dp_rx.c 94 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439
  1. /*
  2. * Copyright (c) 2016-2021 The Linux Foundation. All rights reserved.
  3. * Copyright (c) 2021-2023 Qualcomm Innovation Center, Inc. All rights reserved.
  4. *
  5. * Permission to use, copy, modify, and/or distribute this software for
  6. * any purpose with or without fee is hereby granted, provided that the
  7. * above copyright notice and this permission notice appear in all
  8. * copies.
  9. *
  10. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
  11. * WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
  12. * WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
  13. * AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
  14. * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
  15. * PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
  16. * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
  17. * PERFORMANCE OF THIS SOFTWARE.
  18. */
  19. #include "hal_hw_headers.h"
  20. #include "dp_types.h"
  21. #include "dp_rx.h"
  22. #include "dp_tx.h"
  23. #include "dp_peer.h"
  24. #include "hal_rx.h"
  25. #include "hal_api.h"
  26. #include "qdf_nbuf.h"
  27. #ifdef MESH_MODE_SUPPORT
  28. #include "if_meta_hdr.h"
  29. #endif
  30. #include "dp_internal.h"
  31. #include "dp_ipa.h"
  32. #include "dp_hist.h"
  33. #include "dp_rx_buffer_pool.h"
  34. #ifdef WIFI_MONITOR_SUPPORT
  35. #include "dp_htt.h"
  36. #include <dp_mon.h>
  37. #endif
  38. #ifdef FEATURE_WDS
  39. #include "dp_txrx_wds.h"
  40. #endif
  41. #ifdef DP_RATETABLE_SUPPORT
  42. #include "dp_ratetable.h"
  43. #endif
  44. #ifdef DUP_RX_DESC_WAR
  45. void dp_rx_dump_info_and_assert(struct dp_soc *soc,
  46. hal_ring_handle_t hal_ring,
  47. hal_ring_desc_t ring_desc,
  48. struct dp_rx_desc *rx_desc)
  49. {
  50. void *hal_soc = soc->hal_soc;
  51. hal_srng_dump_ring_desc(hal_soc, hal_ring, ring_desc);
  52. dp_rx_desc_dump(rx_desc);
  53. }
  54. #else
  55. void dp_rx_dump_info_and_assert(struct dp_soc *soc,
  56. hal_ring_handle_t hal_ring_hdl,
  57. hal_ring_desc_t ring_desc,
  58. struct dp_rx_desc *rx_desc)
  59. {
  60. hal_soc_handle_t hal_soc = soc->hal_soc;
  61. dp_rx_desc_dump(rx_desc);
  62. hal_srng_dump_ring_desc(hal_soc, hal_ring_hdl, ring_desc);
  63. hal_srng_dump_ring(hal_soc, hal_ring_hdl);
  64. qdf_assert_always(0);
  65. }
  66. #endif
  67. #ifndef QCA_HOST_MODE_WIFI_DISABLED
  68. #ifdef RX_DESC_SANITY_WAR
  69. QDF_STATUS dp_rx_desc_sanity(struct dp_soc *soc, hal_soc_handle_t hal_soc,
  70. hal_ring_handle_t hal_ring_hdl,
  71. hal_ring_desc_t ring_desc,
  72. struct dp_rx_desc *rx_desc)
  73. {
  74. uint8_t return_buffer_manager;
  75. if (qdf_unlikely(!rx_desc)) {
  76. /*
  77. * This is an unlikely case where the cookie obtained
  78. * from the ring_desc is invalid and hence we are not
  79. * able to find the corresponding rx_desc
  80. */
  81. goto fail;
  82. }
  83. return_buffer_manager = hal_rx_ret_buf_manager_get(hal_soc, ring_desc);
  84. if (qdf_unlikely(!(return_buffer_manager ==
  85. HAL_RX_BUF_RBM_SW1_BM(soc->wbm_sw0_bm_id) ||
  86. return_buffer_manager ==
  87. HAL_RX_BUF_RBM_SW3_BM(soc->wbm_sw0_bm_id)))) {
  88. goto fail;
  89. }
  90. return QDF_STATUS_SUCCESS;
  91. fail:
  92. DP_STATS_INC(soc, rx.err.invalid_cookie, 1);
  93. dp_err("Ring Desc:");
  94. hal_srng_dump_ring_desc(hal_soc, hal_ring_hdl,
  95. ring_desc);
  96. return QDF_STATUS_E_NULL_VALUE;
  97. }
  98. #endif
  99. #endif /* QCA_HOST_MODE_WIFI_DISABLED */
  100. /**
  101. * dp_pdev_frag_alloc_and_map() - Allocate frag for desc buffer and map
  102. *
  103. * @dp_soc: struct dp_soc *
  104. * @nbuf_frag_info_t: nbuf frag info
  105. * @dp_pdev: struct dp_pdev *
  106. * @rx_desc_pool: Rx desc pool
  107. *
  108. * Return: QDF_STATUS
  109. */
  110. #ifdef DP_RX_MON_MEM_FRAG
  111. static inline QDF_STATUS
  112. dp_pdev_frag_alloc_and_map(struct dp_soc *dp_soc,
  113. struct dp_rx_nbuf_frag_info *nbuf_frag_info_t,
  114. struct dp_pdev *dp_pdev,
  115. struct rx_desc_pool *rx_desc_pool)
  116. {
  117. QDF_STATUS ret = QDF_STATUS_E_FAILURE;
  118. (nbuf_frag_info_t->virt_addr).vaddr =
  119. qdf_frag_alloc(NULL, rx_desc_pool->buf_size);
  120. if (!((nbuf_frag_info_t->virt_addr).vaddr)) {
  121. dp_err("Frag alloc failed");
  122. DP_STATS_INC(dp_pdev, replenish.frag_alloc_fail, 1);
  123. return QDF_STATUS_E_NOMEM;
  124. }
  125. ret = qdf_mem_map_page(dp_soc->osdev,
  126. (nbuf_frag_info_t->virt_addr).vaddr,
  127. QDF_DMA_FROM_DEVICE,
  128. rx_desc_pool->buf_size,
  129. &nbuf_frag_info_t->paddr);
  130. if (qdf_unlikely(QDF_IS_STATUS_ERROR(ret))) {
  131. qdf_frag_free((nbuf_frag_info_t->virt_addr).vaddr);
  132. dp_err("Frag map failed");
  133. DP_STATS_INC(dp_pdev, replenish.map_err, 1);
  134. return QDF_STATUS_E_FAULT;
  135. }
  136. return QDF_STATUS_SUCCESS;
  137. }
  138. #else
  139. static inline QDF_STATUS
  140. dp_pdev_frag_alloc_and_map(struct dp_soc *dp_soc,
  141. struct dp_rx_nbuf_frag_info *nbuf_frag_info_t,
  142. struct dp_pdev *dp_pdev,
  143. struct rx_desc_pool *rx_desc_pool)
  144. {
  145. return QDF_STATUS_SUCCESS;
  146. }
  147. #endif /* DP_RX_MON_MEM_FRAG */
  148. #ifdef WLAN_FEATURE_DP_RX_RING_HISTORY
  149. /**
  150. * dp_rx_refill_ring_record_entry() - Record an entry into refill_ring history
  151. * @soc: Datapath soc structure
  152. * @ring_num: Refill ring number
  153. * @num_req: number of buffers requested for refill
  154. * @num_refill: number of buffers refilled
  155. *
  156. * Returns: None
  157. */
  158. static inline void
  159. dp_rx_refill_ring_record_entry(struct dp_soc *soc, uint8_t ring_num,
  160. hal_ring_handle_t hal_ring_hdl,
  161. uint32_t num_req, uint32_t num_refill)
  162. {
  163. struct dp_refill_info_record *record;
  164. uint32_t idx;
  165. uint32_t tp;
  166. uint32_t hp;
  167. if (qdf_unlikely(ring_num >= MAX_PDEV_CNT ||
  168. !soc->rx_refill_ring_history[ring_num]))
  169. return;
  170. idx = dp_history_get_next_index(&soc->rx_refill_ring_history[ring_num]->index,
  171. DP_RX_REFILL_HIST_MAX);
  172. /* No NULL check needed for record since its an array */
  173. record = &soc->rx_refill_ring_history[ring_num]->entry[idx];
  174. hal_get_sw_hptp(soc->hal_soc, hal_ring_hdl, &tp, &hp);
  175. record->timestamp = qdf_get_log_timestamp();
  176. record->num_req = num_req;
  177. record->num_refill = num_refill;
  178. record->hp = hp;
  179. record->tp = tp;
  180. }
  181. #else
  182. static inline void
  183. dp_rx_refill_ring_record_entry(struct dp_soc *soc, uint8_t ring_num,
  184. hal_ring_handle_t hal_ring_hdl,
  185. uint32_t num_req, uint32_t num_refill)
  186. {
  187. }
  188. #endif
  189. /**
  190. * dp_pdev_nbuf_alloc_and_map() - Allocate nbuf for desc buffer and map
  191. *
  192. * @dp_soc: struct dp_soc *
  193. * @mac_id: Mac id
  194. * @num_entries_avail: num_entries_avail
  195. * @nbuf_frag_info_t: nbuf frag info
  196. * @dp_pdev: struct dp_pdev *
  197. * @rx_desc_pool: Rx desc pool
  198. *
  199. * Return: QDF_STATUS
  200. */
  201. static inline QDF_STATUS
  202. dp_pdev_nbuf_alloc_and_map_replenish(struct dp_soc *dp_soc,
  203. uint32_t mac_id,
  204. uint32_t num_entries_avail,
  205. struct dp_rx_nbuf_frag_info *nbuf_frag_info_t,
  206. struct dp_pdev *dp_pdev,
  207. struct rx_desc_pool *rx_desc_pool)
  208. {
  209. QDF_STATUS ret = QDF_STATUS_E_FAILURE;
  210. (nbuf_frag_info_t->virt_addr).nbuf =
  211. dp_rx_buffer_pool_nbuf_alloc(dp_soc,
  212. mac_id,
  213. rx_desc_pool,
  214. num_entries_avail);
  215. if (!((nbuf_frag_info_t->virt_addr).nbuf)) {
  216. dp_err("nbuf alloc failed");
  217. DP_STATS_INC(dp_pdev, replenish.nbuf_alloc_fail, 1);
  218. return QDF_STATUS_E_NOMEM;
  219. }
  220. ret = dp_rx_buffer_pool_nbuf_map(dp_soc, rx_desc_pool,
  221. nbuf_frag_info_t);
  222. if (qdf_unlikely(QDF_IS_STATUS_ERROR(ret))) {
  223. dp_rx_buffer_pool_nbuf_free(dp_soc,
  224. (nbuf_frag_info_t->virt_addr).nbuf, mac_id);
  225. dp_err("nbuf map failed");
  226. DP_STATS_INC(dp_pdev, replenish.map_err, 1);
  227. return QDF_STATUS_E_FAULT;
  228. }
  229. nbuf_frag_info_t->paddr =
  230. qdf_nbuf_get_frag_paddr((nbuf_frag_info_t->virt_addr).nbuf, 0);
  231. dp_ipa_handle_rx_buf_smmu_mapping(dp_soc, (qdf_nbuf_t)(
  232. (nbuf_frag_info_t->virt_addr).nbuf),
  233. rx_desc_pool->buf_size,
  234. true, __func__, __LINE__);
  235. ret = dp_check_paddr(dp_soc, &((nbuf_frag_info_t->virt_addr).nbuf),
  236. &nbuf_frag_info_t->paddr,
  237. rx_desc_pool);
  238. if (ret == QDF_STATUS_E_FAILURE) {
  239. DP_STATS_INC(dp_pdev, replenish.x86_fail, 1);
  240. return QDF_STATUS_E_ADDRNOTAVAIL;
  241. }
  242. return QDF_STATUS_SUCCESS;
  243. }
  244. #if defined(QCA_DP_RX_NBUF_NO_MAP_UNMAP) && !defined(BUILD_X86)
  245. QDF_STATUS
  246. __dp_rx_buffers_no_map_lt_replenish(struct dp_soc *soc, uint32_t mac_id,
  247. struct dp_srng *dp_rxdma_srng,
  248. struct rx_desc_pool *rx_desc_pool)
  249. {
  250. struct dp_pdev *dp_pdev = dp_get_pdev_for_lmac_id(soc, mac_id);
  251. uint32_t count;
  252. void *rxdma_ring_entry;
  253. union dp_rx_desc_list_elem_t *next = NULL;
  254. void *rxdma_srng;
  255. qdf_nbuf_t nbuf;
  256. qdf_dma_addr_t paddr;
  257. uint16_t num_entries_avail = 0;
  258. uint16_t num_alloc_desc = 0;
  259. union dp_rx_desc_list_elem_t *desc_list = NULL;
  260. union dp_rx_desc_list_elem_t *tail = NULL;
  261. int sync_hw_ptr = 0;
  262. rxdma_srng = dp_rxdma_srng->hal_srng;
  263. if (qdf_unlikely(!dp_pdev)) {
  264. dp_rx_err("%pK: pdev is null for mac_id = %d", soc, mac_id);
  265. return QDF_STATUS_E_FAILURE;
  266. }
  267. if (qdf_unlikely(!rxdma_srng)) {
  268. dp_rx_debug("%pK: rxdma srng not initialized", soc);
  269. return QDF_STATUS_E_FAILURE;
  270. }
  271. hal_srng_access_start(soc->hal_soc, rxdma_srng);
  272. num_entries_avail = hal_srng_src_num_avail(soc->hal_soc,
  273. rxdma_srng,
  274. sync_hw_ptr);
  275. dp_rx_debug("%pK: no of available entries in rxdma ring: %d",
  276. soc, num_entries_avail);
  277. if (qdf_unlikely(num_entries_avail <
  278. ((dp_rxdma_srng->num_entries * 3) / 4))) {
  279. hal_srng_access_end(soc->hal_soc, rxdma_srng);
  280. return QDF_STATUS_E_FAILURE;
  281. }
  282. DP_STATS_INC(dp_pdev, replenish.low_thresh_intrs, 1);
  283. num_alloc_desc = dp_rx_get_free_desc_list(soc, mac_id,
  284. rx_desc_pool,
  285. num_entries_avail,
  286. &desc_list,
  287. &tail);
  288. if (!num_alloc_desc) {
  289. dp_rx_err("%pK: no free rx_descs in freelist", soc);
  290. DP_STATS_INC(dp_pdev, err.desc_lt_alloc_fail,
  291. num_entries_avail);
  292. hal_srng_access_end(soc->hal_soc, rxdma_srng);
  293. return QDF_STATUS_E_NOMEM;
  294. }
  295. for (count = 0; count < num_alloc_desc; count++) {
  296. next = desc_list->next;
  297. qdf_prefetch(next);
  298. nbuf = dp_rx_nbuf_alloc(soc, rx_desc_pool);
  299. if (qdf_unlikely(!nbuf)) {
  300. DP_STATS_INC(dp_pdev, replenish.nbuf_alloc_fail, 1);
  301. break;
  302. }
  303. paddr = dp_rx_nbuf_sync_no_dsb(soc, nbuf,
  304. rx_desc_pool->buf_size);
  305. rxdma_ring_entry = hal_srng_src_get_next(soc->hal_soc,
  306. rxdma_srng);
  307. qdf_assert_always(rxdma_ring_entry);
  308. desc_list->rx_desc.nbuf = nbuf;
  309. desc_list->rx_desc.rx_buf_start = nbuf->data;
  310. desc_list->rx_desc.unmapped = 0;
  311. /* rx_desc.in_use should be zero at this time*/
  312. qdf_assert_always(desc_list->rx_desc.in_use == 0);
  313. desc_list->rx_desc.in_use = 1;
  314. desc_list->rx_desc.in_err_state = 0;
  315. hal_rxdma_buff_addr_info_set(soc->hal_soc, rxdma_ring_entry,
  316. paddr,
  317. desc_list->rx_desc.cookie,
  318. rx_desc_pool->owner);
  319. desc_list = next;
  320. }
  321. qdf_dsb();
  322. hal_srng_access_end(soc->hal_soc, rxdma_srng);
  323. /* No need to count the number of bytes received during replenish.
  324. * Therefore set replenish.pkts.bytes as 0.
  325. */
  326. DP_STATS_INC_PKT(dp_pdev, replenish.pkts, count, 0);
  327. DP_STATS_INC(dp_pdev, buf_freelist, (num_alloc_desc - count));
  328. /*
  329. * add any available free desc back to the free list
  330. */
  331. if (desc_list)
  332. dp_rx_add_desc_list_to_free_list(soc, &desc_list, &tail,
  333. mac_id, rx_desc_pool);
  334. return QDF_STATUS_SUCCESS;
  335. }
  336. QDF_STATUS
  337. __dp_rx_buffers_no_map_replenish(struct dp_soc *soc, uint32_t mac_id,
  338. struct dp_srng *dp_rxdma_srng,
  339. struct rx_desc_pool *rx_desc_pool,
  340. uint32_t num_req_buffers,
  341. union dp_rx_desc_list_elem_t **desc_list,
  342. union dp_rx_desc_list_elem_t **tail)
  343. {
  344. struct dp_pdev *dp_pdev = dp_get_pdev_for_lmac_id(soc, mac_id);
  345. uint32_t count;
  346. void *rxdma_ring_entry;
  347. union dp_rx_desc_list_elem_t *next;
  348. void *rxdma_srng;
  349. qdf_nbuf_t nbuf;
  350. qdf_nbuf_t nbuf_next;
  351. qdf_nbuf_t nbuf_head = NULL;
  352. qdf_nbuf_t nbuf_tail = NULL;
  353. qdf_dma_addr_t paddr;
  354. rxdma_srng = dp_rxdma_srng->hal_srng;
  355. if (qdf_unlikely(!dp_pdev)) {
  356. dp_rx_err("%pK: pdev is null for mac_id = %d",
  357. soc, mac_id);
  358. return QDF_STATUS_E_FAILURE;
  359. }
  360. if (qdf_unlikely(!rxdma_srng)) {
  361. dp_rx_debug("%pK: rxdma srng not initialized", soc);
  362. DP_STATS_INC(dp_pdev, replenish.rxdma_err, num_req_buffers);
  363. return QDF_STATUS_E_FAILURE;
  364. }
  365. /* Allocate required number of nbufs */
  366. for (count = 0; count < num_req_buffers; count++) {
  367. nbuf = dp_rx_nbuf_alloc(soc, rx_desc_pool);
  368. if (qdf_unlikely(!nbuf)) {
  369. DP_STATS_INC(dp_pdev, replenish.nbuf_alloc_fail, 1);
  370. /* Update num_req_buffers to nbufs allocated count */
  371. num_req_buffers = count;
  372. break;
  373. }
  374. paddr = dp_rx_nbuf_sync_no_dsb(soc, nbuf,
  375. rx_desc_pool->buf_size);
  376. QDF_NBUF_CB_PADDR(nbuf) = paddr;
  377. DP_RX_LIST_APPEND(nbuf_head,
  378. nbuf_tail,
  379. nbuf);
  380. }
  381. qdf_dsb();
  382. nbuf = nbuf_head;
  383. hal_srng_access_start(soc->hal_soc, rxdma_srng);
  384. for (count = 0; count < num_req_buffers; count++) {
  385. next = (*desc_list)->next;
  386. nbuf_next = nbuf->next;
  387. qdf_prefetch(next);
  388. rxdma_ring_entry = (struct dp_buffer_addr_info *)
  389. hal_srng_src_get_next(soc->hal_soc, rxdma_srng);
  390. if (!rxdma_ring_entry)
  391. break;
  392. (*desc_list)->rx_desc.nbuf = nbuf;
  393. (*desc_list)->rx_desc.rx_buf_start = nbuf->data;
  394. (*desc_list)->rx_desc.unmapped = 0;
  395. /* rx_desc.in_use should be zero at this time*/
  396. qdf_assert_always((*desc_list)->rx_desc.in_use == 0);
  397. (*desc_list)->rx_desc.in_use = 1;
  398. (*desc_list)->rx_desc.in_err_state = 0;
  399. hal_rxdma_buff_addr_info_set(soc->hal_soc, rxdma_ring_entry,
  400. QDF_NBUF_CB_PADDR(nbuf),
  401. (*desc_list)->rx_desc.cookie,
  402. rx_desc_pool->owner);
  403. *desc_list = next;
  404. nbuf = nbuf_next;
  405. }
  406. hal_srng_access_end(soc->hal_soc, rxdma_srng);
  407. /* No need to count the number of bytes received during replenish.
  408. * Therefore set replenish.pkts.bytes as 0.
  409. */
  410. DP_STATS_INC_PKT(dp_pdev, replenish.pkts, count, 0);
  411. DP_STATS_INC(dp_pdev, buf_freelist, (num_req_buffers - count));
  412. /*
  413. * add any available free desc back to the free list
  414. */
  415. if (*desc_list)
  416. dp_rx_add_desc_list_to_free_list(soc, desc_list, tail,
  417. mac_id, rx_desc_pool);
  418. while (nbuf) {
  419. nbuf_next = nbuf->next;
  420. dp_rx_nbuf_unmap_pool(soc, rx_desc_pool, nbuf);
  421. qdf_nbuf_free(nbuf);
  422. nbuf = nbuf_next;
  423. }
  424. return QDF_STATUS_SUCCESS;
  425. }
  426. QDF_STATUS __dp_pdev_rx_buffers_no_map_attach(struct dp_soc *soc,
  427. uint32_t mac_id,
  428. struct dp_srng *dp_rxdma_srng,
  429. struct rx_desc_pool *rx_desc_pool,
  430. uint32_t num_req_buffers)
  431. {
  432. struct dp_pdev *dp_pdev = dp_get_pdev_for_lmac_id(soc, mac_id);
  433. uint32_t count;
  434. uint32_t nr_descs = 0;
  435. void *rxdma_ring_entry;
  436. union dp_rx_desc_list_elem_t *next;
  437. void *rxdma_srng;
  438. qdf_nbuf_t nbuf;
  439. qdf_dma_addr_t paddr;
  440. union dp_rx_desc_list_elem_t *desc_list = NULL;
  441. union dp_rx_desc_list_elem_t *tail = NULL;
  442. rxdma_srng = dp_rxdma_srng->hal_srng;
  443. if (qdf_unlikely(!dp_pdev)) {
  444. dp_rx_err("%pK: pdev is null for mac_id = %d",
  445. soc, mac_id);
  446. return QDF_STATUS_E_FAILURE;
  447. }
  448. if (qdf_unlikely(!rxdma_srng)) {
  449. dp_rx_debug("%pK: rxdma srng not initialized", soc);
  450. DP_STATS_INC(dp_pdev, replenish.rxdma_err, num_req_buffers);
  451. return QDF_STATUS_E_FAILURE;
  452. }
  453. dp_rx_debug("%pK: requested %d buffers for replenish",
  454. soc, num_req_buffers);
  455. nr_descs = dp_rx_get_free_desc_list(soc, mac_id, rx_desc_pool,
  456. num_req_buffers, &desc_list, &tail);
  457. if (!nr_descs) {
  458. dp_err("no free rx_descs in freelist");
  459. DP_STATS_INC(dp_pdev, err.desc_alloc_fail, num_req_buffers);
  460. return QDF_STATUS_E_NOMEM;
  461. }
  462. dp_debug("got %u RX descs for driver attach", nr_descs);
  463. hal_srng_access_start(soc->hal_soc, rxdma_srng);
  464. for (count = 0; count < nr_descs; count++) {
  465. next = desc_list->next;
  466. qdf_prefetch(next);
  467. nbuf = dp_rx_nbuf_alloc(soc, rx_desc_pool);
  468. if (qdf_unlikely(!nbuf)) {
  469. DP_STATS_INC(dp_pdev, replenish.nbuf_alloc_fail, 1);
  470. break;
  471. }
  472. paddr = dp_rx_nbuf_sync_no_dsb(soc, nbuf,
  473. rx_desc_pool->buf_size);
  474. rxdma_ring_entry = (struct dp_buffer_addr_info *)
  475. hal_srng_src_get_next(soc->hal_soc, rxdma_srng);
  476. if (!rxdma_ring_entry)
  477. break;
  478. qdf_assert_always(rxdma_ring_entry);
  479. desc_list->rx_desc.nbuf = nbuf;
  480. desc_list->rx_desc.rx_buf_start = nbuf->data;
  481. desc_list->rx_desc.unmapped = 0;
  482. /* rx_desc.in_use should be zero at this time*/
  483. qdf_assert_always(desc_list->rx_desc.in_use == 0);
  484. desc_list->rx_desc.in_use = 1;
  485. desc_list->rx_desc.in_err_state = 0;
  486. hal_rxdma_buff_addr_info_set(soc->hal_soc, rxdma_ring_entry,
  487. paddr,
  488. desc_list->rx_desc.cookie,
  489. rx_desc_pool->owner);
  490. desc_list = next;
  491. }
  492. qdf_dsb();
  493. hal_srng_access_end(soc->hal_soc, rxdma_srng);
  494. /* No need to count the number of bytes received during replenish.
  495. * Therefore set replenish.pkts.bytes as 0.
  496. */
  497. DP_STATS_INC_PKT(dp_pdev, replenish.pkts, count, 0);
  498. return QDF_STATUS_SUCCESS;
  499. }
  500. #endif
  501. #ifdef DP_UMAC_HW_RESET_SUPPORT
  502. #if defined(QCA_DP_RX_NBUF_NO_MAP_UNMAP) && !defined(BUILD_X86)
  503. static inline
  504. qdf_dma_addr_t dp_rx_rep_retrieve_paddr(struct dp_soc *dp_soc, qdf_nbuf_t nbuf,
  505. uint32_t buf_size)
  506. {
  507. return dp_rx_nbuf_sync_no_dsb(dp_soc, nbuf, buf_size);
  508. }
  509. #else
  510. static inline
  511. qdf_dma_addr_t dp_rx_rep_retrieve_paddr(struct dp_soc *dp_soc, qdf_nbuf_t nbuf,
  512. uint32_t buf_size)
  513. {
  514. return qdf_nbuf_get_frag_paddr(nbuf, 0);
  515. }
  516. #endif
  517. /*
  518. * dp_rx_desc_replenish() - Replenish the rx descriptors one at a time
  519. *
  520. * @soc: core txrx main context
  521. * @dp_rxdma_srng: rxdma ring
  522. * @rx_desc_pool: rx descriptor pool
  523. * @rx_desc:rx descriptor
  524. *
  525. * Return: void
  526. */
  527. static inline
  528. void dp_rx_desc_replenish(struct dp_soc *soc, struct dp_srng *dp_rxdma_srng,
  529. struct rx_desc_pool *rx_desc_pool,
  530. struct dp_rx_desc *rx_desc)
  531. {
  532. void *rxdma_srng;
  533. void *rxdma_ring_entry;
  534. qdf_dma_addr_t paddr;
  535. rxdma_srng = dp_rxdma_srng->hal_srng;
  536. /* No one else should be accessing the srng at this point */
  537. hal_srng_access_start_unlocked(soc->hal_soc, rxdma_srng);
  538. rxdma_ring_entry = hal_srng_src_get_next(soc->hal_soc, rxdma_srng);
  539. qdf_assert_always(rxdma_ring_entry);
  540. rx_desc->in_err_state = 0;
  541. paddr = dp_rx_rep_retrieve_paddr(soc, rx_desc->nbuf,
  542. rx_desc_pool->buf_size);
  543. hal_rxdma_buff_addr_info_set(soc->hal_soc, rxdma_ring_entry, paddr,
  544. rx_desc->cookie, rx_desc_pool->owner);
  545. hal_srng_access_end_unlocked(soc->hal_soc, rxdma_srng);
  546. }
  547. /*
  548. * dp_rx_desc_reuse() - Reuse the rx descriptors to fill the rx buf ring
  549. *
  550. * @soc: core txrx main context
  551. * @nbuf_list: nbuf list for delayed free
  552. *
  553. * Return: void
  554. */
  555. void dp_rx_desc_reuse(struct dp_soc *soc, qdf_nbuf_t *nbuf_list)
  556. {
  557. int mac_id, i, j;
  558. union dp_rx_desc_list_elem_t *head = NULL;
  559. union dp_rx_desc_list_elem_t *tail = NULL;
  560. for (mac_id = 0; mac_id < MAX_PDEV_CNT; mac_id++) {
  561. struct dp_srng *dp_rxdma_srng =
  562. &soc->rx_refill_buf_ring[mac_id];
  563. struct rx_desc_pool *rx_desc_pool = &soc->rx_desc_buf[mac_id];
  564. uint32_t rx_sw_desc_num = rx_desc_pool->pool_size;
  565. /* Only fill up 1/3 of the ring size */
  566. uint32_t num_req_decs;
  567. if (!dp_rxdma_srng || !dp_rxdma_srng->hal_srng ||
  568. !rx_desc_pool->array)
  569. continue;
  570. num_req_decs = dp_rxdma_srng->num_entries / 3;
  571. for (i = 0, j = 0; i < rx_sw_desc_num; i++) {
  572. struct dp_rx_desc *rx_desc =
  573. (struct dp_rx_desc *)&rx_desc_pool->array[i];
  574. if (rx_desc->in_use) {
  575. if (j < dp_rxdma_srng->num_entries) {
  576. dp_rx_desc_replenish(soc, dp_rxdma_srng,
  577. rx_desc_pool,
  578. rx_desc);
  579. } else {
  580. dp_rx_nbuf_unmap(soc, rx_desc, 0);
  581. rx_desc->unmapped = 0;
  582. rx_desc->nbuf->next = *nbuf_list;
  583. *nbuf_list = rx_desc->nbuf;
  584. dp_rx_add_to_free_desc_list(&head,
  585. &tail,
  586. rx_desc);
  587. }
  588. j++;
  589. }
  590. }
  591. if (head)
  592. dp_rx_add_desc_list_to_free_list(soc, &head, &tail,
  593. mac_id, rx_desc_pool);
  594. /* If num of descs in use were less, then we need to replenish
  595. * the ring with some buffers
  596. */
  597. head = NULL;
  598. tail = NULL;
  599. if (j < (num_req_decs - 1))
  600. dp_rx_buffers_replenish(soc, mac_id, dp_rxdma_srng,
  601. rx_desc_pool,
  602. ((num_req_decs - 1) - j),
  603. &head, &tail, true);
  604. }
  605. }
  606. #endif
  607. /*
  608. * dp_rx_buffers_replenish() - replenish rxdma ring with rx nbufs
  609. * called during dp rx initialization
  610. * and at the end of dp_rx_process.
  611. *
  612. * @soc: core txrx main context
  613. * @mac_id: mac_id which is one of 3 mac_ids
  614. * @dp_rxdma_srng: dp rxdma circular ring
  615. * @rx_desc_pool: Pointer to free Rx descriptor pool
  616. * @num_req_buffers: number of buffer to be replenished
  617. * @desc_list: list of descs if called from dp_rx_process
  618. * or NULL during dp rx initialization or out of buffer
  619. * interrupt.
  620. * @tail: tail of descs list
  621. * @req_only: If true don't replenish more than req buffers
  622. * @func_name: name of the caller function
  623. * Return: return success or failure
  624. */
  625. QDF_STATUS __dp_rx_buffers_replenish(struct dp_soc *dp_soc, uint32_t mac_id,
  626. struct dp_srng *dp_rxdma_srng,
  627. struct rx_desc_pool *rx_desc_pool,
  628. uint32_t num_req_buffers,
  629. union dp_rx_desc_list_elem_t **desc_list,
  630. union dp_rx_desc_list_elem_t **tail,
  631. bool req_only, const char *func_name)
  632. {
  633. uint32_t num_alloc_desc;
  634. uint16_t num_desc_to_free = 0;
  635. struct dp_pdev *dp_pdev = dp_get_pdev_for_lmac_id(dp_soc, mac_id);
  636. uint32_t num_entries_avail;
  637. uint32_t count;
  638. uint32_t extra_buffers;
  639. int sync_hw_ptr = 1;
  640. struct dp_rx_nbuf_frag_info nbuf_frag_info = {0};
  641. void *rxdma_ring_entry;
  642. union dp_rx_desc_list_elem_t *next;
  643. QDF_STATUS ret;
  644. void *rxdma_srng;
  645. union dp_rx_desc_list_elem_t *desc_list_append = NULL;
  646. union dp_rx_desc_list_elem_t *tail_append = NULL;
  647. union dp_rx_desc_list_elem_t *temp_list = NULL;
  648. rxdma_srng = dp_rxdma_srng->hal_srng;
  649. if (qdf_unlikely(!dp_pdev)) {
  650. dp_rx_err("%pK: pdev is null for mac_id = %d",
  651. dp_soc, mac_id);
  652. return QDF_STATUS_E_FAILURE;
  653. }
  654. if (qdf_unlikely(!rxdma_srng)) {
  655. dp_rx_debug("%pK: rxdma srng not initialized", dp_soc);
  656. DP_STATS_INC(dp_pdev, replenish.rxdma_err, num_req_buffers);
  657. return QDF_STATUS_E_FAILURE;
  658. }
  659. dp_verbose_debug("%pK: requested %d buffers for replenish",
  660. dp_soc, num_req_buffers);
  661. hal_srng_access_start(dp_soc->hal_soc, rxdma_srng);
  662. num_entries_avail = hal_srng_src_num_avail(dp_soc->hal_soc,
  663. rxdma_srng,
  664. sync_hw_ptr);
  665. dp_verbose_debug("%pK: no of available entries in rxdma ring: %d",
  666. dp_soc, num_entries_avail);
  667. if (!req_only && !(*desc_list) && (num_entries_avail >
  668. ((dp_rxdma_srng->num_entries * 3) / 4))) {
  669. num_req_buffers = num_entries_avail;
  670. DP_STATS_INC(dp_pdev, replenish.low_thresh_intrs, 1);
  671. } else if (num_entries_avail < num_req_buffers) {
  672. num_desc_to_free = num_req_buffers - num_entries_avail;
  673. num_req_buffers = num_entries_avail;
  674. } else if ((*desc_list) &&
  675. dp_rxdma_srng->num_entries - num_entries_avail <
  676. CRITICAL_BUFFER_THRESHOLD) {
  677. /* set extra buffers to CRITICAL_BUFFER_THRESHOLD only if
  678. * total buff requested after adding extra buffers is less
  679. * than or equal to num entries available, else set it to max
  680. * possible additional buffers available at that moment
  681. */
  682. extra_buffers =
  683. ((num_req_buffers + CRITICAL_BUFFER_THRESHOLD) > num_entries_avail) ?
  684. (num_entries_avail - num_req_buffers) :
  685. CRITICAL_BUFFER_THRESHOLD;
  686. /* Append some free descriptors to tail */
  687. num_alloc_desc =
  688. dp_rx_get_free_desc_list(dp_soc, mac_id,
  689. rx_desc_pool,
  690. extra_buffers,
  691. &desc_list_append,
  692. &tail_append);
  693. if (num_alloc_desc) {
  694. temp_list = *desc_list;
  695. *desc_list = desc_list_append;
  696. tail_append->next = temp_list;
  697. num_req_buffers += num_alloc_desc;
  698. DP_STATS_DEC(dp_pdev,
  699. replenish.free_list,
  700. num_alloc_desc);
  701. } else
  702. dp_err_rl("%pK: no free rx_descs in freelist", dp_soc);
  703. }
  704. if (qdf_unlikely(!num_req_buffers)) {
  705. num_desc_to_free = num_req_buffers;
  706. hal_srng_access_end(dp_soc->hal_soc, rxdma_srng);
  707. goto free_descs;
  708. }
  709. /*
  710. * if desc_list is NULL, allocate the descs from freelist
  711. */
  712. if (!(*desc_list)) {
  713. num_alloc_desc = dp_rx_get_free_desc_list(dp_soc, mac_id,
  714. rx_desc_pool,
  715. num_req_buffers,
  716. desc_list,
  717. tail);
  718. if (!num_alloc_desc) {
  719. dp_rx_err("%pK: no free rx_descs in freelist", dp_soc);
  720. DP_STATS_INC(dp_pdev, err.desc_alloc_fail,
  721. num_req_buffers);
  722. hal_srng_access_end(dp_soc->hal_soc, rxdma_srng);
  723. return QDF_STATUS_E_NOMEM;
  724. }
  725. dp_verbose_debug("%pK: %d rx desc allocated", dp_soc,
  726. num_alloc_desc);
  727. num_req_buffers = num_alloc_desc;
  728. }
  729. count = 0;
  730. while (count < num_req_buffers) {
  731. /* Flag is set while pdev rx_desc_pool initialization */
  732. if (qdf_unlikely(rx_desc_pool->rx_mon_dest_frag_enable))
  733. ret = dp_pdev_frag_alloc_and_map(dp_soc,
  734. &nbuf_frag_info,
  735. dp_pdev,
  736. rx_desc_pool);
  737. else
  738. ret = dp_pdev_nbuf_alloc_and_map_replenish(dp_soc,
  739. mac_id,
  740. num_entries_avail, &nbuf_frag_info,
  741. dp_pdev, rx_desc_pool);
  742. if (qdf_unlikely(QDF_IS_STATUS_ERROR(ret))) {
  743. if (qdf_unlikely(ret == QDF_STATUS_E_FAULT))
  744. continue;
  745. break;
  746. }
  747. count++;
  748. rxdma_ring_entry = hal_srng_src_get_next(dp_soc->hal_soc,
  749. rxdma_srng);
  750. qdf_assert_always(rxdma_ring_entry);
  751. next = (*desc_list)->next;
  752. /* Flag is set while pdev rx_desc_pool initialization */
  753. if (qdf_unlikely(rx_desc_pool->rx_mon_dest_frag_enable))
  754. dp_rx_desc_frag_prep(&((*desc_list)->rx_desc),
  755. &nbuf_frag_info);
  756. else
  757. dp_rx_desc_prep(&((*desc_list)->rx_desc),
  758. &nbuf_frag_info);
  759. /* rx_desc.in_use should be zero at this time*/
  760. qdf_assert_always((*desc_list)->rx_desc.in_use == 0);
  761. (*desc_list)->rx_desc.in_use = 1;
  762. (*desc_list)->rx_desc.in_err_state = 0;
  763. dp_rx_desc_update_dbg_info(&(*desc_list)->rx_desc,
  764. func_name, RX_DESC_REPLENISHED);
  765. dp_verbose_debug("rx_netbuf=%pK, paddr=0x%llx, cookie=%d",
  766. nbuf_frag_info.virt_addr.nbuf,
  767. (unsigned long long)(nbuf_frag_info.paddr),
  768. (*desc_list)->rx_desc.cookie);
  769. hal_rxdma_buff_addr_info_set(dp_soc->hal_soc, rxdma_ring_entry,
  770. nbuf_frag_info.paddr,
  771. (*desc_list)->rx_desc.cookie,
  772. rx_desc_pool->owner);
  773. *desc_list = next;
  774. }
  775. dp_rx_refill_ring_record_entry(dp_soc, dp_pdev->lmac_id, rxdma_srng,
  776. num_req_buffers, count);
  777. hal_srng_access_end(dp_soc->hal_soc, rxdma_srng);
  778. dp_rx_schedule_refill_thread(dp_soc);
  779. dp_verbose_debug("replenished buffers %d, rx desc added back to free list %u",
  780. count, num_desc_to_free);
  781. /* No need to count the number of bytes received during replenish.
  782. * Therefore set replenish.pkts.bytes as 0.
  783. */
  784. DP_STATS_INC_PKT(dp_pdev, replenish.pkts, count, 0);
  785. DP_STATS_INC(dp_pdev, replenish.free_list, num_req_buffers - count);
  786. free_descs:
  787. DP_STATS_INC(dp_pdev, buf_freelist, num_desc_to_free);
  788. /*
  789. * add any available free desc back to the free list
  790. */
  791. if (*desc_list)
  792. dp_rx_add_desc_list_to_free_list(dp_soc, desc_list, tail,
  793. mac_id, rx_desc_pool);
  794. return QDF_STATUS_SUCCESS;
  795. }
  796. qdf_export_symbol(__dp_rx_buffers_replenish);
  797. /*
  798. * dp_rx_deliver_raw() - process RAW mode pkts and hand over the
  799. * pkts to RAW mode simulation to
  800. * decapsulate the pkt.
  801. *
  802. * @vdev: vdev on which RAW mode is enabled
  803. * @nbuf_list: list of RAW pkts to process
  804. * @txrx_peer: peer object from which the pkt is rx
  805. *
  806. * Return: void
  807. */
  808. void
  809. dp_rx_deliver_raw(struct dp_vdev *vdev, qdf_nbuf_t nbuf_list,
  810. struct dp_txrx_peer *txrx_peer)
  811. {
  812. qdf_nbuf_t deliver_list_head = NULL;
  813. qdf_nbuf_t deliver_list_tail = NULL;
  814. qdf_nbuf_t nbuf;
  815. nbuf = nbuf_list;
  816. while (nbuf) {
  817. qdf_nbuf_t next = qdf_nbuf_next(nbuf);
  818. DP_RX_LIST_APPEND(deliver_list_head, deliver_list_tail, nbuf);
  819. DP_STATS_INC(vdev->pdev, rx_raw_pkts, 1);
  820. DP_PEER_PER_PKT_STATS_INC_PKT(txrx_peer, rx.raw, 1,
  821. qdf_nbuf_len(nbuf));
  822. /*
  823. * reset the chfrag_start and chfrag_end bits in nbuf cb
  824. * as this is a non-amsdu pkt and RAW mode simulation expects
  825. * these bit s to be 0 for non-amsdu pkt.
  826. */
  827. if (qdf_nbuf_is_rx_chfrag_start(nbuf) &&
  828. qdf_nbuf_is_rx_chfrag_end(nbuf)) {
  829. qdf_nbuf_set_rx_chfrag_start(nbuf, 0);
  830. qdf_nbuf_set_rx_chfrag_end(nbuf, 0);
  831. }
  832. nbuf = next;
  833. }
  834. vdev->osif_rsim_rx_decap(vdev->osif_vdev, &deliver_list_head,
  835. &deliver_list_tail);
  836. vdev->osif_rx(vdev->osif_vdev, deliver_list_head);
  837. }
  838. #ifndef QCA_HOST_MODE_WIFI_DISABLED
  839. #ifndef FEATURE_WDS
  840. void dp_rx_da_learn(struct dp_soc *soc, uint8_t *rx_tlv_hdr,
  841. struct dp_txrx_peer *ta_peer, qdf_nbuf_t nbuf)
  842. {
  843. }
  844. #endif
  845. #ifdef QCA_SUPPORT_TX_MIN_RATES_FOR_SPECIAL_FRAMES
  846. /*
  847. * dp_classify_critical_pkts() - API for marking critical packets
  848. * @soc: dp_soc context
  849. * @vdev: vdev on which packet is to be sent
  850. * @nbuf: nbuf that has to be classified
  851. *
  852. * The function parses the packet, identifies whether its a critical frame and
  853. * marks QDF_NBUF_CB_TX_EXTRA_IS_CRITICAL bit in qdf_nbuf_cb for the nbuf.
  854. * Code for marking which frames are CRITICAL is accessed via callback.
  855. * EAPOL, ARP, DHCP, DHCPv6, ICMPv6 NS/NA are the typical critical frames.
  856. *
  857. * Return: None
  858. */
  859. static
  860. void dp_classify_critical_pkts(struct dp_soc *soc, struct dp_vdev *vdev,
  861. qdf_nbuf_t nbuf)
  862. {
  863. if (vdev->tx_classify_critical_pkt_cb)
  864. vdev->tx_classify_critical_pkt_cb(vdev->osif_vdev, nbuf);
  865. }
  866. #else
  867. static inline
  868. void dp_classify_critical_pkts(struct dp_soc *soc, struct dp_vdev *vdev,
  869. qdf_nbuf_t nbuf)
  870. {
  871. }
  872. #endif
  873. #ifdef QCA_OL_TX_MULTIQ_SUPPORT
  874. static inline
  875. void dp_rx_nbuf_queue_mapping_set(qdf_nbuf_t nbuf, uint8_t ring_id)
  876. {
  877. qdf_nbuf_set_queue_mapping(nbuf, ring_id);
  878. }
  879. #else
  880. static inline
  881. void dp_rx_nbuf_queue_mapping_set(qdf_nbuf_t nbuf, uint8_t ring_id)
  882. {
  883. }
  884. #endif
  885. /*
  886. * dp_rx_intrabss_mcbc_fwd() - Does intrabss forward for mcast packets
  887. *
  888. * @soc: core txrx main context
  889. * @ta_peer : source peer entry
  890. * @rx_tlv_hdr : start address of rx tlvs
  891. * @nbuf : nbuf that has to be intrabss forwarded
  892. * @tid_stats : tid stats pointer
  893. *
  894. * Return: bool: true if it is forwarded else false
  895. */
  896. bool dp_rx_intrabss_mcbc_fwd(struct dp_soc *soc, struct dp_txrx_peer *ta_peer,
  897. uint8_t *rx_tlv_hdr, qdf_nbuf_t nbuf,
  898. struct cdp_tid_rx_stats *tid_stats)
  899. {
  900. uint16_t len;
  901. qdf_nbuf_t nbuf_copy;
  902. if (dp_rx_intrabss_eapol_drop_check(soc, ta_peer, rx_tlv_hdr,
  903. nbuf))
  904. return true;
  905. if (!dp_rx_check_ndi_mdns_fwding(ta_peer, nbuf))
  906. return false;
  907. /* If the source peer in the isolation list
  908. * then dont forward instead push to bridge stack
  909. */
  910. if (dp_get_peer_isolation(ta_peer))
  911. return false;
  912. nbuf_copy = qdf_nbuf_copy(nbuf);
  913. if (!nbuf_copy)
  914. return false;
  915. len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
  916. qdf_mem_set(nbuf_copy->cb, 0x0, sizeof(nbuf_copy->cb));
  917. dp_classify_critical_pkts(soc, ta_peer->vdev, nbuf_copy);
  918. if (soc->arch_ops.dp_rx_intrabss_mcast_handler(soc, ta_peer,
  919. nbuf_copy,
  920. tid_stats))
  921. return false;
  922. /* Don't send packets if tx is paused */
  923. if (!soc->is_tx_pause &&
  924. !dp_tx_send((struct cdp_soc_t *)soc,
  925. ta_peer->vdev->vdev_id, nbuf_copy)) {
  926. DP_PEER_PER_PKT_STATS_INC_PKT(ta_peer, rx.intra_bss.pkts, 1,
  927. len);
  928. tid_stats->intrabss_cnt++;
  929. } else {
  930. DP_PEER_PER_PKT_STATS_INC_PKT(ta_peer, rx.intra_bss.fail, 1,
  931. len);
  932. tid_stats->fail_cnt[INTRABSS_DROP]++;
  933. dp_rx_nbuf_free(nbuf_copy);
  934. }
  935. return false;
  936. }
  937. /*
  938. * dp_rx_intrabss_ucast_fwd() - Does intrabss forward for unicast packets
  939. *
  940. * @soc: core txrx main context
  941. * @ta_peer: source peer entry
  942. * @tx_vdev_id: VDEV ID for Intra-BSS TX
  943. * @rx_tlv_hdr: start address of rx tlvs
  944. * @nbuf: nbuf that has to be intrabss forwarded
  945. * @tid_stats: tid stats pointer
  946. *
  947. * Return: bool: true if it is forwarded else false
  948. */
  949. bool dp_rx_intrabss_ucast_fwd(struct dp_soc *soc, struct dp_txrx_peer *ta_peer,
  950. uint8_t tx_vdev_id,
  951. uint8_t *rx_tlv_hdr, qdf_nbuf_t nbuf,
  952. struct cdp_tid_rx_stats *tid_stats)
  953. {
  954. uint16_t len;
  955. len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
  956. /* linearize the nbuf just before we send to
  957. * dp_tx_send()
  958. */
  959. if (qdf_unlikely(qdf_nbuf_is_frag(nbuf))) {
  960. if (qdf_nbuf_linearize(nbuf) == -ENOMEM)
  961. return false;
  962. nbuf = qdf_nbuf_unshare(nbuf);
  963. if (!nbuf) {
  964. DP_PEER_PER_PKT_STATS_INC_PKT(ta_peer,
  965. rx.intra_bss.fail,
  966. 1, len);
  967. /* return true even though the pkt is
  968. * not forwarded. Basically skb_unshare
  969. * failed and we want to continue with
  970. * next nbuf.
  971. */
  972. tid_stats->fail_cnt[INTRABSS_DROP]++;
  973. return false;
  974. }
  975. }
  976. qdf_mem_set(nbuf->cb, 0x0, sizeof(nbuf->cb));
  977. dp_classify_critical_pkts(soc, ta_peer->vdev, nbuf);
  978. /* Don't send packets if tx is paused */
  979. if (!soc->is_tx_pause && !dp_tx_send((struct cdp_soc_t *)soc,
  980. tx_vdev_id, nbuf)) {
  981. DP_PEER_PER_PKT_STATS_INC_PKT(ta_peer, rx.intra_bss.pkts, 1,
  982. len);
  983. } else {
  984. DP_PEER_PER_PKT_STATS_INC_PKT(ta_peer, rx.intra_bss.fail, 1,
  985. len);
  986. tid_stats->fail_cnt[INTRABSS_DROP]++;
  987. return false;
  988. }
  989. return true;
  990. }
  991. #endif /* QCA_HOST_MODE_WIFI_DISABLED */
  992. #ifdef MESH_MODE_SUPPORT
  993. /**
  994. * dp_rx_fill_mesh_stats() - Fills the mesh per packet receive stats
  995. *
  996. * @vdev: DP Virtual device handle
  997. * @nbuf: Buffer pointer
  998. * @rx_tlv_hdr: start of rx tlv header
  999. * @txrx_peer: pointer to peer
  1000. *
  1001. * This function allocated memory for mesh receive stats and fill the
  1002. * required stats. Stores the memory address in skb cb.
  1003. *
  1004. * Return: void
  1005. */
  1006. void dp_rx_fill_mesh_stats(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
  1007. uint8_t *rx_tlv_hdr,
  1008. struct dp_txrx_peer *txrx_peer)
  1009. {
  1010. struct mesh_recv_hdr_s *rx_info = NULL;
  1011. uint32_t pkt_type;
  1012. uint32_t nss;
  1013. uint32_t rate_mcs;
  1014. uint32_t bw;
  1015. uint8_t primary_chan_num;
  1016. uint32_t center_chan_freq;
  1017. struct dp_soc *soc = vdev->pdev->soc;
  1018. struct dp_peer *peer;
  1019. struct dp_peer *primary_link_peer;
  1020. struct dp_soc *link_peer_soc;
  1021. cdp_peer_stats_param_t buf = {0};
  1022. /* fill recv mesh stats */
  1023. rx_info = qdf_mem_malloc(sizeof(struct mesh_recv_hdr_s));
  1024. /* upper layers are responsible to free this memory */
  1025. if (!rx_info) {
  1026. dp_rx_err("%pK: Memory allocation failed for mesh rx stats",
  1027. vdev->pdev->soc);
  1028. DP_STATS_INC(vdev->pdev, mesh_mem_alloc, 1);
  1029. return;
  1030. }
  1031. rx_info->rs_flags = MESH_RXHDR_VER1;
  1032. if (qdf_nbuf_is_rx_chfrag_start(nbuf))
  1033. rx_info->rs_flags |= MESH_RX_FIRST_MSDU;
  1034. if (qdf_nbuf_is_rx_chfrag_end(nbuf))
  1035. rx_info->rs_flags |= MESH_RX_LAST_MSDU;
  1036. peer = dp_peer_get_ref_by_id(soc, txrx_peer->peer_id, DP_MOD_ID_MESH);
  1037. if (peer) {
  1038. if (hal_rx_tlv_get_is_decrypted(soc->hal_soc, rx_tlv_hdr)) {
  1039. rx_info->rs_flags |= MESH_RX_DECRYPTED;
  1040. rx_info->rs_keyix = hal_rx_msdu_get_keyid(soc->hal_soc,
  1041. rx_tlv_hdr);
  1042. if (vdev->osif_get_key)
  1043. vdev->osif_get_key(vdev->osif_vdev,
  1044. &rx_info->rs_decryptkey[0],
  1045. &peer->mac_addr.raw[0],
  1046. rx_info->rs_keyix);
  1047. }
  1048. dp_peer_unref_delete(peer, DP_MOD_ID_MESH);
  1049. }
  1050. primary_link_peer = dp_get_primary_link_peer_by_id(soc,
  1051. txrx_peer->peer_id,
  1052. DP_MOD_ID_MESH);
  1053. if (qdf_likely(primary_link_peer)) {
  1054. link_peer_soc = primary_link_peer->vdev->pdev->soc;
  1055. dp_monitor_peer_get_stats_param(link_peer_soc,
  1056. primary_link_peer,
  1057. cdp_peer_rx_snr, &buf);
  1058. rx_info->rs_snr = buf.rx_snr;
  1059. dp_peer_unref_delete(primary_link_peer, DP_MOD_ID_MESH);
  1060. }
  1061. rx_info->rs_rssi = rx_info->rs_snr + DP_DEFAULT_NOISEFLOOR;
  1062. soc = vdev->pdev->soc;
  1063. primary_chan_num = hal_rx_tlv_get_freq(soc->hal_soc, rx_tlv_hdr);
  1064. center_chan_freq = hal_rx_tlv_get_freq(soc->hal_soc, rx_tlv_hdr) >> 16;
  1065. if (soc->cdp_soc.ol_ops && soc->cdp_soc.ol_ops->freq_to_band) {
  1066. rx_info->rs_band = soc->cdp_soc.ol_ops->freq_to_band(
  1067. soc->ctrl_psoc,
  1068. vdev->pdev->pdev_id,
  1069. center_chan_freq);
  1070. }
  1071. rx_info->rs_channel = primary_chan_num;
  1072. pkt_type = hal_rx_tlv_get_pkt_type(soc->hal_soc, rx_tlv_hdr);
  1073. rate_mcs = hal_rx_tlv_rate_mcs_get(soc->hal_soc, rx_tlv_hdr);
  1074. bw = hal_rx_tlv_bw_get(soc->hal_soc, rx_tlv_hdr);
  1075. nss = hal_rx_msdu_start_nss_get(soc->hal_soc, rx_tlv_hdr);
  1076. rx_info->rs_ratephy1 = rate_mcs | (nss << 0x8) | (pkt_type << 16) |
  1077. (bw << 24);
  1078. qdf_nbuf_set_rx_fctx_type(nbuf, (void *)rx_info, CB_FTYPE_MESH_RX_INFO);
  1079. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO_MED,
  1080. FL("Mesh rx stats: flags %x, rssi %x, chn %x, rate %x, kix %x, snr %x"),
  1081. rx_info->rs_flags,
  1082. rx_info->rs_rssi,
  1083. rx_info->rs_channel,
  1084. rx_info->rs_ratephy1,
  1085. rx_info->rs_keyix,
  1086. rx_info->rs_snr);
  1087. }
  1088. /**
  1089. * dp_rx_filter_mesh_packets() - Filters mesh unwanted packets
  1090. *
  1091. * @vdev: DP Virtual device handle
  1092. * @nbuf: Buffer pointer
  1093. * @rx_tlv_hdr: start of rx tlv header
  1094. *
  1095. * This checks if the received packet is matching any filter out
  1096. * catogery and and drop the packet if it matches.
  1097. *
  1098. * Return: status(0 indicates drop, 1 indicate to no drop)
  1099. */
  1100. QDF_STATUS dp_rx_filter_mesh_packets(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
  1101. uint8_t *rx_tlv_hdr)
  1102. {
  1103. union dp_align_mac_addr mac_addr;
  1104. struct dp_soc *soc = vdev->pdev->soc;
  1105. if (qdf_unlikely(vdev->mesh_rx_filter)) {
  1106. if (vdev->mesh_rx_filter & MESH_FILTER_OUT_FROMDS)
  1107. if (hal_rx_mpdu_get_fr_ds(soc->hal_soc,
  1108. rx_tlv_hdr))
  1109. return QDF_STATUS_SUCCESS;
  1110. if (vdev->mesh_rx_filter & MESH_FILTER_OUT_TODS)
  1111. if (hal_rx_mpdu_get_to_ds(soc->hal_soc,
  1112. rx_tlv_hdr))
  1113. return QDF_STATUS_SUCCESS;
  1114. if (vdev->mesh_rx_filter & MESH_FILTER_OUT_NODS)
  1115. if (!hal_rx_mpdu_get_fr_ds(soc->hal_soc,
  1116. rx_tlv_hdr) &&
  1117. !hal_rx_mpdu_get_to_ds(soc->hal_soc,
  1118. rx_tlv_hdr))
  1119. return QDF_STATUS_SUCCESS;
  1120. if (vdev->mesh_rx_filter & MESH_FILTER_OUT_RA) {
  1121. if (hal_rx_mpdu_get_addr1(soc->hal_soc,
  1122. rx_tlv_hdr,
  1123. &mac_addr.raw[0]))
  1124. return QDF_STATUS_E_FAILURE;
  1125. if (!qdf_mem_cmp(&mac_addr.raw[0],
  1126. &vdev->mac_addr.raw[0],
  1127. QDF_MAC_ADDR_SIZE))
  1128. return QDF_STATUS_SUCCESS;
  1129. }
  1130. if (vdev->mesh_rx_filter & MESH_FILTER_OUT_TA) {
  1131. if (hal_rx_mpdu_get_addr2(soc->hal_soc,
  1132. rx_tlv_hdr,
  1133. &mac_addr.raw[0]))
  1134. return QDF_STATUS_E_FAILURE;
  1135. if (!qdf_mem_cmp(&mac_addr.raw[0],
  1136. &vdev->mac_addr.raw[0],
  1137. QDF_MAC_ADDR_SIZE))
  1138. return QDF_STATUS_SUCCESS;
  1139. }
  1140. }
  1141. return QDF_STATUS_E_FAILURE;
  1142. }
  1143. #else
  1144. void dp_rx_fill_mesh_stats(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
  1145. uint8_t *rx_tlv_hdr, struct dp_txrx_peer *peer)
  1146. {
  1147. }
  1148. QDF_STATUS dp_rx_filter_mesh_packets(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
  1149. uint8_t *rx_tlv_hdr)
  1150. {
  1151. return QDF_STATUS_E_FAILURE;
  1152. }
  1153. #endif
  1154. #ifdef RX_PEER_INVALID_ENH
  1155. /**
  1156. * dp_rx_process_invalid_peer(): Function to pass invalid peer list to umac
  1157. * @soc: DP SOC handle
  1158. * @mpdu: mpdu for which peer is invalid
  1159. * @mac_id: mac_id which is one of 3 mac_ids(Assuming mac_id and
  1160. * pool_id has same mapping)
  1161. *
  1162. * return: integer type
  1163. */
  1164. uint8_t dp_rx_process_invalid_peer(struct dp_soc *soc, qdf_nbuf_t mpdu,
  1165. uint8_t mac_id)
  1166. {
  1167. struct dp_invalid_peer_msg msg;
  1168. struct dp_vdev *vdev = NULL;
  1169. struct dp_pdev *pdev = NULL;
  1170. struct ieee80211_frame *wh;
  1171. qdf_nbuf_t curr_nbuf, next_nbuf;
  1172. uint8_t *rx_tlv_hdr = qdf_nbuf_data(mpdu);
  1173. uint8_t *rx_pkt_hdr = NULL;
  1174. int i = 0;
  1175. if (!HAL_IS_DECAP_FORMAT_RAW(soc->hal_soc, rx_tlv_hdr)) {
  1176. dp_rx_debug("%pK: Drop decapped frames", soc);
  1177. goto free;
  1178. }
  1179. /* In RAW packet, packet header will be part of data */
  1180. rx_pkt_hdr = rx_tlv_hdr + soc->rx_pkt_tlv_size;
  1181. wh = (struct ieee80211_frame *)rx_pkt_hdr;
  1182. if (!DP_FRAME_IS_DATA(wh)) {
  1183. dp_rx_debug("%pK: NAWDS valid only for data frames", soc);
  1184. goto free;
  1185. }
  1186. if (qdf_nbuf_len(mpdu) < sizeof(struct ieee80211_frame)) {
  1187. dp_rx_err("%pK: Invalid nbuf length", soc);
  1188. goto free;
  1189. }
  1190. /* In DMAC case the rx_desc_pools are common across PDEVs
  1191. * so PDEV cannot be derived from the pool_id.
  1192. *
  1193. * link_id need to derived from the TLV tag word which is
  1194. * disabled by default. For now adding a WAR to get vdev
  1195. * with brute force this need to fixed with word based subscription
  1196. * support is added by enabling TLV tag word
  1197. */
  1198. if (soc->features.dmac_cmn_src_rxbuf_ring_enabled) {
  1199. for (i = 0; i < MAX_PDEV_CNT; i++) {
  1200. pdev = soc->pdev_list[i];
  1201. if (!pdev || qdf_unlikely(pdev->is_pdev_down))
  1202. continue;
  1203. TAILQ_FOREACH(vdev, &pdev->vdev_list, vdev_list_elem) {
  1204. if (qdf_mem_cmp(wh->i_addr1, vdev->mac_addr.raw,
  1205. QDF_MAC_ADDR_SIZE) == 0) {
  1206. goto out;
  1207. }
  1208. }
  1209. }
  1210. } else {
  1211. pdev = dp_get_pdev_for_lmac_id(soc, mac_id);
  1212. if (!pdev || qdf_unlikely(pdev->is_pdev_down)) {
  1213. dp_rx_err("%pK: PDEV %s",
  1214. soc, !pdev ? "not found" : "down");
  1215. goto free;
  1216. }
  1217. if (dp_monitor_filter_neighbour_peer(pdev, rx_pkt_hdr) ==
  1218. QDF_STATUS_SUCCESS)
  1219. return 0;
  1220. TAILQ_FOREACH(vdev, &pdev->vdev_list, vdev_list_elem) {
  1221. if (qdf_mem_cmp(wh->i_addr1, vdev->mac_addr.raw,
  1222. QDF_MAC_ADDR_SIZE) == 0) {
  1223. goto out;
  1224. }
  1225. }
  1226. }
  1227. if (!vdev) {
  1228. dp_rx_err("%pK: VDEV not found", soc);
  1229. goto free;
  1230. }
  1231. out:
  1232. msg.wh = wh;
  1233. qdf_nbuf_pull_head(mpdu, soc->rx_pkt_tlv_size);
  1234. msg.nbuf = mpdu;
  1235. msg.vdev_id = vdev->vdev_id;
  1236. /*
  1237. * NOTE: Only valid for HKv1.
  1238. * If smart monitor mode is enabled on RE, we are getting invalid
  1239. * peer frames with RA as STA mac of RE and the TA not matching
  1240. * with any NAC list or the the BSSID.Such frames need to dropped
  1241. * in order to avoid HM_WDS false addition.
  1242. */
  1243. if (pdev->soc->cdp_soc.ol_ops->rx_invalid_peer) {
  1244. if (dp_monitor_drop_inv_peer_pkts(vdev) == QDF_STATUS_SUCCESS) {
  1245. dp_rx_warn("%pK: Drop inv peer pkts with STA RA:%pm",
  1246. soc, wh->i_addr1);
  1247. goto free;
  1248. }
  1249. pdev->soc->cdp_soc.ol_ops->rx_invalid_peer(
  1250. (struct cdp_ctrl_objmgr_psoc *)soc->ctrl_psoc,
  1251. pdev->pdev_id, &msg);
  1252. }
  1253. free:
  1254. /* Drop and free packet */
  1255. curr_nbuf = mpdu;
  1256. while (curr_nbuf) {
  1257. next_nbuf = qdf_nbuf_next(curr_nbuf);
  1258. dp_rx_nbuf_free(curr_nbuf);
  1259. curr_nbuf = next_nbuf;
  1260. }
  1261. return 0;
  1262. }
  1263. /**
  1264. * dp_rx_process_invalid_peer_wrapper(): Function to wrap invalid peer handler
  1265. * @soc: DP SOC handle
  1266. * @mpdu: mpdu for which peer is invalid
  1267. * @mpdu_done: if an mpdu is completed
  1268. * @mac_id: mac_id which is one of 3 mac_ids(Assuming mac_id and
  1269. * pool_id has same mapping)
  1270. *
  1271. * return: integer type
  1272. */
  1273. void dp_rx_process_invalid_peer_wrapper(struct dp_soc *soc,
  1274. qdf_nbuf_t mpdu, bool mpdu_done,
  1275. uint8_t mac_id)
  1276. {
  1277. /* Only trigger the process when mpdu is completed */
  1278. if (mpdu_done)
  1279. dp_rx_process_invalid_peer(soc, mpdu, mac_id);
  1280. }
  1281. #else
  1282. uint8_t dp_rx_process_invalid_peer(struct dp_soc *soc, qdf_nbuf_t mpdu,
  1283. uint8_t mac_id)
  1284. {
  1285. qdf_nbuf_t curr_nbuf, next_nbuf;
  1286. struct dp_pdev *pdev;
  1287. struct dp_vdev *vdev = NULL;
  1288. struct ieee80211_frame *wh;
  1289. uint8_t *rx_tlv_hdr = qdf_nbuf_data(mpdu);
  1290. uint8_t *rx_pkt_hdr = hal_rx_pkt_hdr_get(soc->hal_soc, rx_tlv_hdr);
  1291. wh = (struct ieee80211_frame *)rx_pkt_hdr;
  1292. if (!DP_FRAME_IS_DATA(wh)) {
  1293. QDF_TRACE_ERROR_RL(QDF_MODULE_ID_DP,
  1294. "only for data frames");
  1295. goto free;
  1296. }
  1297. if (qdf_nbuf_len(mpdu) < sizeof(struct ieee80211_frame)) {
  1298. dp_rx_info_rl("%pK: Invalid nbuf length", soc);
  1299. goto free;
  1300. }
  1301. pdev = dp_get_pdev_for_lmac_id(soc, mac_id);
  1302. if (!pdev) {
  1303. dp_rx_info_rl("%pK: PDEV not found", soc);
  1304. goto free;
  1305. }
  1306. qdf_spin_lock_bh(&pdev->vdev_list_lock);
  1307. DP_PDEV_ITERATE_VDEV_LIST(pdev, vdev) {
  1308. if (qdf_mem_cmp(wh->i_addr1, vdev->mac_addr.raw,
  1309. QDF_MAC_ADDR_SIZE) == 0) {
  1310. qdf_spin_unlock_bh(&pdev->vdev_list_lock);
  1311. goto out;
  1312. }
  1313. }
  1314. qdf_spin_unlock_bh(&pdev->vdev_list_lock);
  1315. if (!vdev) {
  1316. dp_rx_info_rl("%pK: VDEV not found", soc);
  1317. goto free;
  1318. }
  1319. out:
  1320. if (soc->cdp_soc.ol_ops->rx_invalid_peer)
  1321. soc->cdp_soc.ol_ops->rx_invalid_peer(vdev->vdev_id, wh);
  1322. free:
  1323. /* Drop and free packet */
  1324. curr_nbuf = mpdu;
  1325. while (curr_nbuf) {
  1326. next_nbuf = qdf_nbuf_next(curr_nbuf);
  1327. dp_rx_nbuf_free(curr_nbuf);
  1328. curr_nbuf = next_nbuf;
  1329. }
  1330. /* Reset the head and tail pointers */
  1331. pdev = dp_get_pdev_for_lmac_id(soc, mac_id);
  1332. if (pdev) {
  1333. pdev->invalid_peer_head_msdu = NULL;
  1334. pdev->invalid_peer_tail_msdu = NULL;
  1335. }
  1336. return 0;
  1337. }
  1338. void dp_rx_process_invalid_peer_wrapper(struct dp_soc *soc,
  1339. qdf_nbuf_t mpdu, bool mpdu_done,
  1340. uint8_t mac_id)
  1341. {
  1342. /* Process the nbuf */
  1343. dp_rx_process_invalid_peer(soc, mpdu, mac_id);
  1344. }
  1345. #endif
  1346. #ifndef QCA_HOST_MODE_WIFI_DISABLED
  1347. #ifdef RECEIVE_OFFLOAD
  1348. /**
  1349. * dp_rx_print_offload_info() - Print offload info from RX TLV
  1350. * @soc: dp soc handle
  1351. * @msdu: MSDU for which the offload info is to be printed
  1352. *
  1353. * Return: None
  1354. */
  1355. static void dp_rx_print_offload_info(struct dp_soc *soc,
  1356. qdf_nbuf_t msdu)
  1357. {
  1358. dp_verbose_debug("----------------------RX DESC LRO/GRO----------------------");
  1359. dp_verbose_debug("lro_eligible 0x%x",
  1360. QDF_NBUF_CB_RX_LRO_ELIGIBLE(msdu));
  1361. dp_verbose_debug("pure_ack 0x%x", QDF_NBUF_CB_RX_TCP_PURE_ACK(msdu));
  1362. dp_verbose_debug("chksum 0x%x", QDF_NBUF_CB_RX_TCP_CHKSUM(msdu));
  1363. dp_verbose_debug("TCP seq num 0x%x", QDF_NBUF_CB_RX_TCP_SEQ_NUM(msdu));
  1364. dp_verbose_debug("TCP ack num 0x%x", QDF_NBUF_CB_RX_TCP_ACK_NUM(msdu));
  1365. dp_verbose_debug("TCP window 0x%x", QDF_NBUF_CB_RX_TCP_WIN(msdu));
  1366. dp_verbose_debug("TCP protocol 0x%x", QDF_NBUF_CB_RX_TCP_PROTO(msdu));
  1367. dp_verbose_debug("TCP offset 0x%x", QDF_NBUF_CB_RX_TCP_OFFSET(msdu));
  1368. dp_verbose_debug("toeplitz 0x%x", QDF_NBUF_CB_RX_FLOW_ID(msdu));
  1369. dp_verbose_debug("---------------------------------------------------------");
  1370. }
  1371. /**
  1372. * dp_rx_fill_gro_info() - Fill GRO info from RX TLV into skb->cb
  1373. * @soc: DP SOC handle
  1374. * @rx_tlv: RX TLV received for the msdu
  1375. * @msdu: msdu for which GRO info needs to be filled
  1376. * @rx_ol_pkt_cnt: counter to be incremented for GRO eligible packets
  1377. *
  1378. * Return: None
  1379. */
  1380. void dp_rx_fill_gro_info(struct dp_soc *soc, uint8_t *rx_tlv,
  1381. qdf_nbuf_t msdu, uint32_t *rx_ol_pkt_cnt)
  1382. {
  1383. struct hal_offload_info offload_info;
  1384. if (!wlan_cfg_is_gro_enabled(soc->wlan_cfg_ctx))
  1385. return;
  1386. if (hal_rx_tlv_get_offload_info(soc->hal_soc, rx_tlv, &offload_info))
  1387. return;
  1388. *rx_ol_pkt_cnt = *rx_ol_pkt_cnt + 1;
  1389. QDF_NBUF_CB_RX_LRO_ELIGIBLE(msdu) = offload_info.lro_eligible;
  1390. QDF_NBUF_CB_RX_TCP_PURE_ACK(msdu) = offload_info.tcp_pure_ack;
  1391. QDF_NBUF_CB_RX_TCP_CHKSUM(msdu) =
  1392. hal_rx_tlv_get_tcp_chksum(soc->hal_soc,
  1393. rx_tlv);
  1394. QDF_NBUF_CB_RX_TCP_SEQ_NUM(msdu) = offload_info.tcp_seq_num;
  1395. QDF_NBUF_CB_RX_TCP_ACK_NUM(msdu) = offload_info.tcp_ack_num;
  1396. QDF_NBUF_CB_RX_TCP_WIN(msdu) = offload_info.tcp_win;
  1397. QDF_NBUF_CB_RX_TCP_PROTO(msdu) = offload_info.tcp_proto;
  1398. QDF_NBUF_CB_RX_IPV6_PROTO(msdu) = offload_info.ipv6_proto;
  1399. QDF_NBUF_CB_RX_TCP_OFFSET(msdu) = offload_info.tcp_offset;
  1400. QDF_NBUF_CB_RX_FLOW_ID(msdu) = offload_info.flow_id;
  1401. dp_rx_print_offload_info(soc, msdu);
  1402. }
  1403. #endif /* RECEIVE_OFFLOAD */
  1404. /**
  1405. * dp_rx_adjust_nbuf_len() - set appropriate msdu length in nbuf.
  1406. *
  1407. * @soc: DP soc handle
  1408. * @nbuf: pointer to msdu.
  1409. * @mpdu_len: mpdu length
  1410. * @l3_pad_len: L3 padding length by HW
  1411. *
  1412. * Return: returns true if nbuf is last msdu of mpdu else returns false.
  1413. */
  1414. static inline bool dp_rx_adjust_nbuf_len(struct dp_soc *soc,
  1415. qdf_nbuf_t nbuf,
  1416. uint16_t *mpdu_len,
  1417. uint32_t l3_pad_len)
  1418. {
  1419. bool last_nbuf;
  1420. uint32_t pkt_hdr_size;
  1421. pkt_hdr_size = soc->rx_pkt_tlv_size + l3_pad_len;
  1422. if ((*mpdu_len + pkt_hdr_size) > RX_DATA_BUFFER_SIZE) {
  1423. qdf_nbuf_set_pktlen(nbuf, RX_DATA_BUFFER_SIZE);
  1424. last_nbuf = false;
  1425. *mpdu_len -= (RX_DATA_BUFFER_SIZE - pkt_hdr_size);
  1426. } else {
  1427. qdf_nbuf_set_pktlen(nbuf, (*mpdu_len + pkt_hdr_size));
  1428. last_nbuf = true;
  1429. *mpdu_len = 0;
  1430. }
  1431. return last_nbuf;
  1432. }
  1433. /**
  1434. * dp_get_l3_hdr_pad_len() - get L3 header padding length.
  1435. *
  1436. * @soc: DP soc handle
  1437. * @nbuf: pointer to msdu.
  1438. *
  1439. * Return: returns padding length in bytes.
  1440. */
  1441. static inline uint32_t dp_get_l3_hdr_pad_len(struct dp_soc *soc,
  1442. qdf_nbuf_t nbuf)
  1443. {
  1444. uint32_t l3_hdr_pad = 0;
  1445. uint8_t *rx_tlv_hdr;
  1446. struct hal_rx_msdu_metadata msdu_metadata;
  1447. while (nbuf) {
  1448. if (!qdf_nbuf_is_rx_chfrag_cont(nbuf)) {
  1449. /* scattered msdu end with continuation is 0 */
  1450. rx_tlv_hdr = qdf_nbuf_data(nbuf);
  1451. hal_rx_msdu_metadata_get(soc->hal_soc,
  1452. rx_tlv_hdr,
  1453. &msdu_metadata);
  1454. l3_hdr_pad = msdu_metadata.l3_hdr_pad;
  1455. break;
  1456. }
  1457. nbuf = nbuf->next;
  1458. }
  1459. return l3_hdr_pad;
  1460. }
  1461. /**
  1462. * dp_rx_sg_create() - create a frag_list for MSDUs which are spread across
  1463. * multiple nbufs.
  1464. * @soc: DP SOC handle
  1465. * @nbuf: pointer to the first msdu of an amsdu.
  1466. *
  1467. * This function implements the creation of RX frag_list for cases
  1468. * where an MSDU is spread across multiple nbufs.
  1469. *
  1470. * Return: returns the head nbuf which contains complete frag_list.
  1471. */
  1472. qdf_nbuf_t dp_rx_sg_create(struct dp_soc *soc, qdf_nbuf_t nbuf)
  1473. {
  1474. qdf_nbuf_t parent, frag_list, next = NULL;
  1475. uint16_t frag_list_len = 0;
  1476. uint16_t mpdu_len;
  1477. bool last_nbuf;
  1478. uint32_t l3_hdr_pad_offset = 0;
  1479. /*
  1480. * Use msdu len got from REO entry descriptor instead since
  1481. * there is case the RX PKT TLV is corrupted while msdu_len
  1482. * from REO descriptor is right for non-raw RX scatter msdu.
  1483. */
  1484. mpdu_len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
  1485. /*
  1486. * this is a case where the complete msdu fits in one single nbuf.
  1487. * in this case HW sets both start and end bit and we only need to
  1488. * reset these bits for RAW mode simulator to decap the pkt
  1489. */
  1490. if (qdf_nbuf_is_rx_chfrag_start(nbuf) &&
  1491. qdf_nbuf_is_rx_chfrag_end(nbuf)) {
  1492. qdf_nbuf_set_pktlen(nbuf, mpdu_len + soc->rx_pkt_tlv_size);
  1493. qdf_nbuf_pull_head(nbuf, soc->rx_pkt_tlv_size);
  1494. return nbuf;
  1495. }
  1496. l3_hdr_pad_offset = dp_get_l3_hdr_pad_len(soc, nbuf);
  1497. /*
  1498. * This is a case where we have multiple msdus (A-MSDU) spread across
  1499. * multiple nbufs. here we create a fraglist out of these nbufs.
  1500. *
  1501. * the moment we encounter a nbuf with continuation bit set we
  1502. * know for sure we have an MSDU which is spread across multiple
  1503. * nbufs. We loop through and reap nbufs till we reach last nbuf.
  1504. */
  1505. parent = nbuf;
  1506. frag_list = nbuf->next;
  1507. nbuf = nbuf->next;
  1508. /*
  1509. * set the start bit in the first nbuf we encounter with continuation
  1510. * bit set. This has the proper mpdu length set as it is the first
  1511. * msdu of the mpdu. this becomes the parent nbuf and the subsequent
  1512. * nbufs will form the frag_list of the parent nbuf.
  1513. */
  1514. qdf_nbuf_set_rx_chfrag_start(parent, 1);
  1515. /*
  1516. * L3 header padding is only needed for the 1st buffer
  1517. * in a scattered msdu
  1518. */
  1519. last_nbuf = dp_rx_adjust_nbuf_len(soc, parent, &mpdu_len,
  1520. l3_hdr_pad_offset);
  1521. /*
  1522. * MSDU cont bit is set but reported MPDU length can fit
  1523. * in to single buffer
  1524. *
  1525. * Increment error stats and avoid SG list creation
  1526. */
  1527. if (last_nbuf) {
  1528. DP_STATS_INC(soc, rx.err.msdu_continuation_err, 1);
  1529. qdf_nbuf_pull_head(parent,
  1530. soc->rx_pkt_tlv_size + l3_hdr_pad_offset);
  1531. return parent;
  1532. }
  1533. /*
  1534. * this is where we set the length of the fragments which are
  1535. * associated to the parent nbuf. We iterate through the frag_list
  1536. * till we hit the last_nbuf of the list.
  1537. */
  1538. do {
  1539. last_nbuf = dp_rx_adjust_nbuf_len(soc, nbuf, &mpdu_len, 0);
  1540. qdf_nbuf_pull_head(nbuf,
  1541. soc->rx_pkt_tlv_size);
  1542. frag_list_len += qdf_nbuf_len(nbuf);
  1543. if (last_nbuf) {
  1544. next = nbuf->next;
  1545. nbuf->next = NULL;
  1546. break;
  1547. } else if (qdf_nbuf_is_rx_chfrag_end(nbuf)) {
  1548. dp_err("Invalid packet length\n");
  1549. qdf_assert_always(0);
  1550. }
  1551. nbuf = nbuf->next;
  1552. } while (!last_nbuf);
  1553. qdf_nbuf_set_rx_chfrag_start(nbuf, 0);
  1554. qdf_nbuf_append_ext_list(parent, frag_list, frag_list_len);
  1555. parent->next = next;
  1556. qdf_nbuf_pull_head(parent,
  1557. soc->rx_pkt_tlv_size + l3_hdr_pad_offset);
  1558. return parent;
  1559. }
  1560. #ifdef DP_RX_SG_FRAME_SUPPORT
  1561. /**
  1562. * dp_rx_is_sg_supported() - SG packets processing supported or not.
  1563. *
  1564. * Return: returns true when processing is supported else false.
  1565. */
  1566. bool dp_rx_is_sg_supported(void)
  1567. {
  1568. return true;
  1569. }
  1570. #else
  1571. bool dp_rx_is_sg_supported(void)
  1572. {
  1573. return false;
  1574. }
  1575. #endif
  1576. #endif /* QCA_HOST_MODE_WIFI_DISABLED */
  1577. #ifdef QCA_PEER_EXT_STATS
  1578. /*
  1579. * dp_rx_compute_tid_delay - Computer per TID delay stats
  1580. * @peer: DP soc context
  1581. * @nbuf: NBuffer
  1582. *
  1583. * Return: Void
  1584. */
  1585. void dp_rx_compute_tid_delay(struct cdp_delay_tid_stats *stats,
  1586. qdf_nbuf_t nbuf)
  1587. {
  1588. struct cdp_delay_rx_stats *rx_delay = &stats->rx_delay;
  1589. uint32_t to_stack = qdf_nbuf_get_timedelta_ms(nbuf);
  1590. dp_hist_update_stats(&rx_delay->to_stack_delay, to_stack);
  1591. }
  1592. #endif /* QCA_PEER_EXT_STATS */
  1593. /**
  1594. * dp_rx_compute_delay() - Compute and fill in all timestamps
  1595. * to pass in correct fields
  1596. *
  1597. * @vdev: pdev handle
  1598. * @tx_desc: tx descriptor
  1599. * @tid: tid value
  1600. * Return: none
  1601. */
  1602. void dp_rx_compute_delay(struct dp_vdev *vdev, qdf_nbuf_t nbuf)
  1603. {
  1604. uint8_t ring_id = QDF_NBUF_CB_RX_CTX_ID(nbuf);
  1605. int64_t current_ts = qdf_ktime_to_ms(qdf_ktime_get());
  1606. uint32_t to_stack = qdf_nbuf_get_timedelta_ms(nbuf);
  1607. uint8_t tid = qdf_nbuf_get_tid_val(nbuf);
  1608. uint32_t interframe_delay =
  1609. (uint32_t)(current_ts - vdev->prev_rx_deliver_tstamp);
  1610. struct cdp_tid_rx_stats *rstats =
  1611. &vdev->pdev->stats.tid_stats.tid_rx_stats[ring_id][tid];
  1612. dp_update_delay_stats(NULL, rstats, to_stack, tid,
  1613. CDP_DELAY_STATS_REAP_STACK, ring_id, false);
  1614. /*
  1615. * Update interframe delay stats calculated at deliver_data_ol point.
  1616. * Value of vdev->prev_rx_deliver_tstamp will be 0 for 1st frame, so
  1617. * interframe delay will not be calculate correctly for 1st frame.
  1618. * On the other side, this will help in avoiding extra per packet check
  1619. * of vdev->prev_rx_deliver_tstamp.
  1620. */
  1621. dp_update_delay_stats(NULL, rstats, interframe_delay, tid,
  1622. CDP_DELAY_STATS_RX_INTERFRAME, ring_id, false);
  1623. vdev->prev_rx_deliver_tstamp = current_ts;
  1624. }
  1625. /**
  1626. * dp_rx_drop_nbuf_list() - drop an nbuf list
  1627. * @pdev: dp pdev reference
  1628. * @buf_list: buffer list to be dropepd
  1629. *
  1630. * Return: int (number of bufs dropped)
  1631. */
  1632. static inline int dp_rx_drop_nbuf_list(struct dp_pdev *pdev,
  1633. qdf_nbuf_t buf_list)
  1634. {
  1635. struct cdp_tid_rx_stats *stats = NULL;
  1636. uint8_t tid = 0, ring_id = 0;
  1637. int num_dropped = 0;
  1638. qdf_nbuf_t buf, next_buf;
  1639. buf = buf_list;
  1640. while (buf) {
  1641. ring_id = QDF_NBUF_CB_RX_CTX_ID(buf);
  1642. next_buf = qdf_nbuf_queue_next(buf);
  1643. tid = qdf_nbuf_get_tid_val(buf);
  1644. if (qdf_likely(pdev)) {
  1645. stats = &pdev->stats.tid_stats.tid_rx_stats[ring_id][tid];
  1646. stats->fail_cnt[INVALID_PEER_VDEV]++;
  1647. stats->delivered_to_stack--;
  1648. }
  1649. dp_rx_nbuf_free(buf);
  1650. buf = next_buf;
  1651. num_dropped++;
  1652. }
  1653. return num_dropped;
  1654. }
  1655. #ifdef QCA_SUPPORT_WDS_EXTENDED
  1656. /**
  1657. * dp_rx_deliver_to_stack_ext() - Deliver to netdev per sta
  1658. * @soc: core txrx main context
  1659. * @vdev: vdev
  1660. * @txrx_peer: txrx peer
  1661. * @nbuf_head: skb list head
  1662. *
  1663. * Return: true if packet is delivered to netdev per STA.
  1664. */
  1665. static inline bool
  1666. dp_rx_deliver_to_stack_ext(struct dp_soc *soc, struct dp_vdev *vdev,
  1667. struct dp_txrx_peer *txrx_peer, qdf_nbuf_t nbuf_head)
  1668. {
  1669. /*
  1670. * When extended WDS is disabled, frames are sent to AP netdevice.
  1671. */
  1672. if (qdf_likely(!vdev->wds_ext_enabled))
  1673. return false;
  1674. /*
  1675. * There can be 2 cases:
  1676. * 1. Send frame to parent netdev if its not for netdev per STA
  1677. * 2. If frame is meant for netdev per STA:
  1678. * a. Send frame to appropriate netdev using registered fp.
  1679. * b. If fp is NULL, drop the frames.
  1680. */
  1681. if (!txrx_peer->wds_ext.init)
  1682. return false;
  1683. if (txrx_peer->osif_rx)
  1684. txrx_peer->osif_rx(txrx_peer->wds_ext.osif_peer, nbuf_head);
  1685. else
  1686. dp_rx_drop_nbuf_list(vdev->pdev, nbuf_head);
  1687. return true;
  1688. }
  1689. #else
  1690. static inline bool
  1691. dp_rx_deliver_to_stack_ext(struct dp_soc *soc, struct dp_vdev *vdev,
  1692. struct dp_txrx_peer *txrx_peer, qdf_nbuf_t nbuf_head)
  1693. {
  1694. return false;
  1695. }
  1696. #endif
  1697. #ifdef PEER_CACHE_RX_PKTS
  1698. /**
  1699. * dp_rx_flush_rx_cached() - flush cached rx frames
  1700. * @peer: peer
  1701. * @drop: flag to drop frames or forward to net stack
  1702. *
  1703. * Return: None
  1704. */
  1705. void dp_rx_flush_rx_cached(struct dp_peer *peer, bool drop)
  1706. {
  1707. struct dp_peer_cached_bufq *bufqi;
  1708. struct dp_rx_cached_buf *cache_buf = NULL;
  1709. ol_txrx_rx_fp data_rx = NULL;
  1710. int num_buff_elem;
  1711. QDF_STATUS status;
  1712. /*
  1713. * Flush dp cached frames only for mld peers and legacy peers, as
  1714. * link peers don't store cached frames
  1715. */
  1716. if (IS_MLO_DP_LINK_PEER(peer))
  1717. return;
  1718. if (!peer->txrx_peer) {
  1719. dp_err("txrx_peer NULL!! peer mac_addr("QDF_MAC_ADDR_FMT")",
  1720. QDF_MAC_ADDR_REF(peer->mac_addr.raw));
  1721. return;
  1722. }
  1723. if (qdf_atomic_inc_return(&peer->txrx_peer->flush_in_progress) > 1) {
  1724. qdf_atomic_dec(&peer->txrx_peer->flush_in_progress);
  1725. return;
  1726. }
  1727. qdf_spin_lock_bh(&peer->peer_info_lock);
  1728. if (peer->state >= OL_TXRX_PEER_STATE_CONN && peer->vdev->osif_rx)
  1729. data_rx = peer->vdev->osif_rx;
  1730. else
  1731. drop = true;
  1732. qdf_spin_unlock_bh(&peer->peer_info_lock);
  1733. bufqi = &peer->txrx_peer->bufq_info;
  1734. qdf_spin_lock_bh(&bufqi->bufq_lock);
  1735. qdf_list_remove_front(&bufqi->cached_bufq,
  1736. (qdf_list_node_t **)&cache_buf);
  1737. while (cache_buf) {
  1738. num_buff_elem = QDF_NBUF_CB_RX_NUM_ELEMENTS_IN_LIST(
  1739. cache_buf->buf);
  1740. bufqi->entries -= num_buff_elem;
  1741. qdf_spin_unlock_bh(&bufqi->bufq_lock);
  1742. if (drop) {
  1743. bufqi->dropped = dp_rx_drop_nbuf_list(peer->vdev->pdev,
  1744. cache_buf->buf);
  1745. } else {
  1746. /* Flush the cached frames to OSIF DEV */
  1747. status = data_rx(peer->vdev->osif_vdev, cache_buf->buf);
  1748. if (status != QDF_STATUS_SUCCESS)
  1749. bufqi->dropped = dp_rx_drop_nbuf_list(
  1750. peer->vdev->pdev,
  1751. cache_buf->buf);
  1752. }
  1753. qdf_mem_free(cache_buf);
  1754. cache_buf = NULL;
  1755. qdf_spin_lock_bh(&bufqi->bufq_lock);
  1756. qdf_list_remove_front(&bufqi->cached_bufq,
  1757. (qdf_list_node_t **)&cache_buf);
  1758. }
  1759. qdf_spin_unlock_bh(&bufqi->bufq_lock);
  1760. qdf_atomic_dec(&peer->txrx_peer->flush_in_progress);
  1761. }
  1762. /**
  1763. * dp_rx_enqueue_rx() - cache rx frames
  1764. * @peer: peer
  1765. * @txrx_peer: DP txrx_peer
  1766. * @rx_buf_list: cache buffer list
  1767. *
  1768. * Return: None
  1769. */
  1770. static QDF_STATUS
  1771. dp_rx_enqueue_rx(struct dp_peer *peer,
  1772. struct dp_txrx_peer *txrx_peer,
  1773. qdf_nbuf_t rx_buf_list)
  1774. {
  1775. struct dp_rx_cached_buf *cache_buf;
  1776. struct dp_peer_cached_bufq *bufqi = &txrx_peer->bufq_info;
  1777. int num_buff_elem;
  1778. QDF_STATUS ret = QDF_STATUS_SUCCESS;
  1779. struct dp_soc *soc = txrx_peer->vdev->pdev->soc;
  1780. struct dp_peer *ta_peer = NULL;
  1781. /*
  1782. * If peer id is invalid which likely peer map has not completed,
  1783. * then need caller provide dp_peer pointer, else it's ok to use
  1784. * txrx_peer->peer_id to get dp_peer.
  1785. */
  1786. if (peer) {
  1787. if (QDF_STATUS_SUCCESS ==
  1788. dp_peer_get_ref(soc, peer, DP_MOD_ID_RX))
  1789. ta_peer = peer;
  1790. } else {
  1791. ta_peer = dp_peer_get_ref_by_id(soc, txrx_peer->peer_id,
  1792. DP_MOD_ID_RX);
  1793. }
  1794. if (!ta_peer) {
  1795. bufqi->dropped = dp_rx_drop_nbuf_list(txrx_peer->vdev->pdev,
  1796. rx_buf_list);
  1797. return QDF_STATUS_E_INVAL;
  1798. }
  1799. dp_debug_rl("bufq->curr %d bufq->drops %d", bufqi->entries,
  1800. bufqi->dropped);
  1801. if (!ta_peer->valid) {
  1802. bufqi->dropped = dp_rx_drop_nbuf_list(txrx_peer->vdev->pdev,
  1803. rx_buf_list);
  1804. ret = QDF_STATUS_E_INVAL;
  1805. goto fail;
  1806. }
  1807. qdf_spin_lock_bh(&bufqi->bufq_lock);
  1808. if (bufqi->entries >= bufqi->thresh) {
  1809. bufqi->dropped = dp_rx_drop_nbuf_list(txrx_peer->vdev->pdev,
  1810. rx_buf_list);
  1811. qdf_spin_unlock_bh(&bufqi->bufq_lock);
  1812. ret = QDF_STATUS_E_RESOURCES;
  1813. goto fail;
  1814. }
  1815. qdf_spin_unlock_bh(&bufqi->bufq_lock);
  1816. num_buff_elem = QDF_NBUF_CB_RX_NUM_ELEMENTS_IN_LIST(rx_buf_list);
  1817. cache_buf = qdf_mem_malloc_atomic(sizeof(*cache_buf));
  1818. if (!cache_buf) {
  1819. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1820. "Failed to allocate buf to cache rx frames");
  1821. bufqi->dropped = dp_rx_drop_nbuf_list(txrx_peer->vdev->pdev,
  1822. rx_buf_list);
  1823. ret = QDF_STATUS_E_NOMEM;
  1824. goto fail;
  1825. }
  1826. cache_buf->buf = rx_buf_list;
  1827. qdf_spin_lock_bh(&bufqi->bufq_lock);
  1828. qdf_list_insert_back(&bufqi->cached_bufq,
  1829. &cache_buf->node);
  1830. bufqi->entries += num_buff_elem;
  1831. qdf_spin_unlock_bh(&bufqi->bufq_lock);
  1832. fail:
  1833. dp_peer_unref_delete(ta_peer, DP_MOD_ID_RX);
  1834. return ret;
  1835. }
  1836. static inline
  1837. bool dp_rx_is_peer_cache_bufq_supported(void)
  1838. {
  1839. return true;
  1840. }
  1841. #else
  1842. static inline
  1843. bool dp_rx_is_peer_cache_bufq_supported(void)
  1844. {
  1845. return false;
  1846. }
  1847. static inline QDF_STATUS
  1848. dp_rx_enqueue_rx(struct dp_peer *peer,
  1849. struct dp_txrx_peer *txrx_peer,
  1850. qdf_nbuf_t rx_buf_list)
  1851. {
  1852. return QDF_STATUS_SUCCESS;
  1853. }
  1854. #endif
  1855. #ifndef DELIVERY_TO_STACK_STATUS_CHECK
  1856. /**
  1857. * dp_rx_check_delivery_to_stack() - Deliver pkts to network
  1858. * using the appropriate call back functions.
  1859. * @soc: soc
  1860. * @vdev: vdev
  1861. * @peer: peer
  1862. * @nbuf_head: skb list head
  1863. * @nbuf_tail: skb list tail
  1864. *
  1865. * Return: None
  1866. */
  1867. static void dp_rx_check_delivery_to_stack(struct dp_soc *soc,
  1868. struct dp_vdev *vdev,
  1869. struct dp_txrx_peer *txrx_peer,
  1870. qdf_nbuf_t nbuf_head)
  1871. {
  1872. if (qdf_unlikely(dp_rx_deliver_to_stack_ext(soc, vdev,
  1873. txrx_peer, nbuf_head)))
  1874. return;
  1875. /* Function pointer initialized only when FISA is enabled */
  1876. if (vdev->osif_fisa_rx)
  1877. /* on failure send it via regular path */
  1878. vdev->osif_fisa_rx(soc, vdev, nbuf_head);
  1879. else
  1880. vdev->osif_rx(vdev->osif_vdev, nbuf_head);
  1881. }
  1882. #else
  1883. /**
  1884. * dp_rx_check_delivery_to_stack() - Deliver pkts to network
  1885. * using the appropriate call back functions.
  1886. * @soc: soc
  1887. * @vdev: vdev
  1888. * @txrx_peer: txrx peer
  1889. * @nbuf_head: skb list head
  1890. * @nbuf_tail: skb list tail
  1891. *
  1892. * Check the return status of the call back function and drop
  1893. * the packets if the return status indicates a failure.
  1894. *
  1895. * Return: None
  1896. */
  1897. static void dp_rx_check_delivery_to_stack(struct dp_soc *soc,
  1898. struct dp_vdev *vdev,
  1899. struct dp_txrx_peer *txrx_peer,
  1900. qdf_nbuf_t nbuf_head)
  1901. {
  1902. int num_nbuf = 0;
  1903. QDF_STATUS ret_val = QDF_STATUS_E_FAILURE;
  1904. /* Function pointer initialized only when FISA is enabled */
  1905. if (vdev->osif_fisa_rx)
  1906. /* on failure send it via regular path */
  1907. ret_val = vdev->osif_fisa_rx(soc, vdev, nbuf_head);
  1908. else if (vdev->osif_rx)
  1909. ret_val = vdev->osif_rx(vdev->osif_vdev, nbuf_head);
  1910. if (!QDF_IS_STATUS_SUCCESS(ret_val)) {
  1911. num_nbuf = dp_rx_drop_nbuf_list(vdev->pdev, nbuf_head);
  1912. DP_STATS_INC(soc, rx.err.rejected, num_nbuf);
  1913. if (txrx_peer)
  1914. DP_PEER_STATS_FLAT_DEC(txrx_peer, to_stack.num,
  1915. num_nbuf);
  1916. }
  1917. }
  1918. #endif /* ifdef DELIVERY_TO_STACK_STATUS_CHECK */
  1919. /*
  1920. * dp_rx_validate_rx_callbacks() - validate rx callbacks
  1921. * @soc DP soc
  1922. * @vdev: DP vdev handle
  1923. * @txrx_peer: pointer to the txrx peer object
  1924. * nbuf_head: skb list head
  1925. *
  1926. * Return: QDF_STATUS - QDF_STATUS_SUCCESS
  1927. * QDF_STATUS_E_FAILURE
  1928. */
  1929. static inline QDF_STATUS
  1930. dp_rx_validate_rx_callbacks(struct dp_soc *soc,
  1931. struct dp_vdev *vdev,
  1932. struct dp_txrx_peer *txrx_peer,
  1933. qdf_nbuf_t nbuf_head)
  1934. {
  1935. int num_nbuf;
  1936. if (qdf_unlikely(!vdev || vdev->delete.pending)) {
  1937. num_nbuf = dp_rx_drop_nbuf_list(NULL, nbuf_head);
  1938. /*
  1939. * This is a special case where vdev is invalid,
  1940. * so we cannot know the pdev to which this packet
  1941. * belonged. Hence we update the soc rx error stats.
  1942. */
  1943. DP_STATS_INC(soc, rx.err.invalid_vdev, num_nbuf);
  1944. return QDF_STATUS_E_FAILURE;
  1945. }
  1946. /*
  1947. * highly unlikely to have a vdev without a registered rx
  1948. * callback function. if so let us free the nbuf_list.
  1949. */
  1950. if (qdf_unlikely(!vdev->osif_rx)) {
  1951. if (txrx_peer && dp_rx_is_peer_cache_bufq_supported()) {
  1952. dp_rx_enqueue_rx(NULL, txrx_peer, nbuf_head);
  1953. } else {
  1954. num_nbuf = dp_rx_drop_nbuf_list(vdev->pdev,
  1955. nbuf_head);
  1956. DP_PEER_TO_STACK_DECC(txrx_peer, num_nbuf,
  1957. vdev->pdev->enhanced_stats_en);
  1958. }
  1959. return QDF_STATUS_E_FAILURE;
  1960. }
  1961. return QDF_STATUS_SUCCESS;
  1962. }
  1963. QDF_STATUS dp_rx_deliver_to_stack(struct dp_soc *soc,
  1964. struct dp_vdev *vdev,
  1965. struct dp_txrx_peer *txrx_peer,
  1966. qdf_nbuf_t nbuf_head,
  1967. qdf_nbuf_t nbuf_tail)
  1968. {
  1969. if (dp_rx_validate_rx_callbacks(soc, vdev, txrx_peer, nbuf_head) !=
  1970. QDF_STATUS_SUCCESS)
  1971. return QDF_STATUS_E_FAILURE;
  1972. if (qdf_unlikely(vdev->rx_decap_type == htt_cmn_pkt_type_raw) ||
  1973. (vdev->rx_decap_type == htt_cmn_pkt_type_native_wifi)) {
  1974. vdev->osif_rsim_rx_decap(vdev->osif_vdev, &nbuf_head,
  1975. &nbuf_tail);
  1976. }
  1977. dp_rx_check_delivery_to_stack(soc, vdev, txrx_peer, nbuf_head);
  1978. return QDF_STATUS_SUCCESS;
  1979. }
  1980. #ifdef QCA_SUPPORT_EAPOL_OVER_CONTROL_PORT
  1981. QDF_STATUS dp_rx_eapol_deliver_to_stack(struct dp_soc *soc,
  1982. struct dp_vdev *vdev,
  1983. struct dp_txrx_peer *txrx_peer,
  1984. qdf_nbuf_t nbuf_head,
  1985. qdf_nbuf_t nbuf_tail)
  1986. {
  1987. if (dp_rx_validate_rx_callbacks(soc, vdev, txrx_peer, nbuf_head) !=
  1988. QDF_STATUS_SUCCESS)
  1989. return QDF_STATUS_E_FAILURE;
  1990. vdev->osif_rx_eapol(vdev->osif_vdev, nbuf_head);
  1991. return QDF_STATUS_SUCCESS;
  1992. }
  1993. #endif
  1994. #ifndef QCA_HOST_MODE_WIFI_DISABLED
  1995. #ifdef VDEV_PEER_PROTOCOL_COUNT
  1996. #define dp_rx_msdu_stats_update_prot_cnts(vdev_hdl, nbuf, txrx_peer) \
  1997. { \
  1998. qdf_nbuf_t nbuf_local; \
  1999. struct dp_txrx_peer *txrx_peer_local; \
  2000. struct dp_vdev *vdev_local = vdev_hdl; \
  2001. do { \
  2002. if (qdf_likely(!((vdev_local)->peer_protocol_count_track))) \
  2003. break; \
  2004. nbuf_local = nbuf; \
  2005. txrx_peer_local = txrx_peer; \
  2006. if (qdf_unlikely(qdf_nbuf_is_frag((nbuf_local)))) \
  2007. break; \
  2008. else if (qdf_unlikely(qdf_nbuf_is_raw_frame((nbuf_local)))) \
  2009. break; \
  2010. dp_vdev_peer_stats_update_protocol_cnt((vdev_local), \
  2011. (nbuf_local), \
  2012. (txrx_peer_local), 0, 1); \
  2013. } while (0); \
  2014. }
  2015. #else
  2016. #define dp_rx_msdu_stats_update_prot_cnts(vdev_hdl, nbuf, txrx_peer)
  2017. #endif
  2018. #ifdef FEATURE_RX_LINKSPEED_ROAM_TRIGGER
  2019. /**
  2020. * dp_rx_rates_stats_update() - update rate stats
  2021. * from rx msdu.
  2022. * @soc: datapath soc handle
  2023. * @nbuf: received msdu buffer
  2024. * @rx_tlv_hdr: rx tlv header
  2025. * @txrx_peer: datapath txrx_peer handle
  2026. * @sgi: Short Guard Interval
  2027. * @mcs: Modulation and Coding Set
  2028. * @nss: Number of Spatial Streams
  2029. * @bw: BandWidth
  2030. * @pkt_type: Corresponds to preamble
  2031. *
  2032. * To be precisely record rates, following factors are considered:
  2033. * Exclude specific frames, ARP, DHCP, ssdp, etc.
  2034. * Make sure to affect rx throughput as least as possible.
  2035. *
  2036. * Return: void
  2037. */
  2038. static void
  2039. dp_rx_rates_stats_update(struct dp_soc *soc, qdf_nbuf_t nbuf,
  2040. uint8_t *rx_tlv_hdr, struct dp_txrx_peer *txrx_peer,
  2041. uint32_t sgi, uint32_t mcs,
  2042. uint32_t nss, uint32_t bw, uint32_t pkt_type)
  2043. {
  2044. uint32_t rix;
  2045. uint16_t ratecode;
  2046. uint32_t avg_rx_rate;
  2047. uint32_t ratekbps;
  2048. enum cdp_punctured_modes punc_mode = NO_PUNCTURE;
  2049. if (soc->high_throughput ||
  2050. dp_rx_data_is_specific(soc->hal_soc, rx_tlv_hdr, nbuf)) {
  2051. return;
  2052. }
  2053. DP_PEER_EXTD_STATS_UPD(txrx_peer, rx.rx_rate, mcs);
  2054. /* In 11b mode, the nss we get from tlv is 0, invalid and should be 1 */
  2055. if (qdf_unlikely(pkt_type == DOT11_B))
  2056. nss = 1;
  2057. /* here pkt_type corresponds to preamble */
  2058. ratekbps = dp_getrateindex(sgi,
  2059. mcs,
  2060. nss - 1,
  2061. pkt_type,
  2062. bw,
  2063. punc_mode,
  2064. &rix,
  2065. &ratecode);
  2066. DP_PEER_EXTD_STATS_UPD(txrx_peer, rx.last_rx_rate, ratekbps);
  2067. avg_rx_rate =
  2068. dp_ath_rate_lpf(txrx_peer->stats.extd_stats.rx.avg_rx_rate,
  2069. ratekbps);
  2070. DP_PEER_EXTD_STATS_UPD(txrx_peer, rx.avg_rx_rate, avg_rx_rate);
  2071. DP_PEER_EXTD_STATS_UPD(txrx_peer, rx.nss_info, nss);
  2072. DP_PEER_EXTD_STATS_UPD(txrx_peer, rx.mcs_info, mcs);
  2073. DP_PEER_EXTD_STATS_UPD(txrx_peer, rx.bw_info, bw);
  2074. DP_PEER_EXTD_STATS_UPD(txrx_peer, rx.gi_info, sgi);
  2075. DP_PEER_EXTD_STATS_UPD(txrx_peer, rx.preamble_info, pkt_type);
  2076. }
  2077. #else
  2078. static inline void
  2079. dp_rx_rates_stats_update(struct dp_soc *soc, qdf_nbuf_t nbuf,
  2080. uint8_t *rx_tlv_hdr, struct dp_txrx_peer *txrx_peer,
  2081. uint32_t sgi, uint32_t mcs,
  2082. uint32_t nss, uint32_t bw, uint32_t pkt_type)
  2083. {
  2084. }
  2085. #endif /* FEATURE_RX_LINKSPEED_ROAM_TRIGGER */
  2086. #ifndef QCA_ENHANCED_STATS_SUPPORT
  2087. /**
  2088. * dp_rx_msdu_extd_stats_update(): Update Rx extended path stats for peer
  2089. *
  2090. * @soc: datapath soc handle
  2091. * @nbuf: received msdu buffer
  2092. * @rx_tlv_hdr: rx tlv header
  2093. * @txrx_peer: datapath txrx_peer handle
  2094. *
  2095. * Return: void
  2096. */
  2097. static inline
  2098. void dp_rx_msdu_extd_stats_update(struct dp_soc *soc, qdf_nbuf_t nbuf,
  2099. uint8_t *rx_tlv_hdr,
  2100. struct dp_txrx_peer *txrx_peer)
  2101. {
  2102. bool is_ampdu;
  2103. uint32_t sgi, mcs, tid, nss, bw, reception_type, pkt_type;
  2104. uint8_t dst_mcs_idx;
  2105. /*
  2106. * TODO - For KIWI this field is present in ring_desc
  2107. * Try to use ring desc instead of tlv.
  2108. */
  2109. is_ampdu = hal_rx_mpdu_info_ampdu_flag_get(soc->hal_soc, rx_tlv_hdr);
  2110. DP_PEER_EXTD_STATS_INCC(txrx_peer, rx.ampdu_cnt, 1, is_ampdu);
  2111. DP_PEER_EXTD_STATS_INCC(txrx_peer, rx.non_ampdu_cnt, 1, !(is_ampdu));
  2112. sgi = hal_rx_tlv_sgi_get(soc->hal_soc, rx_tlv_hdr);
  2113. mcs = hal_rx_tlv_rate_mcs_get(soc->hal_soc, rx_tlv_hdr);
  2114. tid = qdf_nbuf_get_tid_val(nbuf);
  2115. bw = hal_rx_tlv_bw_get(soc->hal_soc, rx_tlv_hdr);
  2116. reception_type = hal_rx_msdu_start_reception_type_get(soc->hal_soc,
  2117. rx_tlv_hdr);
  2118. nss = hal_rx_msdu_start_nss_get(soc->hal_soc, rx_tlv_hdr);
  2119. pkt_type = hal_rx_tlv_get_pkt_type(soc->hal_soc, rx_tlv_hdr);
  2120. /* do HW to SW pkt type conversion */
  2121. pkt_type = (pkt_type >= HAL_DOT11_MAX ? DOT11_MAX :
  2122. hal_2_dp_pkt_type_map[pkt_type]);
  2123. DP_PEER_EXTD_STATS_INCC(txrx_peer, rx.rx_mpdu_cnt[mcs], 1,
  2124. ((mcs < MAX_MCS) && QDF_NBUF_CB_RX_CHFRAG_START(nbuf)));
  2125. DP_PEER_EXTD_STATS_INCC(txrx_peer, rx.rx_mpdu_cnt[MAX_MCS - 1], 1,
  2126. ((mcs >= MAX_MCS) && QDF_NBUF_CB_RX_CHFRAG_START(nbuf)));
  2127. DP_PEER_EXTD_STATS_INC(txrx_peer, rx.bw[bw], 1);
  2128. /*
  2129. * only if nss > 0 and pkt_type is 11N/AC/AX,
  2130. * then increase index [nss - 1] in array counter.
  2131. */
  2132. if (nss > 0 && CDP_IS_PKT_TYPE_SUPPORT_NSS(pkt_type))
  2133. DP_PEER_EXTD_STATS_INC(txrx_peer, rx.nss[nss - 1], 1);
  2134. DP_PEER_EXTD_STATS_INC(txrx_peer, rx.sgi_count[sgi], 1);
  2135. DP_PEER_PER_PKT_STATS_INCC(txrx_peer, rx.err.mic_err, 1,
  2136. hal_rx_tlv_mic_err_get(soc->hal_soc,
  2137. rx_tlv_hdr));
  2138. DP_PEER_PER_PKT_STATS_INCC(txrx_peer, rx.err.decrypt_err, 1,
  2139. hal_rx_tlv_decrypt_err_get(soc->hal_soc,
  2140. rx_tlv_hdr));
  2141. DP_PEER_EXTD_STATS_INC(txrx_peer, rx.wme_ac_type[TID_TO_WME_AC(tid)], 1);
  2142. DP_PEER_EXTD_STATS_INC(txrx_peer, rx.reception_type[reception_type], 1);
  2143. dst_mcs_idx = dp_get_mcs_array_index_by_pkt_type_mcs(pkt_type, mcs);
  2144. if (MCS_INVALID_ARRAY_INDEX != dst_mcs_idx)
  2145. DP_PEER_EXTD_STATS_INC(txrx_peer,
  2146. rx.pkt_type[pkt_type].mcs_count[dst_mcs_idx],
  2147. 1);
  2148. dp_rx_rates_stats_update(soc, nbuf, rx_tlv_hdr, txrx_peer,
  2149. sgi, mcs, nss, bw, pkt_type);
  2150. }
  2151. #else
  2152. static inline
  2153. void dp_rx_msdu_extd_stats_update(struct dp_soc *soc, qdf_nbuf_t nbuf,
  2154. uint8_t *rx_tlv_hdr,
  2155. struct dp_txrx_peer *txrx_peer)
  2156. {
  2157. }
  2158. #endif
  2159. #if defined(DP_PKT_STATS_PER_LMAC) && defined(WLAN_FEATURE_11BE_MLO)
  2160. static inline void
  2161. dp_peer_update_rx_pkt_per_lmac(struct dp_txrx_peer *txrx_peer,
  2162. qdf_nbuf_t nbuf)
  2163. {
  2164. uint8_t lmac_id = qdf_nbuf_get_lmac_id(nbuf);
  2165. if (qdf_unlikely(lmac_id >= CDP_MAX_LMACS)) {
  2166. dp_err_rl("Invalid lmac_id: %u vdev_id: %u",
  2167. lmac_id, QDF_NBUF_CB_RX_VDEV_ID(nbuf));
  2168. if (qdf_likely(txrx_peer))
  2169. dp_err_rl("peer_id: %u", txrx_peer->peer_id);
  2170. return;
  2171. }
  2172. /* only count stats per lmac for MLO connection*/
  2173. DP_PEER_PER_PKT_STATS_INCC_PKT(txrx_peer, rx.rx_lmac[lmac_id], 1,
  2174. QDF_NBUF_CB_RX_PKT_LEN(nbuf),
  2175. txrx_peer->mld_peer);
  2176. }
  2177. #else
  2178. static inline void
  2179. dp_peer_update_rx_pkt_per_lmac(struct dp_txrx_peer *txrx_peer,
  2180. qdf_nbuf_t nbuf)
  2181. {
  2182. }
  2183. #endif
  2184. /**
  2185. * dp_rx_msdu_stats_update() - update per msdu stats.
  2186. * @soc: core txrx main context
  2187. * @nbuf: pointer to the first msdu of an amsdu.
  2188. * @rx_tlv_hdr: pointer to the start of RX TLV headers.
  2189. * @txrx_peer: pointer to the txrx peer object.
  2190. * @ring_id: reo dest ring number on which pkt is reaped.
  2191. * @tid_stats: per tid rx stats.
  2192. *
  2193. * update all the per msdu stats for that nbuf.
  2194. * Return: void
  2195. */
  2196. void dp_rx_msdu_stats_update(struct dp_soc *soc, qdf_nbuf_t nbuf,
  2197. uint8_t *rx_tlv_hdr,
  2198. struct dp_txrx_peer *txrx_peer,
  2199. uint8_t ring_id,
  2200. struct cdp_tid_rx_stats *tid_stats)
  2201. {
  2202. bool is_not_amsdu;
  2203. struct dp_vdev *vdev = txrx_peer->vdev;
  2204. bool enh_flag;
  2205. qdf_ether_header_t *eh;
  2206. uint16_t msdu_len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
  2207. dp_rx_msdu_stats_update_prot_cnts(vdev, nbuf, txrx_peer);
  2208. is_not_amsdu = qdf_nbuf_is_rx_chfrag_start(nbuf) &
  2209. qdf_nbuf_is_rx_chfrag_end(nbuf);
  2210. DP_PEER_PER_PKT_STATS_INC_PKT(txrx_peer, rx.rcvd_reo[ring_id], 1,
  2211. msdu_len);
  2212. DP_PEER_PER_PKT_STATS_INCC(txrx_peer, rx.non_amsdu_cnt, 1,
  2213. is_not_amsdu);
  2214. DP_PEER_PER_PKT_STATS_INCC(txrx_peer, rx.amsdu_cnt, 1, !is_not_amsdu);
  2215. DP_PEER_PER_PKT_STATS_INCC(txrx_peer, rx.rx_retries, 1,
  2216. qdf_nbuf_is_rx_retry_flag(nbuf));
  2217. dp_peer_update_rx_pkt_per_lmac(txrx_peer, nbuf);
  2218. tid_stats->msdu_cnt++;
  2219. if (qdf_unlikely(qdf_nbuf_is_da_mcbc(nbuf) &&
  2220. (vdev->rx_decap_type == htt_cmn_pkt_type_ethernet))) {
  2221. eh = (qdf_ether_header_t *)qdf_nbuf_data(nbuf);
  2222. enh_flag = vdev->pdev->enhanced_stats_en;
  2223. DP_PEER_MC_INCC_PKT(txrx_peer, 1, msdu_len, enh_flag);
  2224. tid_stats->mcast_msdu_cnt++;
  2225. if (QDF_IS_ADDR_BROADCAST(eh->ether_dhost)) {
  2226. DP_PEER_BC_INCC_PKT(txrx_peer, 1, msdu_len, enh_flag);
  2227. tid_stats->bcast_msdu_cnt++;
  2228. }
  2229. }
  2230. txrx_peer->stats.per_pkt_stats.rx.last_rx_ts = qdf_system_ticks();
  2231. dp_rx_msdu_extd_stats_update(soc, nbuf, rx_tlv_hdr, txrx_peer);
  2232. }
  2233. #ifndef WDS_VENDOR_EXTENSION
  2234. int dp_wds_rx_policy_check(uint8_t *rx_tlv_hdr,
  2235. struct dp_vdev *vdev,
  2236. struct dp_txrx_peer *txrx_peer)
  2237. {
  2238. return 1;
  2239. }
  2240. #endif
  2241. #ifdef RX_DESC_DEBUG_CHECK
  2242. /**
  2243. * dp_rx_desc_nbuf_sanity_check - Add sanity check to catch REO rx_desc paddr
  2244. * corruption
  2245. *
  2246. * @ring_desc: REO ring descriptor
  2247. * @rx_desc: Rx descriptor
  2248. *
  2249. * Return: NONE
  2250. */
  2251. QDF_STATUS dp_rx_desc_nbuf_sanity_check(struct dp_soc *soc,
  2252. hal_ring_desc_t ring_desc,
  2253. struct dp_rx_desc *rx_desc)
  2254. {
  2255. struct hal_buf_info hbi;
  2256. hal_rx_reo_buf_paddr_get(soc->hal_soc, ring_desc, &hbi);
  2257. /* Sanity check for possible buffer paddr corruption */
  2258. if (dp_rx_desc_paddr_sanity_check(rx_desc, (&hbi)->paddr))
  2259. return QDF_STATUS_SUCCESS;
  2260. return QDF_STATUS_E_FAILURE;
  2261. }
  2262. /**
  2263. * dp_rx_desc_nbuf_len_sanity_check - Add sanity check to catch Rx buffer
  2264. * out of bound access from H.W
  2265. *
  2266. * @soc: DP soc
  2267. * @pkt_len: Packet length received from H.W
  2268. *
  2269. * Return: NONE
  2270. */
  2271. static inline void
  2272. dp_rx_desc_nbuf_len_sanity_check(struct dp_soc *soc,
  2273. uint32_t pkt_len)
  2274. {
  2275. struct rx_desc_pool *rx_desc_pool;
  2276. rx_desc_pool = &soc->rx_desc_buf[0];
  2277. qdf_assert_always(pkt_len <= rx_desc_pool->buf_size);
  2278. }
  2279. #else
  2280. static inline void
  2281. dp_rx_desc_nbuf_len_sanity_check(struct dp_soc *soc, uint32_t pkt_len) { }
  2282. #endif
  2283. #ifdef DP_RX_PKT_NO_PEER_DELIVER
  2284. #ifdef DP_RX_UDP_OVER_PEER_ROAM
  2285. /**
  2286. * dp_rx_is_udp_allowed_over_roam_peer() - check if udp data received
  2287. * during roaming
  2288. * @vdev: dp_vdev pointer
  2289. * @rx_tlv_hdr: rx tlv header
  2290. * @nbuf: pkt skb pointer
  2291. *
  2292. * This function will check if rx udp data is received from authorised
  2293. * roamed peer before peer map indication is received from FW after
  2294. * roaming. This is needed for VoIP scenarios in which packet loss
  2295. * expected during roaming is minimal.
  2296. *
  2297. * Return: bool
  2298. */
  2299. static bool dp_rx_is_udp_allowed_over_roam_peer(struct dp_vdev *vdev,
  2300. uint8_t *rx_tlv_hdr,
  2301. qdf_nbuf_t nbuf)
  2302. {
  2303. char *hdr_desc;
  2304. struct ieee80211_frame *wh = NULL;
  2305. hdr_desc = hal_rx_desc_get_80211_hdr(vdev->pdev->soc->hal_soc,
  2306. rx_tlv_hdr);
  2307. wh = (struct ieee80211_frame *)hdr_desc;
  2308. if (vdev->roaming_peer_status ==
  2309. WLAN_ROAM_PEER_AUTH_STATUS_AUTHENTICATED &&
  2310. !qdf_mem_cmp(vdev->roaming_peer_mac.raw, wh->i_addr2,
  2311. QDF_MAC_ADDR_SIZE) && (qdf_nbuf_is_ipv4_udp_pkt(nbuf) ||
  2312. qdf_nbuf_is_ipv6_udp_pkt(nbuf)))
  2313. return true;
  2314. return false;
  2315. }
  2316. #else
  2317. static bool dp_rx_is_udp_allowed_over_roam_peer(struct dp_vdev *vdev,
  2318. uint8_t *rx_tlv_hdr,
  2319. qdf_nbuf_t nbuf)
  2320. {
  2321. return false;
  2322. }
  2323. #endif
  2324. /**
  2325. * dp_rx_deliver_to_stack_no_peer() - try deliver rx data even if
  2326. * no corresbonding peer found
  2327. * @soc: core txrx main context
  2328. * @nbuf: pkt skb pointer
  2329. *
  2330. * This function will try to deliver some RX special frames to stack
  2331. * even there is no peer matched found. for instance, LFR case, some
  2332. * eapol data will be sent to host before peer_map done.
  2333. *
  2334. * Return: None
  2335. */
  2336. void dp_rx_deliver_to_stack_no_peer(struct dp_soc *soc, qdf_nbuf_t nbuf)
  2337. {
  2338. uint16_t peer_id;
  2339. uint8_t vdev_id;
  2340. struct dp_vdev *vdev = NULL;
  2341. uint32_t l2_hdr_offset = 0;
  2342. uint16_t msdu_len = 0;
  2343. uint32_t pkt_len = 0;
  2344. uint8_t *rx_tlv_hdr;
  2345. uint32_t frame_mask = FRAME_MASK_IPV4_ARP | FRAME_MASK_IPV4_DHCP |
  2346. FRAME_MASK_IPV4_EAPOL | FRAME_MASK_IPV6_DHCP;
  2347. bool is_special_frame = false;
  2348. struct dp_peer *peer = NULL;
  2349. peer_id = QDF_NBUF_CB_RX_PEER_ID(nbuf);
  2350. if (peer_id > soc->max_peer_id)
  2351. goto deliver_fail;
  2352. vdev_id = QDF_NBUF_CB_RX_VDEV_ID(nbuf);
  2353. vdev = dp_vdev_get_ref_by_id(soc, vdev_id, DP_MOD_ID_RX);
  2354. if (!vdev || vdev->delete.pending)
  2355. goto deliver_fail;
  2356. if (qdf_unlikely(qdf_nbuf_is_frag(nbuf)))
  2357. goto deliver_fail;
  2358. rx_tlv_hdr = qdf_nbuf_data(nbuf);
  2359. l2_hdr_offset =
  2360. hal_rx_msdu_end_l3_hdr_padding_get(soc->hal_soc, rx_tlv_hdr);
  2361. msdu_len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
  2362. pkt_len = msdu_len + l2_hdr_offset + soc->rx_pkt_tlv_size;
  2363. QDF_NBUF_CB_RX_NUM_ELEMENTS_IN_LIST(nbuf) = 1;
  2364. qdf_nbuf_set_pktlen(nbuf, pkt_len);
  2365. qdf_nbuf_pull_head(nbuf, soc->rx_pkt_tlv_size + l2_hdr_offset);
  2366. is_special_frame = dp_rx_is_special_frame(nbuf, frame_mask);
  2367. if (qdf_likely(vdev->osif_rx)) {
  2368. if (is_special_frame ||
  2369. dp_rx_is_udp_allowed_over_roam_peer(vdev, rx_tlv_hdr,
  2370. nbuf)) {
  2371. qdf_nbuf_set_exc_frame(nbuf, 1);
  2372. if (QDF_STATUS_SUCCESS !=
  2373. vdev->osif_rx(vdev->osif_vdev, nbuf))
  2374. goto deliver_fail;
  2375. DP_STATS_INC(soc, rx.err.pkt_delivered_no_peer, 1);
  2376. dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_RX);
  2377. return;
  2378. }
  2379. } else if (is_special_frame) {
  2380. /*
  2381. * If MLO connection, txrx_peer for link peer does not exist,
  2382. * try to store these RX packets to txrx_peer's bufq of MLD
  2383. * peer until vdev->osif_rx is registered from CP and flush
  2384. * them to stack.
  2385. */
  2386. peer = dp_peer_get_tgt_peer_by_id(soc, peer_id,
  2387. DP_MOD_ID_RX);
  2388. if (!peer)
  2389. goto deliver_fail;
  2390. /* only check for MLO connection */
  2391. if (IS_MLO_DP_MLD_PEER(peer) && peer->txrx_peer &&
  2392. dp_rx_is_peer_cache_bufq_supported()) {
  2393. qdf_nbuf_set_exc_frame(nbuf, 1);
  2394. if (QDF_STATUS_SUCCESS ==
  2395. dp_rx_enqueue_rx(peer, peer->txrx_peer, nbuf)) {
  2396. DP_STATS_INC(soc,
  2397. rx.err.pkt_delivered_no_peer,
  2398. 1);
  2399. } else {
  2400. DP_STATS_INC(soc,
  2401. rx.err.rx_invalid_peer.num,
  2402. 1);
  2403. }
  2404. dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_RX);
  2405. dp_peer_unref_delete(peer, DP_MOD_ID_RX);
  2406. return;
  2407. }
  2408. dp_peer_unref_delete(peer, DP_MOD_ID_RX);
  2409. }
  2410. deliver_fail:
  2411. DP_STATS_INC_PKT(soc, rx.err.rx_invalid_peer, 1,
  2412. QDF_NBUF_CB_RX_PKT_LEN(nbuf));
  2413. dp_rx_nbuf_free(nbuf);
  2414. if (vdev)
  2415. dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_RX);
  2416. }
  2417. #else
  2418. void dp_rx_deliver_to_stack_no_peer(struct dp_soc *soc, qdf_nbuf_t nbuf)
  2419. {
  2420. DP_STATS_INC_PKT(soc, rx.err.rx_invalid_peer, 1,
  2421. QDF_NBUF_CB_RX_PKT_LEN(nbuf));
  2422. dp_rx_nbuf_free(nbuf);
  2423. }
  2424. #endif
  2425. /**
  2426. * dp_rx_srng_get_num_pending() - get number of pending entries
  2427. * @hal_soc: hal soc opaque pointer
  2428. * @hal_ring: opaque pointer to the HAL Rx Ring
  2429. * @num_entries: number of entries in the hal_ring.
  2430. * @near_full: pointer to a boolean. This is set if ring is near full.
  2431. *
  2432. * The function returns the number of entries in a destination ring which are
  2433. * yet to be reaped. The function also checks if the ring is near full.
  2434. * If more than half of the ring needs to be reaped, the ring is considered
  2435. * approaching full.
  2436. * The function useses hal_srng_dst_num_valid_locked to get the number of valid
  2437. * entries. It should not be called within a SRNG lock. HW pointer value is
  2438. * synced into cached_hp.
  2439. *
  2440. * Return: Number of pending entries if any
  2441. */
  2442. uint32_t dp_rx_srng_get_num_pending(hal_soc_handle_t hal_soc,
  2443. hal_ring_handle_t hal_ring_hdl,
  2444. uint32_t num_entries,
  2445. bool *near_full)
  2446. {
  2447. uint32_t num_pending = 0;
  2448. num_pending = hal_srng_dst_num_valid_locked(hal_soc,
  2449. hal_ring_hdl,
  2450. true);
  2451. if (num_entries && (num_pending >= num_entries >> 1))
  2452. *near_full = true;
  2453. else
  2454. *near_full = false;
  2455. return num_pending;
  2456. }
  2457. #endif /* QCA_HOST_MODE_WIFI_DISABLED */
  2458. #ifdef WLAN_SUPPORT_RX_FISA
  2459. void dp_rx_skip_tlvs(struct dp_soc *soc, qdf_nbuf_t nbuf, uint32_t l3_padding)
  2460. {
  2461. QDF_NBUF_CB_RX_PACKET_L3_HDR_PAD(nbuf) = l3_padding;
  2462. qdf_nbuf_pull_head(nbuf, l3_padding + soc->rx_pkt_tlv_size);
  2463. }
  2464. #else
  2465. void dp_rx_skip_tlvs(struct dp_soc *soc, qdf_nbuf_t nbuf, uint32_t l3_padding)
  2466. {
  2467. qdf_nbuf_pull_head(nbuf, l3_padding + soc->rx_pkt_tlv_size);
  2468. }
  2469. #endif
  2470. #ifndef QCA_HOST_MODE_WIFI_DISABLED
  2471. #ifdef DP_RX_DROP_RAW_FRM
  2472. /**
  2473. * dp_rx_is_raw_frame_dropped() - if raw frame nbuf, free and drop
  2474. * @nbuf: pkt skb pointer
  2475. *
  2476. * Return: true - raw frame, dropped
  2477. * false - not raw frame, do nothing
  2478. */
  2479. bool dp_rx_is_raw_frame_dropped(qdf_nbuf_t nbuf)
  2480. {
  2481. if (qdf_nbuf_is_raw_frame(nbuf)) {
  2482. dp_rx_nbuf_free(nbuf);
  2483. return true;
  2484. }
  2485. return false;
  2486. }
  2487. #endif
  2488. #ifdef WLAN_FEATURE_DP_RX_RING_HISTORY
  2489. /**
  2490. * dp_rx_ring_record_entry() - Record an entry into the rx ring history.
  2491. * @soc: Datapath soc structure
  2492. * @ring_num: REO ring number
  2493. * @ring_desc: REO ring descriptor
  2494. *
  2495. * Returns: None
  2496. */
  2497. void
  2498. dp_rx_ring_record_entry(struct dp_soc *soc, uint8_t ring_num,
  2499. hal_ring_desc_t ring_desc)
  2500. {
  2501. struct dp_buf_info_record *record;
  2502. struct hal_buf_info hbi;
  2503. uint32_t idx;
  2504. if (qdf_unlikely(!soc->rx_ring_history[ring_num]))
  2505. return;
  2506. hal_rx_reo_buf_paddr_get(soc->hal_soc, ring_desc, &hbi);
  2507. /* buffer_addr_info is the first element of ring_desc */
  2508. hal_rx_buf_cookie_rbm_get(soc->hal_soc, (uint32_t *)ring_desc,
  2509. &hbi);
  2510. idx = dp_history_get_next_index(&soc->rx_ring_history[ring_num]->index,
  2511. DP_RX_HIST_MAX);
  2512. /* No NULL check needed for record since its an array */
  2513. record = &soc->rx_ring_history[ring_num]->entry[idx];
  2514. record->timestamp = qdf_get_log_timestamp();
  2515. record->hbi.paddr = hbi.paddr;
  2516. record->hbi.sw_cookie = hbi.sw_cookie;
  2517. record->hbi.rbm = hbi.rbm;
  2518. }
  2519. #endif
  2520. #ifdef WLAN_DP_FEATURE_SW_LATENCY_MGR
  2521. /**
  2522. * dp_rx_update_stats() - Update soc level rx packet count
  2523. * @soc: DP soc handle
  2524. * @nbuf: nbuf received
  2525. *
  2526. * Returns: none
  2527. */
  2528. void dp_rx_update_stats(struct dp_soc *soc, qdf_nbuf_t nbuf)
  2529. {
  2530. DP_STATS_INC_PKT(soc, rx.ingress, 1,
  2531. QDF_NBUF_CB_RX_PKT_LEN(nbuf));
  2532. }
  2533. #endif
  2534. #ifdef WLAN_FEATURE_PKT_CAPTURE_V2
  2535. /**
  2536. * dp_rx_deliver_to_pkt_capture() - deliver rx packet to packet capture
  2537. * @soc : dp_soc handle
  2538. * @pdev: dp_pdev handle
  2539. * @peer_id: peer_id of the peer for which completion came
  2540. * @ppdu_id: ppdu_id
  2541. * @netbuf: Buffer pointer
  2542. *
  2543. * This function is used to deliver rx packet to packet capture
  2544. */
  2545. void dp_rx_deliver_to_pkt_capture(struct dp_soc *soc, struct dp_pdev *pdev,
  2546. uint16_t peer_id, uint32_t is_offload,
  2547. qdf_nbuf_t netbuf)
  2548. {
  2549. if (wlan_cfg_get_pkt_capture_mode(soc->wlan_cfg_ctx))
  2550. dp_wdi_event_handler(WDI_EVENT_PKT_CAPTURE_RX_DATA, soc, netbuf,
  2551. peer_id, is_offload, pdev->pdev_id);
  2552. }
  2553. void dp_rx_deliver_to_pkt_capture_no_peer(struct dp_soc *soc, qdf_nbuf_t nbuf,
  2554. uint32_t is_offload)
  2555. {
  2556. if (wlan_cfg_get_pkt_capture_mode(soc->wlan_cfg_ctx))
  2557. dp_wdi_event_handler(WDI_EVENT_PKT_CAPTURE_RX_DATA_NO_PEER,
  2558. soc, nbuf, HTT_INVALID_VDEV,
  2559. is_offload, 0);
  2560. }
  2561. #endif
  2562. #endif /* QCA_HOST_MODE_WIFI_DISABLED */
  2563. QDF_STATUS dp_rx_vdev_detach(struct dp_vdev *vdev)
  2564. {
  2565. QDF_STATUS ret;
  2566. if (vdev->osif_rx_flush) {
  2567. ret = vdev->osif_rx_flush(vdev->osif_vdev, vdev->vdev_id);
  2568. if (!QDF_IS_STATUS_SUCCESS(ret)) {
  2569. dp_err("Failed to flush rx pkts for vdev %d\n",
  2570. vdev->vdev_id);
  2571. return ret;
  2572. }
  2573. }
  2574. return QDF_STATUS_SUCCESS;
  2575. }
  2576. static QDF_STATUS
  2577. dp_pdev_nbuf_alloc_and_map(struct dp_soc *dp_soc,
  2578. struct dp_rx_nbuf_frag_info *nbuf_frag_info_t,
  2579. struct dp_pdev *dp_pdev,
  2580. struct rx_desc_pool *rx_desc_pool)
  2581. {
  2582. QDF_STATUS ret = QDF_STATUS_E_FAILURE;
  2583. (nbuf_frag_info_t->virt_addr).nbuf =
  2584. qdf_nbuf_alloc(dp_soc->osdev, rx_desc_pool->buf_size,
  2585. RX_BUFFER_RESERVATION,
  2586. rx_desc_pool->buf_alignment, FALSE);
  2587. if (!((nbuf_frag_info_t->virt_addr).nbuf)) {
  2588. dp_err("nbuf alloc failed");
  2589. DP_STATS_INC(dp_pdev, replenish.nbuf_alloc_fail, 1);
  2590. return ret;
  2591. }
  2592. ret = qdf_nbuf_map_nbytes_single(dp_soc->osdev,
  2593. (nbuf_frag_info_t->virt_addr).nbuf,
  2594. QDF_DMA_FROM_DEVICE,
  2595. rx_desc_pool->buf_size);
  2596. if (qdf_unlikely(QDF_IS_STATUS_ERROR(ret))) {
  2597. qdf_nbuf_free((nbuf_frag_info_t->virt_addr).nbuf);
  2598. dp_err("nbuf map failed");
  2599. DP_STATS_INC(dp_pdev, replenish.map_err, 1);
  2600. return ret;
  2601. }
  2602. nbuf_frag_info_t->paddr =
  2603. qdf_nbuf_get_frag_paddr((nbuf_frag_info_t->virt_addr).nbuf, 0);
  2604. ret = dp_check_paddr(dp_soc, &((nbuf_frag_info_t->virt_addr).nbuf),
  2605. &nbuf_frag_info_t->paddr,
  2606. rx_desc_pool);
  2607. if (ret == QDF_STATUS_E_FAILURE) {
  2608. dp_err("nbuf check x86 failed");
  2609. DP_STATS_INC(dp_pdev, replenish.x86_fail, 1);
  2610. return ret;
  2611. }
  2612. return QDF_STATUS_SUCCESS;
  2613. }
  2614. QDF_STATUS
  2615. dp_pdev_rx_buffers_attach(struct dp_soc *dp_soc, uint32_t mac_id,
  2616. struct dp_srng *dp_rxdma_srng,
  2617. struct rx_desc_pool *rx_desc_pool,
  2618. uint32_t num_req_buffers)
  2619. {
  2620. struct dp_pdev *dp_pdev = dp_get_pdev_for_lmac_id(dp_soc, mac_id);
  2621. hal_ring_handle_t rxdma_srng = dp_rxdma_srng->hal_srng;
  2622. union dp_rx_desc_list_elem_t *next;
  2623. void *rxdma_ring_entry;
  2624. qdf_dma_addr_t paddr;
  2625. struct dp_rx_nbuf_frag_info *nf_info;
  2626. uint32_t nr_descs, nr_nbuf = 0, nr_nbuf_total = 0;
  2627. uint32_t buffer_index, nbuf_ptrs_per_page;
  2628. qdf_nbuf_t nbuf;
  2629. QDF_STATUS ret;
  2630. int page_idx, total_pages;
  2631. union dp_rx_desc_list_elem_t *desc_list = NULL;
  2632. union dp_rx_desc_list_elem_t *tail = NULL;
  2633. int sync_hw_ptr = 1;
  2634. uint32_t num_entries_avail;
  2635. if (qdf_unlikely(!dp_pdev)) {
  2636. dp_rx_err("%pK: pdev is null for mac_id = %d",
  2637. dp_soc, mac_id);
  2638. return QDF_STATUS_E_FAILURE;
  2639. }
  2640. if (qdf_unlikely(!rxdma_srng)) {
  2641. DP_STATS_INC(dp_pdev, replenish.rxdma_err, num_req_buffers);
  2642. return QDF_STATUS_E_FAILURE;
  2643. }
  2644. dp_debug("requested %u RX buffers for driver attach", num_req_buffers);
  2645. hal_srng_access_start(dp_soc->hal_soc, rxdma_srng);
  2646. num_entries_avail = hal_srng_src_num_avail(dp_soc->hal_soc,
  2647. rxdma_srng,
  2648. sync_hw_ptr);
  2649. hal_srng_access_end(dp_soc->hal_soc, rxdma_srng);
  2650. if (!num_entries_avail) {
  2651. dp_err("Num of available entries is zero, nothing to do");
  2652. return QDF_STATUS_E_NOMEM;
  2653. }
  2654. if (num_entries_avail < num_req_buffers)
  2655. num_req_buffers = num_entries_avail;
  2656. nr_descs = dp_rx_get_free_desc_list(dp_soc, mac_id, rx_desc_pool,
  2657. num_req_buffers, &desc_list, &tail);
  2658. if (!nr_descs) {
  2659. dp_err("no free rx_descs in freelist");
  2660. DP_STATS_INC(dp_pdev, err.desc_alloc_fail, num_req_buffers);
  2661. return QDF_STATUS_E_NOMEM;
  2662. }
  2663. dp_debug("got %u RX descs for driver attach", nr_descs);
  2664. /*
  2665. * Try to allocate pointers to the nbuf one page at a time.
  2666. * Take pointers that can fit in one page of memory and
  2667. * iterate through the total descriptors that need to be
  2668. * allocated in order of pages. Reuse the pointers that
  2669. * have been allocated to fit in one page across each
  2670. * iteration to index into the nbuf.
  2671. */
  2672. total_pages = (nr_descs * sizeof(*nf_info)) / DP_BLOCKMEM_SIZE;
  2673. /*
  2674. * Add an extra page to store the remainder if any
  2675. */
  2676. if ((nr_descs * sizeof(*nf_info)) % DP_BLOCKMEM_SIZE)
  2677. total_pages++;
  2678. nf_info = qdf_mem_malloc(DP_BLOCKMEM_SIZE);
  2679. if (!nf_info) {
  2680. dp_err("failed to allocate nbuf array");
  2681. DP_STATS_INC(dp_pdev, replenish.rxdma_err, num_req_buffers);
  2682. QDF_BUG(0);
  2683. return QDF_STATUS_E_NOMEM;
  2684. }
  2685. nbuf_ptrs_per_page = DP_BLOCKMEM_SIZE / sizeof(*nf_info);
  2686. for (page_idx = 0; page_idx < total_pages; page_idx++) {
  2687. qdf_mem_zero(nf_info, DP_BLOCKMEM_SIZE);
  2688. for (nr_nbuf = 0; nr_nbuf < nbuf_ptrs_per_page; nr_nbuf++) {
  2689. /*
  2690. * The last page of buffer pointers may not be required
  2691. * completely based on the number of descriptors. Below
  2692. * check will ensure we are allocating only the
  2693. * required number of descriptors.
  2694. */
  2695. if (nr_nbuf_total >= nr_descs)
  2696. break;
  2697. /* Flag is set while pdev rx_desc_pool initialization */
  2698. if (qdf_unlikely(rx_desc_pool->rx_mon_dest_frag_enable))
  2699. ret = dp_pdev_frag_alloc_and_map(dp_soc,
  2700. &nf_info[nr_nbuf], dp_pdev,
  2701. rx_desc_pool);
  2702. else
  2703. ret = dp_pdev_nbuf_alloc_and_map(dp_soc,
  2704. &nf_info[nr_nbuf], dp_pdev,
  2705. rx_desc_pool);
  2706. if (QDF_IS_STATUS_ERROR(ret))
  2707. break;
  2708. nr_nbuf_total++;
  2709. }
  2710. hal_srng_access_start(dp_soc->hal_soc, rxdma_srng);
  2711. for (buffer_index = 0; buffer_index < nr_nbuf; buffer_index++) {
  2712. rxdma_ring_entry =
  2713. hal_srng_src_get_next(dp_soc->hal_soc,
  2714. rxdma_srng);
  2715. qdf_assert_always(rxdma_ring_entry);
  2716. next = desc_list->next;
  2717. paddr = nf_info[buffer_index].paddr;
  2718. nbuf = nf_info[buffer_index].virt_addr.nbuf;
  2719. /* Flag is set while pdev rx_desc_pool initialization */
  2720. if (qdf_unlikely(rx_desc_pool->rx_mon_dest_frag_enable))
  2721. dp_rx_desc_frag_prep(&desc_list->rx_desc,
  2722. &nf_info[buffer_index]);
  2723. else
  2724. dp_rx_desc_prep(&desc_list->rx_desc,
  2725. &nf_info[buffer_index]);
  2726. desc_list->rx_desc.in_use = 1;
  2727. dp_rx_desc_alloc_dbg_info(&desc_list->rx_desc);
  2728. dp_rx_desc_update_dbg_info(&desc_list->rx_desc,
  2729. __func__,
  2730. RX_DESC_REPLENISHED);
  2731. hal_rxdma_buff_addr_info_set(dp_soc->hal_soc ,rxdma_ring_entry, paddr,
  2732. desc_list->rx_desc.cookie,
  2733. rx_desc_pool->owner);
  2734. dp_ipa_handle_rx_buf_smmu_mapping(
  2735. dp_soc, nbuf,
  2736. rx_desc_pool->buf_size, true,
  2737. __func__, __LINE__);
  2738. dp_audio_smmu_map(dp_soc->osdev,
  2739. qdf_mem_paddr_from_dmaaddr(dp_soc->osdev,
  2740. QDF_NBUF_CB_PADDR(nbuf)),
  2741. QDF_NBUF_CB_PADDR(nbuf),
  2742. rx_desc_pool->buf_size);
  2743. desc_list = next;
  2744. }
  2745. dp_rx_refill_ring_record_entry(dp_soc, dp_pdev->lmac_id,
  2746. rxdma_srng, nr_nbuf, nr_nbuf);
  2747. hal_srng_access_end(dp_soc->hal_soc, rxdma_srng);
  2748. }
  2749. dp_info("filled %u RX buffers for driver attach", nr_nbuf_total);
  2750. qdf_mem_free(nf_info);
  2751. if (!nr_nbuf_total) {
  2752. dp_err("No nbuf's allocated");
  2753. QDF_BUG(0);
  2754. return QDF_STATUS_E_RESOURCES;
  2755. }
  2756. /* No need to count the number of bytes received during replenish.
  2757. * Therefore set replenish.pkts.bytes as 0.
  2758. */
  2759. DP_STATS_INC_PKT(dp_pdev, replenish.pkts, nr_nbuf, 0);
  2760. return QDF_STATUS_SUCCESS;
  2761. }
  2762. qdf_export_symbol(dp_pdev_rx_buffers_attach);
  2763. /**
  2764. * dp_rx_enable_mon_dest_frag() - Enable frag processing for
  2765. * monitor destination ring via frag.
  2766. *
  2767. * Enable this flag only for monitor destination buffer processing
  2768. * if DP_RX_MON_MEM_FRAG feature is enabled.
  2769. * If flag is set then frag based function will be called for alloc,
  2770. * map, prep desc and free ops for desc buffer else normal nbuf based
  2771. * function will be called.
  2772. *
  2773. * @rx_desc_pool: Rx desc pool
  2774. * @is_mon_dest_desc: Is it for monitor dest buffer
  2775. *
  2776. * Return: None
  2777. */
  2778. #ifdef DP_RX_MON_MEM_FRAG
  2779. void dp_rx_enable_mon_dest_frag(struct rx_desc_pool *rx_desc_pool,
  2780. bool is_mon_dest_desc)
  2781. {
  2782. rx_desc_pool->rx_mon_dest_frag_enable = is_mon_dest_desc;
  2783. if (is_mon_dest_desc)
  2784. dp_alert("Feature DP_RX_MON_MEM_FRAG for mon_dest is enabled");
  2785. }
  2786. #else
  2787. void dp_rx_enable_mon_dest_frag(struct rx_desc_pool *rx_desc_pool,
  2788. bool is_mon_dest_desc)
  2789. {
  2790. rx_desc_pool->rx_mon_dest_frag_enable = false;
  2791. if (is_mon_dest_desc)
  2792. dp_alert("Feature DP_RX_MON_MEM_FRAG for mon_dest is disabled");
  2793. }
  2794. #endif
  2795. qdf_export_symbol(dp_rx_enable_mon_dest_frag);
  2796. /*
  2797. * dp_rx_pdev_desc_pool_alloc() - allocate memory for software rx descriptor
  2798. * pool
  2799. *
  2800. * @pdev: core txrx pdev context
  2801. *
  2802. * Return: QDF_STATUS - QDF_STATUS_SUCCESS
  2803. * QDF_STATUS_E_NOMEM
  2804. */
  2805. QDF_STATUS
  2806. dp_rx_pdev_desc_pool_alloc(struct dp_pdev *pdev)
  2807. {
  2808. struct dp_soc *soc = pdev->soc;
  2809. uint32_t rxdma_entries;
  2810. uint32_t rx_sw_desc_num;
  2811. struct dp_srng *dp_rxdma_srng;
  2812. struct rx_desc_pool *rx_desc_pool;
  2813. uint32_t status = QDF_STATUS_SUCCESS;
  2814. int mac_for_pdev;
  2815. mac_for_pdev = pdev->lmac_id;
  2816. if (wlan_cfg_get_dp_pdev_nss_enabled(pdev->wlan_cfg_ctx)) {
  2817. dp_rx_info("%pK: nss-wifi<4> skip Rx refil %d",
  2818. soc, mac_for_pdev);
  2819. return status;
  2820. }
  2821. dp_rxdma_srng = &soc->rx_refill_buf_ring[mac_for_pdev];
  2822. rxdma_entries = dp_rxdma_srng->num_entries;
  2823. rx_desc_pool = &soc->rx_desc_buf[mac_for_pdev];
  2824. rx_sw_desc_num = wlan_cfg_get_dp_soc_rx_sw_desc_num(soc->wlan_cfg_ctx);
  2825. rx_desc_pool->desc_type = DP_RX_DESC_BUF_TYPE;
  2826. status = dp_rx_desc_pool_alloc(soc,
  2827. rx_sw_desc_num,
  2828. rx_desc_pool);
  2829. if (status != QDF_STATUS_SUCCESS)
  2830. return status;
  2831. return status;
  2832. }
  2833. /*
  2834. * dp_rx_pdev_desc_pool_free() - free software rx descriptor pool
  2835. *
  2836. * @pdev: core txrx pdev context
  2837. */
  2838. void dp_rx_pdev_desc_pool_free(struct dp_pdev *pdev)
  2839. {
  2840. int mac_for_pdev = pdev->lmac_id;
  2841. struct dp_soc *soc = pdev->soc;
  2842. struct rx_desc_pool *rx_desc_pool;
  2843. rx_desc_pool = &soc->rx_desc_buf[mac_for_pdev];
  2844. dp_rx_desc_pool_free(soc, rx_desc_pool);
  2845. }
  2846. /*
  2847. * dp_rx_pdev_desc_pool_init() - initialize software rx descriptors
  2848. *
  2849. * @pdev: core txrx pdev context
  2850. *
  2851. * Return: QDF_STATUS - QDF_STATUS_SUCCESS
  2852. * QDF_STATUS_E_NOMEM
  2853. */
  2854. QDF_STATUS dp_rx_pdev_desc_pool_init(struct dp_pdev *pdev)
  2855. {
  2856. int mac_for_pdev = pdev->lmac_id;
  2857. struct dp_soc *soc = pdev->soc;
  2858. uint32_t rxdma_entries;
  2859. uint32_t rx_sw_desc_num;
  2860. struct dp_srng *dp_rxdma_srng;
  2861. struct rx_desc_pool *rx_desc_pool;
  2862. rx_desc_pool = &soc->rx_desc_buf[mac_for_pdev];
  2863. if (wlan_cfg_get_dp_pdev_nss_enabled(pdev->wlan_cfg_ctx)) {
  2864. /**
  2865. * If NSS is enabled, rx_desc_pool is already filled.
  2866. * Hence, just disable desc_pool frag flag.
  2867. */
  2868. dp_rx_enable_mon_dest_frag(rx_desc_pool, false);
  2869. dp_rx_info("%pK: nss-wifi<4> skip Rx refil %d",
  2870. soc, mac_for_pdev);
  2871. return QDF_STATUS_SUCCESS;
  2872. }
  2873. if (dp_rx_desc_pool_is_allocated(rx_desc_pool) == QDF_STATUS_E_NOMEM)
  2874. return QDF_STATUS_E_NOMEM;
  2875. dp_rxdma_srng = &soc->rx_refill_buf_ring[mac_for_pdev];
  2876. rxdma_entries = dp_rxdma_srng->num_entries;
  2877. soc->process_rx_status = CONFIG_PROCESS_RX_STATUS;
  2878. rx_sw_desc_num =
  2879. wlan_cfg_get_dp_soc_rx_sw_desc_num(soc->wlan_cfg_ctx);
  2880. rx_desc_pool->owner = dp_rx_get_rx_bm_id(soc);
  2881. rx_desc_pool->buf_size = RX_DATA_BUFFER_SIZE;
  2882. rx_desc_pool->buf_alignment = RX_DATA_BUFFER_ALIGNMENT;
  2883. /* Disable monitor dest processing via frag */
  2884. dp_rx_enable_mon_dest_frag(rx_desc_pool, false);
  2885. dp_rx_desc_pool_init(soc, mac_for_pdev,
  2886. rx_sw_desc_num, rx_desc_pool);
  2887. return QDF_STATUS_SUCCESS;
  2888. }
  2889. /*
  2890. * dp_rx_pdev_desc_pool_deinit() - de-initialize software rx descriptor pools
  2891. * @pdev: core txrx pdev context
  2892. *
  2893. * This function resets the freelist of rx descriptors and destroys locks
  2894. * associated with this list of descriptors.
  2895. */
  2896. void dp_rx_pdev_desc_pool_deinit(struct dp_pdev *pdev)
  2897. {
  2898. int mac_for_pdev = pdev->lmac_id;
  2899. struct dp_soc *soc = pdev->soc;
  2900. struct rx_desc_pool *rx_desc_pool;
  2901. rx_desc_pool = &soc->rx_desc_buf[mac_for_pdev];
  2902. dp_rx_desc_pool_deinit(soc, rx_desc_pool, mac_for_pdev);
  2903. }
  2904. /*
  2905. * dp_rx_pdev_buffers_alloc() - Allocate nbufs (skbs) and replenish RxDMA ring
  2906. *
  2907. * @pdev: core txrx pdev context
  2908. *
  2909. * Return: QDF_STATUS - QDF_STATUS_SUCCESS
  2910. * QDF_STATUS_E_NOMEM
  2911. */
  2912. QDF_STATUS
  2913. dp_rx_pdev_buffers_alloc(struct dp_pdev *pdev)
  2914. {
  2915. int mac_for_pdev = pdev->lmac_id;
  2916. struct dp_soc *soc = pdev->soc;
  2917. struct dp_srng *dp_rxdma_srng;
  2918. struct rx_desc_pool *rx_desc_pool;
  2919. uint32_t rxdma_entries;
  2920. dp_rxdma_srng = &soc->rx_refill_buf_ring[mac_for_pdev];
  2921. rxdma_entries = dp_rxdma_srng->num_entries;
  2922. rx_desc_pool = &soc->rx_desc_buf[mac_for_pdev];
  2923. /* Initialize RX buffer pool which will be
  2924. * used during low memory conditions
  2925. */
  2926. dp_rx_buffer_pool_init(soc, mac_for_pdev);
  2927. return dp_pdev_rx_buffers_attach_simple(soc, mac_for_pdev,
  2928. dp_rxdma_srng,
  2929. rx_desc_pool,
  2930. rxdma_entries - 1);
  2931. }
  2932. /*
  2933. * dp_rx_pdev_buffers_free - Free nbufs (skbs)
  2934. *
  2935. * @pdev: core txrx pdev context
  2936. */
  2937. void
  2938. dp_rx_pdev_buffers_free(struct dp_pdev *pdev)
  2939. {
  2940. int mac_for_pdev = pdev->lmac_id;
  2941. struct dp_soc *soc = pdev->soc;
  2942. struct rx_desc_pool *rx_desc_pool;
  2943. rx_desc_pool = &soc->rx_desc_buf[mac_for_pdev];
  2944. dp_rx_desc_nbuf_free(soc, rx_desc_pool, false);
  2945. dp_rx_buffer_pool_deinit(soc, mac_for_pdev);
  2946. }
  2947. #ifdef DP_RX_SPECIAL_FRAME_NEED
  2948. bool dp_rx_deliver_special_frame(struct dp_soc *soc,
  2949. struct dp_txrx_peer *txrx_peer,
  2950. qdf_nbuf_t nbuf, uint32_t frame_mask,
  2951. uint8_t *rx_tlv_hdr)
  2952. {
  2953. uint32_t l2_hdr_offset = 0;
  2954. uint16_t msdu_len = 0;
  2955. uint32_t skip_len;
  2956. l2_hdr_offset =
  2957. hal_rx_msdu_end_l3_hdr_padding_get(soc->hal_soc, rx_tlv_hdr);
  2958. if (qdf_unlikely(qdf_nbuf_is_frag(nbuf))) {
  2959. skip_len = l2_hdr_offset;
  2960. } else {
  2961. msdu_len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
  2962. skip_len = l2_hdr_offset + soc->rx_pkt_tlv_size;
  2963. qdf_nbuf_set_pktlen(nbuf, msdu_len + skip_len);
  2964. }
  2965. QDF_NBUF_CB_RX_NUM_ELEMENTS_IN_LIST(nbuf) = 1;
  2966. dp_rx_set_hdr_pad(nbuf, l2_hdr_offset);
  2967. qdf_nbuf_pull_head(nbuf, skip_len);
  2968. if (txrx_peer->vdev) {
  2969. dp_rx_send_pktlog(soc, txrx_peer->vdev->pdev, nbuf,
  2970. QDF_TX_RX_STATUS_OK);
  2971. }
  2972. if (dp_rx_is_special_frame(nbuf, frame_mask)) {
  2973. dp_info("special frame, mpdu sn 0x%x",
  2974. hal_rx_get_rx_sequence(soc->hal_soc, rx_tlv_hdr));
  2975. qdf_nbuf_set_exc_frame(nbuf, 1);
  2976. dp_rx_deliver_to_stack(soc, txrx_peer->vdev, txrx_peer,
  2977. nbuf, NULL);
  2978. return true;
  2979. }
  2980. return false;
  2981. }
  2982. #endif
  2983. #ifdef WLAN_FEATURE_MARK_FIRST_WAKEUP_PACKET
  2984. void dp_rx_mark_first_packet_after_wow_wakeup(struct dp_pdev *pdev,
  2985. uint8_t *rx_tlv,
  2986. qdf_nbuf_t nbuf)
  2987. {
  2988. struct dp_soc *soc;
  2989. if (!pdev->is_first_wakeup_packet)
  2990. return;
  2991. soc = pdev->soc;
  2992. if (hal_get_first_wow_wakeup_packet(soc->hal_soc, rx_tlv)) {
  2993. qdf_nbuf_mark_wakeup_frame(nbuf);
  2994. dp_info("First packet after WOW Wakeup rcvd");
  2995. }
  2996. }
  2997. #endif