dp_rx.c 99 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609
  1. /*
  2. * Copyright (c) 2016-2021 The Linux Foundation. All rights reserved.
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for
  5. * any purpose with or without fee is hereby granted, provided that the
  6. * above copyright notice and this permission notice appear in all
  7. * copies.
  8. *
  9. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
  10. * WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
  11. * WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
  12. * AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
  13. * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
  14. * PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
  15. * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
  16. * PERFORMANCE OF THIS SOFTWARE.
  17. */
  18. #include "hal_hw_headers.h"
  19. #include "dp_types.h"
  20. #include "dp_rx.h"
  21. #include "dp_peer.h"
  22. #include "hal_rx.h"
  23. #include "hal_api.h"
  24. #include "qdf_nbuf.h"
  25. #ifdef MESH_MODE_SUPPORT
  26. #include "if_meta_hdr.h"
  27. #endif
  28. #include "dp_internal.h"
  29. #include "dp_rx_mon.h"
  30. #include "dp_ipa.h"
  31. #ifdef FEATURE_WDS
  32. #include "dp_txrx_wds.h"
  33. #endif
  34. #include "dp_hist.h"
  35. #include "dp_rx_buffer_pool.h"
  36. #ifndef QCA_HOST_MODE_WIFI_DISABLED
  37. #ifdef ATH_RX_PRI_SAVE
  38. #define DP_RX_TID_SAVE(_nbuf, _tid) \
  39. (qdf_nbuf_set_priority(_nbuf, _tid))
  40. #else
  41. #define DP_RX_TID_SAVE(_nbuf, _tid)
  42. #endif
  43. #ifdef DP_RX_DISABLE_NDI_MDNS_FORWARDING
  44. static inline
  45. bool dp_rx_check_ndi_mdns_fwding(struct dp_peer *ta_peer, qdf_nbuf_t nbuf)
  46. {
  47. if (ta_peer->vdev->opmode == wlan_op_mode_ndi &&
  48. qdf_nbuf_is_ipv6_mdns_pkt(nbuf)) {
  49. DP_STATS_INC(ta_peer, rx.intra_bss.mdns_no_fwd, 1);
  50. return false;
  51. }
  52. return true;
  53. }
  54. #else
  55. static inline
  56. bool dp_rx_check_ndi_mdns_fwding(struct dp_peer *ta_peer, qdf_nbuf_t nbuf)
  57. {
  58. return true;
  59. }
  60. #endif
  61. static inline bool dp_rx_check_ap_bridge(struct dp_vdev *vdev)
  62. {
  63. return vdev->ap_bridge_enabled;
  64. }
  65. #endif /* QCA_HOST_MODE_WIFI_DISABLED */
  66. #ifdef DUP_RX_DESC_WAR
  67. void dp_rx_dump_info_and_assert(struct dp_soc *soc,
  68. hal_ring_handle_t hal_ring,
  69. hal_ring_desc_t ring_desc,
  70. struct dp_rx_desc *rx_desc)
  71. {
  72. void *hal_soc = soc->hal_soc;
  73. hal_srng_dump_ring_desc(hal_soc, hal_ring, ring_desc);
  74. dp_rx_desc_dump(rx_desc);
  75. }
  76. #else
  77. void dp_rx_dump_info_and_assert(struct dp_soc *soc,
  78. hal_ring_handle_t hal_ring_hdl,
  79. hal_ring_desc_t ring_desc,
  80. struct dp_rx_desc *rx_desc)
  81. {
  82. hal_soc_handle_t hal_soc = soc->hal_soc;
  83. dp_rx_desc_dump(rx_desc);
  84. hal_srng_dump_ring_desc(hal_soc, hal_ring_hdl, ring_desc);
  85. hal_srng_dump_ring(hal_soc, hal_ring_hdl);
  86. qdf_assert_always(0);
  87. }
  88. #endif
  89. #ifndef QCA_HOST_MODE_WIFI_DISABLED
  90. #ifdef RX_DESC_SANITY_WAR
  91. static inline
  92. QDF_STATUS dp_rx_desc_sanity(struct dp_soc *soc, hal_soc_handle_t hal_soc,
  93. hal_ring_handle_t hal_ring_hdl,
  94. hal_ring_desc_t ring_desc,
  95. struct dp_rx_desc *rx_desc)
  96. {
  97. uint8_t return_buffer_manager;
  98. if (qdf_unlikely(!rx_desc)) {
  99. /*
  100. * This is an unlikely case where the cookie obtained
  101. * from the ring_desc is invalid and hence we are not
  102. * able to find the corresponding rx_desc
  103. */
  104. goto fail;
  105. }
  106. return_buffer_manager = hal_rx_ret_buf_manager_get(ring_desc);
  107. if (qdf_unlikely(!(return_buffer_manager == HAL_RX_BUF_RBM_SW1_BM ||
  108. return_buffer_manager == HAL_RX_BUF_RBM_SW3_BM))) {
  109. goto fail;
  110. }
  111. return QDF_STATUS_SUCCESS;
  112. fail:
  113. DP_STATS_INC(soc, rx.err.invalid_cookie, 1);
  114. dp_err("Ring Desc:");
  115. hal_srng_dump_ring_desc(hal_soc, hal_ring_hdl,
  116. ring_desc);
  117. return QDF_STATUS_E_NULL_VALUE;
  118. }
  119. #else
  120. static inline
  121. QDF_STATUS dp_rx_desc_sanity(struct dp_soc *soc, hal_soc_handle_t hal_soc,
  122. hal_ring_handle_t hal_ring_hdl,
  123. hal_ring_desc_t ring_desc,
  124. struct dp_rx_desc *rx_desc)
  125. {
  126. return QDF_STATUS_SUCCESS;
  127. }
  128. #endif
  129. #endif /* QCA_HOST_MODE_WIFI_DISABLED */
  130. /**
  131. * dp_pdev_frag_alloc_and_map() - Allocate frag for desc buffer and map
  132. *
  133. * @dp_soc: struct dp_soc *
  134. * @nbuf_frag_info_t: nbuf frag info
  135. * @dp_pdev: struct dp_pdev *
  136. * @rx_desc_pool: Rx desc pool
  137. *
  138. * Return: QDF_STATUS
  139. */
  140. #ifdef DP_RX_MON_MEM_FRAG
  141. static inline QDF_STATUS
  142. dp_pdev_frag_alloc_and_map(struct dp_soc *dp_soc,
  143. struct dp_rx_nbuf_frag_info *nbuf_frag_info_t,
  144. struct dp_pdev *dp_pdev,
  145. struct rx_desc_pool *rx_desc_pool)
  146. {
  147. QDF_STATUS ret = QDF_STATUS_E_FAILURE;
  148. (nbuf_frag_info_t->virt_addr).vaddr =
  149. qdf_frag_alloc(rx_desc_pool->buf_size);
  150. if (!((nbuf_frag_info_t->virt_addr).vaddr)) {
  151. dp_err("Frag alloc failed");
  152. DP_STATS_INC(dp_pdev, replenish.frag_alloc_fail, 1);
  153. return QDF_STATUS_E_NOMEM;
  154. }
  155. ret = qdf_mem_map_page(dp_soc->osdev,
  156. (nbuf_frag_info_t->virt_addr).vaddr,
  157. QDF_DMA_FROM_DEVICE,
  158. rx_desc_pool->buf_size,
  159. &nbuf_frag_info_t->paddr);
  160. if (qdf_unlikely(QDF_IS_STATUS_ERROR(ret))) {
  161. qdf_frag_free((nbuf_frag_info_t->virt_addr).vaddr);
  162. dp_err("Frag map failed");
  163. DP_STATS_INC(dp_pdev, replenish.map_err, 1);
  164. return QDF_STATUS_E_FAULT;
  165. }
  166. return QDF_STATUS_SUCCESS;
  167. }
  168. #else
  169. static inline QDF_STATUS
  170. dp_pdev_frag_alloc_and_map(struct dp_soc *dp_soc,
  171. struct dp_rx_nbuf_frag_info *nbuf_frag_info_t,
  172. struct dp_pdev *dp_pdev,
  173. struct rx_desc_pool *rx_desc_pool)
  174. {
  175. return QDF_STATUS_SUCCESS;
  176. }
  177. #endif /* DP_RX_MON_MEM_FRAG */
  178. #ifdef WLAN_FEATURE_DP_RX_RING_HISTORY
  179. /**
  180. * dp_rx_refill_ring_record_entry() - Record an entry into refill_ring history
  181. * @soc: Datapath soc structure
  182. * @ring_num: Refill ring number
  183. * @num_req: number of buffers requested for refill
  184. * @num_refill: number of buffers refilled
  185. *
  186. * Returns: None
  187. */
  188. static inline void
  189. dp_rx_refill_ring_record_entry(struct dp_soc *soc, uint8_t ring_num,
  190. hal_ring_handle_t hal_ring_hdl,
  191. uint32_t num_req, uint32_t num_refill)
  192. {
  193. struct dp_refill_info_record *record;
  194. uint32_t idx;
  195. uint32_t tp;
  196. uint32_t hp;
  197. if (qdf_unlikely(ring_num >= MAX_PDEV_CNT ||
  198. !soc->rx_refill_ring_history[ring_num]))
  199. return;
  200. idx = dp_history_get_next_index(&soc->rx_refill_ring_history[ring_num]->index,
  201. DP_RX_REFILL_HIST_MAX);
  202. /* No NULL check needed for record since its an array */
  203. record = &soc->rx_refill_ring_history[ring_num]->entry[idx];
  204. hal_get_sw_hptp(soc->hal_soc, hal_ring_hdl, &tp, &hp);
  205. record->timestamp = qdf_get_log_timestamp();
  206. record->num_req = num_req;
  207. record->num_refill = num_refill;
  208. record->hp = hp;
  209. record->tp = tp;
  210. }
  211. #else
  212. static inline void
  213. dp_rx_refill_ring_record_entry(struct dp_soc *soc, uint8_t ring_num,
  214. hal_ring_handle_t hal_ring_hdl,
  215. uint32_t num_req, uint32_t num_refill)
  216. {
  217. }
  218. #endif
  219. /**
  220. * dp_pdev_nbuf_alloc_and_map() - Allocate nbuf for desc buffer and map
  221. *
  222. * @dp_soc: struct dp_soc *
  223. * @mac_id: Mac id
  224. * @num_entries_avail: num_entries_avail
  225. * @nbuf_frag_info_t: nbuf frag info
  226. * @dp_pdev: struct dp_pdev *
  227. * @rx_desc_pool: Rx desc pool
  228. *
  229. * Return: QDF_STATUS
  230. */
  231. static inline QDF_STATUS
  232. dp_pdev_nbuf_alloc_and_map_replenish(struct dp_soc *dp_soc,
  233. uint32_t mac_id,
  234. uint32_t num_entries_avail,
  235. struct dp_rx_nbuf_frag_info *nbuf_frag_info_t,
  236. struct dp_pdev *dp_pdev,
  237. struct rx_desc_pool *rx_desc_pool)
  238. {
  239. QDF_STATUS ret = QDF_STATUS_E_FAILURE;
  240. (nbuf_frag_info_t->virt_addr).nbuf =
  241. dp_rx_buffer_pool_nbuf_alloc(dp_soc,
  242. mac_id,
  243. rx_desc_pool,
  244. num_entries_avail);
  245. if (!((nbuf_frag_info_t->virt_addr).nbuf)) {
  246. dp_err("nbuf alloc failed");
  247. DP_STATS_INC(dp_pdev, replenish.nbuf_alloc_fail, 1);
  248. return QDF_STATUS_E_NOMEM;
  249. }
  250. ret = dp_rx_buffer_pool_nbuf_map(dp_soc, rx_desc_pool,
  251. nbuf_frag_info_t);
  252. if (qdf_unlikely(QDF_IS_STATUS_ERROR(ret))) {
  253. dp_rx_buffer_pool_nbuf_free(dp_soc,
  254. (nbuf_frag_info_t->virt_addr).nbuf, mac_id);
  255. dp_err("nbuf map failed");
  256. DP_STATS_INC(dp_pdev, replenish.map_err, 1);
  257. return QDF_STATUS_E_FAULT;
  258. }
  259. nbuf_frag_info_t->paddr =
  260. qdf_nbuf_get_frag_paddr((nbuf_frag_info_t->virt_addr).nbuf, 0);
  261. dp_ipa_handle_rx_buf_smmu_mapping(dp_soc,
  262. (qdf_nbuf_t)((nbuf_frag_info_t->virt_addr).nbuf),
  263. rx_desc_pool->buf_size,
  264. true);
  265. ret = dp_check_paddr(dp_soc, &((nbuf_frag_info_t->virt_addr).nbuf),
  266. &nbuf_frag_info_t->paddr,
  267. rx_desc_pool);
  268. if (ret == QDF_STATUS_E_FAILURE) {
  269. DP_STATS_INC(dp_pdev, replenish.x86_fail, 1);
  270. return QDF_STATUS_E_ADDRNOTAVAIL;
  271. }
  272. return QDF_STATUS_SUCCESS;
  273. }
  274. /*
  275. * dp_rx_buffers_replenish() - replenish rxdma ring with rx nbufs
  276. * called during dp rx initialization
  277. * and at the end of dp_rx_process.
  278. *
  279. * @soc: core txrx main context
  280. * @mac_id: mac_id which is one of 3 mac_ids
  281. * @dp_rxdma_srng: dp rxdma circular ring
  282. * @rx_desc_pool: Pointer to free Rx descriptor pool
  283. * @num_req_buffers: number of buffer to be replenished
  284. * @desc_list: list of descs if called from dp_rx_process
  285. * or NULL during dp rx initialization or out of buffer
  286. * interrupt.
  287. * @tail: tail of descs list
  288. * @func_name: name of the caller function
  289. * Return: return success or failure
  290. */
  291. QDF_STATUS __dp_rx_buffers_replenish(struct dp_soc *dp_soc, uint32_t mac_id,
  292. struct dp_srng *dp_rxdma_srng,
  293. struct rx_desc_pool *rx_desc_pool,
  294. uint32_t num_req_buffers,
  295. union dp_rx_desc_list_elem_t **desc_list,
  296. union dp_rx_desc_list_elem_t **tail,
  297. const char *func_name)
  298. {
  299. uint32_t num_alloc_desc;
  300. uint16_t num_desc_to_free = 0;
  301. struct dp_pdev *dp_pdev = dp_get_pdev_for_lmac_id(dp_soc, mac_id);
  302. uint32_t num_entries_avail;
  303. uint32_t count;
  304. int sync_hw_ptr = 1;
  305. struct dp_rx_nbuf_frag_info nbuf_frag_info = {0};
  306. void *rxdma_ring_entry;
  307. union dp_rx_desc_list_elem_t *next;
  308. QDF_STATUS ret;
  309. void *rxdma_srng;
  310. rxdma_srng = dp_rxdma_srng->hal_srng;
  311. if (!rxdma_srng) {
  312. dp_rx_debug("%pK: rxdma srng not initialized", dp_soc);
  313. DP_STATS_INC(dp_pdev, replenish.rxdma_err, num_req_buffers);
  314. return QDF_STATUS_E_FAILURE;
  315. }
  316. dp_rx_debug("%pK: requested %d buffers for replenish",
  317. dp_soc, num_req_buffers);
  318. hal_srng_access_start(dp_soc->hal_soc, rxdma_srng);
  319. num_entries_avail = hal_srng_src_num_avail(dp_soc->hal_soc,
  320. rxdma_srng,
  321. sync_hw_ptr);
  322. dp_rx_debug("%pK: no of available entries in rxdma ring: %d",
  323. dp_soc, num_entries_avail);
  324. if (!(*desc_list) && (num_entries_avail >
  325. ((dp_rxdma_srng->num_entries * 3) / 4))) {
  326. num_req_buffers = num_entries_avail;
  327. } else if (num_entries_avail < num_req_buffers) {
  328. num_desc_to_free = num_req_buffers - num_entries_avail;
  329. num_req_buffers = num_entries_avail;
  330. }
  331. if (qdf_unlikely(!num_req_buffers)) {
  332. num_desc_to_free = num_req_buffers;
  333. hal_srng_access_end(dp_soc->hal_soc, rxdma_srng);
  334. goto free_descs;
  335. }
  336. /*
  337. * if desc_list is NULL, allocate the descs from freelist
  338. */
  339. if (!(*desc_list)) {
  340. num_alloc_desc = dp_rx_get_free_desc_list(dp_soc, mac_id,
  341. rx_desc_pool,
  342. num_req_buffers,
  343. desc_list,
  344. tail);
  345. if (!num_alloc_desc) {
  346. dp_rx_err("%pK: no free rx_descs in freelist", dp_soc);
  347. DP_STATS_INC(dp_pdev, err.desc_alloc_fail,
  348. num_req_buffers);
  349. hal_srng_access_end(dp_soc->hal_soc, rxdma_srng);
  350. return QDF_STATUS_E_NOMEM;
  351. }
  352. dp_rx_debug("%pK: %d rx desc allocated", dp_soc, num_alloc_desc);
  353. num_req_buffers = num_alloc_desc;
  354. }
  355. count = 0;
  356. dp_rx_refill_buff_pool_lock(dp_soc);
  357. while (count < num_req_buffers) {
  358. /* Flag is set while pdev rx_desc_pool initialization */
  359. if (qdf_unlikely(rx_desc_pool->rx_mon_dest_frag_enable))
  360. ret = dp_pdev_frag_alloc_and_map(dp_soc,
  361. &nbuf_frag_info,
  362. dp_pdev,
  363. rx_desc_pool);
  364. else
  365. ret = dp_pdev_nbuf_alloc_and_map_replenish(dp_soc,
  366. mac_id,
  367. num_entries_avail, &nbuf_frag_info,
  368. dp_pdev, rx_desc_pool);
  369. if (qdf_unlikely(QDF_IS_STATUS_ERROR(ret))) {
  370. if (qdf_unlikely(ret == QDF_STATUS_E_FAULT))
  371. continue;
  372. break;
  373. }
  374. count++;
  375. rxdma_ring_entry = hal_srng_src_get_next(dp_soc->hal_soc,
  376. rxdma_srng);
  377. qdf_assert_always(rxdma_ring_entry);
  378. next = (*desc_list)->next;
  379. /* Flag is set while pdev rx_desc_pool initialization */
  380. if (qdf_unlikely(rx_desc_pool->rx_mon_dest_frag_enable))
  381. dp_rx_desc_frag_prep(&((*desc_list)->rx_desc),
  382. &nbuf_frag_info);
  383. else
  384. dp_rx_desc_prep(&((*desc_list)->rx_desc),
  385. &nbuf_frag_info);
  386. /* rx_desc.in_use should be zero at this time*/
  387. qdf_assert_always((*desc_list)->rx_desc.in_use == 0);
  388. (*desc_list)->rx_desc.in_use = 1;
  389. (*desc_list)->rx_desc.in_err_state = 0;
  390. dp_rx_desc_update_dbg_info(&(*desc_list)->rx_desc,
  391. func_name, RX_DESC_REPLENISHED);
  392. dp_verbose_debug("rx_netbuf=%pK, paddr=0x%llx, cookie=%d",
  393. nbuf_frag_info.virt_addr.nbuf,
  394. (unsigned long long)(nbuf_frag_info.paddr),
  395. (*desc_list)->rx_desc.cookie);
  396. hal_rxdma_buff_addr_info_set(rxdma_ring_entry,
  397. nbuf_frag_info.paddr,
  398. (*desc_list)->rx_desc.cookie,
  399. rx_desc_pool->owner);
  400. *desc_list = next;
  401. }
  402. dp_rx_refill_buff_pool_unlock(dp_soc);
  403. dp_rx_refill_ring_record_entry(dp_soc, dp_pdev->lmac_id, rxdma_srng,
  404. num_req_buffers, count);
  405. hal_srng_access_end(dp_soc->hal_soc, rxdma_srng);
  406. dp_rx_schedule_refill_thread(dp_soc);
  407. dp_verbose_debug("replenished buffers %d, rx desc added back to free list %u",
  408. count, num_desc_to_free);
  409. /* No need to count the number of bytes received during replenish.
  410. * Therefore set replenish.pkts.bytes as 0.
  411. */
  412. DP_STATS_INC_PKT(dp_pdev, replenish.pkts, count, 0);
  413. free_descs:
  414. DP_STATS_INC(dp_pdev, buf_freelist, num_desc_to_free);
  415. /*
  416. * add any available free desc back to the free list
  417. */
  418. if (*desc_list)
  419. dp_rx_add_desc_list_to_free_list(dp_soc, desc_list, tail,
  420. mac_id, rx_desc_pool);
  421. return QDF_STATUS_SUCCESS;
  422. }
  423. /*
  424. * dp_rx_deliver_raw() - process RAW mode pkts and hand over the
  425. * pkts to RAW mode simulation to
  426. * decapsulate the pkt.
  427. *
  428. * @vdev: vdev on which RAW mode is enabled
  429. * @nbuf_list: list of RAW pkts to process
  430. * @peer: peer object from which the pkt is rx
  431. *
  432. * Return: void
  433. */
  434. void
  435. dp_rx_deliver_raw(struct dp_vdev *vdev, qdf_nbuf_t nbuf_list,
  436. struct dp_peer *peer)
  437. {
  438. qdf_nbuf_t deliver_list_head = NULL;
  439. qdf_nbuf_t deliver_list_tail = NULL;
  440. qdf_nbuf_t nbuf;
  441. nbuf = nbuf_list;
  442. while (nbuf) {
  443. qdf_nbuf_t next = qdf_nbuf_next(nbuf);
  444. DP_RX_LIST_APPEND(deliver_list_head, deliver_list_tail, nbuf);
  445. DP_STATS_INC(vdev->pdev, rx_raw_pkts, 1);
  446. DP_STATS_INC_PKT(peer, rx.raw, 1, qdf_nbuf_len(nbuf));
  447. /*
  448. * reset the chfrag_start and chfrag_end bits in nbuf cb
  449. * as this is a non-amsdu pkt and RAW mode simulation expects
  450. * these bit s to be 0 for non-amsdu pkt.
  451. */
  452. if (qdf_nbuf_is_rx_chfrag_start(nbuf) &&
  453. qdf_nbuf_is_rx_chfrag_end(nbuf)) {
  454. qdf_nbuf_set_rx_chfrag_start(nbuf, 0);
  455. qdf_nbuf_set_rx_chfrag_end(nbuf, 0);
  456. }
  457. nbuf = next;
  458. }
  459. vdev->osif_rsim_rx_decap(vdev->osif_vdev, &deliver_list_head,
  460. &deliver_list_tail, peer->mac_addr.raw);
  461. vdev->osif_rx(vdev->osif_vdev, deliver_list_head);
  462. }
  463. #ifndef QCA_HOST_MODE_WIFI_DISABLED
  464. #ifndef FEATURE_WDS
  465. static void
  466. dp_rx_da_learn(struct dp_soc *soc,
  467. uint8_t *rx_tlv_hdr,
  468. struct dp_peer *ta_peer,
  469. qdf_nbuf_t nbuf)
  470. {
  471. }
  472. #endif
  473. /*
  474. * dp_rx_intrabss_fwd() - Implements the Intra-BSS forwarding logic
  475. *
  476. * @soc: core txrx main context
  477. * @ta_peer : source peer entry
  478. * @rx_tlv_hdr : start address of rx tlvs
  479. * @nbuf : nbuf that has to be intrabss forwarded
  480. *
  481. * Return: bool: true if it is forwarded else false
  482. */
  483. static bool
  484. dp_rx_intrabss_fwd(struct dp_soc *soc,
  485. struct dp_peer *ta_peer,
  486. uint8_t *rx_tlv_hdr,
  487. qdf_nbuf_t nbuf,
  488. struct hal_rx_msdu_metadata msdu_metadata)
  489. {
  490. uint16_t len;
  491. uint8_t is_frag;
  492. uint16_t da_peer_id = HTT_INVALID_PEER;
  493. struct dp_peer *da_peer = NULL;
  494. bool is_da_bss_peer = false;
  495. struct dp_ast_entry *ast_entry;
  496. qdf_nbuf_t nbuf_copy;
  497. uint8_t tid = qdf_nbuf_get_tid_val(nbuf);
  498. uint8_t ring_id = QDF_NBUF_CB_RX_CTX_ID(nbuf);
  499. struct cdp_tid_rx_stats *tid_stats = &ta_peer->vdev->pdev->stats.
  500. tid_stats.tid_rx_stats[ring_id][tid];
  501. /* check if the destination peer is available in peer table
  502. * and also check if the source peer and destination peer
  503. * belong to the same vap and destination peer is not bss peer.
  504. */
  505. if ((qdf_nbuf_is_da_valid(nbuf) && !qdf_nbuf_is_da_mcbc(nbuf))) {
  506. ast_entry = soc->ast_table[msdu_metadata.da_idx];
  507. if (!ast_entry)
  508. return false;
  509. if (ast_entry->type == CDP_TXRX_AST_TYPE_DA) {
  510. ast_entry->is_active = TRUE;
  511. return false;
  512. }
  513. da_peer_id = ast_entry->peer_id;
  514. if (da_peer_id == HTT_INVALID_PEER)
  515. return false;
  516. /* TA peer cannot be same as peer(DA) on which AST is present
  517. * this indicates a change in topology and that AST entries
  518. * are yet to be updated.
  519. */
  520. if (da_peer_id == ta_peer->peer_id)
  521. return false;
  522. if (ast_entry->vdev_id != ta_peer->vdev->vdev_id)
  523. return false;
  524. da_peer = dp_peer_get_ref_by_id(soc, da_peer_id,
  525. DP_MOD_ID_RX);
  526. if (!da_peer)
  527. return false;
  528. is_da_bss_peer = da_peer->bss_peer;
  529. dp_peer_unref_delete(da_peer, DP_MOD_ID_RX);
  530. if (!is_da_bss_peer) {
  531. len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
  532. is_frag = qdf_nbuf_is_frag(nbuf);
  533. memset(nbuf->cb, 0x0, sizeof(nbuf->cb));
  534. /* If the source or destination peer in the isolation
  535. * list then dont forward instead push to bridge stack.
  536. */
  537. if (dp_get_peer_isolation(ta_peer) ||
  538. dp_get_peer_isolation(da_peer))
  539. return false;
  540. /* linearize the nbuf just before we send to
  541. * dp_tx_send()
  542. */
  543. if (qdf_unlikely(is_frag)) {
  544. if (qdf_nbuf_linearize(nbuf) == -ENOMEM)
  545. return false;
  546. nbuf = qdf_nbuf_unshare(nbuf);
  547. if (!nbuf) {
  548. DP_STATS_INC_PKT(ta_peer,
  549. rx.intra_bss.fail,
  550. 1,
  551. len);
  552. /* return true even though the pkt is
  553. * not forwarded. Basically skb_unshare
  554. * failed and we want to continue with
  555. * next nbuf.
  556. */
  557. tid_stats->fail_cnt[INTRABSS_DROP]++;
  558. return true;
  559. }
  560. }
  561. if (!dp_tx_send((struct cdp_soc_t *)soc,
  562. ta_peer->vdev->vdev_id, nbuf)) {
  563. DP_STATS_INC_PKT(ta_peer, rx.intra_bss.pkts, 1,
  564. len);
  565. return true;
  566. } else {
  567. DP_STATS_INC_PKT(ta_peer, rx.intra_bss.fail, 1,
  568. len);
  569. tid_stats->fail_cnt[INTRABSS_DROP]++;
  570. return false;
  571. }
  572. }
  573. }
  574. /* if it is a broadcast pkt (eg: ARP) and it is not its own
  575. * source, then clone the pkt and send the cloned pkt for
  576. * intra BSS forwarding and original pkt up the network stack
  577. * Note: how do we handle multicast pkts. do we forward
  578. * all multicast pkts as is or let a higher layer module
  579. * like igmpsnoop decide whether to forward or not with
  580. * Mcast enhancement.
  581. */
  582. else if (qdf_unlikely((qdf_nbuf_is_da_mcbc(nbuf) &&
  583. !ta_peer->bss_peer))) {
  584. if (!dp_rx_check_ndi_mdns_fwding(ta_peer, nbuf))
  585. goto end;
  586. /* If the source peer in the isolation list
  587. * then dont forward instead push to bridge stack
  588. */
  589. if (dp_get_peer_isolation(ta_peer))
  590. goto end;
  591. nbuf_copy = qdf_nbuf_copy(nbuf);
  592. if (!nbuf_copy)
  593. goto end;
  594. len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
  595. memset(nbuf_copy->cb, 0x0, sizeof(nbuf_copy->cb));
  596. /* Set cb->ftype to intrabss FWD */
  597. qdf_nbuf_set_tx_ftype(nbuf_copy, CB_FTYPE_INTRABSS_FWD);
  598. if (dp_tx_send((struct cdp_soc_t *)soc,
  599. ta_peer->vdev->vdev_id, nbuf_copy)) {
  600. DP_STATS_INC_PKT(ta_peer, rx.intra_bss.fail, 1, len);
  601. tid_stats->fail_cnt[INTRABSS_DROP]++;
  602. qdf_nbuf_free(nbuf_copy);
  603. } else {
  604. DP_STATS_INC_PKT(ta_peer, rx.intra_bss.pkts, 1, len);
  605. tid_stats->intrabss_cnt++;
  606. }
  607. }
  608. end:
  609. /* return false as we have to still send the original pkt
  610. * up the stack
  611. */
  612. return false;
  613. }
  614. #endif /* QCA_HOST_MODE_WIFI_DISABLED */
  615. #ifdef MESH_MODE_SUPPORT
  616. /**
  617. * dp_rx_fill_mesh_stats() - Fills the mesh per packet receive stats
  618. *
  619. * @vdev: DP Virtual device handle
  620. * @nbuf: Buffer pointer
  621. * @rx_tlv_hdr: start of rx tlv header
  622. * @peer: pointer to peer
  623. *
  624. * This function allocated memory for mesh receive stats and fill the
  625. * required stats. Stores the memory address in skb cb.
  626. *
  627. * Return: void
  628. */
  629. void dp_rx_fill_mesh_stats(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
  630. uint8_t *rx_tlv_hdr, struct dp_peer *peer)
  631. {
  632. struct mesh_recv_hdr_s *rx_info = NULL;
  633. uint32_t pkt_type;
  634. uint32_t nss;
  635. uint32_t rate_mcs;
  636. uint32_t bw;
  637. uint8_t primary_chan_num;
  638. uint32_t center_chan_freq;
  639. struct dp_soc *soc;
  640. /* fill recv mesh stats */
  641. rx_info = qdf_mem_malloc(sizeof(struct mesh_recv_hdr_s));
  642. /* upper layers are resposible to free this memory */
  643. if (!rx_info) {
  644. dp_rx_err("%pK: Memory allocation failed for mesh rx stats",
  645. vdev->pdev->soc);
  646. DP_STATS_INC(vdev->pdev, mesh_mem_alloc, 1);
  647. return;
  648. }
  649. rx_info->rs_flags = MESH_RXHDR_VER1;
  650. if (qdf_nbuf_is_rx_chfrag_start(nbuf))
  651. rx_info->rs_flags |= MESH_RX_FIRST_MSDU;
  652. if (qdf_nbuf_is_rx_chfrag_end(nbuf))
  653. rx_info->rs_flags |= MESH_RX_LAST_MSDU;
  654. if (hal_rx_attn_msdu_get_is_decrypted(rx_tlv_hdr)) {
  655. rx_info->rs_flags |= MESH_RX_DECRYPTED;
  656. rx_info->rs_keyix = hal_rx_msdu_get_keyid(rx_tlv_hdr);
  657. if (vdev->osif_get_key)
  658. vdev->osif_get_key(vdev->osif_vdev,
  659. &rx_info->rs_decryptkey[0],
  660. &peer->mac_addr.raw[0],
  661. rx_info->rs_keyix);
  662. }
  663. rx_info->rs_snr = peer->stats.rx.snr;
  664. rx_info->rs_rssi = rx_info->rs_snr + DP_DEFAULT_NOISEFLOOR;
  665. soc = vdev->pdev->soc;
  666. primary_chan_num = hal_rx_msdu_start_get_freq(rx_tlv_hdr);
  667. center_chan_freq = hal_rx_msdu_start_get_freq(rx_tlv_hdr) >> 16;
  668. if (soc->cdp_soc.ol_ops && soc->cdp_soc.ol_ops->freq_to_band) {
  669. rx_info->rs_band = soc->cdp_soc.ol_ops->freq_to_band(
  670. soc->ctrl_psoc,
  671. vdev->pdev->pdev_id,
  672. center_chan_freq);
  673. }
  674. rx_info->rs_channel = primary_chan_num;
  675. pkt_type = hal_rx_msdu_start_get_pkt_type(rx_tlv_hdr);
  676. rate_mcs = hal_rx_msdu_start_rate_mcs_get(rx_tlv_hdr);
  677. bw = hal_rx_msdu_start_bw_get(rx_tlv_hdr);
  678. nss = hal_rx_msdu_start_nss_get(vdev->pdev->soc->hal_soc, rx_tlv_hdr);
  679. rx_info->rs_ratephy1 = rate_mcs | (nss << 0x8) | (pkt_type << 16) |
  680. (bw << 24);
  681. qdf_nbuf_set_rx_fctx_type(nbuf, (void *)rx_info, CB_FTYPE_MESH_RX_INFO);
  682. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO_MED,
  683. FL("Mesh rx stats: flags %x, rssi %x, chn %x, rate %x, kix %x, snr %x"),
  684. rx_info->rs_flags,
  685. rx_info->rs_rssi,
  686. rx_info->rs_channel,
  687. rx_info->rs_ratephy1,
  688. rx_info->rs_keyix,
  689. rx_info->rs_snr);
  690. }
  691. /**
  692. * dp_rx_filter_mesh_packets() - Filters mesh unwanted packets
  693. *
  694. * @vdev: DP Virtual device handle
  695. * @nbuf: Buffer pointer
  696. * @rx_tlv_hdr: start of rx tlv header
  697. *
  698. * This checks if the received packet is matching any filter out
  699. * catogery and and drop the packet if it matches.
  700. *
  701. * Return: status(0 indicates drop, 1 indicate to no drop)
  702. */
  703. QDF_STATUS dp_rx_filter_mesh_packets(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
  704. uint8_t *rx_tlv_hdr)
  705. {
  706. union dp_align_mac_addr mac_addr;
  707. struct dp_soc *soc = vdev->pdev->soc;
  708. if (qdf_unlikely(vdev->mesh_rx_filter)) {
  709. if (vdev->mesh_rx_filter & MESH_FILTER_OUT_FROMDS)
  710. if (hal_rx_mpdu_get_fr_ds(soc->hal_soc,
  711. rx_tlv_hdr))
  712. return QDF_STATUS_SUCCESS;
  713. if (vdev->mesh_rx_filter & MESH_FILTER_OUT_TODS)
  714. if (hal_rx_mpdu_get_to_ds(soc->hal_soc,
  715. rx_tlv_hdr))
  716. return QDF_STATUS_SUCCESS;
  717. if (vdev->mesh_rx_filter & MESH_FILTER_OUT_NODS)
  718. if (!hal_rx_mpdu_get_fr_ds(soc->hal_soc,
  719. rx_tlv_hdr) &&
  720. !hal_rx_mpdu_get_to_ds(soc->hal_soc,
  721. rx_tlv_hdr))
  722. return QDF_STATUS_SUCCESS;
  723. if (vdev->mesh_rx_filter & MESH_FILTER_OUT_RA) {
  724. if (hal_rx_mpdu_get_addr1(soc->hal_soc,
  725. rx_tlv_hdr,
  726. &mac_addr.raw[0]))
  727. return QDF_STATUS_E_FAILURE;
  728. if (!qdf_mem_cmp(&mac_addr.raw[0],
  729. &vdev->mac_addr.raw[0],
  730. QDF_MAC_ADDR_SIZE))
  731. return QDF_STATUS_SUCCESS;
  732. }
  733. if (vdev->mesh_rx_filter & MESH_FILTER_OUT_TA) {
  734. if (hal_rx_mpdu_get_addr2(soc->hal_soc,
  735. rx_tlv_hdr,
  736. &mac_addr.raw[0]))
  737. return QDF_STATUS_E_FAILURE;
  738. if (!qdf_mem_cmp(&mac_addr.raw[0],
  739. &vdev->mac_addr.raw[0],
  740. QDF_MAC_ADDR_SIZE))
  741. return QDF_STATUS_SUCCESS;
  742. }
  743. }
  744. return QDF_STATUS_E_FAILURE;
  745. }
  746. #else
  747. void dp_rx_fill_mesh_stats(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
  748. uint8_t *rx_tlv_hdr, struct dp_peer *peer)
  749. {
  750. }
  751. QDF_STATUS dp_rx_filter_mesh_packets(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
  752. uint8_t *rx_tlv_hdr)
  753. {
  754. return QDF_STATUS_E_FAILURE;
  755. }
  756. #endif
  757. #ifdef FEATURE_NAC_RSSI
  758. /**
  759. * dp_rx_nac_filter(): Function to perform filtering of non-associated
  760. * clients
  761. * @pdev: DP pdev handle
  762. * @rx_pkt_hdr: Rx packet Header
  763. *
  764. * return: dp_vdev*
  765. */
  766. static
  767. struct dp_vdev *dp_rx_nac_filter(struct dp_pdev *pdev,
  768. uint8_t *rx_pkt_hdr)
  769. {
  770. struct ieee80211_frame *wh;
  771. struct dp_neighbour_peer *peer = NULL;
  772. wh = (struct ieee80211_frame *)rx_pkt_hdr;
  773. if ((wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) != IEEE80211_FC1_DIR_TODS)
  774. return NULL;
  775. qdf_spin_lock_bh(&pdev->neighbour_peer_mutex);
  776. TAILQ_FOREACH(peer, &pdev->neighbour_peers_list,
  777. neighbour_peer_list_elem) {
  778. if (qdf_mem_cmp(&peer->neighbour_peers_macaddr.raw[0],
  779. wh->i_addr2, QDF_MAC_ADDR_SIZE) == 0) {
  780. dp_rx_debug("%pK: NAC configuration matched for mac-%2x:%2x:%2x:%2x:%2x:%2x",
  781. pdev->soc,
  782. peer->neighbour_peers_macaddr.raw[0],
  783. peer->neighbour_peers_macaddr.raw[1],
  784. peer->neighbour_peers_macaddr.raw[2],
  785. peer->neighbour_peers_macaddr.raw[3],
  786. peer->neighbour_peers_macaddr.raw[4],
  787. peer->neighbour_peers_macaddr.raw[5]);
  788. qdf_spin_unlock_bh(&pdev->neighbour_peer_mutex);
  789. return pdev->monitor_vdev;
  790. }
  791. }
  792. qdf_spin_unlock_bh(&pdev->neighbour_peer_mutex);
  793. return NULL;
  794. }
  795. /**
  796. * dp_rx_process_invalid_peer(): Function to pass invalid peer list to umac
  797. * @soc: DP SOC handle
  798. * @mpdu: mpdu for which peer is invalid
  799. * @mac_id: mac_id which is one of 3 mac_ids(Assuming mac_id and
  800. * pool_id has same mapping)
  801. *
  802. * return: integer type
  803. */
  804. uint8_t dp_rx_process_invalid_peer(struct dp_soc *soc, qdf_nbuf_t mpdu,
  805. uint8_t mac_id)
  806. {
  807. struct dp_invalid_peer_msg msg;
  808. struct dp_vdev *vdev = NULL;
  809. struct dp_pdev *pdev = NULL;
  810. struct ieee80211_frame *wh;
  811. qdf_nbuf_t curr_nbuf, next_nbuf;
  812. uint8_t *rx_tlv_hdr = qdf_nbuf_data(mpdu);
  813. uint8_t *rx_pkt_hdr = hal_rx_pkt_hdr_get(rx_tlv_hdr);
  814. rx_pkt_hdr = hal_rx_pkt_hdr_get(rx_tlv_hdr);
  815. if (!HAL_IS_DECAP_FORMAT_RAW(soc->hal_soc, rx_tlv_hdr)) {
  816. dp_rx_debug("%pK: Drop decapped frames", soc);
  817. goto free;
  818. }
  819. wh = (struct ieee80211_frame *)rx_pkt_hdr;
  820. if (!DP_FRAME_IS_DATA(wh)) {
  821. dp_rx_debug("%pK: NAWDS valid only for data frames", soc);
  822. goto free;
  823. }
  824. if (qdf_nbuf_len(mpdu) < sizeof(struct ieee80211_frame)) {
  825. dp_rx_err("%pK: Invalid nbuf length", soc);
  826. goto free;
  827. }
  828. pdev = dp_get_pdev_for_lmac_id(soc, mac_id);
  829. if (!pdev || qdf_unlikely(pdev->is_pdev_down)) {
  830. dp_rx_err("%pK: PDEV %s", soc, !pdev ? "not found" : "down");
  831. goto free;
  832. }
  833. if (pdev->filter_neighbour_peers) {
  834. /* Next Hop scenario not yet handle */
  835. vdev = dp_rx_nac_filter(pdev, rx_pkt_hdr);
  836. if (vdev) {
  837. dp_rx_mon_deliver(soc, pdev->pdev_id,
  838. pdev->invalid_peer_head_msdu,
  839. pdev->invalid_peer_tail_msdu);
  840. pdev->invalid_peer_head_msdu = NULL;
  841. pdev->invalid_peer_tail_msdu = NULL;
  842. return 0;
  843. }
  844. }
  845. TAILQ_FOREACH(vdev, &pdev->vdev_list, vdev_list_elem) {
  846. if (qdf_mem_cmp(wh->i_addr1, vdev->mac_addr.raw,
  847. QDF_MAC_ADDR_SIZE) == 0) {
  848. goto out;
  849. }
  850. }
  851. if (!vdev) {
  852. dp_rx_err("%pK: VDEV not found", soc);
  853. goto free;
  854. }
  855. out:
  856. msg.wh = wh;
  857. qdf_nbuf_pull_head(mpdu, RX_PKT_TLVS_LEN);
  858. msg.nbuf = mpdu;
  859. msg.vdev_id = vdev->vdev_id;
  860. /*
  861. * NOTE: Only valid for HKv1.
  862. * If smart monitor mode is enabled on RE, we are getting invalid
  863. * peer frames with RA as STA mac of RE and the TA not matching
  864. * with any NAC list or the the BSSID.Such frames need to dropped
  865. * in order to avoid HM_WDS false addition.
  866. */
  867. if (pdev->soc->cdp_soc.ol_ops->rx_invalid_peer) {
  868. if (!soc->hw_nac_monitor_support &&
  869. pdev->filter_neighbour_peers &&
  870. vdev->opmode == wlan_op_mode_sta) {
  871. dp_rx_warn("%pK: Drop inv peer pkts with STA RA:%pm",
  872. soc, wh->i_addr1);
  873. goto free;
  874. }
  875. pdev->soc->cdp_soc.ol_ops->rx_invalid_peer(
  876. (struct cdp_ctrl_objmgr_psoc *)soc->ctrl_psoc,
  877. pdev->pdev_id, &msg);
  878. }
  879. free:
  880. /* Drop and free packet */
  881. curr_nbuf = mpdu;
  882. while (curr_nbuf) {
  883. next_nbuf = qdf_nbuf_next(curr_nbuf);
  884. qdf_nbuf_free(curr_nbuf);
  885. curr_nbuf = next_nbuf;
  886. }
  887. return 0;
  888. }
  889. /**
  890. * dp_rx_process_invalid_peer_wrapper(): Function to wrap invalid peer handler
  891. * @soc: DP SOC handle
  892. * @mpdu: mpdu for which peer is invalid
  893. * @mpdu_done: if an mpdu is completed
  894. * @mac_id: mac_id which is one of 3 mac_ids(Assuming mac_id and
  895. * pool_id has same mapping)
  896. *
  897. * return: integer type
  898. */
  899. void dp_rx_process_invalid_peer_wrapper(struct dp_soc *soc,
  900. qdf_nbuf_t mpdu, bool mpdu_done,
  901. uint8_t mac_id)
  902. {
  903. /* Only trigger the process when mpdu is completed */
  904. if (mpdu_done)
  905. dp_rx_process_invalid_peer(soc, mpdu, mac_id);
  906. }
  907. #else
  908. uint8_t dp_rx_process_invalid_peer(struct dp_soc *soc, qdf_nbuf_t mpdu,
  909. uint8_t mac_id)
  910. {
  911. qdf_nbuf_t curr_nbuf, next_nbuf;
  912. struct dp_pdev *pdev;
  913. struct dp_vdev *vdev = NULL;
  914. struct ieee80211_frame *wh;
  915. uint8_t *rx_tlv_hdr = qdf_nbuf_data(mpdu);
  916. uint8_t *rx_pkt_hdr = hal_rx_pkt_hdr_get(rx_tlv_hdr);
  917. wh = (struct ieee80211_frame *)rx_pkt_hdr;
  918. if (!DP_FRAME_IS_DATA(wh)) {
  919. QDF_TRACE_ERROR_RL(QDF_MODULE_ID_DP,
  920. "only for data frames");
  921. goto free;
  922. }
  923. if (qdf_nbuf_len(mpdu) < sizeof(struct ieee80211_frame)) {
  924. dp_rx_info_rl("%pK: Invalid nbuf length", soc);
  925. goto free;
  926. }
  927. pdev = dp_get_pdev_for_lmac_id(soc, mac_id);
  928. if (!pdev) {
  929. dp_rx_info_rl("%pK: PDEV not found", soc);
  930. goto free;
  931. }
  932. qdf_spin_lock_bh(&pdev->vdev_list_lock);
  933. DP_PDEV_ITERATE_VDEV_LIST(pdev, vdev) {
  934. if (qdf_mem_cmp(wh->i_addr1, vdev->mac_addr.raw,
  935. QDF_MAC_ADDR_SIZE) == 0) {
  936. qdf_spin_unlock_bh(&pdev->vdev_list_lock);
  937. goto out;
  938. }
  939. }
  940. qdf_spin_unlock_bh(&pdev->vdev_list_lock);
  941. if (!vdev) {
  942. dp_rx_info_rl("%pK: VDEV not found", soc);
  943. goto free;
  944. }
  945. out:
  946. if (soc->cdp_soc.ol_ops->rx_invalid_peer)
  947. soc->cdp_soc.ol_ops->rx_invalid_peer(vdev->vdev_id, wh);
  948. free:
  949. /* reset the head and tail pointers */
  950. pdev = dp_get_pdev_for_lmac_id(soc, mac_id);
  951. if (pdev) {
  952. pdev->invalid_peer_head_msdu = NULL;
  953. pdev->invalid_peer_tail_msdu = NULL;
  954. }
  955. /* Drop and free packet */
  956. curr_nbuf = mpdu;
  957. while (curr_nbuf) {
  958. next_nbuf = qdf_nbuf_next(curr_nbuf);
  959. qdf_nbuf_free(curr_nbuf);
  960. curr_nbuf = next_nbuf;
  961. }
  962. /* Reset the head and tail pointers */
  963. pdev = dp_get_pdev_for_lmac_id(soc, mac_id);
  964. if (pdev) {
  965. pdev->invalid_peer_head_msdu = NULL;
  966. pdev->invalid_peer_tail_msdu = NULL;
  967. }
  968. return 0;
  969. }
  970. void dp_rx_process_invalid_peer_wrapper(struct dp_soc *soc,
  971. qdf_nbuf_t mpdu, bool mpdu_done,
  972. uint8_t mac_id)
  973. {
  974. /* Process the nbuf */
  975. dp_rx_process_invalid_peer(soc, mpdu, mac_id);
  976. }
  977. #endif
  978. #ifndef QCA_HOST_MODE_WIFI_DISABLED
  979. #ifdef RECEIVE_OFFLOAD
  980. /**
  981. * dp_rx_print_offload_info() - Print offload info from RX TLV
  982. * @soc: dp soc handle
  983. * @rx_tlv: RX TLV for which offload information is to be printed
  984. *
  985. * Return: None
  986. */
  987. static void dp_rx_print_offload_info(struct dp_soc *soc, uint8_t *rx_tlv)
  988. {
  989. dp_verbose_debug("----------------------RX DESC LRO/GRO----------------------");
  990. dp_verbose_debug("lro_eligible 0x%x", HAL_RX_TLV_GET_LRO_ELIGIBLE(rx_tlv));
  991. dp_verbose_debug("pure_ack 0x%x", HAL_RX_TLV_GET_TCP_PURE_ACK(rx_tlv));
  992. dp_verbose_debug("chksum 0x%x", hal_rx_tlv_get_tcp_chksum(soc->hal_soc,
  993. rx_tlv));
  994. dp_verbose_debug("TCP seq num 0x%x", HAL_RX_TLV_GET_TCP_SEQ(rx_tlv));
  995. dp_verbose_debug("TCP ack num 0x%x", HAL_RX_TLV_GET_TCP_ACK(rx_tlv));
  996. dp_verbose_debug("TCP window 0x%x", HAL_RX_TLV_GET_TCP_WIN(rx_tlv));
  997. dp_verbose_debug("TCP protocol 0x%x", HAL_RX_TLV_GET_TCP_PROTO(rx_tlv));
  998. dp_verbose_debug("TCP offset 0x%x", HAL_RX_TLV_GET_TCP_OFFSET(rx_tlv));
  999. dp_verbose_debug("toeplitz 0x%x", HAL_RX_TLV_GET_FLOW_ID_TOEPLITZ(rx_tlv));
  1000. dp_verbose_debug("---------------------------------------------------------");
  1001. }
  1002. /**
  1003. * dp_rx_fill_gro_info() - Fill GRO info from RX TLV into skb->cb
  1004. * @soc: DP SOC handle
  1005. * @rx_tlv: RX TLV received for the msdu
  1006. * @msdu: msdu for which GRO info needs to be filled
  1007. * @rx_ol_pkt_cnt: counter to be incremented for GRO eligible packets
  1008. *
  1009. * Return: None
  1010. */
  1011. static
  1012. void dp_rx_fill_gro_info(struct dp_soc *soc, uint8_t *rx_tlv,
  1013. qdf_nbuf_t msdu, uint32_t *rx_ol_pkt_cnt)
  1014. {
  1015. if (!wlan_cfg_is_gro_enabled(soc->wlan_cfg_ctx))
  1016. return;
  1017. /* Filling up RX offload info only for TCP packets */
  1018. if (!HAL_RX_TLV_GET_TCP_PROTO(rx_tlv))
  1019. return;
  1020. *rx_ol_pkt_cnt = *rx_ol_pkt_cnt + 1;
  1021. QDF_NBUF_CB_RX_LRO_ELIGIBLE(msdu) =
  1022. HAL_RX_TLV_GET_LRO_ELIGIBLE(rx_tlv);
  1023. QDF_NBUF_CB_RX_TCP_PURE_ACK(msdu) =
  1024. HAL_RX_TLV_GET_TCP_PURE_ACK(rx_tlv);
  1025. QDF_NBUF_CB_RX_TCP_CHKSUM(msdu) =
  1026. hal_rx_tlv_get_tcp_chksum(soc->hal_soc,
  1027. rx_tlv);
  1028. QDF_NBUF_CB_RX_TCP_SEQ_NUM(msdu) =
  1029. HAL_RX_TLV_GET_TCP_SEQ(rx_tlv);
  1030. QDF_NBUF_CB_RX_TCP_ACK_NUM(msdu) =
  1031. HAL_RX_TLV_GET_TCP_ACK(rx_tlv);
  1032. QDF_NBUF_CB_RX_TCP_WIN(msdu) =
  1033. HAL_RX_TLV_GET_TCP_WIN(rx_tlv);
  1034. QDF_NBUF_CB_RX_TCP_PROTO(msdu) =
  1035. HAL_RX_TLV_GET_TCP_PROTO(rx_tlv);
  1036. QDF_NBUF_CB_RX_IPV6_PROTO(msdu) =
  1037. HAL_RX_TLV_GET_IPV6(rx_tlv);
  1038. QDF_NBUF_CB_RX_TCP_OFFSET(msdu) =
  1039. HAL_RX_TLV_GET_TCP_OFFSET(rx_tlv);
  1040. QDF_NBUF_CB_RX_FLOW_ID(msdu) =
  1041. HAL_RX_TLV_GET_FLOW_ID_TOEPLITZ(rx_tlv);
  1042. dp_rx_print_offload_info(soc, rx_tlv);
  1043. }
  1044. #else
  1045. static void dp_rx_fill_gro_info(struct dp_soc *soc, uint8_t *rx_tlv,
  1046. qdf_nbuf_t msdu, uint32_t *rx_ol_pkt_cnt)
  1047. {
  1048. }
  1049. #endif /* RECEIVE_OFFLOAD */
  1050. /**
  1051. * dp_rx_adjust_nbuf_len() - set appropriate msdu length in nbuf.
  1052. *
  1053. * @nbuf: pointer to msdu.
  1054. * @mpdu_len: mpdu length
  1055. *
  1056. * Return: returns true if nbuf is last msdu of mpdu else retuns false.
  1057. */
  1058. static inline bool dp_rx_adjust_nbuf_len(qdf_nbuf_t nbuf, uint16_t *mpdu_len)
  1059. {
  1060. bool last_nbuf;
  1061. if (*mpdu_len > (RX_DATA_BUFFER_SIZE - RX_PKT_TLVS_LEN)) {
  1062. qdf_nbuf_set_pktlen(nbuf, RX_DATA_BUFFER_SIZE);
  1063. last_nbuf = false;
  1064. } else {
  1065. qdf_nbuf_set_pktlen(nbuf, (*mpdu_len + RX_PKT_TLVS_LEN));
  1066. last_nbuf = true;
  1067. }
  1068. *mpdu_len -= (RX_DATA_BUFFER_SIZE - RX_PKT_TLVS_LEN);
  1069. return last_nbuf;
  1070. }
  1071. /**
  1072. * dp_rx_sg_create() - create a frag_list for MSDUs which are spread across
  1073. * multiple nbufs.
  1074. * @soc: DP SOC handle
  1075. * @nbuf: pointer to the first msdu of an amsdu.
  1076. *
  1077. * This function implements the creation of RX frag_list for cases
  1078. * where an MSDU is spread across multiple nbufs.
  1079. *
  1080. * Return: returns the head nbuf which contains complete frag_list.
  1081. */
  1082. qdf_nbuf_t dp_rx_sg_create(struct dp_soc *soc, qdf_nbuf_t nbuf)
  1083. {
  1084. qdf_nbuf_t parent, frag_list, next = NULL;
  1085. uint16_t frag_list_len = 0;
  1086. uint16_t mpdu_len;
  1087. bool last_nbuf;
  1088. /*
  1089. * Use msdu len got from REO entry descriptor instead since
  1090. * there is case the RX PKT TLV is corrupted while msdu_len
  1091. * from REO descriptor is right for non-raw RX scatter msdu.
  1092. */
  1093. mpdu_len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
  1094. /*
  1095. * this is a case where the complete msdu fits in one single nbuf.
  1096. * in this case HW sets both start and end bit and we only need to
  1097. * reset these bits for RAW mode simulator to decap the pkt
  1098. */
  1099. if (qdf_nbuf_is_rx_chfrag_start(nbuf) &&
  1100. qdf_nbuf_is_rx_chfrag_end(nbuf)) {
  1101. qdf_nbuf_set_pktlen(nbuf, mpdu_len + RX_PKT_TLVS_LEN);
  1102. qdf_nbuf_pull_head(nbuf, RX_PKT_TLVS_LEN);
  1103. return nbuf;
  1104. }
  1105. /*
  1106. * This is a case where we have multiple msdus (A-MSDU) spread across
  1107. * multiple nbufs. here we create a fraglist out of these nbufs.
  1108. *
  1109. * the moment we encounter a nbuf with continuation bit set we
  1110. * know for sure we have an MSDU which is spread across multiple
  1111. * nbufs. We loop through and reap nbufs till we reach last nbuf.
  1112. */
  1113. parent = nbuf;
  1114. frag_list = nbuf->next;
  1115. nbuf = nbuf->next;
  1116. /*
  1117. * set the start bit in the first nbuf we encounter with continuation
  1118. * bit set. This has the proper mpdu length set as it is the first
  1119. * msdu of the mpdu. this becomes the parent nbuf and the subsequent
  1120. * nbufs will form the frag_list of the parent nbuf.
  1121. */
  1122. qdf_nbuf_set_rx_chfrag_start(parent, 1);
  1123. last_nbuf = dp_rx_adjust_nbuf_len(parent, &mpdu_len);
  1124. /*
  1125. * HW issue: MSDU cont bit is set but reported MPDU length can fit
  1126. * in to single buffer
  1127. *
  1128. * Increment error stats and avoid SG list creation
  1129. */
  1130. if (last_nbuf) {
  1131. DP_STATS_INC(soc, rx.err.msdu_continuation_err, 1);
  1132. qdf_nbuf_pull_head(parent, RX_PKT_TLVS_LEN);
  1133. return parent;
  1134. }
  1135. /*
  1136. * this is where we set the length of the fragments which are
  1137. * associated to the parent nbuf. We iterate through the frag_list
  1138. * till we hit the last_nbuf of the list.
  1139. */
  1140. do {
  1141. last_nbuf = dp_rx_adjust_nbuf_len(nbuf, &mpdu_len);
  1142. qdf_nbuf_pull_head(nbuf, RX_PKT_TLVS_LEN);
  1143. frag_list_len += qdf_nbuf_len(nbuf);
  1144. if (last_nbuf) {
  1145. next = nbuf->next;
  1146. nbuf->next = NULL;
  1147. break;
  1148. }
  1149. nbuf = nbuf->next;
  1150. } while (!last_nbuf);
  1151. qdf_nbuf_set_rx_chfrag_start(nbuf, 0);
  1152. qdf_nbuf_append_ext_list(parent, frag_list, frag_list_len);
  1153. parent->next = next;
  1154. qdf_nbuf_pull_head(parent, RX_PKT_TLVS_LEN);
  1155. return parent;
  1156. }
  1157. #endif /* QCA_HOST_MODE_WIFI_DISABLED */
  1158. #ifdef QCA_PEER_EXT_STATS
  1159. /*
  1160. * dp_rx_compute_tid_delay - Computer per TID delay stats
  1161. * @peer: DP soc context
  1162. * @nbuf: NBuffer
  1163. *
  1164. * Return: Void
  1165. */
  1166. void dp_rx_compute_tid_delay(struct cdp_delay_tid_stats *stats,
  1167. qdf_nbuf_t nbuf)
  1168. {
  1169. struct cdp_delay_rx_stats *rx_delay = &stats->rx_delay;
  1170. uint32_t to_stack = qdf_nbuf_get_timedelta_ms(nbuf);
  1171. dp_hist_update_stats(&rx_delay->to_stack_delay, to_stack);
  1172. }
  1173. #endif /* QCA_PEER_EXT_STATS */
  1174. /**
  1175. * dp_rx_compute_delay() - Compute and fill in all timestamps
  1176. * to pass in correct fields
  1177. *
  1178. * @vdev: pdev handle
  1179. * @tx_desc: tx descriptor
  1180. * @tid: tid value
  1181. * Return: none
  1182. */
  1183. void dp_rx_compute_delay(struct dp_vdev *vdev, qdf_nbuf_t nbuf)
  1184. {
  1185. uint8_t ring_id = QDF_NBUF_CB_RX_CTX_ID(nbuf);
  1186. int64_t current_ts = qdf_ktime_to_ms(qdf_ktime_get());
  1187. uint32_t to_stack = qdf_nbuf_get_timedelta_ms(nbuf);
  1188. uint8_t tid = qdf_nbuf_get_tid_val(nbuf);
  1189. uint32_t interframe_delay =
  1190. (uint32_t)(current_ts - vdev->prev_rx_deliver_tstamp);
  1191. dp_update_delay_stats(vdev->pdev, to_stack, tid,
  1192. CDP_DELAY_STATS_REAP_STACK, ring_id);
  1193. /*
  1194. * Update interframe delay stats calculated at deliver_data_ol point.
  1195. * Value of vdev->prev_rx_deliver_tstamp will be 0 for 1st frame, so
  1196. * interframe delay will not be calculate correctly for 1st frame.
  1197. * On the other side, this will help in avoiding extra per packet check
  1198. * of vdev->prev_rx_deliver_tstamp.
  1199. */
  1200. dp_update_delay_stats(vdev->pdev, interframe_delay, tid,
  1201. CDP_DELAY_STATS_RX_INTERFRAME, ring_id);
  1202. vdev->prev_rx_deliver_tstamp = current_ts;
  1203. }
  1204. /**
  1205. * dp_rx_drop_nbuf_list() - drop an nbuf list
  1206. * @pdev: dp pdev reference
  1207. * @buf_list: buffer list to be dropepd
  1208. *
  1209. * Return: int (number of bufs dropped)
  1210. */
  1211. static inline int dp_rx_drop_nbuf_list(struct dp_pdev *pdev,
  1212. qdf_nbuf_t buf_list)
  1213. {
  1214. struct cdp_tid_rx_stats *stats = NULL;
  1215. uint8_t tid = 0, ring_id = 0;
  1216. int num_dropped = 0;
  1217. qdf_nbuf_t buf, next_buf;
  1218. buf = buf_list;
  1219. while (buf) {
  1220. ring_id = QDF_NBUF_CB_RX_CTX_ID(buf);
  1221. next_buf = qdf_nbuf_queue_next(buf);
  1222. tid = qdf_nbuf_get_tid_val(buf);
  1223. if (qdf_likely(pdev)) {
  1224. stats = &pdev->stats.tid_stats.tid_rx_stats[ring_id][tid];
  1225. stats->fail_cnt[INVALID_PEER_VDEV]++;
  1226. stats->delivered_to_stack--;
  1227. }
  1228. qdf_nbuf_free(buf);
  1229. buf = next_buf;
  1230. num_dropped++;
  1231. }
  1232. return num_dropped;
  1233. }
  1234. #ifdef QCA_SUPPORT_WDS_EXTENDED
  1235. /**
  1236. * dp_rx_wds_ext() - Make different lists for 4-address and 3-address frames
  1237. * @nbuf_head: skb list head
  1238. * @vdev: vdev
  1239. * @peer: peer
  1240. * @peer_id: peer id of new received frame
  1241. * @vdev_id: vdev_id of new received frame
  1242. *
  1243. * Return: true if peer_ids are different.
  1244. */
  1245. static inline bool
  1246. dp_rx_is_list_ready(qdf_nbuf_t nbuf_head,
  1247. struct dp_vdev *vdev,
  1248. struct dp_peer *peer,
  1249. uint16_t peer_id,
  1250. uint8_t vdev_id)
  1251. {
  1252. if (nbuf_head && peer && (peer->peer_id != peer_id))
  1253. return true;
  1254. return false;
  1255. }
  1256. /**
  1257. * dp_rx_deliver_to_stack_ext() - Deliver to netdev per sta
  1258. * @soc: core txrx main context
  1259. * @vdev: vdev
  1260. * @peer: peer
  1261. * @nbuf_head: skb list head
  1262. *
  1263. * Return: true if packet is delivered to netdev per STA.
  1264. */
  1265. static inline bool
  1266. dp_rx_deliver_to_stack_ext(struct dp_soc *soc, struct dp_vdev *vdev,
  1267. struct dp_peer *peer, qdf_nbuf_t nbuf_head)
  1268. {
  1269. /*
  1270. * When extended WDS is disabled, frames are sent to AP netdevice.
  1271. */
  1272. if (qdf_likely(!vdev->wds_ext_enabled))
  1273. return false;
  1274. /*
  1275. * There can be 2 cases:
  1276. * 1. Send frame to parent netdev if its not for netdev per STA
  1277. * 2. If frame is meant for netdev per STA:
  1278. * a. Send frame to appropriate netdev using registered fp.
  1279. * b. If fp is NULL, drop the frames.
  1280. */
  1281. if (!peer->wds_ext.init)
  1282. return false;
  1283. if (peer->osif_rx)
  1284. peer->osif_rx(peer->wds_ext.osif_peer, nbuf_head);
  1285. else
  1286. dp_rx_drop_nbuf_list(vdev->pdev, nbuf_head);
  1287. return true;
  1288. }
  1289. #else
  1290. static inline bool
  1291. dp_rx_is_list_ready(qdf_nbuf_t nbuf_head,
  1292. struct dp_vdev *vdev,
  1293. struct dp_peer *peer,
  1294. uint16_t peer_id,
  1295. uint8_t vdev_id)
  1296. {
  1297. if (nbuf_head && vdev && (vdev->vdev_id != vdev_id))
  1298. return true;
  1299. return false;
  1300. }
  1301. static inline bool
  1302. dp_rx_deliver_to_stack_ext(struct dp_soc *soc, struct dp_vdev *vdev,
  1303. struct dp_peer *peer, qdf_nbuf_t nbuf_head)
  1304. {
  1305. return false;
  1306. }
  1307. #endif
  1308. #ifdef PEER_CACHE_RX_PKTS
  1309. /**
  1310. * dp_rx_flush_rx_cached() - flush cached rx frames
  1311. * @peer: peer
  1312. * @drop: flag to drop frames or forward to net stack
  1313. *
  1314. * Return: None
  1315. */
  1316. void dp_rx_flush_rx_cached(struct dp_peer *peer, bool drop)
  1317. {
  1318. struct dp_peer_cached_bufq *bufqi;
  1319. struct dp_rx_cached_buf *cache_buf = NULL;
  1320. ol_txrx_rx_fp data_rx = NULL;
  1321. int num_buff_elem;
  1322. QDF_STATUS status;
  1323. if (qdf_atomic_inc_return(&peer->flush_in_progress) > 1) {
  1324. qdf_atomic_dec(&peer->flush_in_progress);
  1325. return;
  1326. }
  1327. qdf_spin_lock_bh(&peer->peer_info_lock);
  1328. if (peer->state >= OL_TXRX_PEER_STATE_CONN && peer->vdev->osif_rx)
  1329. data_rx = peer->vdev->osif_rx;
  1330. else
  1331. drop = true;
  1332. qdf_spin_unlock_bh(&peer->peer_info_lock);
  1333. bufqi = &peer->bufq_info;
  1334. qdf_spin_lock_bh(&bufqi->bufq_lock);
  1335. qdf_list_remove_front(&bufqi->cached_bufq,
  1336. (qdf_list_node_t **)&cache_buf);
  1337. while (cache_buf) {
  1338. num_buff_elem = QDF_NBUF_CB_RX_NUM_ELEMENTS_IN_LIST(
  1339. cache_buf->buf);
  1340. bufqi->entries -= num_buff_elem;
  1341. qdf_spin_unlock_bh(&bufqi->bufq_lock);
  1342. if (drop) {
  1343. bufqi->dropped = dp_rx_drop_nbuf_list(peer->vdev->pdev,
  1344. cache_buf->buf);
  1345. } else {
  1346. /* Flush the cached frames to OSIF DEV */
  1347. status = data_rx(peer->vdev->osif_vdev, cache_buf->buf);
  1348. if (status != QDF_STATUS_SUCCESS)
  1349. bufqi->dropped = dp_rx_drop_nbuf_list(
  1350. peer->vdev->pdev,
  1351. cache_buf->buf);
  1352. }
  1353. qdf_mem_free(cache_buf);
  1354. cache_buf = NULL;
  1355. qdf_spin_lock_bh(&bufqi->bufq_lock);
  1356. qdf_list_remove_front(&bufqi->cached_bufq,
  1357. (qdf_list_node_t **)&cache_buf);
  1358. }
  1359. qdf_spin_unlock_bh(&bufqi->bufq_lock);
  1360. qdf_atomic_dec(&peer->flush_in_progress);
  1361. }
  1362. /**
  1363. * dp_rx_enqueue_rx() - cache rx frames
  1364. * @peer: peer
  1365. * @rx_buf_list: cache buffer list
  1366. *
  1367. * Return: None
  1368. */
  1369. static QDF_STATUS
  1370. dp_rx_enqueue_rx(struct dp_peer *peer, qdf_nbuf_t rx_buf_list)
  1371. {
  1372. struct dp_rx_cached_buf *cache_buf;
  1373. struct dp_peer_cached_bufq *bufqi = &peer->bufq_info;
  1374. int num_buff_elem;
  1375. dp_debug_rl("bufq->curr %d bufq->drops %d", bufqi->entries,
  1376. bufqi->dropped);
  1377. if (!peer->valid) {
  1378. bufqi->dropped = dp_rx_drop_nbuf_list(peer->vdev->pdev,
  1379. rx_buf_list);
  1380. return QDF_STATUS_E_INVAL;
  1381. }
  1382. qdf_spin_lock_bh(&bufqi->bufq_lock);
  1383. if (bufqi->entries >= bufqi->thresh) {
  1384. bufqi->dropped = dp_rx_drop_nbuf_list(peer->vdev->pdev,
  1385. rx_buf_list);
  1386. qdf_spin_unlock_bh(&bufqi->bufq_lock);
  1387. return QDF_STATUS_E_RESOURCES;
  1388. }
  1389. qdf_spin_unlock_bh(&bufqi->bufq_lock);
  1390. num_buff_elem = QDF_NBUF_CB_RX_NUM_ELEMENTS_IN_LIST(rx_buf_list);
  1391. cache_buf = qdf_mem_malloc_atomic(sizeof(*cache_buf));
  1392. if (!cache_buf) {
  1393. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1394. "Failed to allocate buf to cache rx frames");
  1395. bufqi->dropped = dp_rx_drop_nbuf_list(peer->vdev->pdev,
  1396. rx_buf_list);
  1397. return QDF_STATUS_E_NOMEM;
  1398. }
  1399. cache_buf->buf = rx_buf_list;
  1400. qdf_spin_lock_bh(&bufqi->bufq_lock);
  1401. qdf_list_insert_back(&bufqi->cached_bufq,
  1402. &cache_buf->node);
  1403. bufqi->entries += num_buff_elem;
  1404. qdf_spin_unlock_bh(&bufqi->bufq_lock);
  1405. return QDF_STATUS_SUCCESS;
  1406. }
  1407. static inline
  1408. bool dp_rx_is_peer_cache_bufq_supported(void)
  1409. {
  1410. return true;
  1411. }
  1412. #else
  1413. static inline
  1414. bool dp_rx_is_peer_cache_bufq_supported(void)
  1415. {
  1416. return false;
  1417. }
  1418. static inline QDF_STATUS
  1419. dp_rx_enqueue_rx(struct dp_peer *peer, qdf_nbuf_t rx_buf_list)
  1420. {
  1421. return QDF_STATUS_SUCCESS;
  1422. }
  1423. #endif
  1424. #ifndef DELIVERY_TO_STACK_STATUS_CHECK
  1425. /**
  1426. * dp_rx_check_delivery_to_stack() - Deliver pkts to network
  1427. * using the appropriate call back functions.
  1428. * @soc: soc
  1429. * @vdev: vdev
  1430. * @peer: peer
  1431. * @nbuf_head: skb list head
  1432. * @nbuf_tail: skb list tail
  1433. *
  1434. * Return: None
  1435. */
  1436. static void dp_rx_check_delivery_to_stack(struct dp_soc *soc,
  1437. struct dp_vdev *vdev,
  1438. struct dp_peer *peer,
  1439. qdf_nbuf_t nbuf_head)
  1440. {
  1441. if (qdf_unlikely(dp_rx_deliver_to_stack_ext(soc, vdev,
  1442. peer, nbuf_head)))
  1443. return;
  1444. /* Function pointer initialized only when FISA is enabled */
  1445. if (vdev->osif_fisa_rx)
  1446. /* on failure send it via regular path */
  1447. vdev->osif_fisa_rx(soc, vdev, nbuf_head);
  1448. else
  1449. vdev->osif_rx(vdev->osif_vdev, nbuf_head);
  1450. }
  1451. #else
  1452. /**
  1453. * dp_rx_check_delivery_to_stack() - Deliver pkts to network
  1454. * using the appropriate call back functions.
  1455. * @soc: soc
  1456. * @vdev: vdev
  1457. * @peer: peer
  1458. * @nbuf_head: skb list head
  1459. * @nbuf_tail: skb list tail
  1460. *
  1461. * Check the return status of the call back function and drop
  1462. * the packets if the return status indicates a failure.
  1463. *
  1464. * Return: None
  1465. */
  1466. static void dp_rx_check_delivery_to_stack(struct dp_soc *soc,
  1467. struct dp_vdev *vdev,
  1468. struct dp_peer *peer,
  1469. qdf_nbuf_t nbuf_head)
  1470. {
  1471. int num_nbuf = 0;
  1472. QDF_STATUS ret_val = QDF_STATUS_E_FAILURE;
  1473. /* Function pointer initialized only when FISA is enabled */
  1474. if (vdev->osif_fisa_rx)
  1475. /* on failure send it via regular path */
  1476. ret_val = vdev->osif_fisa_rx(soc, vdev, nbuf_head);
  1477. else if (vdev->osif_rx)
  1478. ret_val = vdev->osif_rx(vdev->osif_vdev, nbuf_head);
  1479. if (!QDF_IS_STATUS_SUCCESS(ret_val)) {
  1480. num_nbuf = dp_rx_drop_nbuf_list(vdev->pdev, nbuf_head);
  1481. DP_STATS_INC(soc, rx.err.rejected, num_nbuf);
  1482. if (peer)
  1483. DP_STATS_DEC(peer, rx.to_stack.num, num_nbuf);
  1484. }
  1485. }
  1486. #endif /* ifdef DELIVERY_TO_STACK_STATUS_CHECK */
  1487. void dp_rx_deliver_to_stack(struct dp_soc *soc,
  1488. struct dp_vdev *vdev,
  1489. struct dp_peer *peer,
  1490. qdf_nbuf_t nbuf_head,
  1491. qdf_nbuf_t nbuf_tail)
  1492. {
  1493. int num_nbuf = 0;
  1494. if (qdf_unlikely(!vdev || vdev->delete.pending)) {
  1495. num_nbuf = dp_rx_drop_nbuf_list(NULL, nbuf_head);
  1496. /*
  1497. * This is a special case where vdev is invalid,
  1498. * so we cannot know the pdev to which this packet
  1499. * belonged. Hence we update the soc rx error stats.
  1500. */
  1501. DP_STATS_INC(soc, rx.err.invalid_vdev, num_nbuf);
  1502. return;
  1503. }
  1504. /*
  1505. * highly unlikely to have a vdev without a registered rx
  1506. * callback function. if so let us free the nbuf_list.
  1507. */
  1508. if (qdf_unlikely(!vdev->osif_rx)) {
  1509. if (peer && dp_rx_is_peer_cache_bufq_supported()) {
  1510. dp_rx_enqueue_rx(peer, nbuf_head);
  1511. } else {
  1512. num_nbuf = dp_rx_drop_nbuf_list(vdev->pdev,
  1513. nbuf_head);
  1514. DP_STATS_DEC(peer, rx.to_stack.num, num_nbuf);
  1515. }
  1516. return;
  1517. }
  1518. if (qdf_unlikely(vdev->rx_decap_type == htt_cmn_pkt_type_raw) ||
  1519. (vdev->rx_decap_type == htt_cmn_pkt_type_native_wifi)) {
  1520. vdev->osif_rsim_rx_decap(vdev->osif_vdev, &nbuf_head,
  1521. &nbuf_tail, peer->mac_addr.raw);
  1522. }
  1523. dp_rx_check_delivery_to_stack(soc, vdev, peer, nbuf_head);
  1524. }
  1525. #ifndef QCA_HOST_MODE_WIFI_DISABLED
  1526. /**
  1527. * dp_rx_cksum_offload() - set the nbuf checksum as defined by hardware.
  1528. * @nbuf: pointer to the first msdu of an amsdu.
  1529. * @rx_tlv_hdr: pointer to the start of RX TLV headers.
  1530. *
  1531. * The ipsumed field of the skb is set based on whether HW validated the
  1532. * IP/TCP/UDP checksum.
  1533. *
  1534. * Return: void
  1535. */
  1536. static inline void dp_rx_cksum_offload(struct dp_pdev *pdev,
  1537. qdf_nbuf_t nbuf,
  1538. uint8_t *rx_tlv_hdr)
  1539. {
  1540. qdf_nbuf_rx_cksum_t cksum = {0};
  1541. bool ip_csum_err = hal_rx_attn_ip_cksum_fail_get(rx_tlv_hdr);
  1542. bool tcp_udp_csum_er = hal_rx_attn_tcp_udp_cksum_fail_get(rx_tlv_hdr);
  1543. if (qdf_likely(!ip_csum_err && !tcp_udp_csum_er)) {
  1544. cksum.l4_result = QDF_NBUF_RX_CKSUM_TCP_UDP_UNNECESSARY;
  1545. qdf_nbuf_set_rx_cksum(nbuf, &cksum);
  1546. } else {
  1547. DP_STATS_INCC(pdev, err.ip_csum_err, 1, ip_csum_err);
  1548. DP_STATS_INCC(pdev, err.tcp_udp_csum_err, 1, tcp_udp_csum_er);
  1549. }
  1550. }
  1551. #ifdef VDEV_PEER_PROTOCOL_COUNT
  1552. #define dp_rx_msdu_stats_update_prot_cnts(vdev_hdl, nbuf, peer) \
  1553. { \
  1554. qdf_nbuf_t nbuf_local; \
  1555. struct dp_peer *peer_local; \
  1556. struct dp_vdev *vdev_local = vdev_hdl; \
  1557. do { \
  1558. if (qdf_likely(!((vdev_local)->peer_protocol_count_track))) \
  1559. break; \
  1560. nbuf_local = nbuf; \
  1561. peer_local = peer; \
  1562. if (qdf_unlikely(qdf_nbuf_is_frag((nbuf_local)))) \
  1563. break; \
  1564. else if (qdf_unlikely(qdf_nbuf_is_raw_frame((nbuf_local)))) \
  1565. break; \
  1566. dp_vdev_peer_stats_update_protocol_cnt((vdev_local), \
  1567. (nbuf_local), \
  1568. (peer_local), 0, 1); \
  1569. } while (0); \
  1570. }
  1571. #else
  1572. #define dp_rx_msdu_stats_update_prot_cnts(vdev_hdl, nbuf, peer)
  1573. #endif
  1574. /**
  1575. * dp_rx_msdu_stats_update() - update per msdu stats.
  1576. * @soc: core txrx main context
  1577. * @nbuf: pointer to the first msdu of an amsdu.
  1578. * @rx_tlv_hdr: pointer to the start of RX TLV headers.
  1579. * @peer: pointer to the peer object.
  1580. * @ring_id: reo dest ring number on which pkt is reaped.
  1581. * @tid_stats: per tid rx stats.
  1582. *
  1583. * update all the per msdu stats for that nbuf.
  1584. * Return: void
  1585. */
  1586. static void dp_rx_msdu_stats_update(struct dp_soc *soc,
  1587. qdf_nbuf_t nbuf,
  1588. uint8_t *rx_tlv_hdr,
  1589. struct dp_peer *peer,
  1590. uint8_t ring_id,
  1591. struct cdp_tid_rx_stats *tid_stats)
  1592. {
  1593. bool is_ampdu, is_not_amsdu;
  1594. uint32_t sgi, mcs, tid, nss, bw, reception_type, pkt_type;
  1595. struct dp_vdev *vdev = peer->vdev;
  1596. qdf_ether_header_t *eh;
  1597. uint16_t msdu_len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
  1598. dp_rx_msdu_stats_update_prot_cnts(vdev, nbuf, peer);
  1599. is_not_amsdu = qdf_nbuf_is_rx_chfrag_start(nbuf) &
  1600. qdf_nbuf_is_rx_chfrag_end(nbuf);
  1601. DP_STATS_INC_PKT(peer, rx.rcvd_reo[ring_id], 1, msdu_len);
  1602. DP_STATS_INCC(peer, rx.non_amsdu_cnt, 1, is_not_amsdu);
  1603. DP_STATS_INCC(peer, rx.amsdu_cnt, 1, !is_not_amsdu);
  1604. DP_STATS_INCC(peer, rx.rx_retries, 1, qdf_nbuf_is_rx_retry_flag(nbuf));
  1605. tid_stats->msdu_cnt++;
  1606. if (qdf_unlikely(qdf_nbuf_is_da_mcbc(nbuf) &&
  1607. (vdev->rx_decap_type == htt_cmn_pkt_type_ethernet))) {
  1608. eh = (qdf_ether_header_t *)qdf_nbuf_data(nbuf);
  1609. DP_STATS_INC_PKT(peer, rx.multicast, 1, msdu_len);
  1610. tid_stats->mcast_msdu_cnt++;
  1611. if (QDF_IS_ADDR_BROADCAST(eh->ether_dhost)) {
  1612. DP_STATS_INC_PKT(peer, rx.bcast, 1, msdu_len);
  1613. tid_stats->bcast_msdu_cnt++;
  1614. }
  1615. }
  1616. /*
  1617. * currently we can return from here as we have similar stats
  1618. * updated at per ppdu level instead of msdu level
  1619. */
  1620. if (!soc->process_rx_status)
  1621. return;
  1622. is_ampdu = hal_rx_mpdu_info_ampdu_flag_get(rx_tlv_hdr);
  1623. DP_STATS_INCC(peer, rx.ampdu_cnt, 1, is_ampdu);
  1624. DP_STATS_INCC(peer, rx.non_ampdu_cnt, 1, !(is_ampdu));
  1625. sgi = hal_rx_msdu_start_sgi_get(rx_tlv_hdr);
  1626. mcs = hal_rx_msdu_start_rate_mcs_get(rx_tlv_hdr);
  1627. tid = qdf_nbuf_get_tid_val(nbuf);
  1628. bw = hal_rx_msdu_start_bw_get(rx_tlv_hdr);
  1629. reception_type = hal_rx_msdu_start_reception_type_get(soc->hal_soc,
  1630. rx_tlv_hdr);
  1631. nss = hal_rx_msdu_start_nss_get(soc->hal_soc, rx_tlv_hdr);
  1632. pkt_type = hal_rx_msdu_start_get_pkt_type(rx_tlv_hdr);
  1633. DP_STATS_INCC(peer, rx.rx_mpdu_cnt[mcs], 1,
  1634. ((mcs < MAX_MCS) && QDF_NBUF_CB_RX_CHFRAG_START(nbuf)));
  1635. DP_STATS_INCC(peer, rx.rx_mpdu_cnt[MAX_MCS - 1], 1,
  1636. ((mcs >= MAX_MCS) && QDF_NBUF_CB_RX_CHFRAG_START(nbuf)));
  1637. DP_STATS_INC(peer, rx.bw[bw], 1);
  1638. /*
  1639. * only if nss > 0 and pkt_type is 11N/AC/AX,
  1640. * then increase index [nss - 1] in array counter.
  1641. */
  1642. if (nss > 0 && (pkt_type == DOT11_N ||
  1643. pkt_type == DOT11_AC ||
  1644. pkt_type == DOT11_AX))
  1645. DP_STATS_INC(peer, rx.nss[nss - 1], 1);
  1646. DP_STATS_INC(peer, rx.sgi_count[sgi], 1);
  1647. DP_STATS_INCC(peer, rx.err.mic_err, 1,
  1648. hal_rx_mpdu_end_mic_err_get(rx_tlv_hdr));
  1649. DP_STATS_INCC(peer, rx.err.decrypt_err, 1,
  1650. hal_rx_mpdu_end_decrypt_err_get(rx_tlv_hdr));
  1651. DP_STATS_INC(peer, rx.wme_ac_type[TID_TO_WME_AC(tid)], 1);
  1652. DP_STATS_INC(peer, rx.reception_type[reception_type], 1);
  1653. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[MAX_MCS - 1], 1,
  1654. ((mcs >= MAX_MCS_11A) && (pkt_type == DOT11_A)));
  1655. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[mcs], 1,
  1656. ((mcs <= MAX_MCS_11A) && (pkt_type == DOT11_A)));
  1657. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[MAX_MCS - 1], 1,
  1658. ((mcs >= MAX_MCS_11B) && (pkt_type == DOT11_B)));
  1659. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[mcs], 1,
  1660. ((mcs <= MAX_MCS_11B) && (pkt_type == DOT11_B)));
  1661. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[MAX_MCS - 1], 1,
  1662. ((mcs >= MAX_MCS_11A) && (pkt_type == DOT11_N)));
  1663. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[mcs], 1,
  1664. ((mcs <= MAX_MCS_11A) && (pkt_type == DOT11_N)));
  1665. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[MAX_MCS - 1], 1,
  1666. ((mcs >= MAX_MCS_11AC) && (pkt_type == DOT11_AC)));
  1667. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[mcs], 1,
  1668. ((mcs <= MAX_MCS_11AC) && (pkt_type == DOT11_AC)));
  1669. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[MAX_MCS - 1], 1,
  1670. ((mcs >= MAX_MCS) && (pkt_type == DOT11_AX)));
  1671. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[mcs], 1,
  1672. ((mcs < MAX_MCS) && (pkt_type == DOT11_AX)));
  1673. if ((soc->process_rx_status) &&
  1674. hal_rx_attn_first_mpdu_get(rx_tlv_hdr)) {
  1675. #if defined(FEATURE_PERPKT_INFO) && WDI_EVENT_ENABLE
  1676. if (!vdev->pdev)
  1677. return;
  1678. dp_wdi_event_handler(WDI_EVENT_UPDATE_DP_STATS, vdev->pdev->soc,
  1679. &peer->stats, peer->peer_id,
  1680. UPDATE_PEER_STATS,
  1681. vdev->pdev->pdev_id);
  1682. #endif
  1683. }
  1684. }
  1685. static inline bool is_sa_da_idx_valid(struct dp_soc *soc,
  1686. uint8_t *rx_tlv_hdr,
  1687. qdf_nbuf_t nbuf,
  1688. struct hal_rx_msdu_metadata msdu_info)
  1689. {
  1690. if ((qdf_nbuf_is_sa_valid(nbuf) &&
  1691. (msdu_info.sa_idx > wlan_cfg_get_max_ast_idx(soc->wlan_cfg_ctx))) ||
  1692. (!qdf_nbuf_is_da_mcbc(nbuf) &&
  1693. qdf_nbuf_is_da_valid(nbuf) &&
  1694. (msdu_info.da_idx > wlan_cfg_get_max_ast_idx(soc->wlan_cfg_ctx))))
  1695. return false;
  1696. return true;
  1697. }
  1698. #ifndef WDS_VENDOR_EXTENSION
  1699. int dp_wds_rx_policy_check(uint8_t *rx_tlv_hdr,
  1700. struct dp_vdev *vdev,
  1701. struct dp_peer *peer)
  1702. {
  1703. return 1;
  1704. }
  1705. #endif
  1706. #ifdef RX_DESC_DEBUG_CHECK
  1707. /**
  1708. * dp_rx_desc_nbuf_sanity_check - Add sanity check to catch REO rx_desc paddr
  1709. * corruption
  1710. *
  1711. * @ring_desc: REO ring descriptor
  1712. * @rx_desc: Rx descriptor
  1713. *
  1714. * Return: NONE
  1715. */
  1716. static inline
  1717. QDF_STATUS dp_rx_desc_nbuf_sanity_check(hal_ring_desc_t ring_desc,
  1718. struct dp_rx_desc *rx_desc)
  1719. {
  1720. struct hal_buf_info hbi;
  1721. hal_rx_reo_buf_paddr_get(ring_desc, &hbi);
  1722. /* Sanity check for possible buffer paddr corruption */
  1723. if (dp_rx_desc_paddr_sanity_check(rx_desc, (&hbi)->paddr))
  1724. return QDF_STATUS_SUCCESS;
  1725. return QDF_STATUS_E_FAILURE;
  1726. }
  1727. /**
  1728. * dp_rx_desc_nbuf_len_sanity_check - Add sanity check to catch Rx buffer
  1729. * out of bound access from H.W
  1730. *
  1731. * @soc: DP soc
  1732. * @pkt_len: Packet length received from H.W
  1733. *
  1734. * Return: NONE
  1735. */
  1736. static inline void
  1737. dp_rx_desc_nbuf_len_sanity_check(struct dp_soc *soc,
  1738. uint32_t pkt_len)
  1739. {
  1740. struct rx_desc_pool *rx_desc_pool;
  1741. rx_desc_pool = &soc->rx_desc_buf[0];
  1742. qdf_assert_always(pkt_len <= rx_desc_pool->buf_size);
  1743. }
  1744. #else
  1745. static inline
  1746. QDF_STATUS dp_rx_desc_nbuf_sanity_check(hal_ring_desc_t ring_desc,
  1747. struct dp_rx_desc *rx_desc)
  1748. {
  1749. return QDF_STATUS_SUCCESS;
  1750. }
  1751. static inline void
  1752. dp_rx_desc_nbuf_len_sanity_check(struct dp_soc *soc, uint32_t pkt_len) { }
  1753. #endif
  1754. #ifdef WLAN_FEATURE_RX_SOFTIRQ_TIME_LIMIT
  1755. static inline
  1756. bool dp_rx_reap_loop_pkt_limit_hit(struct dp_soc *soc, int num_reaped)
  1757. {
  1758. bool limit_hit = false;
  1759. struct wlan_cfg_dp_soc_ctxt *cfg = soc->wlan_cfg_ctx;
  1760. limit_hit =
  1761. (num_reaped >= cfg->rx_reap_loop_pkt_limit) ? true : false;
  1762. if (limit_hit)
  1763. DP_STATS_INC(soc, rx.reap_loop_pkt_limit_hit, 1)
  1764. return limit_hit;
  1765. }
  1766. static inline bool dp_rx_enable_eol_data_check(struct dp_soc *soc)
  1767. {
  1768. return soc->wlan_cfg_ctx->rx_enable_eol_data_check;
  1769. }
  1770. #else
  1771. static inline
  1772. bool dp_rx_reap_loop_pkt_limit_hit(struct dp_soc *soc, int num_reaped)
  1773. {
  1774. return false;
  1775. }
  1776. static inline bool dp_rx_enable_eol_data_check(struct dp_soc *soc)
  1777. {
  1778. return false;
  1779. }
  1780. #endif /* WLAN_FEATURE_RX_SOFTIRQ_TIME_LIMIT */
  1781. #ifdef DP_RX_PKT_NO_PEER_DELIVER
  1782. /**
  1783. * dp_rx_deliver_to_stack_no_peer() - try deliver rx data even if
  1784. * no corresbonding peer found
  1785. * @soc: core txrx main context
  1786. * @nbuf: pkt skb pointer
  1787. *
  1788. * This function will try to deliver some RX special frames to stack
  1789. * even there is no peer matched found. for instance, LFR case, some
  1790. * eapol data will be sent to host before peer_map done.
  1791. *
  1792. * Return: None
  1793. */
  1794. static
  1795. void dp_rx_deliver_to_stack_no_peer(struct dp_soc *soc, qdf_nbuf_t nbuf)
  1796. {
  1797. uint16_t peer_id;
  1798. uint8_t vdev_id;
  1799. struct dp_vdev *vdev = NULL;
  1800. uint32_t l2_hdr_offset = 0;
  1801. uint16_t msdu_len = 0;
  1802. uint32_t pkt_len = 0;
  1803. uint8_t *rx_tlv_hdr;
  1804. uint32_t frame_mask = FRAME_MASK_IPV4_ARP | FRAME_MASK_IPV4_DHCP |
  1805. FRAME_MASK_IPV4_EAPOL | FRAME_MASK_IPV6_DHCP;
  1806. peer_id = QDF_NBUF_CB_RX_PEER_ID(nbuf);
  1807. if (peer_id > soc->max_peers)
  1808. goto deliver_fail;
  1809. vdev_id = QDF_NBUF_CB_RX_VDEV_ID(nbuf);
  1810. vdev = dp_vdev_get_ref_by_id(soc, vdev_id, DP_MOD_ID_RX);
  1811. if (!vdev || vdev->delete.pending || !vdev->osif_rx)
  1812. goto deliver_fail;
  1813. if (qdf_unlikely(qdf_nbuf_is_frag(nbuf)))
  1814. goto deliver_fail;
  1815. rx_tlv_hdr = qdf_nbuf_data(nbuf);
  1816. l2_hdr_offset =
  1817. hal_rx_msdu_end_l3_hdr_padding_get(soc->hal_soc, rx_tlv_hdr);
  1818. msdu_len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
  1819. pkt_len = msdu_len + l2_hdr_offset + RX_PKT_TLVS_LEN;
  1820. QDF_NBUF_CB_RX_NUM_ELEMENTS_IN_LIST(nbuf) = 1;
  1821. qdf_nbuf_set_pktlen(nbuf, pkt_len);
  1822. qdf_nbuf_pull_head(nbuf,
  1823. RX_PKT_TLVS_LEN +
  1824. l2_hdr_offset);
  1825. if (dp_rx_is_special_frame(nbuf, frame_mask)) {
  1826. qdf_nbuf_set_exc_frame(nbuf, 1);
  1827. if (QDF_STATUS_SUCCESS !=
  1828. vdev->osif_rx(vdev->osif_vdev, nbuf))
  1829. goto deliver_fail;
  1830. DP_STATS_INC(soc, rx.err.pkt_delivered_no_peer, 1);
  1831. dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_RX);
  1832. return;
  1833. }
  1834. deliver_fail:
  1835. DP_STATS_INC_PKT(soc, rx.err.rx_invalid_peer, 1,
  1836. QDF_NBUF_CB_RX_PKT_LEN(nbuf));
  1837. qdf_nbuf_free(nbuf);
  1838. if (vdev)
  1839. dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_RX);
  1840. }
  1841. #else
  1842. static inline
  1843. void dp_rx_deliver_to_stack_no_peer(struct dp_soc *soc, qdf_nbuf_t nbuf)
  1844. {
  1845. DP_STATS_INC_PKT(soc, rx.err.rx_invalid_peer, 1,
  1846. QDF_NBUF_CB_RX_PKT_LEN(nbuf));
  1847. qdf_nbuf_free(nbuf);
  1848. }
  1849. #endif
  1850. /**
  1851. * dp_rx_srng_get_num_pending() - get number of pending entries
  1852. * @hal_soc: hal soc opaque pointer
  1853. * @hal_ring: opaque pointer to the HAL Rx Ring
  1854. * @num_entries: number of entries in the hal_ring.
  1855. * @near_full: pointer to a boolean. This is set if ring is near full.
  1856. *
  1857. * The function returns the number of entries in a destination ring which are
  1858. * yet to be reaped. The function also checks if the ring is near full.
  1859. * If more than half of the ring needs to be reaped, the ring is considered
  1860. * approaching full.
  1861. * The function useses hal_srng_dst_num_valid_locked to get the number of valid
  1862. * entries. It should not be called within a SRNG lock. HW pointer value is
  1863. * synced into cached_hp.
  1864. *
  1865. * Return: Number of pending entries if any
  1866. */
  1867. static
  1868. uint32_t dp_rx_srng_get_num_pending(hal_soc_handle_t hal_soc,
  1869. hal_ring_handle_t hal_ring_hdl,
  1870. uint32_t num_entries,
  1871. bool *near_full)
  1872. {
  1873. uint32_t num_pending = 0;
  1874. num_pending = hal_srng_dst_num_valid_locked(hal_soc,
  1875. hal_ring_hdl,
  1876. true);
  1877. if (num_entries && (num_pending >= num_entries >> 1))
  1878. *near_full = true;
  1879. else
  1880. *near_full = false;
  1881. return num_pending;
  1882. }
  1883. #endif /* QCA_HOST_MODE_WIFI_DISABLED */
  1884. #ifdef WLAN_SUPPORT_RX_FISA
  1885. void dp_rx_skip_tlvs(qdf_nbuf_t nbuf, uint32_t l3_padding)
  1886. {
  1887. QDF_NBUF_CB_RX_PACKET_L3_HDR_PAD(nbuf) = l3_padding;
  1888. qdf_nbuf_pull_head(nbuf, l3_padding + RX_PKT_TLVS_LEN);
  1889. }
  1890. /**
  1891. * dp_rx_set_hdr_pad() - set l3 padding in nbuf cb
  1892. * @nbuf: pkt skb pointer
  1893. * @l3_padding: l3 padding
  1894. *
  1895. * Return: None
  1896. */
  1897. static inline
  1898. void dp_rx_set_hdr_pad(qdf_nbuf_t nbuf, uint32_t l3_padding)
  1899. {
  1900. QDF_NBUF_CB_RX_PACKET_L3_HDR_PAD(nbuf) = l3_padding;
  1901. }
  1902. #else
  1903. void dp_rx_skip_tlvs(qdf_nbuf_t nbuf, uint32_t l3_padding)
  1904. {
  1905. qdf_nbuf_pull_head(nbuf, l3_padding + RX_PKT_TLVS_LEN);
  1906. }
  1907. static inline
  1908. void dp_rx_set_hdr_pad(qdf_nbuf_t nbuf, uint32_t l3_padding)
  1909. {
  1910. }
  1911. #endif
  1912. #ifndef QCA_HOST_MODE_WIFI_DISABLED
  1913. #ifdef DP_RX_DROP_RAW_FRM
  1914. /**
  1915. * dp_rx_is_raw_frame_dropped() - if raw frame nbuf, free and drop
  1916. * @nbuf: pkt skb pointer
  1917. *
  1918. * Return: true - raw frame, dropped
  1919. * false - not raw frame, do nothing
  1920. */
  1921. static inline
  1922. bool dp_rx_is_raw_frame_dropped(qdf_nbuf_t nbuf)
  1923. {
  1924. if (qdf_nbuf_is_raw_frame(nbuf)) {
  1925. qdf_nbuf_free(nbuf);
  1926. return true;
  1927. }
  1928. return false;
  1929. }
  1930. #else
  1931. static inline
  1932. bool dp_rx_is_raw_frame_dropped(qdf_nbuf_t nbuf)
  1933. {
  1934. return false;
  1935. }
  1936. #endif
  1937. #ifdef WLAN_FEATURE_DP_RX_RING_HISTORY
  1938. /**
  1939. * dp_rx_ring_record_entry() - Record an entry into the rx ring history.
  1940. * @soc: Datapath soc structure
  1941. * @ring_num: REO ring number
  1942. * @ring_desc: REO ring descriptor
  1943. *
  1944. * Returns: None
  1945. */
  1946. static inline void
  1947. dp_rx_ring_record_entry(struct dp_soc *soc, uint8_t ring_num,
  1948. hal_ring_desc_t ring_desc)
  1949. {
  1950. struct dp_buf_info_record *record;
  1951. uint8_t rbm;
  1952. struct hal_buf_info hbi;
  1953. uint32_t idx;
  1954. if (qdf_unlikely(!soc->rx_ring_history[ring_num]))
  1955. return;
  1956. hal_rx_reo_buf_paddr_get(ring_desc, &hbi);
  1957. rbm = hal_rx_ret_buf_manager_get(ring_desc);
  1958. idx = dp_history_get_next_index(&soc->rx_ring_history[ring_num]->index,
  1959. DP_RX_HIST_MAX);
  1960. /* No NULL check needed for record since its an array */
  1961. record = &soc->rx_ring_history[ring_num]->entry[idx];
  1962. record->timestamp = qdf_get_log_timestamp();
  1963. record->hbi.paddr = hbi.paddr;
  1964. record->hbi.sw_cookie = hbi.sw_cookie;
  1965. record->hbi.rbm = rbm;
  1966. }
  1967. #else
  1968. static inline void
  1969. dp_rx_ring_record_entry(struct dp_soc *soc, uint8_t ring_num,
  1970. hal_ring_desc_t ring_desc)
  1971. {
  1972. }
  1973. #endif
  1974. #ifdef WLAN_DP_FEATURE_SW_LATENCY_MGR
  1975. /**
  1976. * dp_rx_update_stats() - Update soc level rx packet count
  1977. * @soc: DP soc handle
  1978. * @nbuf: nbuf received
  1979. *
  1980. * Returns: none
  1981. */
  1982. static inline void dp_rx_update_stats(struct dp_soc *soc,
  1983. qdf_nbuf_t nbuf)
  1984. {
  1985. DP_STATS_INC_PKT(soc, rx.ingress, 1,
  1986. QDF_NBUF_CB_RX_PKT_LEN(nbuf));
  1987. }
  1988. #else
  1989. static inline void dp_rx_update_stats(struct dp_soc *soc,
  1990. qdf_nbuf_t nbuf)
  1991. {
  1992. }
  1993. #endif
  1994. #ifdef WLAN_FEATURE_PKT_CAPTURE_V2
  1995. /**
  1996. * dp_rx_deliver_to_pkt_capture() - deliver rx packet to packet capture
  1997. * @soc : dp_soc handle
  1998. * @pdev: dp_pdev handle
  1999. * @peer_id: peer_id of the peer for which completion came
  2000. * @ppdu_id: ppdu_id
  2001. * @netbuf: Buffer pointer
  2002. *
  2003. * This function is used to deliver rx packet to packet capture
  2004. */
  2005. void dp_rx_deliver_to_pkt_capture(struct dp_soc *soc, struct dp_pdev *pdev,
  2006. uint16_t peer_id, uint32_t is_offload,
  2007. qdf_nbuf_t netbuf)
  2008. {
  2009. dp_wdi_event_handler(WDI_EVENT_PKT_CAPTURE_RX_DATA, soc, netbuf,
  2010. peer_id, is_offload, pdev->pdev_id);
  2011. }
  2012. void dp_rx_deliver_to_pkt_capture_no_peer(struct dp_soc *soc, qdf_nbuf_t nbuf,
  2013. uint32_t is_offload)
  2014. {
  2015. uint16_t msdu_len = 0;
  2016. uint16_t peer_id, vdev_id;
  2017. uint32_t pkt_len = 0;
  2018. uint8_t *rx_tlv_hdr;
  2019. uint32_t l2_hdr_offset = 0;
  2020. struct hal_rx_msdu_metadata msdu_metadata;
  2021. peer_id = QDF_NBUF_CB_RX_PEER_ID(nbuf);
  2022. vdev_id = QDF_NBUF_CB_RX_VDEV_ID(nbuf);
  2023. rx_tlv_hdr = qdf_nbuf_data(nbuf);
  2024. hal_rx_msdu_metadata_get(soc->hal_soc, rx_tlv_hdr, &msdu_metadata);
  2025. msdu_len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
  2026. pkt_len = msdu_len + msdu_metadata.l3_hdr_pad +
  2027. RX_PKT_TLVS_LEN;
  2028. l2_hdr_offset =
  2029. hal_rx_msdu_end_l3_hdr_padding_get(soc->hal_soc, rx_tlv_hdr);
  2030. qdf_nbuf_set_pktlen(nbuf, pkt_len);
  2031. dp_rx_skip_tlvs(nbuf, msdu_metadata.l3_hdr_pad);
  2032. dp_wdi_event_handler(WDI_EVENT_PKT_CAPTURE_RX_DATA, soc, nbuf,
  2033. HTT_INVALID_VDEV, is_offload, 0);
  2034. }
  2035. #endif
  2036. #if defined(FEATURE_MCL_REPEATER) && defined(FEATURE_MEC)
  2037. /**
  2038. * dp_rx_mec_check_wrapper() - wrapper to dp_rx_mcast_echo_check
  2039. * @soc: core DP main context
  2040. * @peer: dp peer handler
  2041. * @rx_tlv_hdr: start of the rx TLV header
  2042. * @nbuf: pkt buffer
  2043. *
  2044. * Return: bool (true if it is a looped back pkt else false)
  2045. */
  2046. static inline bool dp_rx_mec_check_wrapper(struct dp_soc *soc,
  2047. struct dp_peer *peer,
  2048. uint8_t *rx_tlv_hdr,
  2049. qdf_nbuf_t nbuf)
  2050. {
  2051. return dp_rx_mcast_echo_check(soc, peer, rx_tlv_hdr, nbuf);
  2052. }
  2053. #else
  2054. static inline bool dp_rx_mec_check_wrapper(struct dp_soc *soc,
  2055. struct dp_peer *peer,
  2056. uint8_t *rx_tlv_hdr,
  2057. qdf_nbuf_t nbuf)
  2058. {
  2059. return false;
  2060. }
  2061. #endif
  2062. #ifdef DISABLE_EAPOL_INTRABSS_FWD
  2063. /*
  2064. * dp_rx_intrabss_fwd_wrapper() - Wrapper API for intrabss fwd. For EAPOL
  2065. * pkt with DA not equal to vdev mac addr, fwd is not allowed.
  2066. * @soc: core txrx main context
  2067. * @ta_peer: source peer entry
  2068. * @rx_tlv_hdr: start address of rx tlvs
  2069. * @nbuf: nbuf that has to be intrabss forwarded
  2070. * @msdu_metadata: msdu metadata
  2071. *
  2072. * Return: true if it is forwarded else false
  2073. */
  2074. static inline
  2075. bool dp_rx_intrabss_fwd_wrapper(struct dp_soc *soc, struct dp_peer *ta_peer,
  2076. uint8_t *rx_tlv_hdr, qdf_nbuf_t nbuf,
  2077. struct hal_rx_msdu_metadata msdu_metadata)
  2078. {
  2079. if (qdf_unlikely(qdf_nbuf_is_ipv4_eapol_pkt(nbuf) &&
  2080. qdf_mem_cmp(qdf_nbuf_data(nbuf) +
  2081. QDF_NBUF_DEST_MAC_OFFSET,
  2082. ta_peer->vdev->mac_addr.raw,
  2083. QDF_MAC_ADDR_SIZE))) {
  2084. qdf_nbuf_free(nbuf);
  2085. DP_STATS_INC(soc, rx.err.intrabss_eapol_drop, 1);
  2086. return true;
  2087. }
  2088. return dp_rx_intrabss_fwd(soc, ta_peer, rx_tlv_hdr, nbuf,
  2089. msdu_metadata);
  2090. }
  2091. #define DP_RX_INTRABSS_FWD(soc, peer, rx_tlv_hdr, nbuf, msdu_metadata) \
  2092. dp_rx_intrabss_fwd_wrapper(soc, peer, rx_tlv_hdr, nbuf, \
  2093. msdu_metadata)
  2094. #else
  2095. #define DP_RX_INTRABSS_FWD(soc, peer, rx_tlv_hdr, nbuf, msdu_metadata) \
  2096. dp_rx_intrabss_fwd(soc, peer, rx_tlv_hdr, nbuf, msdu_metadata)
  2097. #endif
  2098. /**
  2099. * dp_rx_process() - Brain of the Rx processing functionality
  2100. * Called from the bottom half (tasklet/NET_RX_SOFTIRQ)
  2101. * @int_ctx: per interrupt context
  2102. * @hal_ring: opaque pointer to the HAL Rx Ring, which will be serviced
  2103. * @reo_ring_num: ring number (0, 1, 2 or 3) of the reo ring.
  2104. * @quota: No. of units (packets) that can be serviced in one shot.
  2105. *
  2106. * This function implements the core of Rx functionality. This is
  2107. * expected to handle only non-error frames.
  2108. *
  2109. * Return: uint32_t: No. of elements processed
  2110. */
  2111. uint32_t dp_rx_process(struct dp_intr *int_ctx, hal_ring_handle_t hal_ring_hdl,
  2112. uint8_t reo_ring_num, uint32_t quota)
  2113. {
  2114. hal_ring_desc_t ring_desc;
  2115. hal_soc_handle_t hal_soc;
  2116. struct dp_rx_desc *rx_desc = NULL;
  2117. qdf_nbuf_t nbuf, next;
  2118. bool near_full;
  2119. union dp_rx_desc_list_elem_t *head[MAX_PDEV_CNT];
  2120. union dp_rx_desc_list_elem_t *tail[MAX_PDEV_CNT];
  2121. uint32_t num_pending;
  2122. uint32_t rx_bufs_used = 0, rx_buf_cookie;
  2123. uint16_t msdu_len = 0;
  2124. uint16_t peer_id;
  2125. uint8_t vdev_id;
  2126. struct dp_peer *peer;
  2127. struct dp_vdev *vdev;
  2128. uint32_t pkt_len = 0;
  2129. struct hal_rx_mpdu_desc_info mpdu_desc_info;
  2130. struct hal_rx_msdu_desc_info msdu_desc_info;
  2131. enum hal_reo_error_status error;
  2132. uint32_t peer_mdata;
  2133. uint8_t *rx_tlv_hdr;
  2134. uint32_t rx_bufs_reaped[MAX_PDEV_CNT];
  2135. uint8_t mac_id = 0;
  2136. struct dp_pdev *rx_pdev;
  2137. struct dp_srng *dp_rxdma_srng;
  2138. struct rx_desc_pool *rx_desc_pool;
  2139. struct dp_soc *soc = int_ctx->soc;
  2140. uint8_t ring_id = 0;
  2141. uint8_t core_id = 0;
  2142. struct cdp_tid_rx_stats *tid_stats;
  2143. qdf_nbuf_t nbuf_head;
  2144. qdf_nbuf_t nbuf_tail;
  2145. qdf_nbuf_t deliver_list_head;
  2146. qdf_nbuf_t deliver_list_tail;
  2147. uint32_t num_rx_bufs_reaped = 0;
  2148. uint32_t intr_id;
  2149. struct hif_opaque_softc *scn;
  2150. int32_t tid = 0;
  2151. bool is_prev_msdu_last = true;
  2152. uint32_t num_entries_avail = 0;
  2153. uint32_t rx_ol_pkt_cnt = 0;
  2154. uint32_t num_entries = 0;
  2155. struct hal_rx_msdu_metadata msdu_metadata;
  2156. QDF_STATUS status;
  2157. qdf_nbuf_t ebuf_head;
  2158. qdf_nbuf_t ebuf_tail;
  2159. uint8_t pkt_capture_offload = 0;
  2160. DP_HIST_INIT();
  2161. qdf_assert_always(soc && hal_ring_hdl);
  2162. hal_soc = soc->hal_soc;
  2163. qdf_assert_always(hal_soc);
  2164. scn = soc->hif_handle;
  2165. hif_pm_runtime_mark_dp_rx_busy(scn);
  2166. intr_id = int_ctx->dp_intr_id;
  2167. num_entries = hal_srng_get_num_entries(hal_soc, hal_ring_hdl);
  2168. more_data:
  2169. /* reset local variables here to be re-used in the function */
  2170. nbuf_head = NULL;
  2171. nbuf_tail = NULL;
  2172. deliver_list_head = NULL;
  2173. deliver_list_tail = NULL;
  2174. peer = NULL;
  2175. vdev = NULL;
  2176. num_rx_bufs_reaped = 0;
  2177. ebuf_head = NULL;
  2178. ebuf_tail = NULL;
  2179. qdf_mem_zero(rx_bufs_reaped, sizeof(rx_bufs_reaped));
  2180. qdf_mem_zero(&mpdu_desc_info, sizeof(mpdu_desc_info));
  2181. qdf_mem_zero(&msdu_desc_info, sizeof(msdu_desc_info));
  2182. qdf_mem_zero(head, sizeof(head));
  2183. qdf_mem_zero(tail, sizeof(tail));
  2184. if (qdf_unlikely(dp_rx_srng_access_start(int_ctx, soc, hal_ring_hdl))) {
  2185. /*
  2186. * Need API to convert from hal_ring pointer to
  2187. * Ring Type / Ring Id combo
  2188. */
  2189. DP_STATS_INC(soc, rx.err.hal_ring_access_fail, 1);
  2190. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  2191. FL("HAL RING Access Failed -- %pK"), hal_ring_hdl);
  2192. goto done;
  2193. }
  2194. /*
  2195. * start reaping the buffers from reo ring and queue
  2196. * them in per vdev queue.
  2197. * Process the received pkts in a different per vdev loop.
  2198. */
  2199. while (qdf_likely(quota &&
  2200. (ring_desc = hal_srng_dst_peek(hal_soc,
  2201. hal_ring_hdl)))) {
  2202. error = HAL_RX_ERROR_STATUS_GET(ring_desc);
  2203. ring_id = hal_srng_ring_id_get(hal_ring_hdl);
  2204. if (qdf_unlikely(error == HAL_REO_ERROR_DETECTED)) {
  2205. dp_rx_err("%pK: HAL RING 0x%pK:error %d",
  2206. soc, hal_ring_hdl, error);
  2207. DP_STATS_INC(soc, rx.err.hal_reo_error[ring_id], 1);
  2208. /* Don't know how to deal with this -- assert */
  2209. qdf_assert(0);
  2210. }
  2211. dp_rx_ring_record_entry(soc, reo_ring_num, ring_desc);
  2212. rx_buf_cookie = HAL_RX_REO_BUF_COOKIE_GET(ring_desc);
  2213. status = dp_rx_cookie_check_and_invalidate(ring_desc);
  2214. if (qdf_unlikely(QDF_IS_STATUS_ERROR(status))) {
  2215. DP_STATS_INC(soc, rx.err.stale_cookie, 1);
  2216. qdf_assert_always(0);
  2217. }
  2218. rx_desc = dp_rx_cookie_2_va_rxdma_buf(soc, rx_buf_cookie);
  2219. status = dp_rx_desc_sanity(soc, hal_soc, hal_ring_hdl,
  2220. ring_desc, rx_desc);
  2221. if (QDF_IS_STATUS_ERROR(status)) {
  2222. if (qdf_unlikely(rx_desc && rx_desc->nbuf)) {
  2223. qdf_assert_always(rx_desc->unmapped);
  2224. dp_ipa_handle_rx_buf_smmu_mapping(
  2225. soc,
  2226. rx_desc->nbuf,
  2227. RX_DATA_BUFFER_SIZE,
  2228. false);
  2229. qdf_nbuf_unmap_nbytes_single(
  2230. soc->osdev,
  2231. rx_desc->nbuf,
  2232. QDF_DMA_FROM_DEVICE,
  2233. RX_DATA_BUFFER_SIZE);
  2234. rx_desc->unmapped = 1;
  2235. dp_rx_buffer_pool_nbuf_free(soc, rx_desc->nbuf,
  2236. rx_desc->pool_id);
  2237. dp_rx_add_to_free_desc_list(
  2238. &head[rx_desc->pool_id],
  2239. &tail[rx_desc->pool_id],
  2240. rx_desc);
  2241. }
  2242. hal_srng_dst_get_next(hal_soc, hal_ring_hdl);
  2243. continue;
  2244. }
  2245. /*
  2246. * this is a unlikely scenario where the host is reaping
  2247. * a descriptor which it already reaped just a while ago
  2248. * but is yet to replenish it back to HW.
  2249. * In this case host will dump the last 128 descriptors
  2250. * including the software descriptor rx_desc and assert.
  2251. */
  2252. if (qdf_unlikely(!rx_desc->in_use)) {
  2253. DP_STATS_INC(soc, rx.err.hal_reo_dest_dup, 1);
  2254. dp_info_rl("Reaping rx_desc not in use!");
  2255. dp_rx_dump_info_and_assert(soc, hal_ring_hdl,
  2256. ring_desc, rx_desc);
  2257. /* ignore duplicate RX desc and continue to process */
  2258. /* Pop out the descriptor */
  2259. hal_srng_dst_get_next(hal_soc, hal_ring_hdl);
  2260. continue;
  2261. }
  2262. status = dp_rx_desc_nbuf_sanity_check(ring_desc, rx_desc);
  2263. if (qdf_unlikely(QDF_IS_STATUS_ERROR(status))) {
  2264. DP_STATS_INC(soc, rx.err.nbuf_sanity_fail, 1);
  2265. dp_info_rl("Nbuf sanity check failure!");
  2266. dp_rx_dump_info_and_assert(soc, hal_ring_hdl,
  2267. ring_desc, rx_desc);
  2268. rx_desc->in_err_state = 1;
  2269. hal_srng_dst_get_next(hal_soc, hal_ring_hdl);
  2270. continue;
  2271. }
  2272. if (qdf_unlikely(!dp_rx_desc_check_magic(rx_desc))) {
  2273. dp_err("Invalid rx_desc cookie=%d", rx_buf_cookie);
  2274. DP_STATS_INC(soc, rx.err.rx_desc_invalid_magic, 1);
  2275. dp_rx_dump_info_and_assert(soc, hal_ring_hdl,
  2276. ring_desc, rx_desc);
  2277. }
  2278. /* Get MPDU DESC info */
  2279. hal_rx_mpdu_desc_info_get(ring_desc, &mpdu_desc_info);
  2280. /* Get MSDU DESC info */
  2281. hal_rx_msdu_desc_info_get(ring_desc, &msdu_desc_info);
  2282. if (qdf_unlikely(msdu_desc_info.msdu_flags &
  2283. HAL_MSDU_F_MSDU_CONTINUATION)) {
  2284. /* previous msdu has end bit set, so current one is
  2285. * the new MPDU
  2286. */
  2287. if (is_prev_msdu_last) {
  2288. /* Get number of entries available in HW ring */
  2289. num_entries_avail =
  2290. hal_srng_dst_num_valid(hal_soc,
  2291. hal_ring_hdl, 1);
  2292. /* For new MPDU check if we can read complete
  2293. * MPDU by comparing the number of buffers
  2294. * available and number of buffers needed to
  2295. * reap this MPDU
  2296. */
  2297. if (((msdu_desc_info.msdu_len /
  2298. (RX_DATA_BUFFER_SIZE - RX_PKT_TLVS_LEN) +
  2299. 1)) > num_entries_avail) {
  2300. DP_STATS_INC(
  2301. soc,
  2302. rx.msdu_scatter_wait_break,
  2303. 1);
  2304. dp_rx_cookie_reset_invalid_bit(
  2305. ring_desc);
  2306. break;
  2307. }
  2308. is_prev_msdu_last = false;
  2309. }
  2310. }
  2311. core_id = smp_processor_id();
  2312. DP_STATS_INC(soc, rx.ring_packets[core_id][ring_id], 1);
  2313. if (mpdu_desc_info.mpdu_flags & HAL_MPDU_F_RETRY_BIT)
  2314. qdf_nbuf_set_rx_retry_flag(rx_desc->nbuf, 1);
  2315. if (qdf_unlikely(mpdu_desc_info.mpdu_flags &
  2316. HAL_MPDU_F_RAW_AMPDU))
  2317. qdf_nbuf_set_raw_frame(rx_desc->nbuf, 1);
  2318. if (!is_prev_msdu_last &&
  2319. msdu_desc_info.msdu_flags & HAL_MSDU_F_LAST_MSDU_IN_MPDU)
  2320. is_prev_msdu_last = true;
  2321. /* Pop out the descriptor*/
  2322. hal_srng_dst_get_next(hal_soc, hal_ring_hdl);
  2323. rx_bufs_reaped[rx_desc->pool_id]++;
  2324. peer_mdata = mpdu_desc_info.peer_meta_data;
  2325. QDF_NBUF_CB_RX_PEER_ID(rx_desc->nbuf) =
  2326. DP_PEER_METADATA_PEER_ID_GET(peer_mdata);
  2327. QDF_NBUF_CB_RX_VDEV_ID(rx_desc->nbuf) =
  2328. DP_PEER_METADATA_VDEV_ID_GET(peer_mdata);
  2329. /* to indicate whether this msdu is rx offload */
  2330. pkt_capture_offload =
  2331. DP_PEER_METADATA_OFFLOAD_GET(peer_mdata);
  2332. /*
  2333. * save msdu flags first, last and continuation msdu in
  2334. * nbuf->cb, also save mcbc, is_da_valid, is_sa_valid and
  2335. * length to nbuf->cb. This ensures the info required for
  2336. * per pkt processing is always in the same cache line.
  2337. * This helps in improving throughput for smaller pkt
  2338. * sizes.
  2339. */
  2340. if (msdu_desc_info.msdu_flags & HAL_MSDU_F_FIRST_MSDU_IN_MPDU)
  2341. qdf_nbuf_set_rx_chfrag_start(rx_desc->nbuf, 1);
  2342. if (msdu_desc_info.msdu_flags & HAL_MSDU_F_MSDU_CONTINUATION)
  2343. qdf_nbuf_set_rx_chfrag_cont(rx_desc->nbuf, 1);
  2344. if (msdu_desc_info.msdu_flags & HAL_MSDU_F_LAST_MSDU_IN_MPDU)
  2345. qdf_nbuf_set_rx_chfrag_end(rx_desc->nbuf, 1);
  2346. if (msdu_desc_info.msdu_flags & HAL_MSDU_F_DA_IS_MCBC)
  2347. qdf_nbuf_set_da_mcbc(rx_desc->nbuf, 1);
  2348. if (msdu_desc_info.msdu_flags & HAL_MSDU_F_DA_IS_VALID)
  2349. qdf_nbuf_set_da_valid(rx_desc->nbuf, 1);
  2350. if (msdu_desc_info.msdu_flags & HAL_MSDU_F_SA_IS_VALID)
  2351. qdf_nbuf_set_sa_valid(rx_desc->nbuf, 1);
  2352. qdf_nbuf_set_tid_val(rx_desc->nbuf,
  2353. HAL_RX_REO_QUEUE_NUMBER_GET(ring_desc));
  2354. qdf_nbuf_set_rx_reo_dest_ind(
  2355. rx_desc->nbuf,
  2356. HAL_RX_REO_MSDU_REO_DST_IND_GET(ring_desc));
  2357. QDF_NBUF_CB_RX_PKT_LEN(rx_desc->nbuf) = msdu_desc_info.msdu_len;
  2358. QDF_NBUF_CB_RX_CTX_ID(rx_desc->nbuf) = reo_ring_num;
  2359. /*
  2360. * move unmap after scattered msdu waiting break logic
  2361. * in case double skb unmap happened.
  2362. */
  2363. rx_desc_pool = &soc->rx_desc_buf[rx_desc->pool_id];
  2364. dp_ipa_handle_rx_buf_smmu_mapping(soc, rx_desc->nbuf,
  2365. rx_desc_pool->buf_size,
  2366. false);
  2367. qdf_nbuf_unmap_nbytes_single(soc->osdev, rx_desc->nbuf,
  2368. QDF_DMA_FROM_DEVICE,
  2369. rx_desc_pool->buf_size);
  2370. rx_desc->unmapped = 1;
  2371. DP_RX_PROCESS_NBUF(soc, nbuf_head, nbuf_tail, ebuf_head,
  2372. ebuf_tail, rx_desc);
  2373. /*
  2374. * if continuation bit is set then we have MSDU spread
  2375. * across multiple buffers, let us not decrement quota
  2376. * till we reap all buffers of that MSDU.
  2377. */
  2378. if (qdf_likely(!qdf_nbuf_is_rx_chfrag_cont(rx_desc->nbuf)))
  2379. quota -= 1;
  2380. dp_rx_add_to_free_desc_list(&head[rx_desc->pool_id],
  2381. &tail[rx_desc->pool_id],
  2382. rx_desc);
  2383. num_rx_bufs_reaped++;
  2384. /*
  2385. * only if complete msdu is received for scatter case,
  2386. * then allow break.
  2387. */
  2388. if (is_prev_msdu_last &&
  2389. dp_rx_reap_loop_pkt_limit_hit(soc, num_rx_bufs_reaped))
  2390. break;
  2391. }
  2392. done:
  2393. dp_rx_srng_access_end(int_ctx, soc, hal_ring_hdl);
  2394. for (mac_id = 0; mac_id < MAX_PDEV_CNT; mac_id++) {
  2395. /*
  2396. * continue with next mac_id if no pkts were reaped
  2397. * from that pool
  2398. */
  2399. if (!rx_bufs_reaped[mac_id])
  2400. continue;
  2401. dp_rxdma_srng = &soc->rx_refill_buf_ring[mac_id];
  2402. rx_desc_pool = &soc->rx_desc_buf[mac_id];
  2403. dp_rx_buffers_replenish(soc, mac_id, dp_rxdma_srng,
  2404. rx_desc_pool, rx_bufs_reaped[mac_id],
  2405. &head[mac_id], &tail[mac_id]);
  2406. }
  2407. dp_verbose_debug("replenished %u\n", rx_bufs_reaped[0]);
  2408. /* Peer can be NULL is case of LFR */
  2409. if (qdf_likely(peer))
  2410. vdev = NULL;
  2411. /*
  2412. * BIG loop where each nbuf is dequeued from global queue,
  2413. * processed and queued back on a per vdev basis. These nbufs
  2414. * are sent to stack as and when we run out of nbufs
  2415. * or a new nbuf dequeued from global queue has a different
  2416. * vdev when compared to previous nbuf.
  2417. */
  2418. nbuf = nbuf_head;
  2419. while (nbuf) {
  2420. next = nbuf->next;
  2421. if (qdf_unlikely(dp_rx_is_raw_frame_dropped(nbuf))) {
  2422. nbuf = next;
  2423. DP_STATS_INC(soc, rx.err.raw_frm_drop, 1);
  2424. continue;
  2425. }
  2426. rx_tlv_hdr = qdf_nbuf_data(nbuf);
  2427. vdev_id = QDF_NBUF_CB_RX_VDEV_ID(nbuf);
  2428. peer_id = QDF_NBUF_CB_RX_PEER_ID(nbuf);
  2429. if (dp_rx_is_list_ready(deliver_list_head, vdev, peer,
  2430. peer_id, vdev_id)) {
  2431. dp_rx_deliver_to_stack(soc, vdev, peer,
  2432. deliver_list_head,
  2433. deliver_list_tail);
  2434. deliver_list_head = NULL;
  2435. deliver_list_tail = NULL;
  2436. }
  2437. /* Get TID from struct cb->tid_val, save to tid */
  2438. if (qdf_nbuf_is_rx_chfrag_start(nbuf))
  2439. tid = qdf_nbuf_get_tid_val(nbuf);
  2440. if (qdf_unlikely(!peer)) {
  2441. peer = dp_peer_get_ref_by_id(soc, peer_id,
  2442. DP_MOD_ID_RX);
  2443. } else if (peer && peer->peer_id != peer_id) {
  2444. dp_peer_unref_delete(peer, DP_MOD_ID_RX);
  2445. peer = dp_peer_get_ref_by_id(soc, peer_id,
  2446. DP_MOD_ID_RX);
  2447. }
  2448. if (peer) {
  2449. QDF_NBUF_CB_DP_TRACE_PRINT(nbuf) = false;
  2450. qdf_dp_trace_set_track(nbuf, QDF_RX);
  2451. QDF_NBUF_CB_RX_DP_TRACE(nbuf) = 1;
  2452. QDF_NBUF_CB_RX_PACKET_TRACK(nbuf) =
  2453. QDF_NBUF_RX_PKT_DATA_TRACK;
  2454. }
  2455. rx_bufs_used++;
  2456. if (qdf_likely(peer)) {
  2457. vdev = peer->vdev;
  2458. } else {
  2459. nbuf->next = NULL;
  2460. dp_rx_deliver_to_pkt_capture_no_peer(
  2461. soc, nbuf, pkt_capture_offload);
  2462. if (!pkt_capture_offload)
  2463. dp_rx_deliver_to_stack_no_peer(soc, nbuf);
  2464. nbuf = next;
  2465. continue;
  2466. }
  2467. if (qdf_unlikely(!vdev)) {
  2468. qdf_nbuf_free(nbuf);
  2469. nbuf = next;
  2470. DP_STATS_INC(soc, rx.err.invalid_vdev, 1);
  2471. continue;
  2472. }
  2473. /* when hlos tid override is enabled, save tid in
  2474. * skb->priority
  2475. */
  2476. if (qdf_unlikely(vdev->skip_sw_tid_classification &
  2477. DP_TXRX_HLOS_TID_OVERRIDE_ENABLED))
  2478. qdf_nbuf_set_priority(nbuf, tid);
  2479. rx_pdev = vdev->pdev;
  2480. DP_RX_TID_SAVE(nbuf, tid);
  2481. if (qdf_unlikely(rx_pdev->delay_stats_flag) ||
  2482. qdf_unlikely(wlan_cfg_is_peer_ext_stats_enabled(
  2483. soc->wlan_cfg_ctx)))
  2484. qdf_nbuf_set_timestamp(nbuf);
  2485. ring_id = QDF_NBUF_CB_RX_CTX_ID(nbuf);
  2486. tid_stats =
  2487. &rx_pdev->stats.tid_stats.tid_rx_stats[ring_id][tid];
  2488. /*
  2489. * Check if DMA completed -- msdu_done is the last bit
  2490. * to be written
  2491. */
  2492. if (qdf_unlikely(!qdf_nbuf_is_rx_chfrag_cont(nbuf) &&
  2493. !hal_rx_attn_msdu_done_get(rx_tlv_hdr))) {
  2494. dp_err("MSDU DONE failure");
  2495. DP_STATS_INC(soc, rx.err.msdu_done_fail, 1);
  2496. hal_rx_dump_pkt_tlvs(hal_soc, rx_tlv_hdr,
  2497. QDF_TRACE_LEVEL_INFO);
  2498. tid_stats->fail_cnt[MSDU_DONE_FAILURE]++;
  2499. qdf_nbuf_free(nbuf);
  2500. qdf_assert(0);
  2501. nbuf = next;
  2502. continue;
  2503. }
  2504. DP_HIST_PACKET_COUNT_INC(vdev->pdev->pdev_id);
  2505. /*
  2506. * First IF condition:
  2507. * 802.11 Fragmented pkts are reinjected to REO
  2508. * HW block as SG pkts and for these pkts we only
  2509. * need to pull the RX TLVS header length.
  2510. * Second IF condition:
  2511. * The below condition happens when an MSDU is spread
  2512. * across multiple buffers. This can happen in two cases
  2513. * 1. The nbuf size is smaller then the received msdu.
  2514. * ex: we have set the nbuf size to 2048 during
  2515. * nbuf_alloc. but we received an msdu which is
  2516. * 2304 bytes in size then this msdu is spread
  2517. * across 2 nbufs.
  2518. *
  2519. * 2. AMSDUs when RAW mode is enabled.
  2520. * ex: 1st MSDU is in 1st nbuf and 2nd MSDU is spread
  2521. * across 1st nbuf and 2nd nbuf and last MSDU is
  2522. * spread across 2nd nbuf and 3rd nbuf.
  2523. *
  2524. * for these scenarios let us create a skb frag_list and
  2525. * append these buffers till the last MSDU of the AMSDU
  2526. * Third condition:
  2527. * This is the most likely case, we receive 802.3 pkts
  2528. * decapsulated by HW, here we need to set the pkt length.
  2529. */
  2530. hal_rx_msdu_metadata_get(hal_soc, rx_tlv_hdr, &msdu_metadata);
  2531. if (qdf_unlikely(qdf_nbuf_is_frag(nbuf))) {
  2532. bool is_mcbc, is_sa_vld, is_da_vld;
  2533. is_mcbc = hal_rx_msdu_end_da_is_mcbc_get(soc->hal_soc,
  2534. rx_tlv_hdr);
  2535. is_sa_vld =
  2536. hal_rx_msdu_end_sa_is_valid_get(soc->hal_soc,
  2537. rx_tlv_hdr);
  2538. is_da_vld =
  2539. hal_rx_msdu_end_da_is_valid_get(soc->hal_soc,
  2540. rx_tlv_hdr);
  2541. qdf_nbuf_set_da_mcbc(nbuf, is_mcbc);
  2542. qdf_nbuf_set_da_valid(nbuf, is_da_vld);
  2543. qdf_nbuf_set_sa_valid(nbuf, is_sa_vld);
  2544. qdf_nbuf_pull_head(nbuf, RX_PKT_TLVS_LEN);
  2545. } else if (qdf_nbuf_is_rx_chfrag_cont(nbuf)) {
  2546. msdu_len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
  2547. nbuf = dp_rx_sg_create(soc, nbuf);
  2548. next = nbuf->next;
  2549. if (qdf_nbuf_is_raw_frame(nbuf)) {
  2550. DP_STATS_INC(vdev->pdev, rx_raw_pkts, 1);
  2551. DP_STATS_INC_PKT(peer, rx.raw, 1, msdu_len);
  2552. } else {
  2553. qdf_nbuf_free(nbuf);
  2554. DP_STATS_INC(soc, rx.err.scatter_msdu, 1);
  2555. dp_info_rl("scatter msdu len %d, dropped",
  2556. msdu_len);
  2557. nbuf = next;
  2558. continue;
  2559. }
  2560. } else {
  2561. msdu_len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
  2562. pkt_len = msdu_len +
  2563. msdu_metadata.l3_hdr_pad +
  2564. RX_PKT_TLVS_LEN;
  2565. dp_rx_desc_nbuf_len_sanity_check(soc, pkt_len);
  2566. qdf_nbuf_set_pktlen(nbuf, pkt_len);
  2567. dp_rx_skip_tlvs(nbuf, msdu_metadata.l3_hdr_pad);
  2568. }
  2569. /*
  2570. * process frame for mulitpass phrase processing
  2571. */
  2572. if (qdf_unlikely(vdev->multipass_en)) {
  2573. if (dp_rx_multipass_process(peer, nbuf, tid) == false) {
  2574. DP_STATS_INC(peer, rx.multipass_rx_pkt_drop, 1);
  2575. qdf_nbuf_free(nbuf);
  2576. nbuf = next;
  2577. continue;
  2578. }
  2579. }
  2580. if (!dp_wds_rx_policy_check(rx_tlv_hdr, vdev, peer)) {
  2581. dp_rx_err("%pK: Policy Check Drop pkt", soc);
  2582. tid_stats->fail_cnt[POLICY_CHECK_DROP]++;
  2583. /* Drop & free packet */
  2584. qdf_nbuf_free(nbuf);
  2585. /* Statistics */
  2586. nbuf = next;
  2587. continue;
  2588. }
  2589. if (qdf_unlikely(peer && (peer->nawds_enabled) &&
  2590. (qdf_nbuf_is_da_mcbc(nbuf)) &&
  2591. (hal_rx_get_mpdu_mac_ad4_valid(soc->hal_soc,
  2592. rx_tlv_hdr) ==
  2593. false))) {
  2594. tid_stats->fail_cnt[NAWDS_MCAST_DROP]++;
  2595. DP_STATS_INC(peer, rx.nawds_mcast_drop, 1);
  2596. qdf_nbuf_free(nbuf);
  2597. nbuf = next;
  2598. continue;
  2599. }
  2600. /*
  2601. * Drop non-EAPOL frames from unauthorized peer.
  2602. */
  2603. if (qdf_likely(peer) && qdf_unlikely(!peer->authorize)) {
  2604. bool is_eapol = qdf_nbuf_is_ipv4_eapol_pkt(nbuf) ||
  2605. qdf_nbuf_is_ipv4_wapi_pkt(nbuf);
  2606. if (!is_eapol) {
  2607. DP_STATS_INC(soc,
  2608. rx.err.peer_unauth_rx_pkt_drop,
  2609. 1);
  2610. qdf_nbuf_free(nbuf);
  2611. nbuf = next;
  2612. continue;
  2613. }
  2614. }
  2615. if (soc->process_rx_status)
  2616. dp_rx_cksum_offload(vdev->pdev, nbuf, rx_tlv_hdr);
  2617. /* Update the protocol tag in SKB based on CCE metadata */
  2618. dp_rx_update_protocol_tag(soc, vdev, nbuf, rx_tlv_hdr,
  2619. reo_ring_num, false, true);
  2620. /* Update the flow tag in SKB based on FSE metadata */
  2621. dp_rx_update_flow_tag(soc, vdev, nbuf, rx_tlv_hdr, true);
  2622. dp_rx_msdu_stats_update(soc, nbuf, rx_tlv_hdr, peer,
  2623. ring_id, tid_stats);
  2624. if (qdf_unlikely(vdev->mesh_vdev)) {
  2625. if (dp_rx_filter_mesh_packets(vdev, nbuf, rx_tlv_hdr)
  2626. == QDF_STATUS_SUCCESS) {
  2627. dp_rx_info("%pK: mesh pkt filtered", soc);
  2628. tid_stats->fail_cnt[MESH_FILTER_DROP]++;
  2629. DP_STATS_INC(vdev->pdev, dropped.mesh_filter,
  2630. 1);
  2631. qdf_nbuf_free(nbuf);
  2632. nbuf = next;
  2633. continue;
  2634. }
  2635. dp_rx_fill_mesh_stats(vdev, nbuf, rx_tlv_hdr, peer);
  2636. }
  2637. if (qdf_likely(vdev->rx_decap_type ==
  2638. htt_cmn_pkt_type_ethernet) &&
  2639. qdf_likely(!vdev->mesh_vdev)) {
  2640. /* WDS Destination Address Learning */
  2641. dp_rx_da_learn(soc, rx_tlv_hdr, peer, nbuf);
  2642. /* Due to HW issue, sometimes we see that the sa_idx
  2643. * and da_idx are invalid with sa_valid and da_valid
  2644. * bits set
  2645. *
  2646. * in this case we also see that value of
  2647. * sa_sw_peer_id is set as 0
  2648. *
  2649. * Drop the packet if sa_idx and da_idx OOB or
  2650. * sa_sw_peerid is 0
  2651. */
  2652. if (!is_sa_da_idx_valid(soc, rx_tlv_hdr, nbuf,
  2653. msdu_metadata)) {
  2654. qdf_nbuf_free(nbuf);
  2655. nbuf = next;
  2656. DP_STATS_INC(soc, rx.err.invalid_sa_da_idx, 1);
  2657. continue;
  2658. }
  2659. /* WDS Source Port Learning */
  2660. if (qdf_likely(vdev->wds_enabled))
  2661. dp_rx_wds_srcport_learn(soc,
  2662. rx_tlv_hdr,
  2663. peer,
  2664. nbuf,
  2665. msdu_metadata);
  2666. /* Intrabss-fwd */
  2667. if (dp_rx_check_ap_bridge(vdev))
  2668. if (DP_RX_INTRABSS_FWD(soc, peer, rx_tlv_hdr,
  2669. nbuf, msdu_metadata)) {
  2670. nbuf = next;
  2671. tid_stats->intrabss_cnt++;
  2672. continue; /* Get next desc */
  2673. }
  2674. if (qdf_unlikely(dp_rx_mec_check_wrapper(soc,
  2675. peer,
  2676. rx_tlv_hdr,
  2677. nbuf))) {
  2678. /* this is a looped back MCBC pkt,drop it */
  2679. DP_STATS_INC_PKT(peer, rx.mec_drop, 1,
  2680. QDF_NBUF_CB_RX_PKT_LEN(nbuf));
  2681. qdf_nbuf_free(nbuf);
  2682. nbuf = next;
  2683. continue;
  2684. }
  2685. }
  2686. dp_rx_fill_gro_info(soc, rx_tlv_hdr, nbuf, &rx_ol_pkt_cnt);
  2687. dp_rx_update_stats(soc, nbuf);
  2688. DP_RX_LIST_APPEND(deliver_list_head,
  2689. deliver_list_tail,
  2690. nbuf);
  2691. DP_STATS_INC_PKT(peer, rx.to_stack, 1,
  2692. QDF_NBUF_CB_RX_PKT_LEN(nbuf));
  2693. if (qdf_unlikely(peer->in_twt))
  2694. DP_STATS_INC_PKT(peer, rx.to_stack_twt, 1,
  2695. QDF_NBUF_CB_RX_PKT_LEN(nbuf));
  2696. tid_stats->delivered_to_stack++;
  2697. nbuf = next;
  2698. }
  2699. if (qdf_likely(deliver_list_head)) {
  2700. if (qdf_likely(peer)) {
  2701. dp_rx_deliver_to_pkt_capture(soc, vdev->pdev, peer_id,
  2702. pkt_capture_offload,
  2703. deliver_list_head);
  2704. if (!pkt_capture_offload)
  2705. dp_rx_deliver_to_stack(soc, vdev, peer,
  2706. deliver_list_head,
  2707. deliver_list_tail);
  2708. }
  2709. else {
  2710. nbuf = deliver_list_head;
  2711. while (nbuf) {
  2712. next = nbuf->next;
  2713. nbuf->next = NULL;
  2714. dp_rx_deliver_to_stack_no_peer(soc, nbuf);
  2715. nbuf = next;
  2716. }
  2717. }
  2718. }
  2719. if (qdf_likely(peer))
  2720. dp_peer_unref_delete(peer, DP_MOD_ID_RX);
  2721. if (dp_rx_enable_eol_data_check(soc) && rx_bufs_used) {
  2722. if (quota) {
  2723. num_pending =
  2724. dp_rx_srng_get_num_pending(hal_soc,
  2725. hal_ring_hdl,
  2726. num_entries,
  2727. &near_full);
  2728. if (num_pending) {
  2729. DP_STATS_INC(soc, rx.hp_oos2, 1);
  2730. if (!hif_exec_should_yield(scn, intr_id))
  2731. goto more_data;
  2732. if (qdf_unlikely(near_full)) {
  2733. DP_STATS_INC(soc, rx.near_full, 1);
  2734. goto more_data;
  2735. }
  2736. }
  2737. }
  2738. if (vdev && vdev->osif_fisa_flush)
  2739. vdev->osif_fisa_flush(soc, reo_ring_num);
  2740. if (vdev && vdev->osif_gro_flush && rx_ol_pkt_cnt) {
  2741. vdev->osif_gro_flush(vdev->osif_vdev,
  2742. reo_ring_num);
  2743. }
  2744. }
  2745. /* Update histogram statistics by looping through pdev's */
  2746. DP_RX_HIST_STATS_PER_PDEV();
  2747. return rx_bufs_used; /* Assume no scale factor for now */
  2748. }
  2749. #endif /* QCA_HOST_MODE_WIFI_DISABLED */
  2750. QDF_STATUS dp_rx_vdev_detach(struct dp_vdev *vdev)
  2751. {
  2752. QDF_STATUS ret;
  2753. if (vdev->osif_rx_flush) {
  2754. ret = vdev->osif_rx_flush(vdev->osif_vdev, vdev->vdev_id);
  2755. if (!QDF_IS_STATUS_SUCCESS(ret)) {
  2756. dp_err("Failed to flush rx pkts for vdev %d\n",
  2757. vdev->vdev_id);
  2758. return ret;
  2759. }
  2760. }
  2761. return QDF_STATUS_SUCCESS;
  2762. }
  2763. static QDF_STATUS
  2764. dp_pdev_nbuf_alloc_and_map(struct dp_soc *dp_soc,
  2765. struct dp_rx_nbuf_frag_info *nbuf_frag_info_t,
  2766. struct dp_pdev *dp_pdev,
  2767. struct rx_desc_pool *rx_desc_pool)
  2768. {
  2769. QDF_STATUS ret = QDF_STATUS_E_FAILURE;
  2770. (nbuf_frag_info_t->virt_addr).nbuf =
  2771. qdf_nbuf_alloc(dp_soc->osdev, rx_desc_pool->buf_size,
  2772. RX_BUFFER_RESERVATION,
  2773. rx_desc_pool->buf_alignment, FALSE);
  2774. if (!((nbuf_frag_info_t->virt_addr).nbuf)) {
  2775. dp_err("nbuf alloc failed");
  2776. DP_STATS_INC(dp_pdev, replenish.nbuf_alloc_fail, 1);
  2777. return ret;
  2778. }
  2779. ret = qdf_nbuf_map_nbytes_single(dp_soc->osdev,
  2780. (nbuf_frag_info_t->virt_addr).nbuf,
  2781. QDF_DMA_FROM_DEVICE,
  2782. rx_desc_pool->buf_size);
  2783. if (qdf_unlikely(QDF_IS_STATUS_ERROR(ret))) {
  2784. qdf_nbuf_free((nbuf_frag_info_t->virt_addr).nbuf);
  2785. dp_err("nbuf map failed");
  2786. DP_STATS_INC(dp_pdev, replenish.map_err, 1);
  2787. return ret;
  2788. }
  2789. nbuf_frag_info_t->paddr =
  2790. qdf_nbuf_get_frag_paddr((nbuf_frag_info_t->virt_addr).nbuf, 0);
  2791. ret = dp_check_paddr(dp_soc, &((nbuf_frag_info_t->virt_addr).nbuf),
  2792. &nbuf_frag_info_t->paddr,
  2793. rx_desc_pool);
  2794. if (ret == QDF_STATUS_E_FAILURE) {
  2795. dp_err("nbuf check x86 failed");
  2796. DP_STATS_INC(dp_pdev, replenish.x86_fail, 1);
  2797. return ret;
  2798. }
  2799. return QDF_STATUS_SUCCESS;
  2800. }
  2801. QDF_STATUS
  2802. dp_pdev_rx_buffers_attach(struct dp_soc *dp_soc, uint32_t mac_id,
  2803. struct dp_srng *dp_rxdma_srng,
  2804. struct rx_desc_pool *rx_desc_pool,
  2805. uint32_t num_req_buffers)
  2806. {
  2807. struct dp_pdev *dp_pdev = dp_get_pdev_for_lmac_id(dp_soc, mac_id);
  2808. hal_ring_handle_t rxdma_srng = dp_rxdma_srng->hal_srng;
  2809. union dp_rx_desc_list_elem_t *next;
  2810. void *rxdma_ring_entry;
  2811. qdf_dma_addr_t paddr;
  2812. struct dp_rx_nbuf_frag_info *nf_info;
  2813. uint32_t nr_descs, nr_nbuf = 0, nr_nbuf_total = 0;
  2814. uint32_t buffer_index, nbuf_ptrs_per_page;
  2815. qdf_nbuf_t nbuf;
  2816. QDF_STATUS ret;
  2817. int page_idx, total_pages;
  2818. union dp_rx_desc_list_elem_t *desc_list = NULL;
  2819. union dp_rx_desc_list_elem_t *tail = NULL;
  2820. int sync_hw_ptr = 1;
  2821. uint32_t num_entries_avail;
  2822. if (qdf_unlikely(!rxdma_srng)) {
  2823. DP_STATS_INC(dp_pdev, replenish.rxdma_err, num_req_buffers);
  2824. return QDF_STATUS_E_FAILURE;
  2825. }
  2826. dp_debug("requested %u RX buffers for driver attach", num_req_buffers);
  2827. hal_srng_access_start(dp_soc->hal_soc, rxdma_srng);
  2828. num_entries_avail = hal_srng_src_num_avail(dp_soc->hal_soc,
  2829. rxdma_srng,
  2830. sync_hw_ptr);
  2831. hal_srng_access_end(dp_soc->hal_soc, rxdma_srng);
  2832. if (!num_entries_avail) {
  2833. dp_err("Num of available entries is zero, nothing to do");
  2834. return QDF_STATUS_E_NOMEM;
  2835. }
  2836. if (num_entries_avail < num_req_buffers)
  2837. num_req_buffers = num_entries_avail;
  2838. nr_descs = dp_rx_get_free_desc_list(dp_soc, mac_id, rx_desc_pool,
  2839. num_req_buffers, &desc_list, &tail);
  2840. if (!nr_descs) {
  2841. dp_err("no free rx_descs in freelist");
  2842. DP_STATS_INC(dp_pdev, err.desc_alloc_fail, num_req_buffers);
  2843. return QDF_STATUS_E_NOMEM;
  2844. }
  2845. dp_debug("got %u RX descs for driver attach", nr_descs);
  2846. /*
  2847. * Try to allocate pointers to the nbuf one page at a time.
  2848. * Take pointers that can fit in one page of memory and
  2849. * iterate through the total descriptors that need to be
  2850. * allocated in order of pages. Reuse the pointers that
  2851. * have been allocated to fit in one page across each
  2852. * iteration to index into the nbuf.
  2853. */
  2854. total_pages = (nr_descs * sizeof(*nf_info)) / PAGE_SIZE;
  2855. /*
  2856. * Add an extra page to store the remainder if any
  2857. */
  2858. if ((nr_descs * sizeof(*nf_info)) % PAGE_SIZE)
  2859. total_pages++;
  2860. nf_info = qdf_mem_malloc(PAGE_SIZE);
  2861. if (!nf_info) {
  2862. dp_err("failed to allocate nbuf array");
  2863. DP_STATS_INC(dp_pdev, replenish.rxdma_err, num_req_buffers);
  2864. QDF_BUG(0);
  2865. return QDF_STATUS_E_NOMEM;
  2866. }
  2867. nbuf_ptrs_per_page = PAGE_SIZE / sizeof(*nf_info);
  2868. for (page_idx = 0; page_idx < total_pages; page_idx++) {
  2869. qdf_mem_zero(nf_info, PAGE_SIZE);
  2870. for (nr_nbuf = 0; nr_nbuf < nbuf_ptrs_per_page; nr_nbuf++) {
  2871. /*
  2872. * The last page of buffer pointers may not be required
  2873. * completely based on the number of descriptors. Below
  2874. * check will ensure we are allocating only the
  2875. * required number of descriptors.
  2876. */
  2877. if (nr_nbuf_total >= nr_descs)
  2878. break;
  2879. /* Flag is set while pdev rx_desc_pool initialization */
  2880. if (qdf_unlikely(rx_desc_pool->rx_mon_dest_frag_enable))
  2881. ret = dp_pdev_frag_alloc_and_map(dp_soc,
  2882. &nf_info[nr_nbuf], dp_pdev,
  2883. rx_desc_pool);
  2884. else
  2885. ret = dp_pdev_nbuf_alloc_and_map(dp_soc,
  2886. &nf_info[nr_nbuf], dp_pdev,
  2887. rx_desc_pool);
  2888. if (QDF_IS_STATUS_ERROR(ret))
  2889. break;
  2890. nr_nbuf_total++;
  2891. }
  2892. hal_srng_access_start(dp_soc->hal_soc, rxdma_srng);
  2893. for (buffer_index = 0; buffer_index < nr_nbuf; buffer_index++) {
  2894. rxdma_ring_entry =
  2895. hal_srng_src_get_next(dp_soc->hal_soc,
  2896. rxdma_srng);
  2897. qdf_assert_always(rxdma_ring_entry);
  2898. next = desc_list->next;
  2899. paddr = nf_info[buffer_index].paddr;
  2900. nbuf = nf_info[buffer_index].virt_addr.nbuf;
  2901. /* Flag is set while pdev rx_desc_pool initialization */
  2902. if (qdf_unlikely(rx_desc_pool->rx_mon_dest_frag_enable))
  2903. dp_rx_desc_frag_prep(&desc_list->rx_desc,
  2904. &nf_info[buffer_index]);
  2905. else
  2906. dp_rx_desc_prep(&desc_list->rx_desc,
  2907. &nf_info[buffer_index]);
  2908. desc_list->rx_desc.in_use = 1;
  2909. dp_rx_desc_alloc_dbg_info(&desc_list->rx_desc);
  2910. dp_rx_desc_update_dbg_info(&desc_list->rx_desc,
  2911. __func__,
  2912. RX_DESC_REPLENISHED);
  2913. hal_rxdma_buff_addr_info_set(rxdma_ring_entry, paddr,
  2914. desc_list->rx_desc.cookie,
  2915. rx_desc_pool->owner);
  2916. dp_ipa_handle_rx_buf_smmu_mapping(
  2917. dp_soc, nbuf,
  2918. rx_desc_pool->buf_size,
  2919. true);
  2920. desc_list = next;
  2921. }
  2922. dp_rx_refill_ring_record_entry(dp_soc, dp_pdev->lmac_id,
  2923. rxdma_srng, nr_nbuf, nr_nbuf);
  2924. hal_srng_access_end(dp_soc->hal_soc, rxdma_srng);
  2925. }
  2926. dp_info("filled %u RX buffers for driver attach", nr_nbuf_total);
  2927. qdf_mem_free(nf_info);
  2928. if (!nr_nbuf_total) {
  2929. dp_err("No nbuf's allocated");
  2930. QDF_BUG(0);
  2931. return QDF_STATUS_E_RESOURCES;
  2932. }
  2933. /* No need to count the number of bytes received during replenish.
  2934. * Therefore set replenish.pkts.bytes as 0.
  2935. */
  2936. DP_STATS_INC_PKT(dp_pdev, replenish.pkts, nr_nbuf, 0);
  2937. return QDF_STATUS_SUCCESS;
  2938. }
  2939. /**
  2940. * dp_rx_enable_mon_dest_frag() - Enable frag processing for
  2941. * monitor destination ring via frag.
  2942. *
  2943. * Enable this flag only for monitor destination buffer processing
  2944. * if DP_RX_MON_MEM_FRAG feature is enabled.
  2945. * If flag is set then frag based function will be called for alloc,
  2946. * map, prep desc and free ops for desc buffer else normal nbuf based
  2947. * function will be called.
  2948. *
  2949. * @rx_desc_pool: Rx desc pool
  2950. * @is_mon_dest_desc: Is it for monitor dest buffer
  2951. *
  2952. * Return: None
  2953. */
  2954. #ifdef DP_RX_MON_MEM_FRAG
  2955. void dp_rx_enable_mon_dest_frag(struct rx_desc_pool *rx_desc_pool,
  2956. bool is_mon_dest_desc)
  2957. {
  2958. rx_desc_pool->rx_mon_dest_frag_enable = is_mon_dest_desc;
  2959. if (is_mon_dest_desc)
  2960. dp_alert("Feature DP_RX_MON_MEM_FRAG for mon_dest is enabled");
  2961. }
  2962. #else
  2963. void dp_rx_enable_mon_dest_frag(struct rx_desc_pool *rx_desc_pool,
  2964. bool is_mon_dest_desc)
  2965. {
  2966. rx_desc_pool->rx_mon_dest_frag_enable = false;
  2967. if (is_mon_dest_desc)
  2968. dp_alert("Feature DP_RX_MON_MEM_FRAG for mon_dest is disabled");
  2969. }
  2970. #endif
  2971. /*
  2972. * dp_rx_pdev_desc_pool_alloc() - allocate memory for software rx descriptor
  2973. * pool
  2974. *
  2975. * @pdev: core txrx pdev context
  2976. *
  2977. * Return: QDF_STATUS - QDF_STATUS_SUCCESS
  2978. * QDF_STATUS_E_NOMEM
  2979. */
  2980. QDF_STATUS
  2981. dp_rx_pdev_desc_pool_alloc(struct dp_pdev *pdev)
  2982. {
  2983. struct dp_soc *soc = pdev->soc;
  2984. uint32_t rxdma_entries;
  2985. uint32_t rx_sw_desc_num;
  2986. struct dp_srng *dp_rxdma_srng;
  2987. struct rx_desc_pool *rx_desc_pool;
  2988. uint32_t status = QDF_STATUS_SUCCESS;
  2989. int mac_for_pdev;
  2990. mac_for_pdev = pdev->lmac_id;
  2991. if (wlan_cfg_get_dp_pdev_nss_enabled(pdev->wlan_cfg_ctx)) {
  2992. dp_rx_info("%pK: nss-wifi<4> skip Rx refil %d",
  2993. soc, mac_for_pdev);
  2994. return status;
  2995. }
  2996. dp_rxdma_srng = &soc->rx_refill_buf_ring[mac_for_pdev];
  2997. rxdma_entries = dp_rxdma_srng->num_entries;
  2998. rx_desc_pool = &soc->rx_desc_buf[mac_for_pdev];
  2999. rx_sw_desc_num = wlan_cfg_get_dp_soc_rx_sw_desc_num(soc->wlan_cfg_ctx);
  3000. rx_desc_pool->desc_type = DP_RX_DESC_BUF_TYPE;
  3001. status = dp_rx_desc_pool_alloc(soc,
  3002. rx_sw_desc_num,
  3003. rx_desc_pool);
  3004. if (status != QDF_STATUS_SUCCESS)
  3005. return status;
  3006. return status;
  3007. }
  3008. /*
  3009. * dp_rx_pdev_desc_pool_free() - free software rx descriptor pool
  3010. *
  3011. * @pdev: core txrx pdev context
  3012. */
  3013. void dp_rx_pdev_desc_pool_free(struct dp_pdev *pdev)
  3014. {
  3015. int mac_for_pdev = pdev->lmac_id;
  3016. struct dp_soc *soc = pdev->soc;
  3017. struct rx_desc_pool *rx_desc_pool;
  3018. rx_desc_pool = &soc->rx_desc_buf[mac_for_pdev];
  3019. dp_rx_desc_pool_free(soc, rx_desc_pool);
  3020. }
  3021. /*
  3022. * dp_rx_pdev_desc_pool_init() - initialize software rx descriptors
  3023. *
  3024. * @pdev: core txrx pdev context
  3025. *
  3026. * Return: QDF_STATUS - QDF_STATUS_SUCCESS
  3027. * QDF_STATUS_E_NOMEM
  3028. */
  3029. QDF_STATUS dp_rx_pdev_desc_pool_init(struct dp_pdev *pdev)
  3030. {
  3031. int mac_for_pdev = pdev->lmac_id;
  3032. struct dp_soc *soc = pdev->soc;
  3033. uint32_t rxdma_entries;
  3034. uint32_t rx_sw_desc_num;
  3035. struct dp_srng *dp_rxdma_srng;
  3036. struct rx_desc_pool *rx_desc_pool;
  3037. if (wlan_cfg_get_dp_pdev_nss_enabled(pdev->wlan_cfg_ctx)) {
  3038. /**
  3039. * If NSS is enabled, rx_desc_pool is already filled.
  3040. * Hence, just disable desc_pool frag flag.
  3041. */
  3042. rx_desc_pool = &soc->rx_desc_buf[mac_for_pdev];
  3043. dp_rx_enable_mon_dest_frag(rx_desc_pool, false);
  3044. dp_rx_info("%pK: nss-wifi<4> skip Rx refil %d",
  3045. soc, mac_for_pdev);
  3046. return QDF_STATUS_SUCCESS;
  3047. }
  3048. rx_desc_pool = &soc->rx_desc_buf[mac_for_pdev];
  3049. if (dp_rx_desc_pool_is_allocated(rx_desc_pool) == QDF_STATUS_E_NOMEM)
  3050. return QDF_STATUS_E_NOMEM;
  3051. dp_rxdma_srng = &soc->rx_refill_buf_ring[mac_for_pdev];
  3052. rxdma_entries = dp_rxdma_srng->num_entries;
  3053. soc->process_rx_status = CONFIG_PROCESS_RX_STATUS;
  3054. rx_sw_desc_num =
  3055. wlan_cfg_get_dp_soc_rx_sw_desc_num(soc->wlan_cfg_ctx);
  3056. rx_desc_pool->owner = DP_WBM2SW_RBM;
  3057. rx_desc_pool->buf_size = RX_DATA_BUFFER_SIZE;
  3058. rx_desc_pool->buf_alignment = RX_DATA_BUFFER_ALIGNMENT;
  3059. /* Disable monitor dest processing via frag */
  3060. dp_rx_enable_mon_dest_frag(rx_desc_pool, false);
  3061. dp_rx_desc_pool_init(soc, mac_for_pdev,
  3062. rx_sw_desc_num, rx_desc_pool);
  3063. return QDF_STATUS_SUCCESS;
  3064. }
  3065. /*
  3066. * dp_rx_pdev_desc_pool_deinit() - de-initialize software rx descriptor pools
  3067. * @pdev: core txrx pdev context
  3068. *
  3069. * This function resets the freelist of rx descriptors and destroys locks
  3070. * associated with this list of descriptors.
  3071. */
  3072. void dp_rx_pdev_desc_pool_deinit(struct dp_pdev *pdev)
  3073. {
  3074. int mac_for_pdev = pdev->lmac_id;
  3075. struct dp_soc *soc = pdev->soc;
  3076. struct rx_desc_pool *rx_desc_pool;
  3077. rx_desc_pool = &soc->rx_desc_buf[mac_for_pdev];
  3078. dp_rx_desc_pool_deinit(soc, rx_desc_pool);
  3079. }
  3080. /*
  3081. * dp_rx_pdev_buffers_alloc() - Allocate nbufs (skbs) and replenish RxDMA ring
  3082. *
  3083. * @pdev: core txrx pdev context
  3084. *
  3085. * Return: QDF_STATUS - QDF_STATUS_SUCCESS
  3086. * QDF_STATUS_E_NOMEM
  3087. */
  3088. QDF_STATUS
  3089. dp_rx_pdev_buffers_alloc(struct dp_pdev *pdev)
  3090. {
  3091. int mac_for_pdev = pdev->lmac_id;
  3092. struct dp_soc *soc = pdev->soc;
  3093. struct dp_srng *dp_rxdma_srng;
  3094. struct rx_desc_pool *rx_desc_pool;
  3095. uint32_t rxdma_entries;
  3096. dp_rxdma_srng = &soc->rx_refill_buf_ring[mac_for_pdev];
  3097. rxdma_entries = dp_rxdma_srng->num_entries;
  3098. rx_desc_pool = &soc->rx_desc_buf[mac_for_pdev];
  3099. /* Initialize RX buffer pool which will be
  3100. * used during low memory conditions
  3101. */
  3102. dp_rx_buffer_pool_init(soc, mac_for_pdev);
  3103. return dp_pdev_rx_buffers_attach(soc, mac_for_pdev, dp_rxdma_srng,
  3104. rx_desc_pool, rxdma_entries - 1);
  3105. }
  3106. /*
  3107. * dp_rx_pdev_buffers_free - Free nbufs (skbs)
  3108. *
  3109. * @pdev: core txrx pdev context
  3110. */
  3111. void
  3112. dp_rx_pdev_buffers_free(struct dp_pdev *pdev)
  3113. {
  3114. int mac_for_pdev = pdev->lmac_id;
  3115. struct dp_soc *soc = pdev->soc;
  3116. struct rx_desc_pool *rx_desc_pool;
  3117. rx_desc_pool = &soc->rx_desc_buf[mac_for_pdev];
  3118. dp_rx_desc_nbuf_free(soc, rx_desc_pool);
  3119. dp_rx_buffer_pool_deinit(soc, mac_for_pdev);
  3120. }
  3121. #ifdef DP_RX_SPECIAL_FRAME_NEED
  3122. bool dp_rx_deliver_special_frame(struct dp_soc *soc, struct dp_peer *peer,
  3123. qdf_nbuf_t nbuf, uint32_t frame_mask,
  3124. uint8_t *rx_tlv_hdr)
  3125. {
  3126. uint32_t l2_hdr_offset = 0;
  3127. uint16_t msdu_len = 0;
  3128. uint32_t skip_len;
  3129. l2_hdr_offset =
  3130. hal_rx_msdu_end_l3_hdr_padding_get(soc->hal_soc, rx_tlv_hdr);
  3131. if (qdf_unlikely(qdf_nbuf_is_frag(nbuf))) {
  3132. skip_len = l2_hdr_offset;
  3133. } else {
  3134. msdu_len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
  3135. skip_len = l2_hdr_offset + RX_PKT_TLVS_LEN;
  3136. qdf_nbuf_set_pktlen(nbuf, msdu_len + skip_len);
  3137. }
  3138. QDF_NBUF_CB_RX_NUM_ELEMENTS_IN_LIST(nbuf) = 1;
  3139. dp_rx_set_hdr_pad(nbuf, l2_hdr_offset);
  3140. qdf_nbuf_pull_head(nbuf, skip_len);
  3141. if (dp_rx_is_special_frame(nbuf, frame_mask)) {
  3142. qdf_nbuf_set_exc_frame(nbuf, 1);
  3143. dp_rx_deliver_to_stack(soc, peer->vdev, peer,
  3144. nbuf, NULL);
  3145. return true;
  3146. }
  3147. return false;
  3148. }
  3149. #endif