->name, SDE_HW_BLK_NAME_LEN, "vbif_%u",
vbif->id - VBIF_0);
SDE_DEBUG("vbif:%d\n", vbif->id - VBIF_0);
vbif->xin_halt_timeout = VBIF_XIN_HALT_TIMEOUT;
rc = _sde_vbif_populate_ot_parsing(vbif, prop_value, prop_count);
if (rc)
return rc;
rc = _sde_vbif_populate_qos_parsing(sde_cfg, vbif, prop_value,
prop_count);
if (rc)
return rc;
vbif->memtype_count = prop_count[VBIF_MEMTYPE_0] +
prop_count[VBIF_MEMTYPE_1];
if (vbif->memtype_count > MAX_XIN_COUNT) {
vbif->memtype_count = 0;
SDE_ERROR("too many memtype defs, ignoring entries\n");
}
for (j = 0, k = 0; j < prop_count[VBIF_MEMTYPE_0]; j++)
vbif->memtype[k++] = PROP_VALUE_ACCESS(
prop_value, VBIF_MEMTYPE_0, j);
for (j = 0; j < prop_count[VBIF_MEMTYPE_1]; j++)
vbif->memtype[k++] = PROP_VALUE_ACCESS(
prop_value, VBIF_MEMTYPE_1, j);
if (sde_cfg->vbif_disable_inner_outer_shareable)
set_bit(SDE_VBIF_DISABLE_SHAREABLE, &vbif->features);
return 0;
}
static int sde_vbif_parse_dt(struct device_node *np,
struct sde_mdss_cfg *sde_cfg)
{
int rc, prop_count[VBIF_PROP_MAX], i;
struct sde_prop_value *prop_value = NULL;
bool prop_exists[VBIF_PROP_MAX];
u32 off_count, vbif_len;
struct sde_vbif_cfg *vbif = NULL;
if (!sde_cfg) {
SDE_ERROR("invalid argument\n");
rc = -EINVAL;
goto end;
}
prop_value = kzalloc(VBIF_PROP_MAX *
sizeof(struct sde_prop_value), GFP_KERNEL);
if (!prop_value) {
rc = -ENOMEM;
goto end;
}
rc = _validate_dt_entry(np, vbif_prop, ARRAY_SIZE(vbif_prop),
prop_count, &off_count);
if (rc)
goto end;
rc = _validate_dt_entry(np, &vbif_prop[VBIF_DYNAMIC_OT_RD_LIMIT], 1,
&prop_count[VBIF_DYNAMIC_OT_RD_LIMIT], NULL);
if (rc)
goto end;
rc = _validate_dt_entry(np, &vbif_prop[VBIF_DYNAMIC_OT_WR_LIMIT], 1,
&prop_count[VBIF_DYNAMIC_OT_WR_LIMIT], NULL);
if (rc)
goto end;
rc = _validate_dt_entry(np, &vbif_prop[VBIF_MEMTYPE_0], 1,
&prop_count[VBIF_MEMTYPE_0], NULL);
if (rc)
goto end;
rc = _validate_dt_entry(np, &vbif_prop[VBIF_MEMTYPE_1], 1,
&prop_count[VBIF_MEMTYPE_1], NULL);
if (rc)
goto end;
rc = _validate_dt_entry(np, &vbif_prop[VBIF_QOS_RT_REMAP], 1,
&prop_count[VBIF_QOS_RT_REMAP], NULL);
if (rc)
goto end;
rc = _validate_dt_entry(np, &vbif_prop[VBIF_QOS_NRT_REMAP], 1,
&prop_count[VBIF_QOS_NRT_REMAP], NULL);
if (rc)
goto end;
rc = _validate_dt_entry(np, &vbif_prop[VBIF_QOS_CWB_REMAP], 1,
&prop_count[VBIF_QOS_CWB_REMAP], NULL);
if (rc)
goto end;
rc = _validate_dt_entry(np, &vbif_prop[VBIF_QOS_LUTDMA_REMAP], 1,
&prop_count[VBIF_QOS_LUTDMA_REMAP], NULL);
if (rc)
goto end;
sde_cfg->vbif_count = off_count;
rc = _read_dt_entry(np, vbif_prop, ARRAY_SIZE(vbif_prop), prop_count,
prop_exists, prop_value);
if (rc)
goto end;
vbif_len = PROP_VALUE_ACCESS(prop_value, VBIF_LEN, 0);
if (!prop_exists[VBIF_LEN])
vbif_len = DEFAULT_SDE_HW_BLOCK_LEN;
for (i = 0; i < off_count; i++) {
rc = _sde_vbif_populate(sde_cfg, vbif, prop_value,
prop_count, vbif_len, i);
if (rc)
goto end;
}
end:
kfree(prop_value);
return rc;
}
static int sde_pp_parse_dt(struct device_node *np, struct sde_mdss_cfg *sde_cfg)
{
int rc, prop_count[PP_PROP_MAX], i;
struct sde_prop_value *prop_value = NULL;
bool prop_exists[PP_PROP_MAX];
u32 off_count, major_version;
struct sde_pingpong_cfg *pp;
struct sde_pingpong_sub_blks *sblk;
if (!sde_cfg) {
SDE_ERROR("invalid argument\n");
rc = -EINVAL;
goto end;
}
prop_value = kzalloc(PP_PROP_MAX *
sizeof(struct sde_prop_value), GFP_KERNEL);
if (!prop_value) {
rc = -ENOMEM;
goto end;
}
rc = _validate_dt_entry(np, pp_prop, ARRAY_SIZE(pp_prop), prop_count,
&off_count);
if (rc)
goto end;
sde_cfg->pingpong_count = off_count;
rc = _read_dt_entry(np, pp_prop, ARRAY_SIZE(pp_prop), prop_count,
prop_exists, prop_value);
if (rc)
goto end;
major_version = SDE_HW_MAJOR(sde_cfg->hwversion);
for (i = 0; i < off_count; i++) {
pp = sde_cfg->pingpong + i;
sblk = kzalloc(sizeof(*sblk), GFP_KERNEL);
if (!sblk) {
rc = -ENOMEM;
/* catalog deinit will release the allocated blocks */
goto end;
}
pp->sblk = sblk;
pp->base = PROP_VALUE_ACCESS(prop_value, PP_OFF, i);
pp->id = PINGPONG_0 + i;
snprintf(pp->name, SDE_HW_BLK_NAME_LEN, "pingpong_%u",
pp->id - PINGPONG_0);
pp->len = PROP_VALUE_ACCESS(prop_value, PP_LEN, 0);
sblk->te.base = PROP_VALUE_ACCESS(prop_value, TE_OFF, i);
sblk->te.id = SDE_PINGPONG_TE;
snprintf(sblk->te.name, SDE_HW_BLK_NAME_LEN, "te_%u",
pp->id - PINGPONG_0);
if (major_version < SDE_HW_MAJOR(SDE_HW_VER_500))
set_bit(SDE_PINGPONG_TE, &pp->features);
sblk->te2.base = PROP_VALUE_ACCESS(prop_value, TE2_OFF, i);
if (sblk->te2.base) {
sblk->te2.id = SDE_PINGPONG_TE2;
snprintf(sblk->te2.name, SDE_HW_BLK_NAME_LEN, "te2_%u",
pp->id - PINGPONG_0);
set_bit(SDE_PINGPONG_TE2, &pp->features);
set_bit(SDE_PINGPONG_SPLIT, &pp->features);
}
if (PROP_VALUE_ACCESS(prop_value, PP_SLAVE, i))
set_bit(SDE_PINGPONG_SLAVE, &pp->features);
if (major_version < SDE_HW_MAJOR(SDE_HW_VER_700)) {
sblk->dsc.base = PROP_VALUE_ACCESS(prop_value,
DSC_OFF, i);
if (sblk->dsc.base) {
sblk->dsc.id = SDE_PINGPONG_DSC;
snprintf(sblk->dsc.name, SDE_HW_BLK_NAME_LEN,
"dsc_%u",
pp->id - PINGPONG_0);
set_bit(SDE_PINGPONG_DSC, &pp->features);
}
}
sblk->dither.base = PROP_VALUE_ACCESS(prop_value, DITHER_OFF,
i);
if (sblk->dither.base) {
sblk->dither.id = SDE_PINGPONG_DITHER;
snprintf(sblk->dither.name, SDE_HW_BLK_NAME_LEN,
"dither_%u", pp->id);
set_bit(SDE_PINGPONG_DITHER, &pp->features);
}
sblk->dither.len = PROP_VALUE_ACCESS(prop_value, DITHER_LEN, 0);
sblk->dither.version = PROP_VALUE_ACCESS(prop_value, DITHER_VER,
0);
if (sde_cfg->dither_luma_mode_support)
set_bit(SDE_PINGPONG_DITHER_LUMA, &pp->features);
if (prop_exists[PP_MERGE_3D_ID]) {
set_bit(SDE_PINGPONG_MERGE_3D, &pp->features);
pp->merge_3d_id = PROP_VALUE_ACCESS(prop_value,
PP_MERGE_3D_ID, i) + 1;
}
}
end:
kfree(prop_value);
return rc;
}
static void _sde_top_parse_dt_helper(struct sde_mdss_cfg *cfg,
struct sde_dt_props *props)
{
int i;
u32 ddr_type;
cfg->max_sspp_linewidth = props->exists[SSPP_LINEWIDTH] ?
PROP_VALUE_ACCESS(props->values, SSPP_LINEWIDTH, 0) :
DEFAULT_SDE_LINE_WIDTH;
cfg->vig_sspp_linewidth = props->exists[VIG_SSPP_LINEWIDTH] ?
PROP_VALUE_ACCESS(props->values, VIG_SSPP_LINEWIDTH,
0) : cfg->max_sspp_linewidth;
cfg->scaling_linewidth = props->exists[SCALING_LINEWIDTH] ?
PROP_VALUE_ACCESS(props->values, SCALING_LINEWIDTH,
0) : cfg->vig_sspp_linewidth;
cfg->max_wb_linewidth = props->exists[WB_LINEWIDTH] ?
PROP_VALUE_ACCESS(props->values, WB_LINEWIDTH, 0) :
DEFAULT_SDE_LINE_WIDTH;
/* if wb linear width is not defined use the line width as default */
cfg->max_wb_linewidth_linear = props->exists[WB_LINEWIDTH_LINEAR] ?
PROP_VALUE_ACCESS(props->values, WB_LINEWIDTH_LINEAR, 0)
: cfg->max_wb_linewidth;
cfg->max_mixer_width = props->exists[MIXER_LINEWIDTH] ?
PROP_VALUE_ACCESS(props->values, MIXER_LINEWIDTH, 0) :
DEFAULT_SDE_LINE_WIDTH;
cfg->max_mixer_blendstages = props->exists[MIXER_BLEND] ?
PROP_VALUE_ACCESS(props->values, MIXER_BLEND, 0) :
DEFAULT_SDE_MIXER_BLENDSTAGES;
cfg->ubwc_version = props->exists[UBWC_VERSION] ?
SDE_HW_UBWC_VER(PROP_VALUE_ACCESS(props->values,
UBWC_VERSION, 0)) : DEFAULT_SDE_UBWC_NONE;
cfg->mdp[0].highest_bank_bit = DEFAULT_SDE_HIGHEST_BANK_BIT;
if (props->exists[BANK_BIT]) {
for (i = 0; i < props->counts[BANK_BIT]; i++) {
ddr_type = PROP_BITVALUE_ACCESS(props->values,
BANK_BIT, i, 0);
if (!ddr_type || (of_fdt_get_ddrtype() == ddr_type))
cfg->mdp[0].highest_bank_bit =
PROP_BITVALUE_ACCESS(props->values,
BANK_BIT, i, 1);
}
}
cfg->macrotile_mode = props->exists[MACROTILE_MODE] ?
PROP_VALUE_ACCESS(props->values, MACROTILE_MODE, 0) :
DEFAULT_SDE_UBWC_MACROTILE_MODE;
cfg->ubwc_bw_calc_version =
PROP_VALUE_ACCESS(props->values, UBWC_BW_CALC_VERSION, 0);
cfg->mdp[0].ubwc_static = props->exists[UBWC_STATIC] ?
PROP_VALUE_ACCESS(props->values, UBWC_STATIC, 0) :
DEFAULT_SDE_UBWC_STATIC;
cfg->mdp[0].ubwc_swizzle = props->exists[UBWC_SWIZZLE] ?
PROP_VALUE_ACCESS(props->values, UBWC_SWIZZLE, 0) :
DEFAULT_SDE_UBWC_SWIZZLE;
cfg->mdp[0].has_dest_scaler =
PROP_VALUE_ACCESS(props->values, DEST_SCALER, 0);
cfg->mdp[0].smart_panel_align_mode =
PROP_VALUE_ACCESS(props->values, SMART_PANEL_ALIGN_MODE, 0);
if (props->exists[SEC_SID_MASK]) {
cfg->sec_sid_mask_count = props->counts[SEC_SID_MASK];
for (i = 0; i < cfg->sec_sid_mask_count; i++)
cfg->sec_sid_mask[i] = PROP_VALUE_ACCESS(props->values,
SEC_SID_MASK, i);
}
cfg->has_src_split = PROP_VALUE_ACCESS(props->values, SRC_SPLIT, 0);
cfg->has_dim_layer = PROP_VALUE_ACCESS(props->values, DIM_LAYER, 0);
cfg->has_idle_pc = PROP_VALUE_ACCESS(props->values, IDLE_PC, 0);
cfg->pipe_order_type = PROP_VALUE_ACCESS(props->values,
PIPE_ORDER_VERSION, 0);
cfg->has_base_layer = PROP_VALUE_ACCESS(props->values, BASE_LAYER, 0);
cfg->qseed_hw_version = PROP_VALUE_ACCESS(props->values,
QSEED_HW_VERSION, 0);
cfg->trusted_vm_env = PROP_VALUE_ACCESS(props->values, TRUSTED_VM_ENV,
0);
cfg->max_trusted_vm_displays = PROP_VALUE_ACCESS(props->values,
MAX_TRUSTED_VM_DISPLAYS, 0);
}
static int sde_top_parse_dt(struct device_node *np, struct sde_mdss_cfg *cfg)
{
int rc = 0, dma_rc, len;
struct sde_dt_props *props;
const char *type;
u32 major_version;
props = sde_get_dt_props(np, SDE_PROP_MAX, sde_prop,
ARRAY_SIZE(sde_prop), &len);
if (IS_ERR(props))
return PTR_ERR(props);
/* revalidate arrays not bound to off_count elements */
rc = _validate_dt_entry(np, &sde_prop[SEC_SID_MASK], 1,
&props->counts[SEC_SID_MASK], NULL);
if (rc)
goto end;
/* update props with newly validated arrays */
rc = _read_dt_entry(np, sde_prop, ARRAY_SIZE(sde_prop), props->counts,
props->exists, props->values);
if (rc)
goto end;
cfg->mdss_count = 1;
cfg->mdss[0].base = MDSS_BASE_OFFSET;
cfg->mdss[0].id = MDP_TOP;
snprintf(cfg->mdss[0].name, SDE_HW_BLK_NAME_LEN, "mdss_%u",
cfg->mdss[0].id - MDP_TOP);
cfg->mdp_count = 1;
cfg->mdp[0].id = MDP_TOP;
snprintf(cfg->mdp[0].name, SDE_HW_BLK_NAME_LEN, "top_%u",
cfg->mdp[0].id - MDP_TOP);
cfg->mdp[0].base = PROP_VALUE_ACCESS(props->values, SDE_OFF, 0);
cfg->mdp[0].len = props->exists[SDE_LEN] ? PROP_VALUE_ACCESS(
props->values, SDE_LEN, 0) : DEFAULT_SDE_HW_BLOCK_LEN;
_sde_top_parse_dt_helper(cfg, props);
major_version = SDE_HW_MAJOR(cfg->hwversion);
if (major_version < SDE_HW_MAJOR(SDE_HW_VER_500))
set_bit(SDE_MDP_VSYNC_SEL, &cfg->mdp[0].features);
rc = _add_to_irq_offset_list(cfg, SDE_INTR_HWBLK_TOP,
SDE_INTR_TOP_INTR, cfg->mdp[0].base);
if (rc)
goto end;
rc = _add_to_irq_offset_list(cfg, SDE_INTR_HWBLK_TOP,
SDE_INTR_TOP_INTR2, cfg->mdp[0].base);
if (rc)
goto end;
rc = _add_to_irq_offset_list(cfg, SDE_INTR_HWBLK_TOP,
SDE_INTR_TOP_HIST_INTR, cfg->mdp[0].base);
if (rc)
goto end;
rc = of_property_read_string(np, sde_prop[QSEED_SW_LIB_REV].prop_name,
&type);
if (rc) {
SDE_DEBUG("invalid %s node in device tree: %d\n",
sde_prop[QSEED_SW_LIB_REV].prop_name, rc);
rc = 0;
} else if (!strcmp(type, "qseedv3")) {
cfg->qseed_sw_lib_rev = SDE_SSPP_SCALER_QSEED3;
} else if (!strcmp(type, "qseedv3lite")) {
cfg->qseed_sw_lib_rev = SDE_SSPP_SCALER_QSEED3LITE;
} else if (!strcmp(type, "qseedv2")) {
cfg->qseed_sw_lib_rev = SDE_SSPP_SCALER_QSEED2;
} else {
SDE_DEBUG("Unknown type %s for property %s\n", type,
sde_prop[QSEED_SW_LIB_REV].prop_name);
}
rc = of_property_read_string(np, sde_prop[CSC_TYPE].prop_name, &type);
if (rc) {
SDE_DEBUG("invalid %s node in device tree: %d\n",
sde_prop[CSC_TYPE].prop_name, rc);
rc = 0;
} else if (!strcmp(type, "csc")) {
cfg->csc_type = SDE_SSPP_CSC;
} else if (!strcmp(type, "csc-10bit")) {
cfg->csc_type = SDE_SSPP_CSC_10BIT;
} else {
SDE_DEBUG("Unknown type %s for property %s\n", type,
sde_prop[CSC_TYPE].prop_name);
}
/*
* Current SDE support only Smart DMA 2.0-2.5.
* No support for Smart DMA 1.0 yet.
*/
cfg->smart_dma_rev = 0;
dma_rc = of_property_read_string(np, sde_prop[SMART_DMA_REV].prop_name,
&type);
if (dma_rc) {
SDE_DEBUG("invalid %s node in device tree: %d\n",
sde_prop[SMART_DMA_REV].prop_name, dma_rc);
} else if (!strcmp(type, "smart_dma_v2p5")) {
cfg->smart_dma_rev = SDE_SSPP_SMART_DMA_V2p5;
} else if (!strcmp(type, "smart_dma_v2")) {
cfg->smart_dma_rev = SDE_SSPP_SMART_DMA_V2;
} else if (!strcmp(type, "smart_dma_v1")) {
SDE_ERROR("smart dma 1.0 is not supported in SDE\n");
} else {
SDE_DEBUG("unknown smart dma version %s\n", type);
}
end:
sde_put_dt_props(props);
return rc;
}
static int sde_parse_reg_dma_dt(struct device_node *np,
struct sde_mdss_cfg *sde_cfg)
{
int rc = 0, i, prop_count[REG_DMA_PROP_MAX];
struct sde_prop_value *prop_value = NULL;
u32 off_count;
bool prop_exists[REG_DMA_PROP_MAX];
bool dma_type_exists[REG_DMA_TYPE_MAX];
enum sde_reg_dma_type dma_type;
prop_value = kcalloc(REG_DMA_PROP_MAX,
sizeof(struct sde_prop_value), GFP_KERNEL);
if (!prop_value) {
rc = -ENOMEM;
goto end;
}
rc = _validate_dt_entry(np, reg_dma_prop, ARRAY_SIZE(reg_dma_prop),
prop_count, &off_count);
if (rc || !off_count)
goto end;
rc = _read_dt_entry(np, reg_dma_prop, ARRAY_SIZE(reg_dma_prop),
prop_count, prop_exists, prop_value);
if (rc)
goto end;
sde_cfg->reg_dma_count = 0;
memset(&dma_type_exists, 0, sizeof(dma_type_exists));
for (i = 0; i < off_count; i++) {
dma_type = PROP_VALUE_ACCESS(prop_value, REG_DMA_ID, i);
if (dma_type >= REG_DMA_TYPE_MAX) {
SDE_ERROR("Invalid DMA type %d\n", dma_type);
goto end;
} else if (dma_type_exists[dma_type]) {
SDE_ERROR("DMA type ID %d exists more than once\n",
dma_type);
goto end;
}
dma_type_exists[dma_type] = true;
sde_cfg->dma_cfg.reg_dma_blks[dma_type].base =
PROP_VALUE_ACCESS(prop_value, REG_DMA_OFF, i);
sde_cfg->dma_cfg.reg_dma_blks[dma_type].valid = true;
sde_cfg->reg_dma_count++;
}
sde_cfg->dma_cfg.version = PROP_VALUE_ACCESS(prop_value,
REG_DMA_VERSION, 0);
sde_cfg->dma_cfg.trigger_sel_off = PROP_VALUE_ACCESS(prop_value,
REG_DMA_TRIGGER_OFF, 0);
sde_cfg->dma_cfg.broadcast_disabled = PROP_VALUE_ACCESS(prop_value,
REG_DMA_BROADCAST_DISABLED, 0);
sde_cfg->dma_cfg.xin_id = PROP_VALUE_ACCESS(prop_value,
REG_DMA_XIN_ID, 0);
sde_cfg->dma_cfg.clk_ctrl = SDE_CLK_CTRL_LUTDMA;
sde_cfg->dma_cfg.vbif_idx = VBIF_RT;
for (i = 0; i < sde_cfg->mdp_count; i++) {
sde_cfg->mdp[i].clk_ctrls[sde_cfg->dma_cfg.clk_ctrl].reg_off =
PROP_BITVALUE_ACCESS(prop_value,
REG_DMA_CLK_CTRL, 0, 0);
sde_cfg->mdp[i].clk_ctrls[sde_cfg->dma_cfg.clk_ctrl].bit_off =
PROP_BITVALUE_ACCESS(prop_value,
REG_DMA_CLK_CTRL, 0, 1);
}
end:
kfree(prop_value);
/* reg dma is optional feature hence return 0 */
return 0;
}
static int _sde_perf_parse_dt_validate(struct device_node *np, int *prop_count)
{
int rc, len;
rc = _validate_dt_entry(np, sde_perf_prop, ARRAY_SIZE(sde_perf_prop),
prop_count, &len);
if (rc)
return rc;
rc = _validate_dt_entry(np, &sde_perf_prop[PERF_CDP_SETTING], 1,
&prop_count[PERF_CDP_SETTING], NULL);
if (rc)
return rc;
return rc;
}
static int _sde_qos_parse_dt_cfg(struct sde_mdss_cfg *cfg, int *prop_count,
struct sde_prop_value *prop_value, bool *prop_exists)
{
int i, j;
u32 qos_count = 1, index;
if (prop_exists[QOS_REFRESH_RATES]) {
qos_count = prop_count[QOS_REFRESH_RATES];
cfg->perf.qos_refresh_rate = kcalloc(qos_count,
sizeof(u32), GFP_KERNEL);
if (!cfg->perf.qos_refresh_rate)
goto end;
for (j = 0; j < qos_count; j++) {
cfg->perf.qos_refresh_rate[j] =
PROP_VALUE_ACCESS(prop_value,
QOS_REFRESH_RATES, j);
SDE_DEBUG("qos usage:%d refresh rate:0x%x\n",
j, cfg->perf.qos_refresh_rate[j]);
}
}
cfg->perf.qos_refresh_count = qos_count;
cfg->perf.danger_lut = kcalloc(qos_count,
sizeof(u64) * SDE_QOS_LUT_USAGE_MAX, GFP_KERNEL);
cfg->perf.safe_lut = kcalloc(qos_count,
sizeof(u64) * SDE_QOS_LUT_USAGE_MAX, GFP_KERNEL);
cfg->perf.creq_lut = kcalloc(qos_count,
sizeof(u64) * SDE_QOS_LUT_USAGE_MAX, GFP_KERNEL);
if (!cfg->perf.creq_lut || !cfg->perf.safe_lut || !cfg->perf.danger_lut)
goto end;
if (prop_exists[QOS_DANGER_LUT] &&
prop_count[QOS_DANGER_LUT] >= (SDE_QOS_LUT_USAGE_MAX * qos_count)) {
for (i = 0; i < prop_count[QOS_DANGER_LUT]; i++) {
cfg->perf.danger_lut[i] =
PROP_VALUE_ACCESS(prop_value,
QOS_DANGER_LUT, i);
SDE_DEBUG("danger usage:%i lut:0x%x\n",
i, cfg->perf.danger_lut[i]);
}
}
if (prop_exists[QOS_SAFE_LUT] &&
prop_count[QOS_SAFE_LUT] >= (SDE_QOS_LUT_USAGE_MAX * qos_count)) {
for (i = 0; i < prop_count[QOS_SAFE_LUT]; i++) {
cfg->perf.safe_lut[i] =
PROP_VALUE_ACCESS(prop_value,
QOS_SAFE_LUT, i);
SDE_DEBUG("safe usage:%d lut:0x%x\n",
i, cfg->perf.safe_lut[i]);
}
}
for (i = 0; i < SDE_QOS_LUT_USAGE_MAX; i++) {
static const u32 prop_key[SDE_QOS_LUT_USAGE_MAX] = {
[SDE_QOS_LUT_USAGE_LINEAR] =
QOS_CREQ_LUT_LINEAR,
[SDE_QOS_LUT_USAGE_MACROTILE] =
QOS_CREQ_LUT_MACROTILE,
[SDE_QOS_LUT_USAGE_NRT] =
QOS_CREQ_LUT_NRT,
[SDE_QOS_LUT_USAGE_CWB] =
QOS_CREQ_LUT_CWB,
[SDE_QOS_LUT_USAGE_MACROTILE_QSEED] =
QOS_CREQ_LUT_MACROTILE_QSEED,
[SDE_QOS_LUT_USAGE_LINEAR_QSEED] =
QOS_CREQ_LUT_LINEAR_QSEED,
};
int key = prop_key[i];
u64 lut_hi, lut_lo;
if (!prop_exists[key])
continue;
for (j = 0; j < qos_count; j++) {
lut_hi = PROP_VALUE_ACCESS(prop_value, key,
(j * 2) + 0);
lut_lo = PROP_VALUE_ACCESS(prop_value, key,
(j * 2) + 1);
index = (j * SDE_QOS_LUT_USAGE_MAX) + i;
cfg->perf.creq_lut[index] =
(lut_hi << 32) | lut_lo;
SDE_DEBUG("creq usage:%d lut:0x%llx\n",
index, cfg->perf.creq_lut[index]);
}
}
return 0;
end:
kfree(cfg->perf.qos_refresh_rate);
kfree(cfg->perf.creq_lut);
kfree(cfg->perf.danger_lut);
kfree(cfg->perf.safe_lut);
return -ENOMEM;
}
static void _sde_perf_parse_dt_cfg_populate(struct sde_mdss_cfg *cfg,
int *prop_count,
struct sde_prop_value *prop_value,
bool *prop_exists)
{
cfg->perf.max_bw_low =
prop_exists[PERF_MAX_BW_LOW] ?
PROP_VALUE_ACCESS(prop_value, PERF_MAX_BW_LOW, 0) :
DEFAULT_MAX_BW_LOW;
cfg->perf.max_bw_high =
prop_exists[PERF_MAX_BW_HIGH] ?
PROP_VALUE_ACCESS(prop_value, PERF_MAX_BW_HIGH, 0) :
DEFAULT_MAX_BW_HIGH;
cfg->perf.min_core_ib =
prop_exists[PERF_MIN_CORE_IB] ?
PROP_VALUE_ACCESS(prop_value, PERF_MIN_CORE_IB, 0) :
DEFAULT_MAX_BW_LOW;
cfg->perf.min_llcc_ib =
prop_exists[PERF_MIN_LLCC_IB] ?
PROP_VALUE_ACCESS(prop_value, PERF_MIN_LLCC_IB, 0) :
DEFAULT_MAX_BW_LOW;
cfg->perf.min_dram_ib =
prop_exists[PERF_MIN_DRAM_IB] ?
PROP_VALUE_ACCESS(prop_value, PERF_MIN_DRAM_IB, 0) :
DEFAULT_MAX_BW_LOW;
cfg->perf.undersized_prefill_lines =
prop_exists[PERF_UNDERSIZED_PREFILL_LINES] ?
PROP_VALUE_ACCESS(prop_value,
PERF_UNDERSIZED_PREFILL_LINES, 0) :
DEFAULT_UNDERSIZED_PREFILL_LINES;
cfg->perf.xtra_prefill_lines =
prop_exists[PERF_XTRA_PREFILL_LINES] ?
PROP_VALUE_ACCESS(prop_value,
PERF_XTRA_PREFILL_LINES, 0) :
DEFAULT_XTRA_PREFILL_LINES;
cfg->perf.dest_scale_prefill_lines =
prop_exists[PERF_DEST_SCALE_PREFILL_LINES] ?
PROP_VALUE_ACCESS(prop_value,
PERF_DEST_SCALE_PREFILL_LINES, 0) :
DEFAULT_DEST_SCALE_PREFILL_LINES;
cfg->perf.macrotile_prefill_lines =
prop_exists[PERF_MACROTILE_PREFILL_LINES] ?
PROP_VALUE_ACCESS(prop_value,
PERF_MACROTILE_PREFILL_LINES, 0) :
DEFAULT_MACROTILE_PREFILL_LINES;
cfg->perf.yuv_nv12_prefill_lines =
prop_exists[PERF_YUV_NV12_PREFILL_LINES] ?
PROP_VALUE_ACCESS(prop_value,
PERF_YUV_NV12_PREFILL_LINES, 0) :
DEFAULT_YUV_NV12_PREFILL_LINES;
cfg->perf.linear_prefill_lines =
prop_exists[PERF_LINEAR_PREFILL_LINES] ?
PROP_VALUE_ACCESS(prop_value,
PERF_LINEAR_PREFILL_LINES, 0) :
DEFAULT_LINEAR_PREFILL_LINES;
cfg->perf.downscaling_prefill_lines =
prop_exists[PERF_DOWNSCALING_PREFILL_LINES] ?
PROP_VALUE_ACCESS(prop_value,
PERF_DOWNSCALING_PREFILL_LINES, 0) :
DEFAULT_DOWNSCALING_PREFILL_LINES;
cfg->perf.amortizable_threshold =
prop_exists[PERF_AMORTIZABLE_THRESHOLD] ?
PROP_VALUE_ACCESS(prop_value,
PERF_AMORTIZABLE_THRESHOLD, 0) :
DEFAULT_AMORTIZABLE_THRESHOLD;
cfg->perf.num_mnoc_ports =
prop_exists[PERF_NUM_MNOC_PORTS] ?
PROP_VALUE_ACCESS(prop_value,
PERF_NUM_MNOC_PORTS, 0) :
DEFAULT_MNOC_PORTS;
cfg->perf.axi_bus_width =
prop_exists[PERF_AXI_BUS_WIDTH] ?
PROP_VALUE_ACCESS(prop_value,
PERF_AXI_BUS_WIDTH, 0) :
DEFAULT_AXI_BUS_WIDTH;
}
static int _sde_perf_parse_dt_cfg(struct device_node *np,
struct sde_mdss_cfg *cfg, int *prop_count,
struct sde_prop_value *prop_value, bool *prop_exists)
{
int rc, j;
const char *str = NULL;
/*
* The following performance parameters (e.g. core_ib_ff) are
* mapped directly as device tree string constants.
*/
rc = of_property_read_string(np,
sde_perf_prop[PERF_CORE_IB_FF].prop_name, &str);
cfg->perf.core_ib_ff = rc ? DEFAULT_CORE_IB_FF : str;
rc = of_property_read_string(np,
sde_perf_prop[PERF_CORE_CLK_FF].prop_name, &str);
cfg->perf.core_clk_ff = rc ? DEFAULT_CORE_CLK_FF : str;
rc = of_property_read_string(np,
sde_perf_prop[PERF_COMP_RATIO_RT].prop_name, &str);
cfg->perf.comp_ratio_rt = rc ? DEFAULT_COMP_RATIO_RT : str;
rc = of_property_read_string(np,
sde_perf_prop[PERF_COMP_RATIO_NRT].prop_name, &str);
cfg->perf.comp_ratio_nrt = rc ? DEFAULT_COMP_RATIO_NRT : str;
rc = 0;
_sde_perf_parse_dt_cfg_populate(cfg, prop_count, prop_value,
prop_exists);
if (prop_exists[PERF_CDP_SETTING]) {
const u32 prop_size = 2;
u32 count = prop_count[PERF_CDP_SETTING] / prop_size;
count = min_t(u32, count, SDE_PERF_CDP_USAGE_MAX);
for (j = 0; j < count; j++) {
cfg->perf.cdp_cfg[j].rd_enable =
PROP_VALUE_ACCESS(prop_value,
PERF_CDP_SETTING, j * prop_size);
cfg->perf.cdp_cfg[j].wr_enable =
PROP_VALUE_ACCESS(prop_value,
PERF_CDP_SETTING, j * prop_size + 1);
SDE_DEBUG("cdp usage:%d rd:%d wr:%d\n",
j, cfg->perf.cdp_cfg[j].rd_enable,
cfg->perf.cdp_cfg[j].wr_enable);
}
cfg->has_cdp = true;
}
cfg->perf.cpu_mask =
prop_exists[PERF_CPU_MASK] ?
PROP_VALUE_ACCESS(prop_value, PERF_CPU_MASK, 0) :
DEFAULT_CPU_MASK;
cfg->perf.cpu_mask_perf =
prop_exists[CPU_MASK_PERF] ?
PROP_VALUE_ACCESS(prop_value, CPU_MASK_PERF, 0) :
DEFAULT_CPU_MASK;
cfg->perf.cpu_dma_latency =
prop_exists[PERF_CPU_DMA_LATENCY] ?
PROP_VALUE_ACCESS(prop_value, PERF_CPU_DMA_LATENCY, 0) :
DEFAULT_CPU_DMA_LATENCY;
cfg->perf.cpu_irq_latency =
prop_exists[PERF_CPU_IRQ_LATENCY] ?
PROP_VALUE_ACCESS(prop_value, PERF_CPU_IRQ_LATENCY, 0) :
PM_QOS_DEFAULT_VALUE;
return 0;
}
static int sde_perf_parse_dt(struct device_node *np, struct sde_mdss_cfg *cfg)
{
int rc, prop_count[PERF_PROP_MAX];
struct sde_prop_value *prop_value = NULL;
bool prop_exists[PERF_PROP_MAX];
if (!cfg) {
SDE_ERROR("invalid argument\n");
rc = -EINVAL;
goto end;
}
prop_value = kzalloc(PERF_PROP_MAX *
sizeof(struct sde_prop_value), GFP_KERNEL);
if (!prop_value) {
rc = -ENOMEM;
goto end;
}
rc = _sde_perf_parse_dt_validate(np, prop_count);
if (rc)
goto freeprop;
rc = _read_dt_entry(np, sde_perf_prop, ARRAY_SIZE(sde_perf_prop),
prop_count, prop_exists, prop_value);
if (rc)
goto freeprop;
rc = _sde_perf_parse_dt_cfg(np, cfg, prop_count, prop_value,
prop_exists);
freeprop:
kfree(prop_value);
end:
return rc;
}
static int sde_qos_parse_dt(struct device_node *np, struct sde_mdss_cfg *cfg)
{
int rc, prop_count[QOS_PROP_MAX];
struct sde_prop_value *prop_value = NULL;
bool prop_exists[QOS_PROP_MAX];
if (!cfg) {
SDE_ERROR("invalid argument\n");
rc = -EINVAL;
goto end;
}
prop_value = kzalloc(QOS_PROP_MAX *
sizeof(struct sde_prop_value), GFP_KERNEL);
if (!prop_value) {
rc = -ENOMEM;
goto end;
}
rc = _validate_dt_entry(np, sde_qos_prop, ARRAY_SIZE(sde_qos_prop),
prop_count, NULL);
if (rc)
goto freeprop;
rc = _read_dt_entry(np, sde_qos_prop, ARRAY_SIZE(sde_qos_prop),
prop_count, prop_exists, prop_value);
if (rc)
goto freeprop;
rc = _sde_qos_parse_dt_cfg(cfg, prop_count, prop_value, prop_exists);
freeprop:
kfree(prop_value);
end:
return rc;
}
static int sde_parse_merge_3d_dt(struct device_node *np,
struct sde_mdss_cfg *sde_cfg)
{
int rc, prop_count[HW_PROP_MAX], off_count, i;
struct sde_prop_value *prop_value = NULL;
bool prop_exists[HW_PROP_MAX];
struct sde_merge_3d_cfg *merge_3d;
prop_value = kcalloc(HW_PROP_MAX, sizeof(struct sde_prop_value),
GFP_KERNEL);
if (!prop_value)
return -ENOMEM;
rc = _validate_dt_entry(np, merge_3d_prop, ARRAY_SIZE(merge_3d_prop),
prop_count, &off_count);
if (rc)
goto end;
sde_cfg->merge_3d_count = off_count;
rc = _read_dt_entry(np, merge_3d_prop, ARRAY_SIZE(merge_3d_prop),
prop_count,
prop_exists, prop_value);
if (rc) {
sde_cfg->merge_3d_count = 0;
goto end;
}
for (i = 0; i < off_count; i++) {
merge_3d = sde_cfg->merge_3d + i;
merge_3d->base = PROP_VALUE_ACCESS(prop_value, HW_OFF, i);
merge_3d->id = MERGE_3D_0 + i;
snprintf(merge_3d->name, SDE_HW_BLK_NAME_LEN, "merge_3d_%u",
merge_3d->id - MERGE_3D_0);
merge_3d->len = PROP_VALUE_ACCESS(prop_value, HW_LEN, 0);
}
end:
kfree(prop_value);
return rc;
}
static int sde_qdss_parse_dt(struct device_node *np,
struct sde_mdss_cfg *sde_cfg)
{
int rc, prop_count[HW_PROP_MAX], i;
struct sde_prop_value *prop_value = NULL;
bool prop_exists[HW_PROP_MAX];
u32 off_count;
struct sde_qdss_cfg *qdss;
if (!sde_cfg) {
SDE_ERROR("invalid argument\n");
return -EINVAL;
}
prop_value = kzalloc(HW_PROP_MAX *
sizeof(struct sde_prop_value), GFP_KERNEL);
if (!prop_value)
return -ENOMEM;
rc = _validate_dt_entry(np, qdss_prop, ARRAY_SIZE(qdss_prop),
prop_count, &off_count);
if (rc) {
sde_cfg->qdss_count = 0;
goto end;
}
sde_cfg->qdss_count = off_count;
rc = _read_dt_entry(np, qdss_prop, ARRAY_SIZE(qdss_prop), prop_count,
prop_exists, prop_value);
if (rc)
goto end;
for (i = 0; i < off_count; i++) {
qdss = sde_cfg->qdss + i;
qdss->base = PROP_VALUE_ACCESS(prop_value, HW_OFF, i);
qdss->id = QDSS_0 + i;
snprintf(qdss->name, SDE_HW_BLK_NAME_LEN, "qdss_%u",
qdss->id - QDSS_0);
qdss->len = PROP_VALUE_ACCESS(prop_value, HW_LEN, 0);
}
end:
kfree(prop_value);
return rc;
}
static int sde_hardware_format_caps(struct sde_mdss_cfg *sde_cfg,
uint32_t hw_rev)
{
int rc = 0;
uint32_t dma_list_size, vig_list_size, wb2_list_size;
uint32_t virt_vig_list_size, in_rot_list_size = 0;
uint32_t cursor_list_size = 0;
uint32_t index = 0;
const struct sde_format_extended *inline_fmt_tbl;
/* cursor input formats */
if (sde_cfg->has_cursor) {
cursor_list_size = ARRAY_SIZE(cursor_formats);
sde_cfg->cursor_formats = kcalloc(cursor_list_size,
sizeof(struct sde_format_extended), GFP_KERNEL);
if (!sde_cfg->cursor_formats) {
rc = -ENOMEM;
goto out;
}
index = sde_copy_formats(sde_cfg->cursor_formats,
cursor_list_size, 0, cursor_formats,
ARRAY_SIZE(cursor_formats));
}
/* DMA pipe input formats */
dma_list_size = ARRAY_SIZE(plane_formats);
sde_cfg->dma_formats = kcalloc(dma_list_size,
sizeof(struct sde_format_extended), GFP_KERNEL);
if (!sde_cfg->dma_formats) {
rc = -ENOMEM;
goto free_cursor;
}
index = sde_copy_formats(sde_cfg->dma_formats, dma_list_size,
0, plane_formats, ARRAY_SIZE(plane_formats));
/* ViG pipe input formats */
vig_list_size = ARRAY_SIZE(plane_formats_vig);
if (sde_cfg->has_vig_p010)
vig_list_size += ARRAY_SIZE(p010_ubwc_formats);
sde_cfg->vig_formats = kcalloc(vig_list_size,
sizeof(struct sde_format_extended), GFP_KERNEL);
if (!sde_cfg->vig_formats) {
rc = -ENOMEM;
goto free_dma;
}
index = sde_copy_formats(sde_cfg->vig_formats, vig_list_size,
0, plane_formats_vig, ARRAY_SIZE(plane_formats_vig));
if (sde_cfg->has_vig_p010)
index += sde_copy_formats(sde_cfg->vig_formats,
vig_list_size, index, p010_ubwc_formats,
ARRAY_SIZE(p010_ubwc_formats));
/* Virtual ViG pipe input formats (all virt pipes use DMA formats) */
virt_vig_list_size = ARRAY_SIZE(plane_formats);
sde_cfg->virt_vig_formats = kcalloc(virt_vig_list_size,
sizeof(struct sde_format_extended), GFP_KERNEL);
if (!sde_cfg->virt_vig_formats) {
rc = -ENOMEM;
goto free_vig;
}
index = sde_copy_formats(sde_cfg->virt_vig_formats, virt_vig_list_size,
0, plane_formats, ARRAY_SIZE(plane_formats));
/* WB output formats */
wb2_list_size = ARRAY_SIZE(wb2_formats);
sde_cfg->wb_formats = kcalloc(wb2_list_size,
sizeof(struct sde_format_extended), GFP_KERNEL);
if (!sde_cfg->wb_formats) {
SDE_ERROR("failed to allocate wb format list\n");
rc = -ENOMEM;
goto free_virt;
}
index = sde_copy_formats(sde_cfg->wb_formats, wb2_list_size,
0, wb2_formats, ARRAY_SIZE(wb2_formats));
/* Rotation enabled input formats */
if (IS_SDE_INLINE_ROT_REV_100(sde_cfg->true_inline_rot_rev)) {
inline_fmt_tbl = true_inline_rot_v1_fmts;
in_rot_list_size = ARRAY_SIZE(true_inline_rot_v1_fmts);
} else if (IS_SDE_INLINE_ROT_REV_200(sde_cfg->true_inline_rot_rev)) {
inline_fmt_tbl = true_inline_rot_v2_fmts;
in_rot_list_size = ARRAY_SIZE(true_inline_rot_v2_fmts);
}
if (in_rot_list_size) {
sde_cfg->inline_rot_formats = kcalloc(in_rot_list_size,
sizeof(struct sde_format_extended), GFP_KERNEL);
if (!sde_cfg->inline_rot_formats) {
SDE_ERROR("failed to alloc inline rot format list\n");
rc = -ENOMEM;
goto free_wb;
}
index = sde_copy_formats(sde_cfg->inline_rot_formats,
in_rot_list_size, 0, inline_fmt_tbl, in_rot_list_size);
}
return 0;
free_wb:
kfree(sde_cfg->wb_formats);
free_virt:
kfree(sde_cfg->virt_vig_formats);
free_vig:
kfree(sde_cfg->vig_formats);
free_dma:
kfree(sde_cfg->dma_formats);
free_cursor:
if (sde_cfg->has_cursor)
kfree(sde_cfg->cursor_formats);
out:
return rc;
}
static void _sde_hw_setup_uidle(struct sde_uidle_cfg *uidle_cfg)
{
if (!uidle_cfg->uidle_rev)
return;
if ((IS_SDE_UIDLE_REV_101(uidle_cfg->uidle_rev)) ||
(IS_SDE_UIDLE_REV_100(uidle_cfg->uidle_rev))) {
uidle_cfg->fal10_exit_cnt = SDE_UIDLE_FAL10_EXIT_CNT;
uidle_cfg->fal10_exit_danger = SDE_UIDLE_FAL10_EXIT_DANGER;
uidle_cfg->fal10_danger = SDE_UIDLE_FAL10_DANGER;
uidle_cfg->fal10_target_idle_time = SDE_UIDLE_FAL10_TARGET_IDLE;
uidle_cfg->fal1_target_idle_time = SDE_UIDLE_FAL1_TARGET_IDLE;
uidle_cfg->max_dwnscale = SDE_UIDLE_MAX_DWNSCALE;
uidle_cfg->debugfs_ctrl = true;
if (IS_SDE_UIDLE_REV_100(uidle_cfg->uidle_rev)) {
uidle_cfg->fal10_threshold =
SDE_UIDLE_FAL10_THRESHOLD_60;
uidle_cfg->max_fps = SDE_UIDLE_MAX_FPS_60;
} else if (IS_SDE_UIDLE_REV_101(uidle_cfg->uidle_rev)) {
set_bit(SDE_UIDLE_QACTIVE_OVERRIDE,
&uidle_cfg->features);
uidle_cfg->fal10_threshold =
SDE_UIDLE_FAL10_THRESHOLD_90;
uidle_cfg->max_fps = SDE_UIDLE_MAX_FPS_90;
}
} else {
pr_err("invalid uidle rev:0x%x, disabling uidle\n",
uidle_cfg->uidle_rev);
uidle_cfg->uidle_rev = 0;
}
}
static int _sde_hardware_pre_caps(struct sde_mdss_cfg *sde_cfg, uint32_t hw_rev)
{
int rc = 0, i;
if (!sde_cfg)
return -EINVAL;
/* default settings for *MOST* targets */
sde_cfg->has_mixer_combined_alpha = true;
sde_cfg->mdss_hw_block_size = DEFAULT_MDSS_HW_BLOCK_SIZE;
for (i = 0; i < SSPP_MAX; i++) {
sde_cfg->demura_supported[i][0] = ~0x0;
sde_cfg->demura_supported[i][1] = ~0x0;
}
/* target specific settings */
if (IS_MSM8996_TARGET(hw_rev)) {
sde_cfg->perf.min_prefill_lines = 21;
sde_cfg->has_decimation = true;
sde_cfg->has_mixer_combined_alpha = false;
} else if (IS_MSM8998_TARGET(hw_rev)) {
sde_cfg->has_wb_ubwc = true;
sde_cfg->perf.min_prefill_lines = 25;
sde_cfg->vbif_qos_nlvl = 4;
sde_cfg->ts_prefill_rev = 1;
sde_cfg->has_decimation = true;
sde_cfg->has_cursor = true;
sde_cfg->has_hdr = true;
sde_cfg->has_mixer_combined_alpha = false;
} else if (IS_SDM845_TARGET(hw_rev)) {
sde_cfg->has_wb_ubwc = true;
sde_cfg->has_cwb_support = true;
sde_cfg->perf.min_prefill_lines = 24;
sde_cfg->vbif_qos_nlvl = 8;
sde_cfg->ts_prefill_rev = 2;
sde_cfg->sui_misr_supported = true;
sde_cfg->sui_block_xin_mask = 0x3F71;
sde_cfg->has_decimation = true;
sde_cfg->has_hdr = true;
sde_cfg->has_vig_p010 = true;
} else if (IS_SDM670_TARGET(hw_rev)) {
sde_cfg->has_wb_ubwc = true;
sde_cfg->perf.min_prefill_lines = 24;
sde_cfg->vbif_qos_nlvl = 8;
sde_cfg->ts_prefill_rev = 2;
sde_cfg->has_decimation = true;
sde_cfg->has_hdr = true;
sde_cfg->has_vig_p010 = true;
} else if (IS_SM8150_TARGET(hw_rev)) {
sde_cfg->has_cwb_support = true;
sde_cfg->has_wb_ubwc = true;
sde_cfg->has_qsync = true;
sde_cfg->has_hdr = true;
sde_cfg->has_hdr_plus = true;
set_bit(SDE_MDP_DHDR_MEMPOOL, &sde_cfg->mdp[0].features);
sde_cfg->has_vig_p010 = true;
sde_cfg->perf.min_prefill_lines = 24;
sde_cfg->vbif_qos_nlvl = 8;
sde_cfg->ts_prefill_rev = 2;
sde_cfg->ctl_rev = SDE_CTL_CFG_VERSION_1_0_0;
sde_cfg->delay_prg_fetch_start = true;
sde_cfg->sui_ns_allowed = true;
sde_cfg->sui_misr_supported = true;
sde_cfg->sui_block_xin_mask = 0x3F71;
sde_cfg->has_sui_blendstage = true;
sde_cfg->has_3d_merge_reset = true;
sde_cfg->has_decimation = true;
sde_cfg->vbif_disable_inner_outer_shareable = true;
} else if (IS_SDMSHRIKE_TARGET(hw_rev)) {
sde_cfg->has_wb_ubwc = true;
sde_cfg->perf.min_prefill_lines = 24;
sde_cfg->vbif_qos_nlvl = 8;
sde_cfg->ts_prefill_rev = 2;
sde_cfg->ctl_rev = SDE_CTL_CFG_VERSION_1_0_0;
sde_cfg->delay_prg_fetch_start = true;
sde_cfg->has_decimation = true;
sde_cfg->has_hdr = true;
sde_cfg->has_vig_p010 = true;
} else if (IS_SM6150_TARGET(hw_rev)) {
sde_cfg->has_cwb_support = true;
sde_cfg->has_qsync = true;
sde_cfg->perf.min_prefill_lines = 24;
sde_cfg->vbif_qos_nlvl = 8;
sde_cfg->ts_prefill_rev = 2;
sde_cfg->ctl_rev = SDE_CTL_CFG_VERSION_1_0_0;
sde_cfg->delay_prg_fetch_start = true;
sde_cfg->sui_ns_allowed = true;
sde_cfg->sui_misr_supported = true;
sde_cfg->has_decimation = true;
sde_cfg->sui_block_xin_mask = 0x2EE1;
sde_cfg->has_sui_blendstage = true;
sde_cfg->has_3d_merge_reset = true;
sde_cfg->has_hdr = true;
sde_cfg->has_vig_p010 = true;
sde_cfg->vbif_disable_inner_outer_shareable = true;
} else if (IS_SDMMAGPIE_TARGET(hw_rev)) {
sde_cfg->has_cwb_support = true;
sde_cfg->has_wb_ubwc = true;
sde_cfg->has_qsync = true;
sde_cfg->perf.min_prefill_lines = 24;
sde_cfg->vbif_qos_nlvl = 8;
sde_cfg->ts_prefill_rev = 2;
sde_cfg->ctl_rev = SDE_CTL_CFG_VERSION_1_0_0;
sde_cfg->delay_prg_fetch_start = true;
sde_cfg->sui_ns_allowed = true;
sde_cfg->sui_misr_supported = true;
sde_cfg->sui_block_xin_mask = 0xE71;
sde_cfg->has_sui_blendstage = true;
sde_cfg->has_3d_merge_reset = true;
sde_cfg->vbif_disable_inner_outer_shareable = true;
} else if (IS_KONA_TARGET(hw_rev)) {
sde_cfg->has_cwb_support = true;
sde_cfg->has_wb_ubwc = true;
sde_cfg->has_qsync = true;
sde_cfg->perf.min_prefill_lines = 35;
sde_cfg->vbif_qos_nlvl = 8;
sde_cfg->ts_prefill_rev = 2;
sde_cfg->ctl_rev = SDE_CTL_CFG_VERSION_1_0_0;
sde_cfg->delay_prg_fetch_start = true;
sde_cfg->sui_ns_allowed = true;
sde_cfg->sui_misr_supported = true;
sde_cfg->sui_block_xin_mask = 0x3F71;
sde_cfg->has_sui_blendstage = true;
sde_cfg->has_3d_merge_reset = true;
sde_cfg->has_hdr = true;
sde_cfg->has_hdr_plus = true;
set_bit(SDE_MDP_DHDR_MEMPOOL, &sde_cfg->mdp[0].features);
sde_cfg->has_vig_p010 = true;
sde_cfg->true_inline_rot_rev = SDE_INLINE_ROT_VERSION_1_0_0;
sde_cfg->uidle_cfg.uidle_rev = SDE_UIDLE_VERSION_1_0_0;
sde_cfg->inline_disable_const_clr = true;
} else if (IS_SAIPAN_TARGET(hw_rev)) {
sde_cfg->has_cwb_support = true;
sde_cfg->has_wb_ubwc = true;
sde_cfg->has_qsync = true;
sde_cfg->perf.min_prefill_lines = 24;
sde_cfg->vbif_qos_nlvl = 8;
sde_cfg->ts_prefill_rev = 2;
sde_cfg->ctl_rev = SDE_CTL_CFG_VERSION_1_0_0;
sde_cfg->delay_prg_fetch_start = true;
sde_cfg->sui_ns_allowed = true;
sde_cfg->sui_misr_supported = true;
sde_cfg->sui_block_xin_mask = 0xE71;
sde_cfg->has_sui_blendstage = true;
sde_cfg->has_3d_merge_reset = true;
sde_cfg->has_hdr = true;
sde_cfg->has_hdr_plus = true;
set_bit(SDE_MDP_DHDR_MEMPOOL, &sde_cfg->mdp[0].features);
sde_cfg->has_vig_p010 = true;
sde_cfg->true_inline_rot_rev = SDE_INLINE_ROT_VERSION_1_0_0;
sde_cfg->inline_disable_const_clr = true;
} else if (IS_SDMTRINKET_TARGET(hw_rev)) {
sde_cfg->has_cwb_support = true;
sde_cfg->has_qsync = true;
sde_cfg->perf.min_prefill_lines = 24;
sde_cfg->vbif_qos_nlvl = 8;
sde_cfg->ts_prefill_rev = 2;
sde_cfg->ctl_rev = SDE_CTL_CFG_VERSION_1_0_0;
sde_cfg->delay_prg_fetch_start = true;
sde_cfg->sui_ns_allowed = true;
sde_cfg->sui_misr_supported = true;
sde_cfg->sui_block_xin_mask = 0xC61;
sde_cfg->has_hdr = false;
sde_cfg->has_sui_blendstage = true;
sde_cfg->vbif_disable_inner_outer_shareable = true;
} else if (IS_BENGAL_TARGET(hw_rev)) {
sde_cfg->has_cwb_support = false;
sde_cfg->has_qsync = true;
sde_cfg->perf.min_prefill_lines = 24;
sde_cfg->vbif_qos_nlvl = 8;
sde_cfg->ts_prefill_rev = 2;
sde_cfg->ctl_rev = SDE_CTL_CFG_VERSION_1_0_0;
sde_cfg->delay_prg_fetch_start = true;
sde_cfg->sui_ns_allowed = true;
sde_cfg->sui_misr_supported = true;
sde_cfg->sui_block_xin_mask = 0xC01;
sde_cfg->has_hdr = false;
sde_cfg->has_sui_blendstage = true;
sde_cfg->vbif_disable_inner_outer_shareable = true;
} else if (IS_LAHAINA_TARGET(hw_rev)) {
sde_cfg->has_demura = true;
sde_cfg->demura_supported[SSPP_DMA1][0] = 0;
sde_cfg->demura_supported[SSPP_DMA1][1] = 1;
sde_cfg->demura_supported[SSPP_DMA3][0] = 0;
sde_cfg->demura_supported[SSPP_DMA3][1] = 1;
sde_cfg->has_cwb_support = true;
sde_cfg->has_wb_ubwc = true;
sde_cfg->has_qsync = true;
sde_cfg->perf.min_prefill_lines = 35;
sde_cfg->vbif_qos_nlvl = 8;
sde_cfg->ts_prefill_rev = 2;
sde_cfg->ctl_rev = SDE_CTL_CFG_VERSION_1_0_0;
sde_cfg->delay_prg_fetch_start = true;
sde_cfg->sui_ns_allowed = true;
sde_cfg->sui_misr_supported = true;
sde_cfg->sui_block_xin_mask = 0x3F71;
sde_cfg->has_sui_blendstage = true;
sde_cfg->has_3d_merge_reset = true;
sde_cfg->has_hdr = true;
sde_cfg->has_hdr_plus = true;
set_bit(SDE_MDP_DHDR_MEMPOOL_4K, &sde_cfg->mdp[0].features);
sde_cfg->has_vig_p010 = true;
sde_cfg->true_inline_rot_rev = SDE_INLINE_ROT_VERSION_2_0_0;
sde_cfg->uidle_cfg.uidle_rev = SDE_UIDLE_VERSION_1_0_1;
sde_cfg->vbif_disable_inner_outer_shareable = true;
sde_cfg->dither_luma_mode_support = true;
sde_cfg->mdss_hw_block_size = 0x158;
sde_cfg->has_trusted_vm_support = true;
} else if (IS_HOLI_TARGET(hw_rev)) {
sde_cfg->has_cwb_support = false;
sde_cfg->has_qsync = true;
sde_cfg->perf.min_prefill_lines = 24;
sde_cfg->vbif_qos_nlvl = 8;
sde_cfg->ts_prefill_rev = 2;
sde_cfg->ctl_rev = SDE_CTL_CFG_VERSION_1_0_0;
sde_cfg->delay_prg_fetch_start = true;
sde_cfg->sui_ns_allowed = true;
sde_cfg->sui_misr_supported = true;
sde_cfg->sui_block_xin_mask = 0xC01;
sde_cfg->has_hdr = false;
sde_cfg->has_sui_blendstage = true;
sde_cfg->vbif_disable_inner_outer_shareable = true;
sde_cfg->mdss_hw_block_size = 0x158;
} else if (IS_SHIMA_TARGET(hw_rev)) {
sde_cfg->has_cwb_support = true;
sde_cfg->has_wb_ubwc = true;
sde_cfg->has_qsync = true;
sde_cfg->perf.min_prefill_lines = 35;
sde_cfg->vbif_qos_nlvl = 8;
sde_cfg->ts_prefill_rev = 2;
sde_cfg->ctl_rev = SDE_CTL_CFG_VERSION_1_0_0;
sde_cfg->delay_prg_fetch_start = true;
sde_cfg->sui_ns_allowed = true;
sde_cfg->sui_misr_supported = true;
sde_cfg->sui_block_xin_mask = 0xE71;
sde_cfg->has_sui_blendstage = true;
sde_cfg->has_3d_merge_reset = true;
sde_cfg->has_hdr = true;
sde_cfg->has_hdr_plus = true;
set_bit(SDE_MDP_DHDR_MEMPOOL, &sde_cfg->mdp[0].features);
sde_cfg->has_vig_p010 = true;
sde_cfg->true_inline_rot_rev = SDE_INLINE_ROT_VERSION_1_0_0;
sde_cfg->inline_disable_const_clr = true;
sde_cfg->vbif_disable_inner_outer_shareable = true;
sde_cfg->mdss_hw_block_size = 0x158;
} else {
SDE_ERROR("unsupported chipset id:%X\n", hw_rev);
sde_cfg->perf.min_prefill_lines = 0xffff;
rc = -ENODEV;
}
if (!rc)
rc = sde_hardware_format_caps(sde_cfg, hw_rev);
_sde_hw_setup_uidle(&sde_cfg->uidle_cfg);
return rc;
}
static int _sde_hardware_post_caps(struct sde_mdss_cfg *sde_cfg,
uint32_t hw_rev)
{
int rc = 0, i;
u32 max_horz_deci = 0, max_vert_deci = 0;
if (!sde_cfg)
return -EINVAL;
if (sde_cfg->has_sui_blendstage)
sde_cfg->sui_supported_blendstage =
sde_cfg->max_mixer_blendstages - SDE_STAGE_0;
for (i = 0; i < sde_cfg->sspp_count; i++) {
if (sde_cfg->sspp[i].sblk) {
max_horz_deci = max(max_horz_deci,
sde_cfg->sspp[i].sblk->maxhdeciexp);
max_vert_deci = max(max_vert_deci,
sde_cfg->sspp[i].sblk->maxvdeciexp);
}
/*
* set sec-ui blocked SSPP feature flag based on blocked
* xin-mask if sec-ui-misr feature is enabled;
*/
if (sde_cfg->sui_misr_supported
&& (sde_cfg->sui_block_xin_mask
& BIT(sde_cfg->sspp[i].xin_id)))
set_bit(SDE_SSPP_BLOCK_SEC_UI,
&sde_cfg->sspp[i].features);
}
if (max_horz_deci)
sde_cfg->max_display_width = sde_cfg->max_sspp_linewidth *
max_horz_deci;
else
sde_cfg->max_display_width = sde_cfg->max_sspp_linewidth *
MAX_DOWNSCALE_RATIO;
if (max_vert_deci)
sde_cfg->max_display_height =
MAX_DISPLAY_HEIGHT_WITH_DECIMATION * max_vert_deci;
else
sde_cfg->max_display_height = MAX_DISPLAY_HEIGHT_WITH_DECIMATION
* MAX_DOWNSCALE_RATIO;
sde_cfg->min_display_height = MIN_DISPLAY_HEIGHT;
sde_cfg->min_display_width = MIN_DISPLAY_WIDTH;
return rc;
}
void sde_hw_catalog_deinit(struct sde_mdss_cfg *sde_cfg)
{
int i, j;
if (!sde_cfg)
return;
sde_hw_catalog_irq_offset_list_delete(&sde_cfg->irq_offset_list);
for (i = 0; i < sde_cfg->sspp_count; i++)
kfree(sde_cfg->sspp[i].sblk);
for (i = 0; i < sde_cfg->mixer_count; i++)
kfree(sde_cfg->mixer[i].sblk);
for (i = 0; i < sde_cfg->wb_count; i++)
kfree(sde_cfg->wb[i].sblk);
for (i = 0; i < sde_cfg->dspp_count; i++)
kfree(sde_cfg->dspp[i].sblk);
if (sde_cfg->ds_count)
kfree(sde_cfg->ds[0].top);
for (i = 0; i < sde_cfg->pingpong_count; i++)
kfree(sde_cfg->pingpong[i].sblk);
for (i = 0; i < sde_cfg->vdc_count; i++)
kfree(sde_cfg->vdc[i].sblk);
for (i = 0; i < sde_cfg->vbif_count; i++) {
kfree(sde_cfg->vbif[i].dynamic_ot_rd_tbl.cfg);
kfree(sde_cfg->vbif[i].dynamic_ot_wr_tbl.cfg);
for (j = VBIF_RT_CLIENT; j < VBIF_MAX_CLIENT; j++)
kfree(sde_cfg->vbif[i].qos_tbl[j].priority_lvl);
}
kfree(sde_cfg->perf.qos_refresh_rate);
kfree(sde_cfg->perf.danger_lut);
kfree(sde_cfg->perf.safe_lut);
kfree(sde_cfg->perf.creq_lut);
kfree(sde_cfg->dma_formats);
kfree(sde_cfg->cursor_formats);
kfree(sde_cfg->vig_formats);
kfree(sde_cfg->wb_formats);
kfree(sde_cfg->virt_vig_formats);
kfree(sde_cfg->inline_rot_formats);
kfree(sde_cfg);
}
static int sde_hw_ver_parse_dt(struct drm_device *dev, struct device_node *np,
struct sde_mdss_cfg *cfg)
{
int rc, len, prop_count[SDE_HW_PROP_MAX];
struct sde_prop_value *prop_value = NULL;
bool prop_exists[SDE_HW_PROP_MAX];
if (!cfg) {
SDE_ERROR("invalid argument\n");
return -EINVAL;
}
prop_value = kzalloc(SDE_HW_PROP_MAX *
sizeof(struct sde_prop_value), GFP_KERNEL);
if (!prop_value)
return -ENOMEM;
rc = _validate_dt_entry(np, sde_hw_prop, ARRAY_SIZE(sde_hw_prop),
prop_count, &len);
if (rc)
goto end;
rc = _read_dt_entry(np, sde_hw_prop, ARRAY_SIZE(sde_hw_prop),
prop_count, prop_exists, prop_value);
if (rc)
goto end;
if (prop_exists[SDE_HW_VERSION])
cfg->hwversion = PROP_VALUE_ACCESS(prop_value,
SDE_HW_VERSION, 0);
else
cfg->hwversion = sde_kms_get_hw_version(dev);
end:
kfree(prop_value);
return rc;
}
/*************************************************************
* hardware catalog init
*************************************************************/
struct sde_mdss_cfg *sde_hw_catalog_init(struct drm_device *dev)
{
int rc;
struct sde_mdss_cfg *sde_cfg;
struct device_node *np = dev->dev->of_node;
if (!np)
return ERR_PTR(-EINVAL);
sde_cfg = kzalloc(sizeof(*sde_cfg), GFP_KERNEL);
if (!sde_cfg)
return ERR_PTR(-ENOMEM);
INIT_LIST_HEAD(&sde_cfg->irq_offset_list);
rc = sde_hw_ver_parse_dt(dev, np, sde_cfg);
if (rc)
goto end;
rc = _sde_hardware_pre_caps(sde_cfg, sde_cfg->hwversion);
if (rc)
goto end;
rc = sde_top_parse_dt(np, sde_cfg);
if (rc)
goto end;
rc = sde_perf_parse_dt(np, sde_cfg);
if (rc)
goto end;
rc = sde_qos_parse_dt(np, sde_cfg);
if (rc)
goto end;
/* uidle must be done before sspp and ctl,
* so if something goes wrong, we won't
* enable it in ctl and sspp.
*/
rc = sde_uidle_parse_dt(np, sde_cfg);
if (rc)
goto end;
rc = sde_cache_parse_dt(np, sde_cfg);
if (rc)
goto end;
rc = sde_ctl_parse_dt(np, sde_cfg);
if (rc)
goto end;
rc = sde_sspp_parse_dt(np, sde_cfg);
if (rc)
goto end;
rc = sde_dspp_top_parse_dt(np, sde_cfg);
if (rc)
goto end;
rc = sde_dspp_parse_dt(np, sde_cfg);
if (rc)
goto end;
rc = sde_ds_parse_dt(np, sde_cfg);
if (rc)
goto end;
rc = sde_dsc_parse_dt(np, sde_cfg);
if (rc)
goto end;
rc = sde_vdc_parse_dt(np, sde_cfg);
if (rc)
goto end;
rc = sde_pp_parse_dt(np, sde_cfg);
if (rc)
goto end;
/* mixer parsing should be done after dspp,
* ds and pp for mapping setup
*/
rc = sde_mixer_parse_dt(np, sde_cfg);
if (rc)
goto end;
rc = sde_intf_parse_dt(np, sde_cfg);
if (rc)
goto end;
rc = sde_wb_parse_dt(np, sde_cfg);
if (rc)
goto end;
/* cdm parsing should be done after intf and wb for mapping setup */
rc = sde_cdm_parse_dt(np, sde_cfg);
if (rc)
goto end;
rc = sde_vbif_parse_dt(np, sde_cfg);
if (rc)
goto end;
rc = sde_parse_reg_dma_dt(np, sde_cfg);
if (rc)
goto end;
rc = sde_parse_merge_3d_dt(np, sde_cfg);
if (rc)
goto end;
rc = sde_qdss_parse_dt(np, sde_cfg);
if (rc)
goto end;
rc = _sde_hardware_post_caps(sde_cfg, sde_cfg->hwversion);
if (rc)
goto end;
return sde_cfg;
end:
sde_hw_catalog_deinit(sde_cfg);
return NULL;
}