dp_rx_defrag.c 38 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448
  1. /*
  2. * Copyright (c) 2017 The Linux Foundation. All rights reserved.
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for
  5. * any purpose with or without fee is hereby granted, provided that the
  6. * above copyright notice and this permission notice appear in all
  7. * copies.
  8. *
  9. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
  10. * WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
  11. * WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
  12. * AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
  13. * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
  14. * PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
  15. * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
  16. * PERFORMANCE OF THIS SOFTWARE.
  17. */
  18. #include "dp_types.h"
  19. #include "dp_rx.h"
  20. #include "dp_peer.h"
  21. #include "hal_api.h"
  22. #include "qdf_trace.h"
  23. #include "qdf_nbuf.h"
  24. #include "dp_rx_defrag.h"
  25. #include <enet.h> /* LLC_SNAP_HDR_LEN */
  26. #include "dp_rx_defrag.h"
  27. const struct dp_rx_defrag_cipher dp_f_ccmp = {
  28. "AES-CCM",
  29. IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN + IEEE80211_WEP_EXTIVLEN,
  30. IEEE80211_WEP_MICLEN,
  31. 0,
  32. };
  33. const struct dp_rx_defrag_cipher dp_f_tkip = {
  34. "TKIP",
  35. IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN + IEEE80211_WEP_EXTIVLEN,
  36. IEEE80211_WEP_CRCLEN,
  37. IEEE80211_WEP_MICLEN,
  38. };
  39. const struct dp_rx_defrag_cipher dp_f_wep = {
  40. "WEP",
  41. IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN,
  42. IEEE80211_WEP_CRCLEN,
  43. 0,
  44. };
  45. /*
  46. * dp_rx_defrag_frames_free(): Free fragment chain
  47. * @frames: Fragment chain
  48. *
  49. * Iterates through the fragment chain and frees them
  50. * Returns: None
  51. */
  52. static void dp_rx_defrag_frames_free(qdf_nbuf_t frames)
  53. {
  54. qdf_nbuf_t next, frag = frames;
  55. while (frag) {
  56. next = qdf_nbuf_next(frag);
  57. qdf_nbuf_free(frag);
  58. frag = next;
  59. }
  60. }
  61. /*
  62. * dp_rx_clear_saved_desc_info(): Clears descriptor info
  63. * @peer: Pointer to the peer data structure
  64. * @tid: Transmit ID (TID)
  65. *
  66. * Saves MPDU descriptor info and MSDU link pointer from REO
  67. * ring descriptor. The cache is created per peer, per TID
  68. *
  69. * Returns: None
  70. */
  71. static void dp_rx_clear_saved_desc_info(struct dp_peer *peer, unsigned tid)
  72. {
  73. if (peer->rx_tid[tid].dst_ring_desc)
  74. qdf_mem_free(peer->rx_tid[tid].dst_ring_desc);
  75. peer->rx_tid[tid].dst_ring_desc = NULL;
  76. }
  77. #ifdef DEFRAG_TIMEOUT
  78. /*
  79. * dp_rx_defrag_waitlist_add(): Update per-PDEV defrag wait list
  80. * @peer: Pointer to the peer data structure
  81. * @tid: Transmit ID (TID)
  82. *
  83. * Appends per-tid fragments to global fragment wait list
  84. *
  85. * Returns: None
  86. */
  87. static void dp_rx_defrag_waitlist_add(struct dp_peer *peer, unsigned tid)
  88. {
  89. struct dp_soc *psoc = peer->vdev->pdev->soc;
  90. struct dp_rx_tid *rx_reorder = &peer->rx_tid[tid];
  91. /* TODO: use LIST macros instead of TAIL macros */
  92. TAILQ_INSERT_TAIL(&psoc->rx.defrag.waitlist, rx_reorder,
  93. defrag_waitlist_elem);
  94. }
  95. /*
  96. * dp_rx_defrag_waitlist_remove(): Remove fragments from waitlist
  97. * @peer: Pointer to the peer data structure
  98. * @tid: Transmit ID (TID)
  99. *
  100. * Remove fragments from waitlist
  101. *
  102. * Returns: None
  103. */
  104. static void dp_rx_defrag_waitlist_remove(struct dp_peer *peer, unsigned tid)
  105. {
  106. struct dp_pdev *pdev = peer->vdev->pdev;
  107. struct dp_soc *soc = pdev->soc;
  108. struct dp_rx_tid *rx_reorder;
  109. if (tid > DP_MAX_TIDS) {
  110. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  111. "TID out of bounds: %d", tid);
  112. qdf_assert(0);
  113. return;
  114. }
  115. rx_reorder = &peer->rx_tid[tid];
  116. if (rx_reorder->defrag_waitlist_elem.tqe_next != NULL) {
  117. TAILQ_REMOVE(&soc->rx.defrag.waitlist, rx_reorder,
  118. defrag_waitlist_elem);
  119. rx_reorder->defrag_waitlist_elem.tqe_next = NULL;
  120. rx_reorder->defrag_waitlist_elem.tqe_prev = NULL;
  121. } else if (rx_reorder->defrag_waitlist_elem.tqe_prev == NULL) {
  122. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  123. "waitlist->tqe_prev is NULL");
  124. rx_reorder->defrag_waitlist_elem.tqe_next = NULL;
  125. qdf_assert(0);
  126. }
  127. }
  128. #endif
  129. /*
  130. * dp_rx_defrag_fraglist_insert(): Create a per-sequence fragment list
  131. * @peer: Pointer to the peer data structure
  132. * @tid: Transmit ID (TID)
  133. * @head_addr: Pointer to head list
  134. * @tail_addr: Pointer to tail list
  135. * @frag: Incoming fragment
  136. * @all_frag_present: Flag to indicate whether all fragments are received
  137. *
  138. * Build a per-tid, per-sequence fragment list.
  139. *
  140. * Returns: None
  141. */
  142. static void dp_rx_defrag_fraglist_insert(struct dp_peer *peer, unsigned tid,
  143. qdf_nbuf_t *head_addr, qdf_nbuf_t *tail_addr, qdf_nbuf_t frag,
  144. uint8_t *all_frag_present)
  145. {
  146. qdf_nbuf_t next;
  147. qdf_nbuf_t prev = NULL;
  148. qdf_nbuf_t cur;
  149. uint16_t head_fragno, cur_fragno, next_fragno;
  150. uint8_t last_morefrag = 1, count = 0;
  151. struct dp_rx_tid *rx_tid = &peer->rx_tid[tid];
  152. uint8_t *rx_desc_info;
  153. qdf_assert(frag);
  154. qdf_assert(head_addr);
  155. qdf_assert(tail_addr);
  156. rx_desc_info = qdf_nbuf_data(frag);
  157. cur_fragno = dp_rx_frag_get_mpdu_frag_number(rx_desc_info);
  158. /* If this is the first fragment */
  159. if (!(*head_addr)) {
  160. *head_addr = *tail_addr = frag;
  161. qdf_nbuf_set_next(*tail_addr, NULL);
  162. rx_tid->curr_frag_num = cur_fragno;
  163. goto end;
  164. }
  165. /* In sequence fragment */
  166. if (cur_fragno > rx_tid->curr_frag_num) {
  167. qdf_nbuf_set_next(*tail_addr, frag);
  168. *tail_addr = frag;
  169. qdf_nbuf_set_next(*tail_addr, NULL);
  170. rx_tid->curr_frag_num = cur_fragno;
  171. } else {
  172. /* Out of sequence fragment */
  173. cur = *head_addr;
  174. rx_desc_info = qdf_nbuf_data(cur);
  175. head_fragno = dp_rx_frag_get_mpdu_frag_number(rx_desc_info);
  176. if (cur_fragno == head_fragno) {
  177. qdf_nbuf_free(frag);
  178. *all_frag_present = 0;
  179. } else if (head_fragno > cur_fragno) {
  180. qdf_nbuf_set_next(frag, cur);
  181. cur = frag;
  182. *head_addr = frag; /* head pointer to be updated */
  183. } else {
  184. while ((cur_fragno > head_fragno) && cur != NULL) {
  185. prev = cur;
  186. cur = qdf_nbuf_next(cur);
  187. rx_desc_info = qdf_nbuf_data(cur);
  188. head_fragno =
  189. dp_rx_frag_get_mpdu_frag_number(
  190. rx_desc_info);
  191. }
  192. qdf_nbuf_set_next(prev, frag);
  193. qdf_nbuf_set_next(frag, cur);
  194. }
  195. }
  196. next = qdf_nbuf_next(*head_addr);
  197. rx_desc_info = qdf_nbuf_data(*tail_addr);
  198. last_morefrag = dp_rx_frag_get_more_frag_bit(rx_desc_info);
  199. /* TODO: optimize the loop */
  200. if (!last_morefrag) {
  201. /* Check if all fragments are present */
  202. do {
  203. rx_desc_info = qdf_nbuf_data(next);
  204. next_fragno =
  205. dp_rx_frag_get_mpdu_frag_number(rx_desc_info);
  206. count++;
  207. if (next_fragno != count)
  208. break;
  209. next = qdf_nbuf_next(next);
  210. } while (next);
  211. if (!next) {
  212. *all_frag_present = 1;
  213. return;
  214. }
  215. }
  216. end:
  217. *all_frag_present = 0;
  218. }
  219. /*
  220. * dp_rx_defrag_tkip_decap(): decap tkip encrypted fragment
  221. * @msdu: Pointer to the fragment
  222. * @hdrlen: 802.11 header length (mostly useful in 4 addr frames)
  223. *
  224. * decap tkip encrypted fragment
  225. *
  226. * Returns: QDF_STATUS
  227. */
  228. static QDF_STATUS dp_rx_defrag_tkip_decap(qdf_nbuf_t msdu, uint16_t hdrlen)
  229. {
  230. uint8_t *ivp, *orig_hdr;
  231. int rx_desc_len = sizeof(struct rx_pkt_tlvs);
  232. /* start of 802.11 header info */
  233. orig_hdr = (uint8_t *)(qdf_nbuf_data(msdu) + rx_desc_len);
  234. /* TKIP header is located post 802.11 header */
  235. ivp = orig_hdr + hdrlen;
  236. if (!(ivp[IEEE80211_WEP_IVLEN] & IEEE80211_WEP_EXTIV)) {
  237. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  238. "IEEE80211_WEP_EXTIV is missing in TKIP fragment");
  239. return QDF_STATUS_E_DEFRAG_ERROR;
  240. }
  241. qdf_mem_move(orig_hdr + dp_f_tkip.ic_header, orig_hdr, hdrlen);
  242. qdf_nbuf_pull_head(msdu, dp_f_tkip.ic_header);
  243. qdf_nbuf_trim_tail(msdu, dp_f_tkip.ic_trailer);
  244. return QDF_STATUS_SUCCESS;
  245. }
  246. /*
  247. * dp_rx_defrag_ccmp_demic(): Remove MIC information from CCMP fragment
  248. * @nbuf: Pointer to the fragment buffer
  249. * @hdrlen: 802.11 header length (mostly useful in 4 addr frames)
  250. *
  251. * Remove MIC information from CCMP fragment
  252. *
  253. * Returns: QDF_STATUS
  254. */
  255. static QDF_STATUS dp_rx_defrag_ccmp_demic(qdf_nbuf_t nbuf, uint16_t hdrlen)
  256. {
  257. uint8_t *ivp, *orig_hdr;
  258. int rx_desc_len = sizeof(struct rx_pkt_tlvs);
  259. /* start of the 802.11 header */
  260. orig_hdr = (uint8_t *)(qdf_nbuf_data(nbuf) + rx_desc_len);
  261. /* CCMP header is located after 802.11 header */
  262. ivp = orig_hdr + hdrlen;
  263. if (!(ivp[IEEE80211_WEP_IVLEN] & IEEE80211_WEP_EXTIV))
  264. return QDF_STATUS_E_DEFRAG_ERROR;
  265. qdf_nbuf_trim_tail(nbuf, dp_f_ccmp.ic_trailer);
  266. return QDF_STATUS_SUCCESS;
  267. }
  268. /*
  269. * dp_rx_defrag_ccmp_decap(): decap CCMP encrypted fragment
  270. * @nbuf: Pointer to the fragment
  271. * @hdrlen: length of the header information
  272. *
  273. * decap CCMP encrypted fragment
  274. *
  275. * Returns: QDF_STATUS
  276. */
  277. static QDF_STATUS dp_rx_defrag_ccmp_decap(qdf_nbuf_t nbuf, uint16_t hdrlen)
  278. {
  279. uint8_t *ivp, *origHdr;
  280. int rx_desc_len = sizeof(struct rx_pkt_tlvs);
  281. origHdr = (uint8_t *) (qdf_nbuf_data(nbuf) + rx_desc_len);
  282. ivp = origHdr + hdrlen;
  283. if (!(ivp[IEEE80211_WEP_IVLEN] & IEEE80211_WEP_EXTIV))
  284. return QDF_STATUS_E_DEFRAG_ERROR;
  285. qdf_mem_move(origHdr + dp_f_ccmp.ic_header, origHdr, hdrlen);
  286. qdf_nbuf_pull_head(nbuf, dp_f_ccmp.ic_header);
  287. return QDF_STATUS_SUCCESS;
  288. }
  289. /*
  290. * dp_rx_defrag_wep_decap(): decap WEP encrypted fragment
  291. * @msdu: Pointer to the fragment
  292. * @hdrlen: length of the header information
  293. *
  294. * decap WEP encrypted fragment
  295. *
  296. * Returns: QDF_STATUS
  297. */
  298. static QDF_STATUS dp_rx_defrag_wep_decap(qdf_nbuf_t msdu, uint16_t hdrlen)
  299. {
  300. uint8_t *origHdr;
  301. int rx_desc_len = sizeof(struct rx_pkt_tlvs);
  302. origHdr = (uint8_t *) (qdf_nbuf_data(msdu) + rx_desc_len);
  303. qdf_mem_move(origHdr + dp_f_wep.ic_header, origHdr, hdrlen);
  304. qdf_nbuf_pull_head(msdu, dp_f_wep.ic_header);
  305. qdf_nbuf_trim_tail(msdu, dp_f_wep.ic_trailer);
  306. return QDF_STATUS_SUCCESS;
  307. }
  308. /*
  309. * dp_rx_defrag_hdrsize(): Calculate the header size of the received fragment
  310. * @nbuf: Pointer to the fragment
  311. *
  312. * Calculate the header size of the received fragment
  313. *
  314. * Returns: header size (uint16_t)
  315. */
  316. static uint16_t dp_rx_defrag_hdrsize(qdf_nbuf_t nbuf)
  317. {
  318. uint8_t *rx_tlv_hdr = qdf_nbuf_data(nbuf);
  319. uint16_t size = sizeof(struct ieee80211_frame);
  320. uint16_t fc = 0;
  321. uint32_t to_ds, fr_ds;
  322. uint8_t frm_ctrl_valid;
  323. uint16_t frm_ctrl_field;
  324. to_ds = hal_rx_mpdu_get_to_ds(rx_tlv_hdr);
  325. fr_ds = hal_rx_mpdu_get_fr_ds(rx_tlv_hdr);
  326. frm_ctrl_valid = hal_rx_get_mpdu_frame_control_valid(rx_tlv_hdr);
  327. frm_ctrl_field = hal_rx_get_frame_ctrl_field(rx_tlv_hdr);
  328. if (to_ds && fr_ds)
  329. size += IEEE80211_ADDR_LEN;
  330. if (frm_ctrl_valid) {
  331. fc = frm_ctrl_field;
  332. /* use 1-st byte for validation */
  333. if (DP_RX_DEFRAG_IEEE80211_QOS_HAS_SEQ(fc & 0xff)) {
  334. size += sizeof(uint16_t);
  335. /* use 2-nd byte for validation */
  336. if (((fc & 0xff00) >> 8) & IEEE80211_FC1_ORDER)
  337. size += sizeof(struct ieee80211_htc);
  338. }
  339. }
  340. return size;
  341. }
  342. /*
  343. * dp_rx_defrag_michdr(): Calculate a psuedo MIC header
  344. * @wh0: Pointer to the wireless header of the fragment
  345. * @hdr: Array to hold the psuedo header
  346. *
  347. * Calculate a psuedo MIC header
  348. *
  349. * Returns: None
  350. */
  351. static void dp_rx_defrag_michdr(const struct ieee80211_frame *wh0,
  352. uint8_t hdr[])
  353. {
  354. const struct ieee80211_frame_addr4 *wh =
  355. (const struct ieee80211_frame_addr4 *)wh0;
  356. switch (wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) {
  357. case IEEE80211_FC1_DIR_NODS:
  358. DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr, wh->i_addr1); /* DA */
  359. DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr + IEEE80211_ADDR_LEN,
  360. wh->i_addr2);
  361. break;
  362. case IEEE80211_FC1_DIR_TODS:
  363. DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr, wh->i_addr3); /* DA */
  364. DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr + IEEE80211_ADDR_LEN,
  365. wh->i_addr2);
  366. break;
  367. case IEEE80211_FC1_DIR_FROMDS:
  368. DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr, wh->i_addr1); /* DA */
  369. DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr + IEEE80211_ADDR_LEN,
  370. wh->i_addr3);
  371. break;
  372. case IEEE80211_FC1_DIR_DSTODS:
  373. DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr, wh->i_addr3); /* DA */
  374. DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr + IEEE80211_ADDR_LEN,
  375. wh->i_addr4);
  376. break;
  377. }
  378. /*
  379. * Bit 7 is IEEE80211_FC0_SUBTYPE_QOS for data frame, but
  380. * it could also be set for deauth, disassoc, action, etc. for
  381. * a mgt type frame. It comes into picture for MFP.
  382. */
  383. if (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_QOS) {
  384. const struct ieee80211_qosframe *qwh =
  385. (const struct ieee80211_qosframe *)wh;
  386. hdr[12] = qwh->i_qos[0] & IEEE80211_QOS_TID;
  387. } else {
  388. hdr[12] = 0;
  389. }
  390. hdr[13] = hdr[14] = hdr[15] = 0; /* reserved */
  391. }
  392. /*
  393. * dp_rx_defrag_mic(): Calculate MIC header
  394. * @key: Pointer to the key
  395. * @wbuf: fragment buffer
  396. * @off: Offset
  397. * @data_len: Data lengh
  398. * @mic: Array to hold MIC
  399. *
  400. * Calculate a psuedo MIC header
  401. *
  402. * Returns: QDF_STATUS
  403. */
  404. static QDF_STATUS dp_rx_defrag_mic(const uint8_t *key, qdf_nbuf_t wbuf,
  405. uint16_t off, uint16_t data_len, uint8_t mic[])
  406. {
  407. uint8_t hdr[16] = { 0, };
  408. uint32_t l, r;
  409. const uint8_t *data;
  410. uint32_t space;
  411. int rx_desc_len = sizeof(struct rx_pkt_tlvs);
  412. dp_rx_defrag_michdr((struct ieee80211_frame *)(qdf_nbuf_data(wbuf)
  413. + rx_desc_len), hdr);
  414. l = dp_rx_get_le32(key);
  415. r = dp_rx_get_le32(key + 4);
  416. /* Michael MIC pseudo header: DA, SA, 3 x 0, Priority */
  417. l ^= dp_rx_get_le32(hdr);
  418. dp_rx_michael_block(l, r);
  419. l ^= dp_rx_get_le32(&hdr[4]);
  420. dp_rx_michael_block(l, r);
  421. l ^= dp_rx_get_le32(&hdr[8]);
  422. dp_rx_michael_block(l, r);
  423. l ^= dp_rx_get_le32(&hdr[12]);
  424. dp_rx_michael_block(l, r);
  425. /* first buffer has special handling */
  426. data = (uint8_t *) qdf_nbuf_data(wbuf) + rx_desc_len + off;
  427. space = qdf_nbuf_len(wbuf) - rx_desc_len - off;
  428. for (;; ) {
  429. if (space > data_len)
  430. space = data_len;
  431. /* collect 32-bit blocks from current buffer */
  432. while (space >= sizeof(uint32_t)) {
  433. l ^= dp_rx_get_le32(data);
  434. dp_rx_michael_block(l, r);
  435. data += sizeof(uint32_t);
  436. space -= sizeof(uint32_t);
  437. data_len -= sizeof(uint32_t);
  438. }
  439. if (data_len < sizeof(uint32_t))
  440. break;
  441. wbuf = qdf_nbuf_next(wbuf);
  442. if (wbuf == NULL)
  443. return QDF_STATUS_E_DEFRAG_ERROR;
  444. if (space != 0) {
  445. const uint8_t *data_next;
  446. /*
  447. * Block straddles buffers, split references.
  448. */
  449. data_next =
  450. (uint8_t *) qdf_nbuf_data(wbuf) + rx_desc_len;
  451. if ((qdf_nbuf_len(wbuf) - rx_desc_len) <
  452. sizeof(uint32_t) - space) {
  453. return QDF_STATUS_E_DEFRAG_ERROR;
  454. }
  455. switch (space) {
  456. case 1:
  457. l ^= dp_rx_get_le32_split(data[0],
  458. data_next[0], data_next[1],
  459. data_next[2]);
  460. data = data_next + 3;
  461. space = (qdf_nbuf_len(wbuf) - rx_desc_len)
  462. - 3;
  463. break;
  464. case 2:
  465. l ^= dp_rx_get_le32_split(data[0], data[1],
  466. data_next[0], data_next[1]);
  467. data = data_next + 2;
  468. space = (qdf_nbuf_len(wbuf) - rx_desc_len)
  469. - 2;
  470. break;
  471. case 3:
  472. l ^= dp_rx_get_le32_split(data[0], data[1],
  473. data[2], data_next[0]);
  474. data = data_next + 1;
  475. space = (qdf_nbuf_len(wbuf) - rx_desc_len)
  476. - 1;
  477. break;
  478. }
  479. dp_rx_michael_block(l, r);
  480. data_len -= sizeof(uint32_t);
  481. } else {
  482. /*
  483. * Setup for next buffer.
  484. */
  485. data = (uint8_t *) qdf_nbuf_data(wbuf) + rx_desc_len;
  486. space = qdf_nbuf_len(wbuf) - rx_desc_len;
  487. }
  488. }
  489. /* Last block and padding (0x5a, 4..7 x 0) */
  490. switch (data_len) {
  491. case 0:
  492. l ^= dp_rx_get_le32_split(0x5a, 0, 0, 0);
  493. break;
  494. case 1:
  495. l ^= dp_rx_get_le32_split(data[0], 0x5a, 0, 0);
  496. break;
  497. case 2:
  498. l ^= dp_rx_get_le32_split(data[0], data[1], 0x5a, 0);
  499. break;
  500. case 3:
  501. l ^= dp_rx_get_le32_split(data[0], data[1], data[2], 0x5a);
  502. break;
  503. }
  504. dp_rx_michael_block(l, r);
  505. dp_rx_michael_block(l, r);
  506. dp_rx_put_le32(mic, l);
  507. dp_rx_put_le32(mic + 4, r);
  508. return QDF_STATUS_SUCCESS;
  509. }
  510. /*
  511. * dp_rx_defrag_tkip_demic(): Remove MIC header from the TKIP frame
  512. * @key: Pointer to the key
  513. * @msdu: fragment buffer
  514. * @hdrlen: Length of the header information
  515. *
  516. * Remove MIC information from the TKIP frame
  517. *
  518. * Returns: QDF_STATUS
  519. */
  520. static QDF_STATUS dp_rx_defrag_tkip_demic(const uint8_t *key,
  521. qdf_nbuf_t msdu, uint16_t hdrlen)
  522. {
  523. QDF_STATUS status;
  524. uint32_t pktlen;
  525. uint8_t mic[IEEE80211_WEP_MICLEN];
  526. uint8_t mic0[IEEE80211_WEP_MICLEN];
  527. int rx_desc_len = sizeof(struct rx_pkt_tlvs);
  528. pktlen = qdf_nbuf_len(msdu) - rx_desc_len;
  529. status = dp_rx_defrag_mic(key, msdu, hdrlen,
  530. pktlen - (hdrlen + dp_f_tkip.ic_miclen), mic);
  531. if (QDF_IS_STATUS_ERROR(status))
  532. return status;
  533. qdf_nbuf_copy_bits(msdu, pktlen - dp_f_tkip.ic_miclen + rx_desc_len,
  534. dp_f_tkip.ic_miclen, (caddr_t)mic0);
  535. if (!qdf_mem_cmp(mic, mic0, dp_f_tkip.ic_miclen))
  536. return QDF_STATUS_E_DEFRAG_ERROR;
  537. qdf_nbuf_trim_tail(msdu, dp_f_tkip.ic_miclen);
  538. return QDF_STATUS_SUCCESS;
  539. }
  540. /*
  541. * dp_rx_frag_pull_hdr(): Pulls the RXTLV & the 802.11 headers
  542. * @nbuf: buffer pointer
  543. *
  544. * Pull the RXTLV & the 802.11 headers
  545. *
  546. * Returns: None
  547. */
  548. static void dp_rx_frag_pull_hdr(qdf_nbuf_t nbuf)
  549. {
  550. uint16_t hdrsize = dp_rx_defrag_hdrsize(nbuf);
  551. qdf_nbuf_pull_head(nbuf,
  552. RX_PKT_TLVS_LEN + hdrsize);
  553. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
  554. "%s: final pktlen %d .11len %d\n",
  555. __func__,
  556. (uint32_t)qdf_nbuf_len(nbuf), hdrsize);
  557. }
  558. /*
  559. * dp_rx_construct_fraglist(): Construct a nbuf fraglist
  560. * @peer: Pointer to the peer
  561. * @head: Pointer to list of fragments
  562. *
  563. * Construct a nbuf fraglist
  564. *
  565. * Returns: None
  566. */
  567. static void
  568. dp_rx_construct_fraglist(struct dp_peer *peer, qdf_nbuf_t head)
  569. {
  570. qdf_nbuf_t msdu = qdf_nbuf_next(head);
  571. qdf_nbuf_t rx_nbuf = msdu;
  572. uint32_t len = 0;
  573. while (msdu) {
  574. dp_rx_frag_pull_hdr(msdu);
  575. len += qdf_nbuf_len(msdu);
  576. msdu = qdf_nbuf_next(msdu);
  577. }
  578. qdf_nbuf_append_ext_list(head, rx_nbuf, len);
  579. qdf_nbuf_set_next(head, NULL);
  580. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
  581. "%s: head len %d ext len %d data len %d \n",
  582. __func__,
  583. (uint32_t)qdf_nbuf_len(head),
  584. (uint32_t)qdf_nbuf_len(rx_nbuf),
  585. (uint32_t)(head->data_len));
  586. }
  587. /**
  588. * dp_rx_defrag_err() - rx err handler
  589. * @pdev: handle to pdev object
  590. * @vdev_id: vdev id
  591. * @peer_mac_addr: peer mac address
  592. * @tid: TID
  593. * @tsf32: TSF
  594. * @err_type: error type
  595. * @rx_frame: rx frame
  596. * @pn: PN Number
  597. * @key_id: key id
  598. *
  599. * This function handles rx error and send MIC error notification
  600. *
  601. * Return: None
  602. */
  603. static void dp_rx_defrag_err(uint8_t vdev_id, uint8_t *peer_mac_addr,
  604. int tid, uint32_t tsf32, uint32_t err_type, qdf_nbuf_t rx_frame,
  605. uint64_t *pn, uint8_t key_id)
  606. {
  607. /* TODO: Who needs to know about the TKIP MIC error */
  608. }
  609. /*
  610. * dp_rx_defrag_nwifi_to_8023(): Transcap 802.11 to 802.3
  611. * @nbuf: Pointer to the fragment buffer
  612. *
  613. * Transcap the fragment from 802.11 to 802.3
  614. *
  615. * Returns: None
  616. */
  617. static void dp_rx_defrag_nwifi_to_8023(qdf_nbuf_t nbuf)
  618. {
  619. uint32_t hdrsize;
  620. struct llc_snap_hdr_t *llchdr;
  621. struct ethernet_hdr_t *eth_hdr;
  622. uint8_t ether_type[2];
  623. uint16_t fc;
  624. union dp_align_mac_addr mac_addr;
  625. uint8_t *rx_desc_info = qdf_mem_malloc(RX_PKT_TLVS_LEN);
  626. if (rx_desc_info == NULL) {
  627. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  628. "%s: Memory alloc failed ! \n", __func__);
  629. QDF_ASSERT(0);
  630. return;
  631. }
  632. hdrsize = dp_rx_defrag_hdrsize(nbuf);
  633. qdf_mem_copy(rx_desc_info, qdf_nbuf_data(nbuf), RX_PKT_TLVS_LEN);
  634. llchdr = (struct llc_snap_hdr_t *)(qdf_nbuf_data(nbuf) +
  635. RX_PKT_TLVS_LEN + hdrsize);
  636. qdf_mem_copy(ether_type, llchdr->ethertype, 2);
  637. qdf_nbuf_pull_head(nbuf, (RX_PKT_TLVS_LEN + hdrsize +
  638. sizeof(struct llc_snap_hdr_t) -
  639. sizeof(struct ethernet_hdr_t)));
  640. eth_hdr = (struct ethernet_hdr_t *)(qdf_nbuf_data(nbuf));
  641. if (hal_rx_get_mpdu_frame_control_valid(rx_desc_info))
  642. fc = hal_rx_get_frame_ctrl_field(rx_desc_info);
  643. switch (((fc & 0xff00) >> 8) & IEEE80211_FC1_DIR_MASK) {
  644. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
  645. "%s: frame control type: 0x%x", __func__, fc);
  646. case IEEE80211_FC1_DIR_NODS:
  647. hal_rx_mpdu_get_addr1(rx_desc_info,
  648. &mac_addr.raw[0]);
  649. qdf_mem_copy(eth_hdr->dest_addr, &mac_addr.raw[0],
  650. IEEE80211_ADDR_LEN);
  651. hal_rx_mpdu_get_addr2(rx_desc_info,
  652. &mac_addr.raw[0]);
  653. qdf_mem_copy(eth_hdr->src_addr, &mac_addr.raw[0],
  654. IEEE80211_ADDR_LEN);
  655. break;
  656. case IEEE80211_FC1_DIR_TODS:
  657. hal_rx_mpdu_get_addr3(rx_desc_info,
  658. &mac_addr.raw[0]);
  659. qdf_mem_copy(eth_hdr->dest_addr, &mac_addr.raw[0],
  660. IEEE80211_ADDR_LEN);
  661. hal_rx_mpdu_get_addr2(rx_desc_info,
  662. &mac_addr.raw[0]);
  663. qdf_mem_copy(eth_hdr->src_addr, &mac_addr.raw[0],
  664. IEEE80211_ADDR_LEN);
  665. break;
  666. case IEEE80211_FC1_DIR_FROMDS:
  667. hal_rx_mpdu_get_addr1(rx_desc_info,
  668. &mac_addr.raw[0]);
  669. qdf_mem_copy(eth_hdr->dest_addr, &mac_addr.raw[0],
  670. IEEE80211_ADDR_LEN);
  671. hal_rx_mpdu_get_addr3(rx_desc_info,
  672. &mac_addr.raw[0]);
  673. qdf_mem_copy(eth_hdr->src_addr, &mac_addr.raw[0],
  674. IEEE80211_ADDR_LEN);
  675. break;
  676. case IEEE80211_FC1_DIR_DSTODS:
  677. break;
  678. default:
  679. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  680. "%s: Unknown frame control type: 0x%x", __func__, fc);
  681. }
  682. qdf_mem_copy(eth_hdr->ethertype, ether_type,
  683. sizeof(ether_type));
  684. qdf_nbuf_push_head(nbuf, RX_PKT_TLVS_LEN);
  685. qdf_mem_copy(qdf_nbuf_data(nbuf), rx_desc_info, RX_PKT_TLVS_LEN);
  686. qdf_mem_free(rx_desc_info);
  687. }
  688. /*
  689. * dp_rx_defrag_reo_reinject(): Reinject the fragment chain back into REO
  690. * @peer: Pointer to the peer
  691. * @tid: Transmit Identifier
  692. * @head: Buffer to be reinjected back
  693. *
  694. * Reinject the fragment chain back into REO
  695. *
  696. * Returns: QDF_STATUS
  697. */
  698. static QDF_STATUS dp_rx_defrag_reo_reinject(struct dp_peer *peer,
  699. unsigned tid, qdf_nbuf_t head)
  700. {
  701. struct dp_pdev *pdev = peer->vdev->pdev;
  702. struct dp_soc *soc = pdev->soc;
  703. struct hal_buf_info buf_info;
  704. void *link_desc_va;
  705. void *msdu0, *msdu_desc_info;
  706. void *ent_ring_desc, *ent_mpdu_desc_info, *ent_qdesc_addr;
  707. void *dst_mpdu_desc_info, *dst_qdesc_addr;
  708. qdf_dma_addr_t paddr;
  709. uint32_t nbuf_len, seq_no;
  710. uint32_t *mpdu_wrd;
  711. void *dst_ring_desc =
  712. peer->rx_tid[tid].dst_ring_desc;
  713. void *hal_srng = soc->reo_reinject_ring.hal_srng;
  714. hal_rx_reo_buf_paddr_get(dst_ring_desc, &buf_info);
  715. link_desc_va = dp_rx_cookie_2_link_desc_va(soc, &buf_info);
  716. qdf_assert(link_desc_va);
  717. msdu0 = (uint8_t *)link_desc_va +
  718. RX_MSDU_LINK_8_RX_MSDU_DETAILS_MSDU_0_OFFSET;
  719. nbuf_len = qdf_nbuf_len(head) - RX_PKT_TLVS_LEN;
  720. HAL_RX_UNIFORM_HDR_SET(link_desc_va, OWNER, UNI_DESC_OWNER_SW);
  721. HAL_RX_UNIFORM_HDR_SET(link_desc_va, BUFFER_TYPE,
  722. UNI_DESC_BUF_TYPE_RX_MSDU_LINK);
  723. /* msdu reconfig */
  724. msdu_desc_info = (uint8_t *)msdu0 +
  725. RX_MSDU_DETAILS_2_RX_MSDU_DESC_INFO_RX_MSDU_DESC_INFO_DETAILS_OFFSET;
  726. qdf_mem_zero(msdu_desc_info, sizeof(struct rx_msdu_desc_info));
  727. HAL_RX_MSDU_DESC_INFO_SET(msdu_desc_info,
  728. FIRST_MSDU_IN_MPDU_FLAG, 1);
  729. HAL_RX_MSDU_DESC_INFO_SET(msdu_desc_info,
  730. LAST_MSDU_IN_MPDU_FLAG, 1);
  731. HAL_RX_MSDU_DESC_INFO_SET(msdu_desc_info,
  732. MSDU_CONTINUATION, 0x0);
  733. HAL_RX_MSDU_DESC_INFO_SET(msdu_desc_info,
  734. REO_DESTINATION_INDICATION, 1);
  735. HAL_RX_MSDU_DESC_INFO_SET(msdu_desc_info,
  736. MSDU_LENGTH, nbuf_len);
  737. HAL_RX_MSDU_DESC_INFO_SET(msdu_desc_info,
  738. SA_IS_VALID, 1);
  739. HAL_RX_MSDU_DESC_INFO_SET(msdu_desc_info,
  740. DA_IS_VALID, 1);
  741. /* change RX TLV's */
  742. hal_rx_msdu_start_msdu_len_set(
  743. qdf_nbuf_data(head), nbuf_len);
  744. /* Lets fill entrance ring now !!! */
  745. if (qdf_unlikely(hal_srng_access_start(soc->hal_soc, hal_srng))) {
  746. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  747. "HAL RING Access For REO entrance SRNG Failed: %pK",
  748. hal_srng);
  749. return QDF_STATUS_E_FAILURE;
  750. }
  751. ent_ring_desc = hal_srng_src_get_next(soc->hal_soc, hal_srng);
  752. qdf_assert(ent_ring_desc);
  753. paddr = (uint64_t)buf_info.paddr;
  754. /* buf addr */
  755. hal_rxdma_buff_addr_info_set(ent_ring_desc, paddr,
  756. buf_info.sw_cookie,
  757. HAL_RX_BUF_RBM_WBM_IDLE_DESC_LIST);
  758. /* mpdu desc info */
  759. ent_mpdu_desc_info = (uint8_t *)ent_ring_desc +
  760. RX_MPDU_DETAILS_2_RX_MPDU_DESC_INFO_RX_MPDU_DESC_INFO_DETAILS_OFFSET;
  761. dst_mpdu_desc_info = (uint8_t *)dst_ring_desc +
  762. REO_DESTINATION_RING_2_RX_MPDU_DESC_INFO_RX_MPDU_DESC_INFO_DETAILS_OFFSET;
  763. qdf_mem_copy(ent_mpdu_desc_info, dst_mpdu_desc_info,
  764. sizeof(struct rx_mpdu_desc_info));
  765. qdf_mem_zero(ent_mpdu_desc_info, sizeof(uint32_t));
  766. mpdu_wrd = (uint32_t *)dst_mpdu_desc_info;
  767. seq_no = HAL_RX_MPDU_SEQUENCE_NUMBER_GET(mpdu_wrd);
  768. HAL_RX_MPDU_DESC_INFO_SET(ent_mpdu_desc_info,
  769. MSDU_COUNT, 0x1);
  770. HAL_RX_MPDU_DESC_INFO_SET(ent_mpdu_desc_info,
  771. MPDU_SEQUENCE_NUMBER, seq_no);
  772. /* unset frag bit */
  773. HAL_RX_MPDU_DESC_INFO_SET(ent_mpdu_desc_info,
  774. FRAGMENT_FLAG, 0x0);
  775. /* set sa/da valid bits */
  776. HAL_RX_MPDU_DESC_INFO_SET(ent_mpdu_desc_info,
  777. SA_IS_VALID, 0x1);
  778. HAL_RX_MPDU_DESC_INFO_SET(ent_mpdu_desc_info,
  779. DA_IS_VALID, 0x1);
  780. HAL_RX_MPDU_DESC_INFO_SET(ent_mpdu_desc_info,
  781. RAW_MPDU, 0x0);
  782. /* qdesc addr */
  783. ent_qdesc_addr = (uint8_t *)ent_ring_desc +
  784. REO_ENTRANCE_RING_4_RX_REO_QUEUE_DESC_ADDR_31_0_OFFSET;
  785. dst_qdesc_addr = (uint8_t *)dst_ring_desc +
  786. REO_DESTINATION_RING_6_RX_REO_QUEUE_DESC_ADDR_31_0_OFFSET;
  787. qdf_mem_copy(ent_qdesc_addr, dst_qdesc_addr, 8);
  788. /* dst ind */
  789. HAL_RX_FLD_SET(ent_ring_desc, REO_ENTRANCE_RING_5,
  790. REO_DESTINATION_INDICATION, 0x1);
  791. hal_srng_access_end(soc->hal_soc, hal_srng);
  792. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
  793. "%s: reinjection done !\n", __func__);
  794. return QDF_STATUS_SUCCESS;
  795. }
  796. /*
  797. * dp_rx_defrag(): Defragment the fragment chain
  798. * @peer: Pointer to the peer
  799. * @tid: Transmit Identifier
  800. * @frag_list_head: Pointer to head list
  801. * @frag_list_tail: Pointer to tail list
  802. *
  803. * Defragment the fragment chain
  804. *
  805. * Returns: QDF_STATUS
  806. */
  807. static QDF_STATUS dp_rx_defrag(struct dp_peer *peer, unsigned tid,
  808. qdf_nbuf_t frag_list_head, qdf_nbuf_t frag_list_tail)
  809. {
  810. qdf_nbuf_t tmp_next, prev;
  811. qdf_nbuf_t cur = frag_list_head, msdu;
  812. uint32_t index, tkip_demic = 0;
  813. uint16_t hdr_space;
  814. uint8_t key[DEFRAG_IEEE80211_KEY_LEN];
  815. struct dp_vdev *vdev = peer->vdev;
  816. hdr_space = dp_rx_defrag_hdrsize(cur);
  817. index = hal_rx_msdu_is_wlan_mcast(cur) ?
  818. dp_sec_mcast : dp_sec_ucast;
  819. /* Remove FCS from all fragments */
  820. while (cur) {
  821. tmp_next = qdf_nbuf_next(cur);
  822. qdf_nbuf_set_next(cur, NULL);
  823. qdf_nbuf_trim_tail(cur, DEFRAG_IEEE80211_FCS_LEN);
  824. prev = cur;
  825. qdf_nbuf_set_next(cur, tmp_next);
  826. cur = tmp_next;
  827. }
  828. switch (peer->security[index].sec_type) {
  829. case htt_sec_type_tkip:
  830. tkip_demic = 1;
  831. case htt_sec_type_tkip_nomic:
  832. while (cur) {
  833. tmp_next = qdf_nbuf_next(cur);
  834. if (dp_rx_defrag_tkip_decap(cur, hdr_space)) {
  835. /* TKIP decap failed, discard frags */
  836. dp_rx_defrag_frames_free(frag_list_head);
  837. QDF_TRACE(QDF_MODULE_ID_TXRX,
  838. QDF_TRACE_LEVEL_ERROR,
  839. "dp_rx_defrag: TKIP decap failed");
  840. return QDF_STATUS_E_DEFRAG_ERROR;
  841. }
  842. cur = tmp_next;
  843. }
  844. break;
  845. case htt_sec_type_aes_ccmp:
  846. while (cur) {
  847. tmp_next = qdf_nbuf_next(cur);
  848. if (dp_rx_defrag_ccmp_demic(cur, hdr_space)) {
  849. /* CCMP demic failed, discard frags */
  850. dp_rx_defrag_frames_free(frag_list_head);
  851. QDF_TRACE(QDF_MODULE_ID_TXRX,
  852. QDF_TRACE_LEVEL_ERROR,
  853. "dp_rx_defrag: CCMP demic failed");
  854. return QDF_STATUS_E_DEFRAG_ERROR;
  855. }
  856. if (dp_rx_defrag_ccmp_decap(cur, hdr_space)) {
  857. /* CCMP decap failed, discard frags */
  858. dp_rx_defrag_frames_free(frag_list_head);
  859. QDF_TRACE(QDF_MODULE_ID_TXRX,
  860. QDF_TRACE_LEVEL_ERROR,
  861. "dp_rx_defrag: CCMP decap failed");
  862. return QDF_STATUS_E_DEFRAG_ERROR;
  863. }
  864. cur = tmp_next;
  865. }
  866. break;
  867. case htt_sec_type_wep40:
  868. case htt_sec_type_wep104:
  869. case htt_sec_type_wep128:
  870. while (cur) {
  871. tmp_next = qdf_nbuf_next(cur);
  872. if (dp_rx_defrag_wep_decap(cur, hdr_space)) {
  873. /* WEP decap failed, discard frags */
  874. dp_rx_defrag_frames_free(frag_list_head);
  875. QDF_TRACE(QDF_MODULE_ID_TXRX,
  876. QDF_TRACE_LEVEL_ERROR,
  877. "dp_rx_defrag: WEP decap failed");
  878. return QDF_STATUS_E_DEFRAG_ERROR;
  879. }
  880. cur = tmp_next;
  881. }
  882. break;
  883. default:
  884. QDF_TRACE(QDF_MODULE_ID_TXRX,
  885. QDF_TRACE_LEVEL_ERROR,
  886. "dp_rx_defrag: Did not match any security type");
  887. break;
  888. }
  889. if (tkip_demic) {
  890. msdu = frag_list_tail; /* Only last fragment has the MIC */
  891. qdf_mem_copy(key,
  892. peer->security[index].michael_key,
  893. sizeof(peer->security[index].michael_key));
  894. if (dp_rx_defrag_tkip_demic(key, msdu, hdr_space)) {
  895. qdf_nbuf_free(msdu);
  896. dp_rx_defrag_err(vdev->vdev_id, peer->mac_addr.raw,
  897. tid, 0, QDF_STATUS_E_DEFRAG_ERROR, msdu,
  898. NULL, 0);
  899. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  900. "dp_rx_defrag: TKIP demic failed");
  901. return QDF_STATUS_E_DEFRAG_ERROR;
  902. }
  903. }
  904. /* Convert the header to 802.3 header */
  905. dp_rx_defrag_nwifi_to_8023(frag_list_head);
  906. dp_rx_construct_fraglist(peer, frag_list_head);
  907. return QDF_STATUS_SUCCESS;
  908. }
  909. /*
  910. * dp_rx_defrag_cleanup(): Clean up activities
  911. * @peer: Pointer to the peer
  912. * @tid: Transmit Identifier
  913. *
  914. * Returns: None
  915. */
  916. static void dp_rx_defrag_cleanup(struct dp_peer *peer, unsigned tid)
  917. {
  918. struct dp_rx_reorder_array_elem *rx_reorder_array_elem =
  919. peer->rx_tid[tid].array;
  920. /* Free up nbufs */
  921. dp_rx_defrag_frames_free(rx_reorder_array_elem->head);
  922. /* Free up saved ring descriptors */
  923. dp_rx_clear_saved_desc_info(peer, tid);
  924. rx_reorder_array_elem->head = NULL;
  925. rx_reorder_array_elem->tail = NULL;
  926. peer->rx_tid[tid].defrag_timeout_ms = 0;
  927. peer->rx_tid[tid].curr_frag_num = 0;
  928. peer->rx_tid[tid].curr_seq_num = 0;
  929. }
  930. /*
  931. * dp_rx_defrag_save_info_from_ring_desc(): Save info from REO ring descriptor
  932. * @ring_desc: Pointer to the dst ring descriptor
  933. * @peer: Pointer to the peer
  934. * @tid: Transmit Identifier
  935. *
  936. * Returns: None
  937. */
  938. static QDF_STATUS dp_rx_defrag_save_info_from_ring_desc(void *ring_desc,
  939. struct dp_peer *peer, unsigned tid)
  940. {
  941. void *dst_ring_desc = qdf_mem_malloc(
  942. sizeof(struct reo_destination_ring));
  943. if (dst_ring_desc == NULL) {
  944. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  945. "%s: Memory alloc failed !\n", __func__);
  946. QDF_ASSERT(0);
  947. return QDF_STATUS_E_NOMEM;
  948. }
  949. qdf_mem_copy(dst_ring_desc, ring_desc,
  950. sizeof(struct reo_destination_ring));
  951. peer->rx_tid[tid].dst_ring_desc = dst_ring_desc;
  952. return QDF_STATUS_SUCCESS;
  953. }
  954. /*
  955. * dp_rx_defrag_store_fragment(): Store incoming fragments
  956. * @soc: Pointer to the SOC data structure
  957. * @ring_desc: Pointer to the ring descriptor
  958. * @mpdu_desc_info: MPDU descriptor info
  959. * @tid: Traffic Identifier
  960. * @rx_desc: Pointer to rx descriptor
  961. * @rx_bfs: Number of bfs consumed
  962. *
  963. * Returns: QDF_STATUS
  964. */
  965. static QDF_STATUS dp_rx_defrag_store_fragment(struct dp_soc *soc,
  966. void *ring_desc,
  967. union dp_rx_desc_list_elem_t **head,
  968. union dp_rx_desc_list_elem_t **tail,
  969. struct hal_rx_mpdu_desc_info *mpdu_desc_info,
  970. unsigned tid, struct dp_rx_desc *rx_desc,
  971. uint32_t *rx_bfs)
  972. {
  973. struct dp_rx_reorder_array_elem *rx_reorder_array_elem;
  974. struct dp_pdev *pdev;
  975. struct dp_peer *peer;
  976. uint16_t peer_id;
  977. uint8_t fragno, more_frag, all_frag_present = 0;
  978. uint16_t rxseq = mpdu_desc_info->mpdu_seq;
  979. QDF_STATUS status;
  980. struct dp_rx_tid *rx_tid;
  981. uint8_t mpdu_sequence_control_valid;
  982. uint8_t mpdu_frame_control_valid;
  983. qdf_nbuf_t frag = rx_desc->nbuf;
  984. /* Check if the packet is from a valid peer */
  985. peer_id = DP_PEER_METADATA_PEER_ID_GET(
  986. mpdu_desc_info->peer_meta_data);
  987. peer = dp_peer_find_by_id(soc, peer_id);
  988. if (!peer) {
  989. /* We should not recieve anything from unknown peer
  990. * however, that might happen while we are in the monitor mode.
  991. * We don't need to handle that here
  992. */
  993. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  994. "Unknown peer, dropping the fragment");
  995. qdf_nbuf_free(frag);
  996. dp_rx_add_to_free_desc_list(head, tail, rx_desc);
  997. return QDF_STATUS_E_DEFRAG_ERROR;
  998. }
  999. pdev = peer->vdev->pdev;
  1000. rx_tid = &peer->rx_tid[tid];
  1001. rx_reorder_array_elem = peer->rx_tid[tid].array;
  1002. mpdu_sequence_control_valid =
  1003. hal_rx_get_mpdu_sequence_control_valid(rx_desc->rx_buf_start);
  1004. /* Invalid MPDU sequence control field, MPDU is of no use */
  1005. if (!mpdu_sequence_control_valid) {
  1006. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1007. "Invalid MPDU seq control field, dropping MPDU");
  1008. qdf_nbuf_free(frag);
  1009. dp_rx_add_to_free_desc_list(head, tail, rx_desc);
  1010. qdf_assert(0);
  1011. goto end;
  1012. }
  1013. mpdu_frame_control_valid =
  1014. hal_rx_get_mpdu_frame_control_valid(rx_desc->rx_buf_start);
  1015. /* Invalid frame control field */
  1016. if (!mpdu_frame_control_valid) {
  1017. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1018. "Invalid frame control field, dropping MPDU");
  1019. qdf_nbuf_free(frag);
  1020. dp_rx_add_to_free_desc_list(head, tail, rx_desc);
  1021. qdf_assert(0);
  1022. goto end;
  1023. }
  1024. /* Current mpdu sequence */
  1025. more_frag = dp_rx_frag_get_more_frag_bit(rx_desc->rx_buf_start);
  1026. /* HW does not populate the fragment number as of now
  1027. * need to get from the 802.11 header
  1028. */
  1029. fragno = dp_rx_frag_get_mpdu_frag_number(rx_desc->rx_buf_start);
  1030. /*
  1031. * !more_frag: no more fragments to be delivered
  1032. * !frag_no: packet is not fragmented
  1033. * !rx_reorder_array_elem->head: no saved fragments so far
  1034. */
  1035. if ((!more_frag) && (!fragno) && (!rx_reorder_array_elem->head)) {
  1036. /* We should not get into this situation here.
  1037. * It means an unfragmented packet with fragment flag
  1038. * is delivered over the REO exception ring.
  1039. * Typically it follows normal rx path.
  1040. */
  1041. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1042. "Rcvd unfragmented pkt on REO Err srng, dropping");
  1043. qdf_nbuf_free(frag);
  1044. dp_rx_add_to_free_desc_list(head, tail, rx_desc);
  1045. qdf_assert(0);
  1046. goto end;
  1047. }
  1048. /* Check if the fragment is for the same sequence or a different one */
  1049. if (rx_reorder_array_elem->head) {
  1050. if (rxseq != rx_tid->curr_seq_num) {
  1051. /* Drop stored fragments if out of sequence
  1052. * fragment is received
  1053. */
  1054. dp_rx_defrag_frames_free(rx_reorder_array_elem->head);
  1055. rx_reorder_array_elem->head = NULL;
  1056. rx_reorder_array_elem->tail = NULL;
  1057. /*
  1058. * The sequence number for this fragment becomes the
  1059. * new sequence number to be processed
  1060. */
  1061. rx_tid->curr_seq_num = rxseq;
  1062. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1063. "%s mismatch, dropping earlier sequence ",
  1064. (rxseq == rx_tid->curr_seq_num)
  1065. ? "address"
  1066. : "seq number");
  1067. }
  1068. } else {
  1069. /* Start of a new sequence */
  1070. dp_rx_defrag_cleanup(peer, tid);
  1071. rx_tid->curr_seq_num = rxseq;
  1072. }
  1073. /*
  1074. * If the earlier sequence was dropped, this will be the fresh start.
  1075. * Else, continue with next fragment in a given sequence
  1076. */
  1077. dp_rx_defrag_fraglist_insert(peer, tid, &rx_reorder_array_elem->head,
  1078. &rx_reorder_array_elem->tail, frag,
  1079. &all_frag_present);
  1080. /*
  1081. * Currently, we can have only 6 MSDUs per-MPDU, if the current
  1082. * packet sequence has more than 6 MSDUs for some reason, we will
  1083. * have to use the next MSDU link descriptor and chain them together
  1084. * before reinjection
  1085. */
  1086. if ((fragno == 0) && (rx_reorder_array_elem->head == frag)) {
  1087. status = dp_rx_defrag_save_info_from_ring_desc(ring_desc,
  1088. peer, tid);
  1089. if (status != QDF_STATUS_SUCCESS) {
  1090. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1091. "%s: Unable to store ring desc !\n", __func__);
  1092. goto end;
  1093. }
  1094. } else {
  1095. dp_rx_add_to_free_desc_list(head, tail, rx_desc);
  1096. *rx_bfs = 1;
  1097. /* Return the non-head link desc */
  1098. if (dp_rx_link_desc_return(soc, ring_desc,
  1099. HAL_BM_ACTION_PUT_IN_IDLE_LIST) !=
  1100. QDF_STATUS_SUCCESS)
  1101. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1102. "%s: Failed to return link desc\n",
  1103. __func__);
  1104. }
  1105. #ifdef DEFRAG_TIMEOUT
  1106. /* TODO: handle fragment timeout gracefully */
  1107. if (pdev->soc->rx.flags.defrag_timeout_check) {
  1108. dp_rx_defrag_waitlist_remove(peer, tid);
  1109. goto end;
  1110. }
  1111. #endif
  1112. /* Yet to receive more fragments for this sequence number */
  1113. if (!all_frag_present) {
  1114. uint32_t now_ms =
  1115. qdf_system_ticks_to_msecs(qdf_system_ticks());
  1116. peer->rx_tid[tid].defrag_timeout_ms =
  1117. now_ms + pdev->soc->rx.defrag.timeout_ms;
  1118. return QDF_STATUS_SUCCESS;
  1119. }
  1120. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO,
  1121. "All fragments received for sequence: %d", rxseq);
  1122. /* Process the fragments */
  1123. status = dp_rx_defrag(peer, tid, rx_reorder_array_elem->head,
  1124. rx_reorder_array_elem->tail);
  1125. if (QDF_IS_STATUS_ERROR(status)) {
  1126. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1127. "Fragment processing failed");
  1128. goto end;
  1129. }
  1130. /* Re-inject the fragments back to REO for further processing */
  1131. status = dp_rx_defrag_reo_reinject(peer, tid,
  1132. rx_reorder_array_elem->head);
  1133. if (QDF_IS_STATUS_SUCCESS(status)) {
  1134. rx_reorder_array_elem->head = NULL;
  1135. rx_reorder_array_elem->tail = NULL;
  1136. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO,
  1137. "Fragmented sequence successfully reinjected");
  1138. }
  1139. else
  1140. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1141. "Fragmented sequence reinjection failed");
  1142. dp_rx_defrag_cleanup(peer, tid);
  1143. return QDF_STATUS_SUCCESS;
  1144. end:
  1145. return QDF_STATUS_E_DEFRAG_ERROR;
  1146. }
  1147. /**
  1148. * dp_rx_frag_handle() - Handles fragmented Rx frames
  1149. *
  1150. * @soc: core txrx main context
  1151. * @ring_desc: opaque pointer to the REO error ring descriptor
  1152. * @mpdu_desc_info: MPDU descriptor information from ring descriptor
  1153. * @head: head of the local descriptor free-list
  1154. * @tail: tail of the local descriptor free-list
  1155. * @quota: No. of units (packets) that can be serviced in one shot.
  1156. *
  1157. * This function implements RX 802.11 fragmentation handling
  1158. * The handling is mostly same as legacy fragmentation handling.
  1159. * If required, this function can re-inject the frames back to
  1160. * REO ring (with proper setting to by-pass fragmentation check
  1161. * but use duplicate detection / re-ordering and routing these frames
  1162. * to a different core.
  1163. *
  1164. * Return: uint32_t: No. of elements processed
  1165. */
  1166. uint32_t dp_rx_frag_handle(struct dp_soc *soc, void *ring_desc,
  1167. struct hal_rx_mpdu_desc_info *mpdu_desc_info,
  1168. union dp_rx_desc_list_elem_t **head,
  1169. union dp_rx_desc_list_elem_t **tail,
  1170. uint32_t quota)
  1171. {
  1172. uint32_t rx_bufs_used = 0;
  1173. void *link_desc_va;
  1174. struct hal_buf_info buf_info;
  1175. struct hal_rx_msdu_list msdu_list; /* per MPDU list of MSDUs */
  1176. qdf_nbuf_t msdu = NULL;
  1177. uint32_t tid, msdu_len;
  1178. int idx, rx_bfs = 0;
  1179. QDF_STATUS status;
  1180. qdf_assert(soc);
  1181. qdf_assert(mpdu_desc_info);
  1182. /* Fragment from a valid peer */
  1183. hal_rx_reo_buf_paddr_get(ring_desc, &buf_info);
  1184. link_desc_va = dp_rx_cookie_2_link_desc_va(soc, &buf_info);
  1185. qdf_assert(link_desc_va);
  1186. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO_HIGH,
  1187. "Number of MSDUs to process, num_msdus: %d",
  1188. mpdu_desc_info->msdu_count);
  1189. if (qdf_unlikely(mpdu_desc_info->msdu_count == 0)) {
  1190. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1191. "Not sufficient MSDUs to process");
  1192. return rx_bufs_used;
  1193. }
  1194. /* Get msdu_list for the given MPDU */
  1195. hal_rx_msdu_list_get(link_desc_va, &msdu_list,
  1196. &mpdu_desc_info->msdu_count);
  1197. /* Process all MSDUs in the current MPDU */
  1198. for (idx = 0; (idx < mpdu_desc_info->msdu_count) && quota--; idx++) {
  1199. struct dp_rx_desc *rx_desc =
  1200. dp_rx_cookie_2_va_rxdma_buf(soc,
  1201. msdu_list.sw_cookie[idx]);
  1202. qdf_assert(rx_desc);
  1203. msdu = rx_desc->nbuf;
  1204. qdf_nbuf_unmap_single(soc->osdev, msdu,
  1205. QDF_DMA_BIDIRECTIONAL);
  1206. rx_desc->rx_buf_start = qdf_nbuf_data(msdu);
  1207. msdu_len = hal_rx_msdu_start_msdu_len_get(
  1208. rx_desc->rx_buf_start);
  1209. qdf_nbuf_set_pktlen(msdu, (msdu_len + RX_PKT_TLVS_LEN));
  1210. tid = hal_rx_mpdu_start_tid_get(rx_desc->rx_buf_start);
  1211. /* Process fragment-by-fragment */
  1212. status = dp_rx_defrag_store_fragment(soc, ring_desc,
  1213. head, tail, mpdu_desc_info,
  1214. tid, rx_desc, &rx_bfs);
  1215. if (QDF_IS_STATUS_SUCCESS(status)) {
  1216. if (rx_bfs)
  1217. rx_bufs_used++;
  1218. } else {
  1219. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1220. "Rx Defrag err seq#:0x%x msdu_count:%d flags:%d",
  1221. mpdu_desc_info->mpdu_seq,
  1222. mpdu_desc_info->msdu_count,
  1223. mpdu_desc_info->mpdu_flags);
  1224. /* No point in processing rest of the fragments */
  1225. break;
  1226. }
  1227. }
  1228. return rx_bufs_used;
  1229. }