msm_audio_ion_vm.c 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958
  1. // SPDX-License-Identifier: GPL-2.0-only
  2. /*
  3. * Copyright (c) 2013-2020, The Linux Foundation. All rights reserved.
  4. */
  5. #include <linux/init.h>
  6. #include <linux/kernel.h>
  7. #include <linux/module.h>
  8. #include <linux/err.h>
  9. #include <linux/delay.h>
  10. #include <linux/slab.h>
  11. #include <linux/mutex.h>
  12. #include <linux/list.h>
  13. #include <linux/dma-mapping.h>
  14. #include <linux/dma-contiguous.h>
  15. #include <linux/dma-buf.h>
  16. #include <linux/iommu.h>
  17. #include <linux/platform_device.h>
  18. #include <linux/of_device.h>
  19. #include <linux/export.h>
  20. #include <linux/ion.h>
  21. #include <ipc/apr.h>
  22. #include <dsp/msm_audio_ion.h>
  23. #include <soc/qcom/secure_buffer.h>
  24. #include <linux/habmm.h>
  25. #define MSM_AUDIO_ION_PROBED (1 << 0)
  26. #define MSM_AUDIO_ION_PHYS_ADDR(alloc_data) \
  27. alloc_data->table->sgl->dma_address
  28. #define MSM_AUDIO_SMMU_VM_CMD_MAP 0x00000001
  29. #define MSM_AUDIO_SMMU_VM_CMD_UNMAP 0x00000002
  30. #define MSM_AUDIO_SMMU_VM_HAB_MINOR_ID 1
  31. enum msm_audio_mem_type{
  32. MSM_AUDIO_MEM_TYPE_ION,
  33. MSM_AUDIO_MEM_TYPE_DMA,
  34. };
  35. struct msm_audio_ion_private {
  36. bool smmu_enabled;
  37. struct device *cb_dev;
  38. u8 device_status;
  39. struct list_head alloc_list;
  40. struct mutex list_mutex;
  41. };
  42. struct msm_audio_alloc_data {
  43. size_t len;
  44. void *vaddr;
  45. void *handle;
  46. struct dma_buf_attachment *attach;
  47. struct sg_table *table;
  48. struct list_head list;
  49. dma_addr_t *paddr;
  50. enum msm_audio_mem_type type;
  51. u32 export_id;
  52. };
  53. struct msm_audio_smmu_vm_map_cmd {
  54. int cmd_id;
  55. u32 export_id;
  56. u32 buf_size;
  57. };
  58. struct msm_audio_smmu_vm_map_cmd_rsp {
  59. int status;
  60. u64 addr;
  61. };
  62. struct msm_audio_smmu_vm_unmap_cmd {
  63. int cmd_id;
  64. u32 export_id;
  65. };
  66. struct msm_audio_smmu_vm_unmap_cmd_rsp {
  67. int status;
  68. };
  69. static struct msm_audio_ion_private msm_audio_ion_data = {0,};
  70. static u32 msm_audio_ion_hab_handle;
  71. static void msm_audio_ion_add_allocation(
  72. struct msm_audio_ion_private *msm_audio_ion_data,
  73. struct msm_audio_alloc_data *alloc_data)
  74. {
  75. /*
  76. * Since these APIs can be invoked by multiple
  77. * clients, there is need to make sure the list
  78. * of allocations is always protected
  79. */
  80. mutex_lock(&(msm_audio_ion_data->list_mutex));
  81. list_add_tail(&(alloc_data->list),
  82. &(msm_audio_ion_data->alloc_list));
  83. mutex_unlock(&(msm_audio_ion_data->list_mutex));
  84. }
  85. static int msm_audio_dma_buf_map(void *handle, void *vaddr,
  86. dma_addr_t *paddr,
  87. size_t *len)
  88. {
  89. struct msm_audio_alloc_data *alloc_data;
  90. /* Data required per buffer mapping */
  91. alloc_data = kzalloc(sizeof(*alloc_data), GFP_KERNEL);
  92. if (!alloc_data)
  93. return -ENOMEM;
  94. alloc_data->handle = handle;
  95. alloc_data->len = *len;
  96. alloc_data->vaddr = vaddr;
  97. alloc_data->paddr = paddr;
  98. alloc_data->type = MSM_AUDIO_MEM_TYPE_DMA;
  99. msm_audio_ion_add_allocation(&msm_audio_ion_data,
  100. alloc_data);
  101. return 0;
  102. }
  103. static int msm_audio_ion_dma_buf_map(struct dma_buf *dma_buf,
  104. dma_addr_t *addr, size_t *len)
  105. {
  106. struct msm_audio_alloc_data *alloc_data;
  107. struct device *cb_dev;
  108. unsigned long ionflag = 0;
  109. int rc = 0;
  110. cb_dev = msm_audio_ion_data.cb_dev;
  111. /* Data required per buffer mapping */
  112. alloc_data = kzalloc(sizeof(*alloc_data), GFP_KERNEL);
  113. if (!alloc_data)
  114. return -ENOMEM;
  115. alloc_data->handle = (void*)dma_buf;
  116. alloc_data->len = dma_buf->size;
  117. alloc_data->type = MSM_AUDIO_MEM_TYPE_ION;
  118. *len = dma_buf->size;
  119. /* Attach the dma_buf to context bank device */
  120. alloc_data->attach = dma_buf_attach(dma_buf, cb_dev);
  121. if (IS_ERR(alloc_data->attach)) {
  122. rc = PTR_ERR(alloc_data->attach);
  123. dev_err(cb_dev,
  124. "%s: Fail to attach dma_buf to CB, rc = %d\n",
  125. __func__, rc);
  126. goto free_alloc_data;
  127. }
  128. /* For uncached buffers, avoid cache maintanance */
  129. rc = dma_buf_get_flags(dma_buf, &ionflag);
  130. if (rc) {
  131. dev_err(cb_dev, "%s: dma_buf_get_flags failed: %d\n",
  132. __func__, rc);
  133. goto detach_dma_buf;
  134. }
  135. if (!(ionflag & ION_FLAG_CACHED))
  136. alloc_data->attach->dma_map_attrs |= DMA_ATTR_SKIP_CPU_SYNC;
  137. /*
  138. * Get the scatter-gather list.
  139. * There is no info as this is a write buffer or
  140. * read buffer, hence the request is bi-directional
  141. * to accommodate both read and write mappings.
  142. */
  143. alloc_data->table = dma_buf_map_attachment(alloc_data->attach,
  144. DMA_BIDIRECTIONAL);
  145. if (IS_ERR(alloc_data->table)) {
  146. rc = PTR_ERR(alloc_data->table);
  147. dev_err(cb_dev,
  148. "%s: Fail to map attachment, rc = %d\n",
  149. __func__, rc);
  150. goto detach_dma_buf;
  151. }
  152. /* physical address from mapping */
  153. *addr = MSM_AUDIO_ION_PHYS_ADDR(alloc_data);
  154. alloc_data->paddr = addr;
  155. msm_audio_ion_add_allocation(&msm_audio_ion_data,
  156. alloc_data);
  157. return rc;
  158. detach_dma_buf:
  159. dma_buf_detach(dma_buf, alloc_data->attach);
  160. free_alloc_data:
  161. kfree(alloc_data);
  162. return rc;
  163. }
  164. static int msm_audio_ion_unmap_kernel(void *vaddr, void *handle)
  165. {
  166. int rc = 0;
  167. struct device *cb_dev = msm_audio_ion_data.cb_dev;
  168. if (!vaddr) {
  169. dev_err(cb_dev,
  170. "%s: cannot find allocation for handle %pK\n",
  171. __func__, handle);
  172. rc = -EINVAL;
  173. goto err;
  174. }
  175. dma_buf_vunmap((struct dma_buf*)handle, vaddr);
  176. rc = dma_buf_end_cpu_access((struct dma_buf*)handle, DMA_BIDIRECTIONAL);
  177. if (rc) {
  178. dev_err(cb_dev, "%s: kmap dma_buf_end_cpu_access fail\n",
  179. __func__);
  180. goto err;
  181. }
  182. err:
  183. return rc;
  184. }
  185. static int msm_audio_dma_buf_unmap(void *handle)
  186. {
  187. int rc = 0;
  188. struct msm_audio_alloc_data *alloc_data = NULL;
  189. struct list_head *ptr, *next;
  190. struct device *cb_dev = msm_audio_ion_data.cb_dev;
  191. bool found = false;
  192. /*
  193. * Though list_for_each_safe is delete safe, lock
  194. * should be explicitly acquired to avoid race condition
  195. * on adding elements to the list.
  196. */
  197. mutex_lock(&(msm_audio_ion_data.list_mutex));
  198. list_for_each_safe(ptr, next, &(msm_audio_ion_data.alloc_list)) {
  199. alloc_data = list_entry(ptr, struct msm_audio_alloc_data, list);
  200. if(alloc_data->type == MSM_AUDIO_MEM_TYPE_ION) {
  201. if (alloc_data->handle == handle) {
  202. rc = msm_audio_ion_unmap_kernel(
  203. alloc_data->vaddr,
  204. handle);
  205. if(rc) {
  206. pr_err("%s: Unable to unmap ion mem rc: %d\n",
  207. __func__, rc);
  208. mutex_unlock(&(msm_audio_ion_data.list_mutex));
  209. return rc;
  210. }
  211. found = true;
  212. dma_buf_unmap_attachment(alloc_data->attach,
  213. alloc_data->table,
  214. DMA_BIDIRECTIONAL);
  215. dma_buf_detach((struct dma_buf*)
  216. alloc_data->handle,
  217. alloc_data->attach);
  218. dma_buf_put((struct dma_buf*)
  219. alloc_data->handle);
  220. list_del(&(alloc_data->list));
  221. kfree(alloc_data);
  222. break;
  223. }
  224. } else {
  225. alloc_data = list_entry(ptr,
  226. struct msm_audio_alloc_data,
  227. list);
  228. if (alloc_data->handle == handle) {
  229. found = true;
  230. dma_free_coherent(cb_dev, alloc_data->len,
  231. alloc_data->vaddr,
  232. *(alloc_data->paddr));
  233. list_del(&(alloc_data->list));
  234. kfree(alloc_data);
  235. break;
  236. }
  237. }
  238. }
  239. mutex_unlock(&(msm_audio_ion_data.list_mutex));
  240. if (!found) {
  241. dev_err(cb_dev,
  242. "%s: cannot find allocation, handle %pK",
  243. __func__, handle);
  244. rc = -EINVAL;
  245. }
  246. return rc;
  247. }
  248. static int msm_audio_ion_smmu_map(void *handle,
  249. dma_addr_t *paddr, size_t *len)
  250. {
  251. int rc;
  252. u32 export_id;
  253. u32 cmd_rsp_size;
  254. bool found = false;
  255. bool exported = false;
  256. struct msm_audio_smmu_vm_map_cmd smmu_map_cmd;
  257. struct msm_audio_smmu_vm_map_cmd_rsp cmd_rsp;
  258. struct msm_audio_alloc_data *alloc_data = NULL;
  259. unsigned long delay = jiffies + (HZ / 2);
  260. *len = ((struct dma_buf*)handle)->size;
  261. mutex_lock(&(msm_audio_ion_data.list_mutex));
  262. list_for_each_entry(alloc_data, &(msm_audio_ion_data.alloc_list),
  263. list) {
  264. if (alloc_data->handle == handle) {
  265. found = true;
  266. /* Export the buffer to physical VM */
  267. rc = habmm_export(msm_audio_ion_hab_handle, handle, *len,
  268. &export_id, HABMM_EXPIMP_FLAGS_DMABUF);
  269. if (rc) {
  270. pr_err("%s: habmm_export failed handle = %pK, len = %zd, rc = %d\n",
  271. __func__, handle, *len, rc);
  272. goto err;
  273. }
  274. exported = true;
  275. smmu_map_cmd.cmd_id = MSM_AUDIO_SMMU_VM_CMD_MAP;
  276. smmu_map_cmd.export_id = export_id;
  277. smmu_map_cmd.buf_size = *len;
  278. rc = habmm_socket_send(msm_audio_ion_hab_handle,
  279. (void *)&smmu_map_cmd, sizeof(smmu_map_cmd), 0);
  280. if (rc) {
  281. pr_err("%s: habmm_socket_send failed %d\n",
  282. __func__, rc);
  283. goto err;
  284. }
  285. do {
  286. cmd_rsp_size = sizeof(cmd_rsp);
  287. rc = habmm_socket_recv(msm_audio_ion_hab_handle,
  288. (void *)&cmd_rsp,
  289. &cmd_rsp_size,
  290. 0xFFFFFFFF,
  291. 0);
  292. } while (time_before(jiffies, delay) && (rc == -EINTR) &&
  293. (cmd_rsp_size == 0));
  294. if (rc) {
  295. pr_err("%s: habmm_socket_recv failed %d\n",
  296. __func__, rc);
  297. goto err;
  298. }
  299. if (cmd_rsp_size != sizeof(cmd_rsp)) {
  300. pr_err("%s: invalid size for cmd rsp %u, expected %zu\n",
  301. __func__, cmd_rsp_size, sizeof(cmd_rsp));
  302. rc = -EIO;
  303. goto err;
  304. }
  305. if (cmd_rsp.status) {
  306. pr_err("%s: SMMU map command failed %d\n",
  307. __func__, cmd_rsp.status);
  308. rc = cmd_rsp.status;
  309. goto err;
  310. }
  311. *paddr = (dma_addr_t)cmd_rsp.addr;
  312. alloc_data->export_id = export_id;
  313. break;
  314. }
  315. }
  316. mutex_unlock(&(msm_audio_ion_data.list_mutex));
  317. if (!found) {
  318. pr_err("%s: cannot find allocation, handle %pK\n", __func__, handle);
  319. return -EINVAL;
  320. }
  321. return 0;
  322. err:
  323. if (exported)
  324. (void)habmm_unexport(msm_audio_ion_hab_handle, export_id, 0);
  325. mutex_unlock(&(msm_audio_ion_data.list_mutex));
  326. return rc;
  327. }
  328. static int msm_audio_ion_smmu_unmap(void *handle)
  329. {
  330. int rc;
  331. bool found = false;
  332. u32 cmd_rsp_size;
  333. struct msm_audio_smmu_vm_unmap_cmd smmu_unmap_cmd;
  334. struct msm_audio_smmu_vm_unmap_cmd_rsp cmd_rsp;
  335. struct msm_audio_alloc_data *alloc_data, *next;
  336. unsigned long delay = jiffies + (HZ / 2);
  337. /*
  338. * Though list_for_each_entry_safe is delete safe, lock
  339. * should be explicitly acquired to avoid race condition
  340. * on adding elements to the list.
  341. */
  342. mutex_lock(&(msm_audio_ion_data.list_mutex));
  343. list_for_each_entry_safe(alloc_data, next,
  344. &(msm_audio_ion_data.alloc_list), list) {
  345. if (alloc_data->handle == handle) {
  346. found = true;
  347. smmu_unmap_cmd.cmd_id = MSM_AUDIO_SMMU_VM_CMD_UNMAP;
  348. smmu_unmap_cmd.export_id = alloc_data->export_id;
  349. rc = habmm_socket_send(msm_audio_ion_hab_handle,
  350. (void *)&smmu_unmap_cmd,
  351. sizeof(smmu_unmap_cmd), 0);
  352. if (rc) {
  353. pr_err("%s: habmm_socket_send failed %d\n",
  354. __func__, rc);
  355. goto err;
  356. }
  357. do {
  358. cmd_rsp_size = sizeof(cmd_rsp);
  359. rc = habmm_socket_recv(msm_audio_ion_hab_handle,
  360. (void *)&cmd_rsp,
  361. &cmd_rsp_size,
  362. 0xFFFFFFFF,
  363. 0);
  364. } while (time_before(jiffies, delay) &&
  365. (rc == -EINTR) && (cmd_rsp_size == 0));
  366. if (rc) {
  367. pr_err("%s: habmm_socket_recv failed %d\n",
  368. __func__, rc);
  369. goto err;
  370. }
  371. if (cmd_rsp_size != sizeof(cmd_rsp)) {
  372. pr_err("%s: invalid size for cmd rsp %u\n",
  373. __func__, cmd_rsp_size);
  374. rc = -EIO;
  375. goto err;
  376. }
  377. if (cmd_rsp.status) {
  378. pr_err("%s: SMMU unmap command failed %d\n",
  379. __func__, cmd_rsp.status);
  380. rc = cmd_rsp.status;
  381. goto err;
  382. }
  383. rc = habmm_unexport(msm_audio_ion_hab_handle,
  384. alloc_data->export_id, 0xFFFFFFFF);
  385. if (rc) {
  386. pr_err("%s: habmm_unexport failed export_id = %d, rc = %d\n",
  387. __func__, alloc_data->export_id, rc);
  388. }
  389. break;
  390. }
  391. }
  392. mutex_unlock(&(msm_audio_ion_data.list_mutex));
  393. if (!found) {
  394. pr_err("%s: cannot find allocation, handle %pK\n", __func__, handle);
  395. rc = -EINVAL;
  396. }
  397. return rc;
  398. err:
  399. if (found) {
  400. (void)habmm_unexport(msm_audio_ion_hab_handle,
  401. alloc_data->export_id, 0xFFFFFFFF);
  402. list_del(&(alloc_data->list));
  403. kfree(alloc_data);
  404. }
  405. mutex_unlock(&(msm_audio_ion_data.list_mutex));
  406. return rc;
  407. }
  408. static int msm_audio_ion_get_phys(struct dma_buf *dma_buf,
  409. dma_addr_t *addr, size_t *len)
  410. {
  411. int rc = 0;
  412. rc = msm_audio_ion_dma_buf_map(dma_buf, addr, len);
  413. if (rc) {
  414. pr_err("%s: failed to map DMA buf, err = %d\n",
  415. __func__, rc);
  416. goto err;
  417. }
  418. pr_debug("phys=%pK, len=%zd, rc=%d\n", addr, *len, rc);
  419. err:
  420. return rc;
  421. }
  422. static void *msm_audio_ion_map_kernel(void *handle)
  423. {
  424. int rc = 0;
  425. void *addr = NULL;
  426. struct msm_audio_alloc_data *alloc_data = NULL;
  427. rc = dma_buf_begin_cpu_access((struct dma_buf*)handle,
  428. DMA_BIDIRECTIONAL);
  429. if (rc) {
  430. pr_err("%s: kmap dma_buf_begin_cpu_access fail\n", __func__);
  431. goto exit;
  432. }
  433. addr = dma_buf_vmap((struct dma_buf*)handle);
  434. if (!addr) {
  435. pr_err("%s: kernel mapping of dma_buf failed\n",
  436. __func__);
  437. goto exit;
  438. }
  439. /*
  440. * TBD: remove the below section once new API
  441. * for mapping kernel virtual address is available.
  442. */
  443. mutex_lock(&(msm_audio_ion_data.list_mutex));
  444. list_for_each_entry(alloc_data, &(msm_audio_ion_data.alloc_list),
  445. list) {
  446. if (alloc_data->handle == handle) {
  447. alloc_data->vaddr = addr;
  448. break;
  449. }
  450. }
  451. mutex_unlock(&(msm_audio_ion_data.list_mutex));
  452. exit:
  453. return addr;
  454. }
  455. static int msm_audio_ion_map_buf(void *handle, dma_addr_t *paddr,
  456. size_t *plen, void **vaddr)
  457. {
  458. int rc = 0;
  459. rc = msm_audio_ion_get_phys((struct dma_buf*) handle, paddr, plen);
  460. if (rc) {
  461. pr_err("%s: ION Get Physical for AUDIO failed, rc = %d\n",
  462. __func__, rc);
  463. dma_buf_put(dma_buf);
  464. goto err;
  465. }
  466. *vaddr = msm_audio_ion_map_kernel(handle);
  467. if (IS_ERR_OR_NULL(*vaddr)) {
  468. pr_err("%s: ION memory mapping for AUDIO failed\n", __func__);
  469. rc = -ENOMEM;
  470. msm_audio_dma_buf_unmap(dma_buf);
  471. goto err;
  472. }
  473. if (msm_audio_ion_data.smmu_enabled) {
  474. rc = msm_audio_ion_smmu_map(handle, paddr, plen);
  475. if (rc) {
  476. pr_err("%s: failed to do smmu map, err = %d\n",
  477. __func__, rc);
  478. msm_audio_dma_buf_unmap((struct dma_buf *) handle);
  479. goto err;
  480. }
  481. }
  482. err:
  483. return rc;
  484. }
  485. /**
  486. * msm_audio_ion_alloc -
  487. * Allocs ION memory for given client name
  488. *
  489. * @handle: generic handle to the memory allocation
  490. * dma_buf for the system heap memory. vaddr for audio heap memory.
  491. * @bufsz: buffer size
  492. * @paddr: Physical address to be assigned with allocated region
  493. * @plen: length of allocated region to be assigned
  494. * vaddr: virtual address to be assigned
  495. *
  496. * Returns 0 on success or error on failure
  497. */
  498. int msm_audio_ion_alloc(void **handle, size_t bufsz,
  499. dma_addr_t *paddr, size_t *plen, void **vaddr)
  500. {
  501. int rc = -EINVAL;
  502. unsigned long err_ion_ptr = 0;
  503. if (!(msm_audio_ion_data.device_status & MSM_AUDIO_ION_PROBED)) {
  504. pr_debug("%s:probe is not done, deferred\n", __func__);
  505. return -EPROBE_DEFER;
  506. }
  507. if (!handle || !paddr || !vaddr || !bufsz || !plen) {
  508. pr_err("%s: Invalid params\n", __func__);
  509. return -EINVAL;
  510. }
  511. if (msm_audio_ion_data.smmu_enabled == true) {
  512. pr_debug("%s: system heap is used\n", __func__);
  513. *handle = ion_alloc(bufsz, ION_HEAP(ION_SYSTEM_HEAP_ID), 0);
  514. } else {
  515. pr_debug("%s: audio heap is used\n", __func__);
  516. *vaddr = *handle = dma_alloc_coherent(
  517. msm_audio_ion_data.cb_dev,
  518. bufsz, paddr, GFP_KERNEL);
  519. if(*vaddr != NULL) {
  520. pr_err("%s: vaddr = %pK, size=%zd\n", __func__, *vaddr,
  521. bufsz);
  522. rc = 0;
  523. }
  524. }
  525. if (IS_ERR_OR_NULL((void *)(*handle))) {
  526. if (IS_ERR((void *)(*handle)))
  527. err_ion_ptr = PTR_ERR((int *)(*handle));
  528. pr_err("%s: ION alloc fail err ptr=%ld, smmu_enabled=%d\n",
  529. __func__, err_ion_ptr, msm_audio_ion_data.smmu_enabled);
  530. rc = -ENOMEM;
  531. goto err;
  532. }
  533. if (msm_audio_ion_data.smmu_enabled) {
  534. rc = msm_audio_ion_map_buf(*handle, paddr, plen, vaddr);
  535. if (rc) {
  536. pr_err("%s: failed to map ION buf, rc = %d\n", __func__,
  537. rc);
  538. }
  539. } else {
  540. rc = msm_audio_dma_buf_map(*handle, *vaddr, paddr,
  541. &bufsz);
  542. if (rc) {
  543. pr_err("%s: failed to map ION buf, rc = %d\n", __func__,
  544. rc);
  545. dma_free_coherent(msm_audio_ion_data.cb_dev,
  546. bufsz, vaddr, *paddr);
  547. }
  548. }
  549. pr_debug("%s: mapped address = %pK, size=%zd\n", __func__,
  550. *vaddr, bufsz);
  551. memset(*vaddr, 0, bufsz);
  552. err:
  553. return rc;
  554. }
  555. EXPORT_SYMBOL(msm_audio_ion_alloc);
  556. int msm_audio_ion_phys_free(void *handle,
  557. dma_addr_t *paddr,
  558. size_t *pa_len,
  559. u8 assign_type,
  560. int id,
  561. int key)
  562. {
  563. handle = NULL;
  564. return 0;
  565. }
  566. EXPORT_SYMBOL(msm_audio_ion_phys_free);
  567. int msm_audio_ion_phys_assign(void **handle, int fd,
  568. dma_addr_t *paddr, size_t *pa_len, u8 assign_type, int id)
  569. {
  570. *handle = NULL;
  571. return 0;
  572. }
  573. EXPORT_SYMBOL(msm_audio_ion_phys_assign);
  574. bool msm_audio_is_hypervisor_supported(void)
  575. {
  576. return false;
  577. }
  578. EXPORT_SYMBOL(msm_audio_is_hypervisor_supported);
  579. /**
  580. * msm_audio_ion_import-
  581. * Import ION buffer with given file descriptor
  582. *
  583. * @handle: generic handle to the memory allocation
  584. * dma_buf for the system heap memory. vaddr for audio heap memory.
  585. * @fd: file descriptor for the ION memory
  586. * @ionflag: flags associated with ION buffer
  587. * @bufsz: buffer size
  588. * @paddr: Physical address to be assigned with allocated region
  589. * @plen: length of allocated region to be assigned
  590. * vaddr: virtual address to be assigned
  591. *
  592. * Returns 0 on success or error on failure
  593. */
  594. int msm_audio_ion_import(void **handle, int fd,
  595. unsigned long *ionflag, size_t bufsz,
  596. dma_addr_t *paddr, size_t *plen, void **vaddr)
  597. {
  598. int rc = 0;
  599. if (!(msm_audio_ion_data.device_status & MSM_AUDIO_ION_PROBED)) {
  600. pr_debug("%s: probe is not done, deferred\n", __func__);
  601. return -EPROBE_DEFER;
  602. }
  603. if (!handle || !paddr || !vaddr || !plen) {
  604. pr_err("%s: Invalid params\n", __func__);
  605. return -EINVAL;
  606. }
  607. /* bufsz should be 0 and fd shouldn't be 0 as of now */
  608. *handle = dma_buf_get(fd);
  609. pr_debug("%s: handle =%pK, fd=%d\n", __func__, *handle, fd);
  610. if (IS_ERR_OR_NULL((void *)(*handle))) {
  611. pr_err("%s: dma_buf_get failed\n", __func__);
  612. rc = -EINVAL;
  613. goto err;
  614. }
  615. if (ionflag != NULL) {
  616. rc = dma_buf_get_flags((struct dma_buf*)*handle, ionflag);
  617. if (rc) {
  618. pr_err("%s: could not get flags for the dma_buf\n",
  619. __func__);
  620. goto err_ion_flag;
  621. }
  622. }
  623. rc = msm_audio_ion_map_buf(*handle, paddr, plen, vaddr);
  624. if (rc) {
  625. pr_err("%s: failed to map ION buf, rc = %d\n", __func__, rc);
  626. goto err;
  627. }
  628. pr_debug("%s: mapped address = %pK, size=%zd\n", __func__,
  629. *vaddr, bufsz);
  630. return 0;
  631. err_ion_flag:
  632. dma_buf_put((struct dma_buf*) *handle);
  633. err:
  634. *handle = NULL;
  635. return rc;
  636. }
  637. EXPORT_SYMBOL(msm_audio_ion_import);
  638. /**
  639. * msm_audio_ion_free -
  640. * fress ION memory for given client and handle
  641. *
  642. * @handle: generic handle to the memory allocation
  643. * dma_buf for the system heap memory. vaddr for audio heap memory.
  644. *
  645. * Returns 0 on success or error on failure
  646. */
  647. int msm_audio_ion_free(void *handle)
  648. {
  649. int ret = 0;
  650. if (!handle) {
  651. pr_err("%s: handle invalid\n", __func__);
  652. return -EINVAL;
  653. }
  654. if (msm_audio_ion_data.smmu_enabled) {
  655. ret = msm_audio_ion_smmu_unmap(handle);
  656. if (ret)
  657. pr_err("%s: smmu unmap failed with ret %d\n",
  658. __func__, ret);
  659. }
  660. msm_audio_dma_buf_unmap(handle);
  661. return 0;
  662. }
  663. EXPORT_SYMBOL(msm_audio_ion_free);
  664. /**
  665. * msm_audio_ion_mmap -
  666. * Audio ION memory map
  667. *
  668. * @abuff: audio buf pointer
  669. * @vma: virtual mem area
  670. *
  671. * Returns 0 on success or error on failure
  672. */
  673. int msm_audio_ion_mmap(struct audio_buffer *abuff,
  674. struct vm_area_struct *vma)
  675. {
  676. struct msm_audio_alloc_data *alloc_data = NULL;
  677. struct sg_table *table;
  678. unsigned long addr = vma->vm_start;
  679. unsigned long offset = vma->vm_pgoff * PAGE_SIZE;
  680. struct scatterlist *sg;
  681. unsigned int i;
  682. struct page *page;
  683. int ret = 0;
  684. bool found = false;
  685. struct device *cb_dev = msm_audio_ion_data.cb_dev;
  686. mutex_lock(&(msm_audio_ion_data.list_mutex));
  687. list_for_each_entry(alloc_data, &(msm_audio_ion_data.alloc_list),
  688. list) {
  689. if (alloc_data->handle == abuff->mem_handle) {
  690. found = true;
  691. table = alloc_data->table;
  692. break;
  693. }
  694. }
  695. mutex_unlock(&(msm_audio_ion_data.list_mutex));
  696. if (!found) {
  697. dev_err(cb_dev,
  698. "%s: cannot find allocation, dma_buf %pK",
  699. __func__, abuff->mem_handle);
  700. return -EINVAL;
  701. }
  702. /* uncached */
  703. vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot);
  704. /* We need to check if a page is associated with this sg list because:
  705. * If the allocation came from a carveout we currently don't have
  706. * pages associated with carved out memory. This might change in the
  707. * future and we can remove this check and the else statement.
  708. */
  709. page = sg_page(table->sgl);
  710. if (page) {
  711. pr_debug("%s: page is NOT null\n", __func__);
  712. for_each_sg(table->sgl, sg, table->nents, i) {
  713. unsigned long remainder = vma->vm_end - addr;
  714. unsigned long len = sg->length;
  715. page = sg_page(sg);
  716. if (offset >= len) {
  717. offset -= len;
  718. continue;
  719. } else if (offset) {
  720. page += offset / PAGE_SIZE;
  721. len -= offset;
  722. offset = 0;
  723. }
  724. len = min(len, remainder);
  725. pr_debug("vma=%pK, addr=%x len=%ld vm_start=%x vm_end=%x vm_page_prot=%lu\n",
  726. vma, (unsigned int)addr, len,
  727. (unsigned int)vma->vm_start,
  728. (unsigned int)vma->vm_end,
  729. (unsigned long)pgprot_val(vma->vm_page_prot));
  730. remap_pfn_range(vma, addr, page_to_pfn(page), len,
  731. vma->vm_page_prot);
  732. addr += len;
  733. if (addr >= vma->vm_end)
  734. return 0;
  735. }
  736. } else {
  737. pr_debug("%s: page is NULL\n", __func__);
  738. ret = -EINVAL;
  739. }
  740. return ret;
  741. }
  742. EXPORT_SYMBOL(msm_audio_ion_mmap);
  743. /**
  744. * msm_audio_populate_upper_32_bits -
  745. * retrieve upper 32bits of 64bit address
  746. *
  747. * @pa: 64bit physical address
  748. *
  749. */
  750. u32 msm_audio_populate_upper_32_bits(dma_addr_t pa)
  751. {
  752. return upper_32_bits(pa);
  753. }
  754. EXPORT_SYMBOL(msm_audio_populate_upper_32_bits);
  755. static const struct of_device_id msm_audio_ion_dt_match[] = {
  756. { .compatible = "qcom,msm-audio-ion" },
  757. { }
  758. };
  759. MODULE_DEVICE_TABLE(of, msm_audio_ion_dt_match);
  760. static int msm_audio_ion_probe(struct platform_device *pdev)
  761. {
  762. int rc = 0;
  763. const char *msm_audio_ion_dt = "qcom,smmu-enabled";
  764. bool smmu_enabled;
  765. struct device *dev = &pdev->dev;
  766. if (dev->of_node == NULL) {
  767. dev_err(dev,
  768. "%s: device tree is not found\n",
  769. __func__);
  770. msm_audio_ion_data.smmu_enabled = 0;
  771. return 0;
  772. }
  773. smmu_enabled = of_property_read_bool(dev->of_node,
  774. msm_audio_ion_dt);
  775. msm_audio_ion_data.smmu_enabled = smmu_enabled;
  776. if (!smmu_enabled) {
  777. dev_dbg(dev, "%s: SMMU is Disabled\n", __func__);
  778. goto exit;
  779. }
  780. rc = habmm_socket_open(&msm_audio_ion_hab_handle,
  781. HAB_MMID_CREATE(MM_AUD_3,
  782. MSM_AUDIO_SMMU_VM_HAB_MINOR_ID),
  783. 0xFFFFFFFF,
  784. HABMM_SOCKET_OPEN_FLAGS_SINGLE_BE_SINGLE_FE);
  785. if (rc) {
  786. dev_err(dev, "%s: habmm_socket_open failed %d\n",
  787. __func__, rc);
  788. return rc;
  789. }
  790. dev_info(dev, "%s: msm_audio_ion_hab_handle %x\n",
  791. __func__, msm_audio_ion_hab_handle);
  792. exit:
  793. if (!rc)
  794. msm_audio_ion_data.device_status |= MSM_AUDIO_ION_PROBED;
  795. msm_audio_ion_data.cb_dev = dev;
  796. INIT_LIST_HEAD(&msm_audio_ion_data.alloc_list);
  797. mutex_init(&(msm_audio_ion_data.list_mutex));
  798. return rc;
  799. }
  800. static int msm_audio_ion_remove(struct platform_device *pdev)
  801. {
  802. if (msm_audio_ion_data.smmu_enabled) {
  803. if (msm_audio_ion_hab_handle)
  804. habmm_socket_close(msm_audio_ion_hab_handle);
  805. }
  806. msm_audio_ion_data.smmu_enabled = 0;
  807. msm_audio_ion_data.device_status = 0;
  808. mutex_destroy(&(msm_audio_ion_data.list_mutex));
  809. return 0;
  810. }
  811. static struct platform_driver msm_audio_ion_driver = {
  812. .driver = {
  813. .name = "msm-audio-ion",
  814. .owner = THIS_MODULE,
  815. .of_match_table = msm_audio_ion_dt_match,
  816. },
  817. .probe = msm_audio_ion_probe,
  818. .remove = msm_audio_ion_remove,
  819. };
  820. int __init msm_audio_ion_init(void)
  821. {
  822. return platform_driver_register(&msm_audio_ion_driver);
  823. }
  824. void msm_audio_ion_exit(void)
  825. {
  826. platform_driver_unregister(&msm_audio_ion_driver);
  827. }
  828. MODULE_DESCRIPTION("MSM Audio ION VM module");
  829. MODULE_LICENSE("GPL v2");