hal_srng.c 51 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822
  1. /*
  2. * Copyright (c) 2016-2021 The Linux Foundation. All rights reserved.
  3. * Copyright (c) 2021-2022 Qualcomm Innovation Center, Inc. All rights reserved.
  4. *
  5. * Permission to use, copy, modify, and/or distribute this software for
  6. * any purpose with or without fee is hereby granted, provided that the
  7. * above copyright notice and this permission notice appear in all
  8. * copies.
  9. *
  10. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
  11. * WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
  12. * WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
  13. * AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
  14. * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
  15. * PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
  16. * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
  17. * PERFORMANCE OF THIS SOFTWARE.
  18. */
  19. #include "hal_hw_headers.h"
  20. #include "hal_api.h"
  21. #include "hal_reo.h"
  22. #include "target_type.h"
  23. #include "qdf_module.h"
  24. #include "wcss_version.h"
  25. #include <qdf_tracepoint.h>
  26. struct tcl_data_cmd gtcl_data_symbol __attribute__((used));
  27. #ifdef QCA_WIFI_QCA8074
  28. void hal_qca6290_attach(struct hal_soc *hal);
  29. #endif
  30. #ifdef QCA_WIFI_QCA8074
  31. void hal_qca8074_attach(struct hal_soc *hal);
  32. #endif
  33. #if defined(QCA_WIFI_QCA8074V2) || defined(QCA_WIFI_QCA6018) || \
  34. defined(QCA_WIFI_QCA9574)
  35. void hal_qca8074v2_attach(struct hal_soc *hal);
  36. #endif
  37. #ifdef QCA_WIFI_QCA6390
  38. void hal_qca6390_attach(struct hal_soc *hal);
  39. #endif
  40. #ifdef QCA_WIFI_QCA6490
  41. void hal_qca6490_attach(struct hal_soc *hal);
  42. #endif
  43. #ifdef QCA_WIFI_QCN9000
  44. void hal_qcn9000_attach(struct hal_soc *hal);
  45. #endif
  46. #ifdef QCA_WIFI_QCN9224
  47. void hal_qcn9224_attach(struct hal_soc *hal);
  48. #endif
  49. #ifdef QCA_WIFI_QCN6122
  50. void hal_qcn6122_attach(struct hal_soc *hal);
  51. #endif
  52. #ifdef QCA_WIFI_QCA6750
  53. void hal_qca6750_attach(struct hal_soc *hal);
  54. #endif
  55. #ifdef QCA_WIFI_QCA5018
  56. void hal_qca5018_attach(struct hal_soc *hal);
  57. #endif
  58. #ifdef QCA_WIFI_KIWI
  59. void hal_kiwi_attach(struct hal_soc *hal);
  60. #endif
  61. #ifdef ENABLE_VERBOSE_DEBUG
  62. bool is_hal_verbose_debug_enabled;
  63. #endif
  64. #define HAL_REO_DESTINATION_RING_CTRL_IX_0_ADDR(x) ((x) + 0x4)
  65. #define HAL_REO_DESTINATION_RING_CTRL_IX_1_ADDR(x) ((x) + 0x8)
  66. #define HAL_REO_DESTINATION_RING_CTRL_IX_2_ADDR(x) ((x) + 0xc)
  67. #define HAL_REO_DESTINATION_RING_CTRL_IX_3_ADDR(x) ((x) + 0x10)
  68. #ifdef ENABLE_HAL_REG_WR_HISTORY
  69. struct hal_reg_write_fail_history hal_reg_wr_hist;
  70. void hal_reg_wr_fail_history_add(struct hal_soc *hal_soc,
  71. uint32_t offset,
  72. uint32_t wr_val, uint32_t rd_val)
  73. {
  74. struct hal_reg_write_fail_entry *record;
  75. int idx;
  76. idx = hal_history_get_next_index(&hal_soc->reg_wr_fail_hist->index,
  77. HAL_REG_WRITE_HIST_SIZE);
  78. record = &hal_soc->reg_wr_fail_hist->record[idx];
  79. record->timestamp = qdf_get_log_timestamp();
  80. record->reg_offset = offset;
  81. record->write_val = wr_val;
  82. record->read_val = rd_val;
  83. }
  84. static void hal_reg_write_fail_history_init(struct hal_soc *hal)
  85. {
  86. hal->reg_wr_fail_hist = &hal_reg_wr_hist;
  87. qdf_atomic_set(&hal->reg_wr_fail_hist->index, -1);
  88. }
  89. #else
  90. static void hal_reg_write_fail_history_init(struct hal_soc *hal)
  91. {
  92. }
  93. #endif
  94. /**
  95. * hal_get_srng_ring_id() - get the ring id of a descriped ring
  96. * @hal: hal_soc data structure
  97. * @ring_type: type enum describing the ring
  98. * @ring_num: which ring of the ring type
  99. * @mac_id: which mac does the ring belong to (or 0 for non-lmac rings)
  100. *
  101. * Return: the ring id or -EINVAL if the ring does not exist.
  102. */
  103. static int hal_get_srng_ring_id(struct hal_soc *hal, int ring_type,
  104. int ring_num, int mac_id)
  105. {
  106. struct hal_hw_srng_config *ring_config =
  107. HAL_SRNG_CONFIG(hal, ring_type);
  108. int ring_id;
  109. if (ring_num >= ring_config->max_rings) {
  110. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO,
  111. "%s: ring_num exceeded maximum no. of supported rings",
  112. __func__);
  113. /* TODO: This is a programming error. Assert if this happens */
  114. return -EINVAL;
  115. }
  116. /*
  117. * For BE, dmac_cmn_src_rxbuf_ring is set. If this is set
  118. * and ring is dst and also lmac ring then provide ring id per lmac
  119. */
  120. if (ring_config->lmac_ring &&
  121. (!hal->dmac_cmn_src_rxbuf_ring ||
  122. ring_config->ring_dir == HAL_SRNG_DST_RING)) {
  123. ring_id = (ring_config->start_ring_id + ring_num +
  124. (mac_id * HAL_MAX_RINGS_PER_LMAC));
  125. } else {
  126. ring_id = ring_config->start_ring_id + ring_num;
  127. }
  128. return ring_id;
  129. }
  130. static struct hal_srng *hal_get_srng(struct hal_soc *hal, int ring_id)
  131. {
  132. /* TODO: Should we allocate srng structures dynamically? */
  133. return &(hal->srng_list[ring_id]);
  134. }
  135. #ifndef SHADOW_REG_CONFIG_DISABLED
  136. #define HP_OFFSET_IN_REG_START 1
  137. #define OFFSET_FROM_HP_TO_TP 4
  138. static void hal_update_srng_hp_tp_address(struct hal_soc *hal_soc,
  139. int shadow_config_index,
  140. int ring_type,
  141. int ring_num)
  142. {
  143. struct hal_srng *srng;
  144. int ring_id;
  145. struct hal_hw_srng_config *ring_config =
  146. HAL_SRNG_CONFIG(hal_soc, ring_type);
  147. ring_id = hal_get_srng_ring_id(hal_soc, ring_type, ring_num, 0);
  148. if (ring_id < 0)
  149. return;
  150. srng = hal_get_srng(hal_soc, ring_id);
  151. if (ring_config->ring_dir == HAL_SRNG_DST_RING) {
  152. srng->u.dst_ring.tp_addr = SHADOW_REGISTER(shadow_config_index)
  153. + hal_soc->dev_base_addr;
  154. hal_debug("tp_addr=%pK dev base addr %pK index %u",
  155. srng->u.dst_ring.tp_addr, hal_soc->dev_base_addr,
  156. shadow_config_index);
  157. } else {
  158. srng->u.src_ring.hp_addr = SHADOW_REGISTER(shadow_config_index)
  159. + hal_soc->dev_base_addr;
  160. hal_debug("hp_addr=%pK dev base addr %pK index %u",
  161. srng->u.src_ring.hp_addr,
  162. hal_soc->dev_base_addr, shadow_config_index);
  163. }
  164. }
  165. #endif
  166. #ifdef GENERIC_SHADOW_REGISTER_ACCESS_ENABLE
  167. void hal_set_one_target_reg_config(struct hal_soc *hal,
  168. uint32_t target_reg_offset,
  169. int list_index)
  170. {
  171. int i = list_index;
  172. qdf_assert_always(i < MAX_GENERIC_SHADOW_REG);
  173. hal->list_shadow_reg_config[i].target_register =
  174. target_reg_offset;
  175. hal->num_generic_shadow_regs_configured++;
  176. }
  177. qdf_export_symbol(hal_set_one_target_reg_config);
  178. #define REO_R0_DESTINATION_RING_CTRL_ADDR_OFFSET 0x4
  179. #define MAX_REO_REMAP_SHADOW_REGS 4
  180. QDF_STATUS hal_set_shadow_regs(void *hal_soc)
  181. {
  182. uint32_t target_reg_offset;
  183. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  184. int i;
  185. struct hal_hw_srng_config *srng_config =
  186. &hal->hw_srng_table[WBM2SW_RELEASE];
  187. uint32_t reo_reg_base;
  188. reo_reg_base = hal_get_reo_reg_base_offset(hal_soc);
  189. target_reg_offset =
  190. HAL_REO_DESTINATION_RING_CTRL_IX_0_ADDR(reo_reg_base);
  191. for (i = 0; i < MAX_REO_REMAP_SHADOW_REGS; i++) {
  192. hal_set_one_target_reg_config(hal, target_reg_offset, i);
  193. target_reg_offset += REO_R0_DESTINATION_RING_CTRL_ADDR_OFFSET;
  194. }
  195. target_reg_offset = srng_config->reg_start[HP_OFFSET_IN_REG_START];
  196. target_reg_offset += (srng_config->reg_size[HP_OFFSET_IN_REG_START]
  197. * HAL_IPA_TX_COMP_RING_IDX);
  198. hal_set_one_target_reg_config(hal, target_reg_offset, i);
  199. return QDF_STATUS_SUCCESS;
  200. }
  201. qdf_export_symbol(hal_set_shadow_regs);
  202. QDF_STATUS hal_construct_shadow_regs(void *hal_soc)
  203. {
  204. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  205. int shadow_config_index = hal->num_shadow_registers_configured;
  206. int i;
  207. int num_regs = hal->num_generic_shadow_regs_configured;
  208. for (i = 0; i < num_regs; i++) {
  209. qdf_assert_always(shadow_config_index < MAX_SHADOW_REGISTERS);
  210. hal->shadow_config[shadow_config_index].addr =
  211. hal->list_shadow_reg_config[i].target_register;
  212. hal->list_shadow_reg_config[i].shadow_config_index =
  213. shadow_config_index;
  214. hal->list_shadow_reg_config[i].va =
  215. SHADOW_REGISTER(shadow_config_index) +
  216. (uintptr_t)hal->dev_base_addr;
  217. hal_debug("target_reg %x, shadow register 0x%x shadow_index 0x%x",
  218. hal->shadow_config[shadow_config_index].addr,
  219. SHADOW_REGISTER(shadow_config_index),
  220. shadow_config_index);
  221. shadow_config_index++;
  222. hal->num_shadow_registers_configured++;
  223. }
  224. return QDF_STATUS_SUCCESS;
  225. }
  226. qdf_export_symbol(hal_construct_shadow_regs);
  227. #endif
  228. #ifndef SHADOW_REG_CONFIG_DISABLED
  229. QDF_STATUS hal_set_one_shadow_config(void *hal_soc,
  230. int ring_type,
  231. int ring_num)
  232. {
  233. uint32_t target_register;
  234. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  235. struct hal_hw_srng_config *srng_config = &hal->hw_srng_table[ring_type];
  236. int shadow_config_index = hal->num_shadow_registers_configured;
  237. if (shadow_config_index >= MAX_SHADOW_REGISTERS) {
  238. QDF_ASSERT(0);
  239. return QDF_STATUS_E_RESOURCES;
  240. }
  241. hal->num_shadow_registers_configured++;
  242. target_register = srng_config->reg_start[HP_OFFSET_IN_REG_START];
  243. target_register += (srng_config->reg_size[HP_OFFSET_IN_REG_START]
  244. *ring_num);
  245. /* if the ring is a dst ring, we need to shadow the tail pointer */
  246. if (srng_config->ring_dir == HAL_SRNG_DST_RING)
  247. target_register += OFFSET_FROM_HP_TO_TP;
  248. hal->shadow_config[shadow_config_index].addr = target_register;
  249. /* update hp/tp addr in the hal_soc structure*/
  250. hal_update_srng_hp_tp_address(hal_soc, shadow_config_index, ring_type,
  251. ring_num);
  252. hal_debug("target_reg %x, shadow register 0x%x shadow_index 0x%x, ring_type %d, ring num %d",
  253. target_register,
  254. SHADOW_REGISTER(shadow_config_index),
  255. shadow_config_index,
  256. ring_type, ring_num);
  257. return QDF_STATUS_SUCCESS;
  258. }
  259. qdf_export_symbol(hal_set_one_shadow_config);
  260. QDF_STATUS hal_construct_srng_shadow_regs(void *hal_soc)
  261. {
  262. int ring_type, ring_num;
  263. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  264. for (ring_type = 0; ring_type < MAX_RING_TYPES; ring_type++) {
  265. struct hal_hw_srng_config *srng_config =
  266. &hal->hw_srng_table[ring_type];
  267. if (ring_type == CE_SRC ||
  268. ring_type == CE_DST ||
  269. ring_type == CE_DST_STATUS)
  270. continue;
  271. if (srng_config->lmac_ring)
  272. continue;
  273. for (ring_num = 0; ring_num < srng_config->max_rings;
  274. ring_num++)
  275. hal_set_one_shadow_config(hal_soc, ring_type, ring_num);
  276. }
  277. return QDF_STATUS_SUCCESS;
  278. }
  279. qdf_export_symbol(hal_construct_srng_shadow_regs);
  280. #else
  281. QDF_STATUS hal_construct_srng_shadow_regs(void *hal_soc)
  282. {
  283. return QDF_STATUS_SUCCESS;
  284. }
  285. qdf_export_symbol(hal_construct_srng_shadow_regs);
  286. QDF_STATUS hal_set_one_shadow_config(void *hal_soc, int ring_type,
  287. int ring_num)
  288. {
  289. return QDF_STATUS_SUCCESS;
  290. }
  291. qdf_export_symbol(hal_set_one_shadow_config);
  292. #endif
  293. void hal_get_shadow_config(void *hal_soc,
  294. struct pld_shadow_reg_v2_cfg **shadow_config,
  295. int *num_shadow_registers_configured)
  296. {
  297. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  298. *shadow_config = &hal->shadow_config[0].v2;
  299. *num_shadow_registers_configured =
  300. hal->num_shadow_registers_configured;
  301. }
  302. qdf_export_symbol(hal_get_shadow_config);
  303. #ifdef CONFIG_SHADOW_V3
  304. void hal_get_shadow_v3_config(void *hal_soc,
  305. struct pld_shadow_reg_v3_cfg **shadow_config,
  306. int *num_shadow_registers_configured)
  307. {
  308. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  309. *shadow_config = &hal->shadow_config[0].v3;
  310. *num_shadow_registers_configured =
  311. hal->num_shadow_registers_configured;
  312. }
  313. qdf_export_symbol(hal_get_shadow_v3_config);
  314. #endif
  315. static bool hal_validate_shadow_register(struct hal_soc *hal,
  316. uint32_t *destination,
  317. uint32_t *shadow_address)
  318. {
  319. unsigned int index;
  320. uint32_t *shadow_0_offset = SHADOW_REGISTER(0) + hal->dev_base_addr;
  321. int destination_ba_offset =
  322. ((char *)destination) - (char *)hal->dev_base_addr;
  323. index = shadow_address - shadow_0_offset;
  324. if (index >= MAX_SHADOW_REGISTERS) {
  325. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  326. "%s: index %x out of bounds", __func__, index);
  327. goto error;
  328. } else if (hal->shadow_config[index].addr != destination_ba_offset) {
  329. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  330. "%s: sanity check failure, expected %x, found %x",
  331. __func__, destination_ba_offset,
  332. hal->shadow_config[index].addr);
  333. goto error;
  334. }
  335. return true;
  336. error:
  337. qdf_print("baddr %pK, desination %pK, shadow_address %pK s0offset %pK index %x",
  338. hal->dev_base_addr, destination, shadow_address,
  339. shadow_0_offset, index);
  340. QDF_BUG(0);
  341. return false;
  342. }
  343. static void hal_target_based_configure(struct hal_soc *hal)
  344. {
  345. /**
  346. * Indicate Initialization of srngs to avoid force wake
  347. * as umac power collapse is not enabled yet
  348. */
  349. hal->init_phase = true;
  350. switch (hal->target_type) {
  351. #ifdef QCA_WIFI_QCA6290
  352. case TARGET_TYPE_QCA6290:
  353. hal->use_register_windowing = true;
  354. hal_qca6290_attach(hal);
  355. break;
  356. #endif
  357. #ifdef QCA_WIFI_QCA6390
  358. case TARGET_TYPE_QCA6390:
  359. hal->use_register_windowing = true;
  360. hal_qca6390_attach(hal);
  361. break;
  362. #endif
  363. #ifdef QCA_WIFI_QCA6490
  364. case TARGET_TYPE_QCA6490:
  365. hal->use_register_windowing = true;
  366. hal_qca6490_attach(hal);
  367. break;
  368. #endif
  369. #ifdef QCA_WIFI_QCA6750
  370. case TARGET_TYPE_QCA6750:
  371. hal->use_register_windowing = true;
  372. hal->static_window_map = true;
  373. hal_qca6750_attach(hal);
  374. break;
  375. #endif
  376. #ifdef QCA_WIFI_KIWI
  377. case TARGET_TYPE_KIWI:
  378. hal->use_register_windowing = true;
  379. hal_kiwi_attach(hal);
  380. break;
  381. #endif
  382. #if defined(QCA_WIFI_QCA8074) && defined(WIFI_TARGET_TYPE_3_0)
  383. case TARGET_TYPE_QCA8074:
  384. hal_qca8074_attach(hal);
  385. break;
  386. #endif
  387. #if defined(QCA_WIFI_QCA8074V2)
  388. case TARGET_TYPE_QCA8074V2:
  389. hal_qca8074v2_attach(hal);
  390. break;
  391. #endif
  392. #if defined(QCA_WIFI_QCA6018)
  393. case TARGET_TYPE_QCA6018:
  394. hal_qca8074v2_attach(hal);
  395. break;
  396. #endif
  397. #if defined(QCA_WIFI_QCA9574)
  398. case TARGET_TYPE_QCA9574:
  399. hal_qca8074v2_attach(hal);
  400. break;
  401. #endif
  402. #if defined(QCA_WIFI_QCN6122)
  403. case TARGET_TYPE_QCN6122:
  404. hal->use_register_windowing = true;
  405. /*
  406. * Static window map is enabled for qcn9000 to use 2mb bar
  407. * size and use multiple windows to write into registers.
  408. */
  409. hal->static_window_map = true;
  410. hal_qcn6122_attach(hal);
  411. break;
  412. #endif
  413. #ifdef QCA_WIFI_QCN9000
  414. case TARGET_TYPE_QCN9000:
  415. hal->use_register_windowing = true;
  416. /*
  417. * Static window map is enabled for qcn9000 to use 2mb bar
  418. * size and use multiple windows to write into registers.
  419. */
  420. hal->static_window_map = true;
  421. hal_qcn9000_attach(hal);
  422. break;
  423. #endif
  424. #ifdef QCA_WIFI_QCA5018
  425. case TARGET_TYPE_QCA5018:
  426. hal->use_register_windowing = true;
  427. hal->static_window_map = true;
  428. hal_qca5018_attach(hal);
  429. break;
  430. #endif
  431. #ifdef QCA_WIFI_QCN9224
  432. case TARGET_TYPE_QCN9224:
  433. hal->use_register_windowing = true;
  434. hal->static_window_map = true;
  435. hal_qcn9224_attach(hal);
  436. break;
  437. #endif
  438. default:
  439. break;
  440. }
  441. }
  442. uint32_t hal_get_target_type(hal_soc_handle_t hal_soc_hdl)
  443. {
  444. struct hal_soc *hal_soc = (struct hal_soc *)hal_soc_hdl;
  445. struct hif_target_info *tgt_info =
  446. hif_get_target_info_handle(hal_soc->hif_handle);
  447. return tgt_info->target_type;
  448. }
  449. qdf_export_symbol(hal_get_target_type);
  450. #if defined(FEATURE_HAL_DELAYED_REG_WRITE)
  451. /**
  452. * hal_is_reg_write_tput_level_high() - throughput level for delayed reg writes
  453. * @hal: hal_soc pointer
  454. *
  455. * Return: true if throughput is high, else false.
  456. */
  457. static inline bool hal_is_reg_write_tput_level_high(struct hal_soc *hal)
  458. {
  459. int bw_level = hif_get_bandwidth_level(hal->hif_handle);
  460. return (bw_level >= PLD_BUS_WIDTH_MEDIUM) ? true : false;
  461. }
  462. static inline
  463. char *hal_fill_reg_write_srng_stats(struct hal_srng *srng,
  464. char *buf, qdf_size_t size)
  465. {
  466. qdf_scnprintf(buf, size, "enq %u deq %u coal %u direct %u",
  467. srng->wstats.enqueues, srng->wstats.dequeues,
  468. srng->wstats.coalesces, srng->wstats.direct);
  469. return buf;
  470. }
  471. /* bytes for local buffer */
  472. #define HAL_REG_WRITE_SRNG_STATS_LEN 100
  473. void hal_dump_reg_write_srng_stats(hal_soc_handle_t hal_soc_hdl)
  474. {
  475. struct hal_srng *srng;
  476. char buf[HAL_REG_WRITE_SRNG_STATS_LEN];
  477. struct hal_soc *hal = (struct hal_soc *)hal_soc_hdl;
  478. srng = hal_get_srng(hal, HAL_SRNG_SW2TCL1);
  479. hal_debug("SW2TCL1: %s",
  480. hal_fill_reg_write_srng_stats(srng, buf, sizeof(buf)));
  481. srng = hal_get_srng(hal, HAL_SRNG_WBM2SW0_RELEASE);
  482. hal_debug("WBM2SW0: %s",
  483. hal_fill_reg_write_srng_stats(srng, buf, sizeof(buf)));
  484. srng = hal_get_srng(hal, HAL_SRNG_REO2SW1);
  485. hal_debug("REO2SW1: %s",
  486. hal_fill_reg_write_srng_stats(srng, buf, sizeof(buf)));
  487. srng = hal_get_srng(hal, HAL_SRNG_REO2SW2);
  488. hal_debug("REO2SW2: %s",
  489. hal_fill_reg_write_srng_stats(srng, buf, sizeof(buf)));
  490. srng = hal_get_srng(hal, HAL_SRNG_REO2SW3);
  491. hal_debug("REO2SW3: %s",
  492. hal_fill_reg_write_srng_stats(srng, buf, sizeof(buf)));
  493. }
  494. void hal_dump_reg_write_stats(hal_soc_handle_t hal_soc_hdl)
  495. {
  496. uint32_t *hist;
  497. struct hal_soc *hal = (struct hal_soc *)hal_soc_hdl;
  498. hist = hal->stats.wstats.sched_delay;
  499. hal_debug("wstats: enq %u deq %u coal %u direct %u q_depth %u max_q %u sched-delay hist %u %u %u %u",
  500. qdf_atomic_read(&hal->stats.wstats.enqueues),
  501. hal->stats.wstats.dequeues,
  502. qdf_atomic_read(&hal->stats.wstats.coalesces),
  503. qdf_atomic_read(&hal->stats.wstats.direct),
  504. qdf_atomic_read(&hal->stats.wstats.q_depth),
  505. hal->stats.wstats.max_q_depth,
  506. hist[REG_WRITE_SCHED_DELAY_SUB_100us],
  507. hist[REG_WRITE_SCHED_DELAY_SUB_1000us],
  508. hist[REG_WRITE_SCHED_DELAY_SUB_5000us],
  509. hist[REG_WRITE_SCHED_DELAY_GT_5000us]);
  510. }
  511. int hal_get_reg_write_pending_work(void *hal_soc)
  512. {
  513. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  514. return qdf_atomic_read(&hal->active_work_cnt);
  515. }
  516. #endif
  517. #ifdef FEATURE_HAL_DELAYED_REG_WRITE
  518. #ifdef MEMORY_DEBUG
  519. /*
  520. * Length of the queue(array) used to hold delayed register writes.
  521. * Must be a multiple of 2.
  522. */
  523. #define HAL_REG_WRITE_QUEUE_LEN 128
  524. #else
  525. #define HAL_REG_WRITE_QUEUE_LEN 32
  526. #endif
  527. /**
  528. * hal_process_reg_write_q_elem() - process a regiter write queue element
  529. * @hal: hal_soc pointer
  530. * @q_elem: pointer to hal regiter write queue element
  531. *
  532. * Return: The value which was written to the address
  533. */
  534. static uint32_t
  535. hal_process_reg_write_q_elem(struct hal_soc *hal,
  536. struct hal_reg_write_q_elem *q_elem)
  537. {
  538. struct hal_srng *srng = q_elem->srng;
  539. uint32_t write_val;
  540. SRNG_LOCK(&srng->lock);
  541. srng->reg_write_in_progress = false;
  542. srng->wstats.dequeues++;
  543. if (srng->ring_dir == HAL_SRNG_SRC_RING) {
  544. q_elem->dequeue_val = srng->u.src_ring.hp;
  545. hal_write_address_32_mb(hal,
  546. srng->u.src_ring.hp_addr,
  547. srng->u.src_ring.hp, false);
  548. write_val = srng->u.src_ring.hp;
  549. } else {
  550. q_elem->dequeue_val = srng->u.dst_ring.tp;
  551. hal_write_address_32_mb(hal,
  552. srng->u.dst_ring.tp_addr,
  553. srng->u.dst_ring.tp, false);
  554. write_val = srng->u.dst_ring.tp;
  555. }
  556. q_elem->valid = 0;
  557. srng->last_dequeue_time = q_elem->dequeue_time;
  558. SRNG_UNLOCK(&srng->lock);
  559. return write_val;
  560. }
  561. /**
  562. * hal_reg_write_fill_sched_delay_hist() - fill reg write delay histogram in hal
  563. * @hal: hal_soc pointer
  564. * @delay: delay in us
  565. *
  566. * Return: None
  567. */
  568. static inline void hal_reg_write_fill_sched_delay_hist(struct hal_soc *hal,
  569. uint64_t delay_us)
  570. {
  571. uint32_t *hist;
  572. hist = hal->stats.wstats.sched_delay;
  573. if (delay_us < 100)
  574. hist[REG_WRITE_SCHED_DELAY_SUB_100us]++;
  575. else if (delay_us < 1000)
  576. hist[REG_WRITE_SCHED_DELAY_SUB_1000us]++;
  577. else if (delay_us < 5000)
  578. hist[REG_WRITE_SCHED_DELAY_SUB_5000us]++;
  579. else
  580. hist[REG_WRITE_SCHED_DELAY_GT_5000us]++;
  581. }
  582. #ifdef SHADOW_WRITE_DELAY
  583. #define SHADOW_WRITE_MIN_DELTA_US 5
  584. #define SHADOW_WRITE_DELAY_US 50
  585. /*
  586. * Never add those srngs which are performance relate.
  587. * The delay itself will hit performance heavily.
  588. */
  589. #define IS_SRNG_MATCH(s) ((s)->ring_id == HAL_SRNG_CE_1_DST_STATUS || \
  590. (s)->ring_id == HAL_SRNG_CE_1_DST)
  591. static inline bool hal_reg_write_need_delay(struct hal_reg_write_q_elem *elem)
  592. {
  593. struct hal_srng *srng = elem->srng;
  594. struct hal_soc *hal;
  595. qdf_time_t now;
  596. qdf_iomem_t real_addr;
  597. if (qdf_unlikely(!srng))
  598. return false;
  599. hal = srng->hal_soc;
  600. if (qdf_unlikely(!hal))
  601. return false;
  602. /* Check if it is target srng, and valid shadow reg */
  603. if (qdf_likely(!IS_SRNG_MATCH(srng)))
  604. return false;
  605. if (srng->ring_dir == HAL_SRNG_SRC_RING)
  606. real_addr = SRNG_SRC_ADDR(srng, HP);
  607. else
  608. real_addr = SRNG_DST_ADDR(srng, TP);
  609. if (!hal_validate_shadow_register(hal, real_addr, elem->addr))
  610. return false;
  611. /* Check the time delta from last write of same srng */
  612. now = qdf_get_log_timestamp();
  613. if (qdf_log_timestamp_to_usecs(now - srng->last_dequeue_time) >
  614. SHADOW_WRITE_MIN_DELTA_US)
  615. return false;
  616. /* Delay dequeue, and record */
  617. qdf_udelay(SHADOW_WRITE_DELAY_US);
  618. srng->wstats.dequeue_delay++;
  619. hal->stats.wstats.dequeue_delay++;
  620. return true;
  621. }
  622. #else
  623. static inline bool hal_reg_write_need_delay(struct hal_reg_write_q_elem *elem)
  624. {
  625. return false;
  626. }
  627. #endif
  628. /**
  629. * hal_reg_write_work() - Worker to process delayed writes
  630. * @arg: hal_soc pointer
  631. *
  632. * Return: None
  633. */
  634. static void hal_reg_write_work(void *arg)
  635. {
  636. int32_t q_depth, write_val;
  637. struct hal_soc *hal = arg;
  638. struct hal_reg_write_q_elem *q_elem;
  639. uint64_t delta_us;
  640. uint8_t ring_id;
  641. uint32_t *addr;
  642. uint32_t num_processed = 0;
  643. q_elem = &hal->reg_write_queue[(hal->read_idx)];
  644. q_elem->work_scheduled_time = qdf_get_log_timestamp();
  645. q_elem->cpu_id = qdf_get_cpu();
  646. /* Make sure q_elem consistent in the memory for multi-cores */
  647. qdf_rmb();
  648. if (!q_elem->valid)
  649. return;
  650. q_depth = qdf_atomic_read(&hal->stats.wstats.q_depth);
  651. if (q_depth > hal->stats.wstats.max_q_depth)
  652. hal->stats.wstats.max_q_depth = q_depth;
  653. if (hif_prevent_link_low_power_states(hal->hif_handle)) {
  654. hal->stats.wstats.prevent_l1_fails++;
  655. return;
  656. }
  657. while (true) {
  658. qdf_rmb();
  659. if (!q_elem->valid)
  660. break;
  661. q_elem->dequeue_time = qdf_get_log_timestamp();
  662. ring_id = q_elem->srng->ring_id;
  663. addr = q_elem->addr;
  664. delta_us = qdf_log_timestamp_to_usecs(q_elem->dequeue_time -
  665. q_elem->enqueue_time);
  666. hal_reg_write_fill_sched_delay_hist(hal, delta_us);
  667. hal->stats.wstats.dequeues++;
  668. qdf_atomic_dec(&hal->stats.wstats.q_depth);
  669. if (hal_reg_write_need_delay(q_elem))
  670. hal_verbose_debug("Delay reg writer for srng 0x%x, addr 0x%pK",
  671. q_elem->srng->ring_id, q_elem->addr);
  672. write_val = hal_process_reg_write_q_elem(hal, q_elem);
  673. hal_verbose_debug("read_idx %u srng 0x%x, addr 0x%pK dequeue_val %u sched delay %llu us",
  674. hal->read_idx, ring_id, addr, write_val, delta_us);
  675. qdf_trace_dp_del_reg_write(ring_id, q_elem->enqueue_val,
  676. q_elem->dequeue_val,
  677. q_elem->enqueue_time,
  678. q_elem->dequeue_time);
  679. num_processed++;
  680. hal->read_idx = (hal->read_idx + 1) &
  681. (HAL_REG_WRITE_QUEUE_LEN - 1);
  682. q_elem = &hal->reg_write_queue[(hal->read_idx)];
  683. }
  684. hif_allow_link_low_power_states(hal->hif_handle);
  685. /*
  686. * Decrement active_work_cnt by the number of elements dequeued after
  687. * hif_allow_link_low_power_states.
  688. * This makes sure that hif_try_complete_tasks will wait till we make
  689. * the bus access in hif_allow_link_low_power_states. This will avoid
  690. * race condition between delayed register worker and bus suspend
  691. * (system suspend or runtime suspend).
  692. *
  693. * The following decrement should be done at the end!
  694. */
  695. qdf_atomic_sub(num_processed, &hal->active_work_cnt);
  696. }
  697. static void __hal_flush_reg_write_work(struct hal_soc *hal)
  698. {
  699. qdf_flush_work(&hal->reg_write_work);
  700. qdf_disable_work(&hal->reg_write_work);
  701. }
  702. void hal_flush_reg_write_work(hal_soc_handle_t hal_handle)
  703. { __hal_flush_reg_write_work((struct hal_soc *)hal_handle);
  704. }
  705. /**
  706. * hal_reg_write_enqueue() - enqueue register writes into kworker
  707. * @hal_soc: hal_soc pointer
  708. * @srng: srng pointer
  709. * @addr: iomem address of regiter
  710. * @value: value to be written to iomem address
  711. *
  712. * This function executes from within the SRNG LOCK
  713. *
  714. * Return: None
  715. */
  716. static void hal_reg_write_enqueue(struct hal_soc *hal_soc,
  717. struct hal_srng *srng,
  718. void __iomem *addr,
  719. uint32_t value)
  720. {
  721. struct hal_reg_write_q_elem *q_elem;
  722. uint32_t write_idx;
  723. if (srng->reg_write_in_progress) {
  724. hal_verbose_debug("Already in progress srng ring id 0x%x addr 0x%pK val %u",
  725. srng->ring_id, addr, value);
  726. qdf_atomic_inc(&hal_soc->stats.wstats.coalesces);
  727. srng->wstats.coalesces++;
  728. return;
  729. }
  730. write_idx = qdf_atomic_inc_return(&hal_soc->write_idx);
  731. write_idx = write_idx & (HAL_REG_WRITE_QUEUE_LEN - 1);
  732. q_elem = &hal_soc->reg_write_queue[write_idx];
  733. if (q_elem->valid) {
  734. hal_err("queue full");
  735. QDF_BUG(0);
  736. return;
  737. }
  738. qdf_atomic_inc(&hal_soc->stats.wstats.enqueues);
  739. srng->wstats.enqueues++;
  740. qdf_atomic_inc(&hal_soc->stats.wstats.q_depth);
  741. q_elem->srng = srng;
  742. q_elem->addr = addr;
  743. q_elem->enqueue_val = value;
  744. q_elem->enqueue_time = qdf_get_log_timestamp();
  745. /*
  746. * Before the valid flag is set to true, all the other
  747. * fields in the q_elem needs to be updated in memory.
  748. * Else there is a chance that the dequeuing worker thread
  749. * might read stale entries and process incorrect srng.
  750. */
  751. qdf_wmb();
  752. q_elem->valid = true;
  753. /*
  754. * After all other fields in the q_elem has been updated
  755. * in memory successfully, the valid flag needs to be updated
  756. * in memory in time too.
  757. * Else there is a chance that the dequeuing worker thread
  758. * might read stale valid flag and the work will be bypassed
  759. * for this round. And if there is no other work scheduled
  760. * later, this hal register writing won't be updated any more.
  761. */
  762. qdf_wmb();
  763. srng->reg_write_in_progress = true;
  764. qdf_atomic_inc(&hal_soc->active_work_cnt);
  765. hal_verbose_debug("write_idx %u srng ring id 0x%x addr 0x%pK val %u",
  766. write_idx, srng->ring_id, addr, value);
  767. qdf_queue_work(hal_soc->qdf_dev, hal_soc->reg_write_wq,
  768. &hal_soc->reg_write_work);
  769. }
  770. /**
  771. * hal_delayed_reg_write_init() - Initialization function for delayed reg writes
  772. * @hal_soc: hal_soc pointer
  773. *
  774. * Initialize main data structures to process register writes in a delayed
  775. * workqueue.
  776. *
  777. * Return: QDF_STATUS_SUCCESS on success else a QDF error.
  778. */
  779. static QDF_STATUS hal_delayed_reg_write_init(struct hal_soc *hal)
  780. {
  781. hal->reg_write_wq =
  782. qdf_alloc_high_prior_ordered_workqueue("hal_register_write_wq");
  783. qdf_create_work(0, &hal->reg_write_work, hal_reg_write_work, hal);
  784. hal->reg_write_queue = qdf_mem_malloc(HAL_REG_WRITE_QUEUE_LEN *
  785. sizeof(*hal->reg_write_queue));
  786. if (!hal->reg_write_queue) {
  787. hal_err("unable to allocate memory");
  788. QDF_BUG(0);
  789. return QDF_STATUS_E_NOMEM;
  790. }
  791. /* Initial value of indices */
  792. hal->read_idx = 0;
  793. qdf_atomic_set(&hal->write_idx, -1);
  794. return QDF_STATUS_SUCCESS;
  795. }
  796. /**
  797. * hal_delayed_reg_write_deinit() - De-Initialize delayed reg write processing
  798. * @hal_soc: hal_soc pointer
  799. *
  800. * De-initialize main data structures to process register writes in a delayed
  801. * workqueue.
  802. *
  803. * Return: None
  804. */
  805. static void hal_delayed_reg_write_deinit(struct hal_soc *hal)
  806. {
  807. __hal_flush_reg_write_work(hal);
  808. qdf_flush_workqueue(0, hal->reg_write_wq);
  809. qdf_destroy_workqueue(0, hal->reg_write_wq);
  810. qdf_mem_free(hal->reg_write_queue);
  811. }
  812. #else
  813. static inline QDF_STATUS hal_delayed_reg_write_init(struct hal_soc *hal)
  814. {
  815. return QDF_STATUS_SUCCESS;
  816. }
  817. static inline void hal_delayed_reg_write_deinit(struct hal_soc *hal)
  818. {
  819. }
  820. #endif
  821. #ifdef FEATURE_HAL_DELAYED_REG_WRITE
  822. #ifdef QCA_WIFI_QCA6750
  823. void hal_delayed_reg_write(struct hal_soc *hal_soc,
  824. struct hal_srng *srng,
  825. void __iomem *addr,
  826. uint32_t value)
  827. {
  828. uint8_t vote_access;
  829. switch (srng->ring_type) {
  830. case CE_SRC:
  831. case CE_DST:
  832. case CE_DST_STATUS:
  833. vote_access = hif_get_ep_vote_access(hal_soc->hif_handle,
  834. HIF_EP_VOTE_NONDP_ACCESS);
  835. if ((vote_access == HIF_EP_VOTE_ACCESS_DISABLE) ||
  836. (vote_access == HIF_EP_VOTE_INTERMEDIATE_ACCESS &&
  837. PLD_MHI_STATE_L0 ==
  838. pld_get_mhi_state(hal_soc->qdf_dev->dev))) {
  839. hal_write_address_32_mb(hal_soc, addr, value, false);
  840. qdf_atomic_inc(&hal_soc->stats.wstats.direct);
  841. srng->wstats.direct++;
  842. } else {
  843. hal_reg_write_enqueue(hal_soc, srng, addr, value);
  844. }
  845. break;
  846. default:
  847. if (hif_get_ep_vote_access(hal_soc->hif_handle,
  848. HIF_EP_VOTE_DP_ACCESS) ==
  849. HIF_EP_VOTE_ACCESS_DISABLE ||
  850. hal_is_reg_write_tput_level_high(hal_soc) ||
  851. PLD_MHI_STATE_L0 ==
  852. pld_get_mhi_state(hal_soc->qdf_dev->dev)) {
  853. hal_write_address_32_mb(hal_soc, addr, value, false);
  854. qdf_atomic_inc(&hal_soc->stats.wstats.direct);
  855. srng->wstats.direct++;
  856. } else {
  857. hal_reg_write_enqueue(hal_soc, srng, addr, value);
  858. }
  859. break;
  860. }
  861. }
  862. #else
  863. void hal_delayed_reg_write(struct hal_soc *hal_soc,
  864. struct hal_srng *srng,
  865. void __iomem *addr,
  866. uint32_t value)
  867. {
  868. if (hal_is_reg_write_tput_level_high(hal_soc) ||
  869. pld_is_device_awake(hal_soc->qdf_dev->dev)) {
  870. qdf_atomic_inc(&hal_soc->stats.wstats.direct);
  871. srng->wstats.direct++;
  872. hal_write_address_32_mb(hal_soc, addr, value, false);
  873. } else {
  874. hal_reg_write_enqueue(hal_soc, srng, addr, value);
  875. }
  876. }
  877. #endif
  878. #endif
  879. /**
  880. * hal_attach - Initialize HAL layer
  881. * @hif_handle: Opaque HIF handle
  882. * @qdf_dev: QDF device
  883. *
  884. * Return: Opaque HAL SOC handle
  885. * NULL on failure (if given ring is not available)
  886. *
  887. * This function should be called as part of HIF initialization (for accessing
  888. * copy engines). DP layer will get hal_soc handle using hif_get_hal_handle()
  889. *
  890. */
  891. void *hal_attach(struct hif_opaque_softc *hif_handle, qdf_device_t qdf_dev)
  892. {
  893. struct hal_soc *hal;
  894. int i;
  895. hal = qdf_mem_malloc(sizeof(*hal));
  896. if (!hal) {
  897. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  898. "%s: hal_soc allocation failed", __func__);
  899. goto fail0;
  900. }
  901. hal->hif_handle = hif_handle;
  902. hal->dev_base_addr = hif_get_dev_ba(hif_handle); /* UMAC */
  903. hal->dev_base_addr_ce = hif_get_dev_ba_ce(hif_handle); /* CE */
  904. hal->qdf_dev = qdf_dev;
  905. hal->shadow_rdptr_mem_vaddr = (uint32_t *)qdf_mem_alloc_consistent(
  906. qdf_dev, qdf_dev->dev, sizeof(*(hal->shadow_rdptr_mem_vaddr)) *
  907. HAL_SRNG_ID_MAX, &(hal->shadow_rdptr_mem_paddr));
  908. if (!hal->shadow_rdptr_mem_paddr) {
  909. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  910. "%s: hal->shadow_rdptr_mem_paddr allocation failed",
  911. __func__);
  912. goto fail1;
  913. }
  914. qdf_mem_zero(hal->shadow_rdptr_mem_vaddr,
  915. sizeof(*(hal->shadow_rdptr_mem_vaddr)) * HAL_SRNG_ID_MAX);
  916. hal->shadow_wrptr_mem_vaddr =
  917. (uint32_t *)qdf_mem_alloc_consistent(qdf_dev, qdf_dev->dev,
  918. sizeof(*(hal->shadow_wrptr_mem_vaddr)) * HAL_MAX_LMAC_RINGS,
  919. &(hal->shadow_wrptr_mem_paddr));
  920. if (!hal->shadow_wrptr_mem_vaddr) {
  921. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  922. "%s: hal->shadow_wrptr_mem_vaddr allocation failed",
  923. __func__);
  924. goto fail2;
  925. }
  926. qdf_mem_zero(hal->shadow_wrptr_mem_vaddr,
  927. sizeof(*(hal->shadow_wrptr_mem_vaddr)) * HAL_MAX_LMAC_RINGS);
  928. for (i = 0; i < HAL_SRNG_ID_MAX; i++) {
  929. hal->srng_list[i].initialized = 0;
  930. hal->srng_list[i].ring_id = i;
  931. }
  932. qdf_spinlock_create(&hal->register_access_lock);
  933. hal->register_window = 0;
  934. hal->target_type = hal_get_target_type(hal_soc_to_hal_soc_handle(hal));
  935. hal->ops = qdf_mem_malloc(sizeof(*hal->ops));
  936. if (!hal->ops) {
  937. hal_err("unable to allocable memory for HAL ops");
  938. goto fail3;
  939. }
  940. hal_target_based_configure(hal);
  941. hal_reg_write_fail_history_init(hal);
  942. qdf_minidump_log(hal, sizeof(*hal), "hal_soc");
  943. qdf_atomic_init(&hal->active_work_cnt);
  944. hal_delayed_reg_write_init(hal);
  945. hal_reo_shared_qaddr_setup((hal_soc_handle_t)hal);
  946. hif_rtpm_register(HIF_RTPM_ID_HAL_REO_CMD, NULL);
  947. return (void *)hal;
  948. fail3:
  949. qdf_mem_free_consistent(qdf_dev, qdf_dev->dev,
  950. sizeof(*hal->shadow_wrptr_mem_vaddr) *
  951. HAL_MAX_LMAC_RINGS,
  952. hal->shadow_wrptr_mem_vaddr,
  953. hal->shadow_wrptr_mem_paddr, 0);
  954. fail2:
  955. qdf_mem_free_consistent(qdf_dev, qdf_dev->dev,
  956. sizeof(*(hal->shadow_rdptr_mem_vaddr)) * HAL_SRNG_ID_MAX,
  957. hal->shadow_rdptr_mem_vaddr, hal->shadow_rdptr_mem_paddr, 0);
  958. fail1:
  959. qdf_mem_free(hal);
  960. fail0:
  961. return NULL;
  962. }
  963. qdf_export_symbol(hal_attach);
  964. /**
  965. * hal_mem_info - Retrieve hal memory base address
  966. *
  967. * @hal_soc: Opaque HAL SOC handle
  968. * @mem: pointer to structure to be updated with hal mem info
  969. */
  970. void hal_get_meminfo(hal_soc_handle_t hal_soc_hdl, struct hal_mem_info *mem)
  971. {
  972. struct hal_soc *hal = (struct hal_soc *)hal_soc_hdl;
  973. mem->dev_base_addr = (void *)hal->dev_base_addr;
  974. mem->shadow_rdptr_mem_vaddr = (void *)hal->shadow_rdptr_mem_vaddr;
  975. mem->shadow_wrptr_mem_vaddr = (void *)hal->shadow_wrptr_mem_vaddr;
  976. mem->shadow_rdptr_mem_paddr = (void *)hal->shadow_rdptr_mem_paddr;
  977. mem->shadow_wrptr_mem_paddr = (void *)hal->shadow_wrptr_mem_paddr;
  978. hif_read_phy_mem_base((void *)hal->hif_handle,
  979. (qdf_dma_addr_t *)&mem->dev_base_paddr);
  980. mem->lmac_srng_start_id = HAL_SRNG_LMAC1_ID_START;
  981. return;
  982. }
  983. qdf_export_symbol(hal_get_meminfo);
  984. /**
  985. * hal_detach - Detach HAL layer
  986. * @hal_soc: HAL SOC handle
  987. *
  988. * Return: Opaque HAL SOC handle
  989. * NULL on failure (if given ring is not available)
  990. *
  991. * This function should be called as part of HIF initialization (for accessing
  992. * copy engines). DP layer will get hal_soc handle using hif_get_hal_handle()
  993. *
  994. */
  995. extern void hal_detach(void *hal_soc)
  996. {
  997. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  998. hif_rtpm_deregister(HIF_RTPM_ID_HAL_REO_CMD);
  999. hal_delayed_reg_write_deinit(hal);
  1000. hal_reo_shared_qaddr_detach((hal_soc_handle_t)hal);
  1001. qdf_mem_free(hal->ops);
  1002. qdf_mem_free_consistent(hal->qdf_dev, hal->qdf_dev->dev,
  1003. sizeof(*(hal->shadow_rdptr_mem_vaddr)) * HAL_SRNG_ID_MAX,
  1004. hal->shadow_rdptr_mem_vaddr, hal->shadow_rdptr_mem_paddr, 0);
  1005. qdf_mem_free_consistent(hal->qdf_dev, hal->qdf_dev->dev,
  1006. sizeof(*(hal->shadow_wrptr_mem_vaddr)) * HAL_MAX_LMAC_RINGS,
  1007. hal->shadow_wrptr_mem_vaddr, hal->shadow_wrptr_mem_paddr, 0);
  1008. qdf_minidump_remove(hal, sizeof(*hal), "hal_soc");
  1009. qdf_mem_free(hal);
  1010. return;
  1011. }
  1012. qdf_export_symbol(hal_detach);
  1013. #define HAL_CE_CHANNEL_DST_DEST_CTRL_ADDR(x) ((x) + 0x000000b0)
  1014. #define HAL_CE_CHANNEL_DST_DEST_CTRL_DEST_MAX_LENGTH_BMSK 0x0000ffff
  1015. #define HAL_CE_CHANNEL_DST_DEST_RING_CONSUMER_PREFETCH_TIMER_ADDR(x) ((x) + 0x00000040)
  1016. #define HAL_CE_CHANNEL_DST_DEST_RING_CONSUMER_PREFETCH_TIMER_RMSK 0x00000007
  1017. /**
  1018. * hal_ce_dst_setup - Initialize CE destination ring registers
  1019. * @hal_soc: HAL SOC handle
  1020. * @srng: SRNG ring pointer
  1021. */
  1022. static inline void hal_ce_dst_setup(struct hal_soc *hal, struct hal_srng *srng,
  1023. int ring_num)
  1024. {
  1025. uint32_t reg_val = 0;
  1026. uint32_t reg_addr;
  1027. struct hal_hw_srng_config *ring_config =
  1028. HAL_SRNG_CONFIG(hal, CE_DST);
  1029. /* set DEST_MAX_LENGTH according to ce assignment */
  1030. reg_addr = HAL_CE_CHANNEL_DST_DEST_CTRL_ADDR(
  1031. ring_config->reg_start[R0_INDEX] +
  1032. (ring_num * ring_config->reg_size[R0_INDEX]));
  1033. reg_val = HAL_REG_READ(hal, reg_addr);
  1034. reg_val &= ~HAL_CE_CHANNEL_DST_DEST_CTRL_DEST_MAX_LENGTH_BMSK;
  1035. reg_val |= srng->u.dst_ring.max_buffer_length &
  1036. HAL_CE_CHANNEL_DST_DEST_CTRL_DEST_MAX_LENGTH_BMSK;
  1037. HAL_REG_WRITE(hal, reg_addr, reg_val);
  1038. if (srng->prefetch_timer) {
  1039. reg_addr = HAL_CE_CHANNEL_DST_DEST_RING_CONSUMER_PREFETCH_TIMER_ADDR(
  1040. ring_config->reg_start[R0_INDEX] +
  1041. (ring_num * ring_config->reg_size[R0_INDEX]));
  1042. reg_val = HAL_REG_READ(hal, reg_addr);
  1043. reg_val &= ~HAL_CE_CHANNEL_DST_DEST_RING_CONSUMER_PREFETCH_TIMER_RMSK;
  1044. reg_val |= srng->prefetch_timer;
  1045. HAL_REG_WRITE(hal, reg_addr, reg_val);
  1046. reg_val = HAL_REG_READ(hal, reg_addr);
  1047. }
  1048. }
  1049. /**
  1050. * hal_reo_read_write_ctrl_ix - Read or write REO_DESTINATION_RING_CTRL_IX
  1051. * @hal: HAL SOC handle
  1052. * @read: boolean value to indicate if read or write
  1053. * @ix0: pointer to store IX0 reg value
  1054. * @ix1: pointer to store IX1 reg value
  1055. * @ix2: pointer to store IX2 reg value
  1056. * @ix3: pointer to store IX3 reg value
  1057. */
  1058. void hal_reo_read_write_ctrl_ix(hal_soc_handle_t hal_soc_hdl, bool read,
  1059. uint32_t *ix0, uint32_t *ix1,
  1060. uint32_t *ix2, uint32_t *ix3)
  1061. {
  1062. uint32_t reg_offset;
  1063. struct hal_soc *hal = (struct hal_soc *)hal_soc_hdl;
  1064. uint32_t reo_reg_base;
  1065. reo_reg_base = hal_get_reo_reg_base_offset(hal_soc_hdl);
  1066. if (read) {
  1067. if (ix0) {
  1068. reg_offset =
  1069. HAL_REO_DESTINATION_RING_CTRL_IX_0_ADDR(
  1070. reo_reg_base);
  1071. *ix0 = HAL_REG_READ(hal, reg_offset);
  1072. }
  1073. if (ix1) {
  1074. reg_offset =
  1075. HAL_REO_DESTINATION_RING_CTRL_IX_1_ADDR(
  1076. reo_reg_base);
  1077. *ix1 = HAL_REG_READ(hal, reg_offset);
  1078. }
  1079. if (ix2) {
  1080. reg_offset =
  1081. HAL_REO_DESTINATION_RING_CTRL_IX_2_ADDR(
  1082. reo_reg_base);
  1083. *ix2 = HAL_REG_READ(hal, reg_offset);
  1084. }
  1085. if (ix3) {
  1086. reg_offset =
  1087. HAL_REO_DESTINATION_RING_CTRL_IX_3_ADDR(
  1088. reo_reg_base);
  1089. *ix3 = HAL_REG_READ(hal, reg_offset);
  1090. }
  1091. } else {
  1092. if (ix0) {
  1093. reg_offset =
  1094. HAL_REO_DESTINATION_RING_CTRL_IX_0_ADDR(
  1095. reo_reg_base);
  1096. HAL_REG_WRITE_CONFIRM_RETRY(hal, reg_offset,
  1097. *ix0, true);
  1098. }
  1099. if (ix1) {
  1100. reg_offset =
  1101. HAL_REO_DESTINATION_RING_CTRL_IX_1_ADDR(
  1102. reo_reg_base);
  1103. HAL_REG_WRITE_CONFIRM_RETRY(hal, reg_offset,
  1104. *ix1, true);
  1105. }
  1106. if (ix2) {
  1107. reg_offset =
  1108. HAL_REO_DESTINATION_RING_CTRL_IX_2_ADDR(
  1109. reo_reg_base);
  1110. HAL_REG_WRITE_CONFIRM_RETRY(hal, reg_offset,
  1111. *ix2, true);
  1112. }
  1113. if (ix3) {
  1114. reg_offset =
  1115. HAL_REO_DESTINATION_RING_CTRL_IX_3_ADDR(
  1116. reo_reg_base);
  1117. HAL_REG_WRITE_CONFIRM_RETRY(hal, reg_offset,
  1118. *ix3, true);
  1119. }
  1120. }
  1121. }
  1122. qdf_export_symbol(hal_reo_read_write_ctrl_ix);
  1123. /**
  1124. * hal_srng_dst_set_hp_paddr_confirm() - Set physical address to dest ring head
  1125. * pointer and confirm that write went through by reading back the value
  1126. * @srng: sring pointer
  1127. * @paddr: physical address
  1128. *
  1129. * Return: None
  1130. */
  1131. void hal_srng_dst_set_hp_paddr_confirm(struct hal_srng *srng, uint64_t paddr)
  1132. {
  1133. SRNG_DST_REG_WRITE_CONFIRM(srng, HP_ADDR_LSB, paddr & 0xffffffff);
  1134. SRNG_DST_REG_WRITE_CONFIRM(srng, HP_ADDR_MSB, paddr >> 32);
  1135. }
  1136. qdf_export_symbol(hal_srng_dst_set_hp_paddr_confirm);
  1137. /**
  1138. * hal_srng_dst_init_hp() - Initialize destination ring head
  1139. * pointer
  1140. * @hal_soc: hal_soc handle
  1141. * @srng: sring pointer
  1142. * @vaddr: virtual address
  1143. */
  1144. void hal_srng_dst_init_hp(struct hal_soc_handle *hal_soc,
  1145. struct hal_srng *srng,
  1146. uint32_t *vaddr)
  1147. {
  1148. uint32_t reg_offset;
  1149. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  1150. if (!srng)
  1151. return;
  1152. srng->u.dst_ring.hp_addr = vaddr;
  1153. reg_offset = SRNG_DST_ADDR(srng, HP) - hal->dev_base_addr;
  1154. HAL_REG_WRITE_CONFIRM_RETRY(
  1155. hal, reg_offset, srng->u.dst_ring.cached_hp, true);
  1156. if (vaddr) {
  1157. *srng->u.dst_ring.hp_addr = srng->u.dst_ring.cached_hp;
  1158. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1159. "hp_addr=%pK, cached_hp=%d, hp=%d",
  1160. (void *)srng->u.dst_ring.hp_addr,
  1161. srng->u.dst_ring.cached_hp,
  1162. *srng->u.dst_ring.hp_addr);
  1163. }
  1164. }
  1165. qdf_export_symbol(hal_srng_dst_init_hp);
  1166. /**
  1167. * hal_srng_hw_init - Private function to initialize SRNG HW
  1168. * @hal_soc: HAL SOC handle
  1169. * @srng: SRNG ring pointer
  1170. */
  1171. static inline void hal_srng_hw_init(struct hal_soc *hal,
  1172. struct hal_srng *srng)
  1173. {
  1174. if (srng->ring_dir == HAL_SRNG_SRC_RING)
  1175. hal_srng_src_hw_init(hal, srng);
  1176. else
  1177. hal_srng_dst_hw_init(hal, srng);
  1178. }
  1179. #if defined(CONFIG_SHADOW_V2) || defined(CONFIG_SHADOW_V3)
  1180. #define ignore_shadow false
  1181. #define CHECK_SHADOW_REGISTERS true
  1182. #else
  1183. #define ignore_shadow true
  1184. #define CHECK_SHADOW_REGISTERS false
  1185. #endif
  1186. #ifdef WLAN_FEATURE_NEAR_FULL_IRQ
  1187. /**
  1188. * hal_srng_is_near_full_irq_supported() - Check if near full irq is
  1189. * supported on this SRNG
  1190. * @hal_soc: HAL SoC handle
  1191. * @ring_type: SRNG type
  1192. * @ring_num: ring number
  1193. *
  1194. * Return: true, if near full irq is supported for this SRNG
  1195. * false, if near full irq is not supported for this SRNG
  1196. */
  1197. bool hal_srng_is_near_full_irq_supported(hal_soc_handle_t hal_soc,
  1198. int ring_type, int ring_num)
  1199. {
  1200. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  1201. struct hal_hw_srng_config *ring_config =
  1202. HAL_SRNG_CONFIG(hal, ring_type);
  1203. return ring_config->nf_irq_support;
  1204. }
  1205. /**
  1206. * hal_srng_set_msi2_params() - Set MSI2 params to SRNG data structure from
  1207. * ring params
  1208. * @srng: SRNG handle
  1209. * @ring_params: ring params for this SRNG
  1210. *
  1211. * Return: None
  1212. */
  1213. static inline void
  1214. hal_srng_set_msi2_params(struct hal_srng *srng,
  1215. struct hal_srng_params *ring_params)
  1216. {
  1217. srng->msi2_addr = ring_params->msi2_addr;
  1218. srng->msi2_data = ring_params->msi2_data;
  1219. }
  1220. /**
  1221. * hal_srng_get_nf_params() - Get the near full MSI2 params from srng
  1222. * @srng: SRNG handle
  1223. * @ring_params: ring params for this SRNG
  1224. *
  1225. * Return: None
  1226. */
  1227. static inline void
  1228. hal_srng_get_nf_params(struct hal_srng *srng,
  1229. struct hal_srng_params *ring_params)
  1230. {
  1231. ring_params->msi2_addr = srng->msi2_addr;
  1232. ring_params->msi2_data = srng->msi2_data;
  1233. }
  1234. /**
  1235. * hal_srng_set_nf_thresholds() - Set the near full thresholds in SRNG
  1236. * @srng: SRNG handle where the params are to be set
  1237. * @ring_params: ring params, from where threshold is to be fetched
  1238. *
  1239. * Return: None
  1240. */
  1241. static inline void
  1242. hal_srng_set_nf_thresholds(struct hal_srng *srng,
  1243. struct hal_srng_params *ring_params)
  1244. {
  1245. srng->u.dst_ring.nf_irq_support = ring_params->nf_irq_support;
  1246. srng->u.dst_ring.high_thresh = ring_params->high_thresh;
  1247. }
  1248. #else
  1249. static inline void
  1250. hal_srng_set_msi2_params(struct hal_srng *srng,
  1251. struct hal_srng_params *ring_params)
  1252. {
  1253. }
  1254. static inline void
  1255. hal_srng_get_nf_params(struct hal_srng *srng,
  1256. struct hal_srng_params *ring_params)
  1257. {
  1258. }
  1259. static inline void
  1260. hal_srng_set_nf_thresholds(struct hal_srng *srng,
  1261. struct hal_srng_params *ring_params)
  1262. {
  1263. }
  1264. #endif
  1265. #if defined(CLEAR_SW2TCL_CONSUMED_DESC)
  1266. /**
  1267. * hal_srng_last_desc_cleared_init - Initialize SRNG last_desc_cleared ptr
  1268. *
  1269. * @srng: Source ring pointer
  1270. *
  1271. * Return: None
  1272. */
  1273. static inline
  1274. void hal_srng_last_desc_cleared_init(struct hal_srng *srng)
  1275. {
  1276. srng->last_desc_cleared = srng->ring_size - srng->entry_size;
  1277. }
  1278. #else
  1279. static inline
  1280. void hal_srng_last_desc_cleared_init(struct hal_srng *srng)
  1281. {
  1282. }
  1283. #endif /* CLEAR_SW2TCL_CONSUMED_DESC */
  1284. /**
  1285. * hal_srng_setup - Initialize HW SRNG ring.
  1286. * @hal_soc: Opaque HAL SOC handle
  1287. * @ring_type: one of the types from hal_ring_type
  1288. * @ring_num: Ring number if there are multiple rings of same type (staring
  1289. * from 0)
  1290. * @mac_id: valid MAC Id should be passed if ring type is one of lmac rings
  1291. * @ring_params: SRNG ring params in hal_srng_params structure.
  1292. * Callers are expected to allocate contiguous ring memory of size
  1293. * 'num_entries * entry_size' bytes and pass the physical and virtual base
  1294. * addresses through 'ring_base_paddr' and 'ring_base_vaddr' in
  1295. * hal_srng_params structure. Ring base address should be 8 byte aligned
  1296. * and size of each ring entry should be queried using the API
  1297. * hal_srng_get_entrysize
  1298. *
  1299. * Return: Opaque pointer to ring on success
  1300. * NULL on failure (if given ring is not available)
  1301. */
  1302. void *hal_srng_setup(void *hal_soc, int ring_type, int ring_num,
  1303. int mac_id, struct hal_srng_params *ring_params)
  1304. {
  1305. int ring_id;
  1306. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  1307. struct hal_srng *srng;
  1308. struct hal_hw_srng_config *ring_config =
  1309. HAL_SRNG_CONFIG(hal, ring_type);
  1310. void *dev_base_addr;
  1311. int i;
  1312. ring_id = hal_get_srng_ring_id(hal_soc, ring_type, ring_num, mac_id);
  1313. if (ring_id < 0)
  1314. return NULL;
  1315. hal_verbose_debug("mac_id %d ring_id %d", mac_id, ring_id);
  1316. srng = hal_get_srng(hal_soc, ring_id);
  1317. if (srng->initialized) {
  1318. hal_verbose_debug("Ring (ring_type, ring_num) already initialized");
  1319. return NULL;
  1320. }
  1321. dev_base_addr = hal->dev_base_addr;
  1322. srng->ring_id = ring_id;
  1323. srng->ring_type = ring_type;
  1324. srng->ring_dir = ring_config->ring_dir;
  1325. srng->ring_base_paddr = ring_params->ring_base_paddr;
  1326. srng->ring_base_vaddr = ring_params->ring_base_vaddr;
  1327. srng->entry_size = ring_config->entry_size;
  1328. srng->num_entries = ring_params->num_entries;
  1329. srng->ring_size = srng->num_entries * srng->entry_size;
  1330. srng->ring_size_mask = srng->ring_size - 1;
  1331. srng->ring_vaddr_end = srng->ring_base_vaddr + srng->ring_size;
  1332. srng->msi_addr = ring_params->msi_addr;
  1333. srng->msi_data = ring_params->msi_data;
  1334. srng->intr_timer_thres_us = ring_params->intr_timer_thres_us;
  1335. srng->intr_batch_cntr_thres_entries =
  1336. ring_params->intr_batch_cntr_thres_entries;
  1337. srng->prefetch_timer = ring_params->prefetch_timer;
  1338. srng->hal_soc = hal_soc;
  1339. hal_srng_set_msi2_params(srng, ring_params);
  1340. for (i = 0 ; i < MAX_SRNG_REG_GROUPS; i++) {
  1341. srng->hwreg_base[i] = dev_base_addr + ring_config->reg_start[i]
  1342. + (ring_num * ring_config->reg_size[i]);
  1343. }
  1344. /* Zero out the entire ring memory */
  1345. qdf_mem_zero(srng->ring_base_vaddr, (srng->entry_size *
  1346. srng->num_entries) << 2);
  1347. srng->flags = ring_params->flags;
  1348. /* For cached descriptors flush and invalidate the memory*/
  1349. if (srng->flags & HAL_SRNG_CACHED_DESC) {
  1350. qdf_nbuf_dma_clean_range(
  1351. srng->ring_base_vaddr,
  1352. srng->ring_base_vaddr +
  1353. ((srng->entry_size * srng->num_entries)));
  1354. qdf_nbuf_dma_inv_range(
  1355. srng->ring_base_vaddr,
  1356. srng->ring_base_vaddr +
  1357. ((srng->entry_size * srng->num_entries)));
  1358. }
  1359. #ifdef BIG_ENDIAN_HOST
  1360. /* TODO: See if we should we get these flags from caller */
  1361. srng->flags |= HAL_SRNG_DATA_TLV_SWAP;
  1362. srng->flags |= HAL_SRNG_MSI_SWAP;
  1363. srng->flags |= HAL_SRNG_RING_PTR_SWAP;
  1364. #endif
  1365. hal_srng_last_desc_cleared_init(srng);
  1366. if (srng->ring_dir == HAL_SRNG_SRC_RING) {
  1367. srng->u.src_ring.hp = 0;
  1368. srng->u.src_ring.reap_hp = srng->ring_size -
  1369. srng->entry_size;
  1370. srng->u.src_ring.tp_addr =
  1371. &(hal->shadow_rdptr_mem_vaddr[ring_id]);
  1372. srng->u.src_ring.low_threshold =
  1373. ring_params->low_threshold * srng->entry_size;
  1374. if (ring_config->lmac_ring) {
  1375. /* For LMAC rings, head pointer updates will be done
  1376. * through FW by writing to a shared memory location
  1377. */
  1378. srng->u.src_ring.hp_addr =
  1379. &(hal->shadow_wrptr_mem_vaddr[ring_id -
  1380. HAL_SRNG_LMAC1_ID_START]);
  1381. srng->flags |= HAL_SRNG_LMAC_RING;
  1382. } else if (ignore_shadow || (srng->u.src_ring.hp_addr == 0)) {
  1383. srng->u.src_ring.hp_addr =
  1384. hal_get_window_address(hal,
  1385. SRNG_SRC_ADDR(srng, HP));
  1386. if (CHECK_SHADOW_REGISTERS) {
  1387. QDF_TRACE(QDF_MODULE_ID_TXRX,
  1388. QDF_TRACE_LEVEL_ERROR,
  1389. "%s: Ring (%d, %d) missing shadow config",
  1390. __func__, ring_type, ring_num);
  1391. }
  1392. } else {
  1393. hal_validate_shadow_register(hal,
  1394. SRNG_SRC_ADDR(srng, HP),
  1395. srng->u.src_ring.hp_addr);
  1396. }
  1397. } else {
  1398. /* During initialization loop count in all the descriptors
  1399. * will be set to zero, and HW will set it to 1 on completing
  1400. * descriptor update in first loop, and increments it by 1 on
  1401. * subsequent loops (loop count wraps around after reaching
  1402. * 0xffff). The 'loop_cnt' in SW ring state is the expected
  1403. * loop count in descriptors updated by HW (to be processed
  1404. * by SW).
  1405. */
  1406. hal_srng_set_nf_thresholds(srng, ring_params);
  1407. srng->u.dst_ring.loop_cnt = 1;
  1408. srng->u.dst_ring.tp = 0;
  1409. srng->u.dst_ring.hp_addr =
  1410. &(hal->shadow_rdptr_mem_vaddr[ring_id]);
  1411. if (ring_config->lmac_ring) {
  1412. /* For LMAC rings, tail pointer updates will be done
  1413. * through FW by writing to a shared memory location
  1414. */
  1415. srng->u.dst_ring.tp_addr =
  1416. &(hal->shadow_wrptr_mem_vaddr[ring_id -
  1417. HAL_SRNG_LMAC1_ID_START]);
  1418. srng->flags |= HAL_SRNG_LMAC_RING;
  1419. } else if (ignore_shadow || srng->u.dst_ring.tp_addr == 0) {
  1420. srng->u.dst_ring.tp_addr =
  1421. hal_get_window_address(hal,
  1422. SRNG_DST_ADDR(srng, TP));
  1423. if (CHECK_SHADOW_REGISTERS) {
  1424. QDF_TRACE(QDF_MODULE_ID_TXRX,
  1425. QDF_TRACE_LEVEL_ERROR,
  1426. "%s: Ring (%d, %d) missing shadow config",
  1427. __func__, ring_type, ring_num);
  1428. }
  1429. } else {
  1430. hal_validate_shadow_register(hal,
  1431. SRNG_DST_ADDR(srng, TP),
  1432. srng->u.dst_ring.tp_addr);
  1433. }
  1434. }
  1435. if (!(ring_config->lmac_ring)) {
  1436. hal_srng_hw_init(hal, srng);
  1437. if (ring_type == CE_DST) {
  1438. srng->u.dst_ring.max_buffer_length = ring_params->max_buffer_length;
  1439. hal_ce_dst_setup(hal, srng, ring_num);
  1440. }
  1441. }
  1442. SRNG_LOCK_INIT(&srng->lock);
  1443. srng->srng_event = 0;
  1444. srng->initialized = true;
  1445. return (void *)srng;
  1446. }
  1447. qdf_export_symbol(hal_srng_setup);
  1448. /**
  1449. * hal_srng_cleanup - Deinitialize HW SRNG ring.
  1450. * @hal_soc: Opaque HAL SOC handle
  1451. * @hal_srng: Opaque HAL SRNG pointer
  1452. */
  1453. void hal_srng_cleanup(void *hal_soc, hal_ring_handle_t hal_ring_hdl)
  1454. {
  1455. struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
  1456. SRNG_LOCK_DESTROY(&srng->lock);
  1457. srng->initialized = 0;
  1458. }
  1459. qdf_export_symbol(hal_srng_cleanup);
  1460. /**
  1461. * hal_srng_get_entrysize - Returns size of ring entry in bytes
  1462. * @hal_soc: Opaque HAL SOC handle
  1463. * @ring_type: one of the types from hal_ring_type
  1464. *
  1465. */
  1466. uint32_t hal_srng_get_entrysize(void *hal_soc, int ring_type)
  1467. {
  1468. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  1469. struct hal_hw_srng_config *ring_config =
  1470. HAL_SRNG_CONFIG(hal, ring_type);
  1471. return ring_config->entry_size << 2;
  1472. }
  1473. qdf_export_symbol(hal_srng_get_entrysize);
  1474. /**
  1475. * hal_srng_max_entries - Returns maximum possible number of ring entries
  1476. * @hal_soc: Opaque HAL SOC handle
  1477. * @ring_type: one of the types from hal_ring_type
  1478. *
  1479. * Return: Maximum number of entries for the given ring_type
  1480. */
  1481. uint32_t hal_srng_max_entries(void *hal_soc, int ring_type)
  1482. {
  1483. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  1484. struct hal_hw_srng_config *ring_config =
  1485. HAL_SRNG_CONFIG(hal, ring_type);
  1486. return ring_config->max_size / ring_config->entry_size;
  1487. }
  1488. qdf_export_symbol(hal_srng_max_entries);
  1489. enum hal_srng_dir hal_srng_get_dir(void *hal_soc, int ring_type)
  1490. {
  1491. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  1492. struct hal_hw_srng_config *ring_config =
  1493. HAL_SRNG_CONFIG(hal, ring_type);
  1494. return ring_config->ring_dir;
  1495. }
  1496. /**
  1497. * hal_srng_dump - Dump ring status
  1498. * @srng: hal srng pointer
  1499. */
  1500. void hal_srng_dump(struct hal_srng *srng)
  1501. {
  1502. if (srng->ring_dir == HAL_SRNG_SRC_RING) {
  1503. hal_debug("=== SRC RING %d ===", srng->ring_id);
  1504. hal_debug("hp %u, reap_hp %u, tp %u, cached tp %u",
  1505. srng->u.src_ring.hp,
  1506. srng->u.src_ring.reap_hp,
  1507. *srng->u.src_ring.tp_addr,
  1508. srng->u.src_ring.cached_tp);
  1509. } else {
  1510. hal_debug("=== DST RING %d ===", srng->ring_id);
  1511. hal_debug("tp %u, hp %u, cached tp %u, loop_cnt %u",
  1512. srng->u.dst_ring.tp,
  1513. *srng->u.dst_ring.hp_addr,
  1514. srng->u.dst_ring.cached_hp,
  1515. srng->u.dst_ring.loop_cnt);
  1516. }
  1517. }
  1518. /**
  1519. * hal_get_srng_params - Retrieve SRNG parameters for a given ring from HAL
  1520. *
  1521. * @hal_soc: Opaque HAL SOC handle
  1522. * @hal_ring: Ring pointer (Source or Destination ring)
  1523. * @ring_params: SRNG parameters will be returned through this structure
  1524. */
  1525. extern void hal_get_srng_params(hal_soc_handle_t hal_soc_hdl,
  1526. hal_ring_handle_t hal_ring_hdl,
  1527. struct hal_srng_params *ring_params)
  1528. {
  1529. struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
  1530. int i =0;
  1531. ring_params->ring_id = srng->ring_id;
  1532. ring_params->ring_dir = srng->ring_dir;
  1533. ring_params->entry_size = srng->entry_size;
  1534. ring_params->ring_base_paddr = srng->ring_base_paddr;
  1535. ring_params->ring_base_vaddr = srng->ring_base_vaddr;
  1536. ring_params->num_entries = srng->num_entries;
  1537. ring_params->msi_addr = srng->msi_addr;
  1538. ring_params->msi_data = srng->msi_data;
  1539. ring_params->intr_timer_thres_us = srng->intr_timer_thres_us;
  1540. ring_params->intr_batch_cntr_thres_entries =
  1541. srng->intr_batch_cntr_thres_entries;
  1542. ring_params->low_threshold = srng->u.src_ring.low_threshold;
  1543. ring_params->flags = srng->flags;
  1544. ring_params->ring_id = srng->ring_id;
  1545. for (i = 0 ; i < MAX_SRNG_REG_GROUPS; i++)
  1546. ring_params->hwreg_base[i] = srng->hwreg_base[i];
  1547. hal_srng_get_nf_params(srng, ring_params);
  1548. }
  1549. qdf_export_symbol(hal_get_srng_params);
  1550. void hal_set_low_threshold(hal_ring_handle_t hal_ring_hdl,
  1551. uint32_t low_threshold)
  1552. {
  1553. struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
  1554. srng->u.src_ring.low_threshold = low_threshold * srng->entry_size;
  1555. }
  1556. qdf_export_symbol(hal_set_low_threshold);
  1557. #ifdef FEATURE_RUNTIME_PM
  1558. void
  1559. hal_srng_rtpm_access_end(hal_soc_handle_t hal_soc_hdl,
  1560. hal_ring_handle_t hal_ring_hdl,
  1561. uint32_t rtpm_id)
  1562. {
  1563. if (qdf_unlikely(!hal_ring_hdl)) {
  1564. qdf_print("Error: Invalid hal_ring\n");
  1565. return;
  1566. }
  1567. if (hif_rtpm_get(HIF_RTPM_GET_ASYNC, rtpm_id) == 0) {
  1568. hal_srng_access_end(hal_soc_hdl, hal_ring_hdl);
  1569. hif_rtpm_put(HIF_RTPM_PUT_ASYNC, rtpm_id);
  1570. } else {
  1571. hal_srng_access_end_reap(hal_soc_hdl, hal_ring_hdl);
  1572. hal_srng_set_event(hal_ring_hdl, HAL_SRNG_FLUSH_EVENT);
  1573. hal_srng_inc_flush_cnt(hal_ring_hdl);
  1574. }
  1575. }
  1576. qdf_export_symbol(hal_srng_rtpm_access_end);
  1577. #endif /* FEATURE_RUNTIME_PM */
  1578. #ifdef FORCE_WAKE
  1579. void hal_set_init_phase(hal_soc_handle_t soc, bool init_phase)
  1580. {
  1581. struct hal_soc *hal_soc = (struct hal_soc *)soc;
  1582. hal_soc->init_phase = init_phase;
  1583. }
  1584. #endif /* FORCE_WAKE */