dp_rx.c 50 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786
  1. /*
  2. * Copyright (c) 2016-2018 The Linux Foundation. All rights reserved.
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for
  5. * any purpose with or without fee is hereby granted, provided that the
  6. * above copyright notice and this permission notice appear in all
  7. * copies.
  8. *
  9. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
  10. * WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
  11. * WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
  12. * AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
  13. * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
  14. * PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
  15. * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
  16. * PERFORMANCE OF THIS SOFTWARE.
  17. */
  18. #include "dp_types.h"
  19. #include "dp_rx.h"
  20. #include "dp_peer.h"
  21. #include "hal_rx.h"
  22. #include "hal_api.h"
  23. #include "qdf_nbuf.h"
  24. #ifdef MESH_MODE_SUPPORT
  25. #include "if_meta_hdr.h"
  26. #endif
  27. #include "dp_internal.h"
  28. #include "dp_rx_mon.h"
  29. #ifdef RX_DESC_DEBUG_CHECK
  30. static inline void dp_rx_desc_prep(struct dp_rx_desc *rx_desc, qdf_nbuf_t nbuf)
  31. {
  32. rx_desc->magic = DP_RX_DESC_MAGIC;
  33. rx_desc->nbuf = nbuf;
  34. }
  35. #else
  36. static inline void dp_rx_desc_prep(struct dp_rx_desc *rx_desc, qdf_nbuf_t nbuf)
  37. {
  38. rx_desc->nbuf = nbuf;
  39. }
  40. #endif
  41. #ifdef CONFIG_WIN
  42. static inline bool dp_rx_check_ap_bridge(struct dp_vdev *vdev)
  43. {
  44. return vdev->ap_bridge_enabled;
  45. }
  46. #else
  47. static inline bool dp_rx_check_ap_bridge(struct dp_vdev *vdev)
  48. {
  49. if (vdev->opmode != wlan_op_mode_sta)
  50. return true;
  51. else
  52. return false;
  53. }
  54. #endif
  55. /*
  56. * dp_rx_buffers_replenish() - replenish rxdma ring with rx nbufs
  57. * called during dp rx initialization
  58. * and at the end of dp_rx_process.
  59. *
  60. * @soc: core txrx main context
  61. * @mac_id: mac_id which is one of 3 mac_ids
  62. * @dp_rxdma_srng: dp rxdma circular ring
  63. * @rx_desc_pool: Poiter to free Rx descriptor pool
  64. * @num_req_buffers: number of buffer to be replenished
  65. * @desc_list: list of descs if called from dp_rx_process
  66. * or NULL during dp rx initialization or out of buffer
  67. * interrupt.
  68. * @tail: tail of descs list
  69. * Return: return success or failure
  70. */
  71. QDF_STATUS dp_rx_buffers_replenish(struct dp_soc *dp_soc, uint32_t mac_id,
  72. struct dp_srng *dp_rxdma_srng,
  73. struct rx_desc_pool *rx_desc_pool,
  74. uint32_t num_req_buffers,
  75. union dp_rx_desc_list_elem_t **desc_list,
  76. union dp_rx_desc_list_elem_t **tail)
  77. {
  78. uint32_t num_alloc_desc;
  79. uint16_t num_desc_to_free = 0;
  80. struct dp_pdev *dp_pdev = dp_get_pdev_for_mac_id(dp_soc, mac_id);
  81. uint32_t num_entries_avail;
  82. uint32_t count;
  83. int sync_hw_ptr = 1;
  84. qdf_dma_addr_t paddr;
  85. qdf_nbuf_t rx_netbuf;
  86. void *rxdma_ring_entry;
  87. union dp_rx_desc_list_elem_t *next;
  88. QDF_STATUS ret;
  89. void *rxdma_srng;
  90. rxdma_srng = dp_rxdma_srng->hal_srng;
  91. if (!rxdma_srng) {
  92. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  93. "rxdma srng not initialized");
  94. DP_STATS_INC(dp_pdev, replenish.rxdma_err, num_req_buffers);
  95. return QDF_STATUS_E_FAILURE;
  96. }
  97. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  98. "requested %d buffers for replenish", num_req_buffers);
  99. hal_srng_access_start(dp_soc->hal_soc, rxdma_srng);
  100. num_entries_avail = hal_srng_src_num_avail(dp_soc->hal_soc,
  101. rxdma_srng,
  102. sync_hw_ptr);
  103. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  104. "no of availble entries in rxdma ring: %d",
  105. num_entries_avail);
  106. if (!(*desc_list) && (num_entries_avail >
  107. ((dp_rxdma_srng->num_entries * 3) / 4))) {
  108. num_req_buffers = num_entries_avail;
  109. } else if (num_entries_avail < num_req_buffers) {
  110. num_desc_to_free = num_req_buffers - num_entries_avail;
  111. num_req_buffers = num_entries_avail;
  112. }
  113. if (qdf_unlikely(!num_req_buffers)) {
  114. num_desc_to_free = num_req_buffers;
  115. hal_srng_access_end(dp_soc->hal_soc, rxdma_srng);
  116. goto free_descs;
  117. }
  118. /*
  119. * if desc_list is NULL, allocate the descs from freelist
  120. */
  121. if (!(*desc_list)) {
  122. num_alloc_desc = dp_rx_get_free_desc_list(dp_soc, mac_id,
  123. rx_desc_pool,
  124. num_req_buffers,
  125. desc_list,
  126. tail);
  127. if (!num_alloc_desc) {
  128. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  129. "no free rx_descs in freelist");
  130. DP_STATS_INC(dp_pdev, err.desc_alloc_fail,
  131. num_req_buffers);
  132. hal_srng_access_end(dp_soc->hal_soc, rxdma_srng);
  133. return QDF_STATUS_E_NOMEM;
  134. }
  135. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  136. "%d rx desc allocated", num_alloc_desc);
  137. num_req_buffers = num_alloc_desc;
  138. }
  139. count = 0;
  140. while (count < num_req_buffers) {
  141. rx_netbuf = qdf_nbuf_alloc(dp_soc->osdev,
  142. RX_BUFFER_SIZE,
  143. RX_BUFFER_RESERVATION,
  144. RX_BUFFER_ALIGNMENT,
  145. FALSE);
  146. if (rx_netbuf == NULL) {
  147. DP_STATS_INC(dp_pdev, replenish.nbuf_alloc_fail, 1);
  148. continue;
  149. }
  150. ret = qdf_nbuf_map_single(dp_soc->osdev, rx_netbuf,
  151. QDF_DMA_BIDIRECTIONAL);
  152. if (qdf_unlikely(QDF_IS_STATUS_ERROR(ret))) {
  153. qdf_nbuf_free(rx_netbuf);
  154. DP_STATS_INC(dp_pdev, replenish.map_err, 1);
  155. continue;
  156. }
  157. paddr = qdf_nbuf_get_frag_paddr(rx_netbuf, 0);
  158. /*
  159. * check if the physical address of nbuf->data is
  160. * less then 0x50000000 then free the nbuf and try
  161. * allocating new nbuf. We can try for 100 times.
  162. * this is a temp WAR till we fix it properly.
  163. */
  164. ret = check_x86_paddr(dp_soc, &rx_netbuf, &paddr, dp_pdev);
  165. if (ret == QDF_STATUS_E_FAILURE) {
  166. DP_STATS_INC(dp_pdev, replenish.x86_fail, 1);
  167. break;
  168. }
  169. count++;
  170. rxdma_ring_entry = hal_srng_src_get_next(dp_soc->hal_soc,
  171. rxdma_srng);
  172. qdf_assert_always(rxdma_ring_entry);
  173. next = (*desc_list)->next;
  174. dp_rx_desc_prep(&((*desc_list)->rx_desc), rx_netbuf);
  175. (*desc_list)->rx_desc.in_use = 1;
  176. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  177. "rx_netbuf=%pK, buf=%pK, paddr=0x%llx, cookie=%d",
  178. rx_netbuf, qdf_nbuf_data(rx_netbuf),
  179. (unsigned long long)paddr, (*desc_list)->rx_desc.cookie);
  180. hal_rxdma_buff_addr_info_set(rxdma_ring_entry, paddr,
  181. (*desc_list)->rx_desc.cookie,
  182. rx_desc_pool->owner);
  183. *desc_list = next;
  184. }
  185. hal_srng_access_end(dp_soc->hal_soc, rxdma_srng);
  186. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  187. "successfully replenished %d buffers", num_req_buffers);
  188. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  189. "%d rx desc added back to free list", num_desc_to_free);
  190. DP_STATS_INC_PKT(dp_pdev, replenish.pkts, num_req_buffers,
  191. (RX_BUFFER_SIZE * num_req_buffers));
  192. free_descs:
  193. DP_STATS_INC(dp_pdev, buf_freelist, num_desc_to_free);
  194. /*
  195. * add any available free desc back to the free list
  196. */
  197. if (*desc_list)
  198. dp_rx_add_desc_list_to_free_list(dp_soc, desc_list, tail,
  199. mac_id, rx_desc_pool);
  200. return QDF_STATUS_SUCCESS;
  201. }
  202. /*
  203. * dp_rx_deliver_raw() - process RAW mode pkts and hand over the
  204. * pkts to RAW mode simulation to
  205. * decapsulate the pkt.
  206. *
  207. * @vdev: vdev on which RAW mode is enabled
  208. * @nbuf_list: list of RAW pkts to process
  209. * @peer: peer object from which the pkt is rx
  210. *
  211. * Return: void
  212. */
  213. void
  214. dp_rx_deliver_raw(struct dp_vdev *vdev, qdf_nbuf_t nbuf_list,
  215. struct dp_peer *peer)
  216. {
  217. qdf_nbuf_t deliver_list_head = NULL;
  218. qdf_nbuf_t deliver_list_tail = NULL;
  219. qdf_nbuf_t nbuf;
  220. nbuf = nbuf_list;
  221. while (nbuf) {
  222. qdf_nbuf_t next = qdf_nbuf_next(nbuf);
  223. DP_RX_LIST_APPEND(deliver_list_head, deliver_list_tail, nbuf);
  224. /*
  225. * reset the chfrag_start and chfrag_end bits in nbuf cb
  226. * as this is a non-amsdu pkt and RAW mode simulation expects
  227. * these bit s to be 0 for non-amsdu pkt.
  228. */
  229. if (qdf_nbuf_is_rx_chfrag_start(nbuf) &&
  230. qdf_nbuf_is_rx_chfrag_end(nbuf)) {
  231. qdf_nbuf_set_rx_chfrag_start(nbuf, 0);
  232. qdf_nbuf_set_rx_chfrag_end(nbuf, 0);
  233. }
  234. nbuf = next;
  235. }
  236. vdev->osif_rsim_rx_decap(vdev->osif_vdev, &deliver_list_head,
  237. &deliver_list_tail, (struct cdp_peer*) peer);
  238. vdev->osif_rx(vdev->osif_vdev, deliver_list_head);
  239. }
  240. #ifdef DP_LFR
  241. /*
  242. * In case of LFR, data of a new peer might be sent up
  243. * even before peer is added.
  244. */
  245. static inline struct dp_vdev *
  246. dp_get_vdev_from_peer(struct dp_soc *soc,
  247. uint16_t peer_id,
  248. struct dp_peer *peer,
  249. struct hal_rx_mpdu_desc_info mpdu_desc_info)
  250. {
  251. struct dp_vdev *vdev;
  252. uint8_t vdev_id;
  253. if (unlikely(!peer)) {
  254. if (peer_id != HTT_INVALID_PEER) {
  255. vdev_id = DP_PEER_METADATA_ID_GET(
  256. mpdu_desc_info.peer_meta_data);
  257. QDF_TRACE(QDF_MODULE_ID_DP,
  258. QDF_TRACE_LEVEL_DEBUG,
  259. FL("PeerID %d not found use vdevID %d"),
  260. peer_id, vdev_id);
  261. vdev = dp_get_vdev_from_soc_vdev_id_wifi3(soc,
  262. vdev_id);
  263. } else {
  264. QDF_TRACE(QDF_MODULE_ID_DP,
  265. QDF_TRACE_LEVEL_DEBUG,
  266. FL("Invalid PeerID %d"),
  267. peer_id);
  268. return NULL;
  269. }
  270. } else {
  271. vdev = peer->vdev;
  272. }
  273. return vdev;
  274. }
  275. #else
  276. static inline struct dp_vdev *
  277. dp_get_vdev_from_peer(struct dp_soc *soc,
  278. uint16_t peer_id,
  279. struct dp_peer *peer,
  280. struct hal_rx_mpdu_desc_info mpdu_desc_info)
  281. {
  282. if (unlikely(!peer)) {
  283. QDF_TRACE(QDF_MODULE_ID_DP,
  284. QDF_TRACE_LEVEL_DEBUG,
  285. FL("Peer not found for peerID %d"),
  286. peer_id);
  287. return NULL;
  288. } else {
  289. return peer->vdev;
  290. }
  291. }
  292. #endif
  293. /**
  294. * dp_rx_intrabss_fwd() - Implements the Intra-BSS forwarding logic
  295. *
  296. * @soc: core txrx main context
  297. * @sa_peer : source peer entry
  298. * @rx_tlv_hdr : start address of rx tlvs
  299. * @nbuf : nbuf that has to be intrabss forwarded
  300. *
  301. * Return: bool: true if it is forwarded else false
  302. */
  303. static bool
  304. dp_rx_intrabss_fwd(struct dp_soc *soc,
  305. struct dp_peer *sa_peer,
  306. uint8_t *rx_tlv_hdr,
  307. qdf_nbuf_t nbuf)
  308. {
  309. uint16_t da_idx;
  310. uint16_t len;
  311. struct dp_peer *da_peer;
  312. struct dp_ast_entry *ast_entry;
  313. qdf_nbuf_t nbuf_copy;
  314. struct dp_vdev *vdev = sa_peer->vdev;
  315. /*
  316. * intrabss forwarding is not applicable if
  317. * vap is nawds enabled or ap_bridge is false.
  318. */
  319. if (vdev->nawds_enabled)
  320. return false;
  321. /* check if the destination peer is available in peer table
  322. * and also check if the source peer and destination peer
  323. * belong to the same vap and destination peer is not bss peer.
  324. */
  325. if ((hal_rx_msdu_end_da_is_valid_get(rx_tlv_hdr) &&
  326. !hal_rx_msdu_end_da_is_mcbc_get(rx_tlv_hdr))) {
  327. da_idx = hal_rx_msdu_end_da_idx_get(rx_tlv_hdr);
  328. ast_entry = soc->ast_table[da_idx];
  329. if (!ast_entry)
  330. return false;
  331. da_peer = ast_entry->peer;
  332. if (!da_peer)
  333. return false;
  334. if (da_peer->vdev == sa_peer->vdev && !da_peer->bss_peer) {
  335. memset(nbuf->cb, 0x0, sizeof(nbuf->cb));
  336. len = qdf_nbuf_len(nbuf);
  337. /* linearize the nbuf just before we send to
  338. * dp_tx_send()
  339. */
  340. if (qdf_unlikely(qdf_nbuf_get_ext_list(nbuf))) {
  341. if (qdf_nbuf_linearize(nbuf) == -ENOMEM)
  342. return false;
  343. nbuf = qdf_nbuf_unshare(nbuf);
  344. if (!nbuf) {
  345. DP_STATS_INC_PKT(sa_peer,
  346. rx.intra_bss.fail,
  347. 1,
  348. len);
  349. /* return true even though the pkt is
  350. * not forwarded. Basically skb_unshare
  351. * failed and we want to continue with
  352. * next nbuf.
  353. */
  354. return true;
  355. }
  356. }
  357. if (!dp_tx_send(sa_peer->vdev, nbuf)) {
  358. DP_STATS_INC_PKT(sa_peer, rx.intra_bss.pkts,
  359. 1, len);
  360. return true;
  361. } else {
  362. DP_STATS_INC_PKT(sa_peer, rx.intra_bss.fail, 1,
  363. len);
  364. return false;
  365. }
  366. }
  367. }
  368. /* if it is a broadcast pkt (eg: ARP) and it is not its own
  369. * source, then clone the pkt and send the cloned pkt for
  370. * intra BSS forwarding and original pkt up the network stack
  371. * Note: how do we handle multicast pkts. do we forward
  372. * all multicast pkts as is or let a higher layer module
  373. * like igmpsnoop decide whether to forward or not with
  374. * Mcast enhancement.
  375. */
  376. else if (qdf_unlikely((hal_rx_msdu_end_da_is_mcbc_get(rx_tlv_hdr) &&
  377. !sa_peer->bss_peer))) {
  378. nbuf_copy = qdf_nbuf_copy(nbuf);
  379. if (!nbuf_copy)
  380. return false;
  381. memset(nbuf_copy->cb, 0x0, sizeof(nbuf_copy->cb));
  382. len = qdf_nbuf_len(nbuf_copy);
  383. if (dp_tx_send(sa_peer->vdev, nbuf_copy)) {
  384. DP_STATS_INC_PKT(sa_peer, rx.intra_bss.fail, 1, len);
  385. qdf_nbuf_free(nbuf_copy);
  386. } else
  387. DP_STATS_INC_PKT(sa_peer, rx.intra_bss.pkts, 1, len);
  388. }
  389. /* return false as we have to still send the original pkt
  390. * up the stack
  391. */
  392. return false;
  393. }
  394. #ifdef MESH_MODE_SUPPORT
  395. /**
  396. * dp_rx_fill_mesh_stats() - Fills the mesh per packet receive stats
  397. *
  398. * @vdev: DP Virtual device handle
  399. * @nbuf: Buffer pointer
  400. * @rx_tlv_hdr: start of rx tlv header
  401. * @peer: pointer to peer
  402. *
  403. * This function allocated memory for mesh receive stats and fill the
  404. * required stats. Stores the memory address in skb cb.
  405. *
  406. * Return: void
  407. */
  408. void dp_rx_fill_mesh_stats(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
  409. uint8_t *rx_tlv_hdr, struct dp_peer *peer)
  410. {
  411. struct mesh_recv_hdr_s *rx_info = NULL;
  412. uint32_t pkt_type;
  413. uint32_t nss;
  414. uint32_t rate_mcs;
  415. uint32_t bw;
  416. /* fill recv mesh stats */
  417. rx_info = qdf_mem_malloc(sizeof(struct mesh_recv_hdr_s));
  418. /* upper layers are resposible to free this memory */
  419. if (rx_info == NULL) {
  420. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  421. "Memory allocation failed for mesh rx stats");
  422. DP_STATS_INC(vdev->pdev, mesh_mem_alloc, 1);
  423. return;
  424. }
  425. rx_info->rs_flags = MESH_RXHDR_VER1;
  426. if (qdf_nbuf_is_rx_chfrag_start(nbuf))
  427. rx_info->rs_flags |= MESH_RX_FIRST_MSDU;
  428. if (qdf_nbuf_is_rx_chfrag_end(nbuf))
  429. rx_info->rs_flags |= MESH_RX_LAST_MSDU;
  430. if (hal_rx_attn_msdu_get_is_decrypted(rx_tlv_hdr)) {
  431. rx_info->rs_flags |= MESH_RX_DECRYPTED;
  432. rx_info->rs_keyix = hal_rx_msdu_get_keyid(rx_tlv_hdr);
  433. if (vdev->osif_get_key)
  434. vdev->osif_get_key(vdev->osif_vdev,
  435. &rx_info->rs_decryptkey[0],
  436. &peer->mac_addr.raw[0],
  437. rx_info->rs_keyix);
  438. }
  439. rx_info->rs_rssi = hal_rx_msdu_start_get_rssi(rx_tlv_hdr);
  440. rx_info->rs_channel = hal_rx_msdu_start_get_freq(rx_tlv_hdr);
  441. pkt_type = hal_rx_msdu_start_get_pkt_type(rx_tlv_hdr);
  442. rate_mcs = hal_rx_msdu_start_rate_mcs_get(rx_tlv_hdr);
  443. bw = hal_rx_msdu_start_bw_get(rx_tlv_hdr);
  444. nss = hal_rx_msdu_start_nss_get(rx_tlv_hdr);
  445. rx_info->rs_ratephy1 = rate_mcs | (nss << 0x8) | (pkt_type << 16) |
  446. (bw << 24);
  447. qdf_nbuf_set_rx_fctx_type(nbuf, (void *)rx_info, CB_FTYPE_MESH_RX_INFO);
  448. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO_MED,
  449. FL("Mesh rx stats: flags %x, rssi %x, chn %x, rate %x, kix %x"),
  450. rx_info->rs_flags,
  451. rx_info->rs_rssi,
  452. rx_info->rs_channel,
  453. rx_info->rs_ratephy1,
  454. rx_info->rs_keyix);
  455. }
  456. /**
  457. * dp_rx_filter_mesh_packets() - Filters mesh unwanted packets
  458. *
  459. * @vdev: DP Virtual device handle
  460. * @nbuf: Buffer pointer
  461. * @rx_tlv_hdr: start of rx tlv header
  462. *
  463. * This checks if the received packet is matching any filter out
  464. * catogery and and drop the packet if it matches.
  465. *
  466. * Return: status(0 indicates drop, 1 indicate to no drop)
  467. */
  468. QDF_STATUS dp_rx_filter_mesh_packets(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
  469. uint8_t *rx_tlv_hdr)
  470. {
  471. union dp_align_mac_addr mac_addr;
  472. if (qdf_unlikely(vdev->mesh_rx_filter)) {
  473. if (vdev->mesh_rx_filter & MESH_FILTER_OUT_FROMDS)
  474. if (hal_rx_mpdu_get_fr_ds(rx_tlv_hdr))
  475. return QDF_STATUS_SUCCESS;
  476. if (vdev->mesh_rx_filter & MESH_FILTER_OUT_TODS)
  477. if (hal_rx_mpdu_get_to_ds(rx_tlv_hdr))
  478. return QDF_STATUS_SUCCESS;
  479. if (vdev->mesh_rx_filter & MESH_FILTER_OUT_NODS)
  480. if (!hal_rx_mpdu_get_fr_ds(rx_tlv_hdr)
  481. && !hal_rx_mpdu_get_to_ds(rx_tlv_hdr))
  482. return QDF_STATUS_SUCCESS;
  483. if (vdev->mesh_rx_filter & MESH_FILTER_OUT_RA) {
  484. if (hal_rx_mpdu_get_addr1(rx_tlv_hdr,
  485. &mac_addr.raw[0]))
  486. return QDF_STATUS_E_FAILURE;
  487. if (!qdf_mem_cmp(&mac_addr.raw[0],
  488. &vdev->mac_addr.raw[0],
  489. DP_MAC_ADDR_LEN))
  490. return QDF_STATUS_SUCCESS;
  491. }
  492. if (vdev->mesh_rx_filter & MESH_FILTER_OUT_TA) {
  493. if (hal_rx_mpdu_get_addr2(rx_tlv_hdr,
  494. &mac_addr.raw[0]))
  495. return QDF_STATUS_E_FAILURE;
  496. if (!qdf_mem_cmp(&mac_addr.raw[0],
  497. &vdev->mac_addr.raw[0],
  498. DP_MAC_ADDR_LEN))
  499. return QDF_STATUS_SUCCESS;
  500. }
  501. }
  502. return QDF_STATUS_E_FAILURE;
  503. }
  504. #else
  505. void dp_rx_fill_mesh_stats(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
  506. uint8_t *rx_tlv_hdr, struct dp_peer *peer)
  507. {
  508. }
  509. QDF_STATUS dp_rx_filter_mesh_packets(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
  510. uint8_t *rx_tlv_hdr)
  511. {
  512. return QDF_STATUS_E_FAILURE;
  513. }
  514. #endif
  515. #ifdef CONFIG_WIN
  516. /**
  517. * dp_rx_nac_filter(): Function to perform filtering of non-associated
  518. * clients
  519. * @pdev: DP pdev handle
  520. * @rx_pkt_hdr: Rx packet Header
  521. *
  522. * return: dp_vdev*
  523. */
  524. static
  525. struct dp_vdev *dp_rx_nac_filter(struct dp_pdev *pdev,
  526. uint8_t *rx_pkt_hdr)
  527. {
  528. struct ieee80211_frame *wh;
  529. struct dp_neighbour_peer *peer = NULL;
  530. wh = (struct ieee80211_frame *)rx_pkt_hdr;
  531. if ((wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) != IEEE80211_FC1_DIR_TODS)
  532. return NULL;
  533. qdf_spin_lock_bh(&pdev->neighbour_peer_mutex);
  534. TAILQ_FOREACH(peer, &pdev->neighbour_peers_list,
  535. neighbour_peer_list_elem) {
  536. if (qdf_mem_cmp(&peer->neighbour_peers_macaddr.raw[0],
  537. wh->i_addr2, DP_MAC_ADDR_LEN) == 0) {
  538. QDF_TRACE(
  539. QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  540. FL("NAC configuration matched for mac-%2x:%2x:%2x:%2x:%2x:%2x"),
  541. peer->neighbour_peers_macaddr.raw[0],
  542. peer->neighbour_peers_macaddr.raw[1],
  543. peer->neighbour_peers_macaddr.raw[2],
  544. peer->neighbour_peers_macaddr.raw[3],
  545. peer->neighbour_peers_macaddr.raw[4],
  546. peer->neighbour_peers_macaddr.raw[5]);
  547. qdf_spin_unlock_bh(&pdev->neighbour_peer_mutex);
  548. return pdev->monitor_vdev;
  549. }
  550. }
  551. qdf_spin_unlock_bh(&pdev->neighbour_peer_mutex);
  552. return NULL;
  553. }
  554. /**
  555. * dp_rx_process_nac_rssi_frames(): Store RSSI for configured NAC
  556. * @pdev: DP pdev handle
  557. * @rx_tlv_hdr: tlv hdr buf
  558. *
  559. * return: None
  560. */
  561. #ifdef ATH_SUPPORT_NAC_RSSI
  562. static void dp_rx_process_nac_rssi_frames(struct dp_pdev *pdev, uint8_t *rx_tlv_hdr)
  563. {
  564. struct dp_vdev *vdev = NULL;
  565. struct dp_soc *soc = pdev->soc;
  566. uint8_t *rx_pkt_hdr = hal_rx_pkt_hdr_get(rx_tlv_hdr);
  567. struct ieee80211_frame *wh = (struct ieee80211_frame *)rx_pkt_hdr;
  568. if (pdev->nac_rssi_filtering) {
  569. TAILQ_FOREACH(vdev, &pdev->vdev_list, vdev_list_elem) {
  570. if (vdev->cdp_nac_rssi_enabled &&
  571. (qdf_mem_cmp(vdev->cdp_nac_rssi.client_mac,
  572. wh->i_addr1, DP_MAC_ADDR_LEN) == 0)) {
  573. QDF_TRACE(QDF_MODULE_ID_DP,
  574. QDF_TRACE_LEVEL_DEBUG, "RSSI updated");
  575. vdev->cdp_nac_rssi.vdev_id = vdev->vdev_id;
  576. vdev->cdp_nac_rssi.client_rssi =
  577. hal_rx_msdu_start_get_rssi(rx_tlv_hdr);
  578. dp_wdi_event_handler(WDI_EVENT_NAC_RSSI, soc,
  579. (void *)&vdev->cdp_nac_rssi,
  580. HTT_INVALID_PEER, WDI_NO_VAL,
  581. pdev->pdev_id);
  582. }
  583. }
  584. }
  585. }
  586. #else
  587. static void dp_rx_process_nac_rssi_frames(struct dp_pdev *pdev, uint8_t *rx_tlv_hdr)
  588. {
  589. }
  590. #endif
  591. /**
  592. * dp_rx_process_invalid_peer(): Function to pass invalid peer list to umac
  593. * @soc: DP SOC handle
  594. * @mpdu: mpdu for which peer is invalid
  595. *
  596. * return: integer type
  597. */
  598. uint8_t dp_rx_process_invalid_peer(struct dp_soc *soc, qdf_nbuf_t mpdu)
  599. {
  600. struct dp_invalid_peer_msg msg;
  601. struct dp_vdev *vdev = NULL;
  602. struct dp_pdev *pdev = NULL;
  603. struct ieee80211_frame *wh;
  604. uint8_t i;
  605. qdf_nbuf_t curr_nbuf, next_nbuf;
  606. uint8_t *rx_tlv_hdr = qdf_nbuf_data(mpdu);
  607. uint8_t *rx_pkt_hdr = hal_rx_pkt_hdr_get(rx_tlv_hdr);
  608. wh = (struct ieee80211_frame *)rx_pkt_hdr;
  609. if (!DP_FRAME_IS_DATA(wh)) {
  610. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  611. "NAWDS valid only for data frames");
  612. goto free;
  613. }
  614. if (qdf_nbuf_len(mpdu) < sizeof(struct ieee80211_frame)) {
  615. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  616. "Invalid nbuf length");
  617. goto free;
  618. }
  619. for (i = 0; i < MAX_PDEV_CNT; i++) {
  620. pdev = soc->pdev_list[i];
  621. if (!pdev) {
  622. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  623. "PDEV not found");
  624. continue;
  625. }
  626. if (pdev->filter_neighbour_peers) {
  627. /* Next Hop scenario not yet handle */
  628. vdev = dp_rx_nac_filter(pdev, rx_pkt_hdr);
  629. if (vdev) {
  630. dp_rx_mon_deliver(soc, i,
  631. pdev->invalid_peer_head_msdu,
  632. pdev->invalid_peer_tail_msdu);
  633. pdev->invalid_peer_head_msdu = NULL;
  634. pdev->invalid_peer_tail_msdu = NULL;
  635. return 0;
  636. }
  637. }
  638. dp_rx_process_nac_rssi_frames(pdev, rx_tlv_hdr);
  639. TAILQ_FOREACH(vdev, &pdev->vdev_list, vdev_list_elem) {
  640. if (qdf_mem_cmp(wh->i_addr1, vdev->mac_addr.raw,
  641. DP_MAC_ADDR_LEN) == 0) {
  642. goto out;
  643. }
  644. }
  645. }
  646. if (!vdev) {
  647. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  648. "VDEV not found");
  649. goto free;
  650. }
  651. out:
  652. msg.wh = wh;
  653. qdf_nbuf_pull_head(mpdu, RX_PKT_TLVS_LEN);
  654. msg.nbuf = mpdu;
  655. msg.vdev_id = vdev->vdev_id;
  656. if (pdev->soc->cdp_soc.ol_ops->rx_invalid_peer)
  657. pdev->soc->cdp_soc.ol_ops->rx_invalid_peer(pdev->osif_pdev, &msg);
  658. free:
  659. /* Drop and free packet */
  660. curr_nbuf = mpdu;
  661. while (curr_nbuf) {
  662. next_nbuf = qdf_nbuf_next(curr_nbuf);
  663. qdf_nbuf_free(curr_nbuf);
  664. curr_nbuf = next_nbuf;
  665. }
  666. return 0;
  667. }
  668. /**
  669. * dp_rx_process_invalid_peer_wrapper(): Function to wrap invalid peer handler
  670. * @soc: DP SOC handle
  671. * @mpdu: mpdu for which peer is invalid
  672. * @mpdu_done: if an mpdu is completed
  673. *
  674. * return: integer type
  675. */
  676. void dp_rx_process_invalid_peer_wrapper(struct dp_soc *soc,
  677. qdf_nbuf_t mpdu, bool mpdu_done)
  678. {
  679. /* Only trigger the process when mpdu is completed */
  680. if (mpdu_done)
  681. dp_rx_process_invalid_peer(soc, mpdu);
  682. }
  683. #else
  684. uint8_t dp_rx_process_invalid_peer(struct dp_soc *soc, qdf_nbuf_t mpdu)
  685. {
  686. qdf_nbuf_t curr_nbuf, next_nbuf;
  687. struct dp_pdev *pdev;
  688. uint8_t i;
  689. curr_nbuf = mpdu;
  690. while (curr_nbuf) {
  691. next_nbuf = qdf_nbuf_next(curr_nbuf);
  692. /* Drop and free packet */
  693. DP_STATS_INC_PKT(soc, rx.err.rx_invalid_peer, 1,
  694. qdf_nbuf_len(curr_nbuf));
  695. qdf_nbuf_free(curr_nbuf);
  696. curr_nbuf = next_nbuf;
  697. }
  698. /* reset the head and tail pointers */
  699. for (i = 0; i < MAX_PDEV_CNT; i++) {
  700. pdev = soc->pdev_list[i];
  701. if (!pdev) {
  702. QDF_TRACE(QDF_MODULE_ID_DP,
  703. QDF_TRACE_LEVEL_ERROR,
  704. "PDEV not found");
  705. continue;
  706. }
  707. pdev->invalid_peer_head_msdu = NULL;
  708. pdev->invalid_peer_tail_msdu = NULL;
  709. }
  710. return 0;
  711. }
  712. void dp_rx_process_invalid_peer_wrapper(struct dp_soc *soc,
  713. qdf_nbuf_t mpdu, bool mpdu_done)
  714. {
  715. /* To avoid compiler warning */
  716. mpdu_done = mpdu_done;
  717. /* Process the nbuf */
  718. dp_rx_process_invalid_peer(soc, mpdu);
  719. }
  720. #endif
  721. #if defined(FEATURE_LRO)
  722. static void dp_rx_print_lro_info(uint8_t *rx_tlv)
  723. {
  724. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  725. FL("----------------------RX DESC LRO----------------------\n"));
  726. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  727. FL("lro_eligible 0x%x"), HAL_RX_TLV_GET_LRO_ELIGIBLE(rx_tlv));
  728. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  729. FL("pure_ack 0x%x"), HAL_RX_TLV_GET_TCP_PURE_ACK(rx_tlv));
  730. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  731. FL("chksum 0x%x"), HAL_RX_TLV_GET_TCP_CHKSUM(rx_tlv));
  732. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  733. FL("TCP seq num 0x%x"), HAL_RX_TLV_GET_TCP_SEQ(rx_tlv));
  734. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  735. FL("TCP ack num 0x%x"), HAL_RX_TLV_GET_TCP_ACK(rx_tlv));
  736. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  737. FL("TCP window 0x%x"), HAL_RX_TLV_GET_TCP_WIN(rx_tlv));
  738. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  739. FL("TCP protocol 0x%x"), HAL_RX_TLV_GET_TCP_PROTO(rx_tlv));
  740. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  741. FL("TCP offset 0x%x"), HAL_RX_TLV_GET_TCP_OFFSET(rx_tlv));
  742. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  743. FL("toeplitz 0x%x"), HAL_RX_TLV_GET_FLOW_ID_TOEPLITZ(rx_tlv));
  744. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  745. FL("---------------------------------------------------------\n"));
  746. }
  747. /**
  748. * dp_rx_lro() - LRO related processing
  749. * @rx_tlv: TLV data extracted from the rx packet
  750. * @peer: destination peer of the msdu
  751. * @msdu: network buffer
  752. * @ctx: LRO context
  753. *
  754. * This function performs the LRO related processing of the msdu
  755. *
  756. * Return: true: LRO enabled false: LRO is not enabled
  757. */
  758. static void dp_rx_lro(uint8_t *rx_tlv, struct dp_peer *peer,
  759. qdf_nbuf_t msdu, qdf_lro_ctx_t ctx)
  760. {
  761. if (!peer || !peer->vdev || !peer->vdev->lro_enable) {
  762. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_DEBUG,
  763. FL("no peer, no vdev or LRO disabled"));
  764. QDF_NBUF_CB_RX_LRO_ELIGIBLE(msdu) = 0;
  765. return;
  766. }
  767. qdf_assert(rx_tlv);
  768. dp_rx_print_lro_info(rx_tlv);
  769. QDF_NBUF_CB_RX_LRO_ELIGIBLE(msdu) =
  770. HAL_RX_TLV_GET_LRO_ELIGIBLE(rx_tlv);
  771. QDF_NBUF_CB_RX_TCP_PURE_ACK(msdu) =
  772. HAL_RX_TLV_GET_TCP_PURE_ACK(rx_tlv);
  773. QDF_NBUF_CB_RX_TCP_CHKSUM(msdu) =
  774. HAL_RX_TLV_GET_TCP_CHKSUM(rx_tlv);
  775. QDF_NBUF_CB_RX_TCP_SEQ_NUM(msdu) =
  776. HAL_RX_TLV_GET_TCP_SEQ(rx_tlv);
  777. QDF_NBUF_CB_RX_TCP_ACK_NUM(msdu) =
  778. HAL_RX_TLV_GET_TCP_ACK(rx_tlv);
  779. QDF_NBUF_CB_RX_TCP_WIN(msdu) =
  780. HAL_RX_TLV_GET_TCP_WIN(rx_tlv);
  781. QDF_NBUF_CB_RX_TCP_PROTO(msdu) =
  782. HAL_RX_TLV_GET_TCP_PROTO(rx_tlv);
  783. QDF_NBUF_CB_RX_IPV6_PROTO(msdu) =
  784. HAL_RX_TLV_GET_IPV6(rx_tlv);
  785. QDF_NBUF_CB_RX_TCP_OFFSET(msdu) =
  786. HAL_RX_TLV_GET_TCP_OFFSET(rx_tlv);
  787. QDF_NBUF_CB_RX_FLOW_ID(msdu) =
  788. HAL_RX_TLV_GET_FLOW_ID_TOEPLITZ(rx_tlv);
  789. QDF_NBUF_CB_RX_LRO_CTX(msdu) = (unsigned char *)ctx;
  790. }
  791. #else
  792. static void dp_rx_lro(uint8_t *rx_tlv, struct dp_peer *peer,
  793. qdf_nbuf_t msdu, qdf_lro_ctx_t ctx)
  794. {
  795. }
  796. #endif
  797. /**
  798. * dp_rx_adjust_nbuf_len() - set appropriate msdu length in nbuf.
  799. *
  800. * @nbuf: pointer to msdu.
  801. * @mpdu_len: mpdu length
  802. *
  803. * Return: returns true if nbuf is last msdu of mpdu else retuns false.
  804. */
  805. static inline bool dp_rx_adjust_nbuf_len(qdf_nbuf_t nbuf, uint16_t *mpdu_len)
  806. {
  807. bool last_nbuf;
  808. if (*mpdu_len >= (RX_BUFFER_SIZE - RX_PKT_TLVS_LEN)) {
  809. qdf_nbuf_set_pktlen(nbuf, RX_BUFFER_SIZE);
  810. last_nbuf = false;
  811. } else {
  812. qdf_nbuf_set_pktlen(nbuf, (*mpdu_len + RX_PKT_TLVS_LEN));
  813. last_nbuf = true;
  814. }
  815. *mpdu_len -= (RX_BUFFER_SIZE - RX_PKT_TLVS_LEN);
  816. return last_nbuf;
  817. }
  818. /**
  819. * dp_rx_sg_create() - create a frag_list for MSDUs which are spread across
  820. * multiple nbufs.
  821. * @nbuf: pointer to the first msdu of an amsdu.
  822. * @rx_tlv_hdr: pointer to the start of RX TLV headers.
  823. *
  824. *
  825. * This function implements the creation of RX frag_list for cases
  826. * where an MSDU is spread across multiple nbufs.
  827. *
  828. * Return: returns the head nbuf which contains complete frag_list.
  829. */
  830. qdf_nbuf_t dp_rx_sg_create(qdf_nbuf_t nbuf, uint8_t *rx_tlv_hdr)
  831. {
  832. qdf_nbuf_t parent, next, frag_list;
  833. uint16_t frag_list_len = 0;
  834. uint16_t mpdu_len;
  835. bool last_nbuf;
  836. /*
  837. * this is a case where the complete msdu fits in one single nbuf.
  838. * in this case HW sets both start and end bit and we only need to
  839. * reset these bits for RAW mode simulator to decap the pkt
  840. */
  841. if (qdf_nbuf_is_rx_chfrag_start(nbuf) &&
  842. qdf_nbuf_is_rx_chfrag_end(nbuf)) {
  843. qdf_nbuf_set_rx_chfrag_start(nbuf, 0);
  844. qdf_nbuf_set_rx_chfrag_end(nbuf, 0);
  845. return nbuf;
  846. }
  847. /*
  848. * This is a case where we have multiple msdus (A-MSDU) spread across
  849. * multiple nbufs. here we create a fraglist out of these nbufs.
  850. *
  851. * the moment we encounter a nbuf with continuation bit set we
  852. * know for sure we have an MSDU which is spread across multiple
  853. * nbufs. We loop through and reap nbufs till we reach last nbuf.
  854. */
  855. parent = nbuf;
  856. frag_list = nbuf->next;
  857. nbuf = nbuf->next;
  858. /*
  859. * set the start bit in the first nbuf we encounter with continuation
  860. * bit set. This has the proper mpdu length set as it is the first
  861. * msdu of the mpdu. this becomes the parent nbuf and the subsequent
  862. * nbufs will form the frag_list of the parent nbuf.
  863. */
  864. qdf_nbuf_set_rx_chfrag_start(parent, 1);
  865. mpdu_len = hal_rx_msdu_start_msdu_len_get(rx_tlv_hdr);
  866. last_nbuf = dp_rx_adjust_nbuf_len(parent, &mpdu_len);
  867. /*
  868. * this is where we set the length of the fragments which are
  869. * associated to the parent nbuf. We iterate through the frag_list
  870. * till we hit the last_nbuf of the list.
  871. */
  872. do {
  873. last_nbuf = dp_rx_adjust_nbuf_len(nbuf, &mpdu_len);
  874. qdf_nbuf_pull_head(nbuf, RX_PKT_TLVS_LEN);
  875. frag_list_len += qdf_nbuf_len(nbuf);
  876. if (last_nbuf) {
  877. next = nbuf->next;
  878. nbuf->next = NULL;
  879. break;
  880. }
  881. nbuf = nbuf->next;
  882. } while (!last_nbuf);
  883. qdf_nbuf_set_rx_chfrag_start(nbuf, 0);
  884. qdf_nbuf_append_ext_list(parent, frag_list, frag_list_len);
  885. parent->next = next;
  886. qdf_nbuf_pull_head(parent, RX_PKT_TLVS_LEN);
  887. return parent;
  888. }
  889. static inline void dp_rx_deliver_to_stack(struct dp_vdev *vdev,
  890. struct dp_peer *peer,
  891. qdf_nbuf_t nbuf_head,
  892. qdf_nbuf_t nbuf_tail)
  893. {
  894. /*
  895. * highly unlikely to have a vdev without a registerd rx
  896. * callback function. if so let us free the nbuf_list.
  897. */
  898. if (qdf_unlikely(!vdev->osif_rx)) {
  899. qdf_nbuf_t nbuf;
  900. do {
  901. nbuf = nbuf_head;
  902. nbuf_head = nbuf_head->next;
  903. qdf_nbuf_free(nbuf);
  904. } while (nbuf_head);
  905. return;
  906. }
  907. if (qdf_unlikely(vdev->rx_decap_type == htt_cmn_pkt_type_raw) ||
  908. (vdev->rx_decap_type == htt_cmn_pkt_type_native_wifi)) {
  909. vdev->osif_rsim_rx_decap(vdev->osif_vdev, &nbuf_head,
  910. &nbuf_tail, (struct cdp_peer *) peer);
  911. }
  912. vdev->osif_rx(vdev->osif_vdev, nbuf_head);
  913. }
  914. /**
  915. * dp_rx_cksum_offload() - set the nbuf checksum as defined by hardware.
  916. * @nbuf: pointer to the first msdu of an amsdu.
  917. * @rx_tlv_hdr: pointer to the start of RX TLV headers.
  918. *
  919. * The ipsumed field of the skb is set based on whether HW validated the
  920. * IP/TCP/UDP checksum.
  921. *
  922. * Return: void
  923. */
  924. static inline void dp_rx_cksum_offload(qdf_nbuf_t nbuf, uint8_t *rx_tlv_hdr)
  925. {
  926. qdf_nbuf_rx_cksum_t cksum = {0};
  927. if (qdf_likely(!hal_rx_attn_tcp_udp_cksum_fail_get(rx_tlv_hdr) &&
  928. !hal_rx_attn_ip_cksum_fail_get(rx_tlv_hdr))) {
  929. cksum.l4_result = QDF_NBUF_RX_CKSUM_TCP_UDP_UNNECESSARY;
  930. qdf_nbuf_set_rx_cksum(nbuf, &cksum);
  931. }
  932. }
  933. /**
  934. * dp_rx_msdu_stats_update() - update per msdu stats.
  935. * @soc: core txrx main context
  936. * @nbuf: pointer to the first msdu of an amsdu.
  937. * @rx_tlv_hdr: pointer to the start of RX TLV headers.
  938. * @peer: pointer to the peer object.
  939. * @ring_id: reo dest ring number on which pkt is reaped.
  940. *
  941. * update all the per msdu stats for that nbuf.
  942. * Return: void
  943. */
  944. static void dp_rx_msdu_stats_update(struct dp_soc *soc,
  945. qdf_nbuf_t nbuf,
  946. uint8_t *rx_tlv_hdr,
  947. struct dp_peer *peer,
  948. uint8_t ring_id)
  949. {
  950. bool is_ampdu, is_not_amsdu;
  951. uint16_t peer_id;
  952. uint32_t sgi, mcs, tid, nss, bw, reception_type, pkt_type;
  953. struct dp_vdev *vdev = peer->vdev;
  954. struct ether_header *eh;
  955. uint16_t msdu_len = qdf_nbuf_len(nbuf);
  956. peer_id = DP_PEER_METADATA_PEER_ID_GET(
  957. hal_rx_mpdu_peer_meta_data_get(rx_tlv_hdr));
  958. is_not_amsdu = qdf_nbuf_is_rx_chfrag_start(nbuf) &
  959. qdf_nbuf_is_rx_chfrag_end(nbuf);
  960. DP_STATS_INC_PKT(peer, rx.rcvd_reo[ring_id], 1, msdu_len);
  961. DP_STATS_INCC(peer, rx.non_amsdu_cnt, 1, is_not_amsdu);
  962. DP_STATS_INCC(peer, rx.amsdu_cnt, 1, !is_not_amsdu);
  963. if (qdf_unlikely(hal_rx_msdu_end_da_is_mcbc_get(rx_tlv_hdr) &&
  964. (vdev->rx_decap_type == htt_cmn_pkt_type_ethernet))) {
  965. eh = (struct ether_header *)qdf_nbuf_data(nbuf);
  966. if (IEEE80211_IS_BROADCAST(eh->ether_dhost)) {
  967. DP_STATS_INC_PKT(peer, rx.bcast, 1, msdu_len);
  968. } else {
  969. DP_STATS_INC_PKT(peer, rx.multicast, 1, msdu_len);
  970. }
  971. }
  972. /*
  973. * currently we can return from here as we have similar stats
  974. * updated at per ppdu level instead of msdu level
  975. */
  976. if (!soc->process_rx_status)
  977. return;
  978. is_ampdu = hal_rx_mpdu_info_ampdu_flag_get(rx_tlv_hdr);
  979. DP_STATS_INCC(peer, rx.ampdu_cnt, 1, is_ampdu);
  980. DP_STATS_INCC(peer, rx.non_ampdu_cnt, 1, !(is_ampdu));
  981. sgi = hal_rx_msdu_start_sgi_get(rx_tlv_hdr);
  982. mcs = hal_rx_msdu_start_rate_mcs_get(rx_tlv_hdr);
  983. tid = hal_rx_mpdu_start_tid_get(rx_tlv_hdr);
  984. bw = hal_rx_msdu_start_bw_get(rx_tlv_hdr);
  985. reception_type = hal_rx_msdu_start_reception_type_get(rx_tlv_hdr);
  986. nss = hal_rx_msdu_start_nss_get(rx_tlv_hdr);
  987. pkt_type = hal_rx_msdu_start_get_pkt_type(rx_tlv_hdr);
  988. /* Save tid to skb->priority */
  989. DP_RX_TID_SAVE(nbuf, tid);
  990. DP_STATS_INC(vdev->pdev, rx.bw[bw], 1);
  991. DP_STATS_INC(vdev->pdev, rx.reception_type[reception_type], 1);
  992. DP_STATS_INC(peer, rx.nss[nss], 1);
  993. DP_STATS_INC(peer, rx.sgi_count[sgi], 1);
  994. DP_STATS_INCC(peer, rx.err.mic_err, 1,
  995. hal_rx_mpdu_end_mic_err_get(rx_tlv_hdr));
  996. DP_STATS_INCC(peer, rx.err.decrypt_err, 1,
  997. hal_rx_mpdu_end_decrypt_err_get(rx_tlv_hdr));
  998. DP_STATS_INC(peer, rx.wme_ac_type[TID_TO_WME_AC(tid)], 1);
  999. DP_STATS_INC(peer, rx.bw[bw], 1);
  1000. DP_STATS_INC(peer, rx.reception_type[reception_type], 1);
  1001. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[MAX_MCS], 1,
  1002. ((mcs >= MAX_MCS_11A) && (pkt_type == DOT11_A)));
  1003. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[mcs], 1,
  1004. ((mcs <= MAX_MCS_11A) && (pkt_type == DOT11_A)));
  1005. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[MAX_MCS], 1,
  1006. ((mcs >= MAX_MCS_11B) && (pkt_type == DOT11_B)));
  1007. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[mcs], 1,
  1008. ((mcs <= MAX_MCS_11B) && (pkt_type == DOT11_B)));
  1009. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[MAX_MCS], 1,
  1010. ((mcs >= MAX_MCS_11A) && (pkt_type == DOT11_N)));
  1011. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[mcs], 1,
  1012. ((mcs <= MAX_MCS_11A) && (pkt_type == DOT11_N)));
  1013. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[MAX_MCS], 1,
  1014. ((mcs >= MAX_MCS_11AC) && (pkt_type == DOT11_AC)));
  1015. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[mcs], 1,
  1016. ((mcs <= MAX_MCS_11AC) && (pkt_type == DOT11_AC)));
  1017. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[MAX_MCS], 1,
  1018. ((mcs >= MAX_MCS) && (pkt_type == DOT11_AX)));
  1019. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[mcs], 1,
  1020. ((mcs <= MAX_MCS) && (pkt_type == DOT11_AX)));
  1021. if ((soc->process_rx_status) &&
  1022. hal_rx_attn_first_mpdu_get(rx_tlv_hdr)) {
  1023. if (soc->cdp_soc.ol_ops->update_dp_stats) {
  1024. soc->cdp_soc.ol_ops->update_dp_stats(
  1025. vdev->pdev->osif_pdev,
  1026. &peer->stats,
  1027. peer_id,
  1028. UPDATE_PEER_STATS);
  1029. }
  1030. }
  1031. }
  1032. #ifdef WDS_VENDOR_EXTENSION
  1033. int dp_wds_rx_policy_check(
  1034. uint8_t *rx_tlv_hdr,
  1035. struct dp_vdev *vdev,
  1036. struct dp_peer *peer,
  1037. int rx_mcast
  1038. )
  1039. {
  1040. struct dp_peer *bss_peer;
  1041. int fr_ds, to_ds, rx_3addr, rx_4addr;
  1042. int rx_policy_ucast, rx_policy_mcast;
  1043. if (vdev->opmode == wlan_op_mode_ap) {
  1044. TAILQ_FOREACH(bss_peer, &vdev->peer_list, peer_list_elem) {
  1045. if (bss_peer->bss_peer) {
  1046. /* if wds policy check is not enabled on this vdev, accept all frames */
  1047. if (!bss_peer->wds_ecm.wds_rx_filter) {
  1048. return 1;
  1049. }
  1050. break;
  1051. }
  1052. }
  1053. rx_policy_ucast = bss_peer->wds_ecm.wds_rx_ucast_4addr;
  1054. rx_policy_mcast = bss_peer->wds_ecm.wds_rx_mcast_4addr;
  1055. } else { /* sta mode */
  1056. if (!peer->wds_ecm.wds_rx_filter) {
  1057. return 1;
  1058. }
  1059. rx_policy_ucast = peer->wds_ecm.wds_rx_ucast_4addr;
  1060. rx_policy_mcast = peer->wds_ecm.wds_rx_mcast_4addr;
  1061. }
  1062. /* ------------------------------------------------
  1063. * self
  1064. * peer- rx rx-
  1065. * wds ucast mcast dir policy accept note
  1066. * ------------------------------------------------
  1067. * 1 1 0 11 x1 1 AP configured to accept ds-to-ds Rx ucast from wds peers, constraint met; so, accept
  1068. * 1 1 0 01 x1 0 AP configured to accept ds-to-ds Rx ucast from wds peers, constraint not met; so, drop
  1069. * 1 1 0 10 x1 0 AP configured to accept ds-to-ds Rx ucast from wds peers, constraint not met; so, drop
  1070. * 1 1 0 00 x1 0 bad frame, won't see it
  1071. * 1 0 1 11 1x 1 AP configured to accept ds-to-ds Rx mcast from wds peers, constraint met; so, accept
  1072. * 1 0 1 01 1x 0 AP configured to accept ds-to-ds Rx mcast from wds peers, constraint not met; so, drop
  1073. * 1 0 1 10 1x 0 AP configured to accept ds-to-ds Rx mcast from wds peers, constraint not met; so, drop
  1074. * 1 0 1 00 1x 0 bad frame, won't see it
  1075. * 1 1 0 11 x0 0 AP configured to accept from-ds Rx ucast from wds peers, constraint not met; so, drop
  1076. * 1 1 0 01 x0 0 AP configured to accept from-ds Rx ucast from wds peers, constraint not met; so, drop
  1077. * 1 1 0 10 x0 1 AP configured to accept from-ds Rx ucast from wds peers, constraint met; so, accept
  1078. * 1 1 0 00 x0 0 bad frame, won't see it
  1079. * 1 0 1 11 0x 0 AP configured to accept from-ds Rx mcast from wds peers, constraint not met; so, drop
  1080. * 1 0 1 01 0x 0 AP configured to accept from-ds Rx mcast from wds peers, constraint not met; so, drop
  1081. * 1 0 1 10 0x 1 AP configured to accept from-ds Rx mcast from wds peers, constraint met; so, accept
  1082. * 1 0 1 00 0x 0 bad frame, won't see it
  1083. *
  1084. * 0 x x 11 xx 0 we only accept td-ds Rx frames from non-wds peers in mode.
  1085. * 0 x x 01 xx 1
  1086. * 0 x x 10 xx 0
  1087. * 0 x x 00 xx 0 bad frame, won't see it
  1088. * ------------------------------------------------
  1089. */
  1090. fr_ds = hal_rx_mpdu_get_fr_ds(rx_tlv_hdr);
  1091. to_ds = hal_rx_mpdu_get_to_ds(rx_tlv_hdr);
  1092. rx_3addr = fr_ds ^ to_ds;
  1093. rx_4addr = fr_ds & to_ds;
  1094. if (vdev->opmode == wlan_op_mode_ap) {
  1095. if ((!peer->wds_enabled && rx_3addr && to_ds) ||
  1096. (peer->wds_enabled && !rx_mcast && (rx_4addr == rx_policy_ucast)) ||
  1097. (peer->wds_enabled && rx_mcast && (rx_4addr == rx_policy_mcast))) {
  1098. return 1;
  1099. }
  1100. } else { /* sta mode */
  1101. if ((!rx_mcast && (rx_4addr == rx_policy_ucast)) ||
  1102. (rx_mcast && (rx_4addr == rx_policy_mcast))) {
  1103. return 1;
  1104. }
  1105. }
  1106. return 0;
  1107. }
  1108. #else
  1109. int dp_wds_rx_policy_check(
  1110. uint8_t *rx_tlv_hdr,
  1111. struct dp_vdev *vdev,
  1112. struct dp_peer *peer,
  1113. int rx_mcast
  1114. )
  1115. {
  1116. return 1;
  1117. }
  1118. #endif
  1119. /**
  1120. * dp_rx_process() - Brain of the Rx processing functionality
  1121. * Called from the bottom half (tasklet/NET_RX_SOFTIRQ)
  1122. * @soc: core txrx main context
  1123. * @hal_ring: opaque pointer to the HAL Rx Ring, which will be serviced
  1124. * @quota: No. of units (packets) that can be serviced in one shot.
  1125. *
  1126. * This function implements the core of Rx functionality. This is
  1127. * expected to handle only non-error frames.
  1128. *
  1129. * Return: uint32_t: No. of elements processed
  1130. */
  1131. uint32_t
  1132. dp_rx_process(struct dp_intr *int_ctx, void *hal_ring, uint32_t quota)
  1133. {
  1134. void *hal_soc;
  1135. void *ring_desc;
  1136. struct dp_rx_desc *rx_desc = NULL;
  1137. qdf_nbuf_t nbuf, next;
  1138. union dp_rx_desc_list_elem_t *head[MAX_PDEV_CNT] = { NULL };
  1139. union dp_rx_desc_list_elem_t *tail[MAX_PDEV_CNT] = { NULL };
  1140. uint32_t rx_bufs_used = 0, rx_buf_cookie, l2_hdr_offset;
  1141. uint16_t msdu_len;
  1142. uint16_t peer_id;
  1143. struct dp_peer *peer = NULL;
  1144. struct dp_vdev *vdev = NULL;
  1145. uint32_t pkt_len;
  1146. struct hal_rx_mpdu_desc_info mpdu_desc_info = { 0 };
  1147. struct hal_rx_msdu_desc_info msdu_desc_info = { 0 };
  1148. enum hal_reo_error_status error;
  1149. uint32_t peer_mdata;
  1150. uint8_t *rx_tlv_hdr;
  1151. uint32_t rx_bufs_reaped[MAX_PDEV_CNT] = { 0 };
  1152. uint8_t mac_id = 0;
  1153. struct dp_pdev *pdev;
  1154. struct dp_srng *dp_rxdma_srng;
  1155. struct rx_desc_pool *rx_desc_pool;
  1156. struct dp_soc *soc = int_ctx->soc;
  1157. uint8_t ring_id = 0;
  1158. uint8_t core_id = 0;
  1159. qdf_nbuf_t nbuf_head = NULL;
  1160. qdf_nbuf_t nbuf_tail = NULL;
  1161. qdf_nbuf_t deliver_list_head = NULL;
  1162. qdf_nbuf_t deliver_list_tail = NULL;
  1163. DP_HIST_INIT();
  1164. /* Debug -- Remove later */
  1165. qdf_assert(soc && hal_ring);
  1166. hal_soc = soc->hal_soc;
  1167. /* Debug -- Remove later */
  1168. qdf_assert(hal_soc);
  1169. hif_pm_runtime_mark_last_busy(soc->osdev->dev);
  1170. if (qdf_unlikely(hal_srng_access_start(hal_soc, hal_ring))) {
  1171. /*
  1172. * Need API to convert from hal_ring pointer to
  1173. * Ring Type / Ring Id combo
  1174. */
  1175. DP_STATS_INC(soc, rx.err.hal_ring_access_fail, 1);
  1176. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1177. FL("HAL RING Access Failed -- %pK"), hal_ring);
  1178. hal_srng_access_end(hal_soc, hal_ring);
  1179. goto done;
  1180. }
  1181. /*
  1182. * start reaping the buffers from reo ring and queue
  1183. * them in per vdev queue.
  1184. * Process the received pkts in a different per vdev loop.
  1185. */
  1186. while (qdf_likely(quota && (ring_desc =
  1187. hal_srng_dst_get_next(hal_soc, hal_ring)))) {
  1188. error = HAL_RX_ERROR_STATUS_GET(ring_desc);
  1189. ring_id = hal_srng_ring_id_get(hal_ring);
  1190. if (qdf_unlikely(error == HAL_REO_ERROR_DETECTED)) {
  1191. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1192. FL("HAL RING 0x%pK:error %d"), hal_ring, error);
  1193. DP_STATS_INC(soc, rx.err.hal_reo_error[ring_id], 1);
  1194. /* Don't know how to deal with this -- assert */
  1195. qdf_assert(0);
  1196. }
  1197. rx_buf_cookie = HAL_RX_REO_BUF_COOKIE_GET(ring_desc);
  1198. rx_desc = dp_rx_cookie_2_va_rxdma_buf(soc, rx_buf_cookie);
  1199. qdf_assert(rx_desc);
  1200. rx_bufs_reaped[rx_desc->pool_id]++;
  1201. /* TODO */
  1202. /*
  1203. * Need a separate API for unmapping based on
  1204. * phyiscal address
  1205. */
  1206. qdf_nbuf_unmap_single(soc->osdev, rx_desc->nbuf,
  1207. QDF_DMA_BIDIRECTIONAL);
  1208. core_id = smp_processor_id();
  1209. DP_STATS_INC(soc, rx.ring_packets[core_id][ring_id], 1);
  1210. /* Get MPDU DESC info */
  1211. hal_rx_mpdu_desc_info_get(ring_desc, &mpdu_desc_info);
  1212. hal_rx_mpdu_peer_meta_data_set(qdf_nbuf_data(rx_desc->nbuf),
  1213. mpdu_desc_info.peer_meta_data);
  1214. /* Get MSDU DESC info */
  1215. hal_rx_msdu_desc_info_get(ring_desc, &msdu_desc_info);
  1216. /*
  1217. * save msdu flags first, last and continuation msdu in
  1218. * nbuf->cb
  1219. */
  1220. if (msdu_desc_info.msdu_flags & HAL_MSDU_F_FIRST_MSDU_IN_MPDU)
  1221. qdf_nbuf_set_rx_chfrag_start(rx_desc->nbuf, 1);
  1222. if (msdu_desc_info.msdu_flags & HAL_MSDU_F_MSDU_CONTINUATION)
  1223. qdf_nbuf_set_rx_chfrag_cont(rx_desc->nbuf, 1);
  1224. if (msdu_desc_info.msdu_flags & HAL_MSDU_F_LAST_MSDU_IN_MPDU)
  1225. qdf_nbuf_set_rx_chfrag_end(rx_desc->nbuf, 1);
  1226. DP_RX_LIST_APPEND(nbuf_head, nbuf_tail, rx_desc->nbuf);
  1227. /*
  1228. * if continuation bit is set then we have MSDU spread
  1229. * across multiple buffers, let us not decrement quota
  1230. * till we reap all buffers of that MSDU.
  1231. */
  1232. if (qdf_likely(!qdf_nbuf_is_rx_chfrag_cont(rx_desc->nbuf)))
  1233. quota -= 1;
  1234. dp_rx_add_to_free_desc_list(&head[rx_desc->pool_id],
  1235. &tail[rx_desc->pool_id],
  1236. rx_desc);
  1237. }
  1238. done:
  1239. hal_srng_access_end(hal_soc, hal_ring);
  1240. /* Update histogram statistics by looping through pdev's */
  1241. DP_RX_HIST_STATS_PER_PDEV();
  1242. for (mac_id = 0; mac_id < MAX_PDEV_CNT; mac_id++) {
  1243. /*
  1244. * continue with next mac_id if no pkts were reaped
  1245. * from that pool
  1246. */
  1247. if (!rx_bufs_reaped[mac_id])
  1248. continue;
  1249. pdev = soc->pdev_list[mac_id];
  1250. dp_rxdma_srng = &pdev->rx_refill_buf_ring;
  1251. rx_desc_pool = &soc->rx_desc_buf[mac_id];
  1252. dp_rx_buffers_replenish(soc, mac_id, dp_rxdma_srng,
  1253. rx_desc_pool, rx_bufs_reaped[mac_id],
  1254. &head[mac_id], &tail[mac_id]);
  1255. }
  1256. /* Peer can be NULL is case of LFR */
  1257. if (qdf_likely(peer != NULL))
  1258. vdev = NULL;
  1259. /*
  1260. * BIG loop where each nbuf is dequeued from global queue,
  1261. * processed and queued back on a per vdev basis. These nbufs
  1262. * are sent to stack as and when we run out of nbufs
  1263. * or a new nbuf dequeued from global queue has a different
  1264. * vdev when compared to previous nbuf.
  1265. */
  1266. nbuf = nbuf_head;
  1267. while (nbuf) {
  1268. next = nbuf->next;
  1269. rx_tlv_hdr = qdf_nbuf_data(nbuf);
  1270. /*
  1271. * Check if DMA completed -- msdu_done is the last bit
  1272. * to be written
  1273. */
  1274. if (qdf_unlikely(!hal_rx_attn_msdu_done_get(rx_tlv_hdr))) {
  1275. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1276. FL("MSDU DONE failure"));
  1277. hal_rx_dump_pkt_tlvs(rx_tlv_hdr, QDF_TRACE_LEVEL_INFO);
  1278. qdf_assert(0);
  1279. }
  1280. peer_mdata = hal_rx_mpdu_peer_meta_data_get(rx_tlv_hdr);
  1281. peer_id = DP_PEER_METADATA_PEER_ID_GET(peer_mdata);
  1282. peer = dp_peer_find_by_id(soc, peer_id);
  1283. rx_bufs_used++;
  1284. if (deliver_list_head && peer && (vdev != peer->vdev)) {
  1285. dp_rx_deliver_to_stack(vdev, peer, deliver_list_head,
  1286. deliver_list_tail);
  1287. deliver_list_head = NULL;
  1288. deliver_list_tail = NULL;
  1289. }
  1290. if (qdf_likely(peer != NULL)) {
  1291. vdev = peer->vdev;
  1292. } else {
  1293. qdf_nbuf_free(nbuf);
  1294. nbuf = next;
  1295. continue;
  1296. }
  1297. if (qdf_unlikely(vdev == NULL)) {
  1298. qdf_nbuf_free(nbuf);
  1299. nbuf = next;
  1300. DP_STATS_INC(soc, rx.err.invalid_vdev, 1);
  1301. continue;
  1302. }
  1303. DP_HIST_PACKET_COUNT_INC(vdev->pdev->pdev_id);
  1304. /*
  1305. * The below condition happens when an MSDU is spread
  1306. * across multiple buffers. This can happen in two cases
  1307. * 1. The nbuf size is smaller then the received msdu.
  1308. * ex: we have set the nbuf size to 2048 during
  1309. * nbuf_alloc. but we received an msdu which is
  1310. * 2304 bytes in size then this msdu is spread
  1311. * across 2 nbufs.
  1312. *
  1313. * 2. AMSDUs when RAW mode is enabled.
  1314. * ex: 1st MSDU is in 1st nbuf and 2nd MSDU is spread
  1315. * across 1st nbuf and 2nd nbuf and last MSDU is
  1316. * spread across 2nd nbuf and 3rd nbuf.
  1317. *
  1318. * for these scenarios let us create a skb frag_list and
  1319. * append these buffers till the last MSDU of the AMSDU
  1320. */
  1321. if (qdf_unlikely(vdev->rx_decap_type ==
  1322. htt_cmn_pkt_type_raw)) {
  1323. DP_STATS_INC(vdev->pdev, rx_raw_pkts, 1);
  1324. nbuf = dp_rx_sg_create(nbuf, rx_tlv_hdr);
  1325. next = nbuf->next;
  1326. }
  1327. if (!dp_wds_rx_policy_check(rx_tlv_hdr, vdev, peer,
  1328. hal_rx_msdu_end_da_is_mcbc_get(rx_tlv_hdr))) {
  1329. QDF_TRACE(QDF_MODULE_ID_DP,
  1330. QDF_TRACE_LEVEL_ERROR,
  1331. FL("Policy Check Drop pkt"));
  1332. /* Drop & free packet */
  1333. qdf_nbuf_free(nbuf);
  1334. /* Statistics */
  1335. nbuf = next;
  1336. continue;
  1337. }
  1338. if (qdf_unlikely(peer && peer->bss_peer)) {
  1339. QDF_TRACE(QDF_MODULE_ID_DP,
  1340. QDF_TRACE_LEVEL_ERROR,
  1341. FL("received pkt with same src MAC"));
  1342. DP_STATS_INC(vdev->pdev, dropped.mec, 1);
  1343. /* Drop & free packet */
  1344. qdf_nbuf_free(nbuf);
  1345. /* Statistics */
  1346. nbuf = next;
  1347. continue;
  1348. }
  1349. if (qdf_unlikely(peer && (peer->nawds_enabled == true) &&
  1350. (hal_rx_msdu_end_da_is_mcbc_get(rx_tlv_hdr)) &&
  1351. (hal_rx_get_mpdu_mac_ad4_valid(rx_tlv_hdr) == false))) {
  1352. DP_STATS_INC(peer, rx.nawds_mcast_drop, 1);
  1353. qdf_nbuf_free(nbuf);
  1354. nbuf = next;
  1355. continue;
  1356. }
  1357. dp_rx_cksum_offload(nbuf, rx_tlv_hdr);
  1358. /*
  1359. * HW structures call this L3 header padding --
  1360. * even though this is actually the offset from
  1361. * the buffer beginning where the L2 header
  1362. * begins.
  1363. */
  1364. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  1365. FL("rxhash: flow id toeplitz: 0x%x\n"),
  1366. hal_rx_msdu_start_toeplitz_get(rx_tlv_hdr));
  1367. l2_hdr_offset =
  1368. hal_rx_msdu_end_l3_hdr_padding_get(rx_tlv_hdr);
  1369. msdu_len = hal_rx_msdu_start_msdu_len_get(rx_tlv_hdr);
  1370. pkt_len = msdu_len + l2_hdr_offset + RX_PKT_TLVS_LEN;
  1371. if (unlikely(qdf_nbuf_get_ext_list(nbuf)))
  1372. qdf_nbuf_pull_head(nbuf, RX_PKT_TLVS_LEN);
  1373. else {
  1374. qdf_nbuf_set_pktlen(nbuf, pkt_len);
  1375. qdf_nbuf_pull_head(nbuf,
  1376. RX_PKT_TLVS_LEN +
  1377. l2_hdr_offset);
  1378. }
  1379. dp_rx_msdu_stats_update(soc, nbuf, rx_tlv_hdr, peer, ring_id);
  1380. if (qdf_unlikely(vdev->mesh_vdev)) {
  1381. if (dp_rx_filter_mesh_packets(vdev, nbuf,
  1382. rx_tlv_hdr)
  1383. == QDF_STATUS_SUCCESS) {
  1384. QDF_TRACE(QDF_MODULE_ID_DP,
  1385. QDF_TRACE_LEVEL_INFO_MED,
  1386. FL("mesh pkt filtered"));
  1387. DP_STATS_INC(vdev->pdev, dropped.mesh_filter,
  1388. 1);
  1389. qdf_nbuf_free(nbuf);
  1390. nbuf = next;
  1391. continue;
  1392. }
  1393. dp_rx_fill_mesh_stats(vdev, nbuf, rx_tlv_hdr, peer);
  1394. }
  1395. #ifdef QCA_WIFI_NAPIER_EMULATION_DBG /* Debug code, remove later */
  1396. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1397. "p_id %d msdu_len %d hdr_off %d",
  1398. peer_id, msdu_len, l2_hdr_offset);
  1399. print_hex_dump(KERN_ERR,
  1400. "\t Pkt Data:", DUMP_PREFIX_NONE, 32, 4,
  1401. qdf_nbuf_data(nbuf), 128, false);
  1402. #endif /* NAPIER_EMULATION */
  1403. if (qdf_likely(vdev->rx_decap_type ==
  1404. htt_cmn_pkt_type_ethernet) &&
  1405. (qdf_likely(!vdev->mesh_vdev))) {
  1406. /* WDS Source Port Learning */
  1407. dp_rx_wds_srcport_learn(soc,
  1408. rx_tlv_hdr,
  1409. peer,
  1410. nbuf);
  1411. /* Intrabss-fwd */
  1412. if (dp_rx_check_ap_bridge(vdev))
  1413. if (dp_rx_intrabss_fwd(soc,
  1414. peer,
  1415. rx_tlv_hdr,
  1416. nbuf)) {
  1417. nbuf = next;
  1418. continue; /* Get next desc */
  1419. }
  1420. }
  1421. dp_rx_lro(rx_tlv_hdr, peer, nbuf, int_ctx->lro_ctx);
  1422. DP_RX_LIST_APPEND(deliver_list_head,
  1423. deliver_list_tail,
  1424. nbuf);
  1425. DP_STATS_INC_PKT(peer, rx.to_stack, 1,
  1426. qdf_nbuf_len(nbuf));
  1427. nbuf = next;
  1428. }
  1429. if (deliver_list_head)
  1430. dp_rx_deliver_to_stack(vdev, peer, deliver_list_head,
  1431. deliver_list_tail);
  1432. return rx_bufs_used; /* Assume no scale factor for now */
  1433. }
  1434. /**
  1435. * dp_rx_detach() - detach dp rx
  1436. * @pdev: core txrx pdev context
  1437. *
  1438. * This function will detach DP RX into main device context
  1439. * will free DP Rx resources.
  1440. *
  1441. * Return: void
  1442. */
  1443. void
  1444. dp_rx_pdev_detach(struct dp_pdev *pdev)
  1445. {
  1446. uint8_t pdev_id = pdev->pdev_id;
  1447. struct dp_soc *soc = pdev->soc;
  1448. struct rx_desc_pool *rx_desc_pool;
  1449. rx_desc_pool = &soc->rx_desc_buf[pdev_id];
  1450. if (rx_desc_pool->pool_size != 0) {
  1451. dp_rx_desc_pool_free(soc, pdev_id, rx_desc_pool);
  1452. }
  1453. return;
  1454. }
  1455. /**
  1456. * dp_rx_attach() - attach DP RX
  1457. * @pdev: core txrx pdev context
  1458. *
  1459. * This function will attach a DP RX instance into the main
  1460. * device (SOC) context. Will allocate dp rx resource and
  1461. * initialize resources.
  1462. *
  1463. * Return: QDF_STATUS_SUCCESS: success
  1464. * QDF_STATUS_E_RESOURCES: Error return
  1465. */
  1466. QDF_STATUS
  1467. dp_rx_pdev_attach(struct dp_pdev *pdev)
  1468. {
  1469. uint8_t pdev_id = pdev->pdev_id;
  1470. struct dp_soc *soc = pdev->soc;
  1471. struct dp_srng rxdma_srng;
  1472. uint32_t rxdma_entries;
  1473. union dp_rx_desc_list_elem_t *desc_list = NULL;
  1474. union dp_rx_desc_list_elem_t *tail = NULL;
  1475. struct dp_srng *dp_rxdma_srng;
  1476. struct rx_desc_pool *rx_desc_pool;
  1477. if (wlan_cfg_get_dp_pdev_nss_enabled(pdev->wlan_cfg_ctx)) {
  1478. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1479. "nss-wifi<4> skip Rx refil %d", pdev_id);
  1480. return QDF_STATUS_SUCCESS;
  1481. }
  1482. pdev = soc->pdev_list[pdev_id];
  1483. rxdma_srng = pdev->rx_refill_buf_ring;
  1484. soc->process_rx_status = CONFIG_PROCESS_RX_STATUS;
  1485. rxdma_entries = rxdma_srng.alloc_size/hal_srng_get_entrysize(
  1486. soc->hal_soc, RXDMA_BUF);
  1487. rx_desc_pool = &soc->rx_desc_buf[pdev_id];
  1488. dp_rx_desc_pool_alloc(soc, pdev_id, rxdma_entries*3, rx_desc_pool);
  1489. rx_desc_pool->owner = DP_WBM2SW_RBM;
  1490. /* For Rx buffers, WBM release ring is SW RING 3,for all pdev's */
  1491. dp_rxdma_srng = &pdev->rx_refill_buf_ring;
  1492. dp_rx_buffers_replenish(soc, pdev_id, dp_rxdma_srng, rx_desc_pool,
  1493. 0, &desc_list, &tail);
  1494. return QDF_STATUS_SUCCESS;
  1495. }
  1496. /*
  1497. * dp_rx_nbuf_prepare() - prepare RX nbuf
  1498. * @soc: core txrx main context
  1499. * @pdev: core txrx pdev context
  1500. *
  1501. * This function alloc & map nbuf for RX dma usage, retry it if failed
  1502. * until retry times reaches max threshold or succeeded.
  1503. *
  1504. * Return: qdf_nbuf_t pointer if succeeded, NULL if failed.
  1505. */
  1506. qdf_nbuf_t
  1507. dp_rx_nbuf_prepare(struct dp_soc *soc, struct dp_pdev *pdev)
  1508. {
  1509. uint8_t *buf;
  1510. int32_t nbuf_retry_count;
  1511. QDF_STATUS ret;
  1512. qdf_nbuf_t nbuf = NULL;
  1513. for (nbuf_retry_count = 0; nbuf_retry_count <
  1514. QDF_NBUF_ALLOC_MAP_RETRY_THRESHOLD;
  1515. nbuf_retry_count++) {
  1516. /* Allocate a new skb */
  1517. nbuf = qdf_nbuf_alloc(soc->osdev,
  1518. RX_BUFFER_SIZE,
  1519. RX_BUFFER_RESERVATION,
  1520. RX_BUFFER_ALIGNMENT,
  1521. FALSE);
  1522. if (nbuf == NULL) {
  1523. DP_STATS_INC(pdev,
  1524. replenish.nbuf_alloc_fail, 1);
  1525. continue;
  1526. }
  1527. buf = qdf_nbuf_data(nbuf);
  1528. memset(buf, 0, RX_BUFFER_SIZE);
  1529. ret = qdf_nbuf_map_single(soc->osdev, nbuf,
  1530. QDF_DMA_BIDIRECTIONAL);
  1531. /* nbuf map failed */
  1532. if (qdf_unlikely(QDF_IS_STATUS_ERROR(ret))) {
  1533. qdf_nbuf_free(nbuf);
  1534. DP_STATS_INC(pdev, replenish.map_err, 1);
  1535. continue;
  1536. }
  1537. /* qdf_nbuf alloc and map succeeded */
  1538. break;
  1539. }
  1540. /* qdf_nbuf still alloc or map failed */
  1541. if (qdf_unlikely(nbuf_retry_count >=
  1542. QDF_NBUF_ALLOC_MAP_RETRY_THRESHOLD))
  1543. return NULL;
  1544. return nbuf;
  1545. }