dp_rx.c 96 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527
  1. /*
  2. * Copyright (c) 2016-2021 The Linux Foundation. All rights reserved.
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for
  5. * any purpose with or without fee is hereby granted, provided that the
  6. * above copyright notice and this permission notice appear in all
  7. * copies.
  8. *
  9. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
  10. * WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
  11. * WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
  12. * AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
  13. * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
  14. * PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
  15. * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
  16. * PERFORMANCE OF THIS SOFTWARE.
  17. */
  18. #include "hal_hw_headers.h"
  19. #include "dp_types.h"
  20. #include "dp_rx.h"
  21. #include "dp_peer.h"
  22. #include "hal_rx.h"
  23. #include "hal_api.h"
  24. #include "qdf_nbuf.h"
  25. #ifdef MESH_MODE_SUPPORT
  26. #include "if_meta_hdr.h"
  27. #endif
  28. #include "dp_internal.h"
  29. #include "dp_rx_mon.h"
  30. #include "dp_ipa.h"
  31. #ifdef FEATURE_WDS
  32. #include "dp_txrx_wds.h"
  33. #endif
  34. #include "dp_hist.h"
  35. #include "dp_rx_buffer_pool.h"
  36. #ifndef QCA_HOST_MODE_WIFI_DISABLED
  37. #ifdef ATH_RX_PRI_SAVE
  38. #define DP_RX_TID_SAVE(_nbuf, _tid) \
  39. (qdf_nbuf_set_priority(_nbuf, _tid))
  40. #else
  41. #define DP_RX_TID_SAVE(_nbuf, _tid)
  42. #endif
  43. #ifdef DP_RX_DISABLE_NDI_MDNS_FORWARDING
  44. static inline
  45. bool dp_rx_check_ndi_mdns_fwding(struct dp_peer *ta_peer, qdf_nbuf_t nbuf)
  46. {
  47. if (ta_peer->vdev->opmode == wlan_op_mode_ndi &&
  48. qdf_nbuf_is_ipv6_mdns_pkt(nbuf)) {
  49. DP_STATS_INC(ta_peer, rx.intra_bss.mdns_no_fwd, 1);
  50. return false;
  51. }
  52. return true;
  53. }
  54. #else
  55. static inline
  56. bool dp_rx_check_ndi_mdns_fwding(struct dp_peer *ta_peer, qdf_nbuf_t nbuf)
  57. {
  58. return true;
  59. }
  60. #endif
  61. static inline bool dp_rx_check_ap_bridge(struct dp_vdev *vdev)
  62. {
  63. return vdev->ap_bridge_enabled;
  64. }
  65. #endif /* QCA_HOST_MODE_WIFI_DISABLED */
  66. #ifdef DUP_RX_DESC_WAR
  67. void dp_rx_dump_info_and_assert(struct dp_soc *soc,
  68. hal_ring_handle_t hal_ring,
  69. hal_ring_desc_t ring_desc,
  70. struct dp_rx_desc *rx_desc)
  71. {
  72. void *hal_soc = soc->hal_soc;
  73. hal_srng_dump_ring_desc(hal_soc, hal_ring, ring_desc);
  74. dp_rx_desc_dump(rx_desc);
  75. }
  76. #else
  77. void dp_rx_dump_info_and_assert(struct dp_soc *soc,
  78. hal_ring_handle_t hal_ring_hdl,
  79. hal_ring_desc_t ring_desc,
  80. struct dp_rx_desc *rx_desc)
  81. {
  82. hal_soc_handle_t hal_soc = soc->hal_soc;
  83. dp_rx_desc_dump(rx_desc);
  84. hal_srng_dump_ring_desc(hal_soc, hal_ring_hdl, ring_desc);
  85. hal_srng_dump_ring(hal_soc, hal_ring_hdl);
  86. qdf_assert_always(0);
  87. }
  88. #endif
  89. #ifndef QCA_HOST_MODE_WIFI_DISABLED
  90. #ifdef RX_DESC_SANITY_WAR
  91. static inline
  92. QDF_STATUS dp_rx_desc_sanity(struct dp_soc *soc, hal_soc_handle_t hal_soc,
  93. hal_ring_handle_t hal_ring_hdl,
  94. hal_ring_desc_t ring_desc,
  95. struct dp_rx_desc *rx_desc)
  96. {
  97. uint8_t return_buffer_manager;
  98. if (qdf_unlikely(!rx_desc)) {
  99. /*
  100. * This is an unlikely case where the cookie obtained
  101. * from the ring_desc is invalid and hence we are not
  102. * able to find the corresponding rx_desc
  103. */
  104. goto fail;
  105. }
  106. return_buffer_manager = hal_rx_ret_buf_manager_get(ring_desc);
  107. if (qdf_unlikely(!(return_buffer_manager == HAL_RX_BUF_RBM_SW1_BM ||
  108. return_buffer_manager == HAL_RX_BUF_RBM_SW3_BM))) {
  109. goto fail;
  110. }
  111. return QDF_STATUS_SUCCESS;
  112. fail:
  113. DP_STATS_INC(soc, rx.err.invalid_cookie, 1);
  114. dp_err("Ring Desc:");
  115. hal_srng_dump_ring_desc(hal_soc, hal_ring_hdl,
  116. ring_desc);
  117. return QDF_STATUS_E_NULL_VALUE;
  118. }
  119. #else
  120. static inline
  121. QDF_STATUS dp_rx_desc_sanity(struct dp_soc *soc, hal_soc_handle_t hal_soc,
  122. hal_ring_handle_t hal_ring_hdl,
  123. hal_ring_desc_t ring_desc,
  124. struct dp_rx_desc *rx_desc)
  125. {
  126. return QDF_STATUS_SUCCESS;
  127. }
  128. #endif
  129. #endif /* QCA_HOST_MODE_WIFI_DISABLED */
  130. /**
  131. * dp_pdev_frag_alloc_and_map() - Allocate frag for desc buffer and map
  132. *
  133. * @dp_soc: struct dp_soc *
  134. * @nbuf_frag_info_t: nbuf frag info
  135. * @dp_pdev: struct dp_pdev *
  136. * @rx_desc_pool: Rx desc pool
  137. *
  138. * Return: QDF_STATUS
  139. */
  140. #ifdef DP_RX_MON_MEM_FRAG
  141. static inline QDF_STATUS
  142. dp_pdev_frag_alloc_and_map(struct dp_soc *dp_soc,
  143. struct dp_rx_nbuf_frag_info *nbuf_frag_info_t,
  144. struct dp_pdev *dp_pdev,
  145. struct rx_desc_pool *rx_desc_pool)
  146. {
  147. QDF_STATUS ret = QDF_STATUS_E_FAILURE;
  148. (nbuf_frag_info_t->virt_addr).vaddr =
  149. qdf_frag_alloc(rx_desc_pool->buf_size);
  150. if (!((nbuf_frag_info_t->virt_addr).vaddr)) {
  151. dp_err("Frag alloc failed");
  152. DP_STATS_INC(dp_pdev, replenish.frag_alloc_fail, 1);
  153. return QDF_STATUS_E_NOMEM;
  154. }
  155. ret = qdf_mem_map_page(dp_soc->osdev,
  156. (nbuf_frag_info_t->virt_addr).vaddr,
  157. QDF_DMA_FROM_DEVICE,
  158. rx_desc_pool->buf_size,
  159. &nbuf_frag_info_t->paddr);
  160. if (qdf_unlikely(QDF_IS_STATUS_ERROR(ret))) {
  161. qdf_frag_free((nbuf_frag_info_t->virt_addr).vaddr);
  162. dp_err("Frag map failed");
  163. DP_STATS_INC(dp_pdev, replenish.map_err, 1);
  164. return QDF_STATUS_E_FAULT;
  165. }
  166. return QDF_STATUS_SUCCESS;
  167. }
  168. #else
  169. static inline QDF_STATUS
  170. dp_pdev_frag_alloc_and_map(struct dp_soc *dp_soc,
  171. struct dp_rx_nbuf_frag_info *nbuf_frag_info_t,
  172. struct dp_pdev *dp_pdev,
  173. struct rx_desc_pool *rx_desc_pool)
  174. {
  175. return QDF_STATUS_SUCCESS;
  176. }
  177. #endif /* DP_RX_MON_MEM_FRAG */
  178. /**
  179. * dp_pdev_nbuf_alloc_and_map() - Allocate nbuf for desc buffer and map
  180. *
  181. * @dp_soc: struct dp_soc *
  182. * @mac_id: Mac id
  183. * @num_entries_avail: num_entries_avail
  184. * @nbuf_frag_info_t: nbuf frag info
  185. * @dp_pdev: struct dp_pdev *
  186. * @rx_desc_pool: Rx desc pool
  187. *
  188. * Return: QDF_STATUS
  189. */
  190. static inline QDF_STATUS
  191. dp_pdev_nbuf_alloc_and_map_replenish(struct dp_soc *dp_soc,
  192. uint32_t mac_id,
  193. uint32_t num_entries_avail,
  194. struct dp_rx_nbuf_frag_info *nbuf_frag_info_t,
  195. struct dp_pdev *dp_pdev,
  196. struct rx_desc_pool *rx_desc_pool)
  197. {
  198. QDF_STATUS ret = QDF_STATUS_E_FAILURE;
  199. (nbuf_frag_info_t->virt_addr).nbuf =
  200. dp_rx_buffer_pool_nbuf_alloc(dp_soc,
  201. mac_id,
  202. rx_desc_pool,
  203. num_entries_avail);
  204. if (!((nbuf_frag_info_t->virt_addr).nbuf)) {
  205. dp_err("nbuf alloc failed");
  206. DP_STATS_INC(dp_pdev, replenish.nbuf_alloc_fail, 1);
  207. return QDF_STATUS_E_NOMEM;
  208. }
  209. ret = dp_rx_buffer_pool_nbuf_map(dp_soc, rx_desc_pool,
  210. nbuf_frag_info_t);
  211. if (qdf_unlikely(QDF_IS_STATUS_ERROR(ret))) {
  212. dp_rx_buffer_pool_nbuf_free(dp_soc,
  213. (nbuf_frag_info_t->virt_addr).nbuf, mac_id);
  214. dp_err("nbuf map failed");
  215. DP_STATS_INC(dp_pdev, replenish.map_err, 1);
  216. return QDF_STATUS_E_FAULT;
  217. }
  218. nbuf_frag_info_t->paddr =
  219. qdf_nbuf_get_frag_paddr((nbuf_frag_info_t->virt_addr).nbuf, 0);
  220. dp_ipa_handle_rx_buf_smmu_mapping(dp_soc,
  221. (qdf_nbuf_t)((nbuf_frag_info_t->virt_addr).nbuf),
  222. rx_desc_pool->buf_size,
  223. true);
  224. ret = dp_check_paddr(dp_soc, &((nbuf_frag_info_t->virt_addr).nbuf),
  225. &nbuf_frag_info_t->paddr,
  226. rx_desc_pool);
  227. if (ret == QDF_STATUS_E_FAILURE) {
  228. DP_STATS_INC(dp_pdev, replenish.x86_fail, 1);
  229. return QDF_STATUS_E_ADDRNOTAVAIL;
  230. }
  231. return QDF_STATUS_SUCCESS;
  232. }
  233. /*
  234. * dp_rx_buffers_replenish() - replenish rxdma ring with rx nbufs
  235. * called during dp rx initialization
  236. * and at the end of dp_rx_process.
  237. *
  238. * @soc: core txrx main context
  239. * @mac_id: mac_id which is one of 3 mac_ids
  240. * @dp_rxdma_srng: dp rxdma circular ring
  241. * @rx_desc_pool: Pointer to free Rx descriptor pool
  242. * @num_req_buffers: number of buffer to be replenished
  243. * @desc_list: list of descs if called from dp_rx_process
  244. * or NULL during dp rx initialization or out of buffer
  245. * interrupt.
  246. * @tail: tail of descs list
  247. * @func_name: name of the caller function
  248. * Return: return success or failure
  249. */
  250. QDF_STATUS __dp_rx_buffers_replenish(struct dp_soc *dp_soc, uint32_t mac_id,
  251. struct dp_srng *dp_rxdma_srng,
  252. struct rx_desc_pool *rx_desc_pool,
  253. uint32_t num_req_buffers,
  254. union dp_rx_desc_list_elem_t **desc_list,
  255. union dp_rx_desc_list_elem_t **tail,
  256. const char *func_name)
  257. {
  258. uint32_t num_alloc_desc;
  259. uint16_t num_desc_to_free = 0;
  260. struct dp_pdev *dp_pdev = dp_get_pdev_for_lmac_id(dp_soc, mac_id);
  261. uint32_t num_entries_avail;
  262. uint32_t count;
  263. int sync_hw_ptr = 1;
  264. struct dp_rx_nbuf_frag_info nbuf_frag_info = {0};
  265. void *rxdma_ring_entry;
  266. union dp_rx_desc_list_elem_t *next;
  267. QDF_STATUS ret;
  268. void *rxdma_srng;
  269. rxdma_srng = dp_rxdma_srng->hal_srng;
  270. if (!rxdma_srng) {
  271. dp_rx_debug("%pK: rxdma srng not initialized", dp_soc);
  272. DP_STATS_INC(dp_pdev, replenish.rxdma_err, num_req_buffers);
  273. return QDF_STATUS_E_FAILURE;
  274. }
  275. dp_rx_debug("%pK: requested %d buffers for replenish",
  276. dp_soc, num_req_buffers);
  277. hal_srng_access_start(dp_soc->hal_soc, rxdma_srng);
  278. num_entries_avail = hal_srng_src_num_avail(dp_soc->hal_soc,
  279. rxdma_srng,
  280. sync_hw_ptr);
  281. dp_rx_debug("%pK: no of available entries in rxdma ring: %d",
  282. dp_soc, num_entries_avail);
  283. if (!(*desc_list) && (num_entries_avail >
  284. ((dp_rxdma_srng->num_entries * 3) / 4))) {
  285. num_req_buffers = num_entries_avail;
  286. } else if (num_entries_avail < num_req_buffers) {
  287. num_desc_to_free = num_req_buffers - num_entries_avail;
  288. num_req_buffers = num_entries_avail;
  289. }
  290. if (qdf_unlikely(!num_req_buffers)) {
  291. num_desc_to_free = num_req_buffers;
  292. hal_srng_access_end(dp_soc->hal_soc, rxdma_srng);
  293. goto free_descs;
  294. }
  295. /*
  296. * if desc_list is NULL, allocate the descs from freelist
  297. */
  298. if (!(*desc_list)) {
  299. num_alloc_desc = dp_rx_get_free_desc_list(dp_soc, mac_id,
  300. rx_desc_pool,
  301. num_req_buffers,
  302. desc_list,
  303. tail);
  304. if (!num_alloc_desc) {
  305. dp_rx_err("%pK: no free rx_descs in freelist", dp_soc);
  306. DP_STATS_INC(dp_pdev, err.desc_alloc_fail,
  307. num_req_buffers);
  308. hal_srng_access_end(dp_soc->hal_soc, rxdma_srng);
  309. return QDF_STATUS_E_NOMEM;
  310. }
  311. dp_rx_debug("%pK: %d rx desc allocated", dp_soc, num_alloc_desc);
  312. num_req_buffers = num_alloc_desc;
  313. }
  314. count = 0;
  315. dp_rx_refill_buff_pool_lock(dp_soc);
  316. while (count < num_req_buffers) {
  317. /* Flag is set while pdev rx_desc_pool initialization */
  318. if (qdf_unlikely(rx_desc_pool->rx_mon_dest_frag_enable))
  319. ret = dp_pdev_frag_alloc_and_map(dp_soc,
  320. &nbuf_frag_info,
  321. dp_pdev,
  322. rx_desc_pool);
  323. else
  324. ret = dp_pdev_nbuf_alloc_and_map_replenish(dp_soc,
  325. mac_id,
  326. num_entries_avail, &nbuf_frag_info,
  327. dp_pdev, rx_desc_pool);
  328. if (qdf_unlikely(QDF_IS_STATUS_ERROR(ret))) {
  329. if (qdf_unlikely(ret == QDF_STATUS_E_FAULT))
  330. continue;
  331. break;
  332. }
  333. count++;
  334. rxdma_ring_entry = hal_srng_src_get_next(dp_soc->hal_soc,
  335. rxdma_srng);
  336. qdf_assert_always(rxdma_ring_entry);
  337. next = (*desc_list)->next;
  338. /* Flag is set while pdev rx_desc_pool initialization */
  339. if (qdf_unlikely(rx_desc_pool->rx_mon_dest_frag_enable))
  340. dp_rx_desc_frag_prep(&((*desc_list)->rx_desc),
  341. &nbuf_frag_info);
  342. else
  343. dp_rx_desc_prep(&((*desc_list)->rx_desc),
  344. &nbuf_frag_info);
  345. /* rx_desc.in_use should be zero at this time*/
  346. qdf_assert_always((*desc_list)->rx_desc.in_use == 0);
  347. (*desc_list)->rx_desc.in_use = 1;
  348. (*desc_list)->rx_desc.in_err_state = 0;
  349. dp_rx_desc_update_dbg_info(&(*desc_list)->rx_desc,
  350. func_name, RX_DESC_REPLENISHED);
  351. dp_verbose_debug("rx_netbuf=%pK, paddr=0x%llx, cookie=%d",
  352. nbuf_frag_info.virt_addr.nbuf,
  353. (unsigned long long)(nbuf_frag_info.paddr),
  354. (*desc_list)->rx_desc.cookie);
  355. hal_rxdma_buff_addr_info_set(rxdma_ring_entry,
  356. nbuf_frag_info.paddr,
  357. (*desc_list)->rx_desc.cookie,
  358. rx_desc_pool->owner);
  359. *desc_list = next;
  360. }
  361. dp_rx_refill_buff_pool_unlock(dp_soc);
  362. hal_srng_access_end(dp_soc->hal_soc, rxdma_srng);
  363. dp_rx_schedule_refill_thread(dp_soc);
  364. dp_verbose_debug("replenished buffers %d, rx desc added back to free list %u",
  365. count, num_desc_to_free);
  366. /* No need to count the number of bytes received during replenish.
  367. * Therefore set replenish.pkts.bytes as 0.
  368. */
  369. DP_STATS_INC_PKT(dp_pdev, replenish.pkts, count, 0);
  370. free_descs:
  371. DP_STATS_INC(dp_pdev, buf_freelist, num_desc_to_free);
  372. /*
  373. * add any available free desc back to the free list
  374. */
  375. if (*desc_list)
  376. dp_rx_add_desc_list_to_free_list(dp_soc, desc_list, tail,
  377. mac_id, rx_desc_pool);
  378. return QDF_STATUS_SUCCESS;
  379. }
  380. /*
  381. * dp_rx_deliver_raw() - process RAW mode pkts and hand over the
  382. * pkts to RAW mode simulation to
  383. * decapsulate the pkt.
  384. *
  385. * @vdev: vdev on which RAW mode is enabled
  386. * @nbuf_list: list of RAW pkts to process
  387. * @peer: peer object from which the pkt is rx
  388. *
  389. * Return: void
  390. */
  391. void
  392. dp_rx_deliver_raw(struct dp_vdev *vdev, qdf_nbuf_t nbuf_list,
  393. struct dp_peer *peer)
  394. {
  395. qdf_nbuf_t deliver_list_head = NULL;
  396. qdf_nbuf_t deliver_list_tail = NULL;
  397. qdf_nbuf_t nbuf;
  398. nbuf = nbuf_list;
  399. while (nbuf) {
  400. qdf_nbuf_t next = qdf_nbuf_next(nbuf);
  401. DP_RX_LIST_APPEND(deliver_list_head, deliver_list_tail, nbuf);
  402. DP_STATS_INC(vdev->pdev, rx_raw_pkts, 1);
  403. DP_STATS_INC_PKT(peer, rx.raw, 1, qdf_nbuf_len(nbuf));
  404. /*
  405. * reset the chfrag_start and chfrag_end bits in nbuf cb
  406. * as this is a non-amsdu pkt and RAW mode simulation expects
  407. * these bit s to be 0 for non-amsdu pkt.
  408. */
  409. if (qdf_nbuf_is_rx_chfrag_start(nbuf) &&
  410. qdf_nbuf_is_rx_chfrag_end(nbuf)) {
  411. qdf_nbuf_set_rx_chfrag_start(nbuf, 0);
  412. qdf_nbuf_set_rx_chfrag_end(nbuf, 0);
  413. }
  414. nbuf = next;
  415. }
  416. vdev->osif_rsim_rx_decap(vdev->osif_vdev, &deliver_list_head,
  417. &deliver_list_tail, peer->mac_addr.raw);
  418. vdev->osif_rx(vdev->osif_vdev, deliver_list_head);
  419. }
  420. #ifndef QCA_HOST_MODE_WIFI_DISABLED
  421. #ifndef FEATURE_WDS
  422. static void
  423. dp_rx_da_learn(struct dp_soc *soc,
  424. uint8_t *rx_tlv_hdr,
  425. struct dp_peer *ta_peer,
  426. qdf_nbuf_t nbuf)
  427. {
  428. }
  429. #endif
  430. /*
  431. * dp_rx_intrabss_fwd() - Implements the Intra-BSS forwarding logic
  432. *
  433. * @soc: core txrx main context
  434. * @ta_peer : source peer entry
  435. * @rx_tlv_hdr : start address of rx tlvs
  436. * @nbuf : nbuf that has to be intrabss forwarded
  437. *
  438. * Return: bool: true if it is forwarded else false
  439. */
  440. static bool
  441. dp_rx_intrabss_fwd(struct dp_soc *soc,
  442. struct dp_peer *ta_peer,
  443. uint8_t *rx_tlv_hdr,
  444. qdf_nbuf_t nbuf,
  445. struct hal_rx_msdu_metadata msdu_metadata)
  446. {
  447. uint16_t len;
  448. uint8_t is_frag;
  449. uint16_t da_peer_id = HTT_INVALID_PEER;
  450. struct dp_peer *da_peer = NULL;
  451. bool is_da_bss_peer = false;
  452. struct dp_ast_entry *ast_entry;
  453. qdf_nbuf_t nbuf_copy;
  454. uint8_t tid = qdf_nbuf_get_tid_val(nbuf);
  455. uint8_t ring_id = QDF_NBUF_CB_RX_CTX_ID(nbuf);
  456. struct cdp_tid_rx_stats *tid_stats = &ta_peer->vdev->pdev->stats.
  457. tid_stats.tid_rx_stats[ring_id][tid];
  458. /* check if the destination peer is available in peer table
  459. * and also check if the source peer and destination peer
  460. * belong to the same vap and destination peer is not bss peer.
  461. */
  462. if ((qdf_nbuf_is_da_valid(nbuf) && !qdf_nbuf_is_da_mcbc(nbuf))) {
  463. ast_entry = soc->ast_table[msdu_metadata.da_idx];
  464. if (!ast_entry)
  465. return false;
  466. if (ast_entry->type == CDP_TXRX_AST_TYPE_DA) {
  467. ast_entry->is_active = TRUE;
  468. return false;
  469. }
  470. da_peer_id = ast_entry->peer_id;
  471. if (da_peer_id == HTT_INVALID_PEER)
  472. return false;
  473. /* TA peer cannot be same as peer(DA) on which AST is present
  474. * this indicates a change in topology and that AST entries
  475. * are yet to be updated.
  476. */
  477. if (da_peer_id == ta_peer->peer_id)
  478. return false;
  479. if (ast_entry->vdev_id != ta_peer->vdev->vdev_id)
  480. return false;
  481. da_peer = dp_peer_get_ref_by_id(soc, da_peer_id,
  482. DP_MOD_ID_RX);
  483. if (!da_peer)
  484. return false;
  485. is_da_bss_peer = da_peer->bss_peer;
  486. dp_peer_unref_delete(da_peer, DP_MOD_ID_RX);
  487. if (!is_da_bss_peer) {
  488. len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
  489. is_frag = qdf_nbuf_is_frag(nbuf);
  490. memset(nbuf->cb, 0x0, sizeof(nbuf->cb));
  491. /* If the source or destination peer in the isolation
  492. * list then dont forward instead push to bridge stack.
  493. */
  494. if (dp_get_peer_isolation(ta_peer) ||
  495. dp_get_peer_isolation(da_peer))
  496. return false;
  497. /* linearize the nbuf just before we send to
  498. * dp_tx_send()
  499. */
  500. if (qdf_unlikely(is_frag)) {
  501. if (qdf_nbuf_linearize(nbuf) == -ENOMEM)
  502. return false;
  503. nbuf = qdf_nbuf_unshare(nbuf);
  504. if (!nbuf) {
  505. DP_STATS_INC_PKT(ta_peer,
  506. rx.intra_bss.fail,
  507. 1,
  508. len);
  509. /* return true even though the pkt is
  510. * not forwarded. Basically skb_unshare
  511. * failed and we want to continue with
  512. * next nbuf.
  513. */
  514. tid_stats->fail_cnt[INTRABSS_DROP]++;
  515. return true;
  516. }
  517. }
  518. if (!dp_tx_send((struct cdp_soc_t *)soc,
  519. ta_peer->vdev->vdev_id, nbuf)) {
  520. DP_STATS_INC_PKT(ta_peer, rx.intra_bss.pkts, 1,
  521. len);
  522. return true;
  523. } else {
  524. DP_STATS_INC_PKT(ta_peer, rx.intra_bss.fail, 1,
  525. len);
  526. tid_stats->fail_cnt[INTRABSS_DROP]++;
  527. return false;
  528. }
  529. }
  530. }
  531. /* if it is a broadcast pkt (eg: ARP) and it is not its own
  532. * source, then clone the pkt and send the cloned pkt for
  533. * intra BSS forwarding and original pkt up the network stack
  534. * Note: how do we handle multicast pkts. do we forward
  535. * all multicast pkts as is or let a higher layer module
  536. * like igmpsnoop decide whether to forward or not with
  537. * Mcast enhancement.
  538. */
  539. else if (qdf_unlikely((qdf_nbuf_is_da_mcbc(nbuf) &&
  540. !ta_peer->bss_peer))) {
  541. if (!dp_rx_check_ndi_mdns_fwding(ta_peer, nbuf))
  542. goto end;
  543. /* If the source peer in the isolation list
  544. * then dont forward instead push to bridge stack
  545. */
  546. if (dp_get_peer_isolation(ta_peer))
  547. goto end;
  548. nbuf_copy = qdf_nbuf_copy(nbuf);
  549. if (!nbuf_copy)
  550. goto end;
  551. len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
  552. memset(nbuf_copy->cb, 0x0, sizeof(nbuf_copy->cb));
  553. /* Set cb->ftype to intrabss FWD */
  554. qdf_nbuf_set_tx_ftype(nbuf_copy, CB_FTYPE_INTRABSS_FWD);
  555. if (dp_tx_send((struct cdp_soc_t *)soc,
  556. ta_peer->vdev->vdev_id, nbuf_copy)) {
  557. DP_STATS_INC_PKT(ta_peer, rx.intra_bss.fail, 1, len);
  558. tid_stats->fail_cnt[INTRABSS_DROP]++;
  559. qdf_nbuf_free(nbuf_copy);
  560. } else {
  561. DP_STATS_INC_PKT(ta_peer, rx.intra_bss.pkts, 1, len);
  562. tid_stats->intrabss_cnt++;
  563. }
  564. }
  565. end:
  566. /* return false as we have to still send the original pkt
  567. * up the stack
  568. */
  569. return false;
  570. }
  571. #endif /* QCA_HOST_MODE_WIFI_DISABLED */
  572. #ifdef MESH_MODE_SUPPORT
  573. /**
  574. * dp_rx_fill_mesh_stats() - Fills the mesh per packet receive stats
  575. *
  576. * @vdev: DP Virtual device handle
  577. * @nbuf: Buffer pointer
  578. * @rx_tlv_hdr: start of rx tlv header
  579. * @peer: pointer to peer
  580. *
  581. * This function allocated memory for mesh receive stats and fill the
  582. * required stats. Stores the memory address in skb cb.
  583. *
  584. * Return: void
  585. */
  586. void dp_rx_fill_mesh_stats(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
  587. uint8_t *rx_tlv_hdr, struct dp_peer *peer)
  588. {
  589. struct mesh_recv_hdr_s *rx_info = NULL;
  590. uint32_t pkt_type;
  591. uint32_t nss;
  592. uint32_t rate_mcs;
  593. uint32_t bw;
  594. uint8_t primary_chan_num;
  595. uint32_t center_chan_freq;
  596. struct dp_soc *soc;
  597. /* fill recv mesh stats */
  598. rx_info = qdf_mem_malloc(sizeof(struct mesh_recv_hdr_s));
  599. /* upper layers are resposible to free this memory */
  600. if (!rx_info) {
  601. dp_rx_err("%pK: Memory allocation failed for mesh rx stats",
  602. vdev->pdev->soc);
  603. DP_STATS_INC(vdev->pdev, mesh_mem_alloc, 1);
  604. return;
  605. }
  606. rx_info->rs_flags = MESH_RXHDR_VER1;
  607. if (qdf_nbuf_is_rx_chfrag_start(nbuf))
  608. rx_info->rs_flags |= MESH_RX_FIRST_MSDU;
  609. if (qdf_nbuf_is_rx_chfrag_end(nbuf))
  610. rx_info->rs_flags |= MESH_RX_LAST_MSDU;
  611. if (hal_rx_attn_msdu_get_is_decrypted(rx_tlv_hdr)) {
  612. rx_info->rs_flags |= MESH_RX_DECRYPTED;
  613. rx_info->rs_keyix = hal_rx_msdu_get_keyid(rx_tlv_hdr);
  614. if (vdev->osif_get_key)
  615. vdev->osif_get_key(vdev->osif_vdev,
  616. &rx_info->rs_decryptkey[0],
  617. &peer->mac_addr.raw[0],
  618. rx_info->rs_keyix);
  619. }
  620. rx_info->rs_snr = peer->stats.rx.snr;
  621. rx_info->rs_rssi = rx_info->rs_snr + DP_DEFAULT_NOISEFLOOR;
  622. soc = vdev->pdev->soc;
  623. primary_chan_num = hal_rx_msdu_start_get_freq(rx_tlv_hdr);
  624. center_chan_freq = hal_rx_msdu_start_get_freq(rx_tlv_hdr) >> 16;
  625. if (soc->cdp_soc.ol_ops && soc->cdp_soc.ol_ops->freq_to_band) {
  626. rx_info->rs_band = soc->cdp_soc.ol_ops->freq_to_band(
  627. soc->ctrl_psoc,
  628. vdev->pdev->pdev_id,
  629. center_chan_freq);
  630. }
  631. rx_info->rs_channel = primary_chan_num;
  632. pkt_type = hal_rx_msdu_start_get_pkt_type(rx_tlv_hdr);
  633. rate_mcs = hal_rx_msdu_start_rate_mcs_get(rx_tlv_hdr);
  634. bw = hal_rx_msdu_start_bw_get(rx_tlv_hdr);
  635. nss = hal_rx_msdu_start_nss_get(vdev->pdev->soc->hal_soc, rx_tlv_hdr);
  636. rx_info->rs_ratephy1 = rate_mcs | (nss << 0x8) | (pkt_type << 16) |
  637. (bw << 24);
  638. qdf_nbuf_set_rx_fctx_type(nbuf, (void *)rx_info, CB_FTYPE_MESH_RX_INFO);
  639. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO_MED,
  640. FL("Mesh rx stats: flags %x, rssi %x, chn %x, rate %x, kix %x, snr %x"),
  641. rx_info->rs_flags,
  642. rx_info->rs_rssi,
  643. rx_info->rs_channel,
  644. rx_info->rs_ratephy1,
  645. rx_info->rs_keyix,
  646. rx_info->rs_snr);
  647. }
  648. /**
  649. * dp_rx_filter_mesh_packets() - Filters mesh unwanted packets
  650. *
  651. * @vdev: DP Virtual device handle
  652. * @nbuf: Buffer pointer
  653. * @rx_tlv_hdr: start of rx tlv header
  654. *
  655. * This checks if the received packet is matching any filter out
  656. * catogery and and drop the packet if it matches.
  657. *
  658. * Return: status(0 indicates drop, 1 indicate to no drop)
  659. */
  660. QDF_STATUS dp_rx_filter_mesh_packets(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
  661. uint8_t *rx_tlv_hdr)
  662. {
  663. union dp_align_mac_addr mac_addr;
  664. struct dp_soc *soc = vdev->pdev->soc;
  665. if (qdf_unlikely(vdev->mesh_rx_filter)) {
  666. if (vdev->mesh_rx_filter & MESH_FILTER_OUT_FROMDS)
  667. if (hal_rx_mpdu_get_fr_ds(soc->hal_soc,
  668. rx_tlv_hdr))
  669. return QDF_STATUS_SUCCESS;
  670. if (vdev->mesh_rx_filter & MESH_FILTER_OUT_TODS)
  671. if (hal_rx_mpdu_get_to_ds(soc->hal_soc,
  672. rx_tlv_hdr))
  673. return QDF_STATUS_SUCCESS;
  674. if (vdev->mesh_rx_filter & MESH_FILTER_OUT_NODS)
  675. if (!hal_rx_mpdu_get_fr_ds(soc->hal_soc,
  676. rx_tlv_hdr) &&
  677. !hal_rx_mpdu_get_to_ds(soc->hal_soc,
  678. rx_tlv_hdr))
  679. return QDF_STATUS_SUCCESS;
  680. if (vdev->mesh_rx_filter & MESH_FILTER_OUT_RA) {
  681. if (hal_rx_mpdu_get_addr1(soc->hal_soc,
  682. rx_tlv_hdr,
  683. &mac_addr.raw[0]))
  684. return QDF_STATUS_E_FAILURE;
  685. if (!qdf_mem_cmp(&mac_addr.raw[0],
  686. &vdev->mac_addr.raw[0],
  687. QDF_MAC_ADDR_SIZE))
  688. return QDF_STATUS_SUCCESS;
  689. }
  690. if (vdev->mesh_rx_filter & MESH_FILTER_OUT_TA) {
  691. if (hal_rx_mpdu_get_addr2(soc->hal_soc,
  692. rx_tlv_hdr,
  693. &mac_addr.raw[0]))
  694. return QDF_STATUS_E_FAILURE;
  695. if (!qdf_mem_cmp(&mac_addr.raw[0],
  696. &vdev->mac_addr.raw[0],
  697. QDF_MAC_ADDR_SIZE))
  698. return QDF_STATUS_SUCCESS;
  699. }
  700. }
  701. return QDF_STATUS_E_FAILURE;
  702. }
  703. #else
  704. void dp_rx_fill_mesh_stats(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
  705. uint8_t *rx_tlv_hdr, struct dp_peer *peer)
  706. {
  707. }
  708. QDF_STATUS dp_rx_filter_mesh_packets(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
  709. uint8_t *rx_tlv_hdr)
  710. {
  711. return QDF_STATUS_E_FAILURE;
  712. }
  713. #endif
  714. #ifdef FEATURE_NAC_RSSI
  715. /**
  716. * dp_rx_nac_filter(): Function to perform filtering of non-associated
  717. * clients
  718. * @pdev: DP pdev handle
  719. * @rx_pkt_hdr: Rx packet Header
  720. *
  721. * return: dp_vdev*
  722. */
  723. static
  724. struct dp_vdev *dp_rx_nac_filter(struct dp_pdev *pdev,
  725. uint8_t *rx_pkt_hdr)
  726. {
  727. struct ieee80211_frame *wh;
  728. struct dp_neighbour_peer *peer = NULL;
  729. wh = (struct ieee80211_frame *)rx_pkt_hdr;
  730. if ((wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) != IEEE80211_FC1_DIR_TODS)
  731. return NULL;
  732. qdf_spin_lock_bh(&pdev->neighbour_peer_mutex);
  733. TAILQ_FOREACH(peer, &pdev->neighbour_peers_list,
  734. neighbour_peer_list_elem) {
  735. if (qdf_mem_cmp(&peer->neighbour_peers_macaddr.raw[0],
  736. wh->i_addr2, QDF_MAC_ADDR_SIZE) == 0) {
  737. dp_rx_debug("%pK: NAC configuration matched for mac-%2x:%2x:%2x:%2x:%2x:%2x",
  738. pdev->soc,
  739. peer->neighbour_peers_macaddr.raw[0],
  740. peer->neighbour_peers_macaddr.raw[1],
  741. peer->neighbour_peers_macaddr.raw[2],
  742. peer->neighbour_peers_macaddr.raw[3],
  743. peer->neighbour_peers_macaddr.raw[4],
  744. peer->neighbour_peers_macaddr.raw[5]);
  745. qdf_spin_unlock_bh(&pdev->neighbour_peer_mutex);
  746. return pdev->monitor_vdev;
  747. }
  748. }
  749. qdf_spin_unlock_bh(&pdev->neighbour_peer_mutex);
  750. return NULL;
  751. }
  752. /**
  753. * dp_rx_process_invalid_peer(): Function to pass invalid peer list to umac
  754. * @soc: DP SOC handle
  755. * @mpdu: mpdu for which peer is invalid
  756. * @mac_id: mac_id which is one of 3 mac_ids(Assuming mac_id and
  757. * pool_id has same mapping)
  758. *
  759. * return: integer type
  760. */
  761. uint8_t dp_rx_process_invalid_peer(struct dp_soc *soc, qdf_nbuf_t mpdu,
  762. uint8_t mac_id)
  763. {
  764. struct dp_invalid_peer_msg msg;
  765. struct dp_vdev *vdev = NULL;
  766. struct dp_pdev *pdev = NULL;
  767. struct ieee80211_frame *wh;
  768. qdf_nbuf_t curr_nbuf, next_nbuf;
  769. uint8_t *rx_tlv_hdr = qdf_nbuf_data(mpdu);
  770. uint8_t *rx_pkt_hdr = hal_rx_pkt_hdr_get(rx_tlv_hdr);
  771. rx_pkt_hdr = hal_rx_pkt_hdr_get(rx_tlv_hdr);
  772. if (!HAL_IS_DECAP_FORMAT_RAW(soc->hal_soc, rx_tlv_hdr)) {
  773. dp_rx_debug("%pK: Drop decapped frames", soc);
  774. goto free;
  775. }
  776. wh = (struct ieee80211_frame *)rx_pkt_hdr;
  777. if (!DP_FRAME_IS_DATA(wh)) {
  778. dp_rx_debug("%pK: NAWDS valid only for data frames", soc);
  779. goto free;
  780. }
  781. if (qdf_nbuf_len(mpdu) < sizeof(struct ieee80211_frame)) {
  782. dp_rx_err("%pK: Invalid nbuf length", soc);
  783. goto free;
  784. }
  785. pdev = dp_get_pdev_for_lmac_id(soc, mac_id);
  786. if (!pdev || qdf_unlikely(pdev->is_pdev_down)) {
  787. dp_rx_err("%pK: PDEV %s", soc, !pdev ? "not found" : "down");
  788. goto free;
  789. }
  790. if (pdev->filter_neighbour_peers) {
  791. /* Next Hop scenario not yet handle */
  792. vdev = dp_rx_nac_filter(pdev, rx_pkt_hdr);
  793. if (vdev) {
  794. dp_rx_mon_deliver(soc, pdev->pdev_id,
  795. pdev->invalid_peer_head_msdu,
  796. pdev->invalid_peer_tail_msdu);
  797. pdev->invalid_peer_head_msdu = NULL;
  798. pdev->invalid_peer_tail_msdu = NULL;
  799. return 0;
  800. }
  801. }
  802. TAILQ_FOREACH(vdev, &pdev->vdev_list, vdev_list_elem) {
  803. if (qdf_mem_cmp(wh->i_addr1, vdev->mac_addr.raw,
  804. QDF_MAC_ADDR_SIZE) == 0) {
  805. goto out;
  806. }
  807. }
  808. if (!vdev) {
  809. dp_rx_err("%pK: VDEV not found", soc);
  810. goto free;
  811. }
  812. out:
  813. msg.wh = wh;
  814. qdf_nbuf_pull_head(mpdu, RX_PKT_TLVS_LEN);
  815. msg.nbuf = mpdu;
  816. msg.vdev_id = vdev->vdev_id;
  817. /*
  818. * NOTE: Only valid for HKv1.
  819. * If smart monitor mode is enabled on RE, we are getting invalid
  820. * peer frames with RA as STA mac of RE and the TA not matching
  821. * with any NAC list or the the BSSID.Such frames need to dropped
  822. * in order to avoid HM_WDS false addition.
  823. */
  824. if (pdev->soc->cdp_soc.ol_ops->rx_invalid_peer) {
  825. if (!soc->hw_nac_monitor_support &&
  826. pdev->filter_neighbour_peers &&
  827. vdev->opmode == wlan_op_mode_sta) {
  828. dp_rx_warn("%pK: Drop inv peer pkts with STA RA:%pm",
  829. soc, wh->i_addr1);
  830. goto free;
  831. }
  832. pdev->soc->cdp_soc.ol_ops->rx_invalid_peer(
  833. (struct cdp_ctrl_objmgr_psoc *)soc->ctrl_psoc,
  834. pdev->pdev_id, &msg);
  835. }
  836. free:
  837. /* Drop and free packet */
  838. curr_nbuf = mpdu;
  839. while (curr_nbuf) {
  840. next_nbuf = qdf_nbuf_next(curr_nbuf);
  841. qdf_nbuf_free(curr_nbuf);
  842. curr_nbuf = next_nbuf;
  843. }
  844. return 0;
  845. }
  846. /**
  847. * dp_rx_process_invalid_peer_wrapper(): Function to wrap invalid peer handler
  848. * @soc: DP SOC handle
  849. * @mpdu: mpdu for which peer is invalid
  850. * @mpdu_done: if an mpdu is completed
  851. * @mac_id: mac_id which is one of 3 mac_ids(Assuming mac_id and
  852. * pool_id has same mapping)
  853. *
  854. * return: integer type
  855. */
  856. void dp_rx_process_invalid_peer_wrapper(struct dp_soc *soc,
  857. qdf_nbuf_t mpdu, bool mpdu_done,
  858. uint8_t mac_id)
  859. {
  860. /* Only trigger the process when mpdu is completed */
  861. if (mpdu_done)
  862. dp_rx_process_invalid_peer(soc, mpdu, mac_id);
  863. }
  864. #else
  865. uint8_t dp_rx_process_invalid_peer(struct dp_soc *soc, qdf_nbuf_t mpdu,
  866. uint8_t mac_id)
  867. {
  868. qdf_nbuf_t curr_nbuf, next_nbuf;
  869. struct dp_pdev *pdev;
  870. struct dp_vdev *vdev = NULL;
  871. struct ieee80211_frame *wh;
  872. uint8_t *rx_tlv_hdr = qdf_nbuf_data(mpdu);
  873. uint8_t *rx_pkt_hdr = hal_rx_pkt_hdr_get(rx_tlv_hdr);
  874. wh = (struct ieee80211_frame *)rx_pkt_hdr;
  875. if (!DP_FRAME_IS_DATA(wh)) {
  876. QDF_TRACE_ERROR_RL(QDF_MODULE_ID_DP,
  877. "only for data frames");
  878. goto free;
  879. }
  880. if (qdf_nbuf_len(mpdu) < sizeof(struct ieee80211_frame)) {
  881. dp_rx_info_rl("%pK: Invalid nbuf length", soc);
  882. goto free;
  883. }
  884. pdev = dp_get_pdev_for_lmac_id(soc, mac_id);
  885. if (!pdev) {
  886. dp_rx_info_rl("%pK: PDEV not found", soc);
  887. goto free;
  888. }
  889. qdf_spin_lock_bh(&pdev->vdev_list_lock);
  890. DP_PDEV_ITERATE_VDEV_LIST(pdev, vdev) {
  891. if (qdf_mem_cmp(wh->i_addr1, vdev->mac_addr.raw,
  892. QDF_MAC_ADDR_SIZE) == 0) {
  893. qdf_spin_unlock_bh(&pdev->vdev_list_lock);
  894. goto out;
  895. }
  896. }
  897. qdf_spin_unlock_bh(&pdev->vdev_list_lock);
  898. if (!vdev) {
  899. dp_rx_info_rl("%pK: VDEV not found", soc);
  900. goto free;
  901. }
  902. out:
  903. if (soc->cdp_soc.ol_ops->rx_invalid_peer)
  904. soc->cdp_soc.ol_ops->rx_invalid_peer(vdev->vdev_id, wh);
  905. free:
  906. /* reset the head and tail pointers */
  907. pdev = dp_get_pdev_for_lmac_id(soc, mac_id);
  908. if (pdev) {
  909. pdev->invalid_peer_head_msdu = NULL;
  910. pdev->invalid_peer_tail_msdu = NULL;
  911. }
  912. /* Drop and free packet */
  913. curr_nbuf = mpdu;
  914. while (curr_nbuf) {
  915. next_nbuf = qdf_nbuf_next(curr_nbuf);
  916. qdf_nbuf_free(curr_nbuf);
  917. curr_nbuf = next_nbuf;
  918. }
  919. /* Reset the head and tail pointers */
  920. pdev = dp_get_pdev_for_lmac_id(soc, mac_id);
  921. if (pdev) {
  922. pdev->invalid_peer_head_msdu = NULL;
  923. pdev->invalid_peer_tail_msdu = NULL;
  924. }
  925. return 0;
  926. }
  927. void dp_rx_process_invalid_peer_wrapper(struct dp_soc *soc,
  928. qdf_nbuf_t mpdu, bool mpdu_done,
  929. uint8_t mac_id)
  930. {
  931. /* Process the nbuf */
  932. dp_rx_process_invalid_peer(soc, mpdu, mac_id);
  933. }
  934. #endif
  935. #ifndef QCA_HOST_MODE_WIFI_DISABLED
  936. #ifdef RECEIVE_OFFLOAD
  937. /**
  938. * dp_rx_print_offload_info() - Print offload info from RX TLV
  939. * @soc: dp soc handle
  940. * @rx_tlv: RX TLV for which offload information is to be printed
  941. *
  942. * Return: None
  943. */
  944. static void dp_rx_print_offload_info(struct dp_soc *soc, uint8_t *rx_tlv)
  945. {
  946. dp_verbose_debug("----------------------RX DESC LRO/GRO----------------------");
  947. dp_verbose_debug("lro_eligible 0x%x", HAL_RX_TLV_GET_LRO_ELIGIBLE(rx_tlv));
  948. dp_verbose_debug("pure_ack 0x%x", HAL_RX_TLV_GET_TCP_PURE_ACK(rx_tlv));
  949. dp_verbose_debug("chksum 0x%x", hal_rx_tlv_get_tcp_chksum(soc->hal_soc,
  950. rx_tlv));
  951. dp_verbose_debug("TCP seq num 0x%x", HAL_RX_TLV_GET_TCP_SEQ(rx_tlv));
  952. dp_verbose_debug("TCP ack num 0x%x", HAL_RX_TLV_GET_TCP_ACK(rx_tlv));
  953. dp_verbose_debug("TCP window 0x%x", HAL_RX_TLV_GET_TCP_WIN(rx_tlv));
  954. dp_verbose_debug("TCP protocol 0x%x", HAL_RX_TLV_GET_TCP_PROTO(rx_tlv));
  955. dp_verbose_debug("TCP offset 0x%x", HAL_RX_TLV_GET_TCP_OFFSET(rx_tlv));
  956. dp_verbose_debug("toeplitz 0x%x", HAL_RX_TLV_GET_FLOW_ID_TOEPLITZ(rx_tlv));
  957. dp_verbose_debug("---------------------------------------------------------");
  958. }
  959. /**
  960. * dp_rx_fill_gro_info() - Fill GRO info from RX TLV into skb->cb
  961. * @soc: DP SOC handle
  962. * @rx_tlv: RX TLV received for the msdu
  963. * @msdu: msdu for which GRO info needs to be filled
  964. * @rx_ol_pkt_cnt: counter to be incremented for GRO eligible packets
  965. *
  966. * Return: None
  967. */
  968. static
  969. void dp_rx_fill_gro_info(struct dp_soc *soc, uint8_t *rx_tlv,
  970. qdf_nbuf_t msdu, uint32_t *rx_ol_pkt_cnt)
  971. {
  972. if (!wlan_cfg_is_gro_enabled(soc->wlan_cfg_ctx))
  973. return;
  974. /* Filling up RX offload info only for TCP packets */
  975. if (!HAL_RX_TLV_GET_TCP_PROTO(rx_tlv))
  976. return;
  977. *rx_ol_pkt_cnt = *rx_ol_pkt_cnt + 1;
  978. QDF_NBUF_CB_RX_LRO_ELIGIBLE(msdu) =
  979. HAL_RX_TLV_GET_LRO_ELIGIBLE(rx_tlv);
  980. QDF_NBUF_CB_RX_TCP_PURE_ACK(msdu) =
  981. HAL_RX_TLV_GET_TCP_PURE_ACK(rx_tlv);
  982. QDF_NBUF_CB_RX_TCP_CHKSUM(msdu) =
  983. hal_rx_tlv_get_tcp_chksum(soc->hal_soc,
  984. rx_tlv);
  985. QDF_NBUF_CB_RX_TCP_SEQ_NUM(msdu) =
  986. HAL_RX_TLV_GET_TCP_SEQ(rx_tlv);
  987. QDF_NBUF_CB_RX_TCP_ACK_NUM(msdu) =
  988. HAL_RX_TLV_GET_TCP_ACK(rx_tlv);
  989. QDF_NBUF_CB_RX_TCP_WIN(msdu) =
  990. HAL_RX_TLV_GET_TCP_WIN(rx_tlv);
  991. QDF_NBUF_CB_RX_TCP_PROTO(msdu) =
  992. HAL_RX_TLV_GET_TCP_PROTO(rx_tlv);
  993. QDF_NBUF_CB_RX_IPV6_PROTO(msdu) =
  994. HAL_RX_TLV_GET_IPV6(rx_tlv);
  995. QDF_NBUF_CB_RX_TCP_OFFSET(msdu) =
  996. HAL_RX_TLV_GET_TCP_OFFSET(rx_tlv);
  997. QDF_NBUF_CB_RX_FLOW_ID(msdu) =
  998. HAL_RX_TLV_GET_FLOW_ID_TOEPLITZ(rx_tlv);
  999. dp_rx_print_offload_info(soc, rx_tlv);
  1000. }
  1001. #else
  1002. static void dp_rx_fill_gro_info(struct dp_soc *soc, uint8_t *rx_tlv,
  1003. qdf_nbuf_t msdu, uint32_t *rx_ol_pkt_cnt)
  1004. {
  1005. }
  1006. #endif /* RECEIVE_OFFLOAD */
  1007. /**
  1008. * dp_rx_adjust_nbuf_len() - set appropriate msdu length in nbuf.
  1009. *
  1010. * @nbuf: pointer to msdu.
  1011. * @mpdu_len: mpdu length
  1012. *
  1013. * Return: returns true if nbuf is last msdu of mpdu else retuns false.
  1014. */
  1015. static inline bool dp_rx_adjust_nbuf_len(qdf_nbuf_t nbuf, uint16_t *mpdu_len)
  1016. {
  1017. bool last_nbuf;
  1018. if (*mpdu_len > (RX_DATA_BUFFER_SIZE - RX_PKT_TLVS_LEN)) {
  1019. qdf_nbuf_set_pktlen(nbuf, RX_DATA_BUFFER_SIZE);
  1020. last_nbuf = false;
  1021. } else {
  1022. qdf_nbuf_set_pktlen(nbuf, (*mpdu_len + RX_PKT_TLVS_LEN));
  1023. last_nbuf = true;
  1024. }
  1025. *mpdu_len -= (RX_DATA_BUFFER_SIZE - RX_PKT_TLVS_LEN);
  1026. return last_nbuf;
  1027. }
  1028. /**
  1029. * dp_rx_sg_create() - create a frag_list for MSDUs which are spread across
  1030. * multiple nbufs.
  1031. * @soc: DP SOC handle
  1032. * @nbuf: pointer to the first msdu of an amsdu.
  1033. *
  1034. * This function implements the creation of RX frag_list for cases
  1035. * where an MSDU is spread across multiple nbufs.
  1036. *
  1037. * Return: returns the head nbuf which contains complete frag_list.
  1038. */
  1039. qdf_nbuf_t dp_rx_sg_create(struct dp_soc *soc, qdf_nbuf_t nbuf)
  1040. {
  1041. qdf_nbuf_t parent, frag_list, next = NULL;
  1042. uint16_t frag_list_len = 0;
  1043. uint16_t mpdu_len;
  1044. bool last_nbuf;
  1045. /*
  1046. * Use msdu len got from REO entry descriptor instead since
  1047. * there is case the RX PKT TLV is corrupted while msdu_len
  1048. * from REO descriptor is right for non-raw RX scatter msdu.
  1049. */
  1050. mpdu_len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
  1051. /*
  1052. * this is a case where the complete msdu fits in one single nbuf.
  1053. * in this case HW sets both start and end bit and we only need to
  1054. * reset these bits for RAW mode simulator to decap the pkt
  1055. */
  1056. if (qdf_nbuf_is_rx_chfrag_start(nbuf) &&
  1057. qdf_nbuf_is_rx_chfrag_end(nbuf)) {
  1058. qdf_nbuf_set_pktlen(nbuf, mpdu_len + RX_PKT_TLVS_LEN);
  1059. qdf_nbuf_pull_head(nbuf, RX_PKT_TLVS_LEN);
  1060. return nbuf;
  1061. }
  1062. /*
  1063. * This is a case where we have multiple msdus (A-MSDU) spread across
  1064. * multiple nbufs. here we create a fraglist out of these nbufs.
  1065. *
  1066. * the moment we encounter a nbuf with continuation bit set we
  1067. * know for sure we have an MSDU which is spread across multiple
  1068. * nbufs. We loop through and reap nbufs till we reach last nbuf.
  1069. */
  1070. parent = nbuf;
  1071. frag_list = nbuf->next;
  1072. nbuf = nbuf->next;
  1073. /*
  1074. * set the start bit in the first nbuf we encounter with continuation
  1075. * bit set. This has the proper mpdu length set as it is the first
  1076. * msdu of the mpdu. this becomes the parent nbuf and the subsequent
  1077. * nbufs will form the frag_list of the parent nbuf.
  1078. */
  1079. qdf_nbuf_set_rx_chfrag_start(parent, 1);
  1080. last_nbuf = dp_rx_adjust_nbuf_len(parent, &mpdu_len);
  1081. /*
  1082. * HW issue: MSDU cont bit is set but reported MPDU length can fit
  1083. * in to single buffer
  1084. *
  1085. * Increment error stats and avoid SG list creation
  1086. */
  1087. if (last_nbuf) {
  1088. DP_STATS_INC(soc, rx.err.msdu_continuation_err, 1);
  1089. qdf_nbuf_pull_head(parent, RX_PKT_TLVS_LEN);
  1090. return parent;
  1091. }
  1092. /*
  1093. * this is where we set the length of the fragments which are
  1094. * associated to the parent nbuf. We iterate through the frag_list
  1095. * till we hit the last_nbuf of the list.
  1096. */
  1097. do {
  1098. last_nbuf = dp_rx_adjust_nbuf_len(nbuf, &mpdu_len);
  1099. qdf_nbuf_pull_head(nbuf, RX_PKT_TLVS_LEN);
  1100. frag_list_len += qdf_nbuf_len(nbuf);
  1101. if (last_nbuf) {
  1102. next = nbuf->next;
  1103. nbuf->next = NULL;
  1104. break;
  1105. }
  1106. nbuf = nbuf->next;
  1107. } while (!last_nbuf);
  1108. qdf_nbuf_set_rx_chfrag_start(nbuf, 0);
  1109. qdf_nbuf_append_ext_list(parent, frag_list, frag_list_len);
  1110. parent->next = next;
  1111. qdf_nbuf_pull_head(parent, RX_PKT_TLVS_LEN);
  1112. return parent;
  1113. }
  1114. #endif /* QCA_HOST_MODE_WIFI_DISABLED */
  1115. #ifdef QCA_PEER_EXT_STATS
  1116. /*
  1117. * dp_rx_compute_tid_delay - Computer per TID delay stats
  1118. * @peer: DP soc context
  1119. * @nbuf: NBuffer
  1120. *
  1121. * Return: Void
  1122. */
  1123. void dp_rx_compute_tid_delay(struct cdp_delay_tid_stats *stats,
  1124. qdf_nbuf_t nbuf)
  1125. {
  1126. struct cdp_delay_rx_stats *rx_delay = &stats->rx_delay;
  1127. uint32_t to_stack = qdf_nbuf_get_timedelta_ms(nbuf);
  1128. dp_hist_update_stats(&rx_delay->to_stack_delay, to_stack);
  1129. }
  1130. #endif /* QCA_PEER_EXT_STATS */
  1131. /**
  1132. * dp_rx_compute_delay() - Compute and fill in all timestamps
  1133. * to pass in correct fields
  1134. *
  1135. * @vdev: pdev handle
  1136. * @tx_desc: tx descriptor
  1137. * @tid: tid value
  1138. * Return: none
  1139. */
  1140. void dp_rx_compute_delay(struct dp_vdev *vdev, qdf_nbuf_t nbuf)
  1141. {
  1142. uint8_t ring_id = QDF_NBUF_CB_RX_CTX_ID(nbuf);
  1143. int64_t current_ts = qdf_ktime_to_ms(qdf_ktime_get());
  1144. uint32_t to_stack = qdf_nbuf_get_timedelta_ms(nbuf);
  1145. uint8_t tid = qdf_nbuf_get_tid_val(nbuf);
  1146. uint32_t interframe_delay =
  1147. (uint32_t)(current_ts - vdev->prev_rx_deliver_tstamp);
  1148. dp_update_delay_stats(vdev->pdev, to_stack, tid,
  1149. CDP_DELAY_STATS_REAP_STACK, ring_id);
  1150. /*
  1151. * Update interframe delay stats calculated at deliver_data_ol point.
  1152. * Value of vdev->prev_rx_deliver_tstamp will be 0 for 1st frame, so
  1153. * interframe delay will not be calculate correctly for 1st frame.
  1154. * On the other side, this will help in avoiding extra per packet check
  1155. * of vdev->prev_rx_deliver_tstamp.
  1156. */
  1157. dp_update_delay_stats(vdev->pdev, interframe_delay, tid,
  1158. CDP_DELAY_STATS_RX_INTERFRAME, ring_id);
  1159. vdev->prev_rx_deliver_tstamp = current_ts;
  1160. }
  1161. /**
  1162. * dp_rx_drop_nbuf_list() - drop an nbuf list
  1163. * @pdev: dp pdev reference
  1164. * @buf_list: buffer list to be dropepd
  1165. *
  1166. * Return: int (number of bufs dropped)
  1167. */
  1168. static inline int dp_rx_drop_nbuf_list(struct dp_pdev *pdev,
  1169. qdf_nbuf_t buf_list)
  1170. {
  1171. struct cdp_tid_rx_stats *stats = NULL;
  1172. uint8_t tid = 0, ring_id = 0;
  1173. int num_dropped = 0;
  1174. qdf_nbuf_t buf, next_buf;
  1175. buf = buf_list;
  1176. while (buf) {
  1177. ring_id = QDF_NBUF_CB_RX_CTX_ID(buf);
  1178. next_buf = qdf_nbuf_queue_next(buf);
  1179. tid = qdf_nbuf_get_tid_val(buf);
  1180. if (qdf_likely(pdev)) {
  1181. stats = &pdev->stats.tid_stats.tid_rx_stats[ring_id][tid];
  1182. stats->fail_cnt[INVALID_PEER_VDEV]++;
  1183. stats->delivered_to_stack--;
  1184. }
  1185. qdf_nbuf_free(buf);
  1186. buf = next_buf;
  1187. num_dropped++;
  1188. }
  1189. return num_dropped;
  1190. }
  1191. #ifdef QCA_SUPPORT_WDS_EXTENDED
  1192. /**
  1193. * dp_rx_wds_ext() - Make different lists for 4-address and 3-address frames
  1194. * @nbuf_head: skb list head
  1195. * @vdev: vdev
  1196. * @peer: peer
  1197. * @peer_id: peer id of new received frame
  1198. * @vdev_id: vdev_id of new received frame
  1199. *
  1200. * Return: true if peer_ids are different.
  1201. */
  1202. static inline bool
  1203. dp_rx_is_list_ready(qdf_nbuf_t nbuf_head,
  1204. struct dp_vdev *vdev,
  1205. struct dp_peer *peer,
  1206. uint16_t peer_id,
  1207. uint8_t vdev_id)
  1208. {
  1209. if (nbuf_head && peer && (peer->peer_id != peer_id))
  1210. return true;
  1211. return false;
  1212. }
  1213. /**
  1214. * dp_rx_deliver_to_stack_ext() - Deliver to netdev per sta
  1215. * @soc: core txrx main context
  1216. * @vdev: vdev
  1217. * @peer: peer
  1218. * @nbuf_head: skb list head
  1219. *
  1220. * Return: true if packet is delivered to netdev per STA.
  1221. */
  1222. static inline bool
  1223. dp_rx_deliver_to_stack_ext(struct dp_soc *soc, struct dp_vdev *vdev,
  1224. struct dp_peer *peer, qdf_nbuf_t nbuf_head)
  1225. {
  1226. /*
  1227. * When extended WDS is disabled, frames are sent to AP netdevice.
  1228. */
  1229. if (qdf_likely(!vdev->wds_ext_enabled))
  1230. return false;
  1231. /*
  1232. * There can be 2 cases:
  1233. * 1. Send frame to parent netdev if its not for netdev per STA
  1234. * 2. If frame is meant for netdev per STA:
  1235. * a. Send frame to appropriate netdev using registered fp.
  1236. * b. If fp is NULL, drop the frames.
  1237. */
  1238. if (!peer->wds_ext.init)
  1239. return false;
  1240. if (peer->osif_rx)
  1241. peer->osif_rx(peer->wds_ext.osif_peer, nbuf_head);
  1242. else
  1243. dp_rx_drop_nbuf_list(vdev->pdev, nbuf_head);
  1244. return true;
  1245. }
  1246. #else
  1247. static inline bool
  1248. dp_rx_is_list_ready(qdf_nbuf_t nbuf_head,
  1249. struct dp_vdev *vdev,
  1250. struct dp_peer *peer,
  1251. uint16_t peer_id,
  1252. uint8_t vdev_id)
  1253. {
  1254. if (nbuf_head && vdev && (vdev->vdev_id != vdev_id))
  1255. return true;
  1256. return false;
  1257. }
  1258. static inline bool
  1259. dp_rx_deliver_to_stack_ext(struct dp_soc *soc, struct dp_vdev *vdev,
  1260. struct dp_peer *peer, qdf_nbuf_t nbuf_head)
  1261. {
  1262. return false;
  1263. }
  1264. #endif
  1265. #ifdef PEER_CACHE_RX_PKTS
  1266. /**
  1267. * dp_rx_flush_rx_cached() - flush cached rx frames
  1268. * @peer: peer
  1269. * @drop: flag to drop frames or forward to net stack
  1270. *
  1271. * Return: None
  1272. */
  1273. void dp_rx_flush_rx_cached(struct dp_peer *peer, bool drop)
  1274. {
  1275. struct dp_peer_cached_bufq *bufqi;
  1276. struct dp_rx_cached_buf *cache_buf = NULL;
  1277. ol_txrx_rx_fp data_rx = NULL;
  1278. int num_buff_elem;
  1279. QDF_STATUS status;
  1280. if (qdf_atomic_inc_return(&peer->flush_in_progress) > 1) {
  1281. qdf_atomic_dec(&peer->flush_in_progress);
  1282. return;
  1283. }
  1284. qdf_spin_lock_bh(&peer->peer_info_lock);
  1285. if (peer->state >= OL_TXRX_PEER_STATE_CONN && peer->vdev->osif_rx)
  1286. data_rx = peer->vdev->osif_rx;
  1287. else
  1288. drop = true;
  1289. qdf_spin_unlock_bh(&peer->peer_info_lock);
  1290. bufqi = &peer->bufq_info;
  1291. qdf_spin_lock_bh(&bufqi->bufq_lock);
  1292. qdf_list_remove_front(&bufqi->cached_bufq,
  1293. (qdf_list_node_t **)&cache_buf);
  1294. while (cache_buf) {
  1295. num_buff_elem = QDF_NBUF_CB_RX_NUM_ELEMENTS_IN_LIST(
  1296. cache_buf->buf);
  1297. bufqi->entries -= num_buff_elem;
  1298. qdf_spin_unlock_bh(&bufqi->bufq_lock);
  1299. if (drop) {
  1300. bufqi->dropped = dp_rx_drop_nbuf_list(peer->vdev->pdev,
  1301. cache_buf->buf);
  1302. } else {
  1303. /* Flush the cached frames to OSIF DEV */
  1304. status = data_rx(peer->vdev->osif_vdev, cache_buf->buf);
  1305. if (status != QDF_STATUS_SUCCESS)
  1306. bufqi->dropped = dp_rx_drop_nbuf_list(
  1307. peer->vdev->pdev,
  1308. cache_buf->buf);
  1309. }
  1310. qdf_mem_free(cache_buf);
  1311. cache_buf = NULL;
  1312. qdf_spin_lock_bh(&bufqi->bufq_lock);
  1313. qdf_list_remove_front(&bufqi->cached_bufq,
  1314. (qdf_list_node_t **)&cache_buf);
  1315. }
  1316. qdf_spin_unlock_bh(&bufqi->bufq_lock);
  1317. qdf_atomic_dec(&peer->flush_in_progress);
  1318. }
  1319. /**
  1320. * dp_rx_enqueue_rx() - cache rx frames
  1321. * @peer: peer
  1322. * @rx_buf_list: cache buffer list
  1323. *
  1324. * Return: None
  1325. */
  1326. static QDF_STATUS
  1327. dp_rx_enqueue_rx(struct dp_peer *peer, qdf_nbuf_t rx_buf_list)
  1328. {
  1329. struct dp_rx_cached_buf *cache_buf;
  1330. struct dp_peer_cached_bufq *bufqi = &peer->bufq_info;
  1331. int num_buff_elem;
  1332. dp_debug_rl("bufq->curr %d bufq->drops %d", bufqi->entries,
  1333. bufqi->dropped);
  1334. if (!peer->valid) {
  1335. bufqi->dropped = dp_rx_drop_nbuf_list(peer->vdev->pdev,
  1336. rx_buf_list);
  1337. return QDF_STATUS_E_INVAL;
  1338. }
  1339. qdf_spin_lock_bh(&bufqi->bufq_lock);
  1340. if (bufqi->entries >= bufqi->thresh) {
  1341. bufqi->dropped = dp_rx_drop_nbuf_list(peer->vdev->pdev,
  1342. rx_buf_list);
  1343. qdf_spin_unlock_bh(&bufqi->bufq_lock);
  1344. return QDF_STATUS_E_RESOURCES;
  1345. }
  1346. qdf_spin_unlock_bh(&bufqi->bufq_lock);
  1347. num_buff_elem = QDF_NBUF_CB_RX_NUM_ELEMENTS_IN_LIST(rx_buf_list);
  1348. cache_buf = qdf_mem_malloc_atomic(sizeof(*cache_buf));
  1349. if (!cache_buf) {
  1350. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1351. "Failed to allocate buf to cache rx frames");
  1352. bufqi->dropped = dp_rx_drop_nbuf_list(peer->vdev->pdev,
  1353. rx_buf_list);
  1354. return QDF_STATUS_E_NOMEM;
  1355. }
  1356. cache_buf->buf = rx_buf_list;
  1357. qdf_spin_lock_bh(&bufqi->bufq_lock);
  1358. qdf_list_insert_back(&bufqi->cached_bufq,
  1359. &cache_buf->node);
  1360. bufqi->entries += num_buff_elem;
  1361. qdf_spin_unlock_bh(&bufqi->bufq_lock);
  1362. return QDF_STATUS_SUCCESS;
  1363. }
  1364. static inline
  1365. bool dp_rx_is_peer_cache_bufq_supported(void)
  1366. {
  1367. return true;
  1368. }
  1369. #else
  1370. static inline
  1371. bool dp_rx_is_peer_cache_bufq_supported(void)
  1372. {
  1373. return false;
  1374. }
  1375. static inline QDF_STATUS
  1376. dp_rx_enqueue_rx(struct dp_peer *peer, qdf_nbuf_t rx_buf_list)
  1377. {
  1378. return QDF_STATUS_SUCCESS;
  1379. }
  1380. #endif
  1381. #ifndef DELIVERY_TO_STACK_STATUS_CHECK
  1382. /**
  1383. * dp_rx_check_delivery_to_stack() - Deliver pkts to network
  1384. * using the appropriate call back functions.
  1385. * @soc: soc
  1386. * @vdev: vdev
  1387. * @peer: peer
  1388. * @nbuf_head: skb list head
  1389. * @nbuf_tail: skb list tail
  1390. *
  1391. * Return: None
  1392. */
  1393. static void dp_rx_check_delivery_to_stack(struct dp_soc *soc,
  1394. struct dp_vdev *vdev,
  1395. struct dp_peer *peer,
  1396. qdf_nbuf_t nbuf_head)
  1397. {
  1398. if (qdf_unlikely(dp_rx_deliver_to_stack_ext(soc, vdev,
  1399. peer, nbuf_head)))
  1400. return;
  1401. /* Function pointer initialized only when FISA is enabled */
  1402. if (vdev->osif_fisa_rx)
  1403. /* on failure send it via regular path */
  1404. vdev->osif_fisa_rx(soc, vdev, nbuf_head);
  1405. else
  1406. vdev->osif_rx(vdev->osif_vdev, nbuf_head);
  1407. }
  1408. #else
  1409. /**
  1410. * dp_rx_check_delivery_to_stack() - Deliver pkts to network
  1411. * using the appropriate call back functions.
  1412. * @soc: soc
  1413. * @vdev: vdev
  1414. * @peer: peer
  1415. * @nbuf_head: skb list head
  1416. * @nbuf_tail: skb list tail
  1417. *
  1418. * Check the return status of the call back function and drop
  1419. * the packets if the return status indicates a failure.
  1420. *
  1421. * Return: None
  1422. */
  1423. static void dp_rx_check_delivery_to_stack(struct dp_soc *soc,
  1424. struct dp_vdev *vdev,
  1425. struct dp_peer *peer,
  1426. qdf_nbuf_t nbuf_head)
  1427. {
  1428. int num_nbuf = 0;
  1429. QDF_STATUS ret_val = QDF_STATUS_E_FAILURE;
  1430. /* Function pointer initialized only when FISA is enabled */
  1431. if (vdev->osif_fisa_rx)
  1432. /* on failure send it via regular path */
  1433. ret_val = vdev->osif_fisa_rx(soc, vdev, nbuf_head);
  1434. else if (vdev->osif_rx)
  1435. ret_val = vdev->osif_rx(vdev->osif_vdev, nbuf_head);
  1436. if (!QDF_IS_STATUS_SUCCESS(ret_val)) {
  1437. num_nbuf = dp_rx_drop_nbuf_list(vdev->pdev, nbuf_head);
  1438. DP_STATS_INC(soc, rx.err.rejected, num_nbuf);
  1439. if (peer)
  1440. DP_STATS_DEC(peer, rx.to_stack.num, num_nbuf);
  1441. }
  1442. }
  1443. #endif /* ifdef DELIVERY_TO_STACK_STATUS_CHECK */
  1444. void dp_rx_deliver_to_stack(struct dp_soc *soc,
  1445. struct dp_vdev *vdev,
  1446. struct dp_peer *peer,
  1447. qdf_nbuf_t nbuf_head,
  1448. qdf_nbuf_t nbuf_tail)
  1449. {
  1450. int num_nbuf = 0;
  1451. if (qdf_unlikely(!vdev || vdev->delete.pending)) {
  1452. num_nbuf = dp_rx_drop_nbuf_list(NULL, nbuf_head);
  1453. /*
  1454. * This is a special case where vdev is invalid,
  1455. * so we cannot know the pdev to which this packet
  1456. * belonged. Hence we update the soc rx error stats.
  1457. */
  1458. DP_STATS_INC(soc, rx.err.invalid_vdev, num_nbuf);
  1459. return;
  1460. }
  1461. /*
  1462. * highly unlikely to have a vdev without a registered rx
  1463. * callback function. if so let us free the nbuf_list.
  1464. */
  1465. if (qdf_unlikely(!vdev->osif_rx)) {
  1466. if (peer && dp_rx_is_peer_cache_bufq_supported()) {
  1467. dp_rx_enqueue_rx(peer, nbuf_head);
  1468. } else {
  1469. num_nbuf = dp_rx_drop_nbuf_list(vdev->pdev,
  1470. nbuf_head);
  1471. DP_STATS_DEC(peer, rx.to_stack.num, num_nbuf);
  1472. }
  1473. return;
  1474. }
  1475. if (qdf_unlikely(vdev->rx_decap_type == htt_cmn_pkt_type_raw) ||
  1476. (vdev->rx_decap_type == htt_cmn_pkt_type_native_wifi)) {
  1477. vdev->osif_rsim_rx_decap(vdev->osif_vdev, &nbuf_head,
  1478. &nbuf_tail, peer->mac_addr.raw);
  1479. }
  1480. dp_rx_check_delivery_to_stack(soc, vdev, peer, nbuf_head);
  1481. }
  1482. #ifndef QCA_HOST_MODE_WIFI_DISABLED
  1483. /**
  1484. * dp_rx_cksum_offload() - set the nbuf checksum as defined by hardware.
  1485. * @nbuf: pointer to the first msdu of an amsdu.
  1486. * @rx_tlv_hdr: pointer to the start of RX TLV headers.
  1487. *
  1488. * The ipsumed field of the skb is set based on whether HW validated the
  1489. * IP/TCP/UDP checksum.
  1490. *
  1491. * Return: void
  1492. */
  1493. static inline void dp_rx_cksum_offload(struct dp_pdev *pdev,
  1494. qdf_nbuf_t nbuf,
  1495. uint8_t *rx_tlv_hdr)
  1496. {
  1497. qdf_nbuf_rx_cksum_t cksum = {0};
  1498. bool ip_csum_err = hal_rx_attn_ip_cksum_fail_get(rx_tlv_hdr);
  1499. bool tcp_udp_csum_er = hal_rx_attn_tcp_udp_cksum_fail_get(rx_tlv_hdr);
  1500. if (qdf_likely(!ip_csum_err && !tcp_udp_csum_er)) {
  1501. cksum.l4_result = QDF_NBUF_RX_CKSUM_TCP_UDP_UNNECESSARY;
  1502. qdf_nbuf_set_rx_cksum(nbuf, &cksum);
  1503. } else {
  1504. DP_STATS_INCC(pdev, err.ip_csum_err, 1, ip_csum_err);
  1505. DP_STATS_INCC(pdev, err.tcp_udp_csum_err, 1, tcp_udp_csum_er);
  1506. }
  1507. }
  1508. #ifdef VDEV_PEER_PROTOCOL_COUNT
  1509. #define dp_rx_msdu_stats_update_prot_cnts(vdev_hdl, nbuf, peer) \
  1510. { \
  1511. qdf_nbuf_t nbuf_local; \
  1512. struct dp_peer *peer_local; \
  1513. struct dp_vdev *vdev_local = vdev_hdl; \
  1514. do { \
  1515. if (qdf_likely(!((vdev_local)->peer_protocol_count_track))) \
  1516. break; \
  1517. nbuf_local = nbuf; \
  1518. peer_local = peer; \
  1519. if (qdf_unlikely(qdf_nbuf_is_frag((nbuf_local)))) \
  1520. break; \
  1521. else if (qdf_unlikely(qdf_nbuf_is_raw_frame((nbuf_local)))) \
  1522. break; \
  1523. dp_vdev_peer_stats_update_protocol_cnt((vdev_local), \
  1524. (nbuf_local), \
  1525. (peer_local), 0, 1); \
  1526. } while (0); \
  1527. }
  1528. #else
  1529. #define dp_rx_msdu_stats_update_prot_cnts(vdev_hdl, nbuf, peer)
  1530. #endif
  1531. /**
  1532. * dp_rx_msdu_stats_update() - update per msdu stats.
  1533. * @soc: core txrx main context
  1534. * @nbuf: pointer to the first msdu of an amsdu.
  1535. * @rx_tlv_hdr: pointer to the start of RX TLV headers.
  1536. * @peer: pointer to the peer object.
  1537. * @ring_id: reo dest ring number on which pkt is reaped.
  1538. * @tid_stats: per tid rx stats.
  1539. *
  1540. * update all the per msdu stats for that nbuf.
  1541. * Return: void
  1542. */
  1543. static void dp_rx_msdu_stats_update(struct dp_soc *soc,
  1544. qdf_nbuf_t nbuf,
  1545. uint8_t *rx_tlv_hdr,
  1546. struct dp_peer *peer,
  1547. uint8_t ring_id,
  1548. struct cdp_tid_rx_stats *tid_stats)
  1549. {
  1550. bool is_ampdu, is_not_amsdu;
  1551. uint32_t sgi, mcs, tid, nss, bw, reception_type, pkt_type;
  1552. struct dp_vdev *vdev = peer->vdev;
  1553. qdf_ether_header_t *eh;
  1554. uint16_t msdu_len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
  1555. dp_rx_msdu_stats_update_prot_cnts(vdev, nbuf, peer);
  1556. is_not_amsdu = qdf_nbuf_is_rx_chfrag_start(nbuf) &
  1557. qdf_nbuf_is_rx_chfrag_end(nbuf);
  1558. DP_STATS_INC_PKT(peer, rx.rcvd_reo[ring_id], 1, msdu_len);
  1559. DP_STATS_INCC(peer, rx.non_amsdu_cnt, 1, is_not_amsdu);
  1560. DP_STATS_INCC(peer, rx.amsdu_cnt, 1, !is_not_amsdu);
  1561. DP_STATS_INCC(peer, rx.rx_retries, 1, qdf_nbuf_is_rx_retry_flag(nbuf));
  1562. tid_stats->msdu_cnt++;
  1563. if (qdf_unlikely(qdf_nbuf_is_da_mcbc(nbuf) &&
  1564. (vdev->rx_decap_type == htt_cmn_pkt_type_ethernet))) {
  1565. eh = (qdf_ether_header_t *)qdf_nbuf_data(nbuf);
  1566. DP_STATS_INC_PKT(peer, rx.multicast, 1, msdu_len);
  1567. tid_stats->mcast_msdu_cnt++;
  1568. if (QDF_IS_ADDR_BROADCAST(eh->ether_dhost)) {
  1569. DP_STATS_INC_PKT(peer, rx.bcast, 1, msdu_len);
  1570. tid_stats->bcast_msdu_cnt++;
  1571. }
  1572. }
  1573. /*
  1574. * currently we can return from here as we have similar stats
  1575. * updated at per ppdu level instead of msdu level
  1576. */
  1577. if (!soc->process_rx_status)
  1578. return;
  1579. is_ampdu = hal_rx_mpdu_info_ampdu_flag_get(rx_tlv_hdr);
  1580. DP_STATS_INCC(peer, rx.ampdu_cnt, 1, is_ampdu);
  1581. DP_STATS_INCC(peer, rx.non_ampdu_cnt, 1, !(is_ampdu));
  1582. sgi = hal_rx_msdu_start_sgi_get(rx_tlv_hdr);
  1583. mcs = hal_rx_msdu_start_rate_mcs_get(rx_tlv_hdr);
  1584. tid = qdf_nbuf_get_tid_val(nbuf);
  1585. bw = hal_rx_msdu_start_bw_get(rx_tlv_hdr);
  1586. reception_type = hal_rx_msdu_start_reception_type_get(soc->hal_soc,
  1587. rx_tlv_hdr);
  1588. nss = hal_rx_msdu_start_nss_get(soc->hal_soc, rx_tlv_hdr);
  1589. pkt_type = hal_rx_msdu_start_get_pkt_type(rx_tlv_hdr);
  1590. DP_STATS_INCC(peer, rx.rx_mpdu_cnt[mcs], 1,
  1591. ((mcs < MAX_MCS) && QDF_NBUF_CB_RX_CHFRAG_START(nbuf)));
  1592. DP_STATS_INCC(peer, rx.rx_mpdu_cnt[MAX_MCS - 1], 1,
  1593. ((mcs >= MAX_MCS) && QDF_NBUF_CB_RX_CHFRAG_START(nbuf)));
  1594. DP_STATS_INC(peer, rx.bw[bw], 1);
  1595. /*
  1596. * only if nss > 0 and pkt_type is 11N/AC/AX,
  1597. * then increase index [nss - 1] in array counter.
  1598. */
  1599. if (nss > 0 && (pkt_type == DOT11_N ||
  1600. pkt_type == DOT11_AC ||
  1601. pkt_type == DOT11_AX))
  1602. DP_STATS_INC(peer, rx.nss[nss - 1], 1);
  1603. DP_STATS_INC(peer, rx.sgi_count[sgi], 1);
  1604. DP_STATS_INCC(peer, rx.err.mic_err, 1,
  1605. hal_rx_mpdu_end_mic_err_get(rx_tlv_hdr));
  1606. DP_STATS_INCC(peer, rx.err.decrypt_err, 1,
  1607. hal_rx_mpdu_end_decrypt_err_get(rx_tlv_hdr));
  1608. DP_STATS_INC(peer, rx.wme_ac_type[TID_TO_WME_AC(tid)], 1);
  1609. DP_STATS_INC(peer, rx.reception_type[reception_type], 1);
  1610. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[MAX_MCS - 1], 1,
  1611. ((mcs >= MAX_MCS_11A) && (pkt_type == DOT11_A)));
  1612. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[mcs], 1,
  1613. ((mcs <= MAX_MCS_11A) && (pkt_type == DOT11_A)));
  1614. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[MAX_MCS - 1], 1,
  1615. ((mcs >= MAX_MCS_11B) && (pkt_type == DOT11_B)));
  1616. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[mcs], 1,
  1617. ((mcs <= MAX_MCS_11B) && (pkt_type == DOT11_B)));
  1618. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[MAX_MCS - 1], 1,
  1619. ((mcs >= MAX_MCS_11A) && (pkt_type == DOT11_N)));
  1620. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[mcs], 1,
  1621. ((mcs <= MAX_MCS_11A) && (pkt_type == DOT11_N)));
  1622. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[MAX_MCS - 1], 1,
  1623. ((mcs >= MAX_MCS_11AC) && (pkt_type == DOT11_AC)));
  1624. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[mcs], 1,
  1625. ((mcs <= MAX_MCS_11AC) && (pkt_type == DOT11_AC)));
  1626. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[MAX_MCS - 1], 1,
  1627. ((mcs >= MAX_MCS) && (pkt_type == DOT11_AX)));
  1628. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[mcs], 1,
  1629. ((mcs < MAX_MCS) && (pkt_type == DOT11_AX)));
  1630. if ((soc->process_rx_status) &&
  1631. hal_rx_attn_first_mpdu_get(rx_tlv_hdr)) {
  1632. #if defined(FEATURE_PERPKT_INFO) && WDI_EVENT_ENABLE
  1633. if (!vdev->pdev)
  1634. return;
  1635. dp_wdi_event_handler(WDI_EVENT_UPDATE_DP_STATS, vdev->pdev->soc,
  1636. &peer->stats, peer->peer_id,
  1637. UPDATE_PEER_STATS,
  1638. vdev->pdev->pdev_id);
  1639. #endif
  1640. }
  1641. }
  1642. static inline bool is_sa_da_idx_valid(struct dp_soc *soc,
  1643. uint8_t *rx_tlv_hdr,
  1644. qdf_nbuf_t nbuf,
  1645. struct hal_rx_msdu_metadata msdu_info)
  1646. {
  1647. if ((qdf_nbuf_is_sa_valid(nbuf) &&
  1648. (msdu_info.sa_idx > wlan_cfg_get_max_ast_idx(soc->wlan_cfg_ctx))) ||
  1649. (!qdf_nbuf_is_da_mcbc(nbuf) &&
  1650. qdf_nbuf_is_da_valid(nbuf) &&
  1651. (msdu_info.da_idx > wlan_cfg_get_max_ast_idx(soc->wlan_cfg_ctx))))
  1652. return false;
  1653. return true;
  1654. }
  1655. #ifndef WDS_VENDOR_EXTENSION
  1656. int dp_wds_rx_policy_check(uint8_t *rx_tlv_hdr,
  1657. struct dp_vdev *vdev,
  1658. struct dp_peer *peer)
  1659. {
  1660. return 1;
  1661. }
  1662. #endif
  1663. #ifdef RX_DESC_DEBUG_CHECK
  1664. /**
  1665. * dp_rx_desc_nbuf_sanity_check - Add sanity check to catch REO rx_desc paddr
  1666. * corruption
  1667. *
  1668. * @ring_desc: REO ring descriptor
  1669. * @rx_desc: Rx descriptor
  1670. *
  1671. * Return: NONE
  1672. */
  1673. static inline
  1674. QDF_STATUS dp_rx_desc_nbuf_sanity_check(hal_ring_desc_t ring_desc,
  1675. struct dp_rx_desc *rx_desc)
  1676. {
  1677. struct hal_buf_info hbi;
  1678. hal_rx_reo_buf_paddr_get(ring_desc, &hbi);
  1679. /* Sanity check for possible buffer paddr corruption */
  1680. if (dp_rx_desc_paddr_sanity_check(rx_desc, (&hbi)->paddr))
  1681. return QDF_STATUS_SUCCESS;
  1682. return QDF_STATUS_E_FAILURE;
  1683. }
  1684. /**
  1685. * dp_rx_desc_nbuf_len_sanity_check - Add sanity check to catch Rx buffer
  1686. * out of bound access from H.W
  1687. *
  1688. * @soc: DP soc
  1689. * @pkt_len: Packet length received from H.W
  1690. *
  1691. * Return: NONE
  1692. */
  1693. static inline void
  1694. dp_rx_desc_nbuf_len_sanity_check(struct dp_soc *soc,
  1695. uint32_t pkt_len)
  1696. {
  1697. struct rx_desc_pool *rx_desc_pool;
  1698. rx_desc_pool = &soc->rx_desc_buf[0];
  1699. qdf_assert_always(pkt_len <= rx_desc_pool->buf_size);
  1700. }
  1701. #else
  1702. static inline
  1703. QDF_STATUS dp_rx_desc_nbuf_sanity_check(hal_ring_desc_t ring_desc,
  1704. struct dp_rx_desc *rx_desc)
  1705. {
  1706. return QDF_STATUS_SUCCESS;
  1707. }
  1708. static inline void
  1709. dp_rx_desc_nbuf_len_sanity_check(struct dp_soc *soc, uint32_t pkt_len) { }
  1710. #endif
  1711. #ifdef WLAN_FEATURE_RX_SOFTIRQ_TIME_LIMIT
  1712. static inline
  1713. bool dp_rx_reap_loop_pkt_limit_hit(struct dp_soc *soc, int num_reaped)
  1714. {
  1715. bool limit_hit = false;
  1716. struct wlan_cfg_dp_soc_ctxt *cfg = soc->wlan_cfg_ctx;
  1717. limit_hit =
  1718. (num_reaped >= cfg->rx_reap_loop_pkt_limit) ? true : false;
  1719. if (limit_hit)
  1720. DP_STATS_INC(soc, rx.reap_loop_pkt_limit_hit, 1)
  1721. return limit_hit;
  1722. }
  1723. static inline bool dp_rx_enable_eol_data_check(struct dp_soc *soc)
  1724. {
  1725. return soc->wlan_cfg_ctx->rx_enable_eol_data_check;
  1726. }
  1727. #else
  1728. static inline
  1729. bool dp_rx_reap_loop_pkt_limit_hit(struct dp_soc *soc, int num_reaped)
  1730. {
  1731. return false;
  1732. }
  1733. static inline bool dp_rx_enable_eol_data_check(struct dp_soc *soc)
  1734. {
  1735. return false;
  1736. }
  1737. #endif /* WLAN_FEATURE_RX_SOFTIRQ_TIME_LIMIT */
  1738. #ifdef DP_RX_PKT_NO_PEER_DELIVER
  1739. /**
  1740. * dp_rx_deliver_to_stack_no_peer() - try deliver rx data even if
  1741. * no corresbonding peer found
  1742. * @soc: core txrx main context
  1743. * @nbuf: pkt skb pointer
  1744. *
  1745. * This function will try to deliver some RX special frames to stack
  1746. * even there is no peer matched found. for instance, LFR case, some
  1747. * eapol data will be sent to host before peer_map done.
  1748. *
  1749. * Return: None
  1750. */
  1751. static
  1752. void dp_rx_deliver_to_stack_no_peer(struct dp_soc *soc, qdf_nbuf_t nbuf)
  1753. {
  1754. uint16_t peer_id;
  1755. uint8_t vdev_id;
  1756. struct dp_vdev *vdev = NULL;
  1757. uint32_t l2_hdr_offset = 0;
  1758. uint16_t msdu_len = 0;
  1759. uint32_t pkt_len = 0;
  1760. uint8_t *rx_tlv_hdr;
  1761. uint32_t frame_mask = FRAME_MASK_IPV4_ARP | FRAME_MASK_IPV4_DHCP |
  1762. FRAME_MASK_IPV4_EAPOL | FRAME_MASK_IPV6_DHCP;
  1763. peer_id = QDF_NBUF_CB_RX_PEER_ID(nbuf);
  1764. if (peer_id > soc->max_peers)
  1765. goto deliver_fail;
  1766. vdev_id = QDF_NBUF_CB_RX_VDEV_ID(nbuf);
  1767. vdev = dp_vdev_get_ref_by_id(soc, vdev_id, DP_MOD_ID_RX);
  1768. if (!vdev || vdev->delete.pending || !vdev->osif_rx)
  1769. goto deliver_fail;
  1770. if (qdf_unlikely(qdf_nbuf_is_frag(nbuf)))
  1771. goto deliver_fail;
  1772. rx_tlv_hdr = qdf_nbuf_data(nbuf);
  1773. l2_hdr_offset =
  1774. hal_rx_msdu_end_l3_hdr_padding_get(soc->hal_soc, rx_tlv_hdr);
  1775. msdu_len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
  1776. pkt_len = msdu_len + l2_hdr_offset + RX_PKT_TLVS_LEN;
  1777. QDF_NBUF_CB_RX_NUM_ELEMENTS_IN_LIST(nbuf) = 1;
  1778. qdf_nbuf_set_pktlen(nbuf, pkt_len);
  1779. qdf_nbuf_pull_head(nbuf,
  1780. RX_PKT_TLVS_LEN +
  1781. l2_hdr_offset);
  1782. if (dp_rx_is_special_frame(nbuf, frame_mask)) {
  1783. qdf_nbuf_set_exc_frame(nbuf, 1);
  1784. if (QDF_STATUS_SUCCESS !=
  1785. vdev->osif_rx(vdev->osif_vdev, nbuf))
  1786. goto deliver_fail;
  1787. DP_STATS_INC(soc, rx.err.pkt_delivered_no_peer, 1);
  1788. dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_RX);
  1789. return;
  1790. }
  1791. deliver_fail:
  1792. DP_STATS_INC_PKT(soc, rx.err.rx_invalid_peer, 1,
  1793. QDF_NBUF_CB_RX_PKT_LEN(nbuf));
  1794. qdf_nbuf_free(nbuf);
  1795. if (vdev)
  1796. dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_RX);
  1797. }
  1798. #else
  1799. static inline
  1800. void dp_rx_deliver_to_stack_no_peer(struct dp_soc *soc, qdf_nbuf_t nbuf)
  1801. {
  1802. DP_STATS_INC_PKT(soc, rx.err.rx_invalid_peer, 1,
  1803. QDF_NBUF_CB_RX_PKT_LEN(nbuf));
  1804. qdf_nbuf_free(nbuf);
  1805. }
  1806. #endif
  1807. /**
  1808. * dp_rx_srng_get_num_pending() - get number of pending entries
  1809. * @hal_soc: hal soc opaque pointer
  1810. * @hal_ring: opaque pointer to the HAL Rx Ring
  1811. * @num_entries: number of entries in the hal_ring.
  1812. * @near_full: pointer to a boolean. This is set if ring is near full.
  1813. *
  1814. * The function returns the number of entries in a destination ring which are
  1815. * yet to be reaped. The function also checks if the ring is near full.
  1816. * If more than half of the ring needs to be reaped, the ring is considered
  1817. * approaching full.
  1818. * The function useses hal_srng_dst_num_valid_locked to get the number of valid
  1819. * entries. It should not be called within a SRNG lock. HW pointer value is
  1820. * synced into cached_hp.
  1821. *
  1822. * Return: Number of pending entries if any
  1823. */
  1824. static
  1825. uint32_t dp_rx_srng_get_num_pending(hal_soc_handle_t hal_soc,
  1826. hal_ring_handle_t hal_ring_hdl,
  1827. uint32_t num_entries,
  1828. bool *near_full)
  1829. {
  1830. uint32_t num_pending = 0;
  1831. num_pending = hal_srng_dst_num_valid_locked(hal_soc,
  1832. hal_ring_hdl,
  1833. true);
  1834. if (num_entries && (num_pending >= num_entries >> 1))
  1835. *near_full = true;
  1836. else
  1837. *near_full = false;
  1838. return num_pending;
  1839. }
  1840. #endif /* QCA_HOST_MODE_WIFI_DISABLED */
  1841. #ifdef WLAN_SUPPORT_RX_FISA
  1842. void dp_rx_skip_tlvs(qdf_nbuf_t nbuf, uint32_t l3_padding)
  1843. {
  1844. QDF_NBUF_CB_RX_PACKET_L3_HDR_PAD(nbuf) = l3_padding;
  1845. qdf_nbuf_pull_head(nbuf, l3_padding + RX_PKT_TLVS_LEN);
  1846. }
  1847. /**
  1848. * dp_rx_set_hdr_pad() - set l3 padding in nbuf cb
  1849. * @nbuf: pkt skb pointer
  1850. * @l3_padding: l3 padding
  1851. *
  1852. * Return: None
  1853. */
  1854. static inline
  1855. void dp_rx_set_hdr_pad(qdf_nbuf_t nbuf, uint32_t l3_padding)
  1856. {
  1857. QDF_NBUF_CB_RX_PACKET_L3_HDR_PAD(nbuf) = l3_padding;
  1858. }
  1859. #else
  1860. void dp_rx_skip_tlvs(qdf_nbuf_t nbuf, uint32_t l3_padding)
  1861. {
  1862. qdf_nbuf_pull_head(nbuf, l3_padding + RX_PKT_TLVS_LEN);
  1863. }
  1864. static inline
  1865. void dp_rx_set_hdr_pad(qdf_nbuf_t nbuf, uint32_t l3_padding)
  1866. {
  1867. }
  1868. #endif
  1869. #ifndef QCA_HOST_MODE_WIFI_DISABLED
  1870. #ifdef DP_RX_DROP_RAW_FRM
  1871. /**
  1872. * dp_rx_is_raw_frame_dropped() - if raw frame nbuf, free and drop
  1873. * @nbuf: pkt skb pointer
  1874. *
  1875. * Return: true - raw frame, dropped
  1876. * false - not raw frame, do nothing
  1877. */
  1878. static inline
  1879. bool dp_rx_is_raw_frame_dropped(qdf_nbuf_t nbuf)
  1880. {
  1881. if (qdf_nbuf_is_raw_frame(nbuf)) {
  1882. qdf_nbuf_free(nbuf);
  1883. return true;
  1884. }
  1885. return false;
  1886. }
  1887. #else
  1888. static inline
  1889. bool dp_rx_is_raw_frame_dropped(qdf_nbuf_t nbuf)
  1890. {
  1891. return false;
  1892. }
  1893. #endif
  1894. #ifdef WLAN_FEATURE_DP_RX_RING_HISTORY
  1895. /**
  1896. * dp_rx_ring_record_entry() - Record an entry into the rx ring history.
  1897. * @soc: Datapath soc structure
  1898. * @ring_num: REO ring number
  1899. * @ring_desc: REO ring descriptor
  1900. *
  1901. * Returns: None
  1902. */
  1903. static inline void
  1904. dp_rx_ring_record_entry(struct dp_soc *soc, uint8_t ring_num,
  1905. hal_ring_desc_t ring_desc)
  1906. {
  1907. struct dp_buf_info_record *record;
  1908. uint8_t rbm;
  1909. struct hal_buf_info hbi;
  1910. uint32_t idx;
  1911. if (qdf_unlikely(!soc->rx_ring_history[ring_num]))
  1912. return;
  1913. hal_rx_reo_buf_paddr_get(ring_desc, &hbi);
  1914. rbm = hal_rx_ret_buf_manager_get(ring_desc);
  1915. idx = dp_history_get_next_index(&soc->rx_ring_history[ring_num]->index,
  1916. DP_RX_HIST_MAX);
  1917. /* No NULL check needed for record since its an array */
  1918. record = &soc->rx_ring_history[ring_num]->entry[idx];
  1919. record->timestamp = qdf_get_log_timestamp();
  1920. record->hbi.paddr = hbi.paddr;
  1921. record->hbi.sw_cookie = hbi.sw_cookie;
  1922. record->hbi.rbm = rbm;
  1923. }
  1924. #else
  1925. static inline void
  1926. dp_rx_ring_record_entry(struct dp_soc *soc, uint8_t ring_num,
  1927. hal_ring_desc_t ring_desc)
  1928. {
  1929. }
  1930. #endif
  1931. #ifdef WLAN_DP_FEATURE_SW_LATENCY_MGR
  1932. /**
  1933. * dp_rx_update_stats() - Update soc level rx packet count
  1934. * @soc: DP soc handle
  1935. * @nbuf: nbuf received
  1936. *
  1937. * Returns: none
  1938. */
  1939. static inline void dp_rx_update_stats(struct dp_soc *soc,
  1940. qdf_nbuf_t nbuf)
  1941. {
  1942. DP_STATS_INC_PKT(soc, rx.ingress, 1,
  1943. QDF_NBUF_CB_RX_PKT_LEN(nbuf));
  1944. }
  1945. #else
  1946. static inline void dp_rx_update_stats(struct dp_soc *soc,
  1947. qdf_nbuf_t nbuf)
  1948. {
  1949. }
  1950. #endif
  1951. #ifdef WLAN_FEATURE_PKT_CAPTURE_V2
  1952. /**
  1953. * dp_rx_deliver_to_pkt_capture() - deliver rx packet to packet capture
  1954. * @soc : dp_soc handle
  1955. * @pdev: dp_pdev handle
  1956. * @peer_id: peer_id of the peer for which completion came
  1957. * @ppdu_id: ppdu_id
  1958. * @netbuf: Buffer pointer
  1959. *
  1960. * This function is used to deliver rx packet to packet capture
  1961. */
  1962. void dp_rx_deliver_to_pkt_capture(struct dp_soc *soc, struct dp_pdev *pdev,
  1963. uint16_t peer_id, uint32_t is_offload,
  1964. qdf_nbuf_t netbuf)
  1965. {
  1966. dp_wdi_event_handler(WDI_EVENT_PKT_CAPTURE_RX_DATA, soc, netbuf,
  1967. peer_id, is_offload, pdev->pdev_id);
  1968. }
  1969. void dp_rx_deliver_to_pkt_capture_no_peer(struct dp_soc *soc, qdf_nbuf_t nbuf,
  1970. uint32_t is_offload)
  1971. {
  1972. uint16_t msdu_len = 0;
  1973. uint16_t peer_id, vdev_id;
  1974. uint32_t pkt_len = 0;
  1975. uint8_t *rx_tlv_hdr;
  1976. uint32_t l2_hdr_offset = 0;
  1977. struct hal_rx_msdu_metadata msdu_metadata;
  1978. peer_id = QDF_NBUF_CB_RX_PEER_ID(nbuf);
  1979. vdev_id = QDF_NBUF_CB_RX_VDEV_ID(nbuf);
  1980. rx_tlv_hdr = qdf_nbuf_data(nbuf);
  1981. hal_rx_msdu_metadata_get(soc->hal_soc, rx_tlv_hdr, &msdu_metadata);
  1982. msdu_len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
  1983. pkt_len = msdu_len + msdu_metadata.l3_hdr_pad +
  1984. RX_PKT_TLVS_LEN;
  1985. l2_hdr_offset =
  1986. hal_rx_msdu_end_l3_hdr_padding_get(soc->hal_soc, rx_tlv_hdr);
  1987. qdf_nbuf_set_pktlen(nbuf, pkt_len);
  1988. dp_rx_skip_tlvs(nbuf, msdu_metadata.l3_hdr_pad);
  1989. dp_wdi_event_handler(WDI_EVENT_PKT_CAPTURE_RX_DATA, soc, nbuf,
  1990. HTT_INVALID_VDEV, is_offload, 0);
  1991. }
  1992. #endif
  1993. #if defined(FEATURE_MCL_REPEATER) && defined(FEATURE_MEC)
  1994. /**
  1995. * dp_rx_mec_check_wrapper() - wrapper to dp_rx_mcast_echo_check
  1996. * @soc: core DP main context
  1997. * @peer: dp peer handler
  1998. * @rx_tlv_hdr: start of the rx TLV header
  1999. * @nbuf: pkt buffer
  2000. *
  2001. * Return: bool (true if it is a looped back pkt else false)
  2002. */
  2003. static inline bool dp_rx_mec_check_wrapper(struct dp_soc *soc,
  2004. struct dp_peer *peer,
  2005. uint8_t *rx_tlv_hdr,
  2006. qdf_nbuf_t nbuf)
  2007. {
  2008. return dp_rx_mcast_echo_check(soc, peer, rx_tlv_hdr, nbuf);
  2009. }
  2010. #else
  2011. static inline bool dp_rx_mec_check_wrapper(struct dp_soc *soc,
  2012. struct dp_peer *peer,
  2013. uint8_t *rx_tlv_hdr,
  2014. qdf_nbuf_t nbuf)
  2015. {
  2016. return false;
  2017. }
  2018. #endif
  2019. /**
  2020. * dp_rx_process() - Brain of the Rx processing functionality
  2021. * Called from the bottom half (tasklet/NET_RX_SOFTIRQ)
  2022. * @int_ctx: per interrupt context
  2023. * @hal_ring: opaque pointer to the HAL Rx Ring, which will be serviced
  2024. * @reo_ring_num: ring number (0, 1, 2 or 3) of the reo ring.
  2025. * @quota: No. of units (packets) that can be serviced in one shot.
  2026. *
  2027. * This function implements the core of Rx functionality. This is
  2028. * expected to handle only non-error frames.
  2029. *
  2030. * Return: uint32_t: No. of elements processed
  2031. */
  2032. uint32_t dp_rx_process(struct dp_intr *int_ctx, hal_ring_handle_t hal_ring_hdl,
  2033. uint8_t reo_ring_num, uint32_t quota)
  2034. {
  2035. hal_ring_desc_t ring_desc;
  2036. hal_soc_handle_t hal_soc;
  2037. struct dp_rx_desc *rx_desc = NULL;
  2038. qdf_nbuf_t nbuf, next;
  2039. bool near_full;
  2040. union dp_rx_desc_list_elem_t *head[MAX_PDEV_CNT];
  2041. union dp_rx_desc_list_elem_t *tail[MAX_PDEV_CNT];
  2042. uint32_t num_pending;
  2043. uint32_t rx_bufs_used = 0, rx_buf_cookie;
  2044. uint16_t msdu_len = 0;
  2045. uint16_t peer_id;
  2046. uint8_t vdev_id;
  2047. struct dp_peer *peer;
  2048. struct dp_vdev *vdev;
  2049. uint32_t pkt_len = 0;
  2050. struct hal_rx_mpdu_desc_info mpdu_desc_info;
  2051. struct hal_rx_msdu_desc_info msdu_desc_info;
  2052. enum hal_reo_error_status error;
  2053. uint32_t peer_mdata;
  2054. uint8_t *rx_tlv_hdr;
  2055. uint32_t rx_bufs_reaped[MAX_PDEV_CNT];
  2056. uint8_t mac_id = 0;
  2057. struct dp_pdev *rx_pdev;
  2058. struct dp_srng *dp_rxdma_srng;
  2059. struct rx_desc_pool *rx_desc_pool;
  2060. struct dp_soc *soc = int_ctx->soc;
  2061. uint8_t ring_id = 0;
  2062. uint8_t core_id = 0;
  2063. struct cdp_tid_rx_stats *tid_stats;
  2064. qdf_nbuf_t nbuf_head;
  2065. qdf_nbuf_t nbuf_tail;
  2066. qdf_nbuf_t deliver_list_head;
  2067. qdf_nbuf_t deliver_list_tail;
  2068. uint32_t num_rx_bufs_reaped = 0;
  2069. uint32_t intr_id;
  2070. struct hif_opaque_softc *scn;
  2071. int32_t tid = 0;
  2072. bool is_prev_msdu_last = true;
  2073. uint32_t num_entries_avail = 0;
  2074. uint32_t rx_ol_pkt_cnt = 0;
  2075. uint32_t num_entries = 0;
  2076. struct hal_rx_msdu_metadata msdu_metadata;
  2077. QDF_STATUS status;
  2078. qdf_nbuf_t ebuf_head;
  2079. qdf_nbuf_t ebuf_tail;
  2080. uint8_t pkt_capture_offload = 0;
  2081. DP_HIST_INIT();
  2082. qdf_assert_always(soc && hal_ring_hdl);
  2083. hal_soc = soc->hal_soc;
  2084. qdf_assert_always(hal_soc);
  2085. scn = soc->hif_handle;
  2086. hif_pm_runtime_mark_dp_rx_busy(scn);
  2087. intr_id = int_ctx->dp_intr_id;
  2088. num_entries = hal_srng_get_num_entries(hal_soc, hal_ring_hdl);
  2089. more_data:
  2090. /* reset local variables here to be re-used in the function */
  2091. nbuf_head = NULL;
  2092. nbuf_tail = NULL;
  2093. deliver_list_head = NULL;
  2094. deliver_list_tail = NULL;
  2095. peer = NULL;
  2096. vdev = NULL;
  2097. num_rx_bufs_reaped = 0;
  2098. ebuf_head = NULL;
  2099. ebuf_tail = NULL;
  2100. qdf_mem_zero(rx_bufs_reaped, sizeof(rx_bufs_reaped));
  2101. qdf_mem_zero(&mpdu_desc_info, sizeof(mpdu_desc_info));
  2102. qdf_mem_zero(&msdu_desc_info, sizeof(msdu_desc_info));
  2103. qdf_mem_zero(head, sizeof(head));
  2104. qdf_mem_zero(tail, sizeof(tail));
  2105. if (qdf_unlikely(dp_rx_srng_access_start(int_ctx, soc, hal_ring_hdl))) {
  2106. /*
  2107. * Need API to convert from hal_ring pointer to
  2108. * Ring Type / Ring Id combo
  2109. */
  2110. DP_STATS_INC(soc, rx.err.hal_ring_access_fail, 1);
  2111. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  2112. FL("HAL RING Access Failed -- %pK"), hal_ring_hdl);
  2113. goto done;
  2114. }
  2115. /*
  2116. * start reaping the buffers from reo ring and queue
  2117. * them in per vdev queue.
  2118. * Process the received pkts in a different per vdev loop.
  2119. */
  2120. while (qdf_likely(quota &&
  2121. (ring_desc = hal_srng_dst_peek(hal_soc,
  2122. hal_ring_hdl)))) {
  2123. error = HAL_RX_ERROR_STATUS_GET(ring_desc);
  2124. ring_id = hal_srng_ring_id_get(hal_ring_hdl);
  2125. if (qdf_unlikely(error == HAL_REO_ERROR_DETECTED)) {
  2126. dp_rx_err("%pK: HAL RING 0x%pK:error %d",
  2127. soc, hal_ring_hdl, error);
  2128. DP_STATS_INC(soc, rx.err.hal_reo_error[ring_id], 1);
  2129. /* Don't know how to deal with this -- assert */
  2130. qdf_assert(0);
  2131. }
  2132. dp_rx_ring_record_entry(soc, reo_ring_num, ring_desc);
  2133. rx_buf_cookie = HAL_RX_REO_BUF_COOKIE_GET(ring_desc);
  2134. status = dp_rx_cookie_check_and_invalidate(ring_desc);
  2135. if (qdf_unlikely(QDF_IS_STATUS_ERROR(status))) {
  2136. DP_STATS_INC(soc, rx.err.stale_cookie, 1);
  2137. qdf_assert_always(0);
  2138. }
  2139. rx_desc = dp_rx_cookie_2_va_rxdma_buf(soc, rx_buf_cookie);
  2140. status = dp_rx_desc_sanity(soc, hal_soc, hal_ring_hdl,
  2141. ring_desc, rx_desc);
  2142. if (QDF_IS_STATUS_ERROR(status)) {
  2143. if (qdf_unlikely(rx_desc && rx_desc->nbuf)) {
  2144. qdf_assert_always(rx_desc->unmapped);
  2145. dp_ipa_handle_rx_buf_smmu_mapping(
  2146. soc,
  2147. rx_desc->nbuf,
  2148. RX_DATA_BUFFER_SIZE,
  2149. false);
  2150. qdf_nbuf_unmap_nbytes_single(
  2151. soc->osdev,
  2152. rx_desc->nbuf,
  2153. QDF_DMA_FROM_DEVICE,
  2154. RX_DATA_BUFFER_SIZE);
  2155. rx_desc->unmapped = 1;
  2156. dp_rx_buffer_pool_nbuf_free(soc, rx_desc->nbuf,
  2157. rx_desc->pool_id);
  2158. dp_rx_add_to_free_desc_list(
  2159. &head[rx_desc->pool_id],
  2160. &tail[rx_desc->pool_id],
  2161. rx_desc);
  2162. }
  2163. hal_srng_dst_get_next(hal_soc, hal_ring_hdl);
  2164. continue;
  2165. }
  2166. /*
  2167. * this is a unlikely scenario where the host is reaping
  2168. * a descriptor which it already reaped just a while ago
  2169. * but is yet to replenish it back to HW.
  2170. * In this case host will dump the last 128 descriptors
  2171. * including the software descriptor rx_desc and assert.
  2172. */
  2173. if (qdf_unlikely(!rx_desc->in_use)) {
  2174. DP_STATS_INC(soc, rx.err.hal_reo_dest_dup, 1);
  2175. dp_info_rl("Reaping rx_desc not in use!");
  2176. dp_rx_dump_info_and_assert(soc, hal_ring_hdl,
  2177. ring_desc, rx_desc);
  2178. /* ignore duplicate RX desc and continue to process */
  2179. /* Pop out the descriptor */
  2180. hal_srng_dst_get_next(hal_soc, hal_ring_hdl);
  2181. continue;
  2182. }
  2183. status = dp_rx_desc_nbuf_sanity_check(ring_desc, rx_desc);
  2184. if (qdf_unlikely(QDF_IS_STATUS_ERROR(status))) {
  2185. DP_STATS_INC(soc, rx.err.nbuf_sanity_fail, 1);
  2186. dp_info_rl("Nbuf sanity check failure!");
  2187. dp_rx_dump_info_and_assert(soc, hal_ring_hdl,
  2188. ring_desc, rx_desc);
  2189. rx_desc->in_err_state = 1;
  2190. hal_srng_dst_get_next(hal_soc, hal_ring_hdl);
  2191. continue;
  2192. }
  2193. if (qdf_unlikely(!dp_rx_desc_check_magic(rx_desc))) {
  2194. dp_err("Invalid rx_desc cookie=%d", rx_buf_cookie);
  2195. DP_STATS_INC(soc, rx.err.rx_desc_invalid_magic, 1);
  2196. dp_rx_dump_info_and_assert(soc, hal_ring_hdl,
  2197. ring_desc, rx_desc);
  2198. }
  2199. /* Get MPDU DESC info */
  2200. hal_rx_mpdu_desc_info_get(ring_desc, &mpdu_desc_info);
  2201. /* Get MSDU DESC info */
  2202. hal_rx_msdu_desc_info_get(ring_desc, &msdu_desc_info);
  2203. if (qdf_unlikely(msdu_desc_info.msdu_flags &
  2204. HAL_MSDU_F_MSDU_CONTINUATION)) {
  2205. /* previous msdu has end bit set, so current one is
  2206. * the new MPDU
  2207. */
  2208. if (is_prev_msdu_last) {
  2209. /* Get number of entries available in HW ring */
  2210. num_entries_avail =
  2211. hal_srng_dst_num_valid(hal_soc,
  2212. hal_ring_hdl, 1);
  2213. /* For new MPDU check if we can read complete
  2214. * MPDU by comparing the number of buffers
  2215. * available and number of buffers needed to
  2216. * reap this MPDU
  2217. */
  2218. if (((msdu_desc_info.msdu_len /
  2219. (RX_DATA_BUFFER_SIZE - RX_PKT_TLVS_LEN) +
  2220. 1)) > num_entries_avail) {
  2221. DP_STATS_INC(
  2222. soc,
  2223. rx.msdu_scatter_wait_break,
  2224. 1);
  2225. dp_rx_cookie_reset_invalid_bit(
  2226. ring_desc);
  2227. break;
  2228. }
  2229. is_prev_msdu_last = false;
  2230. }
  2231. }
  2232. core_id = smp_processor_id();
  2233. DP_STATS_INC(soc, rx.ring_packets[core_id][ring_id], 1);
  2234. if (mpdu_desc_info.mpdu_flags & HAL_MPDU_F_RETRY_BIT)
  2235. qdf_nbuf_set_rx_retry_flag(rx_desc->nbuf, 1);
  2236. if (qdf_unlikely(mpdu_desc_info.mpdu_flags &
  2237. HAL_MPDU_F_RAW_AMPDU))
  2238. qdf_nbuf_set_raw_frame(rx_desc->nbuf, 1);
  2239. if (!is_prev_msdu_last &&
  2240. msdu_desc_info.msdu_flags & HAL_MSDU_F_LAST_MSDU_IN_MPDU)
  2241. is_prev_msdu_last = true;
  2242. /* Pop out the descriptor*/
  2243. hal_srng_dst_get_next(hal_soc, hal_ring_hdl);
  2244. rx_bufs_reaped[rx_desc->pool_id]++;
  2245. peer_mdata = mpdu_desc_info.peer_meta_data;
  2246. QDF_NBUF_CB_RX_PEER_ID(rx_desc->nbuf) =
  2247. DP_PEER_METADATA_PEER_ID_GET(peer_mdata);
  2248. QDF_NBUF_CB_RX_VDEV_ID(rx_desc->nbuf) =
  2249. DP_PEER_METADATA_VDEV_ID_GET(peer_mdata);
  2250. /* to indicate whether this msdu is rx offload */
  2251. pkt_capture_offload =
  2252. DP_PEER_METADATA_OFFLOAD_GET(peer_mdata);
  2253. /*
  2254. * save msdu flags first, last and continuation msdu in
  2255. * nbuf->cb, also save mcbc, is_da_valid, is_sa_valid and
  2256. * length to nbuf->cb. This ensures the info required for
  2257. * per pkt processing is always in the same cache line.
  2258. * This helps in improving throughput for smaller pkt
  2259. * sizes.
  2260. */
  2261. if (msdu_desc_info.msdu_flags & HAL_MSDU_F_FIRST_MSDU_IN_MPDU)
  2262. qdf_nbuf_set_rx_chfrag_start(rx_desc->nbuf, 1);
  2263. if (msdu_desc_info.msdu_flags & HAL_MSDU_F_MSDU_CONTINUATION)
  2264. qdf_nbuf_set_rx_chfrag_cont(rx_desc->nbuf, 1);
  2265. if (msdu_desc_info.msdu_flags & HAL_MSDU_F_LAST_MSDU_IN_MPDU)
  2266. qdf_nbuf_set_rx_chfrag_end(rx_desc->nbuf, 1);
  2267. if (msdu_desc_info.msdu_flags & HAL_MSDU_F_DA_IS_MCBC)
  2268. qdf_nbuf_set_da_mcbc(rx_desc->nbuf, 1);
  2269. if (msdu_desc_info.msdu_flags & HAL_MSDU_F_DA_IS_VALID)
  2270. qdf_nbuf_set_da_valid(rx_desc->nbuf, 1);
  2271. if (msdu_desc_info.msdu_flags & HAL_MSDU_F_SA_IS_VALID)
  2272. qdf_nbuf_set_sa_valid(rx_desc->nbuf, 1);
  2273. qdf_nbuf_set_tid_val(rx_desc->nbuf,
  2274. HAL_RX_REO_QUEUE_NUMBER_GET(ring_desc));
  2275. qdf_nbuf_set_rx_reo_dest_ind(
  2276. rx_desc->nbuf,
  2277. HAL_RX_REO_MSDU_REO_DST_IND_GET(ring_desc));
  2278. QDF_NBUF_CB_RX_PKT_LEN(rx_desc->nbuf) = msdu_desc_info.msdu_len;
  2279. QDF_NBUF_CB_RX_CTX_ID(rx_desc->nbuf) = reo_ring_num;
  2280. /*
  2281. * move unmap after scattered msdu waiting break logic
  2282. * in case double skb unmap happened.
  2283. */
  2284. rx_desc_pool = &soc->rx_desc_buf[rx_desc->pool_id];
  2285. dp_ipa_handle_rx_buf_smmu_mapping(soc, rx_desc->nbuf,
  2286. rx_desc_pool->buf_size,
  2287. false);
  2288. qdf_nbuf_unmap_nbytes_single(soc->osdev, rx_desc->nbuf,
  2289. QDF_DMA_FROM_DEVICE,
  2290. rx_desc_pool->buf_size);
  2291. rx_desc->unmapped = 1;
  2292. DP_RX_PROCESS_NBUF(soc, nbuf_head, nbuf_tail, ebuf_head,
  2293. ebuf_tail, rx_desc);
  2294. /*
  2295. * if continuation bit is set then we have MSDU spread
  2296. * across multiple buffers, let us not decrement quota
  2297. * till we reap all buffers of that MSDU.
  2298. */
  2299. if (qdf_likely(!qdf_nbuf_is_rx_chfrag_cont(rx_desc->nbuf)))
  2300. quota -= 1;
  2301. dp_rx_add_to_free_desc_list(&head[rx_desc->pool_id],
  2302. &tail[rx_desc->pool_id],
  2303. rx_desc);
  2304. num_rx_bufs_reaped++;
  2305. /*
  2306. * only if complete msdu is received for scatter case,
  2307. * then allow break.
  2308. */
  2309. if (is_prev_msdu_last &&
  2310. dp_rx_reap_loop_pkt_limit_hit(soc, num_rx_bufs_reaped))
  2311. break;
  2312. }
  2313. done:
  2314. dp_rx_srng_access_end(int_ctx, soc, hal_ring_hdl);
  2315. for (mac_id = 0; mac_id < MAX_PDEV_CNT; mac_id++) {
  2316. /*
  2317. * continue with next mac_id if no pkts were reaped
  2318. * from that pool
  2319. */
  2320. if (!rx_bufs_reaped[mac_id])
  2321. continue;
  2322. dp_rxdma_srng = &soc->rx_refill_buf_ring[mac_id];
  2323. rx_desc_pool = &soc->rx_desc_buf[mac_id];
  2324. dp_rx_buffers_replenish(soc, mac_id, dp_rxdma_srng,
  2325. rx_desc_pool, rx_bufs_reaped[mac_id],
  2326. &head[mac_id], &tail[mac_id]);
  2327. }
  2328. dp_verbose_debug("replenished %u\n", rx_bufs_reaped[0]);
  2329. /* Peer can be NULL is case of LFR */
  2330. if (qdf_likely(peer))
  2331. vdev = NULL;
  2332. /*
  2333. * BIG loop where each nbuf is dequeued from global queue,
  2334. * processed and queued back on a per vdev basis. These nbufs
  2335. * are sent to stack as and when we run out of nbufs
  2336. * or a new nbuf dequeued from global queue has a different
  2337. * vdev when compared to previous nbuf.
  2338. */
  2339. nbuf = nbuf_head;
  2340. while (nbuf) {
  2341. next = nbuf->next;
  2342. if (qdf_unlikely(dp_rx_is_raw_frame_dropped(nbuf))) {
  2343. nbuf = next;
  2344. DP_STATS_INC(soc, rx.err.raw_frm_drop, 1);
  2345. continue;
  2346. }
  2347. rx_tlv_hdr = qdf_nbuf_data(nbuf);
  2348. vdev_id = QDF_NBUF_CB_RX_VDEV_ID(nbuf);
  2349. peer_id = QDF_NBUF_CB_RX_PEER_ID(nbuf);
  2350. if (dp_rx_is_list_ready(deliver_list_head, vdev, peer,
  2351. peer_id, vdev_id)) {
  2352. dp_rx_deliver_to_stack(soc, vdev, peer,
  2353. deliver_list_head,
  2354. deliver_list_tail);
  2355. deliver_list_head = NULL;
  2356. deliver_list_tail = NULL;
  2357. }
  2358. /* Get TID from struct cb->tid_val, save to tid */
  2359. if (qdf_nbuf_is_rx_chfrag_start(nbuf))
  2360. tid = qdf_nbuf_get_tid_val(nbuf);
  2361. if (qdf_unlikely(!peer)) {
  2362. peer = dp_peer_get_ref_by_id(soc, peer_id,
  2363. DP_MOD_ID_RX);
  2364. } else if (peer && peer->peer_id != peer_id) {
  2365. dp_peer_unref_delete(peer, DP_MOD_ID_RX);
  2366. peer = dp_peer_get_ref_by_id(soc, peer_id,
  2367. DP_MOD_ID_RX);
  2368. }
  2369. if (peer) {
  2370. QDF_NBUF_CB_DP_TRACE_PRINT(nbuf) = false;
  2371. qdf_dp_trace_set_track(nbuf, QDF_RX);
  2372. QDF_NBUF_CB_RX_DP_TRACE(nbuf) = 1;
  2373. QDF_NBUF_CB_RX_PACKET_TRACK(nbuf) =
  2374. QDF_NBUF_RX_PKT_DATA_TRACK;
  2375. }
  2376. rx_bufs_used++;
  2377. if (qdf_likely(peer)) {
  2378. vdev = peer->vdev;
  2379. /*
  2380. * In encryption mode, all data packets except
  2381. * EAPOL frames should be dropped when peer is not
  2382. * authenticated. Thie feature is enabled for all peers
  2383. * under this vdev when peer_authorize flag is set.
  2384. */
  2385. if (qdf_unlikely(vdev->peer_authorize)) {
  2386. if (qdf_unlikely(vdev->sec_type != cdp_sec_type_none)) {
  2387. /*
  2388. * Allow only EAPOL frames
  2389. */
  2390. if (qdf_unlikely(!peer->authorize &&
  2391. !qdf_nbuf_is_ipv4_eapol_pkt(nbuf))) {
  2392. qdf_nbuf_free(nbuf);
  2393. nbuf = next;
  2394. DP_STATS_INC(soc, rx.err.peer_unauth_rx_pkt_drop, 1);
  2395. continue;
  2396. }
  2397. }
  2398. }
  2399. } else {
  2400. nbuf->next = NULL;
  2401. dp_rx_deliver_to_pkt_capture_no_peer(
  2402. soc, nbuf, pkt_capture_offload);
  2403. if (!pkt_capture_offload)
  2404. dp_rx_deliver_to_stack_no_peer(soc, nbuf);
  2405. nbuf = next;
  2406. continue;
  2407. }
  2408. if (qdf_unlikely(!vdev)) {
  2409. qdf_nbuf_free(nbuf);
  2410. nbuf = next;
  2411. DP_STATS_INC(soc, rx.err.invalid_vdev, 1);
  2412. continue;
  2413. }
  2414. /* when hlos tid override is enabled, save tid in
  2415. * skb->priority
  2416. */
  2417. if (qdf_unlikely(vdev->skip_sw_tid_classification &
  2418. DP_TXRX_HLOS_TID_OVERRIDE_ENABLED))
  2419. qdf_nbuf_set_priority(nbuf, tid);
  2420. rx_pdev = vdev->pdev;
  2421. DP_RX_TID_SAVE(nbuf, tid);
  2422. if (qdf_unlikely(rx_pdev->delay_stats_flag) ||
  2423. qdf_unlikely(wlan_cfg_is_peer_ext_stats_enabled(
  2424. soc->wlan_cfg_ctx)))
  2425. qdf_nbuf_set_timestamp(nbuf);
  2426. ring_id = QDF_NBUF_CB_RX_CTX_ID(nbuf);
  2427. tid_stats =
  2428. &rx_pdev->stats.tid_stats.tid_rx_stats[ring_id][tid];
  2429. /*
  2430. * Check if DMA completed -- msdu_done is the last bit
  2431. * to be written
  2432. */
  2433. if (qdf_unlikely(!qdf_nbuf_is_rx_chfrag_cont(nbuf) &&
  2434. !hal_rx_attn_msdu_done_get(rx_tlv_hdr))) {
  2435. dp_err("MSDU DONE failure");
  2436. DP_STATS_INC(soc, rx.err.msdu_done_fail, 1);
  2437. hal_rx_dump_pkt_tlvs(hal_soc, rx_tlv_hdr,
  2438. QDF_TRACE_LEVEL_INFO);
  2439. tid_stats->fail_cnt[MSDU_DONE_FAILURE]++;
  2440. qdf_nbuf_free(nbuf);
  2441. qdf_assert(0);
  2442. nbuf = next;
  2443. continue;
  2444. }
  2445. DP_HIST_PACKET_COUNT_INC(vdev->pdev->pdev_id);
  2446. /*
  2447. * First IF condition:
  2448. * 802.11 Fragmented pkts are reinjected to REO
  2449. * HW block as SG pkts and for these pkts we only
  2450. * need to pull the RX TLVS header length.
  2451. * Second IF condition:
  2452. * The below condition happens when an MSDU is spread
  2453. * across multiple buffers. This can happen in two cases
  2454. * 1. The nbuf size is smaller then the received msdu.
  2455. * ex: we have set the nbuf size to 2048 during
  2456. * nbuf_alloc. but we received an msdu which is
  2457. * 2304 bytes in size then this msdu is spread
  2458. * across 2 nbufs.
  2459. *
  2460. * 2. AMSDUs when RAW mode is enabled.
  2461. * ex: 1st MSDU is in 1st nbuf and 2nd MSDU is spread
  2462. * across 1st nbuf and 2nd nbuf and last MSDU is
  2463. * spread across 2nd nbuf and 3rd nbuf.
  2464. *
  2465. * for these scenarios let us create a skb frag_list and
  2466. * append these buffers till the last MSDU of the AMSDU
  2467. * Third condition:
  2468. * This is the most likely case, we receive 802.3 pkts
  2469. * decapsulated by HW, here we need to set the pkt length.
  2470. */
  2471. hal_rx_msdu_metadata_get(hal_soc, rx_tlv_hdr, &msdu_metadata);
  2472. if (qdf_unlikely(qdf_nbuf_is_frag(nbuf))) {
  2473. bool is_mcbc, is_sa_vld, is_da_vld;
  2474. is_mcbc = hal_rx_msdu_end_da_is_mcbc_get(soc->hal_soc,
  2475. rx_tlv_hdr);
  2476. is_sa_vld =
  2477. hal_rx_msdu_end_sa_is_valid_get(soc->hal_soc,
  2478. rx_tlv_hdr);
  2479. is_da_vld =
  2480. hal_rx_msdu_end_da_is_valid_get(soc->hal_soc,
  2481. rx_tlv_hdr);
  2482. qdf_nbuf_set_da_mcbc(nbuf, is_mcbc);
  2483. qdf_nbuf_set_da_valid(nbuf, is_da_vld);
  2484. qdf_nbuf_set_sa_valid(nbuf, is_sa_vld);
  2485. qdf_nbuf_pull_head(nbuf, RX_PKT_TLVS_LEN);
  2486. } else if (qdf_nbuf_is_rx_chfrag_cont(nbuf)) {
  2487. msdu_len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
  2488. nbuf = dp_rx_sg_create(soc, nbuf);
  2489. next = nbuf->next;
  2490. if (qdf_nbuf_is_raw_frame(nbuf)) {
  2491. DP_STATS_INC(vdev->pdev, rx_raw_pkts, 1);
  2492. DP_STATS_INC_PKT(peer, rx.raw, 1, msdu_len);
  2493. } else {
  2494. qdf_nbuf_free(nbuf);
  2495. DP_STATS_INC(soc, rx.err.scatter_msdu, 1);
  2496. dp_info_rl("scatter msdu len %d, dropped",
  2497. msdu_len);
  2498. nbuf = next;
  2499. continue;
  2500. }
  2501. } else {
  2502. msdu_len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
  2503. pkt_len = msdu_len +
  2504. msdu_metadata.l3_hdr_pad +
  2505. RX_PKT_TLVS_LEN;
  2506. dp_rx_desc_nbuf_len_sanity_check(soc, pkt_len);
  2507. qdf_nbuf_set_pktlen(nbuf, pkt_len);
  2508. dp_rx_skip_tlvs(nbuf, msdu_metadata.l3_hdr_pad);
  2509. }
  2510. /*
  2511. * process frame for mulitpass phrase processing
  2512. */
  2513. if (qdf_unlikely(vdev->multipass_en)) {
  2514. if (dp_rx_multipass_process(peer, nbuf, tid) == false) {
  2515. DP_STATS_INC(peer, rx.multipass_rx_pkt_drop, 1);
  2516. qdf_nbuf_free(nbuf);
  2517. nbuf = next;
  2518. continue;
  2519. }
  2520. }
  2521. if (!dp_wds_rx_policy_check(rx_tlv_hdr, vdev, peer)) {
  2522. dp_rx_err("%pK: Policy Check Drop pkt", soc);
  2523. tid_stats->fail_cnt[POLICY_CHECK_DROP]++;
  2524. /* Drop & free packet */
  2525. qdf_nbuf_free(nbuf);
  2526. /* Statistics */
  2527. nbuf = next;
  2528. continue;
  2529. }
  2530. if (qdf_unlikely(peer && (peer->nawds_enabled) &&
  2531. (qdf_nbuf_is_da_mcbc(nbuf)) &&
  2532. (hal_rx_get_mpdu_mac_ad4_valid(soc->hal_soc,
  2533. rx_tlv_hdr) ==
  2534. false))) {
  2535. tid_stats->fail_cnt[NAWDS_MCAST_DROP]++;
  2536. DP_STATS_INC(peer, rx.nawds_mcast_drop, 1);
  2537. qdf_nbuf_free(nbuf);
  2538. nbuf = next;
  2539. continue;
  2540. }
  2541. if (soc->process_rx_status)
  2542. dp_rx_cksum_offload(vdev->pdev, nbuf, rx_tlv_hdr);
  2543. /* Update the protocol tag in SKB based on CCE metadata */
  2544. dp_rx_update_protocol_tag(soc, vdev, nbuf, rx_tlv_hdr,
  2545. reo_ring_num, false, true);
  2546. /* Update the flow tag in SKB based on FSE metadata */
  2547. dp_rx_update_flow_tag(soc, vdev, nbuf, rx_tlv_hdr, true);
  2548. dp_rx_msdu_stats_update(soc, nbuf, rx_tlv_hdr, peer,
  2549. ring_id, tid_stats);
  2550. if (qdf_unlikely(vdev->mesh_vdev)) {
  2551. if (dp_rx_filter_mesh_packets(vdev, nbuf, rx_tlv_hdr)
  2552. == QDF_STATUS_SUCCESS) {
  2553. dp_rx_info("%pK: mesh pkt filtered", soc);
  2554. tid_stats->fail_cnt[MESH_FILTER_DROP]++;
  2555. DP_STATS_INC(vdev->pdev, dropped.mesh_filter,
  2556. 1);
  2557. qdf_nbuf_free(nbuf);
  2558. nbuf = next;
  2559. continue;
  2560. }
  2561. dp_rx_fill_mesh_stats(vdev, nbuf, rx_tlv_hdr, peer);
  2562. }
  2563. if (qdf_likely(vdev->rx_decap_type ==
  2564. htt_cmn_pkt_type_ethernet) &&
  2565. qdf_likely(!vdev->mesh_vdev)) {
  2566. /* WDS Destination Address Learning */
  2567. dp_rx_da_learn(soc, rx_tlv_hdr, peer, nbuf);
  2568. /* Due to HW issue, sometimes we see that the sa_idx
  2569. * and da_idx are invalid with sa_valid and da_valid
  2570. * bits set
  2571. *
  2572. * in this case we also see that value of
  2573. * sa_sw_peer_id is set as 0
  2574. *
  2575. * Drop the packet if sa_idx and da_idx OOB or
  2576. * sa_sw_peerid is 0
  2577. */
  2578. if (!is_sa_da_idx_valid(soc, rx_tlv_hdr, nbuf,
  2579. msdu_metadata)) {
  2580. qdf_nbuf_free(nbuf);
  2581. nbuf = next;
  2582. DP_STATS_INC(soc, rx.err.invalid_sa_da_idx, 1);
  2583. continue;
  2584. }
  2585. /* WDS Source Port Learning */
  2586. if (qdf_likely(vdev->wds_enabled))
  2587. dp_rx_wds_srcport_learn(soc,
  2588. rx_tlv_hdr,
  2589. peer,
  2590. nbuf,
  2591. msdu_metadata);
  2592. /* Intrabss-fwd */
  2593. if (dp_rx_check_ap_bridge(vdev))
  2594. if (dp_rx_intrabss_fwd(soc,
  2595. peer,
  2596. rx_tlv_hdr,
  2597. nbuf,
  2598. msdu_metadata)) {
  2599. nbuf = next;
  2600. tid_stats->intrabss_cnt++;
  2601. continue; /* Get next desc */
  2602. }
  2603. if (qdf_unlikely(dp_rx_mec_check_wrapper(soc,
  2604. peer,
  2605. rx_tlv_hdr,
  2606. nbuf))) {
  2607. /* this is a looped back MCBC pkt,drop it */
  2608. DP_STATS_INC_PKT(peer, rx.mec_drop, 1,
  2609. QDF_NBUF_CB_RX_PKT_LEN(nbuf));
  2610. qdf_nbuf_free(nbuf);
  2611. nbuf = next;
  2612. continue;
  2613. }
  2614. }
  2615. dp_rx_fill_gro_info(soc, rx_tlv_hdr, nbuf, &rx_ol_pkt_cnt);
  2616. dp_rx_update_stats(soc, nbuf);
  2617. DP_RX_LIST_APPEND(deliver_list_head,
  2618. deliver_list_tail,
  2619. nbuf);
  2620. DP_STATS_INC_PKT(peer, rx.to_stack, 1,
  2621. QDF_NBUF_CB_RX_PKT_LEN(nbuf));
  2622. if (qdf_unlikely(peer->in_twt))
  2623. DP_STATS_INC_PKT(peer, rx.to_stack_twt, 1,
  2624. QDF_NBUF_CB_RX_PKT_LEN(nbuf));
  2625. tid_stats->delivered_to_stack++;
  2626. nbuf = next;
  2627. }
  2628. if (qdf_likely(deliver_list_head)) {
  2629. if (qdf_likely(peer)) {
  2630. dp_rx_deliver_to_pkt_capture(soc, vdev->pdev, peer_id,
  2631. pkt_capture_offload,
  2632. deliver_list_head);
  2633. if (!pkt_capture_offload)
  2634. dp_rx_deliver_to_stack(soc, vdev, peer,
  2635. deliver_list_head,
  2636. deliver_list_tail);
  2637. }
  2638. else {
  2639. nbuf = deliver_list_head;
  2640. while (nbuf) {
  2641. next = nbuf->next;
  2642. nbuf->next = NULL;
  2643. dp_rx_deliver_to_stack_no_peer(soc, nbuf);
  2644. nbuf = next;
  2645. }
  2646. }
  2647. }
  2648. if (qdf_likely(peer))
  2649. dp_peer_unref_delete(peer, DP_MOD_ID_RX);
  2650. if (dp_rx_enable_eol_data_check(soc) && rx_bufs_used) {
  2651. if (quota) {
  2652. num_pending =
  2653. dp_rx_srng_get_num_pending(hal_soc,
  2654. hal_ring_hdl,
  2655. num_entries,
  2656. &near_full);
  2657. if (num_pending) {
  2658. DP_STATS_INC(soc, rx.hp_oos2, 1);
  2659. if (!hif_exec_should_yield(scn, intr_id))
  2660. goto more_data;
  2661. if (qdf_unlikely(near_full)) {
  2662. DP_STATS_INC(soc, rx.near_full, 1);
  2663. goto more_data;
  2664. }
  2665. }
  2666. }
  2667. if (vdev && vdev->osif_fisa_flush)
  2668. vdev->osif_fisa_flush(soc, reo_ring_num);
  2669. if (vdev && vdev->osif_gro_flush && rx_ol_pkt_cnt) {
  2670. vdev->osif_gro_flush(vdev->osif_vdev,
  2671. reo_ring_num);
  2672. }
  2673. }
  2674. /* Update histogram statistics by looping through pdev's */
  2675. DP_RX_HIST_STATS_PER_PDEV();
  2676. return rx_bufs_used; /* Assume no scale factor for now */
  2677. }
  2678. #endif /* QCA_HOST_MODE_WIFI_DISABLED */
  2679. QDF_STATUS dp_rx_vdev_detach(struct dp_vdev *vdev)
  2680. {
  2681. QDF_STATUS ret;
  2682. if (vdev->osif_rx_flush) {
  2683. ret = vdev->osif_rx_flush(vdev->osif_vdev, vdev->vdev_id);
  2684. if (!QDF_IS_STATUS_SUCCESS(ret)) {
  2685. dp_err("Failed to flush rx pkts for vdev %d\n",
  2686. vdev->vdev_id);
  2687. return ret;
  2688. }
  2689. }
  2690. return QDF_STATUS_SUCCESS;
  2691. }
  2692. static QDF_STATUS
  2693. dp_pdev_nbuf_alloc_and_map(struct dp_soc *dp_soc,
  2694. struct dp_rx_nbuf_frag_info *nbuf_frag_info_t,
  2695. struct dp_pdev *dp_pdev,
  2696. struct rx_desc_pool *rx_desc_pool)
  2697. {
  2698. QDF_STATUS ret = QDF_STATUS_E_FAILURE;
  2699. (nbuf_frag_info_t->virt_addr).nbuf =
  2700. qdf_nbuf_alloc(dp_soc->osdev, rx_desc_pool->buf_size,
  2701. RX_BUFFER_RESERVATION,
  2702. rx_desc_pool->buf_alignment, FALSE);
  2703. if (!((nbuf_frag_info_t->virt_addr).nbuf)) {
  2704. dp_err("nbuf alloc failed");
  2705. DP_STATS_INC(dp_pdev, replenish.nbuf_alloc_fail, 1);
  2706. return ret;
  2707. }
  2708. ret = qdf_nbuf_map_nbytes_single(dp_soc->osdev,
  2709. (nbuf_frag_info_t->virt_addr).nbuf,
  2710. QDF_DMA_FROM_DEVICE,
  2711. rx_desc_pool->buf_size);
  2712. if (qdf_unlikely(QDF_IS_STATUS_ERROR(ret))) {
  2713. qdf_nbuf_free((nbuf_frag_info_t->virt_addr).nbuf);
  2714. dp_err("nbuf map failed");
  2715. DP_STATS_INC(dp_pdev, replenish.map_err, 1);
  2716. return ret;
  2717. }
  2718. nbuf_frag_info_t->paddr =
  2719. qdf_nbuf_get_frag_paddr((nbuf_frag_info_t->virt_addr).nbuf, 0);
  2720. ret = dp_check_paddr(dp_soc, &((nbuf_frag_info_t->virt_addr).nbuf),
  2721. &nbuf_frag_info_t->paddr,
  2722. rx_desc_pool);
  2723. if (ret == QDF_STATUS_E_FAILURE) {
  2724. dp_err("nbuf check x86 failed");
  2725. DP_STATS_INC(dp_pdev, replenish.x86_fail, 1);
  2726. return ret;
  2727. }
  2728. return QDF_STATUS_SUCCESS;
  2729. }
  2730. QDF_STATUS
  2731. dp_pdev_rx_buffers_attach(struct dp_soc *dp_soc, uint32_t mac_id,
  2732. struct dp_srng *dp_rxdma_srng,
  2733. struct rx_desc_pool *rx_desc_pool,
  2734. uint32_t num_req_buffers)
  2735. {
  2736. struct dp_pdev *dp_pdev = dp_get_pdev_for_lmac_id(dp_soc, mac_id);
  2737. hal_ring_handle_t rxdma_srng = dp_rxdma_srng->hal_srng;
  2738. union dp_rx_desc_list_elem_t *next;
  2739. void *rxdma_ring_entry;
  2740. qdf_dma_addr_t paddr;
  2741. struct dp_rx_nbuf_frag_info *nf_info;
  2742. uint32_t nr_descs, nr_nbuf = 0, nr_nbuf_total = 0;
  2743. uint32_t buffer_index, nbuf_ptrs_per_page;
  2744. qdf_nbuf_t nbuf;
  2745. QDF_STATUS ret;
  2746. int page_idx, total_pages;
  2747. union dp_rx_desc_list_elem_t *desc_list = NULL;
  2748. union dp_rx_desc_list_elem_t *tail = NULL;
  2749. int sync_hw_ptr = 1;
  2750. uint32_t num_entries_avail;
  2751. if (qdf_unlikely(!rxdma_srng)) {
  2752. DP_STATS_INC(dp_pdev, replenish.rxdma_err, num_req_buffers);
  2753. return QDF_STATUS_E_FAILURE;
  2754. }
  2755. dp_debug("requested %u RX buffers for driver attach", num_req_buffers);
  2756. hal_srng_access_start(dp_soc->hal_soc, rxdma_srng);
  2757. num_entries_avail = hal_srng_src_num_avail(dp_soc->hal_soc,
  2758. rxdma_srng,
  2759. sync_hw_ptr);
  2760. hal_srng_access_end(dp_soc->hal_soc, rxdma_srng);
  2761. if (!num_entries_avail) {
  2762. dp_err("Num of available entries is zero, nothing to do");
  2763. return QDF_STATUS_E_NOMEM;
  2764. }
  2765. if (num_entries_avail < num_req_buffers)
  2766. num_req_buffers = num_entries_avail;
  2767. nr_descs = dp_rx_get_free_desc_list(dp_soc, mac_id, rx_desc_pool,
  2768. num_req_buffers, &desc_list, &tail);
  2769. if (!nr_descs) {
  2770. dp_err("no free rx_descs in freelist");
  2771. DP_STATS_INC(dp_pdev, err.desc_alloc_fail, num_req_buffers);
  2772. return QDF_STATUS_E_NOMEM;
  2773. }
  2774. dp_debug("got %u RX descs for driver attach", nr_descs);
  2775. /*
  2776. * Try to allocate pointers to the nbuf one page at a time.
  2777. * Take pointers that can fit in one page of memory and
  2778. * iterate through the total descriptors that need to be
  2779. * allocated in order of pages. Reuse the pointers that
  2780. * have been allocated to fit in one page across each
  2781. * iteration to index into the nbuf.
  2782. */
  2783. total_pages = (nr_descs * sizeof(*nf_info)) / PAGE_SIZE;
  2784. /*
  2785. * Add an extra page to store the remainder if any
  2786. */
  2787. if ((nr_descs * sizeof(*nf_info)) % PAGE_SIZE)
  2788. total_pages++;
  2789. nf_info = qdf_mem_malloc(PAGE_SIZE);
  2790. if (!nf_info) {
  2791. dp_err("failed to allocate nbuf array");
  2792. DP_STATS_INC(dp_pdev, replenish.rxdma_err, num_req_buffers);
  2793. QDF_BUG(0);
  2794. return QDF_STATUS_E_NOMEM;
  2795. }
  2796. nbuf_ptrs_per_page = PAGE_SIZE / sizeof(*nf_info);
  2797. for (page_idx = 0; page_idx < total_pages; page_idx++) {
  2798. qdf_mem_zero(nf_info, PAGE_SIZE);
  2799. for (nr_nbuf = 0; nr_nbuf < nbuf_ptrs_per_page; nr_nbuf++) {
  2800. /*
  2801. * The last page of buffer pointers may not be required
  2802. * completely based on the number of descriptors. Below
  2803. * check will ensure we are allocating only the
  2804. * required number of descriptors.
  2805. */
  2806. if (nr_nbuf_total >= nr_descs)
  2807. break;
  2808. /* Flag is set while pdev rx_desc_pool initialization */
  2809. if (qdf_unlikely(rx_desc_pool->rx_mon_dest_frag_enable))
  2810. ret = dp_pdev_frag_alloc_and_map(dp_soc,
  2811. &nf_info[nr_nbuf], dp_pdev,
  2812. rx_desc_pool);
  2813. else
  2814. ret = dp_pdev_nbuf_alloc_and_map(dp_soc,
  2815. &nf_info[nr_nbuf], dp_pdev,
  2816. rx_desc_pool);
  2817. if (QDF_IS_STATUS_ERROR(ret))
  2818. break;
  2819. nr_nbuf_total++;
  2820. }
  2821. hal_srng_access_start(dp_soc->hal_soc, rxdma_srng);
  2822. for (buffer_index = 0; buffer_index < nr_nbuf; buffer_index++) {
  2823. rxdma_ring_entry =
  2824. hal_srng_src_get_next(dp_soc->hal_soc,
  2825. rxdma_srng);
  2826. qdf_assert_always(rxdma_ring_entry);
  2827. next = desc_list->next;
  2828. paddr = nf_info[buffer_index].paddr;
  2829. nbuf = nf_info[buffer_index].virt_addr.nbuf;
  2830. /* Flag is set while pdev rx_desc_pool initialization */
  2831. if (qdf_unlikely(rx_desc_pool->rx_mon_dest_frag_enable))
  2832. dp_rx_desc_frag_prep(&desc_list->rx_desc,
  2833. &nf_info[buffer_index]);
  2834. else
  2835. dp_rx_desc_prep(&desc_list->rx_desc,
  2836. &nf_info[buffer_index]);
  2837. desc_list->rx_desc.in_use = 1;
  2838. dp_rx_desc_alloc_dbg_info(&desc_list->rx_desc);
  2839. dp_rx_desc_update_dbg_info(&desc_list->rx_desc,
  2840. __func__,
  2841. RX_DESC_REPLENISHED);
  2842. hal_rxdma_buff_addr_info_set(rxdma_ring_entry, paddr,
  2843. desc_list->rx_desc.cookie,
  2844. rx_desc_pool->owner);
  2845. dp_ipa_handle_rx_buf_smmu_mapping(
  2846. dp_soc, nbuf,
  2847. rx_desc_pool->buf_size,
  2848. true);
  2849. desc_list = next;
  2850. }
  2851. hal_srng_access_end(dp_soc->hal_soc, rxdma_srng);
  2852. }
  2853. dp_info("filled %u RX buffers for driver attach", nr_nbuf_total);
  2854. qdf_mem_free(nf_info);
  2855. if (!nr_nbuf_total) {
  2856. dp_err("No nbuf's allocated");
  2857. QDF_BUG(0);
  2858. return QDF_STATUS_E_RESOURCES;
  2859. }
  2860. /* No need to count the number of bytes received during replenish.
  2861. * Therefore set replenish.pkts.bytes as 0.
  2862. */
  2863. DP_STATS_INC_PKT(dp_pdev, replenish.pkts, nr_nbuf, 0);
  2864. return QDF_STATUS_SUCCESS;
  2865. }
  2866. /**
  2867. * dp_rx_enable_mon_dest_frag() - Enable frag processing for
  2868. * monitor destination ring via frag.
  2869. *
  2870. * Enable this flag only for monitor destination buffer processing
  2871. * if DP_RX_MON_MEM_FRAG feature is enabled.
  2872. * If flag is set then frag based function will be called for alloc,
  2873. * map, prep desc and free ops for desc buffer else normal nbuf based
  2874. * function will be called.
  2875. *
  2876. * @rx_desc_pool: Rx desc pool
  2877. * @is_mon_dest_desc: Is it for monitor dest buffer
  2878. *
  2879. * Return: None
  2880. */
  2881. #ifdef DP_RX_MON_MEM_FRAG
  2882. void dp_rx_enable_mon_dest_frag(struct rx_desc_pool *rx_desc_pool,
  2883. bool is_mon_dest_desc)
  2884. {
  2885. rx_desc_pool->rx_mon_dest_frag_enable = is_mon_dest_desc;
  2886. if (is_mon_dest_desc)
  2887. dp_alert("Feature DP_RX_MON_MEM_FRAG for mon_dest is enabled");
  2888. }
  2889. #else
  2890. void dp_rx_enable_mon_dest_frag(struct rx_desc_pool *rx_desc_pool,
  2891. bool is_mon_dest_desc)
  2892. {
  2893. rx_desc_pool->rx_mon_dest_frag_enable = false;
  2894. if (is_mon_dest_desc)
  2895. dp_alert("Feature DP_RX_MON_MEM_FRAG for mon_dest is disabled");
  2896. }
  2897. #endif
  2898. /*
  2899. * dp_rx_pdev_desc_pool_alloc() - allocate memory for software rx descriptor
  2900. * pool
  2901. *
  2902. * @pdev: core txrx pdev context
  2903. *
  2904. * Return: QDF_STATUS - QDF_STATUS_SUCCESS
  2905. * QDF_STATUS_E_NOMEM
  2906. */
  2907. QDF_STATUS
  2908. dp_rx_pdev_desc_pool_alloc(struct dp_pdev *pdev)
  2909. {
  2910. struct dp_soc *soc = pdev->soc;
  2911. uint32_t rxdma_entries;
  2912. uint32_t rx_sw_desc_num;
  2913. struct dp_srng *dp_rxdma_srng;
  2914. struct rx_desc_pool *rx_desc_pool;
  2915. uint32_t status = QDF_STATUS_SUCCESS;
  2916. int mac_for_pdev;
  2917. mac_for_pdev = pdev->lmac_id;
  2918. if (wlan_cfg_get_dp_pdev_nss_enabled(pdev->wlan_cfg_ctx)) {
  2919. dp_rx_info("%pK: nss-wifi<4> skip Rx refil %d",
  2920. soc, mac_for_pdev);
  2921. return status;
  2922. }
  2923. dp_rxdma_srng = &soc->rx_refill_buf_ring[mac_for_pdev];
  2924. rxdma_entries = dp_rxdma_srng->num_entries;
  2925. rx_desc_pool = &soc->rx_desc_buf[mac_for_pdev];
  2926. rx_sw_desc_num = wlan_cfg_get_dp_soc_rx_sw_desc_num(soc->wlan_cfg_ctx);
  2927. rx_desc_pool->desc_type = DP_RX_DESC_BUF_TYPE;
  2928. status = dp_rx_desc_pool_alloc(soc,
  2929. rx_sw_desc_num,
  2930. rx_desc_pool);
  2931. if (status != QDF_STATUS_SUCCESS)
  2932. return status;
  2933. return status;
  2934. }
  2935. /*
  2936. * dp_rx_pdev_desc_pool_free() - free software rx descriptor pool
  2937. *
  2938. * @pdev: core txrx pdev context
  2939. */
  2940. void dp_rx_pdev_desc_pool_free(struct dp_pdev *pdev)
  2941. {
  2942. int mac_for_pdev = pdev->lmac_id;
  2943. struct dp_soc *soc = pdev->soc;
  2944. struct rx_desc_pool *rx_desc_pool;
  2945. rx_desc_pool = &soc->rx_desc_buf[mac_for_pdev];
  2946. dp_rx_desc_pool_free(soc, rx_desc_pool);
  2947. }
  2948. /*
  2949. * dp_rx_pdev_desc_pool_init() - initialize software rx descriptors
  2950. *
  2951. * @pdev: core txrx pdev context
  2952. *
  2953. * Return: QDF_STATUS - QDF_STATUS_SUCCESS
  2954. * QDF_STATUS_E_NOMEM
  2955. */
  2956. QDF_STATUS dp_rx_pdev_desc_pool_init(struct dp_pdev *pdev)
  2957. {
  2958. int mac_for_pdev = pdev->lmac_id;
  2959. struct dp_soc *soc = pdev->soc;
  2960. uint32_t rxdma_entries;
  2961. uint32_t rx_sw_desc_num;
  2962. struct dp_srng *dp_rxdma_srng;
  2963. struct rx_desc_pool *rx_desc_pool;
  2964. if (wlan_cfg_get_dp_pdev_nss_enabled(pdev->wlan_cfg_ctx)) {
  2965. /**
  2966. * If NSS is enabled, rx_desc_pool is already filled.
  2967. * Hence, just disable desc_pool frag flag.
  2968. */
  2969. rx_desc_pool = &soc->rx_desc_buf[mac_for_pdev];
  2970. dp_rx_enable_mon_dest_frag(rx_desc_pool, false);
  2971. dp_rx_info("%pK: nss-wifi<4> skip Rx refil %d",
  2972. soc, mac_for_pdev);
  2973. return QDF_STATUS_SUCCESS;
  2974. }
  2975. rx_desc_pool = &soc->rx_desc_buf[mac_for_pdev];
  2976. if (dp_rx_desc_pool_is_allocated(rx_desc_pool) == QDF_STATUS_E_NOMEM)
  2977. return QDF_STATUS_E_NOMEM;
  2978. dp_rxdma_srng = &soc->rx_refill_buf_ring[mac_for_pdev];
  2979. rxdma_entries = dp_rxdma_srng->num_entries;
  2980. soc->process_rx_status = CONFIG_PROCESS_RX_STATUS;
  2981. rx_sw_desc_num =
  2982. wlan_cfg_get_dp_soc_rx_sw_desc_num(soc->wlan_cfg_ctx);
  2983. rx_desc_pool->owner = DP_WBM2SW_RBM;
  2984. rx_desc_pool->buf_size = RX_DATA_BUFFER_SIZE;
  2985. rx_desc_pool->buf_alignment = RX_DATA_BUFFER_ALIGNMENT;
  2986. /* Disable monitor dest processing via frag */
  2987. dp_rx_enable_mon_dest_frag(rx_desc_pool, false);
  2988. dp_rx_desc_pool_init(soc, mac_for_pdev,
  2989. rx_sw_desc_num, rx_desc_pool);
  2990. return QDF_STATUS_SUCCESS;
  2991. }
  2992. /*
  2993. * dp_rx_pdev_desc_pool_deinit() - de-initialize software rx descriptor pools
  2994. * @pdev: core txrx pdev context
  2995. *
  2996. * This function resets the freelist of rx descriptors and destroys locks
  2997. * associated with this list of descriptors.
  2998. */
  2999. void dp_rx_pdev_desc_pool_deinit(struct dp_pdev *pdev)
  3000. {
  3001. int mac_for_pdev = pdev->lmac_id;
  3002. struct dp_soc *soc = pdev->soc;
  3003. struct rx_desc_pool *rx_desc_pool;
  3004. rx_desc_pool = &soc->rx_desc_buf[mac_for_pdev];
  3005. dp_rx_desc_pool_deinit(soc, rx_desc_pool);
  3006. }
  3007. /*
  3008. * dp_rx_pdev_buffers_alloc() - Allocate nbufs (skbs) and replenish RxDMA ring
  3009. *
  3010. * @pdev: core txrx pdev context
  3011. *
  3012. * Return: QDF_STATUS - QDF_STATUS_SUCCESS
  3013. * QDF_STATUS_E_NOMEM
  3014. */
  3015. QDF_STATUS
  3016. dp_rx_pdev_buffers_alloc(struct dp_pdev *pdev)
  3017. {
  3018. int mac_for_pdev = pdev->lmac_id;
  3019. struct dp_soc *soc = pdev->soc;
  3020. struct dp_srng *dp_rxdma_srng;
  3021. struct rx_desc_pool *rx_desc_pool;
  3022. uint32_t rxdma_entries;
  3023. dp_rxdma_srng = &soc->rx_refill_buf_ring[mac_for_pdev];
  3024. rxdma_entries = dp_rxdma_srng->num_entries;
  3025. rx_desc_pool = &soc->rx_desc_buf[mac_for_pdev];
  3026. /* Initialize RX buffer pool which will be
  3027. * used during low memory conditions
  3028. */
  3029. dp_rx_buffer_pool_init(soc, mac_for_pdev);
  3030. return dp_pdev_rx_buffers_attach(soc, mac_for_pdev, dp_rxdma_srng,
  3031. rx_desc_pool, rxdma_entries - 1);
  3032. }
  3033. /*
  3034. * dp_rx_pdev_buffers_free - Free nbufs (skbs)
  3035. *
  3036. * @pdev: core txrx pdev context
  3037. */
  3038. void
  3039. dp_rx_pdev_buffers_free(struct dp_pdev *pdev)
  3040. {
  3041. int mac_for_pdev = pdev->lmac_id;
  3042. struct dp_soc *soc = pdev->soc;
  3043. struct rx_desc_pool *rx_desc_pool;
  3044. rx_desc_pool = &soc->rx_desc_buf[mac_for_pdev];
  3045. dp_rx_desc_nbuf_free(soc, rx_desc_pool);
  3046. dp_rx_buffer_pool_deinit(soc, mac_for_pdev);
  3047. }
  3048. #ifdef DP_RX_SPECIAL_FRAME_NEED
  3049. bool dp_rx_deliver_special_frame(struct dp_soc *soc, struct dp_peer *peer,
  3050. qdf_nbuf_t nbuf, uint32_t frame_mask,
  3051. uint8_t *rx_tlv_hdr)
  3052. {
  3053. uint32_t l2_hdr_offset = 0;
  3054. uint16_t msdu_len = 0;
  3055. uint32_t skip_len;
  3056. l2_hdr_offset =
  3057. hal_rx_msdu_end_l3_hdr_padding_get(soc->hal_soc, rx_tlv_hdr);
  3058. if (qdf_unlikely(qdf_nbuf_is_frag(nbuf))) {
  3059. skip_len = l2_hdr_offset;
  3060. } else {
  3061. msdu_len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
  3062. skip_len = l2_hdr_offset + RX_PKT_TLVS_LEN;
  3063. qdf_nbuf_set_pktlen(nbuf, msdu_len + skip_len);
  3064. }
  3065. QDF_NBUF_CB_RX_NUM_ELEMENTS_IN_LIST(nbuf) = 1;
  3066. dp_rx_set_hdr_pad(nbuf, l2_hdr_offset);
  3067. qdf_nbuf_pull_head(nbuf, skip_len);
  3068. if (dp_rx_is_special_frame(nbuf, frame_mask)) {
  3069. qdf_nbuf_set_exc_frame(nbuf, 1);
  3070. dp_rx_deliver_to_stack(soc, peer->vdev, peer,
  3071. nbuf, NULL);
  3072. return true;
  3073. }
  3074. return false;
  3075. }
  3076. #endif