hal_srng.c 36 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307
  1. /*
  2. * Copyright (c) 2016-2020 The Linux Foundation. All rights reserved.
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for
  5. * any purpose with or without fee is hereby granted, provided that the
  6. * above copyright notice and this permission notice appear in all
  7. * copies.
  8. *
  9. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
  10. * WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
  11. * WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
  12. * AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
  13. * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
  14. * PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
  15. * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
  16. * PERFORMANCE OF THIS SOFTWARE.
  17. */
  18. #include "hal_hw_headers.h"
  19. #include "hal_api.h"
  20. #include "target_type.h"
  21. #include "wcss_version.h"
  22. #include "qdf_module.h"
  23. #ifdef QCA_WIFI_QCA8074
  24. void hal_qca6290_attach(struct hal_soc *hal);
  25. #endif
  26. #ifdef QCA_WIFI_QCA8074
  27. void hal_qca8074_attach(struct hal_soc *hal);
  28. #endif
  29. #if defined(QCA_WIFI_QCA8074V2) || defined(QCA_WIFI_QCA6018)
  30. void hal_qca8074v2_attach(struct hal_soc *hal);
  31. #endif
  32. #ifdef QCA_WIFI_QCA6390
  33. void hal_qca6390_attach(struct hal_soc *hal);
  34. #endif
  35. #ifdef QCA_WIFI_QCA6490
  36. void hal_qca6490_attach(struct hal_soc *hal);
  37. #endif
  38. #ifdef QCA_WIFI_QCN9000
  39. void hal_qcn9000_attach(struct hal_soc *hal);
  40. #endif
  41. #ifdef QCA_WIFI_QCA6750
  42. void hal_qca6750_attach(struct hal_soc *hal);
  43. #endif
  44. #ifdef QCA_WIFI_QCA5018
  45. void hal_qca5018_attach(struct hal_soc *hal);
  46. #endif
  47. #ifdef ENABLE_VERBOSE_DEBUG
  48. bool is_hal_verbose_debug_enabled;
  49. #endif
  50. #ifdef ENABLE_HAL_REG_WR_HISTORY
  51. struct hal_reg_write_fail_history hal_reg_wr_hist;
  52. void hal_reg_wr_fail_history_add(struct hal_soc *hal_soc,
  53. uint32_t offset,
  54. uint32_t wr_val, uint32_t rd_val)
  55. {
  56. struct hal_reg_write_fail_entry *record;
  57. int idx;
  58. idx = hal_history_get_next_index(&hal_soc->reg_wr_fail_hist->index,
  59. HAL_REG_WRITE_HIST_SIZE);
  60. record = &hal_soc->reg_wr_fail_hist->record[idx];
  61. record->timestamp = qdf_get_log_timestamp();
  62. record->reg_offset = offset;
  63. record->write_val = wr_val;
  64. record->read_val = rd_val;
  65. }
  66. static void hal_reg_write_fail_history_init(struct hal_soc *hal)
  67. {
  68. hal->reg_wr_fail_hist = &hal_reg_wr_hist;
  69. qdf_atomic_set(&hal->reg_wr_fail_hist->index, -1);
  70. }
  71. #else
  72. static void hal_reg_write_fail_history_init(struct hal_soc *hal)
  73. {
  74. }
  75. #endif
  76. /**
  77. * hal_get_srng_ring_id() - get the ring id of a descriped ring
  78. * @hal: hal_soc data structure
  79. * @ring_type: type enum describing the ring
  80. * @ring_num: which ring of the ring type
  81. * @mac_id: which mac does the ring belong to (or 0 for non-lmac rings)
  82. *
  83. * Return: the ring id or -EINVAL if the ring does not exist.
  84. */
  85. static int hal_get_srng_ring_id(struct hal_soc *hal, int ring_type,
  86. int ring_num, int mac_id)
  87. {
  88. struct hal_hw_srng_config *ring_config =
  89. HAL_SRNG_CONFIG(hal, ring_type);
  90. int ring_id;
  91. if (ring_num >= ring_config->max_rings) {
  92. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO,
  93. "%s: ring_num exceeded maximum no. of supported rings",
  94. __func__);
  95. /* TODO: This is a programming error. Assert if this happens */
  96. return -EINVAL;
  97. }
  98. if (ring_config->lmac_ring) {
  99. ring_id = ring_config->start_ring_id + ring_num +
  100. (mac_id * HAL_MAX_RINGS_PER_LMAC);
  101. } else {
  102. ring_id = ring_config->start_ring_id + ring_num;
  103. }
  104. return ring_id;
  105. }
  106. static struct hal_srng *hal_get_srng(struct hal_soc *hal, int ring_id)
  107. {
  108. /* TODO: Should we allocate srng structures dynamically? */
  109. return &(hal->srng_list[ring_id]);
  110. }
  111. #define HP_OFFSET_IN_REG_START 1
  112. #define OFFSET_FROM_HP_TO_TP 4
  113. static void hal_update_srng_hp_tp_address(struct hal_soc *hal_soc,
  114. int shadow_config_index,
  115. int ring_type,
  116. int ring_num)
  117. {
  118. struct hal_srng *srng;
  119. int ring_id;
  120. struct hal_hw_srng_config *ring_config =
  121. HAL_SRNG_CONFIG(hal_soc, ring_type);
  122. ring_id = hal_get_srng_ring_id(hal_soc, ring_type, ring_num, 0);
  123. if (ring_id < 0)
  124. return;
  125. srng = hal_get_srng(hal_soc, ring_id);
  126. if (ring_config->ring_dir == HAL_SRNG_DST_RING) {
  127. srng->u.dst_ring.tp_addr = SHADOW_REGISTER(shadow_config_index)
  128. + hal_soc->dev_base_addr;
  129. hal_debug("tp_addr=%pK dev base addr %pK index %u",
  130. srng->u.dst_ring.tp_addr, hal_soc->dev_base_addr,
  131. shadow_config_index);
  132. } else {
  133. srng->u.src_ring.hp_addr = SHADOW_REGISTER(shadow_config_index)
  134. + hal_soc->dev_base_addr;
  135. hal_debug("hp_addr=%pK dev base addr %pK index %u",
  136. srng->u.src_ring.hp_addr,
  137. hal_soc->dev_base_addr, shadow_config_index);
  138. }
  139. }
  140. QDF_STATUS hal_set_one_shadow_config(void *hal_soc,
  141. int ring_type,
  142. int ring_num)
  143. {
  144. uint32_t target_register;
  145. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  146. struct hal_hw_srng_config *srng_config = &hal->hw_srng_table[ring_type];
  147. int shadow_config_index = hal->num_shadow_registers_configured;
  148. if (shadow_config_index >= MAX_SHADOW_REGISTERS) {
  149. QDF_ASSERT(0);
  150. return QDF_STATUS_E_RESOURCES;
  151. }
  152. hal->num_shadow_registers_configured++;
  153. target_register = srng_config->reg_start[HP_OFFSET_IN_REG_START];
  154. target_register += (srng_config->reg_size[HP_OFFSET_IN_REG_START]
  155. *ring_num);
  156. /* if the ring is a dst ring, we need to shadow the tail pointer */
  157. if (srng_config->ring_dir == HAL_SRNG_DST_RING)
  158. target_register += OFFSET_FROM_HP_TO_TP;
  159. hal->shadow_config[shadow_config_index].addr = target_register;
  160. /* update hp/tp addr in the hal_soc structure*/
  161. hal_update_srng_hp_tp_address(hal_soc, shadow_config_index, ring_type,
  162. ring_num);
  163. hal_debug("target_reg %x, shadow register 0x%x shadow_index 0x%x, ring_type %d, ring num %d",
  164. target_register,
  165. SHADOW_REGISTER(shadow_config_index),
  166. shadow_config_index,
  167. ring_type, ring_num);
  168. return QDF_STATUS_SUCCESS;
  169. }
  170. qdf_export_symbol(hal_set_one_shadow_config);
  171. QDF_STATUS hal_construct_shadow_config(void *hal_soc)
  172. {
  173. int ring_type, ring_num;
  174. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  175. for (ring_type = 0; ring_type < MAX_RING_TYPES; ring_type++) {
  176. struct hal_hw_srng_config *srng_config =
  177. &hal->hw_srng_table[ring_type];
  178. if (ring_type == CE_SRC ||
  179. ring_type == CE_DST ||
  180. ring_type == CE_DST_STATUS)
  181. continue;
  182. if (srng_config->lmac_ring)
  183. continue;
  184. for (ring_num = 0; ring_num < srng_config->max_rings;
  185. ring_num++)
  186. hal_set_one_shadow_config(hal_soc, ring_type, ring_num);
  187. }
  188. return QDF_STATUS_SUCCESS;
  189. }
  190. qdf_export_symbol(hal_construct_shadow_config);
  191. void hal_get_shadow_config(void *hal_soc,
  192. struct pld_shadow_reg_v2_cfg **shadow_config,
  193. int *num_shadow_registers_configured)
  194. {
  195. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  196. *shadow_config = hal->shadow_config;
  197. *num_shadow_registers_configured =
  198. hal->num_shadow_registers_configured;
  199. }
  200. qdf_export_symbol(hal_get_shadow_config);
  201. static void hal_validate_shadow_register(struct hal_soc *hal,
  202. uint32_t *destination,
  203. uint32_t *shadow_address)
  204. {
  205. unsigned int index;
  206. uint32_t *shadow_0_offset = SHADOW_REGISTER(0) + hal->dev_base_addr;
  207. int destination_ba_offset =
  208. ((char *)destination) - (char *)hal->dev_base_addr;
  209. index = shadow_address - shadow_0_offset;
  210. if (index >= MAX_SHADOW_REGISTERS) {
  211. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  212. "%s: index %x out of bounds", __func__, index);
  213. goto error;
  214. } else if (hal->shadow_config[index].addr != destination_ba_offset) {
  215. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  216. "%s: sanity check failure, expected %x, found %x",
  217. __func__, destination_ba_offset,
  218. hal->shadow_config[index].addr);
  219. goto error;
  220. }
  221. return;
  222. error:
  223. qdf_print("%s: baddr %pK, desination %pK, shadow_address %pK s0offset %pK index %x",
  224. __func__, hal->dev_base_addr, destination, shadow_address,
  225. shadow_0_offset, index);
  226. QDF_BUG(0);
  227. return;
  228. }
  229. static void hal_target_based_configure(struct hal_soc *hal)
  230. {
  231. /**
  232. * Indicate Initialization of srngs to avoid force wake
  233. * as umac power collapse is not enabled yet
  234. */
  235. hal->init_phase = true;
  236. switch (hal->target_type) {
  237. #ifdef QCA_WIFI_QCA6290
  238. case TARGET_TYPE_QCA6290:
  239. hal->use_register_windowing = true;
  240. hal_qca6290_attach(hal);
  241. break;
  242. #endif
  243. #ifdef QCA_WIFI_QCA6390
  244. case TARGET_TYPE_QCA6390:
  245. hal->use_register_windowing = true;
  246. hal_qca6390_attach(hal);
  247. break;
  248. #endif
  249. #ifdef QCA_WIFI_QCA6490
  250. case TARGET_TYPE_QCA6490:
  251. hal->use_register_windowing = true;
  252. hal_qca6490_attach(hal);
  253. hal->init_phase = false;
  254. break;
  255. #endif
  256. #ifdef QCA_WIFI_QCA6750
  257. case TARGET_TYPE_QCA6750:
  258. hal->use_register_windowing = true;
  259. hal->static_window_map = true;
  260. hal_qca6750_attach(hal);
  261. break;
  262. #endif
  263. #if defined(QCA_WIFI_QCA8074) && defined(WIFI_TARGET_TYPE_3_0)
  264. case TARGET_TYPE_QCA8074:
  265. hal_qca8074_attach(hal);
  266. break;
  267. #endif
  268. #if defined(QCA_WIFI_QCA8074V2)
  269. case TARGET_TYPE_QCA8074V2:
  270. hal_qca8074v2_attach(hal);
  271. break;
  272. #endif
  273. #if defined(QCA_WIFI_QCA6018)
  274. case TARGET_TYPE_QCA6018:
  275. hal_qca8074v2_attach(hal);
  276. break;
  277. #endif
  278. #ifdef QCA_WIFI_QCN9000
  279. case TARGET_TYPE_QCN9000:
  280. hal->use_register_windowing = true;
  281. /*
  282. * Static window map is enabled for qcn9000 to use 2mb bar
  283. * size and use multiple windows to write into registers.
  284. */
  285. hal->static_window_map = true;
  286. hal_qcn9000_attach(hal);
  287. break;
  288. #endif
  289. #ifdef QCA_WIFI_QCA5018
  290. case TARGET_TYPE_QCA5018:
  291. hal_qca5018_attach(hal);
  292. break;
  293. #endif
  294. default:
  295. break;
  296. }
  297. }
  298. uint32_t hal_get_target_type(hal_soc_handle_t hal_soc_hdl)
  299. {
  300. struct hal_soc *hal_soc = (struct hal_soc *)hal_soc_hdl;
  301. struct hif_target_info *tgt_info =
  302. hif_get_target_info_handle(hal_soc->hif_handle);
  303. return tgt_info->target_type;
  304. }
  305. qdf_export_symbol(hal_get_target_type);
  306. #ifdef FEATURE_HAL_DELAYED_REG_WRITE
  307. #ifdef MEMORY_DEBUG
  308. /*
  309. * Length of the queue(array) used to hold delayed register writes.
  310. * Must be a multiple of 2.
  311. */
  312. #define HAL_REG_WRITE_QUEUE_LEN 128
  313. #else
  314. #define HAL_REG_WRITE_QUEUE_LEN 32
  315. #endif
  316. /**
  317. * hal_is_reg_write_tput_level_high() - throughput level for delayed reg writes
  318. * @hal: hal_soc pointer
  319. *
  320. * Return: true if throughput is high, else false.
  321. */
  322. static inline bool hal_is_reg_write_tput_level_high(struct hal_soc *hal)
  323. {
  324. int bw_level = hif_get_bandwidth_level(hal->hif_handle);
  325. return (bw_level >= PLD_BUS_WIDTH_MEDIUM) ? true : false;
  326. }
  327. /**
  328. * hal_process_reg_write_q_elem() - process a regiter write queue element
  329. * @hal: hal_soc pointer
  330. * @q_elem: pointer to hal regiter write queue element
  331. *
  332. * Return: The value which was written to the address
  333. */
  334. static uint32_t
  335. hal_process_reg_write_q_elem(struct hal_soc *hal,
  336. struct hal_reg_write_q_elem *q_elem)
  337. {
  338. struct hal_srng *srng = q_elem->srng;
  339. uint32_t write_val;
  340. SRNG_LOCK(&srng->lock);
  341. srng->reg_write_in_progress = false;
  342. srng->wstats.dequeues++;
  343. if (srng->ring_dir == HAL_SRNG_SRC_RING) {
  344. q_elem->dequeue_val = srng->u.src_ring.hp;
  345. hal_write_address_32_mb(hal,
  346. srng->u.src_ring.hp_addr,
  347. srng->u.src_ring.hp, false);
  348. write_val = srng->u.src_ring.hp;
  349. } else {
  350. q_elem->dequeue_val = srng->u.dst_ring.tp;
  351. hal_write_address_32_mb(hal,
  352. srng->u.dst_ring.tp_addr,
  353. srng->u.dst_ring.tp, false);
  354. write_val = srng->u.dst_ring.tp;
  355. }
  356. q_elem->valid = 0;
  357. SRNG_UNLOCK(&srng->lock);
  358. return write_val;
  359. }
  360. /**
  361. * hal_reg_write_fill_sched_delay_hist() - fill reg write delay histogram in hal
  362. * @hal: hal_soc pointer
  363. * @delay: delay in us
  364. *
  365. * Return: None
  366. */
  367. static inline void hal_reg_write_fill_sched_delay_hist(struct hal_soc *hal,
  368. uint64_t delay_us)
  369. {
  370. uint32_t *hist;
  371. hist = hal->stats.wstats.sched_delay;
  372. if (delay_us < 100)
  373. hist[REG_WRITE_SCHED_DELAY_SUB_100us]++;
  374. else if (delay_us < 1000)
  375. hist[REG_WRITE_SCHED_DELAY_SUB_1000us]++;
  376. else if (delay_us < 5000)
  377. hist[REG_WRITE_SCHED_DELAY_SUB_5000us]++;
  378. else
  379. hist[REG_WRITE_SCHED_DELAY_GT_5000us]++;
  380. }
  381. /**
  382. * hal_reg_write_work() - Worker to process delayed writes
  383. * @arg: hal_soc pointer
  384. *
  385. * Return: None
  386. */
  387. static void hal_reg_write_work(void *arg)
  388. {
  389. int32_t q_depth, write_val;
  390. struct hal_soc *hal = arg;
  391. struct hal_reg_write_q_elem *q_elem;
  392. uint64_t delta_us;
  393. uint8_t ring_id;
  394. uint32_t *addr;
  395. q_elem = &hal->reg_write_queue[(hal->read_idx)];
  396. if (!q_elem->valid)
  397. return;
  398. q_depth = qdf_atomic_read(&hal->stats.wstats.q_depth);
  399. if (q_depth > hal->stats.wstats.max_q_depth)
  400. hal->stats.wstats.max_q_depth = q_depth;
  401. if (hif_prevent_link_low_power_states(hal->hif_handle)) {
  402. hal->stats.wstats.prevent_l1_fails++;
  403. return;
  404. }
  405. while (q_elem->valid) {
  406. q_elem->dequeue_time = qdf_get_log_timestamp();
  407. ring_id = q_elem->srng->ring_id;
  408. addr = q_elem->addr;
  409. delta_us = qdf_log_timestamp_to_usecs(q_elem->dequeue_time -
  410. q_elem->enqueue_time);
  411. hal_reg_write_fill_sched_delay_hist(hal, delta_us);
  412. hal->stats.wstats.dequeues++;
  413. qdf_atomic_dec(&hal->stats.wstats.q_depth);
  414. write_val = hal_process_reg_write_q_elem(hal, q_elem);
  415. hal_verbose_debug("read_idx %u srng 0x%x, addr 0x%pK dequeue_val %u sched delay %llu us",
  416. hal->read_idx, ring_id, addr, write_val, delta_us);
  417. qdf_atomic_dec(&hal->active_work_cnt);
  418. hal->read_idx = (hal->read_idx + 1) &
  419. (HAL_REG_WRITE_QUEUE_LEN - 1);
  420. q_elem = &hal->reg_write_queue[(hal->read_idx)];
  421. }
  422. hif_allow_link_low_power_states(hal->hif_handle);
  423. }
  424. /**
  425. * hal_flush_reg_write_work() - flush all writes from regiter write queue
  426. * @arg: hal_soc pointer
  427. *
  428. * Return: None
  429. */
  430. static inline void hal_flush_reg_write_work(struct hal_soc *hal)
  431. {
  432. qdf_cancel_work(&hal->reg_write_work);
  433. qdf_flush_work(&hal->reg_write_work);
  434. qdf_flush_workqueue(0, hal->reg_write_wq);
  435. }
  436. /**
  437. * hal_reg_write_enqueue() - enqueue register writes into kworker
  438. * @hal_soc: hal_soc pointer
  439. * @srng: srng pointer
  440. * @addr: iomem address of regiter
  441. * @value: value to be written to iomem address
  442. *
  443. * This function executes from within the SRNG LOCK
  444. *
  445. * Return: None
  446. */
  447. static void hal_reg_write_enqueue(struct hal_soc *hal_soc,
  448. struct hal_srng *srng,
  449. void __iomem *addr,
  450. uint32_t value)
  451. {
  452. struct hal_reg_write_q_elem *q_elem;
  453. uint32_t write_idx;
  454. if (srng->reg_write_in_progress) {
  455. hal_verbose_debug("Already in progress srng ring id 0x%x addr 0x%pK val %u",
  456. srng->ring_id, addr, value);
  457. qdf_atomic_inc(&hal_soc->stats.wstats.coalesces);
  458. srng->wstats.coalesces++;
  459. return;
  460. }
  461. write_idx = qdf_atomic_inc_return(&hal_soc->write_idx);
  462. write_idx = write_idx & (HAL_REG_WRITE_QUEUE_LEN - 1);
  463. q_elem = &hal_soc->reg_write_queue[write_idx];
  464. if (q_elem->valid) {
  465. hal_err("queue full");
  466. QDF_BUG(0);
  467. return;
  468. }
  469. qdf_atomic_inc(&hal_soc->stats.wstats.enqueues);
  470. srng->wstats.enqueues++;
  471. qdf_atomic_inc(&hal_soc->stats.wstats.q_depth);
  472. q_elem->srng = srng;
  473. q_elem->addr = addr;
  474. q_elem->enqueue_val = value;
  475. q_elem->enqueue_time = qdf_get_log_timestamp();
  476. /*
  477. * Before the valid flag is set to true, all the other
  478. * fields in the q_elem needs to be updated in memory.
  479. * Else there is a chance that the dequeuing worker thread
  480. * might read stale entries and process incorrect srng.
  481. */
  482. qdf_wmb();
  483. q_elem->valid = true;
  484. srng->reg_write_in_progress = true;
  485. qdf_atomic_inc(&hal_soc->active_work_cnt);
  486. hal_verbose_debug("write_idx %u srng ring id 0x%x addr 0x%pK val %u",
  487. write_idx, srng->ring_id, addr, value);
  488. qdf_queue_work(hal_soc->qdf_dev, hal_soc->reg_write_wq,
  489. &hal_soc->reg_write_work);
  490. }
  491. void hal_delayed_reg_write(struct hal_soc *hal_soc,
  492. struct hal_srng *srng,
  493. void __iomem *addr,
  494. uint32_t value)
  495. {
  496. if (pld_is_device_awake(hal_soc->qdf_dev->dev) ||
  497. hal_is_reg_write_tput_level_high(hal_soc)) {
  498. qdf_atomic_inc(&hal_soc->stats.wstats.direct);
  499. srng->wstats.direct++;
  500. hal_write_address_32_mb(hal_soc, addr, value, false);
  501. } else {
  502. hal_reg_write_enqueue(hal_soc, srng, addr, value);
  503. }
  504. }
  505. /**
  506. * hal_delayed_reg_write_init() - Initialization function for delayed reg writes
  507. * @hal_soc: hal_soc pointer
  508. *
  509. * Initialize main data structures to process register writes in a delayed
  510. * workqueue.
  511. *
  512. * Return: QDF_STATUS_SUCCESS on success else a QDF error.
  513. */
  514. static QDF_STATUS hal_delayed_reg_write_init(struct hal_soc *hal)
  515. {
  516. hal->reg_write_wq =
  517. qdf_alloc_high_prior_ordered_workqueue("hal_register_write_wq");
  518. qdf_create_work(0, &hal->reg_write_work, hal_reg_write_work, hal);
  519. hal->reg_write_queue = qdf_mem_malloc(HAL_REG_WRITE_QUEUE_LEN *
  520. sizeof(*hal->reg_write_queue));
  521. if (!hal->reg_write_queue) {
  522. hal_err("unable to allocate memory");
  523. QDF_BUG(0);
  524. return QDF_STATUS_E_NOMEM;
  525. }
  526. /* Initial value of indices */
  527. hal->read_idx = 0;
  528. qdf_atomic_set(&hal->write_idx, -1);
  529. return QDF_STATUS_SUCCESS;
  530. }
  531. /**
  532. * hal_delayed_reg_write_deinit() - De-Initialize delayed reg write processing
  533. * @hal_soc: hal_soc pointer
  534. *
  535. * De-initialize main data structures to process register writes in a delayed
  536. * workqueue.
  537. *
  538. * Return: None
  539. */
  540. static void hal_delayed_reg_write_deinit(struct hal_soc *hal)
  541. {
  542. hal_flush_reg_write_work(hal);
  543. qdf_destroy_workqueue(0, hal->reg_write_wq);
  544. qdf_mem_free(hal->reg_write_queue);
  545. }
  546. static inline
  547. char *hal_fill_reg_write_srng_stats(struct hal_srng *srng,
  548. char *buf, qdf_size_t size)
  549. {
  550. qdf_scnprintf(buf, size, "enq %u deq %u coal %u direct %u",
  551. srng->wstats.enqueues, srng->wstats.dequeues,
  552. srng->wstats.coalesces, srng->wstats.direct);
  553. return buf;
  554. }
  555. /* bytes for local buffer */
  556. #define HAL_REG_WRITE_SRNG_STATS_LEN 100
  557. void hal_dump_reg_write_srng_stats(hal_soc_handle_t hal_soc_hdl)
  558. {
  559. struct hal_srng *srng;
  560. char buf[HAL_REG_WRITE_SRNG_STATS_LEN];
  561. struct hal_soc *hal = (struct hal_soc *)hal_soc_hdl;
  562. srng = hal_get_srng(hal, HAL_SRNG_SW2TCL1);
  563. hal_debug("SW2TCL1: %s",
  564. hal_fill_reg_write_srng_stats(srng, buf, sizeof(buf)));
  565. srng = hal_get_srng(hal, HAL_SRNG_WBM2SW0_RELEASE);
  566. hal_debug("WBM2SW0: %s",
  567. hal_fill_reg_write_srng_stats(srng, buf, sizeof(buf)));
  568. srng = hal_get_srng(hal, HAL_SRNG_REO2SW1);
  569. hal_debug("REO2SW1: %s",
  570. hal_fill_reg_write_srng_stats(srng, buf, sizeof(buf)));
  571. srng = hal_get_srng(hal, HAL_SRNG_REO2SW2);
  572. hal_debug("REO2SW2: %s",
  573. hal_fill_reg_write_srng_stats(srng, buf, sizeof(buf)));
  574. srng = hal_get_srng(hal, HAL_SRNG_REO2SW3);
  575. hal_debug("REO2SW3: %s",
  576. hal_fill_reg_write_srng_stats(srng, buf, sizeof(buf)));
  577. }
  578. void hal_dump_reg_write_stats(hal_soc_handle_t hal_soc_hdl)
  579. {
  580. uint32_t *hist;
  581. struct hal_soc *hal = (struct hal_soc *)hal_soc_hdl;
  582. hist = hal->stats.wstats.sched_delay;
  583. hal_debug("enq %u deq %u coal %u direct %u q_depth %u max_q %u sched-delay hist %u %u %u %u",
  584. qdf_atomic_read(&hal->stats.wstats.enqueues),
  585. hal->stats.wstats.dequeues,
  586. qdf_atomic_read(&hal->stats.wstats.coalesces),
  587. qdf_atomic_read(&hal->stats.wstats.direct),
  588. qdf_atomic_read(&hal->stats.wstats.q_depth),
  589. hal->stats.wstats.max_q_depth,
  590. hist[REG_WRITE_SCHED_DELAY_SUB_100us],
  591. hist[REG_WRITE_SCHED_DELAY_SUB_1000us],
  592. hist[REG_WRITE_SCHED_DELAY_SUB_5000us],
  593. hist[REG_WRITE_SCHED_DELAY_GT_5000us]);
  594. }
  595. int hal_get_reg_write_pending_work(void *hal_soc)
  596. {
  597. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  598. return qdf_atomic_read(&hal->active_work_cnt);
  599. }
  600. #else
  601. static inline QDF_STATUS hal_delayed_reg_write_init(struct hal_soc *hal)
  602. {
  603. return QDF_STATUS_SUCCESS;
  604. }
  605. static inline void hal_delayed_reg_write_deinit(struct hal_soc *hal)
  606. {
  607. }
  608. #endif
  609. /**
  610. * hal_attach - Initialize HAL layer
  611. * @hif_handle: Opaque HIF handle
  612. * @qdf_dev: QDF device
  613. *
  614. * Return: Opaque HAL SOC handle
  615. * NULL on failure (if given ring is not available)
  616. *
  617. * This function should be called as part of HIF initialization (for accessing
  618. * copy engines). DP layer will get hal_soc handle using hif_get_hal_handle()
  619. *
  620. */
  621. void *hal_attach(struct hif_opaque_softc *hif_handle, qdf_device_t qdf_dev)
  622. {
  623. struct hal_soc *hal;
  624. int i;
  625. hal = qdf_mem_malloc(sizeof(*hal));
  626. if (!hal) {
  627. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  628. "%s: hal_soc allocation failed", __func__);
  629. goto fail0;
  630. }
  631. hal->hif_handle = hif_handle;
  632. hal->dev_base_addr = hif_get_dev_ba(hif_handle);
  633. hal->qdf_dev = qdf_dev;
  634. hal->shadow_rdptr_mem_vaddr = (uint32_t *)qdf_mem_alloc_consistent(
  635. qdf_dev, qdf_dev->dev, sizeof(*(hal->shadow_rdptr_mem_vaddr)) *
  636. HAL_SRNG_ID_MAX, &(hal->shadow_rdptr_mem_paddr));
  637. if (!hal->shadow_rdptr_mem_paddr) {
  638. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  639. "%s: hal->shadow_rdptr_mem_paddr allocation failed",
  640. __func__);
  641. goto fail1;
  642. }
  643. qdf_mem_zero(hal->shadow_rdptr_mem_vaddr,
  644. sizeof(*(hal->shadow_rdptr_mem_vaddr)) * HAL_SRNG_ID_MAX);
  645. hal->shadow_wrptr_mem_vaddr =
  646. (uint32_t *)qdf_mem_alloc_consistent(qdf_dev, qdf_dev->dev,
  647. sizeof(*(hal->shadow_wrptr_mem_vaddr)) * HAL_MAX_LMAC_RINGS,
  648. &(hal->shadow_wrptr_mem_paddr));
  649. if (!hal->shadow_wrptr_mem_vaddr) {
  650. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  651. "%s: hal->shadow_wrptr_mem_vaddr allocation failed",
  652. __func__);
  653. goto fail2;
  654. }
  655. qdf_mem_zero(hal->shadow_wrptr_mem_vaddr,
  656. sizeof(*(hal->shadow_wrptr_mem_vaddr)) * HAL_MAX_LMAC_RINGS);
  657. for (i = 0; i < HAL_SRNG_ID_MAX; i++) {
  658. hal->srng_list[i].initialized = 0;
  659. hal->srng_list[i].ring_id = i;
  660. }
  661. qdf_spinlock_create(&hal->register_access_lock);
  662. hal->register_window = 0;
  663. hal->target_type = hal_get_target_type(hal_soc_to_hal_soc_handle(hal));
  664. hal_target_based_configure(hal);
  665. hal_reg_write_fail_history_init(hal);
  666. qdf_minidump_log(hal, sizeof(*hal), "hal_soc");
  667. qdf_atomic_init(&hal->active_work_cnt);
  668. hal_delayed_reg_write_init(hal);
  669. return (void *)hal;
  670. fail2:
  671. qdf_mem_free_consistent(qdf_dev, qdf_dev->dev,
  672. sizeof(*(hal->shadow_rdptr_mem_vaddr)) * HAL_SRNG_ID_MAX,
  673. hal->shadow_rdptr_mem_vaddr, hal->shadow_rdptr_mem_paddr, 0);
  674. fail1:
  675. qdf_mem_free(hal);
  676. fail0:
  677. return NULL;
  678. }
  679. qdf_export_symbol(hal_attach);
  680. /**
  681. * hal_mem_info - Retrieve hal memory base address
  682. *
  683. * @hal_soc: Opaque HAL SOC handle
  684. * @mem: pointer to structure to be updated with hal mem info
  685. */
  686. void hal_get_meminfo(hal_soc_handle_t hal_soc_hdl, struct hal_mem_info *mem)
  687. {
  688. struct hal_soc *hal = (struct hal_soc *)hal_soc_hdl;
  689. mem->dev_base_addr = (void *)hal->dev_base_addr;
  690. mem->shadow_rdptr_mem_vaddr = (void *)hal->shadow_rdptr_mem_vaddr;
  691. mem->shadow_wrptr_mem_vaddr = (void *)hal->shadow_wrptr_mem_vaddr;
  692. mem->shadow_rdptr_mem_paddr = (void *)hal->shadow_rdptr_mem_paddr;
  693. mem->shadow_wrptr_mem_paddr = (void *)hal->shadow_wrptr_mem_paddr;
  694. hif_read_phy_mem_base((void *)hal->hif_handle,
  695. (qdf_dma_addr_t *)&mem->dev_base_paddr);
  696. return;
  697. }
  698. qdf_export_symbol(hal_get_meminfo);
  699. /**
  700. * hal_detach - Detach HAL layer
  701. * @hal_soc: HAL SOC handle
  702. *
  703. * Return: Opaque HAL SOC handle
  704. * NULL on failure (if given ring is not available)
  705. *
  706. * This function should be called as part of HIF initialization (for accessing
  707. * copy engines). DP layer will get hal_soc handle using hif_get_hal_handle()
  708. *
  709. */
  710. extern void hal_detach(void *hal_soc)
  711. {
  712. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  713. hal_delayed_reg_write_deinit(hal);
  714. qdf_mem_free_consistent(hal->qdf_dev, hal->qdf_dev->dev,
  715. sizeof(*(hal->shadow_rdptr_mem_vaddr)) * HAL_SRNG_ID_MAX,
  716. hal->shadow_rdptr_mem_vaddr, hal->shadow_rdptr_mem_paddr, 0);
  717. qdf_mem_free_consistent(hal->qdf_dev, hal->qdf_dev->dev,
  718. sizeof(*(hal->shadow_wrptr_mem_vaddr)) * HAL_MAX_LMAC_RINGS,
  719. hal->shadow_wrptr_mem_vaddr, hal->shadow_wrptr_mem_paddr, 0);
  720. qdf_minidump_remove(hal);
  721. qdf_mem_free(hal);
  722. return;
  723. }
  724. qdf_export_symbol(hal_detach);
  725. /**
  726. * hal_ce_dst_setup - Initialize CE destination ring registers
  727. * @hal_soc: HAL SOC handle
  728. * @srng: SRNG ring pointer
  729. */
  730. static inline void hal_ce_dst_setup(struct hal_soc *hal, struct hal_srng *srng,
  731. int ring_num)
  732. {
  733. uint32_t reg_val = 0;
  734. uint32_t reg_addr;
  735. struct hal_hw_srng_config *ring_config =
  736. HAL_SRNG_CONFIG(hal, CE_DST);
  737. /* set DEST_MAX_LENGTH according to ce assignment */
  738. reg_addr = HWIO_WFSS_CE_CHANNEL_DST_R0_DEST_CTRL_ADDR(
  739. ring_config->reg_start[R0_INDEX] +
  740. (ring_num * ring_config->reg_size[R0_INDEX]));
  741. reg_val = HAL_REG_READ(hal, reg_addr);
  742. reg_val &= ~HWIO_WFSS_CE_CHANNEL_DST_R0_DEST_CTRL_DEST_MAX_LENGTH_BMSK;
  743. reg_val |= srng->u.dst_ring.max_buffer_length &
  744. HWIO_WFSS_CE_CHANNEL_DST_R0_DEST_CTRL_DEST_MAX_LENGTH_BMSK;
  745. HAL_REG_WRITE(hal, reg_addr, reg_val);
  746. if (srng->prefetch_timer) {
  747. reg_addr = HWIO_WFSS_CE_CHANNEL_DST_R0_DEST_RING_CONSUMER_PREFETCH_TIMER_ADDR(
  748. ring_config->reg_start[R0_INDEX] +
  749. (ring_num * ring_config->reg_size[R0_INDEX]));
  750. reg_val = HAL_REG_READ(hal, reg_addr);
  751. reg_val &= ~HWIO_WFSS_CE_CHANNEL_DST_R0_DEST_RING_CONSUMER_PREFETCH_TIMER_RMSK;
  752. reg_val |= srng->prefetch_timer;
  753. HAL_REG_WRITE(hal, reg_addr, reg_val);
  754. reg_val = HAL_REG_READ(hal, reg_addr);
  755. }
  756. }
  757. /**
  758. * hal_reo_read_write_ctrl_ix - Read or write REO_DESTINATION_RING_CTRL_IX
  759. * @hal: HAL SOC handle
  760. * @read: boolean value to indicate if read or write
  761. * @ix0: pointer to store IX0 reg value
  762. * @ix1: pointer to store IX1 reg value
  763. * @ix2: pointer to store IX2 reg value
  764. * @ix3: pointer to store IX3 reg value
  765. */
  766. void hal_reo_read_write_ctrl_ix(hal_soc_handle_t hal_soc_hdl, bool read,
  767. uint32_t *ix0, uint32_t *ix1,
  768. uint32_t *ix2, uint32_t *ix3)
  769. {
  770. uint32_t reg_offset;
  771. struct hal_soc *hal = (struct hal_soc *)hal_soc_hdl;
  772. if (read) {
  773. if (ix0) {
  774. reg_offset =
  775. HWIO_REO_R0_DESTINATION_RING_CTRL_IX_0_ADDR(
  776. SEQ_WCSS_UMAC_REO_REG_OFFSET);
  777. *ix0 = HAL_REG_READ(hal, reg_offset);
  778. }
  779. if (ix1) {
  780. reg_offset =
  781. HWIO_REO_R0_DESTINATION_RING_CTRL_IX_1_ADDR(
  782. SEQ_WCSS_UMAC_REO_REG_OFFSET);
  783. *ix1 = HAL_REG_READ(hal, reg_offset);
  784. }
  785. if (ix2) {
  786. reg_offset =
  787. HWIO_REO_R0_DESTINATION_RING_CTRL_IX_2_ADDR(
  788. SEQ_WCSS_UMAC_REO_REG_OFFSET);
  789. *ix2 = HAL_REG_READ(hal, reg_offset);
  790. }
  791. if (ix3) {
  792. reg_offset =
  793. HWIO_REO_R0_DESTINATION_RING_CTRL_IX_3_ADDR(
  794. SEQ_WCSS_UMAC_REO_REG_OFFSET);
  795. *ix3 = HAL_REG_READ(hal, reg_offset);
  796. }
  797. } else {
  798. if (ix0) {
  799. reg_offset =
  800. HWIO_REO_R0_DESTINATION_RING_CTRL_IX_0_ADDR(
  801. SEQ_WCSS_UMAC_REO_REG_OFFSET);
  802. HAL_REG_WRITE_CONFIRM(hal, reg_offset, *ix0);
  803. }
  804. if (ix1) {
  805. reg_offset =
  806. HWIO_REO_R0_DESTINATION_RING_CTRL_IX_1_ADDR(
  807. SEQ_WCSS_UMAC_REO_REG_OFFSET);
  808. HAL_REG_WRITE(hal, reg_offset, *ix1);
  809. }
  810. if (ix2) {
  811. reg_offset =
  812. HWIO_REO_R0_DESTINATION_RING_CTRL_IX_2_ADDR(
  813. SEQ_WCSS_UMAC_REO_REG_OFFSET);
  814. HAL_REG_WRITE_CONFIRM(hal, reg_offset, *ix2);
  815. }
  816. if (ix3) {
  817. reg_offset =
  818. HWIO_REO_R0_DESTINATION_RING_CTRL_IX_3_ADDR(
  819. SEQ_WCSS_UMAC_REO_REG_OFFSET);
  820. HAL_REG_WRITE_CONFIRM(hal, reg_offset, *ix3);
  821. }
  822. }
  823. }
  824. /**
  825. * hal_srng_dst_set_hp_paddr() - Set physical address to dest ring head pointer
  826. * @srng: sring pointer
  827. * @paddr: physical address
  828. */
  829. void hal_srng_dst_set_hp_paddr(struct hal_srng *srng,
  830. uint64_t paddr)
  831. {
  832. SRNG_DST_REG_WRITE(srng, HP_ADDR_LSB,
  833. paddr & 0xffffffff);
  834. SRNG_DST_REG_WRITE(srng, HP_ADDR_MSB,
  835. paddr >> 32);
  836. }
  837. /**
  838. * hal_srng_dst_init_hp() - Initilaize destination ring head pointer
  839. * @srng: sring pointer
  840. * @vaddr: virtual address
  841. */
  842. void hal_srng_dst_init_hp(struct hal_srng *srng,
  843. uint32_t *vaddr)
  844. {
  845. if (!srng)
  846. return;
  847. srng->u.dst_ring.hp_addr = vaddr;
  848. SRNG_DST_REG_WRITE_CONFIRM(srng, HP, srng->u.dst_ring.cached_hp);
  849. if (vaddr) {
  850. *srng->u.dst_ring.hp_addr = srng->u.dst_ring.cached_hp;
  851. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  852. "hp_addr=%pK, cached_hp=%d, hp=%d",
  853. (void *)srng->u.dst_ring.hp_addr,
  854. srng->u.dst_ring.cached_hp,
  855. *srng->u.dst_ring.hp_addr);
  856. }
  857. }
  858. /**
  859. * hal_srng_hw_init - Private function to initialize SRNG HW
  860. * @hal_soc: HAL SOC handle
  861. * @srng: SRNG ring pointer
  862. */
  863. static inline void hal_srng_hw_init(struct hal_soc *hal,
  864. struct hal_srng *srng)
  865. {
  866. if (srng->ring_dir == HAL_SRNG_SRC_RING)
  867. hal_srng_src_hw_init(hal, srng);
  868. else
  869. hal_srng_dst_hw_init(hal, srng);
  870. }
  871. #ifdef CONFIG_SHADOW_V2
  872. #define ignore_shadow false
  873. #define CHECK_SHADOW_REGISTERS true
  874. #else
  875. #define ignore_shadow true
  876. #define CHECK_SHADOW_REGISTERS false
  877. #endif
  878. /**
  879. * hal_srng_setup - Initialize HW SRNG ring.
  880. * @hal_soc: Opaque HAL SOC handle
  881. * @ring_type: one of the types from hal_ring_type
  882. * @ring_num: Ring number if there are multiple rings of same type (staring
  883. * from 0)
  884. * @mac_id: valid MAC Id should be passed if ring type is one of lmac rings
  885. * @ring_params: SRNG ring params in hal_srng_params structure.
  886. * Callers are expected to allocate contiguous ring memory of size
  887. * 'num_entries * entry_size' bytes and pass the physical and virtual base
  888. * addresses through 'ring_base_paddr' and 'ring_base_vaddr' in
  889. * hal_srng_params structure. Ring base address should be 8 byte aligned
  890. * and size of each ring entry should be queried using the API
  891. * hal_srng_get_entrysize
  892. *
  893. * Return: Opaque pointer to ring on success
  894. * NULL on failure (if given ring is not available)
  895. */
  896. void *hal_srng_setup(void *hal_soc, int ring_type, int ring_num,
  897. int mac_id, struct hal_srng_params *ring_params)
  898. {
  899. int ring_id;
  900. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  901. struct hal_srng *srng;
  902. struct hal_hw_srng_config *ring_config =
  903. HAL_SRNG_CONFIG(hal, ring_type);
  904. void *dev_base_addr;
  905. int i;
  906. ring_id = hal_get_srng_ring_id(hal_soc, ring_type, ring_num, mac_id);
  907. if (ring_id < 0)
  908. return NULL;
  909. hal_verbose_debug("mac_id %d ring_id %d", mac_id, ring_id);
  910. srng = hal_get_srng(hal_soc, ring_id);
  911. if (srng->initialized) {
  912. hal_verbose_debug("Ring (ring_type, ring_num) already initialized");
  913. return NULL;
  914. }
  915. dev_base_addr = hal->dev_base_addr;
  916. srng->ring_id = ring_id;
  917. srng->ring_dir = ring_config->ring_dir;
  918. srng->ring_base_paddr = ring_params->ring_base_paddr;
  919. srng->ring_base_vaddr = ring_params->ring_base_vaddr;
  920. srng->entry_size = ring_config->entry_size;
  921. srng->num_entries = ring_params->num_entries;
  922. srng->ring_size = srng->num_entries * srng->entry_size;
  923. srng->ring_size_mask = srng->ring_size - 1;
  924. srng->msi_addr = ring_params->msi_addr;
  925. srng->msi_data = ring_params->msi_data;
  926. srng->intr_timer_thres_us = ring_params->intr_timer_thres_us;
  927. srng->intr_batch_cntr_thres_entries =
  928. ring_params->intr_batch_cntr_thres_entries;
  929. srng->prefetch_timer = ring_params->prefetch_timer;
  930. srng->hal_soc = hal_soc;
  931. for (i = 0 ; i < MAX_SRNG_REG_GROUPS; i++) {
  932. srng->hwreg_base[i] = dev_base_addr + ring_config->reg_start[i]
  933. + (ring_num * ring_config->reg_size[i]);
  934. }
  935. /* Zero out the entire ring memory */
  936. qdf_mem_zero(srng->ring_base_vaddr, (srng->entry_size *
  937. srng->num_entries) << 2);
  938. srng->flags = ring_params->flags;
  939. #ifdef BIG_ENDIAN_HOST
  940. /* TODO: See if we should we get these flags from caller */
  941. srng->flags |= HAL_SRNG_DATA_TLV_SWAP;
  942. srng->flags |= HAL_SRNG_MSI_SWAP;
  943. srng->flags |= HAL_SRNG_RING_PTR_SWAP;
  944. #endif
  945. if (srng->ring_dir == HAL_SRNG_SRC_RING) {
  946. srng->u.src_ring.hp = 0;
  947. srng->u.src_ring.reap_hp = srng->ring_size -
  948. srng->entry_size;
  949. srng->u.src_ring.tp_addr =
  950. &(hal->shadow_rdptr_mem_vaddr[ring_id]);
  951. srng->u.src_ring.low_threshold =
  952. ring_params->low_threshold * srng->entry_size;
  953. if (ring_config->lmac_ring) {
  954. /* For LMAC rings, head pointer updates will be done
  955. * through FW by writing to a shared memory location
  956. */
  957. srng->u.src_ring.hp_addr =
  958. &(hal->shadow_wrptr_mem_vaddr[ring_id -
  959. HAL_SRNG_LMAC1_ID_START]);
  960. srng->flags |= HAL_SRNG_LMAC_RING;
  961. } else if (ignore_shadow || (srng->u.src_ring.hp_addr == 0)) {
  962. srng->u.src_ring.hp_addr =
  963. hal_get_window_address(hal,
  964. SRNG_SRC_ADDR(srng, HP));
  965. if (CHECK_SHADOW_REGISTERS) {
  966. QDF_TRACE(QDF_MODULE_ID_TXRX,
  967. QDF_TRACE_LEVEL_ERROR,
  968. "%s: Ring (%d, %d) missing shadow config",
  969. __func__, ring_type, ring_num);
  970. }
  971. } else {
  972. hal_validate_shadow_register(hal,
  973. SRNG_SRC_ADDR(srng, HP),
  974. srng->u.src_ring.hp_addr);
  975. }
  976. } else {
  977. /* During initialization loop count in all the descriptors
  978. * will be set to zero, and HW will set it to 1 on completing
  979. * descriptor update in first loop, and increments it by 1 on
  980. * subsequent loops (loop count wraps around after reaching
  981. * 0xffff). The 'loop_cnt' in SW ring state is the expected
  982. * loop count in descriptors updated by HW (to be processed
  983. * by SW).
  984. */
  985. srng->u.dst_ring.loop_cnt = 1;
  986. srng->u.dst_ring.tp = 0;
  987. srng->u.dst_ring.hp_addr =
  988. &(hal->shadow_rdptr_mem_vaddr[ring_id]);
  989. if (ring_config->lmac_ring) {
  990. /* For LMAC rings, tail pointer updates will be done
  991. * through FW by writing to a shared memory location
  992. */
  993. srng->u.dst_ring.tp_addr =
  994. &(hal->shadow_wrptr_mem_vaddr[ring_id -
  995. HAL_SRNG_LMAC1_ID_START]);
  996. srng->flags |= HAL_SRNG_LMAC_RING;
  997. } else if (ignore_shadow || srng->u.dst_ring.tp_addr == 0) {
  998. srng->u.dst_ring.tp_addr =
  999. hal_get_window_address(hal,
  1000. SRNG_DST_ADDR(srng, TP));
  1001. if (CHECK_SHADOW_REGISTERS) {
  1002. QDF_TRACE(QDF_MODULE_ID_TXRX,
  1003. QDF_TRACE_LEVEL_ERROR,
  1004. "%s: Ring (%d, %d) missing shadow config",
  1005. __func__, ring_type, ring_num);
  1006. }
  1007. } else {
  1008. hal_validate_shadow_register(hal,
  1009. SRNG_DST_ADDR(srng, TP),
  1010. srng->u.dst_ring.tp_addr);
  1011. }
  1012. }
  1013. if (!(ring_config->lmac_ring)) {
  1014. hal_srng_hw_init(hal, srng);
  1015. if (ring_type == CE_DST) {
  1016. srng->u.dst_ring.max_buffer_length = ring_params->max_buffer_length;
  1017. hal_ce_dst_setup(hal, srng, ring_num);
  1018. }
  1019. }
  1020. SRNG_LOCK_INIT(&srng->lock);
  1021. srng->srng_event = 0;
  1022. srng->initialized = true;
  1023. return (void *)srng;
  1024. }
  1025. qdf_export_symbol(hal_srng_setup);
  1026. /**
  1027. * hal_srng_cleanup - Deinitialize HW SRNG ring.
  1028. * @hal_soc: Opaque HAL SOC handle
  1029. * @hal_srng: Opaque HAL SRNG pointer
  1030. */
  1031. void hal_srng_cleanup(void *hal_soc, hal_ring_handle_t hal_ring_hdl)
  1032. {
  1033. struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
  1034. SRNG_LOCK_DESTROY(&srng->lock);
  1035. srng->initialized = 0;
  1036. }
  1037. qdf_export_symbol(hal_srng_cleanup);
  1038. /**
  1039. * hal_srng_get_entrysize - Returns size of ring entry in bytes
  1040. * @hal_soc: Opaque HAL SOC handle
  1041. * @ring_type: one of the types from hal_ring_type
  1042. *
  1043. */
  1044. uint32_t hal_srng_get_entrysize(void *hal_soc, int ring_type)
  1045. {
  1046. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  1047. struct hal_hw_srng_config *ring_config =
  1048. HAL_SRNG_CONFIG(hal, ring_type);
  1049. return ring_config->entry_size << 2;
  1050. }
  1051. qdf_export_symbol(hal_srng_get_entrysize);
  1052. /**
  1053. * hal_srng_max_entries - Returns maximum possible number of ring entries
  1054. * @hal_soc: Opaque HAL SOC handle
  1055. * @ring_type: one of the types from hal_ring_type
  1056. *
  1057. * Return: Maximum number of entries for the given ring_type
  1058. */
  1059. uint32_t hal_srng_max_entries(void *hal_soc, int ring_type)
  1060. {
  1061. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  1062. struct hal_hw_srng_config *ring_config =
  1063. HAL_SRNG_CONFIG(hal, ring_type);
  1064. return ring_config->max_size / ring_config->entry_size;
  1065. }
  1066. qdf_export_symbol(hal_srng_max_entries);
  1067. enum hal_srng_dir hal_srng_get_dir(void *hal_soc, int ring_type)
  1068. {
  1069. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  1070. struct hal_hw_srng_config *ring_config =
  1071. HAL_SRNG_CONFIG(hal, ring_type);
  1072. return ring_config->ring_dir;
  1073. }
  1074. /**
  1075. * hal_srng_dump - Dump ring status
  1076. * @srng: hal srng pointer
  1077. */
  1078. void hal_srng_dump(struct hal_srng *srng)
  1079. {
  1080. if (srng->ring_dir == HAL_SRNG_SRC_RING) {
  1081. hal_debug("=== SRC RING %d ===", srng->ring_id);
  1082. hal_debug("hp %u, reap_hp %u, tp %u, cached tp %u",
  1083. srng->u.src_ring.hp,
  1084. srng->u.src_ring.reap_hp,
  1085. *srng->u.src_ring.tp_addr,
  1086. srng->u.src_ring.cached_tp);
  1087. } else {
  1088. hal_debug("=== DST RING %d ===", srng->ring_id);
  1089. hal_debug("tp %u, hp %u, cached tp %u, loop_cnt %u",
  1090. srng->u.dst_ring.tp,
  1091. *srng->u.dst_ring.hp_addr,
  1092. srng->u.dst_ring.cached_hp,
  1093. srng->u.dst_ring.loop_cnt);
  1094. }
  1095. }
  1096. /**
  1097. * hal_get_srng_params - Retrieve SRNG parameters for a given ring from HAL
  1098. *
  1099. * @hal_soc: Opaque HAL SOC handle
  1100. * @hal_ring: Ring pointer (Source or Destination ring)
  1101. * @ring_params: SRNG parameters will be returned through this structure
  1102. */
  1103. extern void hal_get_srng_params(hal_soc_handle_t hal_soc_hdl,
  1104. hal_ring_handle_t hal_ring_hdl,
  1105. struct hal_srng_params *ring_params)
  1106. {
  1107. struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
  1108. int i =0;
  1109. ring_params->ring_id = srng->ring_id;
  1110. ring_params->ring_dir = srng->ring_dir;
  1111. ring_params->entry_size = srng->entry_size;
  1112. ring_params->ring_base_paddr = srng->ring_base_paddr;
  1113. ring_params->ring_base_vaddr = srng->ring_base_vaddr;
  1114. ring_params->num_entries = srng->num_entries;
  1115. ring_params->msi_addr = srng->msi_addr;
  1116. ring_params->msi_data = srng->msi_data;
  1117. ring_params->intr_timer_thres_us = srng->intr_timer_thres_us;
  1118. ring_params->intr_batch_cntr_thres_entries =
  1119. srng->intr_batch_cntr_thres_entries;
  1120. ring_params->low_threshold = srng->u.src_ring.low_threshold;
  1121. ring_params->flags = srng->flags;
  1122. ring_params->ring_id = srng->ring_id;
  1123. for (i = 0 ; i < MAX_SRNG_REG_GROUPS; i++)
  1124. ring_params->hwreg_base[i] = srng->hwreg_base[i];
  1125. }
  1126. qdf_export_symbol(hal_get_srng_params);
  1127. #ifdef FORCE_WAKE
  1128. void hal_set_init_phase(hal_soc_handle_t soc, bool init_phase)
  1129. {
  1130. struct hal_soc *hal_soc = (struct hal_soc *)soc;
  1131. hal_soc->init_phase = init_phase;
  1132. }
  1133. #endif /* FORCE_WAKE */