hal_srng.c 50 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794
  1. /*
  2. * Copyright (c) 2016-2021 The Linux Foundation. All rights reserved.
  3. * Copyright (c) 2021-2022 Qualcomm Innovation Center, Inc. All rights reserved.
  4. *
  5. * Permission to use, copy, modify, and/or distribute this software for
  6. * any purpose with or without fee is hereby granted, provided that the
  7. * above copyright notice and this permission notice appear in all
  8. * copies.
  9. *
  10. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
  11. * WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
  12. * WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
  13. * AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
  14. * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
  15. * PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
  16. * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
  17. * PERFORMANCE OF THIS SOFTWARE.
  18. */
  19. #include "hal_hw_headers.h"
  20. #include "hal_api.h"
  21. #include "hal_reo.h"
  22. #include "target_type.h"
  23. #include "qdf_module.h"
  24. #include "wcss_version.h"
  25. #include <qdf_tracepoint.h>
  26. #ifdef QCA_WIFI_QCA8074
  27. void hal_qca6290_attach(struct hal_soc *hal);
  28. #endif
  29. #ifdef QCA_WIFI_QCA8074
  30. void hal_qca8074_attach(struct hal_soc *hal);
  31. #endif
  32. #if defined(QCA_WIFI_QCA8074V2) || defined(QCA_WIFI_QCA6018) || \
  33. defined(QCA_WIFI_QCA9574)
  34. void hal_qca8074v2_attach(struct hal_soc *hal);
  35. #endif
  36. #ifdef QCA_WIFI_QCA6390
  37. void hal_qca6390_attach(struct hal_soc *hal);
  38. #endif
  39. #ifdef QCA_WIFI_QCA6490
  40. void hal_qca6490_attach(struct hal_soc *hal);
  41. #endif
  42. #ifdef QCA_WIFI_QCN9000
  43. void hal_qcn9000_attach(struct hal_soc *hal);
  44. #endif
  45. #ifdef QCA_WIFI_QCN9224
  46. void hal_qcn9224_attach(struct hal_soc *hal);
  47. #endif
  48. #ifdef QCA_WIFI_QCN6122
  49. void hal_qcn6122_attach(struct hal_soc *hal);
  50. #endif
  51. #ifdef QCA_WIFI_QCA6750
  52. void hal_qca6750_attach(struct hal_soc *hal);
  53. #endif
  54. #ifdef QCA_WIFI_QCA5018
  55. void hal_qca5018_attach(struct hal_soc *hal);
  56. #endif
  57. #ifdef QCA_WIFI_KIWI
  58. void hal_kiwi_attach(struct hal_soc *hal);
  59. #endif
  60. #ifdef ENABLE_VERBOSE_DEBUG
  61. bool is_hal_verbose_debug_enabled;
  62. #endif
  63. #define HAL_REO_DESTINATION_RING_CTRL_IX_0_ADDR(x) ((x) + 0x4)
  64. #define HAL_REO_DESTINATION_RING_CTRL_IX_1_ADDR(x) ((x) + 0x8)
  65. #define HAL_REO_DESTINATION_RING_CTRL_IX_2_ADDR(x) ((x) + 0xc)
  66. #define HAL_REO_DESTINATION_RING_CTRL_IX_3_ADDR(x) ((x) + 0x10)
  67. #ifdef ENABLE_HAL_REG_WR_HISTORY
  68. struct hal_reg_write_fail_history hal_reg_wr_hist;
  69. void hal_reg_wr_fail_history_add(struct hal_soc *hal_soc,
  70. uint32_t offset,
  71. uint32_t wr_val, uint32_t rd_val)
  72. {
  73. struct hal_reg_write_fail_entry *record;
  74. int idx;
  75. idx = hal_history_get_next_index(&hal_soc->reg_wr_fail_hist->index,
  76. HAL_REG_WRITE_HIST_SIZE);
  77. record = &hal_soc->reg_wr_fail_hist->record[idx];
  78. record->timestamp = qdf_get_log_timestamp();
  79. record->reg_offset = offset;
  80. record->write_val = wr_val;
  81. record->read_val = rd_val;
  82. }
  83. static void hal_reg_write_fail_history_init(struct hal_soc *hal)
  84. {
  85. hal->reg_wr_fail_hist = &hal_reg_wr_hist;
  86. qdf_atomic_set(&hal->reg_wr_fail_hist->index, -1);
  87. }
  88. #else
  89. static void hal_reg_write_fail_history_init(struct hal_soc *hal)
  90. {
  91. }
  92. #endif
  93. /**
  94. * hal_get_srng_ring_id() - get the ring id of a descriped ring
  95. * @hal: hal_soc data structure
  96. * @ring_type: type enum describing the ring
  97. * @ring_num: which ring of the ring type
  98. * @mac_id: which mac does the ring belong to (or 0 for non-lmac rings)
  99. *
  100. * Return: the ring id or -EINVAL if the ring does not exist.
  101. */
  102. static int hal_get_srng_ring_id(struct hal_soc *hal, int ring_type,
  103. int ring_num, int mac_id)
  104. {
  105. struct hal_hw_srng_config *ring_config =
  106. HAL_SRNG_CONFIG(hal, ring_type);
  107. int ring_id;
  108. if (ring_num >= ring_config->max_rings) {
  109. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO,
  110. "%s: ring_num exceeded maximum no. of supported rings",
  111. __func__);
  112. /* TODO: This is a programming error. Assert if this happens */
  113. return -EINVAL;
  114. }
  115. /*
  116. * For BE, dmac_cmn_src_rxbuf_ring is set. If this is set
  117. * and ring is dst and also lmac ring then provide ring id per lmac
  118. */
  119. if (ring_config->lmac_ring &&
  120. (!hal->dmac_cmn_src_rxbuf_ring ||
  121. ring_config->ring_dir == HAL_SRNG_DST_RING)) {
  122. ring_id = (ring_config->start_ring_id + ring_num +
  123. (mac_id * HAL_MAX_RINGS_PER_LMAC));
  124. } else {
  125. ring_id = ring_config->start_ring_id + ring_num;
  126. }
  127. return ring_id;
  128. }
  129. static struct hal_srng *hal_get_srng(struct hal_soc *hal, int ring_id)
  130. {
  131. /* TODO: Should we allocate srng structures dynamically? */
  132. return &(hal->srng_list[ring_id]);
  133. }
  134. #ifndef SHADOW_REG_CONFIG_DISABLED
  135. #define HP_OFFSET_IN_REG_START 1
  136. #define OFFSET_FROM_HP_TO_TP 4
  137. static void hal_update_srng_hp_tp_address(struct hal_soc *hal_soc,
  138. int shadow_config_index,
  139. int ring_type,
  140. int ring_num)
  141. {
  142. struct hal_srng *srng;
  143. int ring_id;
  144. struct hal_hw_srng_config *ring_config =
  145. HAL_SRNG_CONFIG(hal_soc, ring_type);
  146. ring_id = hal_get_srng_ring_id(hal_soc, ring_type, ring_num, 0);
  147. if (ring_id < 0)
  148. return;
  149. srng = hal_get_srng(hal_soc, ring_id);
  150. if (ring_config->ring_dir == HAL_SRNG_DST_RING) {
  151. srng->u.dst_ring.tp_addr = SHADOW_REGISTER(shadow_config_index)
  152. + hal_soc->dev_base_addr;
  153. hal_debug("tp_addr=%pK dev base addr %pK index %u",
  154. srng->u.dst_ring.tp_addr, hal_soc->dev_base_addr,
  155. shadow_config_index);
  156. } else {
  157. srng->u.src_ring.hp_addr = SHADOW_REGISTER(shadow_config_index)
  158. + hal_soc->dev_base_addr;
  159. hal_debug("hp_addr=%pK dev base addr %pK index %u",
  160. srng->u.src_ring.hp_addr,
  161. hal_soc->dev_base_addr, shadow_config_index);
  162. }
  163. }
  164. #endif
  165. #ifdef GENERIC_SHADOW_REGISTER_ACCESS_ENABLE
  166. void hal_set_one_target_reg_config(struct hal_soc *hal,
  167. uint32_t target_reg_offset,
  168. int list_index)
  169. {
  170. int i = list_index;
  171. qdf_assert_always(i < MAX_GENERIC_SHADOW_REG);
  172. hal->list_shadow_reg_config[i].target_register =
  173. target_reg_offset;
  174. hal->num_generic_shadow_regs_configured++;
  175. }
  176. qdf_export_symbol(hal_set_one_target_reg_config);
  177. #define REO_R0_DESTINATION_RING_CTRL_ADDR_OFFSET 0x4
  178. #define MAX_REO_REMAP_SHADOW_REGS 4
  179. QDF_STATUS hal_set_shadow_regs(void *hal_soc)
  180. {
  181. uint32_t target_reg_offset;
  182. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  183. int i;
  184. struct hal_hw_srng_config *srng_config =
  185. &hal->hw_srng_table[WBM2SW_RELEASE];
  186. uint32_t reo_reg_base;
  187. reo_reg_base = hal_get_reo_reg_base_offset(hal_soc);
  188. target_reg_offset =
  189. HAL_REO_DESTINATION_RING_CTRL_IX_0_ADDR(reo_reg_base);
  190. for (i = 0; i < MAX_REO_REMAP_SHADOW_REGS; i++) {
  191. hal_set_one_target_reg_config(hal, target_reg_offset, i);
  192. target_reg_offset += REO_R0_DESTINATION_RING_CTRL_ADDR_OFFSET;
  193. }
  194. target_reg_offset = srng_config->reg_start[HP_OFFSET_IN_REG_START];
  195. target_reg_offset += (srng_config->reg_size[HP_OFFSET_IN_REG_START]
  196. * HAL_IPA_TX_COMP_RING_IDX);
  197. hal_set_one_target_reg_config(hal, target_reg_offset, i);
  198. return QDF_STATUS_SUCCESS;
  199. }
  200. qdf_export_symbol(hal_set_shadow_regs);
  201. QDF_STATUS hal_construct_shadow_regs(void *hal_soc)
  202. {
  203. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  204. int shadow_config_index = hal->num_shadow_registers_configured;
  205. int i;
  206. int num_regs = hal->num_generic_shadow_regs_configured;
  207. for (i = 0; i < num_regs; i++) {
  208. qdf_assert_always(shadow_config_index < MAX_SHADOW_REGISTERS);
  209. hal->shadow_config[shadow_config_index].addr =
  210. hal->list_shadow_reg_config[i].target_register;
  211. hal->list_shadow_reg_config[i].shadow_config_index =
  212. shadow_config_index;
  213. hal->list_shadow_reg_config[i].va =
  214. SHADOW_REGISTER(shadow_config_index) +
  215. (uintptr_t)hal->dev_base_addr;
  216. hal_debug("target_reg %x, shadow register 0x%x shadow_index 0x%x",
  217. hal->shadow_config[shadow_config_index].addr,
  218. SHADOW_REGISTER(shadow_config_index),
  219. shadow_config_index);
  220. shadow_config_index++;
  221. hal->num_shadow_registers_configured++;
  222. }
  223. return QDF_STATUS_SUCCESS;
  224. }
  225. qdf_export_symbol(hal_construct_shadow_regs);
  226. #endif
  227. #ifndef SHADOW_REG_CONFIG_DISABLED
  228. QDF_STATUS hal_set_one_shadow_config(void *hal_soc,
  229. int ring_type,
  230. int ring_num)
  231. {
  232. uint32_t target_register;
  233. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  234. struct hal_hw_srng_config *srng_config = &hal->hw_srng_table[ring_type];
  235. int shadow_config_index = hal->num_shadow_registers_configured;
  236. if (shadow_config_index >= MAX_SHADOW_REGISTERS) {
  237. QDF_ASSERT(0);
  238. return QDF_STATUS_E_RESOURCES;
  239. }
  240. hal->num_shadow_registers_configured++;
  241. target_register = srng_config->reg_start[HP_OFFSET_IN_REG_START];
  242. target_register += (srng_config->reg_size[HP_OFFSET_IN_REG_START]
  243. *ring_num);
  244. /* if the ring is a dst ring, we need to shadow the tail pointer */
  245. if (srng_config->ring_dir == HAL_SRNG_DST_RING)
  246. target_register += OFFSET_FROM_HP_TO_TP;
  247. hal->shadow_config[shadow_config_index].addr = target_register;
  248. /* update hp/tp addr in the hal_soc structure*/
  249. hal_update_srng_hp_tp_address(hal_soc, shadow_config_index, ring_type,
  250. ring_num);
  251. hal_debug("target_reg %x, shadow register 0x%x shadow_index 0x%x, ring_type %d, ring num %d",
  252. target_register,
  253. SHADOW_REGISTER(shadow_config_index),
  254. shadow_config_index,
  255. ring_type, ring_num);
  256. return QDF_STATUS_SUCCESS;
  257. }
  258. qdf_export_symbol(hal_set_one_shadow_config);
  259. QDF_STATUS hal_construct_srng_shadow_regs(void *hal_soc)
  260. {
  261. int ring_type, ring_num;
  262. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  263. for (ring_type = 0; ring_type < MAX_RING_TYPES; ring_type++) {
  264. struct hal_hw_srng_config *srng_config =
  265. &hal->hw_srng_table[ring_type];
  266. if (ring_type == CE_SRC ||
  267. ring_type == CE_DST ||
  268. ring_type == CE_DST_STATUS)
  269. continue;
  270. if (srng_config->lmac_ring)
  271. continue;
  272. for (ring_num = 0; ring_num < srng_config->max_rings;
  273. ring_num++)
  274. hal_set_one_shadow_config(hal_soc, ring_type, ring_num);
  275. }
  276. return QDF_STATUS_SUCCESS;
  277. }
  278. qdf_export_symbol(hal_construct_srng_shadow_regs);
  279. #else
  280. QDF_STATUS hal_construct_srng_shadow_regs(void *hal_soc)
  281. {
  282. return QDF_STATUS_SUCCESS;
  283. }
  284. qdf_export_symbol(hal_construct_srng_shadow_regs);
  285. QDF_STATUS hal_set_one_shadow_config(void *hal_soc, int ring_type,
  286. int ring_num)
  287. {
  288. return QDF_STATUS_SUCCESS;
  289. }
  290. qdf_export_symbol(hal_set_one_shadow_config);
  291. #endif
  292. void hal_get_shadow_config(void *hal_soc,
  293. struct pld_shadow_reg_v2_cfg **shadow_config,
  294. int *num_shadow_registers_configured)
  295. {
  296. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  297. *shadow_config = &hal->shadow_config[0].v2;
  298. *num_shadow_registers_configured =
  299. hal->num_shadow_registers_configured;
  300. }
  301. qdf_export_symbol(hal_get_shadow_config);
  302. #ifdef CONFIG_SHADOW_V3
  303. void hal_get_shadow_v3_config(void *hal_soc,
  304. struct pld_shadow_reg_v3_cfg **shadow_config,
  305. int *num_shadow_registers_configured)
  306. {
  307. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  308. *shadow_config = &hal->shadow_config[0].v3;
  309. *num_shadow_registers_configured =
  310. hal->num_shadow_registers_configured;
  311. }
  312. qdf_export_symbol(hal_get_shadow_v3_config);
  313. #endif
  314. static bool hal_validate_shadow_register(struct hal_soc *hal,
  315. uint32_t *destination,
  316. uint32_t *shadow_address)
  317. {
  318. unsigned int index;
  319. uint32_t *shadow_0_offset = SHADOW_REGISTER(0) + hal->dev_base_addr;
  320. int destination_ba_offset =
  321. ((char *)destination) - (char *)hal->dev_base_addr;
  322. index = shadow_address - shadow_0_offset;
  323. if (index >= MAX_SHADOW_REGISTERS) {
  324. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  325. "%s: index %x out of bounds", __func__, index);
  326. goto error;
  327. } else if (hal->shadow_config[index].addr != destination_ba_offset) {
  328. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  329. "%s: sanity check failure, expected %x, found %x",
  330. __func__, destination_ba_offset,
  331. hal->shadow_config[index].addr);
  332. goto error;
  333. }
  334. return true;
  335. error:
  336. qdf_print("baddr %pK, desination %pK, shadow_address %pK s0offset %pK index %x",
  337. hal->dev_base_addr, destination, shadow_address,
  338. shadow_0_offset, index);
  339. QDF_BUG(0);
  340. return false;
  341. }
  342. static void hal_target_based_configure(struct hal_soc *hal)
  343. {
  344. /**
  345. * Indicate Initialization of srngs to avoid force wake
  346. * as umac power collapse is not enabled yet
  347. */
  348. hal->init_phase = true;
  349. switch (hal->target_type) {
  350. #ifdef QCA_WIFI_QCA6290
  351. case TARGET_TYPE_QCA6290:
  352. hal->use_register_windowing = true;
  353. hal_qca6290_attach(hal);
  354. break;
  355. #endif
  356. #ifdef QCA_WIFI_QCA6390
  357. case TARGET_TYPE_QCA6390:
  358. hal->use_register_windowing = true;
  359. hal_qca6390_attach(hal);
  360. break;
  361. #endif
  362. #ifdef QCA_WIFI_QCA6490
  363. case TARGET_TYPE_QCA6490:
  364. hal->use_register_windowing = true;
  365. hal_qca6490_attach(hal);
  366. break;
  367. #endif
  368. #ifdef QCA_WIFI_QCA6750
  369. case TARGET_TYPE_QCA6750:
  370. hal->use_register_windowing = true;
  371. hal->static_window_map = true;
  372. hal_qca6750_attach(hal);
  373. break;
  374. #endif
  375. #ifdef QCA_WIFI_KIWI
  376. case TARGET_TYPE_KIWI:
  377. hal->use_register_windowing = true;
  378. hal_kiwi_attach(hal);
  379. break;
  380. #endif
  381. #if defined(QCA_WIFI_QCA8074) && defined(WIFI_TARGET_TYPE_3_0)
  382. case TARGET_TYPE_QCA8074:
  383. hal_qca8074_attach(hal);
  384. break;
  385. #endif
  386. #if defined(QCA_WIFI_QCA8074V2)
  387. case TARGET_TYPE_QCA8074V2:
  388. hal_qca8074v2_attach(hal);
  389. break;
  390. #endif
  391. #if defined(QCA_WIFI_QCA6018)
  392. case TARGET_TYPE_QCA6018:
  393. hal_qca8074v2_attach(hal);
  394. break;
  395. #endif
  396. #if defined(QCA_WIFI_QCA9574)
  397. case TARGET_TYPE_QCA9574:
  398. hal_qca8074v2_attach(hal);
  399. break;
  400. #endif
  401. #if defined(QCA_WIFI_QCN6122)
  402. case TARGET_TYPE_QCN6122:
  403. hal->use_register_windowing = true;
  404. /*
  405. * Static window map is enabled for qcn9000 to use 2mb bar
  406. * size and use multiple windows to write into registers.
  407. */
  408. hal->static_window_map = true;
  409. hal_qcn6122_attach(hal);
  410. break;
  411. #endif
  412. #ifdef QCA_WIFI_QCN9000
  413. case TARGET_TYPE_QCN9000:
  414. hal->use_register_windowing = true;
  415. /*
  416. * Static window map is enabled for qcn9000 to use 2mb bar
  417. * size and use multiple windows to write into registers.
  418. */
  419. hal->static_window_map = true;
  420. hal_qcn9000_attach(hal);
  421. break;
  422. #endif
  423. #ifdef QCA_WIFI_QCA5018
  424. case TARGET_TYPE_QCA5018:
  425. hal->use_register_windowing = true;
  426. hal->static_window_map = true;
  427. hal_qca5018_attach(hal);
  428. break;
  429. #endif
  430. #ifdef QCA_WIFI_QCN9224
  431. case TARGET_TYPE_QCN9224:
  432. hal->use_register_windowing = true;
  433. hal->static_window_map = true;
  434. hal_qcn9224_attach(hal);
  435. break;
  436. #endif
  437. default:
  438. break;
  439. }
  440. }
  441. uint32_t hal_get_target_type(hal_soc_handle_t hal_soc_hdl)
  442. {
  443. struct hal_soc *hal_soc = (struct hal_soc *)hal_soc_hdl;
  444. struct hif_target_info *tgt_info =
  445. hif_get_target_info_handle(hal_soc->hif_handle);
  446. return tgt_info->target_type;
  447. }
  448. qdf_export_symbol(hal_get_target_type);
  449. #if defined(FEATURE_HAL_DELAYED_REG_WRITE)
  450. /**
  451. * hal_is_reg_write_tput_level_high() - throughput level for delayed reg writes
  452. * @hal: hal_soc pointer
  453. *
  454. * Return: true if throughput is high, else false.
  455. */
  456. static inline bool hal_is_reg_write_tput_level_high(struct hal_soc *hal)
  457. {
  458. int bw_level = hif_get_bandwidth_level(hal->hif_handle);
  459. return (bw_level >= PLD_BUS_WIDTH_MEDIUM) ? true : false;
  460. }
  461. static inline
  462. char *hal_fill_reg_write_srng_stats(struct hal_srng *srng,
  463. char *buf, qdf_size_t size)
  464. {
  465. qdf_scnprintf(buf, size, "enq %u deq %u coal %u direct %u",
  466. srng->wstats.enqueues, srng->wstats.dequeues,
  467. srng->wstats.coalesces, srng->wstats.direct);
  468. return buf;
  469. }
  470. /* bytes for local buffer */
  471. #define HAL_REG_WRITE_SRNG_STATS_LEN 100
  472. void hal_dump_reg_write_srng_stats(hal_soc_handle_t hal_soc_hdl)
  473. {
  474. struct hal_srng *srng;
  475. char buf[HAL_REG_WRITE_SRNG_STATS_LEN];
  476. struct hal_soc *hal = (struct hal_soc *)hal_soc_hdl;
  477. srng = hal_get_srng(hal, HAL_SRNG_SW2TCL1);
  478. hal_debug("SW2TCL1: %s",
  479. hal_fill_reg_write_srng_stats(srng, buf, sizeof(buf)));
  480. srng = hal_get_srng(hal, HAL_SRNG_WBM2SW0_RELEASE);
  481. hal_debug("WBM2SW0: %s",
  482. hal_fill_reg_write_srng_stats(srng, buf, sizeof(buf)));
  483. srng = hal_get_srng(hal, HAL_SRNG_REO2SW1);
  484. hal_debug("REO2SW1: %s",
  485. hal_fill_reg_write_srng_stats(srng, buf, sizeof(buf)));
  486. srng = hal_get_srng(hal, HAL_SRNG_REO2SW2);
  487. hal_debug("REO2SW2: %s",
  488. hal_fill_reg_write_srng_stats(srng, buf, sizeof(buf)));
  489. srng = hal_get_srng(hal, HAL_SRNG_REO2SW3);
  490. hal_debug("REO2SW3: %s",
  491. hal_fill_reg_write_srng_stats(srng, buf, sizeof(buf)));
  492. }
  493. void hal_dump_reg_write_stats(hal_soc_handle_t hal_soc_hdl)
  494. {
  495. uint32_t *hist;
  496. struct hal_soc *hal = (struct hal_soc *)hal_soc_hdl;
  497. hist = hal->stats.wstats.sched_delay;
  498. hal_debug("wstats: enq %u deq %u coal %u direct %u q_depth %u max_q %u sched-delay hist %u %u %u %u",
  499. qdf_atomic_read(&hal->stats.wstats.enqueues),
  500. hal->stats.wstats.dequeues,
  501. qdf_atomic_read(&hal->stats.wstats.coalesces),
  502. qdf_atomic_read(&hal->stats.wstats.direct),
  503. qdf_atomic_read(&hal->stats.wstats.q_depth),
  504. hal->stats.wstats.max_q_depth,
  505. hist[REG_WRITE_SCHED_DELAY_SUB_100us],
  506. hist[REG_WRITE_SCHED_DELAY_SUB_1000us],
  507. hist[REG_WRITE_SCHED_DELAY_SUB_5000us],
  508. hist[REG_WRITE_SCHED_DELAY_GT_5000us]);
  509. }
  510. int hal_get_reg_write_pending_work(void *hal_soc)
  511. {
  512. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  513. return qdf_atomic_read(&hal->active_work_cnt);
  514. }
  515. #endif
  516. #ifdef FEATURE_HAL_DELAYED_REG_WRITE
  517. #ifdef MEMORY_DEBUG
  518. /*
  519. * Length of the queue(array) used to hold delayed register writes.
  520. * Must be a multiple of 2.
  521. */
  522. #define HAL_REG_WRITE_QUEUE_LEN 128
  523. #else
  524. #define HAL_REG_WRITE_QUEUE_LEN 32
  525. #endif
  526. /**
  527. * hal_process_reg_write_q_elem() - process a regiter write queue element
  528. * @hal: hal_soc pointer
  529. * @q_elem: pointer to hal regiter write queue element
  530. *
  531. * Return: The value which was written to the address
  532. */
  533. static uint32_t
  534. hal_process_reg_write_q_elem(struct hal_soc *hal,
  535. struct hal_reg_write_q_elem *q_elem)
  536. {
  537. struct hal_srng *srng = q_elem->srng;
  538. uint32_t write_val;
  539. SRNG_LOCK(&srng->lock);
  540. srng->reg_write_in_progress = false;
  541. srng->wstats.dequeues++;
  542. if (srng->ring_dir == HAL_SRNG_SRC_RING) {
  543. q_elem->dequeue_val = srng->u.src_ring.hp;
  544. hal_write_address_32_mb(hal,
  545. srng->u.src_ring.hp_addr,
  546. srng->u.src_ring.hp, false);
  547. write_val = srng->u.src_ring.hp;
  548. } else {
  549. q_elem->dequeue_val = srng->u.dst_ring.tp;
  550. hal_write_address_32_mb(hal,
  551. srng->u.dst_ring.tp_addr,
  552. srng->u.dst_ring.tp, false);
  553. write_val = srng->u.dst_ring.tp;
  554. }
  555. q_elem->valid = 0;
  556. srng->last_dequeue_time = q_elem->dequeue_time;
  557. SRNG_UNLOCK(&srng->lock);
  558. return write_val;
  559. }
  560. /**
  561. * hal_reg_write_fill_sched_delay_hist() - fill reg write delay histogram in hal
  562. * @hal: hal_soc pointer
  563. * @delay: delay in us
  564. *
  565. * Return: None
  566. */
  567. static inline void hal_reg_write_fill_sched_delay_hist(struct hal_soc *hal,
  568. uint64_t delay_us)
  569. {
  570. uint32_t *hist;
  571. hist = hal->stats.wstats.sched_delay;
  572. if (delay_us < 100)
  573. hist[REG_WRITE_SCHED_DELAY_SUB_100us]++;
  574. else if (delay_us < 1000)
  575. hist[REG_WRITE_SCHED_DELAY_SUB_1000us]++;
  576. else if (delay_us < 5000)
  577. hist[REG_WRITE_SCHED_DELAY_SUB_5000us]++;
  578. else
  579. hist[REG_WRITE_SCHED_DELAY_GT_5000us]++;
  580. }
  581. #ifdef SHADOW_WRITE_DELAY
  582. #define SHADOW_WRITE_MIN_DELTA_US 5
  583. #define SHADOW_WRITE_DELAY_US 50
  584. /*
  585. * Never add those srngs which are performance relate.
  586. * The delay itself will hit performance heavily.
  587. */
  588. #define IS_SRNG_MATCH(s) ((s)->ring_id == HAL_SRNG_CE_1_DST_STATUS || \
  589. (s)->ring_id == HAL_SRNG_CE_1_DST)
  590. static inline bool hal_reg_write_need_delay(struct hal_reg_write_q_elem *elem)
  591. {
  592. struct hal_srng *srng = elem->srng;
  593. struct hal_soc *hal;
  594. qdf_time_t now;
  595. qdf_iomem_t real_addr;
  596. if (qdf_unlikely(!srng))
  597. return false;
  598. hal = srng->hal_soc;
  599. if (qdf_unlikely(!hal))
  600. return false;
  601. /* Check if it is target srng, and valid shadow reg */
  602. if (qdf_likely(!IS_SRNG_MATCH(srng)))
  603. return false;
  604. if (srng->ring_dir == HAL_SRNG_SRC_RING)
  605. real_addr = SRNG_SRC_ADDR(srng, HP);
  606. else
  607. real_addr = SRNG_DST_ADDR(srng, TP);
  608. if (!hal_validate_shadow_register(hal, real_addr, elem->addr))
  609. return false;
  610. /* Check the time delta from last write of same srng */
  611. now = qdf_get_log_timestamp();
  612. if (qdf_log_timestamp_to_usecs(now - srng->last_dequeue_time) >
  613. SHADOW_WRITE_MIN_DELTA_US)
  614. return false;
  615. /* Delay dequeue, and record */
  616. qdf_udelay(SHADOW_WRITE_DELAY_US);
  617. srng->wstats.dequeue_delay++;
  618. hal->stats.wstats.dequeue_delay++;
  619. return true;
  620. }
  621. #else
  622. static inline bool hal_reg_write_need_delay(struct hal_reg_write_q_elem *elem)
  623. {
  624. return false;
  625. }
  626. #endif
  627. /**
  628. * hal_reg_write_work() - Worker to process delayed writes
  629. * @arg: hal_soc pointer
  630. *
  631. * Return: None
  632. */
  633. static void hal_reg_write_work(void *arg)
  634. {
  635. int32_t q_depth, write_val;
  636. struct hal_soc *hal = arg;
  637. struct hal_reg_write_q_elem *q_elem;
  638. uint64_t delta_us;
  639. uint8_t ring_id;
  640. uint32_t *addr;
  641. uint32_t num_processed = 0;
  642. q_elem = &hal->reg_write_queue[(hal->read_idx)];
  643. q_elem->work_scheduled_time = qdf_get_log_timestamp();
  644. q_elem->cpu_id = qdf_get_cpu();
  645. /* Make sure q_elem consistent in the memory for multi-cores */
  646. qdf_rmb();
  647. if (!q_elem->valid)
  648. return;
  649. q_depth = qdf_atomic_read(&hal->stats.wstats.q_depth);
  650. if (q_depth > hal->stats.wstats.max_q_depth)
  651. hal->stats.wstats.max_q_depth = q_depth;
  652. if (hif_prevent_link_low_power_states(hal->hif_handle)) {
  653. hal->stats.wstats.prevent_l1_fails++;
  654. return;
  655. }
  656. while (true) {
  657. qdf_rmb();
  658. if (!q_elem->valid)
  659. break;
  660. q_elem->dequeue_time = qdf_get_log_timestamp();
  661. ring_id = q_elem->srng->ring_id;
  662. addr = q_elem->addr;
  663. delta_us = qdf_log_timestamp_to_usecs(q_elem->dequeue_time -
  664. q_elem->enqueue_time);
  665. hal_reg_write_fill_sched_delay_hist(hal, delta_us);
  666. hal->stats.wstats.dequeues++;
  667. qdf_atomic_dec(&hal->stats.wstats.q_depth);
  668. if (hal_reg_write_need_delay(q_elem))
  669. hal_verbose_debug("Delay reg writer for srng 0x%x, addr 0x%pK",
  670. q_elem->srng->ring_id, q_elem->addr);
  671. write_val = hal_process_reg_write_q_elem(hal, q_elem);
  672. hal_verbose_debug("read_idx %u srng 0x%x, addr 0x%pK dequeue_val %u sched delay %llu us",
  673. hal->read_idx, ring_id, addr, write_val, delta_us);
  674. qdf_trace_dp_del_reg_write(ring_id, q_elem->enqueue_val,
  675. q_elem->dequeue_val,
  676. q_elem->enqueue_time,
  677. q_elem->dequeue_time);
  678. num_processed++;
  679. hal->read_idx = (hal->read_idx + 1) &
  680. (HAL_REG_WRITE_QUEUE_LEN - 1);
  681. q_elem = &hal->reg_write_queue[(hal->read_idx)];
  682. }
  683. hif_allow_link_low_power_states(hal->hif_handle);
  684. /*
  685. * Decrement active_work_cnt by the number of elements dequeued after
  686. * hif_allow_link_low_power_states.
  687. * This makes sure that hif_try_complete_tasks will wait till we make
  688. * the bus access in hif_allow_link_low_power_states. This will avoid
  689. * race condition between delayed register worker and bus suspend
  690. * (system suspend or runtime suspend).
  691. *
  692. * The following decrement should be done at the end!
  693. */
  694. qdf_atomic_sub(num_processed, &hal->active_work_cnt);
  695. }
  696. static void __hal_flush_reg_write_work(struct hal_soc *hal)
  697. {
  698. qdf_flush_work(&hal->reg_write_work);
  699. qdf_disable_work(&hal->reg_write_work);
  700. }
  701. void hal_flush_reg_write_work(hal_soc_handle_t hal_handle)
  702. { __hal_flush_reg_write_work((struct hal_soc *)hal_handle);
  703. }
  704. /**
  705. * hal_reg_write_enqueue() - enqueue register writes into kworker
  706. * @hal_soc: hal_soc pointer
  707. * @srng: srng pointer
  708. * @addr: iomem address of regiter
  709. * @value: value to be written to iomem address
  710. *
  711. * This function executes from within the SRNG LOCK
  712. *
  713. * Return: None
  714. */
  715. static void hal_reg_write_enqueue(struct hal_soc *hal_soc,
  716. struct hal_srng *srng,
  717. void __iomem *addr,
  718. uint32_t value)
  719. {
  720. struct hal_reg_write_q_elem *q_elem;
  721. uint32_t write_idx;
  722. if (srng->reg_write_in_progress) {
  723. hal_verbose_debug("Already in progress srng ring id 0x%x addr 0x%pK val %u",
  724. srng->ring_id, addr, value);
  725. qdf_atomic_inc(&hal_soc->stats.wstats.coalesces);
  726. srng->wstats.coalesces++;
  727. return;
  728. }
  729. write_idx = qdf_atomic_inc_return(&hal_soc->write_idx);
  730. write_idx = write_idx & (HAL_REG_WRITE_QUEUE_LEN - 1);
  731. q_elem = &hal_soc->reg_write_queue[write_idx];
  732. if (q_elem->valid) {
  733. hal_err("queue full");
  734. QDF_BUG(0);
  735. return;
  736. }
  737. qdf_atomic_inc(&hal_soc->stats.wstats.enqueues);
  738. srng->wstats.enqueues++;
  739. qdf_atomic_inc(&hal_soc->stats.wstats.q_depth);
  740. q_elem->srng = srng;
  741. q_elem->addr = addr;
  742. q_elem->enqueue_val = value;
  743. q_elem->enqueue_time = qdf_get_log_timestamp();
  744. /*
  745. * Before the valid flag is set to true, all the other
  746. * fields in the q_elem needs to be updated in memory.
  747. * Else there is a chance that the dequeuing worker thread
  748. * might read stale entries and process incorrect srng.
  749. */
  750. qdf_wmb();
  751. q_elem->valid = true;
  752. /*
  753. * After all other fields in the q_elem has been updated
  754. * in memory successfully, the valid flag needs to be updated
  755. * in memory in time too.
  756. * Else there is a chance that the dequeuing worker thread
  757. * might read stale valid flag and the work will be bypassed
  758. * for this round. And if there is no other work scheduled
  759. * later, this hal register writing won't be updated any more.
  760. */
  761. qdf_wmb();
  762. srng->reg_write_in_progress = true;
  763. qdf_atomic_inc(&hal_soc->active_work_cnt);
  764. hal_verbose_debug("write_idx %u srng ring id 0x%x addr 0x%pK val %u",
  765. write_idx, srng->ring_id, addr, value);
  766. qdf_queue_work(hal_soc->qdf_dev, hal_soc->reg_write_wq,
  767. &hal_soc->reg_write_work);
  768. }
  769. /**
  770. * hal_delayed_reg_write_init() - Initialization function for delayed reg writes
  771. * @hal_soc: hal_soc pointer
  772. *
  773. * Initialize main data structures to process register writes in a delayed
  774. * workqueue.
  775. *
  776. * Return: QDF_STATUS_SUCCESS on success else a QDF error.
  777. */
  778. static QDF_STATUS hal_delayed_reg_write_init(struct hal_soc *hal)
  779. {
  780. hal->reg_write_wq =
  781. qdf_alloc_high_prior_ordered_workqueue("hal_register_write_wq");
  782. qdf_create_work(0, &hal->reg_write_work, hal_reg_write_work, hal);
  783. hal->reg_write_queue = qdf_mem_malloc(HAL_REG_WRITE_QUEUE_LEN *
  784. sizeof(*hal->reg_write_queue));
  785. if (!hal->reg_write_queue) {
  786. hal_err("unable to allocate memory");
  787. QDF_BUG(0);
  788. return QDF_STATUS_E_NOMEM;
  789. }
  790. /* Initial value of indices */
  791. hal->read_idx = 0;
  792. qdf_atomic_set(&hal->write_idx, -1);
  793. return QDF_STATUS_SUCCESS;
  794. }
  795. /**
  796. * hal_delayed_reg_write_deinit() - De-Initialize delayed reg write processing
  797. * @hal_soc: hal_soc pointer
  798. *
  799. * De-initialize main data structures to process register writes in a delayed
  800. * workqueue.
  801. *
  802. * Return: None
  803. */
  804. static void hal_delayed_reg_write_deinit(struct hal_soc *hal)
  805. {
  806. __hal_flush_reg_write_work(hal);
  807. qdf_flush_workqueue(0, hal->reg_write_wq);
  808. qdf_destroy_workqueue(0, hal->reg_write_wq);
  809. qdf_mem_free(hal->reg_write_queue);
  810. }
  811. #else
  812. static inline QDF_STATUS hal_delayed_reg_write_init(struct hal_soc *hal)
  813. {
  814. return QDF_STATUS_SUCCESS;
  815. }
  816. static inline void hal_delayed_reg_write_deinit(struct hal_soc *hal)
  817. {
  818. }
  819. #endif
  820. #ifdef FEATURE_HAL_DELAYED_REG_WRITE
  821. #ifdef QCA_WIFI_QCA6750
  822. void hal_delayed_reg_write(struct hal_soc *hal_soc,
  823. struct hal_srng *srng,
  824. void __iomem *addr,
  825. uint32_t value)
  826. {
  827. uint8_t vote_access;
  828. switch (srng->ring_type) {
  829. case CE_SRC:
  830. case CE_DST:
  831. case CE_DST_STATUS:
  832. vote_access = hif_get_ep_vote_access(hal_soc->hif_handle,
  833. HIF_EP_VOTE_NONDP_ACCESS);
  834. if ((vote_access == HIF_EP_VOTE_ACCESS_DISABLE) ||
  835. (vote_access == HIF_EP_VOTE_INTERMEDIATE_ACCESS &&
  836. PLD_MHI_STATE_L0 ==
  837. pld_get_mhi_state(hal_soc->qdf_dev->dev))) {
  838. hal_write_address_32_mb(hal_soc, addr, value, false);
  839. qdf_atomic_inc(&hal_soc->stats.wstats.direct);
  840. srng->wstats.direct++;
  841. } else {
  842. hal_reg_write_enqueue(hal_soc, srng, addr, value);
  843. }
  844. break;
  845. default:
  846. if (hif_get_ep_vote_access(hal_soc->hif_handle,
  847. HIF_EP_VOTE_DP_ACCESS) ==
  848. HIF_EP_VOTE_ACCESS_DISABLE ||
  849. hal_is_reg_write_tput_level_high(hal_soc) ||
  850. PLD_MHI_STATE_L0 ==
  851. pld_get_mhi_state(hal_soc->qdf_dev->dev)) {
  852. hal_write_address_32_mb(hal_soc, addr, value, false);
  853. qdf_atomic_inc(&hal_soc->stats.wstats.direct);
  854. srng->wstats.direct++;
  855. } else {
  856. hal_reg_write_enqueue(hal_soc, srng, addr, value);
  857. }
  858. break;
  859. }
  860. }
  861. #else
  862. void hal_delayed_reg_write(struct hal_soc *hal_soc,
  863. struct hal_srng *srng,
  864. void __iomem *addr,
  865. uint32_t value)
  866. {
  867. if (hal_is_reg_write_tput_level_high(hal_soc) ||
  868. pld_is_device_awake(hal_soc->qdf_dev->dev)) {
  869. qdf_atomic_inc(&hal_soc->stats.wstats.direct);
  870. srng->wstats.direct++;
  871. hal_write_address_32_mb(hal_soc, addr, value, false);
  872. } else {
  873. hal_reg_write_enqueue(hal_soc, srng, addr, value);
  874. }
  875. }
  876. #endif
  877. #endif
  878. /**
  879. * hal_attach - Initialize HAL layer
  880. * @hif_handle: Opaque HIF handle
  881. * @qdf_dev: QDF device
  882. *
  883. * Return: Opaque HAL SOC handle
  884. * NULL on failure (if given ring is not available)
  885. *
  886. * This function should be called as part of HIF initialization (for accessing
  887. * copy engines). DP layer will get hal_soc handle using hif_get_hal_handle()
  888. *
  889. */
  890. void *hal_attach(struct hif_opaque_softc *hif_handle, qdf_device_t qdf_dev)
  891. {
  892. struct hal_soc *hal;
  893. int i;
  894. hal = qdf_mem_malloc(sizeof(*hal));
  895. if (!hal) {
  896. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  897. "%s: hal_soc allocation failed", __func__);
  898. goto fail0;
  899. }
  900. hal->hif_handle = hif_handle;
  901. hal->dev_base_addr = hif_get_dev_ba(hif_handle); /* UMAC */
  902. hal->dev_base_addr_ce = hif_get_dev_ba_ce(hif_handle); /* CE */
  903. hal->qdf_dev = qdf_dev;
  904. hal->shadow_rdptr_mem_vaddr = (uint32_t *)qdf_mem_alloc_consistent(
  905. qdf_dev, qdf_dev->dev, sizeof(*(hal->shadow_rdptr_mem_vaddr)) *
  906. HAL_SRNG_ID_MAX, &(hal->shadow_rdptr_mem_paddr));
  907. if (!hal->shadow_rdptr_mem_paddr) {
  908. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  909. "%s: hal->shadow_rdptr_mem_paddr allocation failed",
  910. __func__);
  911. goto fail1;
  912. }
  913. qdf_mem_zero(hal->shadow_rdptr_mem_vaddr,
  914. sizeof(*(hal->shadow_rdptr_mem_vaddr)) * HAL_SRNG_ID_MAX);
  915. hal->shadow_wrptr_mem_vaddr =
  916. (uint32_t *)qdf_mem_alloc_consistent(qdf_dev, qdf_dev->dev,
  917. sizeof(*(hal->shadow_wrptr_mem_vaddr)) * HAL_MAX_LMAC_RINGS,
  918. &(hal->shadow_wrptr_mem_paddr));
  919. if (!hal->shadow_wrptr_mem_vaddr) {
  920. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  921. "%s: hal->shadow_wrptr_mem_vaddr allocation failed",
  922. __func__);
  923. goto fail2;
  924. }
  925. qdf_mem_zero(hal->shadow_wrptr_mem_vaddr,
  926. sizeof(*(hal->shadow_wrptr_mem_vaddr)) * HAL_MAX_LMAC_RINGS);
  927. for (i = 0; i < HAL_SRNG_ID_MAX; i++) {
  928. hal->srng_list[i].initialized = 0;
  929. hal->srng_list[i].ring_id = i;
  930. }
  931. qdf_spinlock_create(&hal->register_access_lock);
  932. hal->register_window = 0;
  933. hal->target_type = hal_get_target_type(hal_soc_to_hal_soc_handle(hal));
  934. hal->ops = qdf_mem_malloc(sizeof(*hal->ops));
  935. if (!hal->ops) {
  936. hal_err("unable to allocable memory for HAL ops");
  937. goto fail3;
  938. }
  939. hal_target_based_configure(hal);
  940. hal_reg_write_fail_history_init(hal);
  941. qdf_minidump_log(hal, sizeof(*hal), "hal_soc");
  942. qdf_atomic_init(&hal->active_work_cnt);
  943. hal_delayed_reg_write_init(hal);
  944. hal_reo_shared_qaddr_setup((hal_soc_handle_t)hal);
  945. return (void *)hal;
  946. fail3:
  947. qdf_mem_free_consistent(qdf_dev, qdf_dev->dev,
  948. sizeof(*hal->shadow_wrptr_mem_vaddr) *
  949. HAL_MAX_LMAC_RINGS,
  950. hal->shadow_wrptr_mem_vaddr,
  951. hal->shadow_wrptr_mem_paddr, 0);
  952. fail2:
  953. qdf_mem_free_consistent(qdf_dev, qdf_dev->dev,
  954. sizeof(*(hal->shadow_rdptr_mem_vaddr)) * HAL_SRNG_ID_MAX,
  955. hal->shadow_rdptr_mem_vaddr, hal->shadow_rdptr_mem_paddr, 0);
  956. fail1:
  957. qdf_mem_free(hal);
  958. fail0:
  959. return NULL;
  960. }
  961. qdf_export_symbol(hal_attach);
  962. /**
  963. * hal_mem_info - Retrieve hal memory base address
  964. *
  965. * @hal_soc: Opaque HAL SOC handle
  966. * @mem: pointer to structure to be updated with hal mem info
  967. */
  968. void hal_get_meminfo(hal_soc_handle_t hal_soc_hdl, struct hal_mem_info *mem)
  969. {
  970. struct hal_soc *hal = (struct hal_soc *)hal_soc_hdl;
  971. mem->dev_base_addr = (void *)hal->dev_base_addr;
  972. mem->shadow_rdptr_mem_vaddr = (void *)hal->shadow_rdptr_mem_vaddr;
  973. mem->shadow_wrptr_mem_vaddr = (void *)hal->shadow_wrptr_mem_vaddr;
  974. mem->shadow_rdptr_mem_paddr = (void *)hal->shadow_rdptr_mem_paddr;
  975. mem->shadow_wrptr_mem_paddr = (void *)hal->shadow_wrptr_mem_paddr;
  976. hif_read_phy_mem_base((void *)hal->hif_handle,
  977. (qdf_dma_addr_t *)&mem->dev_base_paddr);
  978. mem->lmac_srng_start_id = HAL_SRNG_LMAC1_ID_START;
  979. return;
  980. }
  981. qdf_export_symbol(hal_get_meminfo);
  982. /**
  983. * hal_detach - Detach HAL layer
  984. * @hal_soc: HAL SOC handle
  985. *
  986. * Return: Opaque HAL SOC handle
  987. * NULL on failure (if given ring is not available)
  988. *
  989. * This function should be called as part of HIF initialization (for accessing
  990. * copy engines). DP layer will get hal_soc handle using hif_get_hal_handle()
  991. *
  992. */
  993. extern void hal_detach(void *hal_soc)
  994. {
  995. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  996. hal_delayed_reg_write_deinit(hal);
  997. hal_reo_shared_qaddr_detach((hal_soc_handle_t)hal);
  998. qdf_mem_free(hal->ops);
  999. qdf_mem_free_consistent(hal->qdf_dev, hal->qdf_dev->dev,
  1000. sizeof(*(hal->shadow_rdptr_mem_vaddr)) * HAL_SRNG_ID_MAX,
  1001. hal->shadow_rdptr_mem_vaddr, hal->shadow_rdptr_mem_paddr, 0);
  1002. qdf_mem_free_consistent(hal->qdf_dev, hal->qdf_dev->dev,
  1003. sizeof(*(hal->shadow_wrptr_mem_vaddr)) * HAL_MAX_LMAC_RINGS,
  1004. hal->shadow_wrptr_mem_vaddr, hal->shadow_wrptr_mem_paddr, 0);
  1005. qdf_minidump_remove(hal, sizeof(*hal), "hal_soc");
  1006. qdf_mem_free(hal);
  1007. return;
  1008. }
  1009. qdf_export_symbol(hal_detach);
  1010. #define HAL_CE_CHANNEL_DST_DEST_CTRL_ADDR(x) ((x) + 0x000000b0)
  1011. #define HAL_CE_CHANNEL_DST_DEST_CTRL_DEST_MAX_LENGTH_BMSK 0x0000ffff
  1012. #define HAL_CE_CHANNEL_DST_DEST_RING_CONSUMER_PREFETCH_TIMER_ADDR(x) ((x) + 0x00000040)
  1013. #define HAL_CE_CHANNEL_DST_DEST_RING_CONSUMER_PREFETCH_TIMER_RMSK 0x00000007
  1014. /**
  1015. * hal_ce_dst_setup - Initialize CE destination ring registers
  1016. * @hal_soc: HAL SOC handle
  1017. * @srng: SRNG ring pointer
  1018. */
  1019. static inline void hal_ce_dst_setup(struct hal_soc *hal, struct hal_srng *srng,
  1020. int ring_num)
  1021. {
  1022. uint32_t reg_val = 0;
  1023. uint32_t reg_addr;
  1024. struct hal_hw_srng_config *ring_config =
  1025. HAL_SRNG_CONFIG(hal, CE_DST);
  1026. /* set DEST_MAX_LENGTH according to ce assignment */
  1027. reg_addr = HAL_CE_CHANNEL_DST_DEST_CTRL_ADDR(
  1028. ring_config->reg_start[R0_INDEX] +
  1029. (ring_num * ring_config->reg_size[R0_INDEX]));
  1030. reg_val = HAL_REG_READ(hal, reg_addr);
  1031. reg_val &= ~HAL_CE_CHANNEL_DST_DEST_CTRL_DEST_MAX_LENGTH_BMSK;
  1032. reg_val |= srng->u.dst_ring.max_buffer_length &
  1033. HAL_CE_CHANNEL_DST_DEST_CTRL_DEST_MAX_LENGTH_BMSK;
  1034. HAL_REG_WRITE(hal, reg_addr, reg_val);
  1035. if (srng->prefetch_timer) {
  1036. reg_addr = HAL_CE_CHANNEL_DST_DEST_RING_CONSUMER_PREFETCH_TIMER_ADDR(
  1037. ring_config->reg_start[R0_INDEX] +
  1038. (ring_num * ring_config->reg_size[R0_INDEX]));
  1039. reg_val = HAL_REG_READ(hal, reg_addr);
  1040. reg_val &= ~HAL_CE_CHANNEL_DST_DEST_RING_CONSUMER_PREFETCH_TIMER_RMSK;
  1041. reg_val |= srng->prefetch_timer;
  1042. HAL_REG_WRITE(hal, reg_addr, reg_val);
  1043. reg_val = HAL_REG_READ(hal, reg_addr);
  1044. }
  1045. }
  1046. /**
  1047. * hal_reo_read_write_ctrl_ix - Read or write REO_DESTINATION_RING_CTRL_IX
  1048. * @hal: HAL SOC handle
  1049. * @read: boolean value to indicate if read or write
  1050. * @ix0: pointer to store IX0 reg value
  1051. * @ix1: pointer to store IX1 reg value
  1052. * @ix2: pointer to store IX2 reg value
  1053. * @ix3: pointer to store IX3 reg value
  1054. */
  1055. void hal_reo_read_write_ctrl_ix(hal_soc_handle_t hal_soc_hdl, bool read,
  1056. uint32_t *ix0, uint32_t *ix1,
  1057. uint32_t *ix2, uint32_t *ix3)
  1058. {
  1059. uint32_t reg_offset;
  1060. struct hal_soc *hal = (struct hal_soc *)hal_soc_hdl;
  1061. uint32_t reo_reg_base;
  1062. reo_reg_base = hal_get_reo_reg_base_offset(hal_soc_hdl);
  1063. if (read) {
  1064. if (ix0) {
  1065. reg_offset =
  1066. HAL_REO_DESTINATION_RING_CTRL_IX_0_ADDR(
  1067. reo_reg_base);
  1068. *ix0 = HAL_REG_READ(hal, reg_offset);
  1069. }
  1070. if (ix1) {
  1071. reg_offset =
  1072. HAL_REO_DESTINATION_RING_CTRL_IX_1_ADDR(
  1073. reo_reg_base);
  1074. *ix1 = HAL_REG_READ(hal, reg_offset);
  1075. }
  1076. if (ix2) {
  1077. reg_offset =
  1078. HAL_REO_DESTINATION_RING_CTRL_IX_2_ADDR(
  1079. reo_reg_base);
  1080. *ix2 = HAL_REG_READ(hal, reg_offset);
  1081. }
  1082. if (ix3) {
  1083. reg_offset =
  1084. HAL_REO_DESTINATION_RING_CTRL_IX_3_ADDR(
  1085. reo_reg_base);
  1086. *ix3 = HAL_REG_READ(hal, reg_offset);
  1087. }
  1088. } else {
  1089. if (ix0) {
  1090. reg_offset =
  1091. HAL_REO_DESTINATION_RING_CTRL_IX_0_ADDR(
  1092. reo_reg_base);
  1093. HAL_REG_WRITE_CONFIRM_RETRY(hal, reg_offset,
  1094. *ix0, true);
  1095. }
  1096. if (ix1) {
  1097. reg_offset =
  1098. HAL_REO_DESTINATION_RING_CTRL_IX_1_ADDR(
  1099. reo_reg_base);
  1100. HAL_REG_WRITE_CONFIRM_RETRY(hal, reg_offset,
  1101. *ix1, true);
  1102. }
  1103. if (ix2) {
  1104. reg_offset =
  1105. HAL_REO_DESTINATION_RING_CTRL_IX_2_ADDR(
  1106. reo_reg_base);
  1107. HAL_REG_WRITE_CONFIRM_RETRY(hal, reg_offset,
  1108. *ix2, true);
  1109. }
  1110. if (ix3) {
  1111. reg_offset =
  1112. HAL_REO_DESTINATION_RING_CTRL_IX_3_ADDR(
  1113. reo_reg_base);
  1114. HAL_REG_WRITE_CONFIRM_RETRY(hal, reg_offset,
  1115. *ix3, true);
  1116. }
  1117. }
  1118. }
  1119. qdf_export_symbol(hal_reo_read_write_ctrl_ix);
  1120. /**
  1121. * hal_srng_dst_set_hp_paddr_confirm() - Set physical address to dest ring head
  1122. * pointer and confirm that write went through by reading back the value
  1123. * @srng: sring pointer
  1124. * @paddr: physical address
  1125. *
  1126. * Return: None
  1127. */
  1128. void hal_srng_dst_set_hp_paddr_confirm(struct hal_srng *srng, uint64_t paddr)
  1129. {
  1130. SRNG_DST_REG_WRITE_CONFIRM(srng, HP_ADDR_LSB, paddr & 0xffffffff);
  1131. SRNG_DST_REG_WRITE_CONFIRM(srng, HP_ADDR_MSB, paddr >> 32);
  1132. }
  1133. qdf_export_symbol(hal_srng_dst_set_hp_paddr_confirm);
  1134. /**
  1135. * hal_srng_dst_init_hp() - Initialize destination ring head
  1136. * pointer
  1137. * @hal_soc: hal_soc handle
  1138. * @srng: sring pointer
  1139. * @vaddr: virtual address
  1140. */
  1141. void hal_srng_dst_init_hp(struct hal_soc_handle *hal_soc,
  1142. struct hal_srng *srng,
  1143. uint32_t *vaddr)
  1144. {
  1145. uint32_t reg_offset;
  1146. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  1147. if (!srng)
  1148. return;
  1149. srng->u.dst_ring.hp_addr = vaddr;
  1150. reg_offset = SRNG_DST_ADDR(srng, HP) - hal->dev_base_addr;
  1151. HAL_REG_WRITE_CONFIRM_RETRY(
  1152. hal, reg_offset, srng->u.dst_ring.cached_hp, true);
  1153. if (vaddr) {
  1154. *srng->u.dst_ring.hp_addr = srng->u.dst_ring.cached_hp;
  1155. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1156. "hp_addr=%pK, cached_hp=%d, hp=%d",
  1157. (void *)srng->u.dst_ring.hp_addr,
  1158. srng->u.dst_ring.cached_hp,
  1159. *srng->u.dst_ring.hp_addr);
  1160. }
  1161. }
  1162. qdf_export_symbol(hal_srng_dst_init_hp);
  1163. /**
  1164. * hal_srng_hw_init - Private function to initialize SRNG HW
  1165. * @hal_soc: HAL SOC handle
  1166. * @srng: SRNG ring pointer
  1167. */
  1168. static inline void hal_srng_hw_init(struct hal_soc *hal,
  1169. struct hal_srng *srng)
  1170. {
  1171. if (srng->ring_dir == HAL_SRNG_SRC_RING)
  1172. hal_srng_src_hw_init(hal, srng);
  1173. else
  1174. hal_srng_dst_hw_init(hal, srng);
  1175. }
  1176. #if defined(CONFIG_SHADOW_V2) || defined(CONFIG_SHADOW_V3)
  1177. #define ignore_shadow false
  1178. #define CHECK_SHADOW_REGISTERS true
  1179. #else
  1180. #define ignore_shadow true
  1181. #define CHECK_SHADOW_REGISTERS false
  1182. #endif
  1183. #ifdef WLAN_FEATURE_NEAR_FULL_IRQ
  1184. /**
  1185. * hal_srng_is_near_full_irq_supported() - Check if near full irq is
  1186. * supported on this SRNG
  1187. * @hal_soc: HAL SoC handle
  1188. * @ring_type: SRNG type
  1189. * @ring_num: ring number
  1190. *
  1191. * Return: true, if near full irq is supported for this SRNG
  1192. * false, if near full irq is not supported for this SRNG
  1193. */
  1194. bool hal_srng_is_near_full_irq_supported(hal_soc_handle_t hal_soc,
  1195. int ring_type, int ring_num)
  1196. {
  1197. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  1198. struct hal_hw_srng_config *ring_config =
  1199. HAL_SRNG_CONFIG(hal, ring_type);
  1200. return ring_config->nf_irq_support;
  1201. }
  1202. /**
  1203. * hal_srng_set_msi2_params() - Set MSI2 params to SRNG data structure from
  1204. * ring params
  1205. * @srng: SRNG handle
  1206. * @ring_params: ring params for this SRNG
  1207. *
  1208. * Return: None
  1209. */
  1210. static inline void
  1211. hal_srng_set_msi2_params(struct hal_srng *srng,
  1212. struct hal_srng_params *ring_params)
  1213. {
  1214. srng->msi2_addr = ring_params->msi2_addr;
  1215. srng->msi2_data = ring_params->msi2_data;
  1216. }
  1217. /**
  1218. * hal_srng_get_nf_params() - Get the near full MSI2 params from srng
  1219. * @srng: SRNG handle
  1220. * @ring_params: ring params for this SRNG
  1221. *
  1222. * Return: None
  1223. */
  1224. static inline void
  1225. hal_srng_get_nf_params(struct hal_srng *srng,
  1226. struct hal_srng_params *ring_params)
  1227. {
  1228. ring_params->msi2_addr = srng->msi2_addr;
  1229. ring_params->msi2_data = srng->msi2_data;
  1230. }
  1231. /**
  1232. * hal_srng_set_nf_thresholds() - Set the near full thresholds in SRNG
  1233. * @srng: SRNG handle where the params are to be set
  1234. * @ring_params: ring params, from where threshold is to be fetched
  1235. *
  1236. * Return: None
  1237. */
  1238. static inline void
  1239. hal_srng_set_nf_thresholds(struct hal_srng *srng,
  1240. struct hal_srng_params *ring_params)
  1241. {
  1242. srng->u.dst_ring.nf_irq_support = ring_params->nf_irq_support;
  1243. srng->u.dst_ring.high_thresh = ring_params->high_thresh;
  1244. }
  1245. #else
  1246. static inline void
  1247. hal_srng_set_msi2_params(struct hal_srng *srng,
  1248. struct hal_srng_params *ring_params)
  1249. {
  1250. }
  1251. static inline void
  1252. hal_srng_get_nf_params(struct hal_srng *srng,
  1253. struct hal_srng_params *ring_params)
  1254. {
  1255. }
  1256. static inline void
  1257. hal_srng_set_nf_thresholds(struct hal_srng *srng,
  1258. struct hal_srng_params *ring_params)
  1259. {
  1260. }
  1261. #endif
  1262. #if defined(CLEAR_SW2TCL_CONSUMED_DESC)
  1263. /**
  1264. * hal_srng_last_desc_cleared_init - Initialize SRNG last_desc_cleared ptr
  1265. *
  1266. * @srng: Source ring pointer
  1267. *
  1268. * Return: None
  1269. */
  1270. static inline
  1271. void hal_srng_last_desc_cleared_init(struct hal_srng *srng)
  1272. {
  1273. srng->last_desc_cleared = srng->ring_size - srng->entry_size;
  1274. }
  1275. #else
  1276. static inline
  1277. void hal_srng_last_desc_cleared_init(struct hal_srng *srng)
  1278. {
  1279. }
  1280. #endif /* CLEAR_SW2TCL_CONSUMED_DESC */
  1281. /**
  1282. * hal_srng_setup - Initialize HW SRNG ring.
  1283. * @hal_soc: Opaque HAL SOC handle
  1284. * @ring_type: one of the types from hal_ring_type
  1285. * @ring_num: Ring number if there are multiple rings of same type (staring
  1286. * from 0)
  1287. * @mac_id: valid MAC Id should be passed if ring type is one of lmac rings
  1288. * @ring_params: SRNG ring params in hal_srng_params structure.
  1289. * Callers are expected to allocate contiguous ring memory of size
  1290. * 'num_entries * entry_size' bytes and pass the physical and virtual base
  1291. * addresses through 'ring_base_paddr' and 'ring_base_vaddr' in
  1292. * hal_srng_params structure. Ring base address should be 8 byte aligned
  1293. * and size of each ring entry should be queried using the API
  1294. * hal_srng_get_entrysize
  1295. *
  1296. * Return: Opaque pointer to ring on success
  1297. * NULL on failure (if given ring is not available)
  1298. */
  1299. void *hal_srng_setup(void *hal_soc, int ring_type, int ring_num,
  1300. int mac_id, struct hal_srng_params *ring_params)
  1301. {
  1302. int ring_id;
  1303. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  1304. struct hal_srng *srng;
  1305. struct hal_hw_srng_config *ring_config =
  1306. HAL_SRNG_CONFIG(hal, ring_type);
  1307. void *dev_base_addr;
  1308. int i;
  1309. ring_id = hal_get_srng_ring_id(hal_soc, ring_type, ring_num, mac_id);
  1310. if (ring_id < 0)
  1311. return NULL;
  1312. hal_verbose_debug("mac_id %d ring_id %d", mac_id, ring_id);
  1313. srng = hal_get_srng(hal_soc, ring_id);
  1314. if (srng->initialized) {
  1315. hal_verbose_debug("Ring (ring_type, ring_num) already initialized");
  1316. return NULL;
  1317. }
  1318. dev_base_addr = hal->dev_base_addr;
  1319. srng->ring_id = ring_id;
  1320. srng->ring_type = ring_type;
  1321. srng->ring_dir = ring_config->ring_dir;
  1322. srng->ring_base_paddr = ring_params->ring_base_paddr;
  1323. srng->ring_base_vaddr = ring_params->ring_base_vaddr;
  1324. srng->entry_size = ring_config->entry_size;
  1325. srng->num_entries = ring_params->num_entries;
  1326. srng->ring_size = srng->num_entries * srng->entry_size;
  1327. srng->ring_size_mask = srng->ring_size - 1;
  1328. srng->ring_vaddr_end = srng->ring_base_vaddr + srng->ring_size;
  1329. srng->msi_addr = ring_params->msi_addr;
  1330. srng->msi_data = ring_params->msi_data;
  1331. srng->intr_timer_thres_us = ring_params->intr_timer_thres_us;
  1332. srng->intr_batch_cntr_thres_entries =
  1333. ring_params->intr_batch_cntr_thres_entries;
  1334. srng->prefetch_timer = ring_params->prefetch_timer;
  1335. srng->hal_soc = hal_soc;
  1336. hal_srng_set_msi2_params(srng, ring_params);
  1337. for (i = 0 ; i < MAX_SRNG_REG_GROUPS; i++) {
  1338. srng->hwreg_base[i] = dev_base_addr + ring_config->reg_start[i]
  1339. + (ring_num * ring_config->reg_size[i]);
  1340. }
  1341. /* Zero out the entire ring memory */
  1342. qdf_mem_zero(srng->ring_base_vaddr, (srng->entry_size *
  1343. srng->num_entries) << 2);
  1344. srng->flags = ring_params->flags;
  1345. /* For cached descriptors flush and invalidate the memory*/
  1346. if (srng->flags & HAL_SRNG_CACHED_DESC) {
  1347. qdf_nbuf_dma_clean_range(
  1348. srng->ring_base_vaddr,
  1349. srng->ring_base_vaddr +
  1350. ((srng->entry_size * srng->num_entries)));
  1351. qdf_nbuf_dma_inv_range(
  1352. srng->ring_base_vaddr,
  1353. srng->ring_base_vaddr +
  1354. ((srng->entry_size * srng->num_entries)));
  1355. }
  1356. #ifdef BIG_ENDIAN_HOST
  1357. /* TODO: See if we should we get these flags from caller */
  1358. srng->flags |= HAL_SRNG_DATA_TLV_SWAP;
  1359. srng->flags |= HAL_SRNG_MSI_SWAP;
  1360. srng->flags |= HAL_SRNG_RING_PTR_SWAP;
  1361. #endif
  1362. hal_srng_last_desc_cleared_init(srng);
  1363. if (srng->ring_dir == HAL_SRNG_SRC_RING) {
  1364. srng->u.src_ring.hp = 0;
  1365. srng->u.src_ring.reap_hp = srng->ring_size -
  1366. srng->entry_size;
  1367. srng->u.src_ring.tp_addr =
  1368. &(hal->shadow_rdptr_mem_vaddr[ring_id]);
  1369. srng->u.src_ring.low_threshold =
  1370. ring_params->low_threshold * srng->entry_size;
  1371. if (ring_config->lmac_ring) {
  1372. /* For LMAC rings, head pointer updates will be done
  1373. * through FW by writing to a shared memory location
  1374. */
  1375. srng->u.src_ring.hp_addr =
  1376. &(hal->shadow_wrptr_mem_vaddr[ring_id -
  1377. HAL_SRNG_LMAC1_ID_START]);
  1378. srng->flags |= HAL_SRNG_LMAC_RING;
  1379. } else if (ignore_shadow || (srng->u.src_ring.hp_addr == 0)) {
  1380. srng->u.src_ring.hp_addr =
  1381. hal_get_window_address(hal,
  1382. SRNG_SRC_ADDR(srng, HP));
  1383. if (CHECK_SHADOW_REGISTERS) {
  1384. QDF_TRACE(QDF_MODULE_ID_TXRX,
  1385. QDF_TRACE_LEVEL_ERROR,
  1386. "%s: Ring (%d, %d) missing shadow config",
  1387. __func__, ring_type, ring_num);
  1388. }
  1389. } else {
  1390. hal_validate_shadow_register(hal,
  1391. SRNG_SRC_ADDR(srng, HP),
  1392. srng->u.src_ring.hp_addr);
  1393. }
  1394. } else {
  1395. /* During initialization loop count in all the descriptors
  1396. * will be set to zero, and HW will set it to 1 on completing
  1397. * descriptor update in first loop, and increments it by 1 on
  1398. * subsequent loops (loop count wraps around after reaching
  1399. * 0xffff). The 'loop_cnt' in SW ring state is the expected
  1400. * loop count in descriptors updated by HW (to be processed
  1401. * by SW).
  1402. */
  1403. hal_srng_set_nf_thresholds(srng, ring_params);
  1404. srng->u.dst_ring.loop_cnt = 1;
  1405. srng->u.dst_ring.tp = 0;
  1406. srng->u.dst_ring.hp_addr =
  1407. &(hal->shadow_rdptr_mem_vaddr[ring_id]);
  1408. if (ring_config->lmac_ring) {
  1409. /* For LMAC rings, tail pointer updates will be done
  1410. * through FW by writing to a shared memory location
  1411. */
  1412. srng->u.dst_ring.tp_addr =
  1413. &(hal->shadow_wrptr_mem_vaddr[ring_id -
  1414. HAL_SRNG_LMAC1_ID_START]);
  1415. srng->flags |= HAL_SRNG_LMAC_RING;
  1416. } else if (ignore_shadow || srng->u.dst_ring.tp_addr == 0) {
  1417. srng->u.dst_ring.tp_addr =
  1418. hal_get_window_address(hal,
  1419. SRNG_DST_ADDR(srng, TP));
  1420. if (CHECK_SHADOW_REGISTERS) {
  1421. QDF_TRACE(QDF_MODULE_ID_TXRX,
  1422. QDF_TRACE_LEVEL_ERROR,
  1423. "%s: Ring (%d, %d) missing shadow config",
  1424. __func__, ring_type, ring_num);
  1425. }
  1426. } else {
  1427. hal_validate_shadow_register(hal,
  1428. SRNG_DST_ADDR(srng, TP),
  1429. srng->u.dst_ring.tp_addr);
  1430. }
  1431. }
  1432. if (!(ring_config->lmac_ring)) {
  1433. hal_srng_hw_init(hal, srng);
  1434. if (ring_type == CE_DST) {
  1435. srng->u.dst_ring.max_buffer_length = ring_params->max_buffer_length;
  1436. hal_ce_dst_setup(hal, srng, ring_num);
  1437. }
  1438. }
  1439. SRNG_LOCK_INIT(&srng->lock);
  1440. srng->srng_event = 0;
  1441. srng->initialized = true;
  1442. return (void *)srng;
  1443. }
  1444. qdf_export_symbol(hal_srng_setup);
  1445. /**
  1446. * hal_srng_cleanup - Deinitialize HW SRNG ring.
  1447. * @hal_soc: Opaque HAL SOC handle
  1448. * @hal_srng: Opaque HAL SRNG pointer
  1449. */
  1450. void hal_srng_cleanup(void *hal_soc, hal_ring_handle_t hal_ring_hdl)
  1451. {
  1452. struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
  1453. SRNG_LOCK_DESTROY(&srng->lock);
  1454. srng->initialized = 0;
  1455. }
  1456. qdf_export_symbol(hal_srng_cleanup);
  1457. /**
  1458. * hal_srng_get_entrysize - Returns size of ring entry in bytes
  1459. * @hal_soc: Opaque HAL SOC handle
  1460. * @ring_type: one of the types from hal_ring_type
  1461. *
  1462. */
  1463. uint32_t hal_srng_get_entrysize(void *hal_soc, int ring_type)
  1464. {
  1465. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  1466. struct hal_hw_srng_config *ring_config =
  1467. HAL_SRNG_CONFIG(hal, ring_type);
  1468. return ring_config->entry_size << 2;
  1469. }
  1470. qdf_export_symbol(hal_srng_get_entrysize);
  1471. /**
  1472. * hal_srng_max_entries - Returns maximum possible number of ring entries
  1473. * @hal_soc: Opaque HAL SOC handle
  1474. * @ring_type: one of the types from hal_ring_type
  1475. *
  1476. * Return: Maximum number of entries for the given ring_type
  1477. */
  1478. uint32_t hal_srng_max_entries(void *hal_soc, int ring_type)
  1479. {
  1480. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  1481. struct hal_hw_srng_config *ring_config =
  1482. HAL_SRNG_CONFIG(hal, ring_type);
  1483. return ring_config->max_size / ring_config->entry_size;
  1484. }
  1485. qdf_export_symbol(hal_srng_max_entries);
  1486. enum hal_srng_dir hal_srng_get_dir(void *hal_soc, int ring_type)
  1487. {
  1488. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  1489. struct hal_hw_srng_config *ring_config =
  1490. HAL_SRNG_CONFIG(hal, ring_type);
  1491. return ring_config->ring_dir;
  1492. }
  1493. /**
  1494. * hal_srng_dump - Dump ring status
  1495. * @srng: hal srng pointer
  1496. */
  1497. void hal_srng_dump(struct hal_srng *srng)
  1498. {
  1499. if (srng->ring_dir == HAL_SRNG_SRC_RING) {
  1500. hal_debug("=== SRC RING %d ===", srng->ring_id);
  1501. hal_debug("hp %u, reap_hp %u, tp %u, cached tp %u",
  1502. srng->u.src_ring.hp,
  1503. srng->u.src_ring.reap_hp,
  1504. *srng->u.src_ring.tp_addr,
  1505. srng->u.src_ring.cached_tp);
  1506. } else {
  1507. hal_debug("=== DST RING %d ===", srng->ring_id);
  1508. hal_debug("tp %u, hp %u, cached tp %u, loop_cnt %u",
  1509. srng->u.dst_ring.tp,
  1510. *srng->u.dst_ring.hp_addr,
  1511. srng->u.dst_ring.cached_hp,
  1512. srng->u.dst_ring.loop_cnt);
  1513. }
  1514. }
  1515. /**
  1516. * hal_get_srng_params - Retrieve SRNG parameters for a given ring from HAL
  1517. *
  1518. * @hal_soc: Opaque HAL SOC handle
  1519. * @hal_ring: Ring pointer (Source or Destination ring)
  1520. * @ring_params: SRNG parameters will be returned through this structure
  1521. */
  1522. extern void hal_get_srng_params(hal_soc_handle_t hal_soc_hdl,
  1523. hal_ring_handle_t hal_ring_hdl,
  1524. struct hal_srng_params *ring_params)
  1525. {
  1526. struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
  1527. int i =0;
  1528. ring_params->ring_id = srng->ring_id;
  1529. ring_params->ring_dir = srng->ring_dir;
  1530. ring_params->entry_size = srng->entry_size;
  1531. ring_params->ring_base_paddr = srng->ring_base_paddr;
  1532. ring_params->ring_base_vaddr = srng->ring_base_vaddr;
  1533. ring_params->num_entries = srng->num_entries;
  1534. ring_params->msi_addr = srng->msi_addr;
  1535. ring_params->msi_data = srng->msi_data;
  1536. ring_params->intr_timer_thres_us = srng->intr_timer_thres_us;
  1537. ring_params->intr_batch_cntr_thres_entries =
  1538. srng->intr_batch_cntr_thres_entries;
  1539. ring_params->low_threshold = srng->u.src_ring.low_threshold;
  1540. ring_params->flags = srng->flags;
  1541. ring_params->ring_id = srng->ring_id;
  1542. for (i = 0 ; i < MAX_SRNG_REG_GROUPS; i++)
  1543. ring_params->hwreg_base[i] = srng->hwreg_base[i];
  1544. hal_srng_get_nf_params(srng, ring_params);
  1545. }
  1546. qdf_export_symbol(hal_get_srng_params);
  1547. void hal_set_low_threshold(hal_ring_handle_t hal_ring_hdl,
  1548. uint32_t low_threshold)
  1549. {
  1550. struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
  1551. srng->u.src_ring.low_threshold = low_threshold * srng->entry_size;
  1552. }
  1553. qdf_export_symbol(hal_set_low_threshold);
  1554. #ifdef FORCE_WAKE
  1555. void hal_set_init_phase(hal_soc_handle_t soc, bool init_phase)
  1556. {
  1557. struct hal_soc *hal_soc = (struct hal_soc *)soc;
  1558. hal_soc->init_phase = init_phase;
  1559. }
  1560. #endif /* FORCE_WAKE */