msm_cvp_buf.c 30 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254
  1. // SPDX-License-Identifier: GPL-2.0-only
  2. /*
  3. * Copyright (c) 2020-2021, The Linux Foundation. All rights reserved.
  4. */
  5. #include <linux/pid.h>
  6. #include <linux/fdtable.h>
  7. #include <linux/rcupdate.h>
  8. #include <linux/fs.h>
  9. #include <linux/dma-buf.h>
  10. #include <linux/sched/task.h>
  11. #include "msm_cvp_common.h"
  12. #include "cvp_hfi_api.h"
  13. #include "msm_cvp_debug.h"
  14. #include "msm_cvp_core.h"
  15. #include "msm_cvp_dsp.h"
  16. #define CLEAR_USE_BITMAP(idx, inst) \
  17. do { \
  18. clear_bit(idx, &inst->dma_cache.usage_bitmap); \
  19. dprintk(CVP_MEM, "clear %x bit %d dma_cache bitmap 0x%llx\n", \
  20. hash32_ptr(inst->session), smem->bitmap_index, \
  21. inst->dma_cache.usage_bitmap); \
  22. } while (0)
  23. #define SET_USE_BITMAP(idx, inst) \
  24. do { \
  25. set_bit(idx, &inst->dma_cache.usage_bitmap); \
  26. dprintk(CVP_MEM, "Set %x bit %d dma_cache bitmap 0x%llx\n", \
  27. hash32_ptr(inst->session), idx, \
  28. inst->dma_cache.usage_bitmap); \
  29. } while (0)
  30. void print_smem(u32 tag, const char *str, struct msm_cvp_inst *inst,
  31. struct msm_cvp_smem *smem)
  32. {
  33. if (!(tag & msm_cvp_debug) || !inst || !smem)
  34. return;
  35. if (smem->dma_buf) {
  36. dprintk(tag,
  37. "%s: %x : %s size %d flags %#x iova %#x idx %d ref %d",
  38. str, hash32_ptr(inst->session), smem->dma_buf->name,
  39. smem->size, smem->flags, smem->device_addr,
  40. smem->bitmap_index, smem->refcount);
  41. }
  42. }
  43. static void print_internal_buffer(u32 tag, const char *str,
  44. struct msm_cvp_inst *inst, struct cvp_internal_buf *cbuf)
  45. {
  46. if (!(tag & msm_cvp_debug) || !inst || !cbuf)
  47. return;
  48. if (cbuf->smem->dma_buf) {
  49. dprintk(tag,
  50. "%s: %x : fd %d off %d %s size %d iova %#x",
  51. str, hash32_ptr(inst->session), cbuf->fd,
  52. cbuf->offset, cbuf->smem->dma_buf->name, cbuf->size,
  53. cbuf->smem->device_addr);
  54. } else {
  55. dprintk(tag,
  56. "%s: %x : idx %2d fd %d off %d size %d iova %#x",
  57. str, hash32_ptr(inst->session), cbuf->fd,
  58. cbuf->offset, cbuf->size, cbuf->smem->device_addr);
  59. }
  60. }
  61. void print_cvp_buffer(u32 tag, const char *str, struct msm_cvp_inst *inst,
  62. struct cvp_internal_buf *cbuf)
  63. {
  64. dprintk(tag, "%s addr: %x size %u\n", str,
  65. cbuf->smem->device_addr, cbuf->size);
  66. }
  67. static void _log_smem(struct inst_snapshot *snapshot, struct msm_cvp_inst *inst,
  68. struct msm_cvp_smem *smem, bool logging)
  69. {
  70. print_smem(CVP_ERR, "bufdump", inst, smem);
  71. if (!logging || !snapshot)
  72. return;
  73. if (snapshot && snapshot->smem_index < MAX_ENTRIES) {
  74. struct smem_data *s;
  75. s = &snapshot->smem_log[snapshot->smem_index];
  76. snapshot->smem_index++;
  77. s->size = smem->size;
  78. s->flags = smem->flags;
  79. s->device_addr = smem->device_addr;
  80. s->bitmap_index = smem->bitmap_index;
  81. s->refcount = atomic_read(&smem->refcount);
  82. }
  83. }
  84. static void _log_buf(struct inst_snapshot *snapshot, enum smem_prop prop,
  85. struct msm_cvp_inst *inst, struct cvp_internal_buf *cbuf,
  86. bool logging)
  87. {
  88. struct cvp_buf_data *buf = NULL;
  89. u32 index;
  90. print_cvp_buffer(CVP_ERR, "bufdump", inst, cbuf);
  91. if (!logging)
  92. return;
  93. if (snapshot) {
  94. if (prop == SMEM_ADSP && snapshot->dsp_index < MAX_ENTRIES) {
  95. index = snapshot->dsp_index;
  96. buf = &snapshot->dsp_buf_log[index];
  97. snapshot->dsp_index++;
  98. } else if (prop == SMEM_PERSIST &&
  99. snapshot->persist_index < MAX_ENTRIES) {
  100. index = snapshot->persist_index;
  101. buf = &snapshot->persist_buf_log[index];
  102. snapshot->persist_index++;
  103. }
  104. if (buf) {
  105. buf->device_addr = cbuf->smem->device_addr;
  106. buf->size = cbuf->size;
  107. }
  108. }
  109. }
  110. void print_client_buffer(u32 tag, const char *str,
  111. struct msm_cvp_inst *inst, struct eva_kmd_buffer *cbuf)
  112. {
  113. if (!(tag & msm_cvp_debug) || !inst || !cbuf)
  114. return;
  115. dprintk(tag,
  116. "%s: %x : idx %2d fd %d off %d size %d type %d flags 0x%x\n",
  117. str, hash32_ptr(inst->session), cbuf->index, cbuf->fd,
  118. cbuf->offset, cbuf->size, cbuf->type, cbuf->flags);
  119. }
  120. static bool __is_buf_valid(struct msm_cvp_inst *inst,
  121. struct eva_kmd_buffer *buf)
  122. {
  123. struct cvp_hal_session *session;
  124. struct cvp_internal_buf *cbuf = NULL;
  125. bool found = false;
  126. if (!inst || !inst->core || !buf) {
  127. dprintk(CVP_ERR, "%s: invalid params\n", __func__);
  128. return false;
  129. }
  130. if (buf->fd < 0) {
  131. dprintk(CVP_ERR, "%s: Invalid fd = %d", __func__, buf->fd);
  132. return false;
  133. }
  134. if (buf->offset) {
  135. dprintk(CVP_ERR,
  136. "%s: offset is deprecated, set to 0.\n",
  137. __func__);
  138. return false;
  139. }
  140. session = (struct cvp_hal_session *)inst->session;
  141. mutex_lock(&inst->cvpdspbufs.lock);
  142. list_for_each_entry(cbuf, &inst->cvpdspbufs.list, list) {
  143. if (cbuf->fd == buf->fd) {
  144. if (cbuf->size != buf->size) {
  145. dprintk(CVP_ERR, "%s: buf size mismatch\n",
  146. __func__);
  147. mutex_unlock(&inst->cvpdspbufs.lock);
  148. return false;
  149. }
  150. found = true;
  151. break;
  152. }
  153. }
  154. mutex_unlock(&inst->cvpdspbufs.lock);
  155. if (found) {
  156. print_internal_buffer(CVP_ERR, "duplicate", inst, cbuf);
  157. return false;
  158. }
  159. return true;
  160. }
  161. static struct file *msm_cvp_fget(unsigned int fd, struct task_struct *task,
  162. fmode_t mask, unsigned int refs)
  163. {
  164. struct files_struct *files = task->files;
  165. struct file *file;
  166. rcu_read_lock();
  167. loop:
  168. file = fcheck_files(files, fd);
  169. if (file) {
  170. /* File object ref couldn't be taken.
  171. * dup2() atomicity guarantee is the reason
  172. * we loop to catch the new file (or NULL pointer)
  173. */
  174. if (file->f_mode & mask)
  175. file = NULL;
  176. else if (!get_file_rcu_many(file, refs))
  177. goto loop;
  178. }
  179. rcu_read_unlock();
  180. return file;
  181. }
  182. static struct dma_buf *cvp_dma_buf_get(struct file *file, int fd,
  183. struct task_struct *task)
  184. {
  185. if (file->f_op != gfa_cv.dmabuf_f_op) {
  186. dprintk(CVP_WARN, "fd doesn't refer to dma_buf\n");
  187. return ERR_PTR(-EINVAL);
  188. }
  189. return file->private_data;
  190. }
  191. int msm_cvp_map_buf_dsp(struct msm_cvp_inst *inst, struct eva_kmd_buffer *buf)
  192. {
  193. int rc = 0;
  194. struct cvp_internal_buf *cbuf = NULL;
  195. struct msm_cvp_smem *smem = NULL;
  196. struct dma_buf *dma_buf = NULL;
  197. struct file *file;
  198. if (!__is_buf_valid(inst, buf))
  199. return -EINVAL;
  200. if (!inst->task)
  201. return -EINVAL;
  202. file = msm_cvp_fget(buf->fd, inst->task, FMODE_PATH, 1);
  203. if (file == NULL) {
  204. dprintk(CVP_WARN, "%s fail to get file from fd\n", __func__);
  205. return -EINVAL;
  206. }
  207. dma_buf = cvp_dma_buf_get(
  208. file,
  209. buf->fd,
  210. inst->task);
  211. if (dma_buf == ERR_PTR(-EINVAL)) {
  212. dprintk(CVP_ERR, "%s: Invalid fd = %d", __func__, buf->fd);
  213. rc = -EINVAL;
  214. goto exit;
  215. }
  216. dprintk(CVP_MEM, "dma_buf from internal %llu\n", dma_buf);
  217. cbuf = kmem_cache_zalloc(cvp_driver->buf_cache, GFP_KERNEL);
  218. if (!cbuf) {
  219. rc = -ENOMEM;
  220. goto exit;
  221. }
  222. smem = kmem_cache_zalloc(cvp_driver->smem_cache, GFP_KERNEL);
  223. if (!smem) {
  224. rc = -ENOMEM;
  225. goto exit;
  226. }
  227. smem->dma_buf = dma_buf;
  228. smem->bitmap_index = MAX_DMABUF_NUMS;
  229. dprintk(CVP_MEM, "%s: dma_buf = %llx\n", __func__, dma_buf);
  230. rc = msm_cvp_map_smem(inst, smem, "map dsp");
  231. if (rc) {
  232. print_client_buffer(CVP_ERR, "map failed", inst, buf);
  233. goto exit;
  234. }
  235. cbuf->smem = smem;
  236. cbuf->fd = buf->fd;
  237. cbuf->size = buf->size;
  238. cbuf->offset = buf->offset;
  239. cbuf->ownership = CLIENT;
  240. cbuf->index = buf->index;
  241. buf->reserved[0] = (uint32_t)smem->device_addr;
  242. mutex_lock(&inst->cvpdspbufs.lock);
  243. list_add_tail(&cbuf->list, &inst->cvpdspbufs.list);
  244. mutex_unlock(&inst->cvpdspbufs.lock);
  245. return rc;
  246. exit:
  247. fput(file);
  248. if (smem) {
  249. if (smem->device_addr) {
  250. msm_cvp_unmap_smem(inst, smem, "unmap dsp");
  251. msm_cvp_smem_put_dma_buf(smem->dma_buf);
  252. }
  253. kmem_cache_free(cvp_driver->smem_cache, smem);
  254. }
  255. if (cbuf)
  256. kmem_cache_free(cvp_driver->buf_cache, cbuf);
  257. return rc;
  258. }
  259. int msm_cvp_unmap_buf_dsp(struct msm_cvp_inst *inst, struct eva_kmd_buffer *buf)
  260. {
  261. int rc = 0;
  262. bool found;
  263. struct cvp_internal_buf *cbuf;
  264. struct cvp_hal_session *session;
  265. if (!inst || !inst->core || !buf) {
  266. dprintk(CVP_ERR, "%s: invalid params\n", __func__);
  267. return -EINVAL;
  268. }
  269. session = (struct cvp_hal_session *)inst->session;
  270. if (!session) {
  271. dprintk(CVP_ERR, "%s: invalid session\n", __func__);
  272. return -EINVAL;
  273. }
  274. mutex_lock(&inst->cvpdspbufs.lock);
  275. found = false;
  276. list_for_each_entry(cbuf, &inst->cvpdspbufs.list, list) {
  277. if (cbuf->fd == buf->fd) {
  278. found = true;
  279. break;
  280. }
  281. }
  282. mutex_unlock(&inst->cvpdspbufs.lock);
  283. if (!found) {
  284. print_client_buffer(CVP_ERR, "invalid", inst, buf);
  285. return -EINVAL;
  286. }
  287. if (cbuf->smem->device_addr) {
  288. msm_cvp_unmap_smem(inst, cbuf->smem, "unmap dsp");
  289. msm_cvp_smem_put_dma_buf(cbuf->smem->dma_buf);
  290. }
  291. mutex_lock(&inst->cvpdspbufs.lock);
  292. list_del(&cbuf->list);
  293. mutex_unlock(&inst->cvpdspbufs.lock);
  294. kmem_cache_free(cvp_driver->smem_cache, cbuf->smem);
  295. kmem_cache_free(cvp_driver->buf_cache, cbuf);
  296. return rc;
  297. }
  298. void msm_cvp_cache_operations(struct msm_cvp_smem *smem, u32 type,
  299. u32 offset, u32 size)
  300. {
  301. enum smem_cache_ops cache_op;
  302. if (msm_cvp_cacheop_disabled)
  303. return;
  304. if (!smem) {
  305. dprintk(CVP_ERR, "%s: invalid params\n", __func__);
  306. return;
  307. }
  308. switch (type) {
  309. case EVA_KMD_BUFTYPE_INPUT:
  310. cache_op = SMEM_CACHE_CLEAN;
  311. break;
  312. case EVA_KMD_BUFTYPE_OUTPUT:
  313. cache_op = SMEM_CACHE_INVALIDATE;
  314. break;
  315. default:
  316. cache_op = SMEM_CACHE_CLEAN_INVALIDATE;
  317. }
  318. dprintk(CVP_MEM,
  319. "%s: cache operation enabled for dma_buf: %llx, cache_op: %d, offset: %d, size: %d\n",
  320. __func__, smem->dma_buf, cache_op, offset, size);
  321. msm_cvp_smem_cache_operations(smem->dma_buf, cache_op, offset, size);
  322. }
  323. static struct msm_cvp_smem *msm_cvp_session_find_smem(struct msm_cvp_inst *inst,
  324. struct dma_buf *dma_buf)
  325. {
  326. struct msm_cvp_smem *smem;
  327. int i;
  328. if (inst->dma_cache.nr > MAX_DMABUF_NUMS)
  329. return NULL;
  330. mutex_lock(&inst->dma_cache.lock);
  331. for (i = 0; i < inst->dma_cache.nr; i++)
  332. if (inst->dma_cache.entries[i]->dma_buf == dma_buf) {
  333. SET_USE_BITMAP(i, inst);
  334. smem = inst->dma_cache.entries[i];
  335. smem->bitmap_index = i;
  336. atomic_inc(&smem->refcount);
  337. /*
  338. * If we find it, it means we already increased
  339. * refcount before, so we put it to avoid double
  340. * incremental.
  341. */
  342. msm_cvp_smem_put_dma_buf(smem->dma_buf);
  343. mutex_unlock(&inst->dma_cache.lock);
  344. print_smem(CVP_MEM, "found", inst, smem);
  345. return smem;
  346. }
  347. mutex_unlock(&inst->dma_cache.lock);
  348. return NULL;
  349. }
  350. static int msm_cvp_session_add_smem(struct msm_cvp_inst *inst,
  351. struct msm_cvp_smem *smem)
  352. {
  353. unsigned int i;
  354. struct msm_cvp_smem *smem2;
  355. mutex_lock(&inst->dma_cache.lock);
  356. if (inst->dma_cache.nr < MAX_DMABUF_NUMS) {
  357. inst->dma_cache.entries[inst->dma_cache.nr] = smem;
  358. SET_USE_BITMAP(inst->dma_cache.nr, inst);
  359. smem->bitmap_index = inst->dma_cache.nr;
  360. inst->dma_cache.nr++;
  361. i = smem->bitmap_index;
  362. } else {
  363. i = find_first_zero_bit(&inst->dma_cache.usage_bitmap,
  364. MAX_DMABUF_NUMS);
  365. if (i < MAX_DMABUF_NUMS) {
  366. smem2 = inst->dma_cache.entries[i];
  367. msm_cvp_unmap_smem(inst, smem2, "unmap cpu");
  368. msm_cvp_smem_put_dma_buf(smem2->dma_buf);
  369. kmem_cache_free(cvp_driver->smem_cache, smem2);
  370. inst->dma_cache.entries[i] = smem;
  371. smem->bitmap_index = i;
  372. SET_USE_BITMAP(i, inst);
  373. } else {
  374. dprintk(CVP_WARN, "%s: not enough memory\n", __func__);
  375. mutex_unlock(&inst->dma_cache.lock);
  376. return -ENOMEM;
  377. }
  378. }
  379. atomic_inc(&smem->refcount);
  380. mutex_unlock(&inst->dma_cache.lock);
  381. dprintk(CVP_MEM, "Add entry %d into cache\n", i);
  382. return 0;
  383. }
  384. static struct msm_cvp_smem *msm_cvp_session_get_smem(struct msm_cvp_inst *inst,
  385. struct cvp_buf_type *buf)
  386. {
  387. int rc = 0, found = 1;
  388. struct msm_cvp_smem *smem = NULL;
  389. struct dma_buf *dma_buf = NULL;
  390. if (buf->fd < 0) {
  391. dprintk(CVP_ERR, "%s: Invalid fd = %d", __func__, buf->fd);
  392. return NULL;
  393. }
  394. dma_buf = msm_cvp_smem_get_dma_buf(buf->fd);
  395. if (!dma_buf) {
  396. dprintk(CVP_ERR, "%s: Invalid fd = %d", __func__, buf->fd);
  397. return NULL;
  398. }
  399. smem = msm_cvp_session_find_smem(inst, dma_buf);
  400. if (!smem) {
  401. found = 0;
  402. smem = kmem_cache_zalloc(cvp_driver->smem_cache, GFP_KERNEL);
  403. if (!smem)
  404. return NULL;
  405. smem->dma_buf = dma_buf;
  406. smem->bitmap_index = MAX_DMABUF_NUMS;
  407. rc = msm_cvp_map_smem(inst, smem, "map cpu");
  408. if (rc)
  409. goto exit;
  410. if (buf->size > smem->size || buf->size > smem->size - buf->offset) {
  411. dprintk(CVP_ERR, "%s: invalid offset %d or size %d for a new entry\n",
  412. __func__, buf->offset, buf->size);
  413. goto exit2;
  414. }
  415. rc = msm_cvp_session_add_smem(inst, smem);
  416. if (rc && rc != -ENOMEM)
  417. goto exit2;
  418. }
  419. if (buf->size > smem->size || buf->size > smem->size - buf->offset) {
  420. dprintk(CVP_ERR, "%s: invalid offset %d or size %d\n",
  421. __func__, buf->offset, buf->size);
  422. if (found) {
  423. mutex_lock(&inst->dma_cache.lock);
  424. atomic_dec(&smem->refcount);
  425. mutex_unlock(&inst->dma_cache.lock);
  426. return NULL;
  427. }
  428. goto exit2;
  429. }
  430. return smem;
  431. exit2:
  432. msm_cvp_unmap_smem(inst, smem, "unmap cpu");
  433. exit:
  434. msm_cvp_smem_put_dma_buf(dma_buf);
  435. kmem_cache_free(cvp_driver->smem_cache, smem);
  436. smem = NULL;
  437. return smem;
  438. }
  439. static u32 msm_cvp_map_user_persist_buf(struct msm_cvp_inst *inst,
  440. struct cvp_buf_type *buf)
  441. {
  442. u32 iova = 0;
  443. struct msm_cvp_smem *smem = NULL;
  444. struct cvp_internal_buf *pbuf;
  445. if (!inst) {
  446. dprintk(CVP_ERR, "%s: invalid params\n", __func__);
  447. return -EINVAL;
  448. }
  449. pbuf = kmem_cache_zalloc(cvp_driver->buf_cache, GFP_KERNEL);
  450. if (!pbuf)
  451. return 0;
  452. smem = msm_cvp_session_get_smem(inst, buf);
  453. if (!smem)
  454. goto exit;
  455. smem->flags |= SMEM_PERSIST;
  456. pbuf->smem = smem;
  457. pbuf->fd = buf->fd;
  458. pbuf->size = buf->size;
  459. pbuf->offset = buf->offset;
  460. pbuf->ownership = CLIENT;
  461. mutex_lock(&inst->persistbufs.lock);
  462. list_add_tail(&pbuf->list, &inst->persistbufs.list);
  463. mutex_unlock(&inst->persistbufs.lock);
  464. print_internal_buffer(CVP_MEM, "map persist", inst, pbuf);
  465. iova = smem->device_addr + buf->offset;
  466. return iova;
  467. exit:
  468. kmem_cache_free(cvp_driver->buf_cache, pbuf);
  469. return 0;
  470. }
  471. u32 msm_cvp_map_frame_buf(struct msm_cvp_inst *inst,
  472. struct cvp_buf_type *buf,
  473. struct msm_cvp_frame *frame)
  474. {
  475. u32 iova = 0;
  476. struct msm_cvp_smem *smem = NULL;
  477. u32 nr;
  478. u32 type;
  479. if (!inst || !frame) {
  480. dprintk(CVP_ERR, "%s: invalid params\n", __func__);
  481. return 0;
  482. }
  483. nr = frame->nr;
  484. if (nr == MAX_FRAME_BUFFER_NUMS) {
  485. dprintk(CVP_ERR, "%s: max frame buffer reached\n", __func__);
  486. return 0;
  487. }
  488. smem = msm_cvp_session_get_smem(inst, buf);
  489. if (!smem)
  490. return 0;
  491. frame->bufs[nr].fd = buf->fd;
  492. frame->bufs[nr].smem = smem;
  493. frame->bufs[nr].size = buf->size;
  494. frame->bufs[nr].offset = buf->offset;
  495. print_internal_buffer(CVP_MEM, "map cpu", inst, &frame->bufs[nr]);
  496. frame->nr++;
  497. type = EVA_KMD_BUFTYPE_INPUT | EVA_KMD_BUFTYPE_OUTPUT;
  498. msm_cvp_cache_operations(smem, type, buf->offset, buf->size);
  499. iova = smem->device_addr + buf->offset;
  500. return iova;
  501. }
  502. static void msm_cvp_unmap_frame_buf(struct msm_cvp_inst *inst,
  503. struct msm_cvp_frame *frame)
  504. {
  505. u32 i;
  506. u32 type;
  507. struct msm_cvp_smem *smem = NULL;
  508. struct cvp_internal_buf *buf;
  509. type = EVA_KMD_BUFTYPE_OUTPUT;
  510. for (i = 0; i < frame->nr; ++i) {
  511. buf = &frame->bufs[i];
  512. smem = buf->smem;
  513. msm_cvp_cache_operations(smem, type, buf->offset, buf->size);
  514. if (smem->bitmap_index >= MAX_DMABUF_NUMS) {
  515. /* smem not in dmamap cache */
  516. msm_cvp_unmap_smem(inst, smem, "unmap cpu");
  517. dma_heap_buffer_free(smem->dma_buf);
  518. kmem_cache_free(cvp_driver->smem_cache, smem);
  519. buf->smem = NULL;
  520. } else {
  521. mutex_lock(&inst->dma_cache.lock);
  522. if (atomic_dec_and_test(&smem->refcount)) {
  523. CLEAR_USE_BITMAP(smem->bitmap_index, inst);
  524. print_smem(CVP_MEM, "Map dereference",
  525. inst, smem);
  526. }
  527. mutex_unlock(&inst->dma_cache.lock);
  528. }
  529. }
  530. kmem_cache_free(cvp_driver->frame_cache, frame);
  531. }
  532. void msm_cvp_unmap_frame(struct msm_cvp_inst *inst, u64 ktid)
  533. {
  534. struct msm_cvp_frame *frame, *dummy1;
  535. bool found;
  536. if (!inst) {
  537. dprintk(CVP_ERR, "%s: invalid params\n", __func__);
  538. return;
  539. }
  540. ktid &= (FENCE_BIT - 1);
  541. dprintk(CVP_MEM, "%s: (%#x) unmap frame %llu\n",
  542. __func__, hash32_ptr(inst->session), ktid);
  543. found = false;
  544. mutex_lock(&inst->frames.lock);
  545. list_for_each_entry_safe(frame, dummy1, &inst->frames.list, list) {
  546. if (frame->ktid == ktid) {
  547. found = true;
  548. list_del(&frame->list);
  549. break;
  550. }
  551. }
  552. mutex_unlock(&inst->frames.lock);
  553. if (found)
  554. msm_cvp_unmap_frame_buf(inst, frame);
  555. else
  556. dprintk(CVP_WARN, "%s frame %llu not found!\n", __func__, ktid);
  557. }
  558. int msm_cvp_unmap_user_persist(struct msm_cvp_inst *inst,
  559. struct eva_kmd_hfi_packet *in_pkt,
  560. unsigned int offset, unsigned int buf_num)
  561. {
  562. struct cvp_hfi_cmd_session_hdr *cmd_hdr;
  563. struct cvp_internal_buf *pbuf, *dummy;
  564. u64 ktid;
  565. int rc = 0;
  566. struct msm_cvp_smem *smem = NULL;
  567. if (!offset || !buf_num)
  568. return rc;
  569. cmd_hdr = (struct cvp_hfi_cmd_session_hdr *)in_pkt;
  570. ktid = cmd_hdr->client_data.kdata & (FENCE_BIT - 1);
  571. mutex_lock(&inst->persistbufs.lock);
  572. list_for_each_entry_safe(pbuf, dummy, &inst->persistbufs.list, list) {
  573. if (pbuf->ktid == ktid && pbuf->ownership == CLIENT) {
  574. list_del(&pbuf->list);
  575. smem = pbuf->smem;
  576. dprintk(CVP_MEM, "unmap persist: %x %d %d %#x",
  577. hash32_ptr(inst->session), pbuf->fd,
  578. pbuf->size, smem->device_addr);
  579. if (smem->bitmap_index >= MAX_DMABUF_NUMS) {
  580. /* smem not in dmamap cache */
  581. msm_cvp_unmap_smem(inst, smem,
  582. "unmap cpu");
  583. dma_heap_buffer_free(smem->dma_buf);
  584. kmem_cache_free(
  585. cvp_driver->smem_cache,
  586. smem);
  587. pbuf->smem = NULL;
  588. } else {
  589. mutex_lock(&inst->dma_cache.lock);
  590. if (atomic_dec_and_test(&smem->refcount))
  591. CLEAR_USE_BITMAP(
  592. smem->bitmap_index,
  593. inst);
  594. mutex_unlock(&inst->dma_cache.lock);
  595. }
  596. kmem_cache_free(cvp_driver->buf_cache, pbuf);
  597. }
  598. }
  599. mutex_unlock(&inst->persistbufs.lock);
  600. return rc;
  601. }
  602. int msm_cvp_mark_user_persist(struct msm_cvp_inst *inst,
  603. struct eva_kmd_hfi_packet *in_pkt,
  604. unsigned int offset, unsigned int buf_num)
  605. {
  606. struct cvp_hfi_cmd_session_hdr *cmd_hdr;
  607. struct cvp_internal_buf *pbuf, *dummy;
  608. u64 ktid;
  609. struct cvp_buf_type *buf;
  610. int i, rc = 0;
  611. if (!offset || !buf_num)
  612. return 0;
  613. cmd_hdr = (struct cvp_hfi_cmd_session_hdr *)in_pkt;
  614. ktid = atomic64_inc_return(&inst->core->kernel_trans_id);
  615. ktid &= (FENCE_BIT - 1);
  616. cmd_hdr->client_data.kdata = ktid;
  617. for (i = 0; i < buf_num; i++) {
  618. buf = (struct cvp_buf_type *)&in_pkt->pkt_data[offset];
  619. offset += sizeof(*buf) >> 2;
  620. if (buf->fd < 0 || !buf->size)
  621. continue;
  622. mutex_lock(&inst->persistbufs.lock);
  623. list_for_each_entry_safe(pbuf, dummy, &inst->persistbufs.list,
  624. list) {
  625. if (pbuf->ownership == CLIENT) {
  626. if (pbuf->fd == buf->fd &&
  627. pbuf->size == buf->size)
  628. buf->fd = pbuf->smem->device_addr;
  629. rc = 1;
  630. break;
  631. }
  632. }
  633. mutex_unlock(&inst->persistbufs.lock);
  634. if (!rc) {
  635. dprintk(CVP_ERR, "%s No persist buf %d found\n",
  636. __func__, buf->fd);
  637. rc = -EFAULT;
  638. break;
  639. }
  640. pbuf->ktid = ktid;
  641. rc = 0;
  642. }
  643. return rc;
  644. }
  645. int msm_cvp_map_user_persist(struct msm_cvp_inst *inst,
  646. struct eva_kmd_hfi_packet *in_pkt,
  647. unsigned int offset, unsigned int buf_num)
  648. {
  649. struct cvp_buf_type *buf;
  650. int i;
  651. u32 iova;
  652. if (!offset || !buf_num)
  653. return 0;
  654. for (i = 0; i < buf_num; i++) {
  655. buf = (struct cvp_buf_type *)&in_pkt->pkt_data[offset];
  656. offset += sizeof(*buf) >> 2;
  657. if (buf->fd < 0 || !buf->size)
  658. continue;
  659. iova = msm_cvp_map_user_persist_buf(inst, buf);
  660. if (!iova) {
  661. dprintk(CVP_ERR,
  662. "%s: buf %d register failed.\n",
  663. __func__, i);
  664. return -EINVAL;
  665. }
  666. buf->fd = iova;
  667. }
  668. return 0;
  669. }
  670. int msm_cvp_map_frame(struct msm_cvp_inst *inst,
  671. struct eva_kmd_hfi_packet *in_pkt,
  672. unsigned int offset, unsigned int buf_num)
  673. {
  674. struct cvp_buf_type *buf;
  675. int i;
  676. u32 iova;
  677. u64 ktid;
  678. struct msm_cvp_frame *frame;
  679. struct cvp_hfi_cmd_session_hdr *cmd_hdr;
  680. if (!offset || !buf_num)
  681. return 0;
  682. cmd_hdr = (struct cvp_hfi_cmd_session_hdr *)in_pkt;
  683. ktid = atomic64_inc_return(&inst->core->kernel_trans_id);
  684. ktid &= (FENCE_BIT - 1);
  685. cmd_hdr->client_data.kdata = ktid;
  686. frame = kmem_cache_zalloc(cvp_driver->frame_cache, GFP_KERNEL);
  687. if (!frame)
  688. return -ENOMEM;
  689. frame->ktid = ktid;
  690. frame->nr = 0;
  691. frame->pkt_type = cmd_hdr->packet_type;
  692. for (i = 0; i < buf_num; i++) {
  693. buf = (struct cvp_buf_type *)&in_pkt->pkt_data[offset];
  694. offset += sizeof(*buf) >> 2;
  695. if (buf->fd < 0 || !buf->size)
  696. continue;
  697. iova = msm_cvp_map_frame_buf(inst, buf, frame);
  698. if (!iova) {
  699. dprintk(CVP_ERR,
  700. "%s: buf %d register failed.\n",
  701. __func__, i);
  702. msm_cvp_unmap_frame_buf(inst, frame);
  703. return -EINVAL;
  704. }
  705. buf->fd = iova;
  706. }
  707. mutex_lock(&inst->frames.lock);
  708. list_add_tail(&frame->list, &inst->frames.list);
  709. mutex_unlock(&inst->frames.lock);
  710. dprintk(CVP_MEM, "%s: map frame %llu\n", __func__, ktid);
  711. return 0;
  712. }
  713. int msm_cvp_session_deinit_buffers(struct msm_cvp_inst *inst)
  714. {
  715. int rc = 0, i;
  716. struct cvp_internal_buf *cbuf, *dummy;
  717. struct msm_cvp_frame *frame, *dummy1;
  718. struct msm_cvp_smem *smem;
  719. struct cvp_hal_session *session;
  720. session = (struct cvp_hal_session *)inst->session;
  721. mutex_lock(&inst->frames.lock);
  722. list_for_each_entry_safe(frame, dummy1, &inst->frames.list, list) {
  723. list_del(&frame->list);
  724. msm_cvp_unmap_frame_buf(inst, frame);
  725. }
  726. mutex_unlock(&inst->frames.lock);
  727. mutex_lock(&inst->dma_cache.lock);
  728. for (i = 0; i < inst->dma_cache.nr; i++) {
  729. smem = inst->dma_cache.entries[i];
  730. if (atomic_read(&smem->refcount) == 0) {
  731. print_smem(CVP_MEM, "free", inst, smem);
  732. } else if (!(smem->flags & SMEM_PERSIST)) {
  733. print_smem(CVP_WARN, "in use", inst, smem);
  734. }
  735. msm_cvp_unmap_smem(inst, smem, "unmap cpu");
  736. msm_cvp_smem_put_dma_buf(smem->dma_buf);
  737. kmem_cache_free(cvp_driver->smem_cache, smem);
  738. inst->dma_cache.entries[i] = NULL;
  739. }
  740. mutex_unlock(&inst->dma_cache.lock);
  741. mutex_lock(&inst->cvpdspbufs.lock);
  742. list_for_each_entry_safe(cbuf, dummy, &inst->cvpdspbufs.list, list) {
  743. print_internal_buffer(CVP_MEM, "remove dspbufs", inst, cbuf);
  744. if (cbuf->ownership == CLIENT) {
  745. rc = cvp_dsp_deregister_buffer(hash32_ptr(session),
  746. cbuf->fd, cbuf->smem->dma_buf->size, cbuf->size,
  747. cbuf->offset, cbuf->index,
  748. (uint32_t)cbuf->smem->device_addr);
  749. if (rc)
  750. dprintk(CVP_ERR,
  751. "%s: failed dsp deregistration fd=%d rc=%d",
  752. __func__, cbuf->fd, rc);
  753. msm_cvp_unmap_smem(inst, cbuf->smem, "unmap dsp");
  754. msm_cvp_smem_put_dma_buf(cbuf->smem->dma_buf);
  755. } else if (cbuf->ownership == DSP) {
  756. rc = cvp_dsp_fastrpc_unmap(inst->process_id, cbuf);
  757. if (rc)
  758. dprintk(CVP_ERR,
  759. "%s: failed to unmap buf from DSP\n",
  760. __func__);
  761. rc = cvp_release_dsp_buffers(inst, cbuf);
  762. if (rc)
  763. dprintk(CVP_ERR,
  764. "%s Fail to free buffer 0x%x\n",
  765. __func__, rc);
  766. }
  767. list_del(&cbuf->list);
  768. kmem_cache_free(cvp_driver->buf_cache, cbuf);
  769. }
  770. mutex_unlock(&inst->cvpdspbufs.lock);
  771. return rc;
  772. }
  773. void msm_cvp_print_inst_bufs(struct msm_cvp_inst *inst, bool log)
  774. {
  775. struct cvp_internal_buf *buf;
  776. struct msm_cvp_core *core;
  777. struct inst_snapshot *snap = NULL;
  778. int i;
  779. core = list_first_entry(&cvp_driver->cores, struct msm_cvp_core, list);
  780. if (log && core->log.snapshot_index < 16) {
  781. snap = &core->log.snapshot[core->log.snapshot_index];
  782. snap->session = inst->session;
  783. core->log.snapshot_index++;
  784. }
  785. if (!inst) {
  786. dprintk(CVP_ERR, "%s - invalid param %pK\n",
  787. __func__, inst);
  788. return;
  789. }
  790. dprintk(CVP_ERR, "active session cmd %d\n", inst->cur_cmd_type);
  791. dprintk(CVP_ERR,
  792. "---Buffer details for inst: %pK of type: %d---\n",
  793. inst, inst->session_type);
  794. mutex_lock(&inst->dma_cache.lock);
  795. dprintk(CVP_ERR, "dma cache:\n");
  796. if (inst->dma_cache.nr <= MAX_DMABUF_NUMS)
  797. for (i = 0; i < inst->dma_cache.nr; i++)
  798. _log_smem(snap, inst, inst->dma_cache.entries[i], log);
  799. mutex_unlock(&inst->dma_cache.lock);
  800. mutex_lock(&inst->cvpdspbufs.lock);
  801. dprintk(CVP_ERR, "dsp buffer list:\n");
  802. list_for_each_entry(buf, &inst->cvpdspbufs.list, list)
  803. _log_buf(snap, SMEM_ADSP, inst, buf, log);
  804. mutex_unlock(&inst->cvpdspbufs.lock);
  805. mutex_lock(&inst->persistbufs.lock);
  806. dprintk(CVP_ERR, "persist buffer list:\n");
  807. list_for_each_entry(buf, &inst->persistbufs.list, list)
  808. _log_buf(snap, SMEM_PERSIST, inst, buf, log);
  809. mutex_unlock(&inst->persistbufs.lock);
  810. }
  811. struct cvp_internal_buf *cvp_allocate_arp_bufs(struct msm_cvp_inst *inst,
  812. u32 buffer_size)
  813. {
  814. struct cvp_internal_buf *buf;
  815. struct msm_cvp_list *buf_list;
  816. u32 smem_flags = SMEM_UNCACHED;
  817. int rc = 0;
  818. if (!inst) {
  819. dprintk(CVP_ERR, "%s Invalid input\n", __func__);
  820. return NULL;
  821. }
  822. buf_list = &inst->persistbufs;
  823. if (!buffer_size)
  824. return NULL;
  825. /* PERSIST buffer requires secure mapping
  826. * Disable and wait for hyp_assign available
  827. */
  828. smem_flags |= SMEM_SECURE | SMEM_NON_PIXEL;
  829. buf = kmem_cache_zalloc(cvp_driver->buf_cache, GFP_KERNEL);
  830. if (!buf) {
  831. dprintk(CVP_ERR, "%s Out of memory\n", __func__);
  832. goto fail_kzalloc;
  833. }
  834. buf->smem = kmem_cache_zalloc(cvp_driver->smem_cache, GFP_KERNEL);
  835. if (!buf->smem) {
  836. dprintk(CVP_ERR, "%s Out of memory\n", __func__);
  837. goto fail_kzalloc;
  838. }
  839. buf->smem->flags = smem_flags;
  840. rc = msm_cvp_smem_alloc(buffer_size, 1, 0,
  841. &(inst->core->resources), buf->smem);
  842. if (rc) {
  843. dprintk(CVP_ERR, "Failed to allocate ARP memory\n");
  844. goto err_no_mem;
  845. }
  846. buf->size = buf->smem->size;
  847. buf->type = HFI_BUFFER_INTERNAL_PERSIST_1;
  848. buf->ownership = DRIVER;
  849. mutex_lock(&buf_list->lock);
  850. list_add_tail(&buf->list, &buf_list->list);
  851. mutex_unlock(&buf_list->lock);
  852. return buf;
  853. err_no_mem:
  854. kmem_cache_free(cvp_driver->buf_cache, buf);
  855. fail_kzalloc:
  856. return NULL;
  857. }
  858. int cvp_release_arp_buffers(struct msm_cvp_inst *inst)
  859. {
  860. struct msm_cvp_smem *smem;
  861. struct list_head *ptr, *next;
  862. struct cvp_internal_buf *buf;
  863. int rc = 0;
  864. struct msm_cvp_core *core;
  865. struct cvp_hfi_device *hdev;
  866. if (!inst) {
  867. dprintk(CVP_ERR, "Invalid instance pointer = %pK\n", inst);
  868. return -EINVAL;
  869. }
  870. core = inst->core;
  871. if (!core) {
  872. dprintk(CVP_ERR, "Invalid core pointer = %pK\n", core);
  873. return -EINVAL;
  874. }
  875. hdev = core->device;
  876. if (!hdev) {
  877. dprintk(CVP_ERR, "Invalid device pointer = %pK\n", hdev);
  878. return -EINVAL;
  879. }
  880. dprintk(CVP_MEM, "release persist buffer!\n");
  881. mutex_lock(&inst->persistbufs.lock);
  882. /* Workaround for FW: release buffer means release all */
  883. if (inst->state <= MSM_CVP_CLOSE_DONE) {
  884. rc = call_hfi_op(hdev, session_release_buffers,
  885. (void *)inst->session);
  886. if (!rc) {
  887. mutex_unlock(&inst->persistbufs.lock);
  888. rc = wait_for_sess_signal_receipt(inst,
  889. HAL_SESSION_RELEASE_BUFFER_DONE);
  890. if (rc)
  891. dprintk(CVP_WARN,
  892. "%s: wait for signal failed, rc %d\n",
  893. __func__, rc);
  894. mutex_lock(&inst->persistbufs.lock);
  895. } else {
  896. dprintk(CVP_WARN, "Fail to send Rel prst buf\n");
  897. }
  898. }
  899. list_for_each_safe(ptr, next, &inst->persistbufs.list) {
  900. buf = list_entry(ptr, struct cvp_internal_buf, list);
  901. smem = buf->smem;
  902. if (!smem) {
  903. dprintk(CVP_ERR, "%s invalid smem\n", __func__);
  904. mutex_unlock(&inst->persistbufs.lock);
  905. return -EINVAL;
  906. }
  907. list_del(&buf->list);
  908. if (buf->ownership == DRIVER) {
  909. dprintk(CVP_MEM,
  910. "%s: %x : fd %d %s size %d",
  911. "free arp", hash32_ptr(inst->session), buf->fd,
  912. smem->dma_buf->name, buf->size);
  913. msm_cvp_smem_free(smem);
  914. kmem_cache_free(cvp_driver->smem_cache, smem);
  915. }
  916. buf->smem = NULL;
  917. kmem_cache_free(cvp_driver->buf_cache, buf);
  918. }
  919. mutex_unlock(&inst->persistbufs.lock);
  920. return rc;
  921. }
  922. int cvp_allocate_dsp_bufs(struct msm_cvp_inst *inst,
  923. struct cvp_internal_buf *buf,
  924. u32 buffer_size,
  925. u32 secure_type)
  926. {
  927. u32 smem_flags = SMEM_UNCACHED;
  928. int rc = 0;
  929. if (!inst) {
  930. dprintk(CVP_ERR, "%s Invalid input\n", __func__);
  931. return -EINVAL;
  932. }
  933. if (!buf)
  934. return -EINVAL;
  935. if (!buffer_size)
  936. return -EINVAL;
  937. switch (secure_type) {
  938. case 0:
  939. break;
  940. case 1:
  941. smem_flags |= SMEM_SECURE | SMEM_PIXEL;
  942. break;
  943. case 2:
  944. smem_flags |= SMEM_SECURE | SMEM_NON_PIXEL;
  945. break;
  946. default:
  947. dprintk(CVP_ERR, "%s Invalid secure_type %d\n",
  948. __func__, secure_type);
  949. return -EINVAL;
  950. }
  951. dprintk(CVP_MEM, "%s smem_flags 0x%x\n", __func__, smem_flags);
  952. buf->smem = kmem_cache_zalloc(cvp_driver->smem_cache, GFP_KERNEL);
  953. if (!buf->smem) {
  954. dprintk(CVP_ERR, "%s Out of memory\n", __func__);
  955. goto fail_kzalloc_smem_cache;
  956. }
  957. buf->smem->flags = smem_flags;
  958. rc = msm_cvp_smem_alloc(buffer_size, 1, 0,
  959. &(inst->core->resources), buf->smem);
  960. if (rc) {
  961. dprintk(CVP_ERR, "Failed to allocate ARP memory\n");
  962. goto err_no_mem;
  963. }
  964. dprintk(CVP_MEM, "%s dma_buf %pK\n", __func__, buf->smem->dma_buf);
  965. buf->size = buf->smem->size;
  966. buf->type = HFI_BUFFER_INTERNAL_PERSIST_1;
  967. buf->ownership = DSP;
  968. return rc;
  969. err_no_mem:
  970. kmem_cache_free(cvp_driver->smem_cache, buf->smem);
  971. fail_kzalloc_smem_cache:
  972. return rc;
  973. }
  974. int cvp_release_dsp_buffers(struct msm_cvp_inst *inst,
  975. struct cvp_internal_buf *buf)
  976. {
  977. struct msm_cvp_smem *smem;
  978. int rc = 0;
  979. if (!inst) {
  980. dprintk(CVP_ERR, "Invalid instance pointer = %pK\n", inst);
  981. return -EINVAL;
  982. }
  983. if (!buf) {
  984. dprintk(CVP_ERR, "Invalid buffer pointer = %pK\n", inst);
  985. return -EINVAL;
  986. }
  987. smem = buf->smem;
  988. if (!smem) {
  989. dprintk(CVP_ERR, "%s invalid smem\n", __func__);
  990. return -EINVAL;
  991. }
  992. if (buf->ownership == DSP) {
  993. dprintk(CVP_MEM,
  994. "%s: %x : fd %x %s size %d",
  995. __func__, hash32_ptr(inst->session), buf->fd,
  996. smem->dma_buf->name, buf->size);
  997. msm_cvp_smem_free(smem);
  998. kmem_cache_free(cvp_driver->smem_cache, smem);
  999. } else {
  1000. dprintk(CVP_ERR,
  1001. "%s: wrong owner %d %x : fd %x %s size %d",
  1002. __func__, buf->ownership, hash32_ptr(inst->session),
  1003. buf->fd, smem->dma_buf->name, buf->size);
  1004. }
  1005. return rc;
  1006. }
  1007. int msm_cvp_register_buffer(struct msm_cvp_inst *inst,
  1008. struct eva_kmd_buffer *buf)
  1009. {
  1010. struct cvp_hfi_device *hdev;
  1011. struct cvp_hal_session *session;
  1012. struct msm_cvp_inst *s;
  1013. int rc = 0;
  1014. if (!inst || !inst->core || !buf) {
  1015. dprintk(CVP_ERR, "%s: invalid params\n", __func__);
  1016. return -EINVAL;
  1017. }
  1018. if (!buf->index)
  1019. return 0;
  1020. s = cvp_get_inst_validate(inst->core, inst);
  1021. if (!s)
  1022. return -ECONNRESET;
  1023. inst->cur_cmd_type = EVA_KMD_REGISTER_BUFFER;
  1024. session = (struct cvp_hal_session *)inst->session;
  1025. if (!session) {
  1026. dprintk(CVP_ERR, "%s: invalid session\n", __func__);
  1027. rc = -EINVAL;
  1028. goto exit;
  1029. }
  1030. hdev = inst->core->device;
  1031. print_client_buffer(CVP_HFI, "register", inst, buf);
  1032. rc = msm_cvp_map_buf_dsp(inst, buf);
  1033. dprintk(CVP_DSP, "%s: fd %d, iova 0x%x\n", __func__,
  1034. buf->fd, buf->reserved[0]);
  1035. exit:
  1036. inst->cur_cmd_type = 0;
  1037. cvp_put_inst(s);
  1038. return rc;
  1039. }
  1040. int msm_cvp_unregister_buffer(struct msm_cvp_inst *inst,
  1041. struct eva_kmd_buffer *buf)
  1042. {
  1043. struct msm_cvp_inst *s;
  1044. int rc = 0;
  1045. if (!inst || !inst->core || !buf) {
  1046. dprintk(CVP_ERR, "%s: invalid params\n", __func__);
  1047. return -EINVAL;
  1048. }
  1049. if (!buf->index)
  1050. return 0;
  1051. s = cvp_get_inst_validate(inst->core, inst);
  1052. if (!s)
  1053. return -ECONNRESET;
  1054. inst->cur_cmd_type = EVA_KMD_UNREGISTER_BUFFER;
  1055. print_client_buffer(CVP_HFI, "unregister", inst, buf);
  1056. rc = msm_cvp_unmap_buf_dsp(inst, buf);
  1057. inst->cur_cmd_type = 0;
  1058. cvp_put_inst(s);
  1059. return rc;
  1060. }