dp_rx.c 54 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908
  1. /*
  2. * Copyright (c) 2016-2018 The Linux Foundation. All rights reserved.
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for
  5. * any purpose with or without fee is hereby granted, provided that the
  6. * above copyright notice and this permission notice appear in all
  7. * copies.
  8. *
  9. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
  10. * WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
  11. * WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
  12. * AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
  13. * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
  14. * PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
  15. * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
  16. * PERFORMANCE OF THIS SOFTWARE.
  17. */
  18. #include "hal_hw_headers.h"
  19. #include "dp_types.h"
  20. #include "dp_rx.h"
  21. #include "dp_peer.h"
  22. #include "hal_rx.h"
  23. #include "hal_api.h"
  24. #include "qdf_nbuf.h"
  25. #ifdef MESH_MODE_SUPPORT
  26. #include "if_meta_hdr.h"
  27. #endif
  28. #include "dp_internal.h"
  29. #include "dp_rx_mon.h"
  30. #ifdef RX_DESC_DEBUG_CHECK
  31. static inline void dp_rx_desc_prep(struct dp_rx_desc *rx_desc, qdf_nbuf_t nbuf)
  32. {
  33. rx_desc->magic = DP_RX_DESC_MAGIC;
  34. rx_desc->nbuf = nbuf;
  35. }
  36. #else
  37. static inline void dp_rx_desc_prep(struct dp_rx_desc *rx_desc, qdf_nbuf_t nbuf)
  38. {
  39. rx_desc->nbuf = nbuf;
  40. }
  41. #endif
  42. #ifdef CONFIG_WIN
  43. static inline bool dp_rx_check_ap_bridge(struct dp_vdev *vdev)
  44. {
  45. return vdev->ap_bridge_enabled;
  46. }
  47. #else
  48. static inline bool dp_rx_check_ap_bridge(struct dp_vdev *vdev)
  49. {
  50. if (vdev->opmode != wlan_op_mode_sta)
  51. return true;
  52. else
  53. return false;
  54. }
  55. #endif
  56. /*
  57. * dp_rx_buffers_replenish() - replenish rxdma ring with rx nbufs
  58. * called during dp rx initialization
  59. * and at the end of dp_rx_process.
  60. *
  61. * @soc: core txrx main context
  62. * @mac_id: mac_id which is one of 3 mac_ids
  63. * @dp_rxdma_srng: dp rxdma circular ring
  64. * @rx_desc_pool: Pointer to free Rx descriptor pool
  65. * @num_req_buffers: number of buffer to be replenished
  66. * @desc_list: list of descs if called from dp_rx_process
  67. * or NULL during dp rx initialization or out of buffer
  68. * interrupt.
  69. * @tail: tail of descs list
  70. * Return: return success or failure
  71. */
  72. QDF_STATUS dp_rx_buffers_replenish(struct dp_soc *dp_soc, uint32_t mac_id,
  73. struct dp_srng *dp_rxdma_srng,
  74. struct rx_desc_pool *rx_desc_pool,
  75. uint32_t num_req_buffers,
  76. union dp_rx_desc_list_elem_t **desc_list,
  77. union dp_rx_desc_list_elem_t **tail)
  78. {
  79. uint32_t num_alloc_desc;
  80. uint16_t num_desc_to_free = 0;
  81. struct dp_pdev *dp_pdev = dp_get_pdev_for_mac_id(dp_soc, mac_id);
  82. uint32_t num_entries_avail;
  83. uint32_t count;
  84. int sync_hw_ptr = 1;
  85. qdf_dma_addr_t paddr;
  86. qdf_nbuf_t rx_netbuf;
  87. void *rxdma_ring_entry;
  88. union dp_rx_desc_list_elem_t *next;
  89. QDF_STATUS ret;
  90. void *rxdma_srng;
  91. rxdma_srng = dp_rxdma_srng->hal_srng;
  92. if (!rxdma_srng) {
  93. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  94. "rxdma srng not initialized");
  95. DP_STATS_INC(dp_pdev, replenish.rxdma_err, num_req_buffers);
  96. return QDF_STATUS_E_FAILURE;
  97. }
  98. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  99. "requested %d buffers for replenish", num_req_buffers);
  100. hal_srng_access_start(dp_soc->hal_soc, rxdma_srng);
  101. num_entries_avail = hal_srng_src_num_avail(dp_soc->hal_soc,
  102. rxdma_srng,
  103. sync_hw_ptr);
  104. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  105. "no of available entries in rxdma ring: %d",
  106. num_entries_avail);
  107. if (!(*desc_list) && (num_entries_avail >
  108. ((dp_rxdma_srng->num_entries * 3) / 4))) {
  109. num_req_buffers = num_entries_avail;
  110. } else if (num_entries_avail < num_req_buffers) {
  111. num_desc_to_free = num_req_buffers - num_entries_avail;
  112. num_req_buffers = num_entries_avail;
  113. }
  114. if (qdf_unlikely(!num_req_buffers)) {
  115. num_desc_to_free = num_req_buffers;
  116. hal_srng_access_end(dp_soc->hal_soc, rxdma_srng);
  117. goto free_descs;
  118. }
  119. /*
  120. * if desc_list is NULL, allocate the descs from freelist
  121. */
  122. if (!(*desc_list)) {
  123. num_alloc_desc = dp_rx_get_free_desc_list(dp_soc, mac_id,
  124. rx_desc_pool,
  125. num_req_buffers,
  126. desc_list,
  127. tail);
  128. if (!num_alloc_desc) {
  129. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  130. "no free rx_descs in freelist");
  131. DP_STATS_INC(dp_pdev, err.desc_alloc_fail,
  132. num_req_buffers);
  133. hal_srng_access_end(dp_soc->hal_soc, rxdma_srng);
  134. return QDF_STATUS_E_NOMEM;
  135. }
  136. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  137. "%d rx desc allocated", num_alloc_desc);
  138. num_req_buffers = num_alloc_desc;
  139. }
  140. count = 0;
  141. while (count < num_req_buffers) {
  142. rx_netbuf = qdf_nbuf_alloc(dp_soc->osdev,
  143. RX_BUFFER_SIZE,
  144. RX_BUFFER_RESERVATION,
  145. RX_BUFFER_ALIGNMENT,
  146. FALSE);
  147. if (rx_netbuf == NULL) {
  148. DP_STATS_INC(dp_pdev, replenish.nbuf_alloc_fail, 1);
  149. continue;
  150. }
  151. ret = qdf_nbuf_map_single(dp_soc->osdev, rx_netbuf,
  152. QDF_DMA_BIDIRECTIONAL);
  153. if (qdf_unlikely(QDF_IS_STATUS_ERROR(ret))) {
  154. qdf_nbuf_free(rx_netbuf);
  155. DP_STATS_INC(dp_pdev, replenish.map_err, 1);
  156. continue;
  157. }
  158. paddr = qdf_nbuf_get_frag_paddr(rx_netbuf, 0);
  159. /*
  160. * check if the physical address of nbuf->data is
  161. * less then 0x50000000 then free the nbuf and try
  162. * allocating new nbuf. We can try for 100 times.
  163. * this is a temp WAR till we fix it properly.
  164. */
  165. ret = check_x86_paddr(dp_soc, &rx_netbuf, &paddr, dp_pdev);
  166. if (ret == QDF_STATUS_E_FAILURE) {
  167. DP_STATS_INC(dp_pdev, replenish.x86_fail, 1);
  168. break;
  169. }
  170. count++;
  171. rxdma_ring_entry = hal_srng_src_get_next(dp_soc->hal_soc,
  172. rxdma_srng);
  173. qdf_assert_always(rxdma_ring_entry);
  174. next = (*desc_list)->next;
  175. dp_rx_desc_prep(&((*desc_list)->rx_desc), rx_netbuf);
  176. (*desc_list)->rx_desc.in_use = 1;
  177. dp_debug("rx_netbuf=%pK, buf=%pK, paddr=0x%llx, cookie=%d",
  178. rx_netbuf, qdf_nbuf_data(rx_netbuf),
  179. (unsigned long long)paddr,
  180. (*desc_list)->rx_desc.cookie);
  181. hal_rxdma_buff_addr_info_set(rxdma_ring_entry, paddr,
  182. (*desc_list)->rx_desc.cookie,
  183. rx_desc_pool->owner);
  184. *desc_list = next;
  185. }
  186. hal_srng_access_end(dp_soc->hal_soc, rxdma_srng);
  187. dp_debug("replenished buffers %d, rx desc added back to free list %u",
  188. num_req_buffers, num_desc_to_free);
  189. DP_STATS_INC_PKT(dp_pdev, replenish.pkts, num_req_buffers,
  190. (RX_BUFFER_SIZE * num_req_buffers));
  191. free_descs:
  192. DP_STATS_INC(dp_pdev, buf_freelist, num_desc_to_free);
  193. /*
  194. * add any available free desc back to the free list
  195. */
  196. if (*desc_list)
  197. dp_rx_add_desc_list_to_free_list(dp_soc, desc_list, tail,
  198. mac_id, rx_desc_pool);
  199. return QDF_STATUS_SUCCESS;
  200. }
  201. /*
  202. * dp_rx_deliver_raw() - process RAW mode pkts and hand over the
  203. * pkts to RAW mode simulation to
  204. * decapsulate the pkt.
  205. *
  206. * @vdev: vdev on which RAW mode is enabled
  207. * @nbuf_list: list of RAW pkts to process
  208. * @peer: peer object from which the pkt is rx
  209. *
  210. * Return: void
  211. */
  212. void
  213. dp_rx_deliver_raw(struct dp_vdev *vdev, qdf_nbuf_t nbuf_list,
  214. struct dp_peer *peer)
  215. {
  216. qdf_nbuf_t deliver_list_head = NULL;
  217. qdf_nbuf_t deliver_list_tail = NULL;
  218. qdf_nbuf_t nbuf;
  219. nbuf = nbuf_list;
  220. while (nbuf) {
  221. qdf_nbuf_t next = qdf_nbuf_next(nbuf);
  222. DP_RX_LIST_APPEND(deliver_list_head, deliver_list_tail, nbuf);
  223. DP_STATS_INC(vdev->pdev, rx_raw_pkts, 1);
  224. DP_STATS_INC_PKT(peer, rx.raw, 1, qdf_nbuf_len(nbuf));
  225. /*
  226. * reset the chfrag_start and chfrag_end bits in nbuf cb
  227. * as this is a non-amsdu pkt and RAW mode simulation expects
  228. * these bit s to be 0 for non-amsdu pkt.
  229. */
  230. if (qdf_nbuf_is_rx_chfrag_start(nbuf) &&
  231. qdf_nbuf_is_rx_chfrag_end(nbuf)) {
  232. qdf_nbuf_set_rx_chfrag_start(nbuf, 0);
  233. qdf_nbuf_set_rx_chfrag_end(nbuf, 0);
  234. }
  235. nbuf = next;
  236. }
  237. vdev->osif_rsim_rx_decap(vdev->osif_vdev, &deliver_list_head,
  238. &deliver_list_tail, (struct cdp_peer*) peer);
  239. vdev->osif_rx(vdev->osif_vdev, deliver_list_head);
  240. }
  241. #ifdef DP_LFR
  242. /*
  243. * In case of LFR, data of a new peer might be sent up
  244. * even before peer is added.
  245. */
  246. static inline struct dp_vdev *
  247. dp_get_vdev_from_peer(struct dp_soc *soc,
  248. uint16_t peer_id,
  249. struct dp_peer *peer,
  250. struct hal_rx_mpdu_desc_info mpdu_desc_info)
  251. {
  252. struct dp_vdev *vdev;
  253. uint8_t vdev_id;
  254. if (unlikely(!peer)) {
  255. if (peer_id != HTT_INVALID_PEER) {
  256. vdev_id = DP_PEER_METADATA_ID_GET(
  257. mpdu_desc_info.peer_meta_data);
  258. QDF_TRACE(QDF_MODULE_ID_DP,
  259. QDF_TRACE_LEVEL_DEBUG,
  260. FL("PeerID %d not found use vdevID %d"),
  261. peer_id, vdev_id);
  262. vdev = dp_get_vdev_from_soc_vdev_id_wifi3(soc,
  263. vdev_id);
  264. } else {
  265. QDF_TRACE(QDF_MODULE_ID_DP,
  266. QDF_TRACE_LEVEL_DEBUG,
  267. FL("Invalid PeerID %d"),
  268. peer_id);
  269. return NULL;
  270. }
  271. } else {
  272. vdev = peer->vdev;
  273. }
  274. return vdev;
  275. }
  276. #else
  277. static inline struct dp_vdev *
  278. dp_get_vdev_from_peer(struct dp_soc *soc,
  279. uint16_t peer_id,
  280. struct dp_peer *peer,
  281. struct hal_rx_mpdu_desc_info mpdu_desc_info)
  282. {
  283. if (unlikely(!peer)) {
  284. QDF_TRACE(QDF_MODULE_ID_DP,
  285. QDF_TRACE_LEVEL_DEBUG,
  286. FL("Peer not found for peerID %d"),
  287. peer_id);
  288. return NULL;
  289. } else {
  290. return peer->vdev;
  291. }
  292. }
  293. #endif
  294. /**
  295. * dp_rx_da_learn() - Add AST entry based on DA lookup
  296. * This is a WAR for HK 1.0 and will
  297. * be removed in HK 2.0
  298. *
  299. * @soc: core txrx main context
  300. * @rx_tlv_hdr : start address of rx tlvs
  301. * @ta_peer : Transmitter peer entry
  302. * @nbuf : nbuf to retrieve destination mac for which AST will be added
  303. *
  304. */
  305. #ifdef FEATURE_WDS
  306. static void
  307. dp_rx_da_learn(struct dp_soc *soc,
  308. uint8_t *rx_tlv_hdr,
  309. struct dp_peer *ta_peer,
  310. qdf_nbuf_t nbuf)
  311. {
  312. /* For HKv2 DA port learing is not needed */
  313. if (qdf_likely(soc->ast_override_support))
  314. return;
  315. if (ta_peer && (ta_peer->vdev->opmode != wlan_op_mode_ap))
  316. return;
  317. if (qdf_unlikely(!hal_rx_msdu_end_da_is_valid_get(rx_tlv_hdr) &&
  318. !hal_rx_msdu_end_da_is_mcbc_get(rx_tlv_hdr))) {
  319. dp_peer_add_ast(soc,
  320. ta_peer,
  321. qdf_nbuf_data(nbuf),
  322. CDP_TXRX_AST_TYPE_DA,
  323. IEEE80211_NODE_F_WDS_HM);
  324. }
  325. }
  326. #else
  327. static void
  328. dp_rx_da_learn(struct dp_soc *soc,
  329. uint8_t *rx_tlv_hdr,
  330. struct dp_peer *ta_peer,
  331. qdf_nbuf_t nbuf)
  332. {
  333. }
  334. #endif
  335. /**
  336. * dp_rx_intrabss_fwd() - Implements the Intra-BSS forwarding logic
  337. *
  338. * @soc: core txrx main context
  339. * @ta_peer : source peer entry
  340. * @rx_tlv_hdr : start address of rx tlvs
  341. * @nbuf : nbuf that has to be intrabss forwarded
  342. *
  343. * Return: bool: true if it is forwarded else false
  344. */
  345. static bool
  346. dp_rx_intrabss_fwd(struct dp_soc *soc,
  347. struct dp_peer *ta_peer,
  348. uint8_t *rx_tlv_hdr,
  349. qdf_nbuf_t nbuf)
  350. {
  351. uint16_t da_idx;
  352. uint16_t len;
  353. struct dp_peer *da_peer;
  354. struct dp_ast_entry *ast_entry;
  355. qdf_nbuf_t nbuf_copy;
  356. /* check if the destination peer is available in peer table
  357. * and also check if the source peer and destination peer
  358. * belong to the same vap and destination peer is not bss peer.
  359. */
  360. if ((hal_rx_msdu_end_da_is_valid_get(rx_tlv_hdr) &&
  361. !hal_rx_msdu_end_da_is_mcbc_get(rx_tlv_hdr))) {
  362. da_idx = hal_rx_msdu_end_da_idx_get(soc->hal_soc, rx_tlv_hdr);
  363. ast_entry = soc->ast_table[da_idx];
  364. if (!ast_entry)
  365. return false;
  366. if (ast_entry->type == CDP_TXRX_AST_TYPE_DA) {
  367. ast_entry->is_active = TRUE;
  368. return false;
  369. }
  370. da_peer = ast_entry->peer;
  371. if (!da_peer)
  372. return false;
  373. /* TA peer cannot be same as peer(DA) on which AST is present
  374. * this indicates a change in topology and that AST entries
  375. * are yet to be updated.
  376. */
  377. if (da_peer == ta_peer)
  378. return false;
  379. if (da_peer->vdev == ta_peer->vdev && !da_peer->bss_peer) {
  380. memset(nbuf->cb, 0x0, sizeof(nbuf->cb));
  381. len = qdf_nbuf_len(nbuf);
  382. /* linearize the nbuf just before we send to
  383. * dp_tx_send()
  384. */
  385. if (qdf_unlikely(qdf_nbuf_get_ext_list(nbuf))) {
  386. if (qdf_nbuf_linearize(nbuf) == -ENOMEM)
  387. return false;
  388. nbuf = qdf_nbuf_unshare(nbuf);
  389. if (!nbuf) {
  390. DP_STATS_INC_PKT(ta_peer,
  391. rx.intra_bss.fail,
  392. 1,
  393. len);
  394. /* return true even though the pkt is
  395. * not forwarded. Basically skb_unshare
  396. * failed and we want to continue with
  397. * next nbuf.
  398. */
  399. return true;
  400. }
  401. }
  402. if (!dp_tx_send(ta_peer->vdev, nbuf)) {
  403. DP_STATS_INC_PKT(ta_peer, rx.intra_bss.pkts, 1,
  404. len);
  405. return true;
  406. } else {
  407. DP_STATS_INC_PKT(ta_peer, rx.intra_bss.fail, 1,
  408. len);
  409. return false;
  410. }
  411. }
  412. }
  413. /* if it is a broadcast pkt (eg: ARP) and it is not its own
  414. * source, then clone the pkt and send the cloned pkt for
  415. * intra BSS forwarding and original pkt up the network stack
  416. * Note: how do we handle multicast pkts. do we forward
  417. * all multicast pkts as is or let a higher layer module
  418. * like igmpsnoop decide whether to forward or not with
  419. * Mcast enhancement.
  420. */
  421. else if (qdf_unlikely((hal_rx_msdu_end_da_is_mcbc_get(rx_tlv_hdr) &&
  422. !ta_peer->bss_peer))) {
  423. nbuf_copy = qdf_nbuf_copy(nbuf);
  424. if (!nbuf_copy)
  425. return false;
  426. memset(nbuf_copy->cb, 0x0, sizeof(nbuf_copy->cb));
  427. len = qdf_nbuf_len(nbuf_copy);
  428. if (dp_tx_send(ta_peer->vdev, nbuf_copy)) {
  429. DP_STATS_INC_PKT(ta_peer, rx.intra_bss.fail, 1, len);
  430. qdf_nbuf_free(nbuf_copy);
  431. } else {
  432. DP_STATS_INC_PKT(ta_peer, rx.intra_bss.pkts, 1, len);
  433. }
  434. }
  435. /* return false as we have to still send the original pkt
  436. * up the stack
  437. */
  438. return false;
  439. }
  440. #ifdef MESH_MODE_SUPPORT
  441. /**
  442. * dp_rx_fill_mesh_stats() - Fills the mesh per packet receive stats
  443. *
  444. * @vdev: DP Virtual device handle
  445. * @nbuf: Buffer pointer
  446. * @rx_tlv_hdr: start of rx tlv header
  447. * @peer: pointer to peer
  448. *
  449. * This function allocated memory for mesh receive stats and fill the
  450. * required stats. Stores the memory address in skb cb.
  451. *
  452. * Return: void
  453. */
  454. void dp_rx_fill_mesh_stats(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
  455. uint8_t *rx_tlv_hdr, struct dp_peer *peer)
  456. {
  457. struct mesh_recv_hdr_s *rx_info = NULL;
  458. uint32_t pkt_type;
  459. uint32_t nss;
  460. uint32_t rate_mcs;
  461. uint32_t bw;
  462. /* fill recv mesh stats */
  463. rx_info = qdf_mem_malloc(sizeof(struct mesh_recv_hdr_s));
  464. /* upper layers are resposible to free this memory */
  465. if (rx_info == NULL) {
  466. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  467. "Memory allocation failed for mesh rx stats");
  468. DP_STATS_INC(vdev->pdev, mesh_mem_alloc, 1);
  469. return;
  470. }
  471. rx_info->rs_flags = MESH_RXHDR_VER1;
  472. if (qdf_nbuf_is_rx_chfrag_start(nbuf))
  473. rx_info->rs_flags |= MESH_RX_FIRST_MSDU;
  474. if (qdf_nbuf_is_rx_chfrag_end(nbuf))
  475. rx_info->rs_flags |= MESH_RX_LAST_MSDU;
  476. if (hal_rx_attn_msdu_get_is_decrypted(rx_tlv_hdr)) {
  477. rx_info->rs_flags |= MESH_RX_DECRYPTED;
  478. rx_info->rs_keyix = hal_rx_msdu_get_keyid(rx_tlv_hdr);
  479. if (vdev->osif_get_key)
  480. vdev->osif_get_key(vdev->osif_vdev,
  481. &rx_info->rs_decryptkey[0],
  482. &peer->mac_addr.raw[0],
  483. rx_info->rs_keyix);
  484. }
  485. rx_info->rs_rssi = hal_rx_msdu_start_get_rssi(rx_tlv_hdr);
  486. rx_info->rs_channel = hal_rx_msdu_start_get_freq(rx_tlv_hdr);
  487. pkt_type = hal_rx_msdu_start_get_pkt_type(rx_tlv_hdr);
  488. rate_mcs = hal_rx_msdu_start_rate_mcs_get(rx_tlv_hdr);
  489. bw = hal_rx_msdu_start_bw_get(rx_tlv_hdr);
  490. nss = hal_rx_msdu_start_nss_get(vdev->pdev->soc->hal_soc, rx_tlv_hdr);
  491. rx_info->rs_ratephy1 = rate_mcs | (nss << 0x8) | (pkt_type << 16) |
  492. (bw << 24);
  493. qdf_nbuf_set_rx_fctx_type(nbuf, (void *)rx_info, CB_FTYPE_MESH_RX_INFO);
  494. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO_MED,
  495. FL("Mesh rx stats: flags %x, rssi %x, chn %x, rate %x, kix %x"),
  496. rx_info->rs_flags,
  497. rx_info->rs_rssi,
  498. rx_info->rs_channel,
  499. rx_info->rs_ratephy1,
  500. rx_info->rs_keyix);
  501. }
  502. /**
  503. * dp_rx_filter_mesh_packets() - Filters mesh unwanted packets
  504. *
  505. * @vdev: DP Virtual device handle
  506. * @nbuf: Buffer pointer
  507. * @rx_tlv_hdr: start of rx tlv header
  508. *
  509. * This checks if the received packet is matching any filter out
  510. * catogery and and drop the packet if it matches.
  511. *
  512. * Return: status(0 indicates drop, 1 indicate to no drop)
  513. */
  514. QDF_STATUS dp_rx_filter_mesh_packets(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
  515. uint8_t *rx_tlv_hdr)
  516. {
  517. union dp_align_mac_addr mac_addr;
  518. if (qdf_unlikely(vdev->mesh_rx_filter)) {
  519. if (vdev->mesh_rx_filter & MESH_FILTER_OUT_FROMDS)
  520. if (hal_rx_mpdu_get_fr_ds(rx_tlv_hdr))
  521. return QDF_STATUS_SUCCESS;
  522. if (vdev->mesh_rx_filter & MESH_FILTER_OUT_TODS)
  523. if (hal_rx_mpdu_get_to_ds(rx_tlv_hdr))
  524. return QDF_STATUS_SUCCESS;
  525. if (vdev->mesh_rx_filter & MESH_FILTER_OUT_NODS)
  526. if (!hal_rx_mpdu_get_fr_ds(rx_tlv_hdr)
  527. && !hal_rx_mpdu_get_to_ds(rx_tlv_hdr))
  528. return QDF_STATUS_SUCCESS;
  529. if (vdev->mesh_rx_filter & MESH_FILTER_OUT_RA) {
  530. if (hal_rx_mpdu_get_addr1(rx_tlv_hdr,
  531. &mac_addr.raw[0]))
  532. return QDF_STATUS_E_FAILURE;
  533. if (!qdf_mem_cmp(&mac_addr.raw[0],
  534. &vdev->mac_addr.raw[0],
  535. DP_MAC_ADDR_LEN))
  536. return QDF_STATUS_SUCCESS;
  537. }
  538. if (vdev->mesh_rx_filter & MESH_FILTER_OUT_TA) {
  539. if (hal_rx_mpdu_get_addr2(rx_tlv_hdr,
  540. &mac_addr.raw[0]))
  541. return QDF_STATUS_E_FAILURE;
  542. if (!qdf_mem_cmp(&mac_addr.raw[0],
  543. &vdev->mac_addr.raw[0],
  544. DP_MAC_ADDR_LEN))
  545. return QDF_STATUS_SUCCESS;
  546. }
  547. }
  548. return QDF_STATUS_E_FAILURE;
  549. }
  550. #else
  551. void dp_rx_fill_mesh_stats(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
  552. uint8_t *rx_tlv_hdr, struct dp_peer *peer)
  553. {
  554. }
  555. QDF_STATUS dp_rx_filter_mesh_packets(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
  556. uint8_t *rx_tlv_hdr)
  557. {
  558. return QDF_STATUS_E_FAILURE;
  559. }
  560. #endif
  561. #ifdef CONFIG_WIN
  562. /**
  563. * dp_rx_nac_filter(): Function to perform filtering of non-associated
  564. * clients
  565. * @pdev: DP pdev handle
  566. * @rx_pkt_hdr: Rx packet Header
  567. *
  568. * return: dp_vdev*
  569. */
  570. static
  571. struct dp_vdev *dp_rx_nac_filter(struct dp_pdev *pdev,
  572. uint8_t *rx_pkt_hdr)
  573. {
  574. struct ieee80211_frame *wh;
  575. struct dp_neighbour_peer *peer = NULL;
  576. wh = (struct ieee80211_frame *)rx_pkt_hdr;
  577. if ((wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) != IEEE80211_FC1_DIR_TODS)
  578. return NULL;
  579. qdf_spin_lock_bh(&pdev->neighbour_peer_mutex);
  580. TAILQ_FOREACH(peer, &pdev->neighbour_peers_list,
  581. neighbour_peer_list_elem) {
  582. if (qdf_mem_cmp(&peer->neighbour_peers_macaddr.raw[0],
  583. wh->i_addr2, DP_MAC_ADDR_LEN) == 0) {
  584. QDF_TRACE(
  585. QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  586. FL("NAC configuration matched for mac-%2x:%2x:%2x:%2x:%2x:%2x"),
  587. peer->neighbour_peers_macaddr.raw[0],
  588. peer->neighbour_peers_macaddr.raw[1],
  589. peer->neighbour_peers_macaddr.raw[2],
  590. peer->neighbour_peers_macaddr.raw[3],
  591. peer->neighbour_peers_macaddr.raw[4],
  592. peer->neighbour_peers_macaddr.raw[5]);
  593. qdf_spin_unlock_bh(&pdev->neighbour_peer_mutex);
  594. return pdev->monitor_vdev;
  595. }
  596. }
  597. qdf_spin_unlock_bh(&pdev->neighbour_peer_mutex);
  598. return NULL;
  599. }
  600. /**
  601. * dp_rx_process_invalid_peer(): Function to pass invalid peer list to umac
  602. * @soc: DP SOC handle
  603. * @mpdu: mpdu for which peer is invalid
  604. *
  605. * return: integer type
  606. */
  607. uint8_t dp_rx_process_invalid_peer(struct dp_soc *soc, qdf_nbuf_t mpdu)
  608. {
  609. struct dp_invalid_peer_msg msg;
  610. struct dp_vdev *vdev = NULL;
  611. struct dp_pdev *pdev = NULL;
  612. struct ieee80211_frame *wh;
  613. uint8_t i;
  614. qdf_nbuf_t curr_nbuf, next_nbuf;
  615. uint8_t *rx_tlv_hdr = qdf_nbuf_data(mpdu);
  616. uint8_t *rx_pkt_hdr = hal_rx_pkt_hdr_get(rx_tlv_hdr);
  617. wh = (struct ieee80211_frame *)rx_pkt_hdr;
  618. if (!DP_FRAME_IS_DATA(wh)) {
  619. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  620. "NAWDS valid only for data frames");
  621. goto free;
  622. }
  623. if (qdf_nbuf_len(mpdu) < sizeof(struct ieee80211_frame)) {
  624. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  625. "Invalid nbuf length");
  626. goto free;
  627. }
  628. for (i = 0; i < MAX_PDEV_CNT; i++) {
  629. pdev = soc->pdev_list[i];
  630. if (!pdev) {
  631. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  632. "PDEV not found");
  633. continue;
  634. }
  635. if (pdev->filter_neighbour_peers) {
  636. /* Next Hop scenario not yet handle */
  637. vdev = dp_rx_nac_filter(pdev, rx_pkt_hdr);
  638. if (vdev) {
  639. dp_rx_mon_deliver(soc, i,
  640. pdev->invalid_peer_head_msdu,
  641. pdev->invalid_peer_tail_msdu);
  642. pdev->invalid_peer_head_msdu = NULL;
  643. pdev->invalid_peer_tail_msdu = NULL;
  644. return 0;
  645. }
  646. }
  647. TAILQ_FOREACH(vdev, &pdev->vdev_list, vdev_list_elem) {
  648. if (qdf_mem_cmp(wh->i_addr1, vdev->mac_addr.raw,
  649. DP_MAC_ADDR_LEN) == 0) {
  650. goto out;
  651. }
  652. }
  653. }
  654. if (!vdev) {
  655. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  656. "VDEV not found");
  657. goto free;
  658. }
  659. out:
  660. msg.wh = wh;
  661. qdf_nbuf_pull_head(mpdu, RX_PKT_TLVS_LEN);
  662. msg.nbuf = mpdu;
  663. msg.vdev_id = vdev->vdev_id;
  664. if (pdev->soc->cdp_soc.ol_ops->rx_invalid_peer)
  665. pdev->soc->cdp_soc.ol_ops->rx_invalid_peer(pdev->ctrl_pdev,
  666. &msg);
  667. free:
  668. /* Drop and free packet */
  669. curr_nbuf = mpdu;
  670. while (curr_nbuf) {
  671. next_nbuf = qdf_nbuf_next(curr_nbuf);
  672. qdf_nbuf_free(curr_nbuf);
  673. curr_nbuf = next_nbuf;
  674. }
  675. return 0;
  676. }
  677. /**
  678. * dp_rx_process_invalid_peer_wrapper(): Function to wrap invalid peer handler
  679. * @soc: DP SOC handle
  680. * @mpdu: mpdu for which peer is invalid
  681. * @mpdu_done: if an mpdu is completed
  682. *
  683. * return: integer type
  684. */
  685. void dp_rx_process_invalid_peer_wrapper(struct dp_soc *soc,
  686. qdf_nbuf_t mpdu, bool mpdu_done)
  687. {
  688. /* Only trigger the process when mpdu is completed */
  689. if (mpdu_done)
  690. dp_rx_process_invalid_peer(soc, mpdu);
  691. }
  692. #else
  693. uint8_t dp_rx_process_invalid_peer(struct dp_soc *soc, qdf_nbuf_t mpdu)
  694. {
  695. qdf_nbuf_t curr_nbuf, next_nbuf;
  696. struct dp_pdev *pdev;
  697. uint8_t i;
  698. struct dp_vdev *vdev = NULL;
  699. struct ieee80211_frame *wh;
  700. uint8_t *rx_tlv_hdr = qdf_nbuf_data(mpdu);
  701. uint8_t *rx_pkt_hdr = hal_rx_pkt_hdr_get(rx_tlv_hdr);
  702. wh = (struct ieee80211_frame *)rx_pkt_hdr;
  703. if (!DP_FRAME_IS_DATA(wh)) {
  704. QDF_TRACE_ERROR_RL(QDF_MODULE_ID_DP,
  705. "only for data frames");
  706. goto free;
  707. }
  708. if (qdf_nbuf_len(mpdu) < sizeof(struct ieee80211_frame)) {
  709. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  710. "Invalid nbuf length");
  711. goto free;
  712. }
  713. for (i = 0; i < MAX_PDEV_CNT; i++) {
  714. pdev = soc->pdev_list[i];
  715. if (!pdev) {
  716. QDF_TRACE(QDF_MODULE_ID_DP,
  717. QDF_TRACE_LEVEL_ERROR,
  718. "PDEV not found");
  719. continue;
  720. }
  721. qdf_spin_lock_bh(&pdev->vdev_list_lock);
  722. DP_PDEV_ITERATE_VDEV_LIST(pdev, vdev) {
  723. if (qdf_mem_cmp(wh->i_addr1, vdev->mac_addr.raw,
  724. DP_MAC_ADDR_LEN) == 0) {
  725. qdf_spin_unlock_bh(&pdev->vdev_list_lock);
  726. goto out;
  727. }
  728. }
  729. qdf_spin_unlock_bh(&pdev->vdev_list_lock);
  730. }
  731. if (NULL == vdev) {
  732. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  733. "VDEV not found");
  734. goto free;
  735. }
  736. out:
  737. if (soc->cdp_soc.ol_ops->rx_invalid_peer)
  738. soc->cdp_soc.ol_ops->rx_invalid_peer(vdev->vdev_id, wh);
  739. free:
  740. /* reset the head and tail pointers */
  741. for (i = 0; i < MAX_PDEV_CNT; i++) {
  742. pdev = soc->pdev_list[i];
  743. if (!pdev) {
  744. QDF_TRACE(QDF_MODULE_ID_DP,
  745. QDF_TRACE_LEVEL_ERROR,
  746. "PDEV not found");
  747. continue;
  748. }
  749. pdev->invalid_peer_head_msdu = NULL;
  750. pdev->invalid_peer_tail_msdu = NULL;
  751. }
  752. /* Drop and free packet */
  753. curr_nbuf = mpdu;
  754. while (curr_nbuf) {
  755. next_nbuf = qdf_nbuf_next(curr_nbuf);
  756. DP_STATS_INC_PKT(soc, rx.err.rx_invalid_peer, 1,
  757. qdf_nbuf_len(curr_nbuf));
  758. qdf_nbuf_free(curr_nbuf);
  759. curr_nbuf = next_nbuf;
  760. }
  761. return 0;
  762. }
  763. void dp_rx_process_invalid_peer_wrapper(struct dp_soc *soc,
  764. qdf_nbuf_t mpdu, bool mpdu_done)
  765. {
  766. /* Process the nbuf */
  767. dp_rx_process_invalid_peer(soc, mpdu);
  768. }
  769. #endif
  770. #if defined(FEATURE_LRO)
  771. static void dp_rx_print_lro_info(uint8_t *rx_tlv)
  772. {
  773. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  774. FL("----------------------RX DESC LRO----------------------"));
  775. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  776. FL("lro_eligible 0x%x"), HAL_RX_TLV_GET_LRO_ELIGIBLE(rx_tlv));
  777. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  778. FL("pure_ack 0x%x"), HAL_RX_TLV_GET_TCP_PURE_ACK(rx_tlv));
  779. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  780. FL("chksum 0x%x"), HAL_RX_TLV_GET_TCP_CHKSUM(rx_tlv));
  781. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  782. FL("TCP seq num 0x%x"), HAL_RX_TLV_GET_TCP_SEQ(rx_tlv));
  783. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  784. FL("TCP ack num 0x%x"), HAL_RX_TLV_GET_TCP_ACK(rx_tlv));
  785. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  786. FL("TCP window 0x%x"), HAL_RX_TLV_GET_TCP_WIN(rx_tlv));
  787. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  788. FL("TCP protocol 0x%x"), HAL_RX_TLV_GET_TCP_PROTO(rx_tlv));
  789. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  790. FL("TCP offset 0x%x"), HAL_RX_TLV_GET_TCP_OFFSET(rx_tlv));
  791. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  792. FL("toeplitz 0x%x"), HAL_RX_TLV_GET_FLOW_ID_TOEPLITZ(rx_tlv));
  793. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  794. FL("---------------------------------------------------------"));
  795. }
  796. /**
  797. * dp_rx_lro() - LRO related processing
  798. * @rx_tlv: TLV data extracted from the rx packet
  799. * @peer: destination peer of the msdu
  800. * @msdu: network buffer
  801. * @ctx: LRO context
  802. *
  803. * This function performs the LRO related processing of the msdu
  804. *
  805. * Return: true: LRO enabled false: LRO is not enabled
  806. */
  807. static void dp_rx_lro(uint8_t *rx_tlv, struct dp_peer *peer,
  808. qdf_nbuf_t msdu, qdf_lro_ctx_t ctx)
  809. {
  810. if (!peer || !peer->vdev || !peer->vdev->lro_enable) {
  811. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_DEBUG,
  812. FL("no peer, no vdev or LRO disabled"));
  813. QDF_NBUF_CB_RX_LRO_ELIGIBLE(msdu) = 0;
  814. return;
  815. }
  816. qdf_assert(rx_tlv);
  817. dp_rx_print_lro_info(rx_tlv);
  818. QDF_NBUF_CB_RX_LRO_ELIGIBLE(msdu) =
  819. HAL_RX_TLV_GET_LRO_ELIGIBLE(rx_tlv);
  820. QDF_NBUF_CB_RX_TCP_PURE_ACK(msdu) =
  821. HAL_RX_TLV_GET_TCP_PURE_ACK(rx_tlv);
  822. QDF_NBUF_CB_RX_TCP_CHKSUM(msdu) =
  823. HAL_RX_TLV_GET_TCP_CHKSUM(rx_tlv);
  824. QDF_NBUF_CB_RX_TCP_SEQ_NUM(msdu) =
  825. HAL_RX_TLV_GET_TCP_SEQ(rx_tlv);
  826. QDF_NBUF_CB_RX_TCP_ACK_NUM(msdu) =
  827. HAL_RX_TLV_GET_TCP_ACK(rx_tlv);
  828. QDF_NBUF_CB_RX_TCP_WIN(msdu) =
  829. HAL_RX_TLV_GET_TCP_WIN(rx_tlv);
  830. QDF_NBUF_CB_RX_TCP_PROTO(msdu) =
  831. HAL_RX_TLV_GET_TCP_PROTO(rx_tlv);
  832. QDF_NBUF_CB_RX_IPV6_PROTO(msdu) =
  833. HAL_RX_TLV_GET_IPV6(rx_tlv);
  834. QDF_NBUF_CB_RX_TCP_OFFSET(msdu) =
  835. HAL_RX_TLV_GET_TCP_OFFSET(rx_tlv);
  836. QDF_NBUF_CB_RX_FLOW_ID(msdu) =
  837. HAL_RX_TLV_GET_FLOW_ID_TOEPLITZ(rx_tlv);
  838. QDF_NBUF_CB_RX_LRO_CTX(msdu) = (unsigned char *)ctx;
  839. }
  840. #else
  841. static void dp_rx_lro(uint8_t *rx_tlv, struct dp_peer *peer,
  842. qdf_nbuf_t msdu, qdf_lro_ctx_t ctx)
  843. {
  844. }
  845. #endif
  846. /**
  847. * dp_rx_adjust_nbuf_len() - set appropriate msdu length in nbuf.
  848. *
  849. * @nbuf: pointer to msdu.
  850. * @mpdu_len: mpdu length
  851. *
  852. * Return: returns true if nbuf is last msdu of mpdu else retuns false.
  853. */
  854. static inline bool dp_rx_adjust_nbuf_len(qdf_nbuf_t nbuf, uint16_t *mpdu_len)
  855. {
  856. bool last_nbuf;
  857. if (*mpdu_len >= (RX_BUFFER_SIZE - RX_PKT_TLVS_LEN)) {
  858. qdf_nbuf_set_pktlen(nbuf, RX_BUFFER_SIZE);
  859. last_nbuf = false;
  860. } else {
  861. qdf_nbuf_set_pktlen(nbuf, (*mpdu_len + RX_PKT_TLVS_LEN));
  862. last_nbuf = true;
  863. }
  864. *mpdu_len -= (RX_BUFFER_SIZE - RX_PKT_TLVS_LEN);
  865. return last_nbuf;
  866. }
  867. /**
  868. * dp_rx_sg_create() - create a frag_list for MSDUs which are spread across
  869. * multiple nbufs.
  870. * @nbuf: pointer to the first msdu of an amsdu.
  871. * @rx_tlv_hdr: pointer to the start of RX TLV headers.
  872. *
  873. *
  874. * This function implements the creation of RX frag_list for cases
  875. * where an MSDU is spread across multiple nbufs.
  876. *
  877. * Return: returns the head nbuf which contains complete frag_list.
  878. */
  879. qdf_nbuf_t dp_rx_sg_create(qdf_nbuf_t nbuf, uint8_t *rx_tlv_hdr)
  880. {
  881. qdf_nbuf_t parent, next, frag_list;
  882. uint16_t frag_list_len = 0;
  883. uint16_t mpdu_len;
  884. bool last_nbuf;
  885. mpdu_len = hal_rx_msdu_start_msdu_len_get(rx_tlv_hdr);
  886. /*
  887. * this is a case where the complete msdu fits in one single nbuf.
  888. * in this case HW sets both start and end bit and we only need to
  889. * reset these bits for RAW mode simulator to decap the pkt
  890. */
  891. if (qdf_nbuf_is_rx_chfrag_start(nbuf) &&
  892. qdf_nbuf_is_rx_chfrag_end(nbuf)) {
  893. qdf_nbuf_set_pktlen(nbuf, mpdu_len + RX_PKT_TLVS_LEN);
  894. qdf_nbuf_pull_head(nbuf, RX_PKT_TLVS_LEN);
  895. return nbuf;
  896. }
  897. /*
  898. * This is a case where we have multiple msdus (A-MSDU) spread across
  899. * multiple nbufs. here we create a fraglist out of these nbufs.
  900. *
  901. * the moment we encounter a nbuf with continuation bit set we
  902. * know for sure we have an MSDU which is spread across multiple
  903. * nbufs. We loop through and reap nbufs till we reach last nbuf.
  904. */
  905. parent = nbuf;
  906. frag_list = nbuf->next;
  907. nbuf = nbuf->next;
  908. /*
  909. * set the start bit in the first nbuf we encounter with continuation
  910. * bit set. This has the proper mpdu length set as it is the first
  911. * msdu of the mpdu. this becomes the parent nbuf and the subsequent
  912. * nbufs will form the frag_list of the parent nbuf.
  913. */
  914. qdf_nbuf_set_rx_chfrag_start(parent, 1);
  915. last_nbuf = dp_rx_adjust_nbuf_len(parent, &mpdu_len);
  916. /*
  917. * this is where we set the length of the fragments which are
  918. * associated to the parent nbuf. We iterate through the frag_list
  919. * till we hit the last_nbuf of the list.
  920. */
  921. do {
  922. last_nbuf = dp_rx_adjust_nbuf_len(nbuf, &mpdu_len);
  923. qdf_nbuf_pull_head(nbuf, RX_PKT_TLVS_LEN);
  924. frag_list_len += qdf_nbuf_len(nbuf);
  925. if (last_nbuf) {
  926. next = nbuf->next;
  927. nbuf->next = NULL;
  928. break;
  929. }
  930. nbuf = nbuf->next;
  931. } while (!last_nbuf);
  932. qdf_nbuf_set_rx_chfrag_start(nbuf, 0);
  933. qdf_nbuf_append_ext_list(parent, frag_list, frag_list_len);
  934. parent->next = next;
  935. qdf_nbuf_pull_head(parent, RX_PKT_TLVS_LEN);
  936. return parent;
  937. }
  938. static inline void dp_rx_deliver_to_stack(struct dp_vdev *vdev,
  939. struct dp_peer *peer,
  940. qdf_nbuf_t nbuf_head,
  941. qdf_nbuf_t nbuf_tail)
  942. {
  943. /*
  944. * highly unlikely to have a vdev without a registered rx
  945. * callback function. if so let us free the nbuf_list.
  946. */
  947. if (qdf_unlikely(!vdev->osif_rx)) {
  948. qdf_nbuf_t nbuf;
  949. do {
  950. nbuf = nbuf_head;
  951. nbuf_head = nbuf_head->next;
  952. qdf_nbuf_free(nbuf);
  953. } while (nbuf_head);
  954. return;
  955. }
  956. if (qdf_unlikely(vdev->rx_decap_type == htt_cmn_pkt_type_raw) ||
  957. (vdev->rx_decap_type == htt_cmn_pkt_type_native_wifi)) {
  958. vdev->osif_rsim_rx_decap(vdev->osif_vdev, &nbuf_head,
  959. &nbuf_tail, (struct cdp_peer *) peer);
  960. }
  961. vdev->osif_rx(vdev->osif_vdev, nbuf_head);
  962. }
  963. /**
  964. * dp_rx_cksum_offload() - set the nbuf checksum as defined by hardware.
  965. * @nbuf: pointer to the first msdu of an amsdu.
  966. * @rx_tlv_hdr: pointer to the start of RX TLV headers.
  967. *
  968. * The ipsumed field of the skb is set based on whether HW validated the
  969. * IP/TCP/UDP checksum.
  970. *
  971. * Return: void
  972. */
  973. static inline void dp_rx_cksum_offload(struct dp_pdev *pdev,
  974. qdf_nbuf_t nbuf,
  975. uint8_t *rx_tlv_hdr)
  976. {
  977. qdf_nbuf_rx_cksum_t cksum = {0};
  978. bool ip_csum_err = hal_rx_attn_ip_cksum_fail_get(rx_tlv_hdr);
  979. bool tcp_udp_csum_er = hal_rx_attn_tcp_udp_cksum_fail_get(rx_tlv_hdr);
  980. if (qdf_likely(!ip_csum_err && !tcp_udp_csum_er)) {
  981. cksum.l4_result = QDF_NBUF_RX_CKSUM_TCP_UDP_UNNECESSARY;
  982. qdf_nbuf_set_rx_cksum(nbuf, &cksum);
  983. } else {
  984. DP_STATS_INCC(pdev, err.ip_csum_err, 1, ip_csum_err);
  985. DP_STATS_INCC(pdev, err.tcp_udp_csum_err, 1, tcp_udp_csum_er);
  986. }
  987. }
  988. /**
  989. * dp_rx_msdu_stats_update() - update per msdu stats.
  990. * @soc: core txrx main context
  991. * @nbuf: pointer to the first msdu of an amsdu.
  992. * @rx_tlv_hdr: pointer to the start of RX TLV headers.
  993. * @peer: pointer to the peer object.
  994. * @ring_id: reo dest ring number on which pkt is reaped.
  995. *
  996. * update all the per msdu stats for that nbuf.
  997. * Return: void
  998. */
  999. static void dp_rx_msdu_stats_update(struct dp_soc *soc,
  1000. qdf_nbuf_t nbuf,
  1001. uint8_t *rx_tlv_hdr,
  1002. struct dp_peer *peer,
  1003. uint8_t ring_id)
  1004. {
  1005. bool is_ampdu, is_not_amsdu;
  1006. uint16_t peer_id;
  1007. uint32_t sgi, mcs, tid, nss, bw, reception_type, pkt_type;
  1008. struct dp_vdev *vdev = peer->vdev;
  1009. struct ether_header *eh;
  1010. uint16_t msdu_len = qdf_nbuf_len(nbuf);
  1011. peer_id = DP_PEER_METADATA_PEER_ID_GET(
  1012. hal_rx_mpdu_peer_meta_data_get(rx_tlv_hdr));
  1013. is_not_amsdu = qdf_nbuf_is_rx_chfrag_start(nbuf) &
  1014. qdf_nbuf_is_rx_chfrag_end(nbuf);
  1015. DP_STATS_INC_PKT(peer, rx.rcvd_reo[ring_id], 1, msdu_len);
  1016. DP_STATS_INCC(peer, rx.non_amsdu_cnt, 1, is_not_amsdu);
  1017. DP_STATS_INCC(peer, rx.amsdu_cnt, 1, !is_not_amsdu);
  1018. if (qdf_unlikely(hal_rx_msdu_end_da_is_mcbc_get(rx_tlv_hdr) &&
  1019. (vdev->rx_decap_type == htt_cmn_pkt_type_ethernet))) {
  1020. eh = (struct ether_header *)qdf_nbuf_data(nbuf);
  1021. DP_STATS_INC_PKT(peer, rx.multicast, 1, msdu_len);
  1022. if (IEEE80211_IS_BROADCAST(eh->ether_dhost)) {
  1023. DP_STATS_INC_PKT(peer, rx.bcast, 1, msdu_len);
  1024. }
  1025. }
  1026. /*
  1027. * currently we can return from here as we have similar stats
  1028. * updated at per ppdu level instead of msdu level
  1029. */
  1030. if (!soc->process_rx_status)
  1031. return;
  1032. is_ampdu = hal_rx_mpdu_info_ampdu_flag_get(rx_tlv_hdr);
  1033. DP_STATS_INCC(peer, rx.ampdu_cnt, 1, is_ampdu);
  1034. DP_STATS_INCC(peer, rx.non_ampdu_cnt, 1, !(is_ampdu));
  1035. sgi = hal_rx_msdu_start_sgi_get(rx_tlv_hdr);
  1036. mcs = hal_rx_msdu_start_rate_mcs_get(rx_tlv_hdr);
  1037. tid = hal_rx_mpdu_start_tid_get(soc->hal_soc, rx_tlv_hdr);
  1038. bw = hal_rx_msdu_start_bw_get(rx_tlv_hdr);
  1039. reception_type = hal_rx_msdu_start_reception_type_get(soc->hal_soc,
  1040. rx_tlv_hdr);
  1041. nss = hal_rx_msdu_start_nss_get(soc->hal_soc, rx_tlv_hdr);
  1042. pkt_type = hal_rx_msdu_start_get_pkt_type(rx_tlv_hdr);
  1043. /* Save tid to skb->priority */
  1044. DP_RX_TID_SAVE(nbuf, tid);
  1045. DP_STATS_INC(peer, rx.bw[bw], 1);
  1046. DP_STATS_INC(peer, rx.nss[nss], 1);
  1047. DP_STATS_INC(peer, rx.sgi_count[sgi], 1);
  1048. DP_STATS_INCC(peer, rx.err.mic_err, 1,
  1049. hal_rx_mpdu_end_mic_err_get(rx_tlv_hdr));
  1050. DP_STATS_INCC(peer, rx.err.decrypt_err, 1,
  1051. hal_rx_mpdu_end_decrypt_err_get(rx_tlv_hdr));
  1052. DP_STATS_INC(peer, rx.wme_ac_type[TID_TO_WME_AC(tid)], 1);
  1053. DP_STATS_INC(peer, rx.reception_type[reception_type], 1);
  1054. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[MAX_MCS - 1], 1,
  1055. ((mcs >= MAX_MCS_11A) && (pkt_type == DOT11_A)));
  1056. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[mcs], 1,
  1057. ((mcs <= MAX_MCS_11A) && (pkt_type == DOT11_A)));
  1058. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[MAX_MCS - 1], 1,
  1059. ((mcs >= MAX_MCS_11B) && (pkt_type == DOT11_B)));
  1060. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[mcs], 1,
  1061. ((mcs <= MAX_MCS_11B) && (pkt_type == DOT11_B)));
  1062. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[MAX_MCS - 1], 1,
  1063. ((mcs >= MAX_MCS_11A) && (pkt_type == DOT11_N)));
  1064. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[mcs], 1,
  1065. ((mcs <= MAX_MCS_11A) && (pkt_type == DOT11_N)));
  1066. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[MAX_MCS - 1], 1,
  1067. ((mcs >= MAX_MCS_11AC) && (pkt_type == DOT11_AC)));
  1068. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[mcs], 1,
  1069. ((mcs <= MAX_MCS_11AC) && (pkt_type == DOT11_AC)));
  1070. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[MAX_MCS - 1], 1,
  1071. ((mcs >= MAX_MCS) && (pkt_type == DOT11_AX)));
  1072. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[mcs], 1,
  1073. ((mcs <= MAX_MCS) && (pkt_type == DOT11_AX)));
  1074. if ((soc->process_rx_status) &&
  1075. hal_rx_attn_first_mpdu_get(rx_tlv_hdr)) {
  1076. #if defined(FEATURE_PERPKT_INFO) && WDI_EVENT_ENABLE
  1077. dp_wdi_event_handler(WDI_EVENT_UPDATE_DP_STATS, vdev->pdev->soc,
  1078. &peer->stats, peer_id,
  1079. UPDATE_PEER_STATS,
  1080. vdev->pdev->pdev_id);
  1081. #endif
  1082. }
  1083. }
  1084. #ifdef WDS_VENDOR_EXTENSION
  1085. int dp_wds_rx_policy_check(
  1086. uint8_t *rx_tlv_hdr,
  1087. struct dp_vdev *vdev,
  1088. struct dp_peer *peer,
  1089. int rx_mcast
  1090. )
  1091. {
  1092. struct dp_peer *bss_peer;
  1093. int fr_ds, to_ds, rx_3addr, rx_4addr;
  1094. int rx_policy_ucast, rx_policy_mcast;
  1095. if (vdev->opmode == wlan_op_mode_ap) {
  1096. TAILQ_FOREACH(bss_peer, &vdev->peer_list, peer_list_elem) {
  1097. if (bss_peer->bss_peer) {
  1098. /* if wds policy check is not enabled on this vdev, accept all frames */
  1099. if (!bss_peer->wds_ecm.wds_rx_filter) {
  1100. return 1;
  1101. }
  1102. break;
  1103. }
  1104. }
  1105. rx_policy_ucast = bss_peer->wds_ecm.wds_rx_ucast_4addr;
  1106. rx_policy_mcast = bss_peer->wds_ecm.wds_rx_mcast_4addr;
  1107. } else { /* sta mode */
  1108. if (!peer->wds_ecm.wds_rx_filter) {
  1109. return 1;
  1110. }
  1111. rx_policy_ucast = peer->wds_ecm.wds_rx_ucast_4addr;
  1112. rx_policy_mcast = peer->wds_ecm.wds_rx_mcast_4addr;
  1113. }
  1114. /* ------------------------------------------------
  1115. * self
  1116. * peer- rx rx-
  1117. * wds ucast mcast dir policy accept note
  1118. * ------------------------------------------------
  1119. * 1 1 0 11 x1 1 AP configured to accept ds-to-ds Rx ucast from wds peers, constraint met; so, accept
  1120. * 1 1 0 01 x1 0 AP configured to accept ds-to-ds Rx ucast from wds peers, constraint not met; so, drop
  1121. * 1 1 0 10 x1 0 AP configured to accept ds-to-ds Rx ucast from wds peers, constraint not met; so, drop
  1122. * 1 1 0 00 x1 0 bad frame, won't see it
  1123. * 1 0 1 11 1x 1 AP configured to accept ds-to-ds Rx mcast from wds peers, constraint met; so, accept
  1124. * 1 0 1 01 1x 0 AP configured to accept ds-to-ds Rx mcast from wds peers, constraint not met; so, drop
  1125. * 1 0 1 10 1x 0 AP configured to accept ds-to-ds Rx mcast from wds peers, constraint not met; so, drop
  1126. * 1 0 1 00 1x 0 bad frame, won't see it
  1127. * 1 1 0 11 x0 0 AP configured to accept from-ds Rx ucast from wds peers, constraint not met; so, drop
  1128. * 1 1 0 01 x0 0 AP configured to accept from-ds Rx ucast from wds peers, constraint not met; so, drop
  1129. * 1 1 0 10 x0 1 AP configured to accept from-ds Rx ucast from wds peers, constraint met; so, accept
  1130. * 1 1 0 00 x0 0 bad frame, won't see it
  1131. * 1 0 1 11 0x 0 AP configured to accept from-ds Rx mcast from wds peers, constraint not met; so, drop
  1132. * 1 0 1 01 0x 0 AP configured to accept from-ds Rx mcast from wds peers, constraint not met; so, drop
  1133. * 1 0 1 10 0x 1 AP configured to accept from-ds Rx mcast from wds peers, constraint met; so, accept
  1134. * 1 0 1 00 0x 0 bad frame, won't see it
  1135. *
  1136. * 0 x x 11 xx 0 we only accept td-ds Rx frames from non-wds peers in mode.
  1137. * 0 x x 01 xx 1
  1138. * 0 x x 10 xx 0
  1139. * 0 x x 00 xx 0 bad frame, won't see it
  1140. * ------------------------------------------------
  1141. */
  1142. fr_ds = hal_rx_mpdu_get_fr_ds(rx_tlv_hdr);
  1143. to_ds = hal_rx_mpdu_get_to_ds(rx_tlv_hdr);
  1144. rx_3addr = fr_ds ^ to_ds;
  1145. rx_4addr = fr_ds & to_ds;
  1146. if (vdev->opmode == wlan_op_mode_ap) {
  1147. if ((!peer->wds_enabled && rx_3addr && to_ds) ||
  1148. (peer->wds_enabled && !rx_mcast && (rx_4addr == rx_policy_ucast)) ||
  1149. (peer->wds_enabled && rx_mcast && (rx_4addr == rx_policy_mcast))) {
  1150. return 1;
  1151. }
  1152. } else { /* sta mode */
  1153. if ((!rx_mcast && (rx_4addr == rx_policy_ucast)) ||
  1154. (rx_mcast && (rx_4addr == rx_policy_mcast))) {
  1155. return 1;
  1156. }
  1157. }
  1158. return 0;
  1159. }
  1160. #else
  1161. int dp_wds_rx_policy_check(
  1162. uint8_t *rx_tlv_hdr,
  1163. struct dp_vdev *vdev,
  1164. struct dp_peer *peer,
  1165. int rx_mcast
  1166. )
  1167. {
  1168. return 1;
  1169. }
  1170. #endif
  1171. /**
  1172. * dp_rx_process() - Brain of the Rx processing functionality
  1173. * Called from the bottom half (tasklet/NET_RX_SOFTIRQ)
  1174. * @soc: core txrx main context
  1175. * @hal_ring: opaque pointer to the HAL Rx Ring, which will be serviced
  1176. * @reo_ring_num: ring number (0, 1, 2 or 3) of the reo ring.
  1177. * @quota: No. of units (packets) that can be serviced in one shot.
  1178. *
  1179. * This function implements the core of Rx functionality. This is
  1180. * expected to handle only non-error frames.
  1181. *
  1182. * Return: uint32_t: No. of elements processed
  1183. */
  1184. uint32_t dp_rx_process(struct dp_intr *int_ctx, void *hal_ring,
  1185. uint8_t reo_ring_num, uint32_t quota)
  1186. {
  1187. void *hal_soc;
  1188. void *ring_desc;
  1189. struct dp_rx_desc *rx_desc = NULL;
  1190. qdf_nbuf_t nbuf, next;
  1191. union dp_rx_desc_list_elem_t *head[MAX_PDEV_CNT] = { NULL };
  1192. union dp_rx_desc_list_elem_t *tail[MAX_PDEV_CNT] = { NULL };
  1193. uint32_t rx_bufs_used = 0, rx_buf_cookie;
  1194. uint32_t l2_hdr_offset = 0;
  1195. uint16_t msdu_len = 0;
  1196. uint16_t peer_id;
  1197. struct dp_peer *peer = NULL;
  1198. struct dp_vdev *vdev = NULL;
  1199. uint32_t pkt_len = 0;
  1200. struct hal_rx_mpdu_desc_info mpdu_desc_info = { 0 };
  1201. struct hal_rx_msdu_desc_info msdu_desc_info = { 0 };
  1202. enum hal_reo_error_status error;
  1203. uint32_t peer_mdata;
  1204. uint8_t *rx_tlv_hdr;
  1205. uint32_t rx_bufs_reaped[MAX_PDEV_CNT] = { 0 };
  1206. uint8_t mac_id = 0;
  1207. struct dp_pdev *pdev;
  1208. struct dp_srng *dp_rxdma_srng;
  1209. struct rx_desc_pool *rx_desc_pool;
  1210. struct dp_soc *soc = int_ctx->soc;
  1211. uint8_t ring_id = 0;
  1212. uint8_t core_id = 0;
  1213. qdf_nbuf_t nbuf_head = NULL;
  1214. qdf_nbuf_t nbuf_tail = NULL;
  1215. qdf_nbuf_t deliver_list_head = NULL;
  1216. qdf_nbuf_t deliver_list_tail = NULL;
  1217. DP_HIST_INIT();
  1218. /* Debug -- Remove later */
  1219. qdf_assert(soc && hal_ring);
  1220. hal_soc = soc->hal_soc;
  1221. /* Debug -- Remove later */
  1222. qdf_assert(hal_soc);
  1223. hif_pm_runtime_mark_last_busy(soc->osdev->dev);
  1224. if (qdf_unlikely(hal_srng_access_start(hal_soc, hal_ring))) {
  1225. /*
  1226. * Need API to convert from hal_ring pointer to
  1227. * Ring Type / Ring Id combo
  1228. */
  1229. DP_STATS_INC(soc, rx.err.hal_ring_access_fail, 1);
  1230. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1231. FL("HAL RING Access Failed -- %pK"), hal_ring);
  1232. hal_srng_access_end(hal_soc, hal_ring);
  1233. goto done;
  1234. }
  1235. /*
  1236. * start reaping the buffers from reo ring and queue
  1237. * them in per vdev queue.
  1238. * Process the received pkts in a different per vdev loop.
  1239. */
  1240. while (qdf_likely(quota)) {
  1241. ring_desc = hal_srng_dst_get_next(hal_soc, hal_ring);
  1242. /*
  1243. * in case HW has updated hp after we cached the hp
  1244. * ring_desc can be NULL even there are entries
  1245. * available in the ring. Update the cached_hp
  1246. * and reap the buffers available to read complete
  1247. * mpdu in one reap
  1248. *
  1249. * This is needed for RAW mode we have to read all
  1250. * msdus corresponding to amsdu in one reap to create
  1251. * SG list properly but due to mismatch in cached_hp
  1252. * and actual hp sometimes we are unable to read
  1253. * complete mpdu in one reap.
  1254. */
  1255. if (qdf_unlikely(!ring_desc)) {
  1256. hal_srng_access_start_unlocked(hal_soc, hal_ring);
  1257. ring_desc = hal_srng_dst_get_next(hal_soc, hal_ring);
  1258. if (!ring_desc)
  1259. break;
  1260. DP_STATS_INC(soc, rx.hp_oos, 1);
  1261. /*
  1262. * update TP here in case loop takes long,
  1263. * then the ring is easily full.
  1264. */
  1265. hal_srng_access_end_unlocked(hal_soc, hal_ring);
  1266. }
  1267. error = HAL_RX_ERROR_STATUS_GET(ring_desc);
  1268. ring_id = hal_srng_ring_id_get(hal_ring);
  1269. if (qdf_unlikely(error == HAL_REO_ERROR_DETECTED)) {
  1270. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1271. FL("HAL RING 0x%pK:error %d"), hal_ring, error);
  1272. DP_STATS_INC(soc, rx.err.hal_reo_error[ring_id], 1);
  1273. /* Don't know how to deal with this -- assert */
  1274. qdf_assert(0);
  1275. }
  1276. rx_buf_cookie = HAL_RX_REO_BUF_COOKIE_GET(ring_desc);
  1277. rx_desc = dp_rx_cookie_2_va_rxdma_buf(soc, rx_buf_cookie);
  1278. qdf_assert(rx_desc);
  1279. rx_bufs_reaped[rx_desc->pool_id]++;
  1280. /* TODO */
  1281. /*
  1282. * Need a separate API for unmapping based on
  1283. * phyiscal address
  1284. */
  1285. qdf_nbuf_unmap_single(soc->osdev, rx_desc->nbuf,
  1286. QDF_DMA_BIDIRECTIONAL);
  1287. core_id = smp_processor_id();
  1288. DP_STATS_INC(soc, rx.ring_packets[core_id][ring_id], 1);
  1289. /* Get MPDU DESC info */
  1290. hal_rx_mpdu_desc_info_get(ring_desc, &mpdu_desc_info);
  1291. hal_rx_mpdu_peer_meta_data_set(qdf_nbuf_data(rx_desc->nbuf),
  1292. mpdu_desc_info.peer_meta_data);
  1293. /* Get MSDU DESC info */
  1294. hal_rx_msdu_desc_info_get(ring_desc, &msdu_desc_info);
  1295. /*
  1296. * save msdu flags first, last and continuation msdu in
  1297. * nbuf->cb
  1298. */
  1299. if (msdu_desc_info.msdu_flags & HAL_MSDU_F_FIRST_MSDU_IN_MPDU)
  1300. qdf_nbuf_set_rx_chfrag_start(rx_desc->nbuf, 1);
  1301. if (msdu_desc_info.msdu_flags & HAL_MSDU_F_MSDU_CONTINUATION)
  1302. qdf_nbuf_set_rx_chfrag_cont(rx_desc->nbuf, 1);
  1303. if (msdu_desc_info.msdu_flags & HAL_MSDU_F_LAST_MSDU_IN_MPDU)
  1304. qdf_nbuf_set_rx_chfrag_end(rx_desc->nbuf, 1);
  1305. QDF_NBUF_CB_RX_CTX_ID(rx_desc->nbuf) = reo_ring_num;
  1306. DP_RX_LIST_APPEND(nbuf_head, nbuf_tail, rx_desc->nbuf);
  1307. /*
  1308. * if continuation bit is set then we have MSDU spread
  1309. * across multiple buffers, let us not decrement quota
  1310. * till we reap all buffers of that MSDU.
  1311. */
  1312. if (qdf_likely(!qdf_nbuf_is_rx_chfrag_cont(rx_desc->nbuf)))
  1313. quota -= 1;
  1314. dp_rx_add_to_free_desc_list(&head[rx_desc->pool_id],
  1315. &tail[rx_desc->pool_id],
  1316. rx_desc);
  1317. }
  1318. done:
  1319. hal_srng_access_end(hal_soc, hal_ring);
  1320. if (nbuf_tail)
  1321. QDF_NBUF_CB_RX_FLUSH_IND(nbuf_tail) = 1;
  1322. /* Update histogram statistics by looping through pdev's */
  1323. DP_RX_HIST_STATS_PER_PDEV();
  1324. for (mac_id = 0; mac_id < MAX_PDEV_CNT; mac_id++) {
  1325. /*
  1326. * continue with next mac_id if no pkts were reaped
  1327. * from that pool
  1328. */
  1329. if (!rx_bufs_reaped[mac_id])
  1330. continue;
  1331. pdev = soc->pdev_list[mac_id];
  1332. dp_rxdma_srng = &pdev->rx_refill_buf_ring;
  1333. rx_desc_pool = &soc->rx_desc_buf[mac_id];
  1334. dp_rx_buffers_replenish(soc, mac_id, dp_rxdma_srng,
  1335. rx_desc_pool, rx_bufs_reaped[mac_id],
  1336. &head[mac_id], &tail[mac_id]);
  1337. }
  1338. /* Peer can be NULL is case of LFR */
  1339. if (qdf_likely(peer != NULL))
  1340. vdev = NULL;
  1341. /*
  1342. * BIG loop where each nbuf is dequeued from global queue,
  1343. * processed and queued back on a per vdev basis. These nbufs
  1344. * are sent to stack as and when we run out of nbufs
  1345. * or a new nbuf dequeued from global queue has a different
  1346. * vdev when compared to previous nbuf.
  1347. */
  1348. nbuf = nbuf_head;
  1349. while (nbuf) {
  1350. next = nbuf->next;
  1351. rx_tlv_hdr = qdf_nbuf_data(nbuf);
  1352. /*
  1353. * Check if DMA completed -- msdu_done is the last bit
  1354. * to be written
  1355. */
  1356. if (qdf_unlikely(!hal_rx_attn_msdu_done_get(rx_tlv_hdr))) {
  1357. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1358. FL("MSDU DONE failure"));
  1359. hal_rx_dump_pkt_tlvs(hal_soc, rx_tlv_hdr,
  1360. QDF_TRACE_LEVEL_INFO);
  1361. qdf_assert(0);
  1362. }
  1363. peer_mdata = hal_rx_mpdu_peer_meta_data_get(rx_tlv_hdr);
  1364. peer_id = DP_PEER_METADATA_PEER_ID_GET(peer_mdata);
  1365. peer = dp_peer_find_by_id(soc, peer_id);
  1366. if (peer) {
  1367. QDF_NBUF_CB_DP_TRACE_PRINT(nbuf) = false;
  1368. qdf_dp_trace_set_track(nbuf, QDF_RX);
  1369. QDF_NBUF_CB_RX_DP_TRACE(nbuf) = 1;
  1370. QDF_NBUF_CB_RX_PACKET_TRACK(nbuf) =
  1371. QDF_NBUF_RX_PKT_DATA_TRACK;
  1372. }
  1373. rx_bufs_used++;
  1374. if (deliver_list_head && peer && (vdev != peer->vdev)) {
  1375. dp_rx_deliver_to_stack(vdev, peer, deliver_list_head,
  1376. deliver_list_tail);
  1377. deliver_list_head = NULL;
  1378. deliver_list_tail = NULL;
  1379. }
  1380. if (qdf_likely(peer != NULL)) {
  1381. vdev = peer->vdev;
  1382. } else {
  1383. DP_STATS_INC_PKT(soc, rx.err.rx_invalid_peer, 1,
  1384. qdf_nbuf_len(nbuf));
  1385. qdf_nbuf_free(nbuf);
  1386. nbuf = next;
  1387. continue;
  1388. }
  1389. if (qdf_unlikely(vdev == NULL)) {
  1390. qdf_nbuf_free(nbuf);
  1391. nbuf = next;
  1392. DP_STATS_INC(soc, rx.err.invalid_vdev, 1);
  1393. dp_peer_unref_del_find_by_id(peer);
  1394. continue;
  1395. }
  1396. DP_HIST_PACKET_COUNT_INC(vdev->pdev->pdev_id);
  1397. /*
  1398. * First IF condition:
  1399. * 802.11 Fragmented pkts are reinjected to REO
  1400. * HW block as SG pkts and for these pkts we only
  1401. * need to pull the RX TLVS header length.
  1402. * Second IF condition:
  1403. * The below condition happens when an MSDU is spread
  1404. * across multiple buffers. This can happen in two cases
  1405. * 1. The nbuf size is smaller then the received msdu.
  1406. * ex: we have set the nbuf size to 2048 during
  1407. * nbuf_alloc. but we received an msdu which is
  1408. * 2304 bytes in size then this msdu is spread
  1409. * across 2 nbufs.
  1410. *
  1411. * 2. AMSDUs when RAW mode is enabled.
  1412. * ex: 1st MSDU is in 1st nbuf and 2nd MSDU is spread
  1413. * across 1st nbuf and 2nd nbuf and last MSDU is
  1414. * spread across 2nd nbuf and 3rd nbuf.
  1415. *
  1416. * for these scenarios let us create a skb frag_list and
  1417. * append these buffers till the last MSDU of the AMSDU
  1418. * Third condition:
  1419. * This is the most likely case, we receive 802.3 pkts
  1420. * decapsulated by HW, here we need to set the pkt length.
  1421. */
  1422. if (qdf_unlikely(qdf_nbuf_get_ext_list(nbuf)))
  1423. qdf_nbuf_pull_head(nbuf, RX_PKT_TLVS_LEN);
  1424. else if (qdf_unlikely(vdev->rx_decap_type ==
  1425. htt_cmn_pkt_type_raw)) {
  1426. msdu_len = hal_rx_msdu_start_msdu_len_get(rx_tlv_hdr);
  1427. nbuf = dp_rx_sg_create(nbuf, rx_tlv_hdr);
  1428. DP_STATS_INC(vdev->pdev, rx_raw_pkts, 1);
  1429. DP_STATS_INC_PKT(peer, rx.raw, 1,
  1430. msdu_len);
  1431. next = nbuf->next;
  1432. } else {
  1433. l2_hdr_offset =
  1434. hal_rx_msdu_end_l3_hdr_padding_get(rx_tlv_hdr);
  1435. msdu_len = hal_rx_msdu_start_msdu_len_get(rx_tlv_hdr);
  1436. pkt_len = msdu_len + l2_hdr_offset + RX_PKT_TLVS_LEN;
  1437. qdf_nbuf_set_pktlen(nbuf, pkt_len);
  1438. qdf_nbuf_pull_head(nbuf,
  1439. RX_PKT_TLVS_LEN +
  1440. l2_hdr_offset);
  1441. }
  1442. if (!dp_wds_rx_policy_check(rx_tlv_hdr, vdev, peer,
  1443. hal_rx_msdu_end_da_is_mcbc_get(rx_tlv_hdr))) {
  1444. QDF_TRACE(QDF_MODULE_ID_DP,
  1445. QDF_TRACE_LEVEL_ERROR,
  1446. FL("Policy Check Drop pkt"));
  1447. /* Drop & free packet */
  1448. qdf_nbuf_free(nbuf);
  1449. /* Statistics */
  1450. nbuf = next;
  1451. dp_peer_unref_del_find_by_id(peer);
  1452. continue;
  1453. }
  1454. if (qdf_unlikely(peer && peer->bss_peer)) {
  1455. QDF_TRACE(QDF_MODULE_ID_DP,
  1456. QDF_TRACE_LEVEL_ERROR,
  1457. FL("received pkt with same src MAC"));
  1458. DP_STATS_INC_PKT(peer, rx.mec_drop, 1, msdu_len);
  1459. /* Drop & free packet */
  1460. qdf_nbuf_free(nbuf);
  1461. /* Statistics */
  1462. nbuf = next;
  1463. dp_peer_unref_del_find_by_id(peer);
  1464. continue;
  1465. }
  1466. if (qdf_unlikely(peer && (peer->nawds_enabled == true) &&
  1467. (hal_rx_msdu_end_da_is_mcbc_get(rx_tlv_hdr)) &&
  1468. (hal_rx_get_mpdu_mac_ad4_valid(rx_tlv_hdr) == false))) {
  1469. DP_STATS_INC(peer, rx.nawds_mcast_drop, 1);
  1470. qdf_nbuf_free(nbuf);
  1471. nbuf = next;
  1472. dp_peer_unref_del_find_by_id(peer);
  1473. continue;
  1474. }
  1475. dp_rx_cksum_offload(vdev->pdev, nbuf, rx_tlv_hdr);
  1476. dp_set_rx_queue(nbuf, ring_id);
  1477. /*
  1478. * HW structures call this L3 header padding --
  1479. * even though this is actually the offset from
  1480. * the buffer beginning where the L2 header
  1481. * begins.
  1482. */
  1483. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  1484. FL("rxhash: flow id toeplitz: 0x%x"),
  1485. hal_rx_msdu_start_toeplitz_get(rx_tlv_hdr));
  1486. dp_rx_msdu_stats_update(soc, nbuf, rx_tlv_hdr, peer, ring_id);
  1487. if (qdf_unlikely(vdev->mesh_vdev)) {
  1488. if (dp_rx_filter_mesh_packets(vdev, nbuf,
  1489. rx_tlv_hdr)
  1490. == QDF_STATUS_SUCCESS) {
  1491. QDF_TRACE(QDF_MODULE_ID_DP,
  1492. QDF_TRACE_LEVEL_INFO_MED,
  1493. FL("mesh pkt filtered"));
  1494. DP_STATS_INC(vdev->pdev, dropped.mesh_filter,
  1495. 1);
  1496. qdf_nbuf_free(nbuf);
  1497. nbuf = next;
  1498. dp_peer_unref_del_find_by_id(peer);
  1499. continue;
  1500. }
  1501. dp_rx_fill_mesh_stats(vdev, nbuf, rx_tlv_hdr, peer);
  1502. }
  1503. #ifdef QCA_WIFI_NAPIER_EMULATION_DBG /* Debug code, remove later */
  1504. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1505. "p_id %d msdu_len %d hdr_off %d",
  1506. peer_id, msdu_len, l2_hdr_offset);
  1507. print_hex_dump(KERN_ERR,
  1508. "\t Pkt Data:", DUMP_PREFIX_NONE, 32, 4,
  1509. qdf_nbuf_data(nbuf), 128, false);
  1510. #endif /* NAPIER_EMULATION */
  1511. if (qdf_likely(vdev->rx_decap_type ==
  1512. htt_cmn_pkt_type_ethernet) &&
  1513. qdf_likely(!vdev->mesh_vdev)) {
  1514. /* WDS Destination Address Learning */
  1515. if (vdev->da_war_enabled)
  1516. dp_rx_da_learn(soc, rx_tlv_hdr, peer, nbuf);
  1517. /* WDS Source Port Learning */
  1518. if (vdev->wds_enabled)
  1519. dp_rx_wds_srcport_learn(soc, rx_tlv_hdr,
  1520. peer, nbuf);
  1521. /* Intrabss-fwd */
  1522. if (dp_rx_check_ap_bridge(vdev))
  1523. if (dp_rx_intrabss_fwd(soc,
  1524. peer,
  1525. rx_tlv_hdr,
  1526. nbuf)) {
  1527. nbuf = next;
  1528. dp_peer_unref_del_find_by_id(peer);
  1529. continue; /* Get next desc */
  1530. }
  1531. }
  1532. dp_rx_lro(rx_tlv_hdr, peer, nbuf, int_ctx->lro_ctx);
  1533. qdf_nbuf_cb_update_peer_local_id(nbuf, peer->local_id);
  1534. DP_RX_LIST_APPEND(deliver_list_head,
  1535. deliver_list_tail,
  1536. nbuf);
  1537. DP_STATS_INC_PKT(peer, rx.to_stack, 1,
  1538. qdf_nbuf_len(nbuf));
  1539. nbuf = next;
  1540. dp_peer_unref_del_find_by_id(peer);
  1541. }
  1542. if (deliver_list_head)
  1543. dp_rx_deliver_to_stack(vdev, peer, deliver_list_head,
  1544. deliver_list_tail);
  1545. return rx_bufs_used; /* Assume no scale factor for now */
  1546. }
  1547. /**
  1548. * dp_rx_detach() - detach dp rx
  1549. * @pdev: core txrx pdev context
  1550. *
  1551. * This function will detach DP RX into main device context
  1552. * will free DP Rx resources.
  1553. *
  1554. * Return: void
  1555. */
  1556. void
  1557. dp_rx_pdev_detach(struct dp_pdev *pdev)
  1558. {
  1559. uint8_t pdev_id = pdev->pdev_id;
  1560. struct dp_soc *soc = pdev->soc;
  1561. struct rx_desc_pool *rx_desc_pool;
  1562. rx_desc_pool = &soc->rx_desc_buf[pdev_id];
  1563. if (rx_desc_pool->pool_size != 0) {
  1564. dp_rx_desc_pool_free(soc, pdev_id, rx_desc_pool);
  1565. }
  1566. return;
  1567. }
  1568. /**
  1569. * dp_rx_attach() - attach DP RX
  1570. * @pdev: core txrx pdev context
  1571. *
  1572. * This function will attach a DP RX instance into the main
  1573. * device (SOC) context. Will allocate dp rx resource and
  1574. * initialize resources.
  1575. *
  1576. * Return: QDF_STATUS_SUCCESS: success
  1577. * QDF_STATUS_E_RESOURCES: Error return
  1578. */
  1579. QDF_STATUS
  1580. dp_rx_pdev_attach(struct dp_pdev *pdev)
  1581. {
  1582. uint8_t pdev_id = pdev->pdev_id;
  1583. struct dp_soc *soc = pdev->soc;
  1584. uint32_t rxdma_entries;
  1585. union dp_rx_desc_list_elem_t *desc_list = NULL;
  1586. union dp_rx_desc_list_elem_t *tail = NULL;
  1587. struct dp_srng *dp_rxdma_srng;
  1588. struct rx_desc_pool *rx_desc_pool;
  1589. if (wlan_cfg_get_dp_pdev_nss_enabled(pdev->wlan_cfg_ctx)) {
  1590. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
  1591. "nss-wifi<4> skip Rx refil %d", pdev_id);
  1592. return QDF_STATUS_SUCCESS;
  1593. }
  1594. pdev = soc->pdev_list[pdev_id];
  1595. dp_rxdma_srng = &pdev->rx_refill_buf_ring;
  1596. rxdma_entries = dp_rxdma_srng->num_entries;
  1597. soc->process_rx_status = CONFIG_PROCESS_RX_STATUS;
  1598. rx_desc_pool = &soc->rx_desc_buf[pdev_id];
  1599. dp_rx_desc_pool_alloc(soc, pdev_id,
  1600. DP_RX_DESC_ALLOC_MULTIPLIER * rxdma_entries,
  1601. rx_desc_pool);
  1602. rx_desc_pool->owner = DP_WBM2SW_RBM;
  1603. /* For Rx buffers, WBM release ring is SW RING 3,for all pdev's */
  1604. dp_rx_buffers_replenish(soc, pdev_id, dp_rxdma_srng, rx_desc_pool,
  1605. 0, &desc_list, &tail);
  1606. return QDF_STATUS_SUCCESS;
  1607. }
  1608. /*
  1609. * dp_rx_nbuf_prepare() - prepare RX nbuf
  1610. * @soc: core txrx main context
  1611. * @pdev: core txrx pdev context
  1612. *
  1613. * This function alloc & map nbuf for RX dma usage, retry it if failed
  1614. * until retry times reaches max threshold or succeeded.
  1615. *
  1616. * Return: qdf_nbuf_t pointer if succeeded, NULL if failed.
  1617. */
  1618. qdf_nbuf_t
  1619. dp_rx_nbuf_prepare(struct dp_soc *soc, struct dp_pdev *pdev)
  1620. {
  1621. uint8_t *buf;
  1622. int32_t nbuf_retry_count;
  1623. QDF_STATUS ret;
  1624. qdf_nbuf_t nbuf = NULL;
  1625. for (nbuf_retry_count = 0; nbuf_retry_count <
  1626. QDF_NBUF_ALLOC_MAP_RETRY_THRESHOLD;
  1627. nbuf_retry_count++) {
  1628. /* Allocate a new skb */
  1629. nbuf = qdf_nbuf_alloc(soc->osdev,
  1630. RX_BUFFER_SIZE,
  1631. RX_BUFFER_RESERVATION,
  1632. RX_BUFFER_ALIGNMENT,
  1633. FALSE);
  1634. if (nbuf == NULL) {
  1635. DP_STATS_INC(pdev,
  1636. replenish.nbuf_alloc_fail, 1);
  1637. continue;
  1638. }
  1639. buf = qdf_nbuf_data(nbuf);
  1640. memset(buf, 0, RX_BUFFER_SIZE);
  1641. ret = qdf_nbuf_map_single(soc->osdev, nbuf,
  1642. QDF_DMA_BIDIRECTIONAL);
  1643. /* nbuf map failed */
  1644. if (qdf_unlikely(QDF_IS_STATUS_ERROR(ret))) {
  1645. qdf_nbuf_free(nbuf);
  1646. DP_STATS_INC(pdev, replenish.map_err, 1);
  1647. continue;
  1648. }
  1649. /* qdf_nbuf alloc and map succeeded */
  1650. break;
  1651. }
  1652. /* qdf_nbuf still alloc or map failed */
  1653. if (qdf_unlikely(nbuf_retry_count >=
  1654. QDF_NBUF_ALLOC_MAP_RETRY_THRESHOLD))
  1655. return NULL;
  1656. return nbuf;
  1657. }