Dosyalar
android_kernel_samsung_sm86…/driver/vidc/src/resources.c
Darshana Patil 68df0645ec video: driver: add support to send aon region via HFI_MMAP_ADDR
- add support to intialise device region by reading data from
  platform to resources.
- add support for iommu_map and iommu_unmap apis.
- allocate a 4K page and send this address through
  HFI_MMAP_ADDR register.
- map AON region, send virtual address and size as payload.

Change-Id: I5aa26593309a220c5de62836e432c1bd5a63ba1d
Signed-off-by: Darshana Patil <quic_darshana@quicinc.com>
2023-01-20 10:49:32 -08:00

1838 satır
44 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (c) 2020-2021, The Linux Foundation. All rights reserved.
*/
/* Copyright (c) 2022-2023. Qualcomm Innovation Center, Inc. All rights reserved. */
#include <linux/sort.h>
#include <linux/clk.h>
#include <linux/reset.h>
#include <linux/interconnect.h>
#include <linux/soc/qcom/llcc-qcom.h>
#ifdef CONFIG_MSM_MMRM
#include <linux/soc/qcom/msm_mmrm.h>
#endif
#include "msm_vidc_core.h"
#include "msm_vidc_power.h"
#include "msm_vidc_debug.h"
#include "msm_vidc_driver.h"
#include "msm_vidc_platform.h"
#include "venus_hfi.h"
/* Less than 50MBps is treated as trivial BW change */
#define TRIVIAL_BW_THRESHOLD 50000
#define TRIVIAL_BW_CHANGE(a, b) \
((a) > (b) ? (a) - (b) < TRIVIAL_BW_THRESHOLD : \
(b) - (a) < TRIVIAL_BW_THRESHOLD)
enum reset_state {
INIT = 1,
ASSERT,
DEASSERT,
};
static void __fatal_error(bool fatal)
{
WARN_ON(fatal);
}
static void devm_llcc_release(struct device *dev, void *res)
{
d_vpr_h("%s()\n", __func__);
llcc_slice_putd(*(struct llcc_slice_desc **)res);
}
static struct llcc_slice_desc *devm_llcc_get(struct device *dev, u32 id)
{
struct llcc_slice_desc **ptr, *llcc;
ptr = devres_alloc(devm_llcc_release, sizeof(*ptr), GFP_KERNEL);
if (!ptr)
return ERR_PTR(-ENOMEM);
llcc = llcc_slice_getd(id);
if (!IS_ERR(llcc)) {
*ptr = llcc;
devres_add(dev, ptr);
} else {
devres_free(ptr);
}
return llcc;
}
#ifdef CONFIG_MSM_MMRM
static void devm_mmrm_release(struct device *dev, void *res)
{
d_vpr_h("%s()\n", __func__);
mmrm_client_deregister(*(struct mmrm_client **)res);
}
static struct mmrm_client *devm_mmrm_get(struct device *dev, struct mmrm_client_desc *desc)
{
struct mmrm_client **ptr, *mmrm;
ptr = devres_alloc(devm_mmrm_release, sizeof(*ptr), GFP_KERNEL);
if (!ptr)
return ERR_PTR(-ENOMEM);
mmrm = mmrm_client_register(desc);
if (!IS_ERR(mmrm)) {
*ptr = mmrm;
devres_add(dev, ptr);
} else {
devres_free(ptr);
}
return mmrm;
}
#endif
/* A comparator to compare loads (needed later on) */
static inline int cmp(const void *a, const void *b)
{
/* want to sort in reverse so flip the comparison */
return ((struct freq_table *)b)->freq -
((struct freq_table *)a)->freq;
}
static int __init_register_base(struct msm_vidc_core *core)
{
struct msm_vidc_resource *res;
if (!core || !core->pdev || !core->resource) {
d_vpr_e("%s: invalid params\n", __func__);
return -EINVAL;
}
res = core->resource;
res->register_base_addr = devm_platform_ioremap_resource(core->pdev, 0);
if (IS_ERR(res->register_base_addr)) {
d_vpr_e("%s: map reg addr failed %ld\n",
__func__, PTR_ERR(res->register_base_addr));
return -EINVAL;
}
d_vpr_h("%s: reg_base %#x\n", __func__, res->register_base_addr);
return 0;
}
static int __init_irq(struct msm_vidc_core *core)
{
struct msm_vidc_resource *res;
#if (LINUX_VERSION_CODE < KERNEL_VERSION(5, 16, 0))
struct resource *kres;
#endif
int rc = 0;
if (!core || !core->pdev || !core->resource) {
d_vpr_e("%s: invalid params\n", __func__);
return -EINVAL;
}
res = core->resource;
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 16, 0))
res->irq = platform_get_irq(core->pdev, 0);
#else
kres = platform_get_resource(core->pdev, IORESOURCE_IRQ, 0);
res->irq = kres ? kres->start : -1;
#endif
if (res->irq < 0)
d_vpr_e("%s: get irq failed, %d\n", __func__, res->irq);
d_vpr_h("%s: irq %d\n", __func__, res->irq);
rc = devm_request_threaded_irq(&core->pdev->dev, res->irq, venus_hfi_isr,
venus_hfi_isr_handler, IRQF_TRIGGER_HIGH, "msm-vidc", core);
if (rc) {
d_vpr_e("%s: Failed to allocate venus IRQ\n", __func__);
return rc;
}
disable_irq_nosync(res->irq);
return rc;
}
static int __init_bus(struct msm_vidc_core *core)
{
const struct bw_table *bus_tbl;
struct bus_set *interconnects;
struct bus_info *binfo = NULL;
u32 bus_count = 0, cnt = 0;
int rc = 0;
if (!core || !core->resource || !core->platform) {
d_vpr_e("%s: invalid params\n", __func__);
return -EINVAL;
}
interconnects = &core->resource->bus_set;
bus_tbl = core->platform->data.bw_tbl;
bus_count = core->platform->data.bw_tbl_size;
if (!bus_tbl || !bus_count) {
d_vpr_e("%s: invalid bus tbl %#x or count %d\n",
__func__, bus_tbl, bus_count);
return -EINVAL;
}
/* allocate bus_set */
interconnects->bus_tbl = devm_kzalloc(&core->pdev->dev,
sizeof(*interconnects->bus_tbl) * bus_count, GFP_KERNEL);
if (!interconnects->bus_tbl) {
d_vpr_e("%s: failed to alloc memory for bus table\n", __func__);
return -ENOMEM;
}
interconnects->count = bus_count;
/* populate bus field from platform data */
for (cnt = 0; cnt < interconnects->count; cnt++) {
interconnects->bus_tbl[cnt].name = bus_tbl[cnt].name;
interconnects->bus_tbl[cnt].min_kbps = bus_tbl[cnt].min_kbps;
interconnects->bus_tbl[cnt].max_kbps = bus_tbl[cnt].max_kbps;
}
/* print bus fields */
venus_hfi_for_each_bus(core, binfo) {
d_vpr_h("%s: name %s min_kbps %u max_kbps %u\n",
__func__, binfo->name, binfo->min_kbps, binfo->max_kbps);
}
/* get interconnect handle */
venus_hfi_for_each_bus(core, binfo) {
if (!strcmp(binfo->name, "venus-llcc")) {
if (msm_vidc_syscache_disable) {
d_vpr_h("%s: skipping LLC bus init: %s\n", __func__,
binfo->name);
continue;
}
}
binfo->icc = devm_of_icc_get(&core->pdev->dev, binfo->name);
if (IS_ERR_OR_NULL(binfo->icc)) {
d_vpr_e("%s: failed to get bus: %s\n", __func__, binfo->name);
rc = PTR_ERR(binfo->icc) ?
PTR_ERR(binfo->icc) : -EBADHANDLE;
binfo->icc = NULL;
return rc;
}
}
return rc;
}
static int __init_regulators(struct msm_vidc_core *core)
{
const struct regulator_table *regulator_tbl;
struct regulator_set *regulators;
struct regulator_info *rinfo = NULL;
u32 regulator_count = 0, cnt = 0;
int rc = 0;
if (!core || !core->resource || !core->platform) {
d_vpr_e("%s: invalid params\n", __func__);
return -EINVAL;
}
regulators = &core->resource->regulator_set;
/* skip init if regulators not supported */
if (!is_regulator_supported(core)) {
d_vpr_h("%s: regulators are not available in database\n", __func__);
return 0;
}
regulator_tbl = core->platform->data.regulator_tbl;
regulator_count = core->platform->data.regulator_tbl_size;
if (!regulator_tbl || !regulator_count) {
d_vpr_e("%s: invalid regulator tbl %#x or count %d\n",
__func__, regulator_tbl, regulator_count);
return -EINVAL;
}
/* allocate regulator_set */
regulators->regulator_tbl = devm_kzalloc(&core->pdev->dev,
sizeof(*regulators->regulator_tbl) * regulator_count, GFP_KERNEL);
if (!regulators->regulator_tbl) {
d_vpr_e("%s: failed to alloc memory for regulator table\n", __func__);
return -ENOMEM;
}
regulators->count = regulator_count;
/* populate regulator fields */
for (cnt = 0; cnt < regulators->count; cnt++) {
regulators->regulator_tbl[cnt].name = regulator_tbl[cnt].name;
regulators->regulator_tbl[cnt].hw_power_collapse = regulator_tbl[cnt].hw_trigger;
}
/* print regulator fields */
venus_hfi_for_each_regulator(core, rinfo) {
d_vpr_h("%s: name %s hw_power_collapse %d\n",
__func__, rinfo->name, rinfo->hw_power_collapse);
}
/* get regulator handle */
venus_hfi_for_each_regulator(core, rinfo) {
rinfo->regulator = devm_regulator_get(&core->pdev->dev, rinfo->name);
if (IS_ERR_OR_NULL(rinfo->regulator)) {
rc = PTR_ERR(rinfo->regulator) ?
PTR_ERR(rinfo->regulator) : -EBADHANDLE;
d_vpr_e("%s: failed to get regulator: %s\n", __func__, rinfo->name);
rinfo->regulator = NULL;
return rc;
}
}
return rc;
}
static int __init_clocks(struct msm_vidc_core *core)
{
struct clock_residency *residency = NULL;
const struct clk_table *clk_tbl;
struct freq_table *freq_tbl;
struct clock_set *clocks;
struct clock_info *cinfo = NULL;
u32 clk_count = 0, freq_count = 0;
int fcnt = 0, cnt = 0, rc = 0;
if (!core || !core->resource || !core->platform) {
d_vpr_e("%s: invalid params\n", __func__);
return -EINVAL;
}
clocks = &core->resource->clock_set;
clk_tbl = core->platform->data.clk_tbl;
clk_count = core->platform->data.clk_tbl_size;
if (!clk_tbl || !clk_count) {
d_vpr_e("%s: invalid clock tbl %#x or count %d\n",
__func__, clk_tbl, clk_count);
return -EINVAL;
}
/* allocate clock_set */
clocks->clock_tbl = devm_kzalloc(&core->pdev->dev,
sizeof(*clocks->clock_tbl) * clk_count, GFP_KERNEL);
if (!clocks->clock_tbl) {
d_vpr_e("%s: failed to alloc memory for clock table\n", __func__);
return -ENOMEM;
}
clocks->count = clk_count;
/* populate clock field from platform data */
for (cnt = 0; cnt < clocks->count; cnt++) {
clocks->clock_tbl[cnt].name = clk_tbl[cnt].name;
clocks->clock_tbl[cnt].clk_id = clk_tbl[cnt].clk_id;
clocks->clock_tbl[cnt].has_scaling = clk_tbl[cnt].scaling;
}
freq_tbl = core->platform->data.freq_tbl;
freq_count = core->platform->data.freq_tbl_size;
/* populate clk residency stats table */
for (cnt = 0; cnt < clocks->count; cnt++) {
/* initialize residency_list */
INIT_LIST_HEAD(&clocks->clock_tbl[cnt].residency_list);
/* skip if scaling not supported */
if (!clocks->clock_tbl[cnt].has_scaling)
continue;
for (fcnt = 0; fcnt < freq_count; fcnt++) {
residency = devm_kzalloc(&core->pdev->dev,
sizeof(struct clock_residency), GFP_KERNEL);
if (!residency) {
d_vpr_e("%s: failed to alloc clk residency stat node\n", __func__);
return -ENOMEM;
}
if (!freq_tbl) {
d_vpr_e("%s: invalid freq tbl %#x\n", __func__, freq_tbl);
return -EINVAL;
}
/* update residency node */
residency->rate = freq_tbl[fcnt].freq;
residency->start_time_us = 0;
residency->total_time_us = 0;
INIT_LIST_HEAD(&residency->list);
/* add entry into residency_list */
list_add_tail(&residency->list, &clocks->clock_tbl[cnt].residency_list);
}
}
/* print clock fields */
venus_hfi_for_each_clock(core, cinfo) {
d_vpr_h("%s: clock name %s clock id %#x scaling %d\n",
__func__, cinfo->name, cinfo->clk_id, cinfo->has_scaling);
}
/* get clock handle */
venus_hfi_for_each_clock(core, cinfo) {
cinfo->clk = devm_clk_get(&core->pdev->dev, cinfo->name);
if (IS_ERR_OR_NULL(cinfo->clk)) {
d_vpr_e("%s: failed to get clock: %s\n", __func__, cinfo->name);
rc = PTR_ERR(cinfo->clk) ?
PTR_ERR(cinfo->clk) : -EINVAL;
cinfo->clk = NULL;
return rc;
}
}
return rc;
}
static int __clock_set_flag(struct msm_vidc_core *core,
const char *name, enum branch_mem_flags flag)
{
struct clock_info *cinfo = NULL;
bool found = false;
/* get clock handle */
venus_hfi_for_each_clock(core, cinfo) {
if (strcmp(cinfo->name, name))
continue;
found = true;
qcom_clk_set_flags(cinfo->clk, flag);
d_vpr_h("%s: set flag %d on clock %s\n", __func__, flag, name);
break;
}
if (!found) {
d_vpr_e("%s: failed to find clock: %s\n", __func__, name);
return -EINVAL;
}
return 0;
}
static int __init_reset_clocks(struct msm_vidc_core *core)
{
const struct clk_rst_table *rst_tbl;
struct reset_set *rsts;
struct reset_info *rinfo = NULL;
u32 rst_count = 0, cnt = 0;
int rc = 0;
if (!core || !core->resource || !core->platform) {
d_vpr_e("%s: invalid params\n", __func__);
return -EINVAL;
}
rsts = &core->resource->reset_set;
rst_tbl = core->platform->data.clk_rst_tbl;
rst_count = core->platform->data.clk_rst_tbl_size;
if (!rst_tbl || !rst_count) {
d_vpr_e("%s: invalid reset tbl %#x or count %d\n",
__func__, rst_tbl, rst_count);
return -EINVAL;
}
/* allocate reset_set */
rsts->reset_tbl = devm_kzalloc(&core->pdev->dev,
sizeof(*rsts->reset_tbl) * rst_count, GFP_KERNEL);
if (!rsts->reset_tbl) {
d_vpr_e("%s: failed to alloc memory for reset table\n", __func__);
return -ENOMEM;
}
rsts->count = rst_count;
/* populate clock field from platform data */
for (cnt = 0; cnt < rsts->count; cnt++) {
rsts->reset_tbl[cnt].name = rst_tbl[cnt].name;
rsts->reset_tbl[cnt].exclusive_release = rst_tbl[cnt].exclusive_release;
}
/* print reset clock fields */
venus_hfi_for_each_reset_clock(core, rinfo) {
d_vpr_h("%s: reset clk %s, exclusive %d\n",
__func__, rinfo->name, rinfo->exclusive_release);
}
/* get reset clock handle */
venus_hfi_for_each_reset_clock(core, rinfo) {
if (rinfo->exclusive_release)
rinfo->rst = devm_reset_control_get_exclusive_released(
&core->pdev->dev, rinfo->name);
else
rinfo->rst = devm_reset_control_get(&core->pdev->dev, rinfo->name);
if (IS_ERR_OR_NULL(rinfo->rst)) {
d_vpr_e("%s: failed to get reset clock: %s\n", __func__, rinfo->name);
rc = PTR_ERR(rinfo->rst) ?
PTR_ERR(rinfo->rst) : -EINVAL;
rinfo->rst = NULL;
return rc;
}
}
return rc;
}
static int __init_subcaches(struct msm_vidc_core *core)
{
const struct subcache_table *llcc_tbl;
struct subcache_set *caches;
struct subcache_info *sinfo = NULL;
u32 llcc_count = 0, cnt = 0;
int rc = 0;
if (!core || !core->resource || !core->platform) {
d_vpr_e("%s: invalid params\n", __func__);
return -EINVAL;
}
caches = &core->resource->subcache_set;
/* skip init if subcache not available */
if (!is_sys_cache_present(core))
return 0;
llcc_tbl = core->platform->data.subcache_tbl;
llcc_count = core->platform->data.subcache_tbl_size;
if (!llcc_tbl || !llcc_count) {
d_vpr_e("%s: invalid llcc tbl %#x or count %d\n",
__func__, llcc_tbl, llcc_count);
return -EINVAL;
}
/* allocate clock_set */
caches->subcache_tbl = devm_kzalloc(&core->pdev->dev,
sizeof(*caches->subcache_tbl) * llcc_count, GFP_KERNEL);
if (!caches->subcache_tbl) {
d_vpr_e("%s: failed to alloc memory for subcache table\n", __func__);
return -ENOMEM;
}
caches->count = llcc_count;
/* populate subcache fields from platform data */
for (cnt = 0; cnt < caches->count; cnt++) {
caches->subcache_tbl[cnt].name = llcc_tbl[cnt].name;
caches->subcache_tbl[cnt].llcc_id = llcc_tbl[cnt].llcc_id;
}
/* print subcache fields */
venus_hfi_for_each_subcache(core, sinfo) {
d_vpr_h("%s: name %s subcache id %d\n",
__func__, sinfo->name, sinfo->llcc_id);
}
/* get subcache/llcc handle */
venus_hfi_for_each_subcache(core, sinfo) {
sinfo->subcache = devm_llcc_get(&core->pdev->dev, sinfo->llcc_id);
if (IS_ERR_OR_NULL(sinfo->subcache)) {
d_vpr_e("%s: failed to get subcache: %d\n", __func__, sinfo->llcc_id);
rc = PTR_ERR(sinfo->subcache) ?
PTR_ERR(sinfo->subcache) : -EBADHANDLE;
sinfo->subcache = NULL;
return rc;
}
}
return rc;
}
static int __init_freq_table(struct msm_vidc_core *core)
{
struct freq_table *freq_tbl;
struct freq_set *clks;
u32 freq_count = 0, cnt = 0;
int rc = 0;
if (!core || !core->resource || !core->platform) {
d_vpr_e("%s: invalid params\n", __func__);
return -EINVAL;
}
clks = &core->resource->freq_set;
freq_tbl = core->platform->data.freq_tbl;
freq_count = core->platform->data.freq_tbl_size;
if (!freq_tbl || !freq_count) {
d_vpr_e("%s: invalid freq tbl %#x or count %d\n",
__func__, freq_tbl, freq_count);
return -EINVAL;
}
/* allocate freq_set */
clks->freq_tbl = devm_kzalloc(&core->pdev->dev,
sizeof(*clks->freq_tbl) * freq_count, GFP_KERNEL);
if (!clks->freq_tbl) {
d_vpr_e("%s: failed to alloc memory for freq table\n", __func__);
return -ENOMEM;
}
clks->count = freq_count;
/* populate freq field from platform data */
for (cnt = 0; cnt < clks->count; cnt++)
clks->freq_tbl[cnt].freq = freq_tbl[cnt].freq;
/* sort freq table */
sort(clks->freq_tbl, clks->count, sizeof(*clks->freq_tbl), cmp, NULL);
/* print freq field freq_set */
d_vpr_h("%s: updated freq table\n", __func__);
for (cnt = 0; cnt < clks->count; cnt++)
d_vpr_h("%s:\t %lu\n", __func__, clks->freq_tbl[cnt].freq);
return rc;
}
static int __init_context_banks(struct msm_vidc_core *core)
{
const struct context_bank_table *cb_tbl;
struct context_bank_set *cbs;
struct context_bank_info *cbinfo = NULL;
u32 cb_count = 0, cnt = 0;
int rc = 0;
if (!core || !core->resource || !core->platform) {
d_vpr_e("%s: invalid params\n", __func__);
return -EINVAL;
}
cbs = &core->resource->context_bank_set;
cb_tbl = core->platform->data.context_bank_tbl;
cb_count = core->platform->data.context_bank_tbl_size;
if (!cb_tbl || !cb_count) {
d_vpr_e("%s: invalid context bank tbl %#x or count %d\n",
__func__, cb_tbl, cb_count);
return -EINVAL;
}
/* allocate context_bank table */
cbs->context_bank_tbl = devm_kzalloc(&core->pdev->dev,
sizeof(*cbs->context_bank_tbl) * cb_count, GFP_KERNEL);
if (!cbs->context_bank_tbl) {
d_vpr_e("%s: failed to alloc memory for context_bank table\n", __func__);
return -ENOMEM;
}
cbs->count = cb_count;
/**
* populate context bank field from platform data except
* dev & domain which are assigned as part of context bank
* probe sequence
*/
for (cnt = 0; cnt < cbs->count; cnt++) {
cbs->context_bank_tbl[cnt].name = cb_tbl[cnt].name;
cbs->context_bank_tbl[cnt].addr_range.start = cb_tbl[cnt].start;
cbs->context_bank_tbl[cnt].addr_range.size = cb_tbl[cnt].size;
cbs->context_bank_tbl[cnt].secure = cb_tbl[cnt].secure;
cbs->context_bank_tbl[cnt].dma_coherant = cb_tbl[cnt].dma_coherant;
cbs->context_bank_tbl[cnt].region = cb_tbl[cnt].region;
cbs->context_bank_tbl[cnt].dma_mask = cb_tbl[cnt].dma_mask;
}
/* print context_bank fiels */
venus_hfi_for_each_context_bank(core, cbinfo) {
d_vpr_h("%s: name %s addr start %#x size %#x secure %d "
"coherant %d region %d dma_mask %llu\n",
__func__, cbinfo->name, cbinfo->addr_range.start,
cbinfo->addr_range.size, cbinfo->secure,
cbinfo->dma_coherant, cbinfo->region, cbinfo->dma_mask);
}
return rc;
}
static int __init_device_region(struct msm_vidc_core *core)
{
const struct device_region_table *dev_reg_tbl;
struct device_region_set *dev_set;
struct device_region_info *dev_reg_info;
u32 dev_reg_count = 0, cnt = 0;
int rc = 0;
if (!core || !core->resource || !core->platform) {
d_vpr_e("%s: invalid params\n", __func__);
return -EINVAL;
}
dev_set = &core->resource->device_region_set;
dev_reg_tbl = core->platform->data.dev_reg_tbl;
dev_reg_count = core->platform->data.dev_reg_tbl_size;
if (!dev_reg_tbl || !dev_reg_count) {
d_vpr_h("%s: device regions not available\n", __func__);
return 0;
}
/* allocate device region table */
dev_set->device_region_tbl = devm_kzalloc(&core->pdev->dev,
sizeof(*dev_set->device_region_tbl) * dev_reg_count, GFP_KERNEL);
if (!dev_set->device_region_tbl) {
d_vpr_e("%s: failed to alloc memory for device region table\n", __func__);
return -ENOMEM;
}
dev_set->count = dev_reg_count;
/* populate device region fields from platform data */
for (cnt = 0; cnt < dev_set->count; cnt++) {
dev_set->device_region_tbl[cnt].name = dev_reg_tbl[cnt].name;
dev_set->device_region_tbl[cnt].phy_addr = dev_reg_tbl[cnt].phy_addr;
dev_set->device_region_tbl[cnt].size = dev_reg_tbl[cnt].size;
dev_set->device_region_tbl[cnt].dev_addr = dev_reg_tbl[cnt].dev_addr;
dev_set->device_region_tbl[cnt].region = dev_reg_tbl[cnt].region;
}
/* print device region fields */
venus_hfi_for_each_device_region(core, dev_reg_info) {
d_vpr_h("%s: name %s phy_addr %#x size %#x dev_addr %#x dev_region %d\n",
__func__, dev_reg_info->name, dev_reg_info->phy_addr, dev_reg_info->size,
dev_reg_info->dev_addr, dev_reg_info->region);
}
return rc;
}
#ifdef CONFIG_MSM_MMRM
static int __register_mmrm(struct msm_vidc_core *core)
{
int rc = 0;
struct clock_info *cl;
if (!core || !core->platform) {
d_vpr_e("%s: invalid params\n", __func__);
return -EINVAL;
}
/* skip if platform does not support mmrm */
if (!is_mmrm_supported(core)) {
d_vpr_h("%s: MMRM not supported\n", __func__);
return 0;
}
/* get mmrm handle for each clock sources */
venus_hfi_for_each_clock(core, cl) {
struct mmrm_client_desc desc;
char *name = (char *)desc.client_info.desc.name;
// TODO: set notifier data vals
struct mmrm_client_notifier_data notifier_data = {
MMRM_CLIENT_RESOURCE_VALUE_CHANGE,
{{0, 0}},
NULL};
// TODO: add callback fn
desc.notifier_callback_fn = NULL;
if (!cl->has_scaling)
continue;
if (IS_ERR_OR_NULL(cl->clk)) {
d_vpr_e("%s: Invalid clock: %s\n", __func__, cl->name);
return PTR_ERR(cl->clk) ? PTR_ERR(cl->clk) : -EINVAL;
}
desc.client_type = MMRM_CLIENT_CLOCK;
desc.client_info.desc.client_domain = MMRM_CLIENT_DOMAIN_VIDEO;
desc.client_info.desc.client_id = cl->clk_id;
strscpy(name, cl->name, sizeof(desc.client_info.desc.name));
desc.client_info.desc.clk = cl->clk;
desc.priority = MMRM_CLIENT_PRIOR_LOW;
desc.pvt_data = notifier_data.pvt_data;
d_vpr_h("%s: domain(%d) cid(%d) name(%s) clk(%pK)\n",
__func__,
desc.client_info.desc.client_domain,
desc.client_info.desc.client_id,
desc.client_info.desc.name,
desc.client_info.desc.clk);
d_vpr_h("%s: type(%d) pri(%d) pvt(%pK) notifier(%pK)\n",
__func__,
desc.client_type,
desc.priority,
desc.pvt_data,
desc.notifier_callback_fn);
cl->mmrm_client = devm_mmrm_get(&core->pdev->dev, &desc);
if (!cl->mmrm_client) {
d_vpr_e("%s: Failed to register clk(%s): %d\n",
__func__, cl->name, rc);
return -EINVAL;
}
}
return rc;
}
#else
static int __register_mmrm(struct msm_vidc_core *core)
{
return 0;
}
#endif
static int __acquire_regulator(struct msm_vidc_core *core,
struct regulator_info *rinfo)
{
int rc = 0;
if (!core || !rinfo) {
d_vpr_e("%s: invalid params\n", __func__);
return -EINVAL;
}
if (rinfo->hw_power_collapse) {
if (!rinfo->regulator) {
d_vpr_e("%s: invalid regulator\n", __func__);
rc = -EINVAL;
goto exit;
}
if (regulator_get_mode(rinfo->regulator) ==
REGULATOR_MODE_NORMAL) {
/* clear handoff from core sub_state */
msm_vidc_change_core_sub_state(core,
CORE_SUBSTATE_GDSC_HANDOFF, 0, __func__);
d_vpr_h("Skip acquire regulator %s\n", rinfo->name);
goto exit;
}
rc = regulator_set_mode(rinfo->regulator,
REGULATOR_MODE_NORMAL);
if (rc) {
/*
* This is somewhat fatal, but nothing we can do
* about it. We can't disable the regulator w/o
* getting it back under s/w control
*/
d_vpr_e("Failed to acquire regulator control: %s\n",
rinfo->name);
goto exit;
} else {
/* reset handoff from core sub_state */
msm_vidc_change_core_sub_state(core,
CORE_SUBSTATE_GDSC_HANDOFF, 0, __func__);
d_vpr_h("Acquired regulator control from HW: %s\n",
rinfo->name);
}
if (!regulator_is_enabled(rinfo->regulator)) {
d_vpr_e("%s: Regulator is not enabled %s\n",
__func__, rinfo->name);
__fatal_error(true);
}
}
exit:
return rc;
}
static int __acquire_regulators(struct msm_vidc_core *core)
{
int rc = 0;
struct regulator_info *rinfo;
venus_hfi_for_each_regulator(core, rinfo)
__acquire_regulator(core, rinfo);
return rc;
}
static int __hand_off_regulator(struct msm_vidc_core *core,
struct regulator_info *rinfo)
{
int rc = 0;
if (rinfo->hw_power_collapse) {
if (!rinfo->regulator) {
d_vpr_e("%s: invalid regulator\n", __func__);
return -EINVAL;
}
rc = regulator_set_mode(rinfo->regulator,
REGULATOR_MODE_FAST);
if (rc) {
d_vpr_e("Failed to hand off regulator control: %s\n",
rinfo->name);
return rc;
} else {
/* set handoff done in core sub_state */
msm_vidc_change_core_sub_state(core,
0, CORE_SUBSTATE_GDSC_HANDOFF, __func__);
d_vpr_h("Hand off regulator control to HW: %s\n",
rinfo->name);
}
if (!regulator_is_enabled(rinfo->regulator)) {
d_vpr_e("%s: Regulator is not enabled %s\n",
__func__, rinfo->name);
__fatal_error(true);
}
}
return rc;
}
static int __hand_off_regulators(struct msm_vidc_core *core)
{
struct regulator_info *rinfo;
int rc = 0, c = 0;
venus_hfi_for_each_regulator(core, rinfo) {
rc = __hand_off_regulator(core, rinfo);
/*
* If one regulator hand off failed, driver should take
* the control for other regulators back.
*/
if (rc)
goto err_reg_handoff_failed;
c++;
}
return rc;
err_reg_handoff_failed:
venus_hfi_for_each_regulator_reverse_continue(core, rinfo, c)
__acquire_regulator(core, rinfo);
return rc;
}
static int __disable_regulator(struct msm_vidc_core *core, const char *reg_name)
{
int rc = 0;
struct regulator_info *rinfo;
bool found;
if (!core || !reg_name) {
d_vpr_e("%s: invalid params\n", __func__);
return -EINVAL;
}
found = false;
venus_hfi_for_each_regulator(core, rinfo) {
if (!rinfo->regulator) {
d_vpr_e("%s: invalid regulator %s\n",
__func__, rinfo->name);
return -EINVAL;
}
if (strcmp(rinfo->name, reg_name))
continue;
found = true;
rc = __acquire_regulator(core, rinfo);
if (rc) {
d_vpr_e("%s: failed to acquire %s, rc = %d\n",
__func__, rinfo->name, rc);
/* Bring attention to this issue */
WARN_ON(true);
return rc;
}
/* reset handoff done from core sub_state */
msm_vidc_change_core_sub_state(core, CORE_SUBSTATE_GDSC_HANDOFF, 0, __func__);
rc = regulator_disable(rinfo->regulator);
if (rc) {
d_vpr_e("%s: failed to disable %s, rc = %d\n",
__func__, rinfo->name, rc);
return rc;
}
d_vpr_h("%s: disabled regulator %s\n", __func__, rinfo->name);
break;
}
if (!found) {
d_vpr_e("%s: regulator %s not found\n", __func__, reg_name);
return -EINVAL;
}
return rc;
}
static int __enable_regulator(struct msm_vidc_core *core, const char *reg_name)
{
int rc = 0;
struct regulator_info *rinfo;
bool found;
if (!core || !reg_name) {
d_vpr_e("%s: invalid params\n", __func__);
return -EINVAL;
}
found = false;
venus_hfi_for_each_regulator(core, rinfo) {
if (!rinfo->regulator) {
d_vpr_e("%s: invalid regulator %s\n",
__func__, rinfo->name);
return -EINVAL;
}
if (strcmp(rinfo->name, reg_name))
continue;
found = true;
rc = regulator_enable(rinfo->regulator);
if (rc) {
d_vpr_e("%s: failed to enable %s, rc = %d\n",
__func__, rinfo->name, rc);
return rc;
}
if (!regulator_is_enabled(rinfo->regulator)) {
d_vpr_e("%s: regulator %s not enabled\n",
__func__, rinfo->name);
regulator_disable(rinfo->regulator);
return -EINVAL;
}
d_vpr_h("%s: enabled regulator %s\n", __func__, rinfo->name);
break;
}
if (!found) {
d_vpr_e("%s: regulator %s not found\n", __func__, reg_name);
return -EINVAL;
}
return rc;
}
static int __disable_subcaches(struct msm_vidc_core *core)
{
struct subcache_info *sinfo;
int rc = 0;
if (msm_vidc_syscache_disable || !is_sys_cache_present(core))
return 0;
/* De-activate subcaches */
venus_hfi_for_each_subcache_reverse(core, sinfo) {
if (!sinfo->isactive)
continue;
d_vpr_h("%s: De-activate subcache %s\n", __func__, sinfo->name);
rc = llcc_slice_deactivate(sinfo->subcache);
if (rc) {
d_vpr_e("Failed to de-activate %s: %d\n",
sinfo->name, rc);
}
sinfo->isactive = false;
}
return 0;
}
static int __enable_subcaches(struct msm_vidc_core *core)
{
int rc = 0;
u32 c = 0;
struct subcache_info *sinfo;
if (msm_vidc_syscache_disable || !is_sys_cache_present(core))
return 0;
/* Activate subcaches */
venus_hfi_for_each_subcache(core, sinfo) {
rc = llcc_slice_activate(sinfo->subcache);
if (rc) {
d_vpr_e("Failed to activate %s: %d\n", sinfo->name, rc);
__fatal_error(true);
goto err_activate_fail;
}
sinfo->isactive = true;
d_vpr_h("Activated subcache %s\n", sinfo->name);
c++;
}
d_vpr_h("Activated %d Subcaches to Venus\n", c);
return 0;
err_activate_fail:
__disable_subcaches(core);
return rc;
}
static int llcc_enable(struct msm_vidc_core *core, bool enable)
{
int ret;
if (enable)
ret = __enable_subcaches(core);
else
ret = __disable_subcaches(core);
return ret;
}
static int __vote_bandwidth(struct bus_info *bus, unsigned long bw_kbps)
{
int rc = 0;
if (!bus->icc) {
d_vpr_e("%s: invalid bus\n", __func__);
return -EINVAL;
}
d_vpr_p("Voting bus %s to ab %lu kBps\n", bus->name, bw_kbps);
rc = icc_set_bw(bus->icc, bw_kbps, 0);
if (rc)
d_vpr_e("Failed voting bus %s to ab %lu, rc=%d\n",
bus->name, bw_kbps, rc);
return rc;
}
static int __unvote_buses(struct msm_vidc_core *core)
{
int rc = 0;
struct bus_info *bus = NULL;
if (!core) {
d_vpr_e("%s: invalid params\n", __func__);
return -EINVAL;
}
core->power.bw_ddr = 0;
core->power.bw_llcc = 0;
venus_hfi_for_each_bus(core, bus) {
rc = __vote_bandwidth(bus, 0);
if (rc)
goto err_unknown_device;
}
err_unknown_device:
return rc;
}
static int __vote_buses(struct msm_vidc_core *core,
unsigned long bw_ddr, unsigned long bw_llcc)
{
int rc = 0;
struct bus_info *bus = NULL;
unsigned long bw_kbps = 0, bw_prev = 0;
enum vidc_bus_type type;
if (!core) {
d_vpr_e("%s: invalid params\n", __func__);
return -EINVAL;
}
venus_hfi_for_each_bus(core, bus) {
if (bus && bus->icc) {
type = get_type_frm_name(bus->name);
if (type == DDR) {
bw_kbps = bw_ddr;
bw_prev = core->power.bw_ddr;
} else if (type == LLCC) {
bw_kbps = bw_llcc;
bw_prev = core->power.bw_llcc;
} else {
bw_kbps = bus->max_kbps;
bw_prev = core->power.bw_ddr ?
bw_kbps : 0;
}
/* ensure freq is within limits */
bw_kbps = clamp_t(typeof(bw_kbps), bw_kbps,
bus->min_kbps, bus->max_kbps);
if (TRIVIAL_BW_CHANGE(bw_kbps, bw_prev) && bw_prev) {
d_vpr_l("Skip voting bus %s to %lu kBps\n",
bus->name, bw_kbps);
continue;
}
rc = __vote_bandwidth(bus, bw_kbps);
if (type == DDR)
core->power.bw_ddr = bw_kbps;
else if (type == LLCC)
core->power.bw_llcc = bw_kbps;
} else {
d_vpr_e("No BUS to Vote\n");
}
}
return rc;
}
static int set_bw(struct msm_vidc_core *core, unsigned long bw_ddr,
unsigned long bw_llcc)
{
if (!bw_ddr && !bw_llcc)
return __unvote_buses(core);
return __vote_buses(core, bw_ddr, bw_llcc);
}
static int print_residency_stats(struct msm_vidc_core *core, struct clock_info *cl)
{
struct clock_residency *residency = NULL;
u64 total_time_us = 0;
int rc = 0;
if (!core || !cl) {
d_vpr_e("%s: invalid params\n", __func__);
return -EINVAL;
}
/* skip if scaling not supported */
if (!cl->has_scaling)
return 0;
/* grand total residency time */
list_for_each_entry(residency, &cl->residency_list, list)
total_time_us += residency->total_time_us;
/* sanity check to avoid divide by 0 */
total_time_us = (total_time_us > 0) ? total_time_us : 1;
/* print residency percent for each clock */
list_for_each_entry(residency, &cl->residency_list, list) {
d_vpr_h("%s: %s clock rate [%d] total %lluus residency %u%%\n",
__func__, cl->name, residency->rate, residency->total_time_us,
residency->total_time_us * 100 / total_time_us);
}
return rc;
}
static int reset_residency_stats(struct msm_vidc_core *core, struct clock_info *cl)
{
struct clock_residency *residency = NULL;
int rc = 0;
if (!core || !cl) {
d_vpr_e("%s: invalid params\n", __func__);
return -EINVAL;
}
/* skip if scaling not supported */
if (!cl->has_scaling)
return 0;
d_vpr_h("%s: reset %s residency stats\n", __func__, cl->name);
/* reset clock residency stats */
list_for_each_entry(residency, &cl->residency_list, list) {
residency->start_time_us = 0;
residency->total_time_us = 0;
}
return rc;
}
static struct clock_residency *get_residency_stats(struct clock_info *cl, u64 rate)
{
struct clock_residency *residency = NULL;
bool found = false;
if (!cl) {
d_vpr_e("%s: invalid params\n", __func__);
return NULL;
}
list_for_each_entry(residency, &cl->residency_list, list) {
if (residency->rate == rate) {
found = true;
break;
}
}
return found ? residency : NULL;
}
static int update_residency_stats(
struct msm_vidc_core *core, struct clock_info *cl, u64 rate)
{
struct clock_residency *cur_residency = NULL, *prev_residency = NULL;
u64 cur_time_us = 0;
int rc = 0;
if (!core || !cl) {
d_vpr_e("%s: invalid params\n", __func__);
return -EINVAL;
}
/* skip update if scaling not supported */
if (!cl->has_scaling)
return 0;
/* skip update if rate not changed */
if (rate == cl->prev)
return 0;
/* get current time in ns */
cur_time_us = ktime_get_ns() / 1000;
/* update previous rate residency end or total time */
prev_residency = get_residency_stats(cl, cl->prev);
if (prev_residency) {
if (prev_residency->start_time_us)
prev_residency->total_time_us = cur_time_us - prev_residency->start_time_us;
/* reset start time us */
prev_residency->start_time_us = 0;
}
/* clk disable case - no need to update new entry */
if (rate == 0)
return 0;
/* check if rate entry is present */
cur_residency = get_residency_stats(cl, rate);
if (!cur_residency) {
d_vpr_e("%s: entry not found. rate %llu\n", __func__, rate);
return -EINVAL;
}
/* update residency start time for current rate/freq */
cur_residency->start_time_us = cur_time_us;
return rc;
}
#ifdef CONFIG_MSM_MMRM
static int __set_clk_rate(struct msm_vidc_core *core, struct clock_info *cl,
u64 rate)
{
int rc = 0;
struct mmrm_client_data client_data;
struct mmrm_client *client;
u64 srate;
/* not registered */
if (!core || !cl || !core->platform) {
d_vpr_e("%s: invalid params\n", __func__);
return -EINVAL;
}
if (is_mmrm_supported(core) && !cl->mmrm_client) {
d_vpr_e("%s: invalid mmrm client\n", __func__);
return -EINVAL;
}
/* update clock residency stats */
update_residency_stats(core, cl, rate);
/*
* This conversion is necessary since we are scaling clock values based on
* the branch clock. However, mmrm driver expects source clock to be registered
* and used for scaling.
* TODO: Remove this scaling if using source clock instead of branch clock.
*/
srate = rate * MSM_VIDC_CLOCK_SOURCE_SCALING_RATIO;
/* bail early if requested clk rate is not changed */
if (rate == cl->prev)
return 0;
d_vpr_p("Scaling clock %s to %llu, prev %llu\n",
cl->name, srate, cl->prev * MSM_VIDC_CLOCK_SOURCE_SCALING_RATIO);
if (is_mmrm_supported(core)) {
/* set clock rate to mmrm driver */
client = cl->mmrm_client;
memset(&client_data, 0, sizeof(client_data));
client_data.num_hw_blocks = 1;
rc = mmrm_client_set_value(client, &client_data, srate);
if (rc) {
d_vpr_e("%s: Failed to set mmrm clock rate %llu %s: %d\n",
__func__, srate, cl->name, rc);
return rc;
}
} else {
/* set clock rate to clock driver */
rc = clk_set_rate(cl->clk, srate);
if (rc) {
d_vpr_e("%s: Failed to set clock rate %llu %s: %d\n",
__func__, srate, cl->name, rc);
return rc;
}
}
cl->prev = rate;
return rc;
}
#else
static int __set_clk_rate(struct msm_vidc_core *core, struct clock_info *cl,
u64 rate)
{
u64 srate;
int rc = 0;
/* not registered */
if (!core || !cl || !core->capabilities) {
d_vpr_e("%s: invalid params\n", __func__);
return -EINVAL;
}
/* update clock residency stats */
update_residency_stats(core, cl, rate);
/*
* This conversion is necessary since we are scaling clock values based on
* the branch clock. However, mmrm driver expects source clock to be registered
* and used for scaling.
* TODO: Remove this scaling if using source clock instead of branch clock.
*/
srate = rate * MSM_VIDC_CLOCK_SOURCE_SCALING_RATIO;
/* bail early if requested clk rate is not changed */
if (rate == cl->prev)
return 0;
d_vpr_p("Scaling clock %s to %llu, prev %llu\n",
cl->name, srate, cl->prev * MSM_VIDC_CLOCK_SOURCE_SCALING_RATIO);
rc = clk_set_rate(cl->clk, srate);
if (rc) {
d_vpr_e("%s: Failed to set clock rate %llu %s: %d\n",
__func__, srate, cl->name, rc);
return rc;
}
cl->prev = rate;
return rc;
}
#endif
static int __set_clocks(struct msm_vidc_core *core, u64 freq)
{
int rc = 0;
struct clock_info *cl;
venus_hfi_for_each_clock(core, cl) {
if (cl->has_scaling) {
rc = __set_clk_rate(core, cl, freq);
if (rc)
return rc;
}
}
return 0;
}
static int __disable_unprepare_clock(struct msm_vidc_core *core,
const char *clk_name)
{
int rc = 0;
struct clock_info *cl;
bool found;
if (!core || !clk_name) {
d_vpr_e("%s: invalid params\n", __func__);
return -EINVAL;
}
found = false;
venus_hfi_for_each_clock(core, cl) {
if (!cl->clk) {
d_vpr_e("%s: invalid clock %s\n", __func__, cl->name);
return -EINVAL;
}
if (strcmp(cl->name, clk_name))
continue;
found = true;
clk_disable_unprepare(cl->clk);
if (cl->has_scaling)
__set_clk_rate(core, cl, 0);
cl->prev = 0;
d_vpr_h("%s: clock %s disable unprepared\n", __func__, cl->name);
break;
}
if (!found) {
d_vpr_e("%s: clock %s not found\n", __func__, clk_name);
return -EINVAL;
}
return rc;
}
static int __prepare_enable_clock(struct msm_vidc_core *core,
const char *clk_name)
{
int rc = 0;
struct clock_info *cl;
bool found;
u64 rate = 0;
if (!core || !clk_name) {
d_vpr_e("%s: invalid params\n", __func__);
return -EINVAL;
}
found = false;
venus_hfi_for_each_clock(core, cl) {
if (!cl->clk) {
d_vpr_e("%s: invalid clock\n", __func__);
return -EINVAL;
}
if (strcmp(cl->name, clk_name))
continue;
found = true;
/*
* For the clocks we control, set the rate prior to preparing
* them. Since we don't really have a load at this point, scale
* it to the lowest frequency possible
*/
if (cl->has_scaling) {
/* reset clk residency stats */
reset_residency_stats(core, cl);
rate = clk_round_rate(cl->clk, 0);
/**
* source clock is already multipled with scaling ratio and __set_clk_rate
* attempts to multiply again. So divide scaling ratio before calling
* __set_clk_rate.
*/
rate = rate / MSM_VIDC_CLOCK_SOURCE_SCALING_RATIO;
__set_clk_rate(core, cl, rate);
}
rc = clk_prepare_enable(cl->clk);
if (rc) {
d_vpr_e("%s: failed to enable clock %s\n",
__func__, cl->name);
return rc;
}
if (!__clk_is_enabled(cl->clk)) {
d_vpr_e("%s: clock %s not enabled\n",
__func__, cl->name);
clk_disable_unprepare(cl->clk);
if (cl->has_scaling)
__set_clk_rate(core, cl, 0);
return -EINVAL;
}
d_vpr_h("%s: clock %s prepare enabled\n", __func__, cl->name);
break;
}
if (!found) {
d_vpr_e("%s: clock %s not found\n", __func__, clk_name);
return -EINVAL;
}
return rc;
}
static int __init_resources(struct msm_vidc_core *core)
{
int rc = 0;
rc = __init_register_base(core);
if (rc)
return rc;
rc = __init_irq(core);
if (rc)
return rc;
rc = __init_bus(core);
if (rc)
return rc;
rc = __init_regulators(core);
if (rc)
return rc;
rc = __init_clocks(core);
if (rc)
return rc;
rc = __init_reset_clocks(core);
if (rc)
return rc;
rc = __init_subcaches(core);
if (rc)
return rc;
rc = __init_freq_table(core);
if (rc)
return rc;
rc = __init_context_banks(core);
if (rc)
return rc;
rc = __init_device_region(core);
if (rc)
return rc;
rc = __register_mmrm(core);
if (rc)
return rc;
return rc;
}
static int __reset_control_acquire_name(struct msm_vidc_core *core,
const char *name)
{
struct reset_info *rcinfo = NULL;
int rc = 0;
bool found = false;
venus_hfi_for_each_reset_clock(core, rcinfo) {
if (strcmp(rcinfo->name, name))
continue;
/* this function is valid only for exclusive_release reset clocks*/
if (!rcinfo->exclusive_release) {
d_vpr_e("%s: unsupported reset control (%s), exclusive %d\n",
__func__, name, rcinfo->exclusive_release);
return -EINVAL;
}
found = true;
/* reset_control_acquire is exposed in kernel version 6 */
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(6, 0, 0))
rc = reset_control_acquire(rcinfo->rst);
#else
rc = -EINVAL;
#endif
if (rc)
d_vpr_e("%s: failed to acquire reset control (%s), rc = %d\n",
__func__, rcinfo->name, rc);
else
d_vpr_h("%s: acquire reset control (%s)\n",
__func__, rcinfo->name);
break;
}
if (!found) {
d_vpr_e("%s: reset control (%s) not found\n", __func__, name);
rc = -EINVAL;
}
return rc;
}
static int __reset_control_release_name(struct msm_vidc_core *core,
const char *name)
{
struct reset_info *rcinfo = NULL;
int rc = 0;
bool found = false;
venus_hfi_for_each_reset_clock(core, rcinfo) {
if (strcmp(rcinfo->name, name))
continue;
/* this function is valid only for exclusive_release reset clocks*/
if (!rcinfo->exclusive_release) {
d_vpr_e("%s: unsupported reset control (%s), exclusive %d\n",
__func__, name, rcinfo->exclusive_release);
return -EINVAL;
}
found = true;
/* reset_control_release exposed in kernel version 6 */
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(6, 0, 0))
reset_control_release(rcinfo->rst);
#else
rc = -EINVAL;
#endif
if (rc)
d_vpr_e("%s: release reset control (%s) failed\n",
__func__, rcinfo->name);
else
d_vpr_h("%s: release reset control (%s) done\n",
__func__, rcinfo->name);
break;
}
if (!found) {
d_vpr_e("%s: reset control (%s) not found\n", __func__, name);
rc = -EINVAL;
}
return rc;
}
static int __reset_control_assert_name(struct msm_vidc_core *core,
const char *name)
{
struct reset_info *rcinfo = NULL;
int rc = 0;
bool found = false;
venus_hfi_for_each_reset_clock(core, rcinfo) {
if (strcmp(rcinfo->name, name))
continue;
found = true;
rc = reset_control_assert(rcinfo->rst);
if (rc)
d_vpr_e("%s: failed to assert reset control (%s), rc = %d\n",
__func__, rcinfo->name, rc);
else
d_vpr_h("%s: assert reset control (%s)\n",
__func__, rcinfo->name);
break;
}
if (!found) {
d_vpr_e("%s: reset control (%s) not found\n", __func__, name);
rc = -EINVAL;
}
return rc;
}
static int __reset_control_deassert_name(struct msm_vidc_core *core,
const char *name)
{
struct reset_info *rcinfo = NULL;
int rc = 0;
bool found = false;
venus_hfi_for_each_reset_clock(core, rcinfo) {
if (strcmp(rcinfo->name, name))
continue;
found = true;
rc = reset_control_deassert(rcinfo->rst);
if (rc)
d_vpr_e("%s: deassert reset control for (%s) failed, rc %d\n",
__func__, rcinfo->name, rc);
else
d_vpr_h("%s: deassert reset control (%s)\n",
__func__, rcinfo->name);
break;
}
if (!found) {
d_vpr_e("%s: reset control (%s) not found\n", __func__, name);
rc = -EINVAL;
}
return rc;
}
static int __reset_control_deassert(struct msm_vidc_core *core)
{
struct reset_info *rcinfo = NULL;
int rc = 0;
venus_hfi_for_each_reset_clock(core, rcinfo) {
rc = reset_control_deassert(rcinfo->rst);
if (rc) {
d_vpr_e("%s: deassert reset control failed. rc = %d\n", __func__, rc);
continue;
}
d_vpr_h("%s: deassert reset control %s\n", __func__, rcinfo->name);
}
return rc;
}
static int __reset_control_assert(struct msm_vidc_core *core)
{
struct reset_info *rcinfo = NULL;
int rc = 0, cnt = 0;
venus_hfi_for_each_reset_clock(core, rcinfo) {
if (!rcinfo->rst) {
d_vpr_e("%s: invalid reset clock %s\n",
__func__, rcinfo->name);
return -EINVAL;
}
rc = reset_control_assert(rcinfo->rst);
if (rc) {
d_vpr_e("%s: failed to assert reset control %s, rc = %d\n",
__func__, rcinfo->name, rc);
goto deassert_reset_control;
}
cnt++;
d_vpr_h("%s: assert reset control %s, count %d\n", __func__, rcinfo->name, cnt);
usleep_range(1000, 1100);
}
return rc;
deassert_reset_control:
venus_hfi_for_each_reset_clock_reverse_continue(core, rcinfo, cnt) {
d_vpr_e("%s: deassert reset control %s\n", __func__, rcinfo->name);
reset_control_deassert(rcinfo->rst);
}
return rc;
}
static int __reset_ahb2axi_bridge(struct msm_vidc_core *core)
{
int rc = 0;
rc = __reset_control_assert(core);
if (rc)
return rc;
rc = __reset_control_deassert(core);
if (rc)
return rc;
return rc;
}
static int __print_clock_residency_stats(struct msm_vidc_core *core)
{
struct clock_info *cl;
int rc = 0;
if (!core) {
d_vpr_e("%s: invalid params\n", __func__);
return -EINVAL;
}
venus_hfi_for_each_clock(core, cl) {
/* skip if scaling not supported */
if (!cl->has_scaling)
continue;
/* print clock residency stats */
print_residency_stats(core, cl);
}
return rc;
}
static int __reset_clock_residency_stats(struct msm_vidc_core *core)
{
struct clock_info *cl;
int rc = 0;
if (!core) {
d_vpr_e("%s: invalid params\n", __func__);
return -EINVAL;
}
venus_hfi_for_each_clock(core, cl) {
/* skip if scaling not supported */
if (!cl->has_scaling)
continue;
/* reset clock residency stats */
reset_residency_stats(core, cl);
}
return rc;
}
static const struct msm_vidc_resources_ops res_ops = {
.init = __init_resources,
.reset_bridge = __reset_ahb2axi_bridge,
.reset_control_acquire = __reset_control_acquire_name,
.reset_control_release = __reset_control_release_name,
.reset_control_assert = __reset_control_assert_name,
.reset_control_deassert = __reset_control_deassert_name,
.gdsc_on = __enable_regulator,
.gdsc_off = __disable_regulator,
.gdsc_hw_ctrl = __hand_off_regulators,
.gdsc_sw_ctrl = __acquire_regulators,
.llcc = llcc_enable,
.set_bw = set_bw,
.set_clks = __set_clocks,
.clk_enable = __prepare_enable_clock,
.clk_disable = __disable_unprepare_clock,
.clk_set_flag = __clock_set_flag,
.clk_print_residency_stats = __print_clock_residency_stats,
.clk_reset_residency_stats = __reset_clock_residency_stats,
};
const struct msm_vidc_resources_ops *get_resources_ops(void)
{
return &res_ops;
}