lpass-cdc-rx-macro.c 153 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915
  1. // SPDX-License-Identifier: GPL-2.0-only
  2. /* Copyright (c) 2018-2021, The Linux Foundation. All rights reserved.
  3. * Copyright (c) 2022-2023, Qualcomm Innovation Center, Inc. All rights reserved.
  4. */
  5. #include <linux/module.h>
  6. #include <linux/init.h>
  7. #include <linux/io.h>
  8. #include <linux/platform_device.h>
  9. #include <linux/clk.h>
  10. #include <linux/pm_runtime.h>
  11. #include <sound/soc.h>
  12. #include <sound/pcm.h>
  13. #include <sound/pcm_params.h>
  14. #include <sound/soc-dapm.h>
  15. #include <sound/tlv.h>
  16. #include <soc/swr-common.h>
  17. #include <soc/swr-wcd.h>
  18. #include <asoc/msm-cdc-pinctrl.h>
  19. #include "lpass-cdc.h"
  20. #include "lpass-cdc-comp.h"
  21. #include "lpass-cdc-registers.h"
  22. #include "lpass-cdc-clk-rsc.h"
  23. #define AUTO_SUSPEND_DELAY 50 /* delay in msec */
  24. #define LPASS_CDC_RX_MACRO_RATES (SNDRV_PCM_RATE_8000 | SNDRV_PCM_RATE_16000 |\
  25. SNDRV_PCM_RATE_32000 | SNDRV_PCM_RATE_48000 |\
  26. SNDRV_PCM_RATE_96000 | SNDRV_PCM_RATE_192000 |\
  27. SNDRV_PCM_RATE_384000)
  28. /* Fractional Rates */
  29. #define LPASS_CDC_RX_MACRO_FRAC_RATES (SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_88200 |\
  30. SNDRV_PCM_RATE_176400 | SNDRV_PCM_RATE_352800)
  31. #define LPASS_CDC_RX_MACRO_FORMATS (SNDRV_PCM_FMTBIT_S16_LE |\
  32. SNDRV_PCM_FMTBIT_S24_LE |\
  33. SNDRV_PCM_FMTBIT_S24_3LE | SNDRV_PCM_FMTBIT_S32_LE)
  34. #define LPASS_CDC_RX_MACRO_ECHO_RATES (SNDRV_PCM_RATE_8000 | SNDRV_PCM_RATE_16000 |\
  35. SNDRV_PCM_RATE_48000)
  36. #define LPASS_CDC_RX_MACRO_ECHO_FORMATS (SNDRV_PCM_FMTBIT_S16_LE |\
  37. SNDRV_PCM_FMTBIT_S24_LE |\
  38. SNDRV_PCM_FMTBIT_S24_3LE)
  39. #define SAMPLING_RATE_44P1KHZ 44100
  40. #define SAMPLING_RATE_88P2KHZ 88200
  41. #define SAMPLING_RATE_176P4KHZ 176400
  42. #define SAMPLING_RATE_352P8KHZ 352800
  43. #define LPASS_CDC_RX_MACRO_MAX_OFFSET 0x1000
  44. #define LPASS_CDC_RX_MACRO_MAX_DMA_CH_PER_PORT 2
  45. #define RX_SWR_STRING_LEN 80
  46. #define LPASS_CDC_RX_MACRO_CHILD_DEVICES_MAX 3
  47. #define LPASS_CDC_RX_MACRO_INTERP_MUX_NUM_INPUTS 3
  48. #define LPASS_CDC_RX_MACRO_SIDETONE_IIR_COEFF_MAX 5
  49. #define LPASS_CDC_RX_MACRO_FIR_COEFF_MAX 100
  50. #define LPASS_CDC_RX_MACRO_FIR_COEFF_ARRAY_MAX \
  51. (LPASS_CDC_RX_MACRO_FIR_COEFF_MAX + 1)
  52. /* first value represent number of coefficients in each 100 integer group */
  53. #define LPASS_CDC_RX_MACRO_FIR_FILTER_BYTES \
  54. (sizeof(u32) * LPASS_CDC_RX_MACRO_FIR_COEFF_ARRAY_MAX)
  55. #define STRING(name) #name
  56. #define LPASS_CDC_RX_MACRO_DAPM_ENUM(name, reg, offset, text) \
  57. static SOC_ENUM_SINGLE_DECL(name##_enum, reg, offset, text); \
  58. static const struct snd_kcontrol_new name##_mux = \
  59. SOC_DAPM_ENUM(STRING(name), name##_enum)
  60. #define LPASS_CDC_RX_MACRO_DAPM_ENUM_EXT(name, reg, offset, text, getname, putname) \
  61. static SOC_ENUM_SINGLE_DECL(name##_enum, reg, offset, text); \
  62. static const struct snd_kcontrol_new name##_mux = \
  63. SOC_DAPM_ENUM_EXT(STRING(name), name##_enum, getname, putname)
  64. #define LPASS_CDC_RX_MACRO_DAPM_MUX(name, shift, kctl) \
  65. SND_SOC_DAPM_MUX(name, SND_SOC_NOPM, shift, 0, &kctl##_mux)
  66. #define LPASS_CDC_RX_MACRO_RX_PATH_OFFSET \
  67. (LPASS_CDC_RX_RX1_RX_PATH_CTL - LPASS_CDC_RX_RX0_RX_PATH_CTL)
  68. #define LPASS_CDC_RX_MACRO_COMP_OFFSET \
  69. (LPASS_CDC_RX_COMPANDER1_CTL0 - LPASS_CDC_RX_COMPANDER0_CTL0)
  70. #define MAX_IMPED_PARAMS 6
  71. #define LPASS_CDC_RX_MACRO_EC_MIX_TX0_MASK 0xf0
  72. #define LPASS_CDC_RX_MACRO_EC_MIX_TX1_MASK 0x0f
  73. #define LPASS_CDC_RX_MACRO_EC_MIX_TX2_MASK 0x0f
  74. #define LPASS_CDC_RX_MACRO_GAIN_MAX_VAL 0x28
  75. #define LPASS_CDC_RX_MACRO_GAIN_VAL_UNITY 0x0
  76. /* Define macros to increase PA Gain by half */
  77. #define LPASS_CDC_RX_MACRO_MOD_GAIN (LPASS_CDC_RX_MACRO_GAIN_VAL_UNITY + 6)
  78. #define COMP_MAX_COEFF 25
  79. struct wcd_imped_val {
  80. u32 imped_val;
  81. u8 index;
  82. };
  83. static const struct wcd_imped_val imped_index[] = {
  84. {4, 0},
  85. {5, 1},
  86. {6, 2},
  87. {7, 3},
  88. {8, 4},
  89. {9, 5},
  90. {10, 6},
  91. {11, 7},
  92. {12, 8},
  93. {13, 9},
  94. };
  95. enum {
  96. HPH_ULP,
  97. HPH_LOHIFI,
  98. HPH_MODE_MAX,
  99. };
  100. static struct comp_coeff_val
  101. comp_coeff_table [HPH_MODE_MAX][COMP_MAX_COEFF] = {
  102. {
  103. {0x40, 0x00},
  104. {0x4C, 0x00},
  105. {0x5A, 0x00},
  106. {0x6B, 0x00},
  107. {0x7F, 0x00},
  108. {0x97, 0x00},
  109. {0xB3, 0x00},
  110. {0xD5, 0x00},
  111. {0xFD, 0x00},
  112. {0x2D, 0x01},
  113. {0x66, 0x01},
  114. {0xA7, 0x01},
  115. {0xF8, 0x01},
  116. {0x57, 0x02},
  117. {0xC7, 0x02},
  118. {0x4B, 0x03},
  119. {0xE9, 0x03},
  120. {0xA3, 0x04},
  121. {0x7D, 0x05},
  122. {0x90, 0x06},
  123. {0xD1, 0x07},
  124. {0x49, 0x09},
  125. {0x00, 0x0B},
  126. {0x01, 0x0D},
  127. {0x59, 0x0F},
  128. },
  129. {
  130. {0x40, 0x00},
  131. {0x4C, 0x00},
  132. {0x5A, 0x00},
  133. {0x6B, 0x00},
  134. {0x80, 0x00},
  135. {0x98, 0x00},
  136. {0xB4, 0x00},
  137. {0xD5, 0x00},
  138. {0xFE, 0x00},
  139. {0x2E, 0x01},
  140. {0x66, 0x01},
  141. {0xA9, 0x01},
  142. {0xF8, 0x01},
  143. {0x56, 0x02},
  144. {0xC4, 0x02},
  145. {0x4F, 0x03},
  146. {0xF0, 0x03},
  147. {0xAE, 0x04},
  148. {0x8B, 0x05},
  149. {0x8E, 0x06},
  150. {0xBC, 0x07},
  151. {0x56, 0x09},
  152. {0x0F, 0x0B},
  153. {0x13, 0x0D},
  154. {0x6F, 0x0F},
  155. },
  156. };
  157. enum {
  158. RX_MODE_ULP,
  159. RX_MODE_LOHIFI,
  160. RX_MODE_EAR,
  161. RX_MODE_MAX
  162. };
  163. static struct lpass_cdc_comp_setting comp_setting_table[RX_MODE_MAX] =
  164. {
  165. {12, -60, 12},
  166. {0, -60, 12},
  167. {12, -36, 12},
  168. };
  169. struct lpass_cdc_rx_macro_reg_mask_val {
  170. u16 reg;
  171. u8 mask;
  172. u8 val;
  173. };
  174. static const struct lpass_cdc_rx_macro_reg_mask_val imped_table[][MAX_IMPED_PARAMS] = {
  175. {
  176. {LPASS_CDC_RX_RX0_RX_VOL_CTL, 0xff, 0xf2},
  177. {LPASS_CDC_RX_RX0_RX_VOL_MIX_CTL, 0xff, 0xf2},
  178. {LPASS_CDC_RX_RX0_RX_PATH_SEC1, 0x01, 0x00},
  179. {LPASS_CDC_RX_RX1_RX_VOL_CTL, 0xff, 0xf2},
  180. {LPASS_CDC_RX_RX1_RX_VOL_MIX_CTL, 0xff, 0xf2},
  181. {LPASS_CDC_RX_RX1_RX_PATH_SEC1, 0x01, 0x00},
  182. },
  183. {
  184. {LPASS_CDC_RX_RX0_RX_VOL_CTL, 0xff, 0xf4},
  185. {LPASS_CDC_RX_RX0_RX_VOL_MIX_CTL, 0xff, 0xf4},
  186. {LPASS_CDC_RX_RX0_RX_PATH_SEC1, 0x01, 0x00},
  187. {LPASS_CDC_RX_RX1_RX_VOL_CTL, 0xff, 0xf4},
  188. {LPASS_CDC_RX_RX1_RX_VOL_MIX_CTL, 0xff, 0xf4},
  189. {LPASS_CDC_RX_RX1_RX_PATH_SEC1, 0x01, 0x00},
  190. },
  191. {
  192. {LPASS_CDC_RX_RX0_RX_VOL_CTL, 0xff, 0xf7},
  193. {LPASS_CDC_RX_RX0_RX_VOL_MIX_CTL, 0xff, 0xf7},
  194. {LPASS_CDC_RX_RX0_RX_PATH_SEC1, 0x01, 0x01},
  195. {LPASS_CDC_RX_RX1_RX_VOL_CTL, 0xff, 0xf7},
  196. {LPASS_CDC_RX_RX1_RX_VOL_MIX_CTL, 0xff, 0xf7},
  197. {LPASS_CDC_RX_RX1_RX_PATH_SEC1, 0x01, 0x01},
  198. },
  199. {
  200. {LPASS_CDC_RX_RX0_RX_VOL_CTL, 0xff, 0xf9},
  201. {LPASS_CDC_RX_RX0_RX_VOL_MIX_CTL, 0xff, 0xf9},
  202. {LPASS_CDC_RX_RX0_RX_PATH_SEC1, 0x01, 0x00},
  203. {LPASS_CDC_RX_RX1_RX_VOL_CTL, 0xff, 0xf9},
  204. {LPASS_CDC_RX_RX1_RX_VOL_MIX_CTL, 0xff, 0xf9},
  205. {LPASS_CDC_RX_RX1_RX_PATH_SEC1, 0x01, 0x00},
  206. },
  207. {
  208. {LPASS_CDC_RX_RX0_RX_VOL_CTL, 0xff, 0xfa},
  209. {LPASS_CDC_RX_RX0_RX_VOL_MIX_CTL, 0xff, 0xfa},
  210. {LPASS_CDC_RX_RX0_RX_PATH_SEC1, 0x01, 0x00},
  211. {LPASS_CDC_RX_RX1_RX_VOL_CTL, 0xff, 0xfa},
  212. {LPASS_CDC_RX_RX1_RX_VOL_MIX_CTL, 0xff, 0xfa},
  213. {LPASS_CDC_RX_RX1_RX_PATH_SEC1, 0x01, 0x00},
  214. },
  215. {
  216. {LPASS_CDC_RX_RX0_RX_VOL_CTL, 0xff, 0xfb},
  217. {LPASS_CDC_RX_RX0_RX_VOL_MIX_CTL, 0xff, 0xfb},
  218. {LPASS_CDC_RX_RX0_RX_PATH_SEC1, 0x01, 0x00},
  219. {LPASS_CDC_RX_RX1_RX_VOL_CTL, 0xff, 0xfb},
  220. {LPASS_CDC_RX_RX1_RX_VOL_MIX_CTL, 0xff, 0xfb},
  221. {LPASS_CDC_RX_RX1_RX_PATH_SEC1, 0x01, 0x00},
  222. },
  223. {
  224. {LPASS_CDC_RX_RX0_RX_VOL_CTL, 0xff, 0xfc},
  225. {LPASS_CDC_RX_RX0_RX_VOL_MIX_CTL, 0xff, 0xfc},
  226. {LPASS_CDC_RX_RX0_RX_PATH_SEC1, 0x01, 0x00},
  227. {LPASS_CDC_RX_RX1_RX_VOL_CTL, 0xff, 0xfc},
  228. {LPASS_CDC_RX_RX1_RX_VOL_MIX_CTL, 0xff, 0xfc},
  229. {LPASS_CDC_RX_RX1_RX_PATH_SEC1, 0x01, 0x00},
  230. },
  231. {
  232. {LPASS_CDC_RX_RX0_RX_VOL_CTL, 0xff, 0xfd},
  233. {LPASS_CDC_RX_RX0_RX_VOL_MIX_CTL, 0xff, 0xfd},
  234. {LPASS_CDC_RX_RX0_RX_PATH_SEC1, 0x01, 0x00},
  235. {LPASS_CDC_RX_RX1_RX_VOL_CTL, 0xff, 0xfd},
  236. {LPASS_CDC_RX_RX1_RX_VOL_MIX_CTL, 0xff, 0xfd},
  237. {LPASS_CDC_RX_RX1_RX_PATH_SEC1, 0x01, 0x00},
  238. },
  239. {
  240. {LPASS_CDC_RX_RX0_RX_VOL_CTL, 0xff, 0xfd},
  241. {LPASS_CDC_RX_RX0_RX_VOL_MIX_CTL, 0xff, 0xfd},
  242. {LPASS_CDC_RX_RX0_RX_PATH_SEC1, 0x01, 0x01},
  243. {LPASS_CDC_RX_RX1_RX_VOL_CTL, 0xff, 0xfd},
  244. {LPASS_CDC_RX_RX1_RX_VOL_MIX_CTL, 0xff, 0xfd},
  245. {LPASS_CDC_RX_RX1_RX_PATH_SEC1, 0x01, 0x01},
  246. },
  247. };
  248. enum {
  249. INTERP_HPHL,
  250. INTERP_HPHR,
  251. INTERP_AUX,
  252. INTERP_MAX
  253. };
  254. enum {
  255. LPASS_CDC_RX_MACRO_RX0,
  256. LPASS_CDC_RX_MACRO_RX1,
  257. LPASS_CDC_RX_MACRO_RX2,
  258. LPASS_CDC_RX_MACRO_RX3,
  259. LPASS_CDC_RX_MACRO_RX4,
  260. LPASS_CDC_RX_MACRO_RX5,
  261. LPASS_CDC_RX_MACRO_PORTS_MAX
  262. };
  263. enum {
  264. LPASS_CDC_RX_MACRO_COMP1, /* HPH_L */
  265. LPASS_CDC_RX_MACRO_COMP2, /* HPH_R */
  266. LPASS_CDC_RX_MACRO_COMP_MAX
  267. };
  268. enum {
  269. LPASS_CDC_RX_MACRO_EC0_MUX = 0,
  270. LPASS_CDC_RX_MACRO_EC1_MUX,
  271. LPASS_CDC_RX_MACRO_EC2_MUX,
  272. LPASS_CDC_RX_MACRO_EC_MUX_MAX,
  273. };
  274. enum {
  275. INTn_1_INP_SEL_ZERO = 0,
  276. INTn_1_INP_SEL_DEC0,
  277. INTn_1_INP_SEL_DEC1,
  278. INTn_1_INP_SEL_IIR0,
  279. INTn_1_INP_SEL_IIR1,
  280. INTn_1_INP_SEL_RX0,
  281. INTn_1_INP_SEL_RX1,
  282. INTn_1_INP_SEL_RX2,
  283. INTn_1_INP_SEL_RX3,
  284. INTn_1_INP_SEL_RX4,
  285. INTn_1_INP_SEL_RX5,
  286. };
  287. enum {
  288. INTn_2_INP_SEL_ZERO = 0,
  289. INTn_2_INP_SEL_RX0,
  290. INTn_2_INP_SEL_RX1,
  291. INTn_2_INP_SEL_RX2,
  292. INTn_2_INP_SEL_RX3,
  293. INTn_2_INP_SEL_RX4,
  294. INTn_2_INP_SEL_RX5,
  295. };
  296. enum {
  297. INTERP_MAIN_PATH,
  298. INTERP_MIX_PATH,
  299. };
  300. /* Codec supports 2 IIR filters */
  301. enum {
  302. IIR0 = 0,
  303. IIR1,
  304. IIR_MAX,
  305. };
  306. /* Each IIR has 5 Filter Stages */
  307. enum {
  308. BAND1 = 0,
  309. BAND2,
  310. BAND3,
  311. BAND4,
  312. BAND5,
  313. BAND_MAX,
  314. };
  315. #define LPASS_CDC_RX_MACRO_IIR_FILTER_SIZE (sizeof(u32) * BAND_MAX)
  316. struct lpass_cdc_rx_macro_iir_filter_ctl {
  317. unsigned int iir_idx;
  318. unsigned int band_idx;
  319. struct soc_bytes_ext bytes_ext;
  320. };
  321. #define LPASS_CDC_RX_MACRO_IIR_FILTER_CTL(xname, iidx, bidx) \
  322. { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
  323. .info = lpass_cdc_rx_macro_iir_filter_info, \
  324. .get = lpass_cdc_rx_macro_iir_band_audio_mixer_get, \
  325. .put = lpass_cdc_rx_macro_iir_band_audio_mixer_put, \
  326. .private_value = (unsigned long)&(struct lpass_cdc_rx_macro_iir_filter_ctl) { \
  327. .iir_idx = iidx, \
  328. .band_idx = bidx, \
  329. .bytes_ext = {.max = LPASS_CDC_RX_MACRO_IIR_FILTER_SIZE, }, \
  330. } \
  331. }
  332. /* Codec supports 2 FIR filters Path */
  333. enum {
  334. RX0_PATH = 0,
  335. RX1_PATH,
  336. FIR_PATH_MAX,
  337. };
  338. /* Each RX Path has 2 group of coefficients */
  339. enum {
  340. GRP0 = 0,
  341. GRP1,
  342. GRP_MAX,
  343. };
  344. struct lpass_cdc_rx_macro_fir_filter_ctl {
  345. unsigned int path_idx;
  346. unsigned int grp_idx;
  347. struct soc_bytes_ext bytes_ext;
  348. };
  349. #define LPASS_CDC_RX_MACRO_FIR_FILTER_CTL(xname, pidx, gidx) \
  350. { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
  351. .info = lpass_cdc_rx_macro_fir_filter_info, \
  352. .get = lpass_cdc_rx_macro_fir_audio_mixer_get, \
  353. .put = lpass_cdc_rx_macro_fir_audio_mixer_put, \
  354. .private_value = (unsigned long)&(struct lpass_cdc_rx_macro_fir_filter_ctl) { \
  355. .path_idx = pidx, \
  356. .grp_idx = gidx, \
  357. .bytes_ext = {.max = LPASS_CDC_RX_MACRO_FIR_FILTER_BYTES, }, \
  358. } \
  359. }
  360. struct lpass_cdc_rx_macro_idle_detect_config {
  361. u8 hph_idle_thr;
  362. u8 hph_idle_detect_en;
  363. };
  364. struct interp_sample_rate {
  365. int sample_rate;
  366. int rate_val;
  367. };
  368. static struct interp_sample_rate sr_val_tbl[] = {
  369. {8000, 0x0}, {16000, 0x1}, {32000, 0x3}, {48000, 0x4}, {96000, 0x5},
  370. {192000, 0x6}, {384000, 0x7}, {44100, 0x9}, {88200, 0xA},
  371. {176400, 0xB}, {352800, 0xC},
  372. };
  373. static int lpass_cdc_rx_macro_core_vote(void *handle, bool enable);
  374. static int lpass_cdc_rx_macro_hw_params(struct snd_pcm_substream *substream,
  375. struct snd_pcm_hw_params *params,
  376. struct snd_soc_dai *dai);
  377. static int lpass_cdc_rx_macro_get_channel_map(struct snd_soc_dai *dai,
  378. unsigned int *tx_num, unsigned int *tx_slot,
  379. unsigned int *rx_num, unsigned int *rx_slot);
  380. static int lpass_cdc_rx_macro_int_dem_inp_mux_put(struct snd_kcontrol *kcontrol,
  381. struct snd_ctl_elem_value *ucontrol);
  382. static int lpass_cdc_rx_macro_mux_get(struct snd_kcontrol *kcontrol,
  383. struct snd_ctl_elem_value *ucontrol);
  384. static int lpass_cdc_rx_macro_mux_put(struct snd_kcontrol *kcontrol,
  385. struct snd_ctl_elem_value *ucontrol);
  386. static int lpass_cdc_rx_macro_enable_interp_clk(struct snd_soc_component *component,
  387. int event, int interp_idx);
  388. /* Hold instance to soundwire platform device */
  389. struct rx_swr_ctrl_data {
  390. struct platform_device *rx_swr_pdev;
  391. };
  392. struct rx_swr_ctrl_platform_data {
  393. void *handle; /* holds codec private data */
  394. int (*read)(void *handle, int reg);
  395. int (*write)(void *handle, int reg, int val);
  396. int (*bulk_write)(void *handle, u32 *reg, u32 *val, size_t len);
  397. int (*clk)(void *handle, bool enable);
  398. int (*core_vote)(void *handle, bool enable);
  399. int (*handle_irq)(void *handle,
  400. irqreturn_t (*swrm_irq_handler)(int irq,
  401. void *data),
  402. void *swrm_handle,
  403. int action);
  404. };
  405. enum {
  406. RX_MACRO_AIF_INVALID = 0,
  407. RX_MACRO_AIF1_PB,
  408. RX_MACRO_AIF2_PB,
  409. RX_MACRO_AIF3_PB,
  410. RX_MACRO_AIF4_PB,
  411. RX_MACRO_AIF_ECHO,
  412. RX_MACRO_AIF5_PB,
  413. RX_MACRO_AIF6_PB,
  414. LPASS_CDC_RX_MACRO_MAX_DAIS,
  415. };
  416. enum {
  417. RX_MACRO_AIF1_CAP = 0,
  418. RX_MACRO_AIF2_CAP,
  419. RX_MACRO_AIF3_CAP,
  420. LPASS_CDC_RX_MACRO_MAX_AIF_CAP_DAIS
  421. };
  422. /*
  423. * @dev: rx macro device pointer
  424. * @comp_enabled: compander enable mixer value set
  425. * @prim_int_users: Users of interpolator
  426. * @rx_mclk_users: RX MCLK users count
  427. * @vi_feed_value: VI sense mask
  428. * @swr_clk_lock: to lock swr master clock operations
  429. * @swr_ctrl_data: SoundWire data structure
  430. * @swr_plat_data: Soundwire platform data
  431. * @lpass_cdc_rx_macro_add_child_devices_work: work for adding child devices
  432. * @rx_swr_gpio_p: used by pinctrl API
  433. * @component: codec handle
  434. */
  435. struct lpass_cdc_rx_macro_priv {
  436. struct device *dev;
  437. int comp_enabled[LPASS_CDC_RX_MACRO_COMP_MAX];
  438. u8 is_pcm_enabled;
  439. /* Main path clock users count */
  440. int main_clk_users[INTERP_MAX];
  441. int rx_port_value[LPASS_CDC_RX_MACRO_PORTS_MAX];
  442. u16 prim_int_users[INTERP_MAX];
  443. int rx_mclk_users;
  444. int swr_clk_users;
  445. bool dapm_mclk_enable;
  446. bool reset_swr;
  447. int clsh_users;
  448. int rx_mclk_cnt;
  449. u8 fir_total_coeff_num[FIR_PATH_MAX];
  450. bool is_native_on;
  451. bool is_ear_mode_on;
  452. bool is_fir_filter_on;
  453. bool is_fir_coeff_written[FIR_PATH_MAX][GRP_MAX];
  454. bool is_fir_capable;
  455. bool dev_up;
  456. bool pre_dev_up;
  457. bool hph_pwr_mode;
  458. bool hph_hd2_mode;
  459. struct mutex mclk_lock;
  460. struct mutex swr_clk_lock;
  461. struct rx_swr_ctrl_data *swr_ctrl_data;
  462. struct rx_swr_ctrl_platform_data swr_plat_data;
  463. struct work_struct lpass_cdc_rx_macro_add_child_devices_work;
  464. struct device_node *rx_swr_gpio_p;
  465. struct snd_soc_component *component;
  466. unsigned long active_ch_mask[LPASS_CDC_RX_MACRO_MAX_DAIS];
  467. unsigned long active_ch_cnt[LPASS_CDC_RX_MACRO_MAX_DAIS];
  468. u16 bit_width[LPASS_CDC_RX_MACRO_MAX_DAIS];
  469. char __iomem *rx_io_base;
  470. char __iomem *rx_mclk_mode_muxsel;
  471. struct lpass_cdc_rx_macro_idle_detect_config idle_det_cfg;
  472. u8 sidetone_coeff_array[IIR_MAX][BAND_MAX]
  473. [LPASS_CDC_RX_MACRO_SIDETONE_IIR_COEFF_MAX * 4];
  474. /* NOT designed to always reflect the actual hardware value */
  475. u32 fir_coeff_array[FIR_PATH_MAX][GRP_MAX]
  476. [LPASS_CDC_RX_MACRO_FIR_COEFF_MAX];
  477. u32 num_fir_coeff[FIR_PATH_MAX][GRP_MAX];
  478. struct platform_device *pdev_child_devices
  479. [LPASS_CDC_RX_MACRO_CHILD_DEVICES_MAX];
  480. int child_count;
  481. int is_softclip_on;
  482. int is_aux_hpf_on;
  483. int softclip_clk_users;
  484. u16 clk_id;
  485. u16 default_clk_id;
  486. struct clk *hifi_fir_clk;
  487. int8_t rx0_gain_val;
  488. int8_t rx1_gain_val;
  489. int pcm_select_users;
  490. };
  491. static struct snd_soc_dai_driver lpass_cdc_rx_macro_dai[];
  492. static const DECLARE_TLV_DB_SCALE(digital_gain, 0, 1, 0);
  493. static const char * const rx_int_mix_mux_text[] = {
  494. "ZERO", "RX0", "RX1", "RX2", "RX3", "RX4", "RX5"
  495. };
  496. static const char * const rx_prim_mix_text[] = {
  497. "ZERO", "DEC0", "DEC1", "IIR0", "IIR1", "RX0", "RX1", "RX2",
  498. "RX3", "RX4", "RX5"
  499. };
  500. static const char * const rx_sidetone_mix_text[] = {
  501. "ZERO", "SRC0", "SRC1", "SRC_SUM"
  502. };
  503. static const char * const iir_inp_mux_text[] = {
  504. "ZERO", "DEC0", "DEC1", "DEC2", "DEC3",
  505. "RX0", "RX1", "RX2", "RX3", "RX4", "RX5"
  506. };
  507. static const char * const rx_int_dem_inp_mux_text[] = {
  508. "NORMAL_DSM_OUT", "CLSH_DSM_OUT",
  509. };
  510. static const char * const rx_int0_1_interp_mux_text[] = {
  511. "ZERO", "RX INT0_1 MIX1",
  512. };
  513. static const char * const rx_int1_1_interp_mux_text[] = {
  514. "ZERO", "RX INT1_1 MIX1",
  515. };
  516. static const char * const rx_int2_1_interp_mux_text[] = {
  517. "ZERO", "RX INT2_1 MIX1",
  518. };
  519. static const char * const rx_int0_2_interp_mux_text[] = {
  520. "ZERO", "RX INT0_2 MUX",
  521. };
  522. static const char * const rx_int1_2_interp_mux_text[] = {
  523. "ZERO", "RX INT1_2 MUX",
  524. };
  525. static const char * const rx_int2_2_interp_mux_text[] = {
  526. "ZERO", "RX INT2_2 MUX",
  527. };
  528. static const char *const lpass_cdc_rx_macro_mux_text[] = {
  529. "ZERO", "AIF1_PB", "AIF2_PB", "AIF3_PB", "AIF4_PB"
  530. };
  531. static const char *const lpass_cdc_rx_macro_ear_mode_text[] = {"OFF", "ON"};
  532. static const struct soc_enum lpass_cdc_rx_macro_ear_mode_enum =
  533. SOC_ENUM_SINGLE_EXT(2, lpass_cdc_rx_macro_ear_mode_text);
  534. static const char *const lpass_cdc_rx_macro_hph_hd2_mode_text[] = {"OFF", "ON"};
  535. static const struct soc_enum lpass_cdc_rx_macro_hph_hd2_mode_enum =
  536. SOC_ENUM_SINGLE_EXT(2, lpass_cdc_rx_macro_hph_hd2_mode_text);
  537. static const char *const lpass_cdc_rx_macro_hph_pwr_mode_text[] = {"ULP", "LOHIFI"};
  538. static const struct soc_enum lpass_cdc_rx_macro_hph_pwr_mode_enum =
  539. SOC_ENUM_SINGLE_EXT(2, lpass_cdc_rx_macro_hph_pwr_mode_text);
  540. static const char * const lpass_cdc_rx_macro_vbat_bcl_gsm_mode_text[] = {"OFF", "ON"};
  541. static const struct soc_enum lpass_cdc_rx_macro_vbat_bcl_gsm_mode_enum =
  542. SOC_ENUM_SINGLE_EXT(2, lpass_cdc_rx_macro_vbat_bcl_gsm_mode_text);
  543. static const char *const lpass_cdc_rx_macro_fir_filter_text[] = {"OFF", "ON"};
  544. static const struct soc_enum lpass_cdc_rx_macro_fir_filter_enum =
  545. SOC_ENUM_SINGLE_EXT(2, lpass_cdc_rx_macro_fir_filter_text);
  546. static const struct snd_kcontrol_new rx_int2_1_vbat_mix_switch[] = {
  547. SOC_DAPM_SINGLE("RX AUX VBAT Enable", SND_SOC_NOPM, 0, 1, 0)
  548. };
  549. static const char * const hph_idle_detect_text[] = {"OFF", "ON"};
  550. static SOC_ENUM_SINGLE_EXT_DECL(hph_idle_detect_enum, hph_idle_detect_text);
  551. LPASS_CDC_RX_MACRO_DAPM_ENUM(rx_int0_2, LPASS_CDC_RX_INP_MUX_RX_INT0_CFG1, 0,
  552. rx_int_mix_mux_text);
  553. LPASS_CDC_RX_MACRO_DAPM_ENUM(rx_int1_2, LPASS_CDC_RX_INP_MUX_RX_INT1_CFG1, 0,
  554. rx_int_mix_mux_text);
  555. LPASS_CDC_RX_MACRO_DAPM_ENUM(rx_int2_2, LPASS_CDC_RX_INP_MUX_RX_INT2_CFG1, 0,
  556. rx_int_mix_mux_text);
  557. LPASS_CDC_RX_MACRO_DAPM_ENUM(rx_int0_1_mix_inp0, LPASS_CDC_RX_INP_MUX_RX_INT0_CFG0, 0,
  558. rx_prim_mix_text);
  559. LPASS_CDC_RX_MACRO_DAPM_ENUM(rx_int0_1_mix_inp1, LPASS_CDC_RX_INP_MUX_RX_INT0_CFG0, 4,
  560. rx_prim_mix_text);
  561. LPASS_CDC_RX_MACRO_DAPM_ENUM(rx_int0_1_mix_inp2, LPASS_CDC_RX_INP_MUX_RX_INT0_CFG1, 4,
  562. rx_prim_mix_text);
  563. LPASS_CDC_RX_MACRO_DAPM_ENUM(rx_int1_1_mix_inp0, LPASS_CDC_RX_INP_MUX_RX_INT1_CFG0, 0,
  564. rx_prim_mix_text);
  565. LPASS_CDC_RX_MACRO_DAPM_ENUM(rx_int1_1_mix_inp1, LPASS_CDC_RX_INP_MUX_RX_INT1_CFG0, 4,
  566. rx_prim_mix_text);
  567. LPASS_CDC_RX_MACRO_DAPM_ENUM(rx_int1_1_mix_inp2, LPASS_CDC_RX_INP_MUX_RX_INT1_CFG1, 4,
  568. rx_prim_mix_text);
  569. LPASS_CDC_RX_MACRO_DAPM_ENUM(rx_int2_1_mix_inp0, LPASS_CDC_RX_INP_MUX_RX_INT2_CFG0, 0,
  570. rx_prim_mix_text);
  571. LPASS_CDC_RX_MACRO_DAPM_ENUM(rx_int2_1_mix_inp1, LPASS_CDC_RX_INP_MUX_RX_INT2_CFG0, 4,
  572. rx_prim_mix_text);
  573. LPASS_CDC_RX_MACRO_DAPM_ENUM(rx_int2_1_mix_inp2, LPASS_CDC_RX_INP_MUX_RX_INT2_CFG1, 4,
  574. rx_prim_mix_text);
  575. LPASS_CDC_RX_MACRO_DAPM_ENUM(rx_int0_mix2_inp, LPASS_CDC_RX_INP_MUX_SIDETONE_SRC_CFG0, 2,
  576. rx_sidetone_mix_text);
  577. LPASS_CDC_RX_MACRO_DAPM_ENUM(rx_int1_mix2_inp, LPASS_CDC_RX_INP_MUX_SIDETONE_SRC_CFG0, 4,
  578. rx_sidetone_mix_text);
  579. LPASS_CDC_RX_MACRO_DAPM_ENUM(rx_int2_mix2_inp, LPASS_CDC_RX_INP_MUX_SIDETONE_SRC_CFG0, 6,
  580. rx_sidetone_mix_text);
  581. LPASS_CDC_RX_MACRO_DAPM_ENUM(iir0_inp0, LPASS_CDC_RX_IIR_INP_MUX_IIR0_MIX_CFG0, 0,
  582. iir_inp_mux_text);
  583. LPASS_CDC_RX_MACRO_DAPM_ENUM(iir0_inp1, LPASS_CDC_RX_IIR_INP_MUX_IIR0_MIX_CFG1, 0,
  584. iir_inp_mux_text);
  585. LPASS_CDC_RX_MACRO_DAPM_ENUM(iir0_inp2, LPASS_CDC_RX_IIR_INP_MUX_IIR0_MIX_CFG2, 0,
  586. iir_inp_mux_text);
  587. LPASS_CDC_RX_MACRO_DAPM_ENUM(iir0_inp3, LPASS_CDC_RX_IIR_INP_MUX_IIR0_MIX_CFG3, 0,
  588. iir_inp_mux_text);
  589. LPASS_CDC_RX_MACRO_DAPM_ENUM(iir1_inp0, LPASS_CDC_RX_IIR_INP_MUX_IIR1_MIX_CFG0, 0,
  590. iir_inp_mux_text);
  591. LPASS_CDC_RX_MACRO_DAPM_ENUM(iir1_inp1, LPASS_CDC_RX_IIR_INP_MUX_IIR1_MIX_CFG1, 0,
  592. iir_inp_mux_text);
  593. LPASS_CDC_RX_MACRO_DAPM_ENUM(iir1_inp2, LPASS_CDC_RX_IIR_INP_MUX_IIR1_MIX_CFG2, 0,
  594. iir_inp_mux_text);
  595. LPASS_CDC_RX_MACRO_DAPM_ENUM(iir1_inp3, LPASS_CDC_RX_IIR_INP_MUX_IIR1_MIX_CFG3, 0,
  596. iir_inp_mux_text);
  597. LPASS_CDC_RX_MACRO_DAPM_ENUM(rx_int0_1_interp, SND_SOC_NOPM, 0,
  598. rx_int0_1_interp_mux_text);
  599. LPASS_CDC_RX_MACRO_DAPM_ENUM(rx_int1_1_interp, SND_SOC_NOPM, 0,
  600. rx_int1_1_interp_mux_text);
  601. LPASS_CDC_RX_MACRO_DAPM_ENUM(rx_int2_1_interp, SND_SOC_NOPM, 0,
  602. rx_int2_1_interp_mux_text);
  603. LPASS_CDC_RX_MACRO_DAPM_ENUM(rx_int0_2_interp, SND_SOC_NOPM, 0,
  604. rx_int0_2_interp_mux_text);
  605. LPASS_CDC_RX_MACRO_DAPM_ENUM(rx_int1_2_interp, SND_SOC_NOPM, 0,
  606. rx_int1_2_interp_mux_text);
  607. LPASS_CDC_RX_MACRO_DAPM_ENUM(rx_int2_2_interp, SND_SOC_NOPM, 0,
  608. rx_int2_2_interp_mux_text);
  609. LPASS_CDC_RX_MACRO_DAPM_ENUM_EXT(rx_int0_dem_inp, LPASS_CDC_RX_RX0_RX_PATH_CFG1, 0,
  610. rx_int_dem_inp_mux_text, snd_soc_dapm_get_enum_double,
  611. lpass_cdc_rx_macro_int_dem_inp_mux_put);
  612. LPASS_CDC_RX_MACRO_DAPM_ENUM_EXT(rx_int1_dem_inp, LPASS_CDC_RX_RX1_RX_PATH_CFG1, 0,
  613. rx_int_dem_inp_mux_text, snd_soc_dapm_get_enum_double,
  614. lpass_cdc_rx_macro_int_dem_inp_mux_put);
  615. LPASS_CDC_RX_MACRO_DAPM_ENUM_EXT(lpass_cdc_rx_macro_rx0, SND_SOC_NOPM, 0, lpass_cdc_rx_macro_mux_text,
  616. lpass_cdc_rx_macro_mux_get, lpass_cdc_rx_macro_mux_put);
  617. LPASS_CDC_RX_MACRO_DAPM_ENUM_EXT(lpass_cdc_rx_macro_rx1, SND_SOC_NOPM, 0, lpass_cdc_rx_macro_mux_text,
  618. lpass_cdc_rx_macro_mux_get, lpass_cdc_rx_macro_mux_put);
  619. LPASS_CDC_RX_MACRO_DAPM_ENUM_EXT(lpass_cdc_rx_macro_rx2, SND_SOC_NOPM, 0, lpass_cdc_rx_macro_mux_text,
  620. lpass_cdc_rx_macro_mux_get, lpass_cdc_rx_macro_mux_put);
  621. LPASS_CDC_RX_MACRO_DAPM_ENUM_EXT(lpass_cdc_rx_macro_rx3, SND_SOC_NOPM, 0, lpass_cdc_rx_macro_mux_text,
  622. lpass_cdc_rx_macro_mux_get, lpass_cdc_rx_macro_mux_put);
  623. LPASS_CDC_RX_MACRO_DAPM_ENUM_EXT(lpass_cdc_rx_macro_rx4, SND_SOC_NOPM, 0, lpass_cdc_rx_macro_mux_text,
  624. lpass_cdc_rx_macro_mux_get, lpass_cdc_rx_macro_mux_put);
  625. LPASS_CDC_RX_MACRO_DAPM_ENUM_EXT(lpass_cdc_rx_macro_rx5, SND_SOC_NOPM, 0, lpass_cdc_rx_macro_mux_text,
  626. lpass_cdc_rx_macro_mux_get, lpass_cdc_rx_macro_mux_put);
  627. static const char * const rx_echo_mux_text[] = {
  628. "ZERO", "RX_MIX0", "RX_MIX1", "RX_MIX2"
  629. };
  630. static const struct soc_enum rx_mix_tx2_mux_enum =
  631. SOC_ENUM_SINGLE(LPASS_CDC_RX_INP_MUX_RX_MIX_CFG5, 0, 4,
  632. rx_echo_mux_text);
  633. static const struct snd_kcontrol_new rx_mix_tx2_mux =
  634. SOC_DAPM_ENUM("RX MIX TX2_MUX Mux", rx_mix_tx2_mux_enum);
  635. static const struct soc_enum rx_mix_tx1_mux_enum =
  636. SOC_ENUM_SINGLE(LPASS_CDC_RX_INP_MUX_RX_MIX_CFG4, 0, 4,
  637. rx_echo_mux_text);
  638. static const struct snd_kcontrol_new rx_mix_tx1_mux =
  639. SOC_DAPM_ENUM("RX MIX TX1_MUX Mux", rx_mix_tx1_mux_enum);
  640. static const struct soc_enum rx_mix_tx0_mux_enum =
  641. SOC_ENUM_SINGLE(LPASS_CDC_RX_INP_MUX_RX_MIX_CFG4, 4, 4,
  642. rx_echo_mux_text);
  643. static const struct snd_kcontrol_new rx_mix_tx0_mux =
  644. SOC_DAPM_ENUM("RX MIX TX0_MUX Mux", rx_mix_tx0_mux_enum);
  645. static struct snd_soc_dai_ops lpass_cdc_rx_macro_dai_ops = {
  646. .hw_params = lpass_cdc_rx_macro_hw_params,
  647. .get_channel_map = lpass_cdc_rx_macro_get_channel_map,
  648. };
  649. static struct snd_soc_dai_driver lpass_cdc_rx_macro_dai[] = {
  650. {
  651. .name = "rx_macro_rx1",
  652. .id = RX_MACRO_AIF1_PB,
  653. .playback = {
  654. .stream_name = "RX_MACRO_AIF1 Playback",
  655. .rates = LPASS_CDC_RX_MACRO_RATES | LPASS_CDC_RX_MACRO_FRAC_RATES,
  656. .formats = LPASS_CDC_RX_MACRO_FORMATS,
  657. .rate_max = 384000,
  658. .rate_min = 8000,
  659. .channels_min = 1,
  660. .channels_max = 2,
  661. },
  662. .ops = &lpass_cdc_rx_macro_dai_ops,
  663. },
  664. {
  665. .name = "rx_macro_rx2",
  666. .id = RX_MACRO_AIF2_PB,
  667. .playback = {
  668. .stream_name = "RX_MACRO_AIF2 Playback",
  669. .rates = LPASS_CDC_RX_MACRO_RATES | LPASS_CDC_RX_MACRO_FRAC_RATES,
  670. .formats = LPASS_CDC_RX_MACRO_FORMATS,
  671. .rate_max = 384000,
  672. .rate_min = 8000,
  673. .channels_min = 1,
  674. .channels_max = 2,
  675. },
  676. .ops = &lpass_cdc_rx_macro_dai_ops,
  677. },
  678. {
  679. .name = "rx_macro_rx3",
  680. .id = RX_MACRO_AIF3_PB,
  681. .playback = {
  682. .stream_name = "RX_MACRO_AIF3 Playback",
  683. .rates = LPASS_CDC_RX_MACRO_RATES | LPASS_CDC_RX_MACRO_FRAC_RATES,
  684. .formats = LPASS_CDC_RX_MACRO_FORMATS,
  685. .rate_max = 384000,
  686. .rate_min = 8000,
  687. .channels_min = 1,
  688. .channels_max = 2,
  689. },
  690. .ops = &lpass_cdc_rx_macro_dai_ops,
  691. },
  692. {
  693. .name = "rx_macro_rx4",
  694. .id = RX_MACRO_AIF4_PB,
  695. .playback = {
  696. .stream_name = "RX_MACRO_AIF4 Playback",
  697. .rates = LPASS_CDC_RX_MACRO_RATES | LPASS_CDC_RX_MACRO_FRAC_RATES,
  698. .formats = LPASS_CDC_RX_MACRO_FORMATS,
  699. .rate_max = 384000,
  700. .rate_min = 8000,
  701. .channels_min = 1,
  702. .channels_max = 2,
  703. },
  704. .ops = &lpass_cdc_rx_macro_dai_ops,
  705. },
  706. {
  707. .name = "rx_macro_echo",
  708. .id = RX_MACRO_AIF_ECHO,
  709. .capture = {
  710. .stream_name = "RX_AIF_ECHO Capture",
  711. .rates = LPASS_CDC_RX_MACRO_ECHO_RATES,
  712. .formats = LPASS_CDC_RX_MACRO_ECHO_FORMATS,
  713. .rate_max = 48000,
  714. .rate_min = 8000,
  715. .channels_min = 1,
  716. .channels_max = 3,
  717. },
  718. .ops = &lpass_cdc_rx_macro_dai_ops,
  719. },
  720. {
  721. .name = "rx_macro_rx5",
  722. .id = RX_MACRO_AIF5_PB,
  723. .playback = {
  724. .stream_name = "RX_MACRO_AIF5 Playback",
  725. .rates = LPASS_CDC_RX_MACRO_RATES | LPASS_CDC_RX_MACRO_FRAC_RATES,
  726. .formats = LPASS_CDC_RX_MACRO_FORMATS,
  727. .rate_max = 384000,
  728. .rate_min = 8000,
  729. .channels_min = 1,
  730. .channels_max = 4,
  731. },
  732. .ops = &lpass_cdc_rx_macro_dai_ops,
  733. },
  734. {
  735. .name = "rx_macro_rx6",
  736. .id = RX_MACRO_AIF6_PB,
  737. .playback = {
  738. .stream_name = "RX_MACRO_AIF6 Playback",
  739. .rates = LPASS_CDC_RX_MACRO_RATES | LPASS_CDC_RX_MACRO_FRAC_RATES,
  740. .formats = LPASS_CDC_RX_MACRO_FORMATS,
  741. .rate_max = 384000,
  742. .rate_min = 8000,
  743. .channels_min = 1,
  744. .channels_max = 4,
  745. },
  746. .ops = &lpass_cdc_rx_macro_dai_ops,
  747. },
  748. };
  749. static int get_impedance_index(int imped)
  750. {
  751. int i = 0;
  752. if (imped < imped_index[i].imped_val) {
  753. pr_debug("%s, detected impedance is less than %d Ohm\n",
  754. __func__, imped_index[i].imped_val);
  755. i = 0;
  756. goto ret;
  757. }
  758. if (imped >= imped_index[ARRAY_SIZE(imped_index) - 1].imped_val) {
  759. pr_debug("%s, detected impedance is greater than %d Ohm\n",
  760. __func__,
  761. imped_index[ARRAY_SIZE(imped_index) - 1].imped_val);
  762. i = ARRAY_SIZE(imped_index) - 1;
  763. goto ret;
  764. }
  765. for (i = 0; i < ARRAY_SIZE(imped_index) - 1; i++) {
  766. if (imped >= imped_index[i].imped_val &&
  767. imped < imped_index[i + 1].imped_val)
  768. break;
  769. }
  770. ret:
  771. pr_debug("%s: selected impedance index = %d\n",
  772. __func__, imped_index[i].index);
  773. return imped_index[i].index;
  774. }
  775. /*
  776. * lpass_cdc_rx_macro_wcd_clsh_imped_config -
  777. * This function updates HPHL and HPHR gain settings
  778. * according to the impedance value.
  779. *
  780. * @component: codec pointer handle
  781. * @imped: impedance value of HPHL/R
  782. * @reset: bool variable to reset registers when teardown
  783. */
  784. static void lpass_cdc_rx_macro_wcd_clsh_imped_config(struct snd_soc_component *component,
  785. int imped, bool reset)
  786. {
  787. int i;
  788. int index = 0;
  789. int table_size;
  790. static const struct lpass_cdc_rx_macro_reg_mask_val
  791. (*imped_table_ptr)[MAX_IMPED_PARAMS];
  792. table_size = ARRAY_SIZE(imped_table);
  793. imped_table_ptr = imped_table;
  794. /* reset = 1, which means request is to reset the register values */
  795. if (reset) {
  796. for (i = 0; i < MAX_IMPED_PARAMS; i++)
  797. snd_soc_component_update_bits(component,
  798. imped_table_ptr[index][i].reg,
  799. imped_table_ptr[index][i].mask, 0);
  800. return;
  801. }
  802. index = get_impedance_index(imped);
  803. if (index >= (ARRAY_SIZE(imped_index) - 1)) {
  804. pr_debug("%s, impedance not in range = %d\n", __func__, imped);
  805. return;
  806. }
  807. if (index >= table_size) {
  808. pr_debug("%s, impedance index not in range = %d\n", __func__,
  809. index);
  810. return;
  811. }
  812. for (i = 0; i < MAX_IMPED_PARAMS; i++)
  813. snd_soc_component_update_bits(component,
  814. imped_table_ptr[index][i].reg,
  815. imped_table_ptr[index][i].mask,
  816. imped_table_ptr[index][i].val);
  817. }
  818. static bool lpass_cdc_rx_macro_get_data(struct snd_soc_component *component,
  819. struct device **rx_dev,
  820. struct lpass_cdc_rx_macro_priv **rx_priv,
  821. const char *func_name)
  822. {
  823. *rx_dev = lpass_cdc_get_device_ptr(component->dev, RX_MACRO);
  824. if (!(*rx_dev)) {
  825. dev_err_ratelimited(component->dev,
  826. "%s: null device for macro!\n", func_name);
  827. return false;
  828. }
  829. *rx_priv = dev_get_drvdata((*rx_dev));
  830. if (!(*rx_priv)) {
  831. dev_err_ratelimited(component->dev,
  832. "%s: priv is null for macro!\n", func_name);
  833. return false;
  834. }
  835. if (!(*rx_priv)->component) {
  836. dev_err_ratelimited(component->dev,
  837. "%s: rx_priv component is not initialized!\n", func_name);
  838. return false;
  839. }
  840. return true;
  841. }
  842. static int lpass_cdc_rx_macro_set_port_map(struct snd_soc_component *component,
  843. u32 usecase, u32 size, void *data)
  844. {
  845. struct device *rx_dev = NULL;
  846. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  847. struct swrm_port_config port_cfg;
  848. int ret = 0;
  849. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  850. return -EINVAL;
  851. memset(&port_cfg, 0, sizeof(port_cfg));
  852. port_cfg.uc = usecase;
  853. port_cfg.size = size;
  854. port_cfg.params = data;
  855. if (rx_priv->swr_ctrl_data)
  856. ret = swrm_wcd_notify(
  857. rx_priv->swr_ctrl_data[0].rx_swr_pdev,
  858. SWR_SET_PORT_MAP, &port_cfg);
  859. return ret;
  860. }
  861. static int lpass_cdc_rx_macro_int_dem_inp_mux_put(struct snd_kcontrol *kcontrol,
  862. struct snd_ctl_elem_value *ucontrol)
  863. {
  864. struct snd_soc_dapm_widget *widget =
  865. snd_soc_dapm_kcontrol_widget(kcontrol);
  866. struct snd_soc_component *component =
  867. snd_soc_dapm_to_component(widget->dapm);
  868. struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
  869. unsigned int val = 0;
  870. unsigned short look_ahead_dly_reg =
  871. LPASS_CDC_RX_RX0_RX_PATH_CFG0;
  872. val = ucontrol->value.enumerated.item[0];
  873. if (val >= e->items)
  874. return -EINVAL;
  875. dev_dbg(component->dev, "%s: wname: %s, val: 0x%x\n", __func__,
  876. widget->name, val);
  877. if (e->reg == LPASS_CDC_RX_RX0_RX_PATH_CFG1)
  878. look_ahead_dly_reg = LPASS_CDC_RX_RX0_RX_PATH_CFG0;
  879. else if (e->reg == LPASS_CDC_RX_RX1_RX_PATH_CFG1)
  880. look_ahead_dly_reg = LPASS_CDC_RX_RX1_RX_PATH_CFG0;
  881. /* Set Look Ahead Delay */
  882. snd_soc_component_update_bits(component, look_ahead_dly_reg,
  883. 0x08, (val ? 0x08 : 0x00));
  884. /* Set DEM INP Select */
  885. return snd_soc_dapm_put_enum_double(kcontrol, ucontrol);
  886. }
  887. static int lpass_cdc_rx_macro_set_prim_interpolator_rate(struct snd_soc_dai *dai,
  888. u8 rate_reg_val,
  889. u32 sample_rate)
  890. {
  891. u8 int_1_mix1_inp = 0;
  892. u32 j = 0, port = 0;
  893. u16 int_mux_cfg0 = 0, int_mux_cfg1 = 0;
  894. u16 int_fs_reg = 0;
  895. u8 int_mux_cfg0_val = 0, int_mux_cfg1_val = 0;
  896. u8 inp0_sel = 0, inp1_sel = 0, inp2_sel = 0;
  897. struct snd_soc_component *component = dai->component;
  898. struct device *rx_dev = NULL;
  899. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  900. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  901. return -EINVAL;
  902. for_each_set_bit(port, &rx_priv->active_ch_mask[dai->id],
  903. LPASS_CDC_RX_MACRO_PORTS_MAX) {
  904. int_1_mix1_inp = port;
  905. if ((int_1_mix1_inp < LPASS_CDC_RX_MACRO_RX0) ||
  906. (int_1_mix1_inp > LPASS_CDC_RX_MACRO_PORTS_MAX)) {
  907. pr_err_ratelimited("%s: Invalid RX port, Dai ID is %d\n",
  908. __func__, dai->id);
  909. return -EINVAL;
  910. }
  911. int_mux_cfg0 = LPASS_CDC_RX_INP_MUX_RX_INT0_CFG0;
  912. /*
  913. * Loop through all interpolator MUX inputs and find out
  914. * to which interpolator input, the rx port
  915. * is connected
  916. */
  917. for (j = 0; j < INTERP_MAX; j++) {
  918. int_mux_cfg1 = int_mux_cfg0 + 4;
  919. int_mux_cfg0_val = snd_soc_component_read(
  920. component, int_mux_cfg0);
  921. int_mux_cfg1_val = snd_soc_component_read(
  922. component, int_mux_cfg1);
  923. inp0_sel = int_mux_cfg0_val & 0x0F;
  924. inp1_sel = (int_mux_cfg0_val >> 4) & 0x0F;
  925. inp2_sel = (int_mux_cfg1_val >> 4) & 0x0F;
  926. if ((inp0_sel == int_1_mix1_inp + INTn_1_INP_SEL_RX0) ||
  927. (inp1_sel == int_1_mix1_inp + INTn_1_INP_SEL_RX0) ||
  928. (inp2_sel == int_1_mix1_inp + INTn_1_INP_SEL_RX0)) {
  929. int_fs_reg = LPASS_CDC_RX_RX0_RX_PATH_CTL +
  930. LPASS_CDC_RX_MACRO_RX_PATH_OFFSET * j;
  931. pr_debug("%s: AIF_PB DAI(%d) connected to INT%u_1\n",
  932. __func__, dai->id, j);
  933. pr_debug("%s: set INT%u_1 sample rate to %u\n",
  934. __func__, j, sample_rate);
  935. /* sample_rate is in Hz */
  936. snd_soc_component_update_bits(component,
  937. int_fs_reg,
  938. 0x0F, rate_reg_val);
  939. }
  940. int_mux_cfg0 += 8;
  941. }
  942. }
  943. return 0;
  944. }
  945. static int lpass_cdc_rx_macro_set_mix_interpolator_rate(struct snd_soc_dai *dai,
  946. u8 rate_reg_val,
  947. u32 sample_rate)
  948. {
  949. u8 int_2_inp = 0;
  950. u32 j = 0, port = 0;
  951. u16 int_mux_cfg1 = 0, int_fs_reg = 0;
  952. u8 int_mux_cfg1_val = 0;
  953. struct snd_soc_component *component = dai->component;
  954. struct device *rx_dev = NULL;
  955. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  956. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  957. return -EINVAL;
  958. for_each_set_bit(port, &rx_priv->active_ch_mask[dai->id],
  959. LPASS_CDC_RX_MACRO_PORTS_MAX) {
  960. int_2_inp = port;
  961. if ((int_2_inp < LPASS_CDC_RX_MACRO_RX0) ||
  962. (int_2_inp > LPASS_CDC_RX_MACRO_PORTS_MAX)) {
  963. pr_err_ratelimited("%s: Invalid RX port, Dai ID is %d\n",
  964. __func__, dai->id);
  965. return -EINVAL;
  966. }
  967. int_mux_cfg1 = LPASS_CDC_RX_INP_MUX_RX_INT0_CFG1;
  968. for (j = 0; j < INTERP_MAX; j++) {
  969. int_mux_cfg1_val = snd_soc_component_read(
  970. component, int_mux_cfg1) &
  971. 0x0F;
  972. if (int_mux_cfg1_val == int_2_inp +
  973. INTn_2_INP_SEL_RX0) {
  974. int_fs_reg = LPASS_CDC_RX_RX0_RX_PATH_MIX_CTL +
  975. LPASS_CDC_RX_MACRO_RX_PATH_OFFSET * j;
  976. pr_debug("%s: AIF_PB DAI(%d) connected to INT%u_2\n",
  977. __func__, dai->id, j);
  978. pr_debug("%s: set INT%u_2 sample rate to %u\n",
  979. __func__, j, sample_rate);
  980. snd_soc_component_update_bits(
  981. component, int_fs_reg,
  982. 0x0F, rate_reg_val);
  983. }
  984. int_mux_cfg1 += 8;
  985. }
  986. }
  987. return 0;
  988. }
  989. static bool lpass_cdc_rx_macro_is_fractional_sample_rate(u32 sample_rate)
  990. {
  991. switch (sample_rate) {
  992. case SAMPLING_RATE_44P1KHZ:
  993. case SAMPLING_RATE_88P2KHZ:
  994. case SAMPLING_RATE_176P4KHZ:
  995. case SAMPLING_RATE_352P8KHZ:
  996. return true;
  997. default:
  998. return false;
  999. }
  1000. return false;
  1001. }
  1002. static int lpass_cdc_rx_macro_set_interpolator_rate(struct snd_soc_dai *dai,
  1003. u32 sample_rate)
  1004. {
  1005. struct snd_soc_component *component = dai->component;
  1006. int rate_val = 0;
  1007. int i = 0, ret = 0;
  1008. struct device *rx_dev = NULL;
  1009. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  1010. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  1011. return -EINVAL;
  1012. for (i = 0; i < ARRAY_SIZE(sr_val_tbl); i++) {
  1013. if (sample_rate == sr_val_tbl[i].sample_rate) {
  1014. rate_val = sr_val_tbl[i].rate_val;
  1015. if (lpass_cdc_rx_macro_is_fractional_sample_rate(sample_rate))
  1016. rx_priv->is_native_on = true;
  1017. else
  1018. rx_priv->is_native_on = false;
  1019. break;
  1020. }
  1021. }
  1022. if ((i == ARRAY_SIZE(sr_val_tbl)) || (rate_val < 0)) {
  1023. dev_err(component->dev, "%s: Unsupported sample rate: %d\n",
  1024. __func__, sample_rate);
  1025. return -EINVAL;
  1026. }
  1027. ret = lpass_cdc_rx_macro_set_prim_interpolator_rate(dai, (u8)rate_val, sample_rate);
  1028. if (ret)
  1029. return ret;
  1030. ret = lpass_cdc_rx_macro_set_mix_interpolator_rate(dai, (u8)rate_val, sample_rate);
  1031. if (ret)
  1032. return ret;
  1033. return ret;
  1034. }
  1035. static int lpass_cdc_rx_macro_hw_params(struct snd_pcm_substream *substream,
  1036. struct snd_pcm_hw_params *params,
  1037. struct snd_soc_dai *dai)
  1038. {
  1039. struct snd_soc_component *component = dai->component;
  1040. int ret = 0;
  1041. struct device *rx_dev = NULL;
  1042. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  1043. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  1044. return -EINVAL;
  1045. dev_dbg(component->dev,
  1046. "%s: dai_name = %s DAI-ID %x rate %d num_ch %d\n", __func__,
  1047. dai->name, dai->id, params_rate(params),
  1048. params_channels(params));
  1049. switch (substream->stream) {
  1050. case SNDRV_PCM_STREAM_PLAYBACK:
  1051. ret = lpass_cdc_rx_macro_set_interpolator_rate(dai, params_rate(params));
  1052. if (ret) {
  1053. pr_err_ratelimited("%s: cannot set sample rate: %u\n",
  1054. __func__, params_rate(params));
  1055. return ret;
  1056. }
  1057. rx_priv->bit_width[dai->id] = params_width(params);
  1058. break;
  1059. case SNDRV_PCM_STREAM_CAPTURE:
  1060. default:
  1061. break;
  1062. }
  1063. return 0;
  1064. }
  1065. static int lpass_cdc_rx_macro_get_channel_map(struct snd_soc_dai *dai,
  1066. unsigned int *tx_num, unsigned int *tx_slot,
  1067. unsigned int *rx_num, unsigned int *rx_slot)
  1068. {
  1069. struct snd_soc_component *component = dai->component;
  1070. struct device *rx_dev = NULL;
  1071. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  1072. unsigned int temp = 0, ch_mask = 0;
  1073. u16 val = 0, mask = 0, cnt = 0, i = 0;
  1074. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  1075. return -EINVAL;
  1076. switch (dai->id) {
  1077. case RX_MACRO_AIF1_PB:
  1078. case RX_MACRO_AIF2_PB:
  1079. case RX_MACRO_AIF3_PB:
  1080. case RX_MACRO_AIF4_PB:
  1081. for_each_set_bit(temp, &rx_priv->active_ch_mask[dai->id],
  1082. LPASS_CDC_RX_MACRO_PORTS_MAX) {
  1083. ch_mask |= (1 << temp);
  1084. if (++i == LPASS_CDC_RX_MACRO_MAX_DMA_CH_PER_PORT)
  1085. break;
  1086. }
  1087. /*
  1088. * CDC_DMA_RX_0 port drives RX0/RX1 -- ch_mask 0x1/0x2/0x3
  1089. * CDC_DMA_RX_1 port drives RX2/RX3 -- ch_mask 0x1/0x2/0x3
  1090. * CDC_DMA_RX_2 port drives RX4 -- ch_mask 0x1
  1091. * CDC_DMA_RX_3 port drives RX5 -- ch_mask 0x1
  1092. * AIFn can pair to any CDC_DMA_RX_n port.
  1093. * In general, below convention is used::
  1094. * CDC_DMA_RX_0(AIF1)/CDC_DMA_RX_1(AIF2)/
  1095. * CDC_DMA_RX_2(AIF3)/CDC_DMA_RX_3(AIF4)
  1096. * Above is reflected in machine driver BE dailink
  1097. */
  1098. if (ch_mask & 0x0C)
  1099. ch_mask = ch_mask >> 2;
  1100. if ((ch_mask & 0x10) || (ch_mask & 0x20))
  1101. ch_mask = 0x1;
  1102. *rx_slot = ch_mask;
  1103. *rx_num = rx_priv->active_ch_cnt[dai->id];
  1104. dev_dbg(rx_priv->dev,
  1105. "%s: dai->id:%d, ch_mask:0x%x, active_ch_cnt:%d active_mask: 0x%x\n",
  1106. __func__, dai->id, *rx_slot, *rx_num, rx_priv->active_ch_mask[dai->id]);
  1107. break;
  1108. case RX_MACRO_AIF5_PB:
  1109. *rx_slot = 0x1;
  1110. *rx_num = 0x01;
  1111. dev_dbg(rx_priv->dev,
  1112. "%s: dai->id:%d, ch_mask:0x%x, active_ch_cnt:%d\n",
  1113. __func__, dai->id, *rx_slot, *rx_num);
  1114. break;
  1115. case RX_MACRO_AIF6_PB:
  1116. *rx_slot = 0x1;
  1117. *rx_num = 0x01;
  1118. dev_dbg(rx_priv->dev,
  1119. "%s: dai->id:%d, ch_mask:0x%x, active_ch_cnt:%d\n",
  1120. __func__, dai->id, *rx_slot, *rx_num);
  1121. break;
  1122. case RX_MACRO_AIF_ECHO:
  1123. val = snd_soc_component_read(component,
  1124. LPASS_CDC_RX_INP_MUX_RX_MIX_CFG4);
  1125. if (val & LPASS_CDC_RX_MACRO_EC_MIX_TX0_MASK) {
  1126. mask |= 0x1;
  1127. cnt++;
  1128. }
  1129. if (val & LPASS_CDC_RX_MACRO_EC_MIX_TX1_MASK) {
  1130. mask |= 0x2;
  1131. cnt++;
  1132. }
  1133. val = snd_soc_component_read(component,
  1134. LPASS_CDC_RX_INP_MUX_RX_MIX_CFG5);
  1135. if (val & LPASS_CDC_RX_MACRO_EC_MIX_TX2_MASK) {
  1136. mask |= 0x4;
  1137. cnt++;
  1138. }
  1139. *tx_slot = mask;
  1140. *tx_num = cnt;
  1141. break;
  1142. default:
  1143. dev_err_ratelimited(rx_dev, "%s: Invalid AIF\n", __func__);
  1144. break;
  1145. }
  1146. return 0;
  1147. }
  1148. static int lpass_cdc_rx_macro_mclk_enable(
  1149. struct lpass_cdc_rx_macro_priv *rx_priv,
  1150. bool mclk_enable, bool dapm)
  1151. {
  1152. struct regmap *regmap = dev_get_regmap(rx_priv->dev->parent, NULL);
  1153. int ret = 0;
  1154. if (regmap == NULL) {
  1155. dev_err_ratelimited(rx_priv->dev, "%s: regmap is NULL\n", __func__);
  1156. return -EINVAL;
  1157. }
  1158. dev_dbg(rx_priv->dev, "%s: mclk_enable = %u, dapm = %d clk_users= %d\n",
  1159. __func__, mclk_enable, dapm, rx_priv->rx_mclk_users);
  1160. mutex_lock(&rx_priv->mclk_lock);
  1161. if (mclk_enable) {
  1162. if (rx_priv->rx_mclk_users == 0) {
  1163. if (rx_priv->is_native_on)
  1164. rx_priv->clk_id = RX_CORE_CLK;
  1165. ret = lpass_cdc_rx_macro_core_vote(rx_priv, true);
  1166. if (ret < 0) {
  1167. dev_err_ratelimited(rx_priv->dev,
  1168. "%s: rx request core vote failed\n",
  1169. __func__);
  1170. goto exit;
  1171. }
  1172. ret = lpass_cdc_clk_rsc_request_clock(rx_priv->dev,
  1173. rx_priv->default_clk_id,
  1174. rx_priv->clk_id,
  1175. true);
  1176. lpass_cdc_rx_macro_core_vote(rx_priv, false);
  1177. if (ret < 0) {
  1178. dev_err_ratelimited(rx_priv->dev,
  1179. "%s: rx request clock enable failed\n",
  1180. __func__);
  1181. goto exit;
  1182. }
  1183. lpass_cdc_clk_rsc_fs_gen_request(rx_priv->dev,
  1184. true);
  1185. regcache_mark_dirty(regmap);
  1186. regcache_sync_region(regmap,
  1187. RX_START_OFFSET,
  1188. RX_MAX_OFFSET);
  1189. regmap_update_bits(regmap,
  1190. LPASS_CDC_RX_CLK_RST_CTRL_MCLK_CONTROL,
  1191. 0x01, 0x01);
  1192. regmap_update_bits(regmap,
  1193. LPASS_CDC_RX_CLK_RST_CTRL_MCLK_CONTROL,
  1194. 0x02, 0x02);
  1195. regmap_update_bits(regmap,
  1196. LPASS_CDC_RX_CLK_RST_CTRL_FS_CNT_CONTROL,
  1197. 0x02, 0x00);
  1198. regmap_update_bits(regmap,
  1199. LPASS_CDC_RX_CLK_RST_CTRL_FS_CNT_CONTROL,
  1200. 0x01, 0x01);
  1201. }
  1202. rx_priv->rx_mclk_users++;
  1203. } else {
  1204. if (rx_priv->rx_mclk_users <= 0) {
  1205. dev_err_ratelimited(rx_priv->dev, "%s: clock already disabled\n",
  1206. __func__);
  1207. rx_priv->rx_mclk_users = 0;
  1208. goto exit;
  1209. }
  1210. rx_priv->rx_mclk_users--;
  1211. if (rx_priv->rx_mclk_users == 0) {
  1212. regmap_update_bits(regmap,
  1213. LPASS_CDC_RX_CLK_RST_CTRL_FS_CNT_CONTROL,
  1214. 0x01, 0x00);
  1215. regmap_update_bits(regmap,
  1216. LPASS_CDC_RX_CLK_RST_CTRL_FS_CNT_CONTROL,
  1217. 0x02, 0x02);
  1218. regmap_update_bits(regmap,
  1219. LPASS_CDC_RX_CLK_RST_CTRL_MCLK_CONTROL,
  1220. 0x02, 0x00);
  1221. regmap_update_bits(regmap,
  1222. LPASS_CDC_RX_CLK_RST_CTRL_MCLK_CONTROL,
  1223. 0x01, 0x00);
  1224. lpass_cdc_clk_rsc_fs_gen_request(rx_priv->dev,
  1225. false);
  1226. ret = lpass_cdc_rx_macro_core_vote(rx_priv, true);
  1227. if (ret < 0) {
  1228. dev_err_ratelimited(rx_priv->dev,
  1229. "%s: rx request core vote failed\n",
  1230. __func__);
  1231. }
  1232. lpass_cdc_clk_rsc_request_clock(rx_priv->dev,
  1233. rx_priv->default_clk_id,
  1234. rx_priv->clk_id,
  1235. false);
  1236. if (!ret)
  1237. lpass_cdc_rx_macro_core_vote(rx_priv, false);
  1238. rx_priv->clk_id = rx_priv->default_clk_id;
  1239. }
  1240. }
  1241. exit:
  1242. mutex_unlock(&rx_priv->mclk_lock);
  1243. return ret;
  1244. }
  1245. static int lpass_cdc_rx_macro_mclk_event(struct snd_soc_dapm_widget *w,
  1246. struct snd_kcontrol *kcontrol, int event)
  1247. {
  1248. struct snd_soc_component *component =
  1249. snd_soc_dapm_to_component(w->dapm);
  1250. int ret = 0;
  1251. struct device *rx_dev = NULL;
  1252. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  1253. int mclk_freq = MCLK_FREQ;
  1254. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  1255. return -EINVAL;
  1256. dev_dbg(rx_dev, "%s: event = %d\n", __func__, event);
  1257. switch (event) {
  1258. case SND_SOC_DAPM_PRE_PMU:
  1259. if (rx_priv->is_native_on)
  1260. mclk_freq = MCLK_FREQ_NATIVE;
  1261. if (rx_priv->swr_ctrl_data)
  1262. swrm_wcd_notify(
  1263. rx_priv->swr_ctrl_data[0].rx_swr_pdev,
  1264. SWR_CLK_FREQ, &mclk_freq);
  1265. ret = lpass_cdc_rx_macro_mclk_enable(rx_priv, 1, true);
  1266. if (ret)
  1267. rx_priv->dapm_mclk_enable = false;
  1268. else
  1269. rx_priv->dapm_mclk_enable = true;
  1270. break;
  1271. case SND_SOC_DAPM_POST_PMD:
  1272. if (rx_priv->dapm_mclk_enable)
  1273. ret = lpass_cdc_rx_macro_mclk_enable(rx_priv, 0, true);
  1274. break;
  1275. default:
  1276. dev_err_ratelimited(rx_priv->dev,
  1277. "%s: invalid DAPM event %d\n", __func__, event);
  1278. ret = -EINVAL;
  1279. }
  1280. return ret;
  1281. }
  1282. static int lpass_cdc_rx_macro_event_handler(struct snd_soc_component *component,
  1283. u16 event, u32 data)
  1284. {
  1285. u16 reg = 0, reg_mix = 0, rx_idx = 0, mute = 0x0, val = 0;
  1286. struct device *rx_dev = NULL;
  1287. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  1288. int ret = 0;
  1289. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  1290. return -EINVAL;
  1291. switch (event) {
  1292. case LPASS_CDC_MACRO_EVT_RX_MUTE:
  1293. rx_idx = data >> 0x10;
  1294. mute = data & 0xffff;
  1295. val = mute ? 0x10 : 0x00;
  1296. reg = LPASS_CDC_RX_RX0_RX_PATH_CTL + (rx_idx *
  1297. LPASS_CDC_RX_MACRO_RX_PATH_OFFSET);
  1298. reg_mix = LPASS_CDC_RX_RX0_RX_PATH_MIX_CTL + (rx_idx *
  1299. LPASS_CDC_RX_MACRO_RX_PATH_OFFSET);
  1300. snd_soc_component_update_bits(component, reg,
  1301. 0x10, val);
  1302. snd_soc_component_update_bits(component, reg_mix,
  1303. 0x10, val);
  1304. break;
  1305. case LPASS_CDC_MACRO_EVT_RX_COMPANDER_SOFT_RST:
  1306. rx_idx = data >> 0x10;
  1307. if (rx_idx == INTERP_AUX)
  1308. goto done;
  1309. reg = LPASS_CDC_RX_COMPANDER0_CTL0 +
  1310. (rx_idx * LPASS_CDC_RX_MACRO_COMP_OFFSET);
  1311. snd_soc_component_write(component, reg,
  1312. snd_soc_component_read(component, reg));
  1313. break;
  1314. case LPASS_CDC_MACRO_EVT_IMPED_TRUE:
  1315. lpass_cdc_rx_macro_wcd_clsh_imped_config(component, data, true);
  1316. break;
  1317. case LPASS_CDC_MACRO_EVT_IMPED_FALSE:
  1318. lpass_cdc_rx_macro_wcd_clsh_imped_config(component, data, false);
  1319. break;
  1320. case LPASS_CDC_MACRO_EVT_SSR_DOWN:
  1321. rx_priv->pre_dev_up = false;
  1322. rx_priv->dev_up = false;
  1323. if (rx_priv->swr_ctrl_data) {
  1324. swrm_wcd_notify(
  1325. rx_priv->swr_ctrl_data[0].rx_swr_pdev,
  1326. SWR_DEVICE_SSR_DOWN, NULL);
  1327. }
  1328. if ((!pm_runtime_enabled(rx_dev) ||
  1329. !pm_runtime_suspended(rx_dev))) {
  1330. ret = lpass_cdc_runtime_suspend(rx_dev);
  1331. if (!ret) {
  1332. pm_runtime_disable(rx_dev);
  1333. pm_runtime_set_suspended(rx_dev);
  1334. pm_runtime_enable(rx_dev);
  1335. }
  1336. }
  1337. break;
  1338. case LPASS_CDC_MACRO_EVT_PRE_SSR_UP:
  1339. rx_priv->pre_dev_up = true;
  1340. ret = lpass_cdc_rx_macro_core_vote(rx_priv, true);
  1341. if (ret < 0) {
  1342. dev_err_ratelimited(rx_priv->dev,
  1343. "%s: rx request core vote failed\n",
  1344. __func__);
  1345. break;
  1346. }
  1347. /* enable&disable RX_CORE_CLK to reset GFMUX reg */
  1348. ret = lpass_cdc_clk_rsc_request_clock(rx_priv->dev,
  1349. rx_priv->default_clk_id,
  1350. RX_CORE_CLK, true);
  1351. if (ret < 0)
  1352. dev_err_ratelimited(rx_priv->dev,
  1353. "%s, failed to enable clk, ret:%d\n",
  1354. __func__, ret);
  1355. else
  1356. lpass_cdc_clk_rsc_request_clock(rx_priv->dev,
  1357. rx_priv->default_clk_id,
  1358. RX_CORE_CLK, false);
  1359. lpass_cdc_rx_macro_core_vote(rx_priv, false);
  1360. break;
  1361. case LPASS_CDC_MACRO_EVT_SSR_UP:
  1362. rx_priv->dev_up = true;
  1363. /* reset swr after ssr/pdr */
  1364. rx_priv->reset_swr = true;
  1365. if (rx_priv->swr_ctrl_data)
  1366. swrm_wcd_notify(
  1367. rx_priv->swr_ctrl_data[0].rx_swr_pdev,
  1368. SWR_DEVICE_SSR_UP, NULL);
  1369. break;
  1370. case LPASS_CDC_MACRO_EVT_CLK_RESET:
  1371. lpass_cdc_rsc_clk_reset(rx_dev, RX_CORE_CLK);
  1372. lpass_cdc_rsc_clk_reset(rx_dev, RX_TX_CORE_CLK);
  1373. break;
  1374. case LPASS_CDC_MACRO_EVT_RX_PA_GAIN_UPDATE:
  1375. rx_priv->rx0_gain_val = snd_soc_component_read(component,
  1376. LPASS_CDC_RX_RX0_RX_VOL_CTL);
  1377. rx_priv->rx1_gain_val = snd_soc_component_read(component,
  1378. LPASS_CDC_RX_RX1_RX_VOL_CTL);
  1379. if (data) {
  1380. /* Reduce gain by half only if its greater than -6DB */
  1381. if ((rx_priv->rx0_gain_val >= LPASS_CDC_RX_MACRO_GAIN_VAL_UNITY)
  1382. && (rx_priv->rx0_gain_val <= LPASS_CDC_RX_MACRO_GAIN_MAX_VAL))
  1383. snd_soc_component_update_bits(component,
  1384. LPASS_CDC_RX_RX0_RX_VOL_CTL, 0xFF,
  1385. (rx_priv->rx0_gain_val -
  1386. LPASS_CDC_RX_MACRO_MOD_GAIN));
  1387. if ((rx_priv->rx1_gain_val >= LPASS_CDC_RX_MACRO_GAIN_VAL_UNITY)
  1388. && (rx_priv->rx1_gain_val <= LPASS_CDC_RX_MACRO_GAIN_MAX_VAL))
  1389. snd_soc_component_update_bits(component,
  1390. LPASS_CDC_RX_RX1_RX_VOL_CTL, 0xFF,
  1391. (rx_priv->rx1_gain_val -
  1392. LPASS_CDC_RX_MACRO_MOD_GAIN));
  1393. }
  1394. else {
  1395. /* Reset gain value to default */
  1396. if ((rx_priv->rx0_gain_val >=
  1397. (LPASS_CDC_RX_MACRO_GAIN_VAL_UNITY - LPASS_CDC_RX_MACRO_MOD_GAIN)) &&
  1398. (rx_priv->rx0_gain_val <= (LPASS_CDC_RX_MACRO_GAIN_MAX_VAL -
  1399. LPASS_CDC_RX_MACRO_MOD_GAIN)))
  1400. snd_soc_component_update_bits(component,
  1401. LPASS_CDC_RX_RX0_RX_VOL_CTL, 0xFF,
  1402. (rx_priv->rx0_gain_val +
  1403. LPASS_CDC_RX_MACRO_MOD_GAIN));
  1404. if ((rx_priv->rx1_gain_val >=
  1405. (LPASS_CDC_RX_MACRO_GAIN_VAL_UNITY - LPASS_CDC_RX_MACRO_MOD_GAIN)) &&
  1406. (rx_priv->rx1_gain_val <= (LPASS_CDC_RX_MACRO_GAIN_MAX_VAL -
  1407. LPASS_CDC_RX_MACRO_MOD_GAIN)))
  1408. snd_soc_component_update_bits(component,
  1409. LPASS_CDC_RX_RX1_RX_VOL_CTL, 0xFF,
  1410. (rx_priv->rx1_gain_val +
  1411. LPASS_CDC_RX_MACRO_MOD_GAIN));
  1412. }
  1413. break;
  1414. case LPASS_CDC_MACRO_EVT_HPHL_HD2_ENABLE:
  1415. /* Enable hd2 config for hphl*/
  1416. snd_soc_component_update_bits(component,
  1417. LPASS_CDC_RX_RX0_RX_PATH_CFG0, 0x04, data);
  1418. break;
  1419. case LPASS_CDC_MACRO_EVT_HPHR_HD2_ENABLE:
  1420. /* Enable hd2 config for hphr*/
  1421. snd_soc_component_update_bits(component,
  1422. LPASS_CDC_RX_RX1_RX_PATH_CFG0, 0x04, data);
  1423. break;
  1424. }
  1425. done:
  1426. return ret;
  1427. }
  1428. static int lpass_cdc_rx_macro_find_playback_dai_id_for_port(int port_id,
  1429. struct lpass_cdc_rx_macro_priv *rx_priv)
  1430. {
  1431. int i = 0;
  1432. for (i = RX_MACRO_AIF1_PB; i < LPASS_CDC_RX_MACRO_MAX_DAIS; i++) {
  1433. if (test_bit(port_id, &rx_priv->active_ch_mask[i]))
  1434. return i;
  1435. }
  1436. return -EINVAL;
  1437. }
  1438. static int lpass_cdc_rx_macro_set_idle_detect_thr(struct snd_soc_component *component,
  1439. struct lpass_cdc_rx_macro_priv *rx_priv,
  1440. int interp, int path_type)
  1441. {
  1442. int port_id[4] = { 0, 0, 0, 0 };
  1443. int *port_ptr = NULL;
  1444. int num_ports = 0;
  1445. int bit_width = 0, i = 0;
  1446. int mux_reg = 0, mux_reg_val = 0;
  1447. int dai_id = 0, idle_thr = 0;
  1448. if ((interp != INTERP_HPHL) && (interp != INTERP_HPHR))
  1449. return 0;
  1450. if (!rx_priv->idle_det_cfg.hph_idle_detect_en)
  1451. return 0;
  1452. port_ptr = &port_id[0];
  1453. num_ports = 0;
  1454. /*
  1455. * Read interpolator MUX input registers and find
  1456. * which cdc_dma port is connected and store the port
  1457. * numbers in port_id array.
  1458. */
  1459. if (path_type == INTERP_MIX_PATH) {
  1460. mux_reg = LPASS_CDC_RX_INP_MUX_RX_INT0_CFG1 +
  1461. 2 * interp;
  1462. mux_reg_val = snd_soc_component_read(component, mux_reg) &
  1463. 0x0f;
  1464. if ((mux_reg_val >= INTn_2_INP_SEL_RX0) &&
  1465. (mux_reg_val <= INTn_2_INP_SEL_RX5)) {
  1466. *port_ptr++ = mux_reg_val - 1;
  1467. num_ports++;
  1468. }
  1469. }
  1470. if (path_type == INTERP_MAIN_PATH) {
  1471. mux_reg = LPASS_CDC_RX_INP_MUX_RX_INT1_CFG0 +
  1472. 2 * (interp - 1);
  1473. mux_reg_val = snd_soc_component_read(component, mux_reg) &
  1474. 0x0f;
  1475. i = LPASS_CDC_RX_MACRO_INTERP_MUX_NUM_INPUTS;
  1476. while (i) {
  1477. if ((mux_reg_val >= INTn_1_INP_SEL_RX0) &&
  1478. (mux_reg_val <= INTn_1_INP_SEL_RX5)) {
  1479. *port_ptr++ = mux_reg_val -
  1480. INTn_1_INP_SEL_RX0;
  1481. num_ports++;
  1482. }
  1483. mux_reg_val =
  1484. (snd_soc_component_read(component, mux_reg) &
  1485. 0xf0) >> 4;
  1486. mux_reg += 1;
  1487. i--;
  1488. }
  1489. }
  1490. dev_dbg(component->dev, "%s: num_ports: %d, ports[%d %d %d %d]\n",
  1491. __func__, num_ports, port_id[0], port_id[1],
  1492. port_id[2], port_id[3]);
  1493. i = 0;
  1494. while (num_ports) {
  1495. dai_id = lpass_cdc_rx_macro_find_playback_dai_id_for_port(port_id[i++],
  1496. rx_priv);
  1497. if ((dai_id >= 0) && (dai_id < LPASS_CDC_RX_MACRO_MAX_DAIS)) {
  1498. dev_dbg(component->dev, "%s: dai_id: %d bit_width: %d\n",
  1499. __func__, dai_id,
  1500. rx_priv->bit_width[dai_id]);
  1501. if (rx_priv->bit_width[dai_id] > bit_width)
  1502. bit_width = rx_priv->bit_width[dai_id];
  1503. }
  1504. num_ports--;
  1505. }
  1506. switch (bit_width) {
  1507. case 16:
  1508. idle_thr = 0xff; /* F16 */
  1509. break;
  1510. case 24:
  1511. case 32:
  1512. idle_thr = 0x03; /* F22 */
  1513. break;
  1514. default:
  1515. idle_thr = 0x00;
  1516. break;
  1517. }
  1518. dev_dbg(component->dev, "%s: (new) idle_thr: %d, (cur) idle_thr: %d\n",
  1519. __func__, idle_thr, rx_priv->idle_det_cfg.hph_idle_thr);
  1520. if ((rx_priv->idle_det_cfg.hph_idle_thr == 0) ||
  1521. (idle_thr < rx_priv->idle_det_cfg.hph_idle_thr)) {
  1522. snd_soc_component_write(component,
  1523. LPASS_CDC_RX_IDLE_DETECT_CFG3, idle_thr);
  1524. rx_priv->idle_det_cfg.hph_idle_thr = idle_thr;
  1525. }
  1526. return 0;
  1527. }
  1528. static int lpass_cdc_rx_macro_enable_mix_path(struct snd_soc_dapm_widget *w,
  1529. struct snd_kcontrol *kcontrol, int event)
  1530. {
  1531. struct snd_soc_component *component =
  1532. snd_soc_dapm_to_component(w->dapm);
  1533. u16 gain_reg = 0, mix_reg = 0;
  1534. struct device *rx_dev = NULL;
  1535. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  1536. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  1537. return -EINVAL;
  1538. if (w->shift >= INTERP_MAX) {
  1539. dev_err_ratelimited(component->dev, "%s: Invalid Interpolator value %d for name %s\n",
  1540. __func__, w->shift, w->name);
  1541. return -EINVAL;
  1542. }
  1543. gain_reg = LPASS_CDC_RX_RX0_RX_VOL_MIX_CTL +
  1544. (w->shift * LPASS_CDC_RX_MACRO_RX_PATH_OFFSET);
  1545. mix_reg = LPASS_CDC_RX_RX0_RX_PATH_MIX_CTL +
  1546. (w->shift * LPASS_CDC_RX_MACRO_RX_PATH_OFFSET);
  1547. dev_dbg(component->dev, "%s %d %s\n", __func__, event, w->name);
  1548. switch (event) {
  1549. case SND_SOC_DAPM_PRE_PMU:
  1550. lpass_cdc_rx_macro_set_idle_detect_thr(component, rx_priv, w->shift,
  1551. INTERP_MIX_PATH);
  1552. lpass_cdc_rx_macro_enable_interp_clk(component, event, w->shift);
  1553. /* Clk Enable */
  1554. snd_soc_component_update_bits(component, mix_reg, 0x20, 0x20);
  1555. break;
  1556. case SND_SOC_DAPM_POST_PMU:
  1557. snd_soc_component_write(component, gain_reg,
  1558. snd_soc_component_read(component, gain_reg));
  1559. break;
  1560. case SND_SOC_DAPM_POST_PMD:
  1561. /* Clk Disable */
  1562. snd_soc_component_update_bits(component, mix_reg, 0x20, 0x00);
  1563. lpass_cdc_rx_macro_enable_interp_clk(component, event, w->shift);
  1564. /* Reset enable and disable */
  1565. snd_soc_component_update_bits(component, mix_reg, 0x40, 0x40);
  1566. snd_soc_component_update_bits(component, mix_reg, 0x40, 0x00);
  1567. break;
  1568. }
  1569. return 0;
  1570. }
  1571. static bool lpass_cdc_rx_macro_adie_lb(struct snd_soc_component *component,
  1572. int interp_idx)
  1573. {
  1574. u16 int_mux_cfg0 = 0, int_mux_cfg1 = 0;
  1575. u8 int_mux_cfg0_val = 0, int_mux_cfg1_val = 0;
  1576. u8 int_n_inp0 = 0, int_n_inp1 = 0, int_n_inp2 = 0;
  1577. int_mux_cfg0 = LPASS_CDC_RX_INP_MUX_RX_INT0_CFG0 + interp_idx * 8;
  1578. int_mux_cfg1 = int_mux_cfg0 + 4;
  1579. int_mux_cfg0_val = snd_soc_component_read(component, int_mux_cfg0);
  1580. int_mux_cfg1_val = snd_soc_component_read(component, int_mux_cfg1);
  1581. int_n_inp0 = int_mux_cfg0_val & 0x0F;
  1582. if (int_n_inp0 == INTn_1_INP_SEL_DEC0 ||
  1583. int_n_inp0 == INTn_1_INP_SEL_DEC1 ||
  1584. int_n_inp0 == INTn_1_INP_SEL_IIR0 ||
  1585. int_n_inp0 == INTn_1_INP_SEL_IIR1)
  1586. return true;
  1587. int_n_inp1 = int_mux_cfg0_val >> 4;
  1588. if (int_n_inp1 == INTn_1_INP_SEL_DEC0 ||
  1589. int_n_inp1 == INTn_1_INP_SEL_DEC1 ||
  1590. int_n_inp1 == INTn_1_INP_SEL_IIR0 ||
  1591. int_n_inp1 == INTn_1_INP_SEL_IIR1)
  1592. return true;
  1593. int_n_inp2 = int_mux_cfg1_val >> 4;
  1594. if (int_n_inp2 == INTn_1_INP_SEL_DEC0 ||
  1595. int_n_inp2 == INTn_1_INP_SEL_DEC1 ||
  1596. int_n_inp2 == INTn_1_INP_SEL_IIR0 ||
  1597. int_n_inp2 == INTn_1_INP_SEL_IIR1)
  1598. return true;
  1599. return false;
  1600. }
  1601. static int lpass_cdc_rx_macro_enable_main_path(struct snd_soc_dapm_widget *w,
  1602. struct snd_kcontrol *kcontrol,
  1603. int event)
  1604. {
  1605. struct snd_soc_component *component =
  1606. snd_soc_dapm_to_component(w->dapm);
  1607. u16 gain_reg = 0;
  1608. u16 reg = 0;
  1609. struct device *rx_dev = NULL;
  1610. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  1611. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  1612. return -EINVAL;
  1613. dev_dbg(component->dev, "%s %d %s\n", __func__, event, w->name);
  1614. if (w->shift >= INTERP_MAX) {
  1615. dev_err_ratelimited(component->dev, "%s: Invalid Interpolator value %d for name %s\n",
  1616. __func__, w->shift, w->name);
  1617. return -EINVAL;
  1618. }
  1619. reg = LPASS_CDC_RX_RX0_RX_PATH_CTL + (w->shift *
  1620. LPASS_CDC_RX_MACRO_RX_PATH_OFFSET);
  1621. gain_reg = LPASS_CDC_RX_RX0_RX_VOL_CTL + (w->shift *
  1622. LPASS_CDC_RX_MACRO_RX_PATH_OFFSET);
  1623. switch (event) {
  1624. case SND_SOC_DAPM_PRE_PMU:
  1625. lpass_cdc_rx_macro_set_idle_detect_thr(component, rx_priv, w->shift,
  1626. INTERP_MAIN_PATH);
  1627. lpass_cdc_rx_macro_enable_interp_clk(component, event, w->shift);
  1628. if (lpass_cdc_rx_macro_adie_lb(component, w->shift))
  1629. snd_soc_component_update_bits(component,
  1630. reg, 0x20, 0x20);
  1631. break;
  1632. case SND_SOC_DAPM_POST_PMU:
  1633. snd_soc_component_write(component, gain_reg,
  1634. snd_soc_component_read(component, gain_reg));
  1635. break;
  1636. case SND_SOC_DAPM_POST_PMD:
  1637. lpass_cdc_rx_macro_enable_interp_clk(component, event, w->shift);
  1638. break;
  1639. }
  1640. return 0;
  1641. }
  1642. static void lpass_cdc_rx_macro_droop_setting(struct snd_soc_component *component,
  1643. struct lpass_cdc_rx_macro_priv *rx_priv,
  1644. int interp_n, int event)
  1645. {
  1646. u8 pcm_rate = 0, val = 0;
  1647. u16 rx0_path_ctl_reg = 0, rx_path_cfg3_reg = 0;
  1648. if (rx_priv->is_pcm_enabled)
  1649. return;
  1650. rx_path_cfg3_reg = LPASS_CDC_RX_RX0_RX_PATH_CFG3 +
  1651. (interp_n * LPASS_CDC_RX_MACRO_RX_PATH_OFFSET);
  1652. rx0_path_ctl_reg = LPASS_CDC_RX_RX0_RX_PATH_CTL +
  1653. (interp_n * LPASS_CDC_RX_MACRO_RX_PATH_OFFSET);
  1654. pcm_rate = (snd_soc_component_read(component, rx0_path_ctl_reg)
  1655. & 0x0F);
  1656. if (pcm_rate < 0x06)
  1657. val = 0x03;
  1658. else if (pcm_rate < 0x08)
  1659. val = 0x01;
  1660. else if (pcm_rate < 0x0B)
  1661. val = 0x02;
  1662. else
  1663. val = 0x00;
  1664. if (SND_SOC_DAPM_EVENT_ON(event))
  1665. snd_soc_component_update_bits(component, rx_path_cfg3_reg,
  1666. 0x03, val);
  1667. if (SND_SOC_DAPM_EVENT_OFF(event))
  1668. snd_soc_component_update_bits(component, rx_path_cfg3_reg,
  1669. 0x03, 0x03);
  1670. }
  1671. static int lpass_cdc_rx_macro_config_compander(struct snd_soc_component *component,
  1672. struct lpass_cdc_rx_macro_priv *rx_priv,
  1673. int interp_n, int event)
  1674. {
  1675. int comp = 0;
  1676. u16 comp_ctl0_reg = 0, comp_ctl8_reg = 0, rx_path_cfg0_reg = 0;
  1677. u16 comp_coeff_lsb_reg = 0, comp_coeff_msb_reg = 0;
  1678. u16 mode = rx_priv->hph_pwr_mode;
  1679. /* AUX does not have compander */
  1680. if (interp_n == INTERP_AUX)
  1681. return 0;
  1682. comp = interp_n;
  1683. if (!rx_priv->comp_enabled[comp] && rx_priv->is_pcm_enabled)
  1684. return 0;
  1685. if (rx_priv->is_ear_mode_on && interp_n == INTERP_HPHL)
  1686. mode = RX_MODE_EAR;
  1687. if (interp_n == INTERP_HPHL) {
  1688. comp_coeff_lsb_reg = LPASS_CDC_RX_TOP_HPHL_COMP_WR_LSB;
  1689. comp_coeff_msb_reg = LPASS_CDC_RX_TOP_HPHL_COMP_WR_MSB;
  1690. } else if (interp_n == INTERP_HPHR) {
  1691. comp_coeff_lsb_reg = LPASS_CDC_RX_TOP_HPHR_COMP_WR_LSB;
  1692. comp_coeff_msb_reg = LPASS_CDC_RX_TOP_HPHR_COMP_WR_MSB;
  1693. } else {
  1694. /* compander coefficients are loaded only for hph path */
  1695. return 0;
  1696. }
  1697. comp_ctl0_reg = LPASS_CDC_RX_COMPANDER0_CTL0 +
  1698. (comp * LPASS_CDC_RX_MACRO_COMP_OFFSET);
  1699. comp_ctl8_reg = LPASS_CDC_RX_COMPANDER0_CTL8 +
  1700. (comp * LPASS_CDC_RX_MACRO_COMP_OFFSET);
  1701. rx_path_cfg0_reg = LPASS_CDC_RX_RX0_RX_PATH_CFG0 +
  1702. (comp * LPASS_CDC_RX_MACRO_RX_PATH_OFFSET);
  1703. if (SND_SOC_DAPM_EVENT_ON(event)) {
  1704. lpass_cdc_load_compander_coeff(component,
  1705. comp_coeff_lsb_reg, comp_coeff_msb_reg,
  1706. comp_coeff_table[rx_priv->hph_pwr_mode],
  1707. COMP_MAX_COEFF);
  1708. lpass_cdc_update_compander_setting(component,
  1709. comp_ctl8_reg,
  1710. &comp_setting_table[mode]);
  1711. /* Enable Compander Clock */
  1712. snd_soc_component_update_bits(component, comp_ctl0_reg,
  1713. 0x01, 0x01);
  1714. snd_soc_component_update_bits(component, comp_ctl0_reg,
  1715. 0x02, 0x02);
  1716. snd_soc_component_update_bits(component, comp_ctl0_reg,
  1717. 0x02, 0x00);
  1718. snd_soc_component_update_bits(component, rx_path_cfg0_reg,
  1719. 0x02, 0x02);
  1720. }
  1721. if (SND_SOC_DAPM_EVENT_OFF(event)) {
  1722. snd_soc_component_update_bits(component, comp_ctl0_reg,
  1723. 0x04, 0x04);
  1724. snd_soc_component_update_bits(component, rx_path_cfg0_reg,
  1725. 0x02, 0x00);
  1726. snd_soc_component_update_bits(component, comp_ctl0_reg,
  1727. 0x01, 0x00);
  1728. snd_soc_component_update_bits(component, comp_ctl0_reg,
  1729. 0x04, 0x00);
  1730. }
  1731. return 0;
  1732. }
  1733. static void lpass_cdc_rx_macro_enable_softclip_clk(struct snd_soc_component *component,
  1734. struct lpass_cdc_rx_macro_priv *rx_priv,
  1735. bool enable)
  1736. {
  1737. if (enable) {
  1738. if (rx_priv->softclip_clk_users == 0)
  1739. snd_soc_component_update_bits(component,
  1740. LPASS_CDC_RX_SOFTCLIP_CRC,
  1741. 0x01, 0x01);
  1742. rx_priv->softclip_clk_users++;
  1743. } else {
  1744. rx_priv->softclip_clk_users--;
  1745. if (rx_priv->softclip_clk_users == 0)
  1746. snd_soc_component_update_bits(component,
  1747. LPASS_CDC_RX_SOFTCLIP_CRC,
  1748. 0x01, 0x00);
  1749. }
  1750. }
  1751. static int lpass_cdc_rx_macro_config_softclip(struct snd_soc_component *component,
  1752. struct lpass_cdc_rx_macro_priv *rx_priv,
  1753. int event)
  1754. {
  1755. dev_dbg(component->dev, "%s: event %d, enabled %d\n",
  1756. __func__, event, rx_priv->is_softclip_on);
  1757. if (!rx_priv->is_softclip_on)
  1758. return 0;
  1759. if (SND_SOC_DAPM_EVENT_ON(event)) {
  1760. /* Enable Softclip clock */
  1761. lpass_cdc_rx_macro_enable_softclip_clk(component, rx_priv, true);
  1762. /* Enable Softclip control */
  1763. snd_soc_component_update_bits(component,
  1764. LPASS_CDC_RX_SOFTCLIP_SOFTCLIP_CTRL, 0x01, 0x01);
  1765. }
  1766. if (SND_SOC_DAPM_EVENT_OFF(event)) {
  1767. snd_soc_component_update_bits(component,
  1768. LPASS_CDC_RX_SOFTCLIP_SOFTCLIP_CTRL, 0x01, 0x00);
  1769. lpass_cdc_rx_macro_enable_softclip_clk(component, rx_priv, false);
  1770. }
  1771. return 0;
  1772. }
  1773. static int lpass_cdc_rx_macro_config_aux_hpf(struct snd_soc_component *component,
  1774. struct lpass_cdc_rx_macro_priv *rx_priv,
  1775. int event)
  1776. {
  1777. dev_dbg(component->dev, "%s: event %d, enabled %d\n",
  1778. __func__, event, rx_priv->is_aux_hpf_on);
  1779. if (SND_SOC_DAPM_EVENT_ON(event)) {
  1780. /* Update Aux HPF control */
  1781. if (!rx_priv->is_aux_hpf_on)
  1782. snd_soc_component_update_bits(component,
  1783. LPASS_CDC_RX_RX2_RX_PATH_CFG1, 0x04, 0x00);
  1784. }
  1785. if (SND_SOC_DAPM_EVENT_OFF(event)) {
  1786. /* Reset to default (HPF=ON) */
  1787. snd_soc_component_update_bits(component,
  1788. LPASS_CDC_RX_RX2_RX_PATH_CFG1, 0x04, 0x04);
  1789. }
  1790. return 0;
  1791. }
  1792. static inline void
  1793. lpass_cdc_rx_macro_enable_clsh_block(struct lpass_cdc_rx_macro_priv *rx_priv, bool enable)
  1794. {
  1795. if ((enable && ++rx_priv->clsh_users == 1) ||
  1796. (!enable && --rx_priv->clsh_users == 0))
  1797. snd_soc_component_update_bits(rx_priv->component,
  1798. LPASS_CDC_RX_CLSH_CRC, 0x01,
  1799. (u8) enable);
  1800. if (rx_priv->clsh_users < 0)
  1801. rx_priv->clsh_users = 0;
  1802. dev_dbg(rx_priv->dev, "%s: clsh_users %d, enable %d", __func__,
  1803. rx_priv->clsh_users, enable);
  1804. }
  1805. static int lpass_cdc_rx_macro_config_classh(struct snd_soc_component *component,
  1806. struct lpass_cdc_rx_macro_priv *rx_priv,
  1807. int interp_n, int event)
  1808. {
  1809. if (interp_n == INTERP_AUX)
  1810. return 0; /* AUX does not have Class-H */
  1811. if (SND_SOC_DAPM_EVENT_OFF(event)) {
  1812. lpass_cdc_rx_macro_enable_clsh_block(rx_priv, false);
  1813. return 0;
  1814. }
  1815. if (!SND_SOC_DAPM_EVENT_ON(event))
  1816. return 0;
  1817. lpass_cdc_rx_macro_enable_clsh_block(rx_priv, true);
  1818. if (interp_n == INTERP_HPHL ||
  1819. interp_n == INTERP_HPHR) {
  1820. /*
  1821. * These K1 values depend on the Headphone Impedance
  1822. * For now it is assumed to be 16 ohm
  1823. */
  1824. snd_soc_component_update_bits(component,
  1825. LPASS_CDC_RX_CLSH_K1_LSB,
  1826. 0xFF, 0xC0);
  1827. snd_soc_component_update_bits(component,
  1828. LPASS_CDC_RX_CLSH_K1_MSB,
  1829. 0x0F, 0x00);
  1830. }
  1831. switch (interp_n) {
  1832. case INTERP_HPHL:
  1833. if (rx_priv->is_ear_mode_on)
  1834. snd_soc_component_update_bits(component,
  1835. LPASS_CDC_RX_CLSH_HPH_V_PA,
  1836. 0x3F, 0x39);
  1837. else
  1838. snd_soc_component_update_bits(component,
  1839. LPASS_CDC_RX_CLSH_HPH_V_PA,
  1840. 0x3F, 0x1C);
  1841. snd_soc_component_update_bits(component,
  1842. LPASS_CDC_RX_CLSH_DECAY_CTRL,
  1843. 0x07, 0x00);
  1844. snd_soc_component_update_bits(component,
  1845. LPASS_CDC_RX_RX0_RX_PATH_CFG0,
  1846. 0x40, 0x40);
  1847. break;
  1848. case INTERP_HPHR:
  1849. if (rx_priv->is_ear_mode_on)
  1850. snd_soc_component_update_bits(component,
  1851. LPASS_CDC_RX_CLSH_HPH_V_PA,
  1852. 0x3F, 0x39);
  1853. else
  1854. snd_soc_component_update_bits(component,
  1855. LPASS_CDC_RX_CLSH_HPH_V_PA,
  1856. 0x3F, 0x1C);
  1857. snd_soc_component_update_bits(component,
  1858. LPASS_CDC_RX_CLSH_DECAY_CTRL,
  1859. 0x07, 0x00);
  1860. snd_soc_component_update_bits(component,
  1861. LPASS_CDC_RX_RX1_RX_PATH_CFG0,
  1862. 0x40, 0x40);
  1863. break;
  1864. case INTERP_AUX:
  1865. snd_soc_component_update_bits(component,
  1866. LPASS_CDC_RX_RX2_RX_PATH_CFG0,
  1867. 0x08, 0x08);
  1868. snd_soc_component_update_bits(component,
  1869. LPASS_CDC_RX_RX2_RX_PATH_CFG0,
  1870. 0x10, 0x10);
  1871. break;
  1872. }
  1873. return 0;
  1874. }
  1875. static void lpass_cdc_rx_macro_hd2_control(struct snd_soc_component *component,
  1876. struct lpass_cdc_rx_macro_priv *rx_priv,
  1877. u16 interp_idx, int event)
  1878. {
  1879. u16 hd2_scale_reg = 0;
  1880. u16 hd2_enable_reg = 0;
  1881. if (rx_priv->is_pcm_enabled)
  1882. return;
  1883. switch (interp_idx) {
  1884. case INTERP_HPHL:
  1885. hd2_scale_reg = LPASS_CDC_RX_RX0_RX_PATH_SEC3;
  1886. hd2_enable_reg = LPASS_CDC_RX_RX0_RX_PATH_CFG0;
  1887. break;
  1888. case INTERP_HPHR:
  1889. hd2_scale_reg = LPASS_CDC_RX_RX1_RX_PATH_SEC3;
  1890. hd2_enable_reg = LPASS_CDC_RX_RX1_RX_PATH_CFG0;
  1891. break;
  1892. }
  1893. if (hd2_enable_reg && SND_SOC_DAPM_EVENT_ON(event)) {
  1894. snd_soc_component_update_bits(component, hd2_scale_reg,
  1895. 0x3C, 0x14);
  1896. snd_soc_component_update_bits(component, hd2_enable_reg,
  1897. 0x04, 0x04);
  1898. }
  1899. if (hd2_enable_reg && SND_SOC_DAPM_EVENT_OFF(event)) {
  1900. snd_soc_component_update_bits(component, hd2_enable_reg,
  1901. 0x04, 0x00);
  1902. snd_soc_component_update_bits(component, hd2_scale_reg,
  1903. 0x3C, 0x00);
  1904. }
  1905. }
  1906. static int lpass_cdc_rx_macro_hph_idle_detect_get(struct snd_kcontrol *kcontrol,
  1907. struct snd_ctl_elem_value *ucontrol)
  1908. {
  1909. struct snd_soc_component *component =
  1910. snd_soc_kcontrol_component(kcontrol);
  1911. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  1912. struct device *rx_dev = NULL;
  1913. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  1914. return -EINVAL;
  1915. ucontrol->value.integer.value[0] =
  1916. rx_priv->idle_det_cfg.hph_idle_detect_en;
  1917. return 0;
  1918. }
  1919. static int lpass_cdc_rx_macro_hph_idle_detect_put(struct snd_kcontrol *kcontrol,
  1920. struct snd_ctl_elem_value *ucontrol)
  1921. {
  1922. struct snd_soc_component *component =
  1923. snd_soc_kcontrol_component(kcontrol);
  1924. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  1925. struct device *rx_dev = NULL;
  1926. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  1927. return -EINVAL;
  1928. rx_priv->idle_det_cfg.hph_idle_detect_en =
  1929. ucontrol->value.integer.value[0];
  1930. return 0;
  1931. }
  1932. static int lpass_cdc_rx_macro_get_pcm_path(struct snd_kcontrol *kcontrol,
  1933. struct snd_ctl_elem_value *ucontrol)
  1934. {
  1935. struct snd_soc_component *component =
  1936. snd_soc_kcontrol_component(kcontrol);
  1937. struct device *rx_dev = NULL;
  1938. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  1939. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  1940. return -EINVAL;
  1941. ucontrol->value.integer.value[0] = rx_priv->is_pcm_enabled;
  1942. return 0;
  1943. }
  1944. static int lpass_cdc_rx_macro_put_pcm_path(struct snd_kcontrol *kcontrol,
  1945. struct snd_ctl_elem_value *ucontrol)
  1946. {
  1947. struct snd_soc_component *component =
  1948. snd_soc_kcontrol_component(kcontrol);
  1949. struct device *rx_dev = NULL;
  1950. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  1951. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  1952. return -EINVAL;
  1953. rx_priv->is_pcm_enabled = ucontrol->value.integer.value[0];
  1954. return 0;
  1955. }
  1956. static int lpass_cdc_rx_macro_get_compander(struct snd_kcontrol *kcontrol,
  1957. struct snd_ctl_elem_value *ucontrol)
  1958. {
  1959. struct snd_soc_component *component =
  1960. snd_soc_kcontrol_component(kcontrol);
  1961. int comp = ((struct soc_multi_mixer_control *)
  1962. kcontrol->private_value)->shift;
  1963. struct device *rx_dev = NULL;
  1964. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  1965. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  1966. return -EINVAL;
  1967. ucontrol->value.integer.value[0] = rx_priv->comp_enabled[comp];
  1968. return 0;
  1969. }
  1970. static int lpass_cdc_rx_macro_set_compander(struct snd_kcontrol *kcontrol,
  1971. struct snd_ctl_elem_value *ucontrol)
  1972. {
  1973. struct snd_soc_component *component =
  1974. snd_soc_kcontrol_component(kcontrol);
  1975. int comp = ((struct soc_multi_mixer_control *)
  1976. kcontrol->private_value)->shift;
  1977. int value = ucontrol->value.integer.value[0];
  1978. struct device *rx_dev = NULL;
  1979. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  1980. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  1981. return -EINVAL;
  1982. dev_dbg(component->dev, "%s: Compander %d enable current %d, new %d\n",
  1983. __func__, comp + 1, rx_priv->comp_enabled[comp], value);
  1984. rx_priv->comp_enabled[comp] = value;
  1985. return 0;
  1986. }
  1987. static int lpass_cdc_rx_macro_mux_get(struct snd_kcontrol *kcontrol,
  1988. struct snd_ctl_elem_value *ucontrol)
  1989. {
  1990. struct snd_soc_dapm_widget *widget =
  1991. snd_soc_dapm_kcontrol_widget(kcontrol);
  1992. struct snd_soc_component *component =
  1993. snd_soc_dapm_to_component(widget->dapm);
  1994. struct device *rx_dev = NULL;
  1995. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  1996. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  1997. return -EINVAL;
  1998. ucontrol->value.integer.value[0] =
  1999. rx_priv->rx_port_value[widget->shift];
  2000. return 0;
  2001. }
  2002. static int lpass_cdc_rx_macro_mux_put(struct snd_kcontrol *kcontrol,
  2003. struct snd_ctl_elem_value *ucontrol)
  2004. {
  2005. struct snd_soc_dapm_widget *widget =
  2006. snd_soc_dapm_kcontrol_widget(kcontrol);
  2007. struct snd_soc_component *component =
  2008. snd_soc_dapm_to_component(widget->dapm);
  2009. struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
  2010. struct snd_soc_dapm_update *update = NULL;
  2011. u32 rx_port_value = ucontrol->value.integer.value[0];
  2012. u32 aif_rst = 0;
  2013. struct device *rx_dev = NULL;
  2014. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  2015. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  2016. return -EINVAL;
  2017. aif_rst = rx_priv->rx_port_value[widget->shift];
  2018. if (!rx_port_value) {
  2019. if (aif_rst == 0) {
  2020. dev_err_ratelimited(rx_dev, "%s:AIF reset already\n", __func__);
  2021. return 0;
  2022. }
  2023. if (aif_rst > RX_MACRO_AIF4_PB) {
  2024. dev_err_ratelimited(rx_dev, "%s: Invalid AIF reset\n", __func__);
  2025. return 0;
  2026. }
  2027. }
  2028. rx_priv->rx_port_value[widget->shift] = rx_port_value;
  2029. dev_dbg(rx_dev, "%s: mux input: %d, mux output: %d, aif_rst: %d\n",
  2030. __func__, rx_port_value, widget->shift, aif_rst);
  2031. switch (rx_port_value) {
  2032. case 0:
  2033. if (rx_priv->active_ch_cnt[aif_rst]) {
  2034. clear_bit(widget->shift,
  2035. &rx_priv->active_ch_mask[aif_rst]);
  2036. rx_priv->active_ch_cnt[aif_rst]--;
  2037. }
  2038. break;
  2039. case 1:
  2040. case 2:
  2041. case 3:
  2042. case 4:
  2043. set_bit(widget->shift,
  2044. &rx_priv->active_ch_mask[rx_port_value]);
  2045. rx_priv->active_ch_cnt[rx_port_value]++;
  2046. break;
  2047. default:
  2048. dev_err_ratelimited(component->dev,
  2049. "%s:Invalid AIF_ID for LPASS_CDC_RX_MACRO MUX %d\n",
  2050. __func__, rx_port_value);
  2051. goto err;
  2052. }
  2053. snd_soc_dapm_mux_update_power(widget->dapm, kcontrol,
  2054. rx_port_value, e, update);
  2055. return 0;
  2056. err:
  2057. return -EINVAL;
  2058. }
  2059. static int lpass_cdc_rx_macro_get_ear_mode(struct snd_kcontrol *kcontrol,
  2060. struct snd_ctl_elem_value *ucontrol)
  2061. {
  2062. struct snd_soc_component *component =
  2063. snd_soc_kcontrol_component(kcontrol);
  2064. struct device *rx_dev = NULL;
  2065. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  2066. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  2067. return -EINVAL;
  2068. ucontrol->value.integer.value[0] = rx_priv->is_ear_mode_on;
  2069. return 0;
  2070. }
  2071. static int lpass_cdc_rx_macro_put_ear_mode(struct snd_kcontrol *kcontrol,
  2072. struct snd_ctl_elem_value *ucontrol)
  2073. {
  2074. struct snd_soc_component *component =
  2075. snd_soc_kcontrol_component(kcontrol);
  2076. struct device *rx_dev = NULL;
  2077. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  2078. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  2079. return -EINVAL;
  2080. rx_priv->is_ear_mode_on =
  2081. (!ucontrol->value.integer.value[0] ? false : true);
  2082. return 0;
  2083. }
  2084. static int lpass_cdc_rx_macro_get_hph_hd2_mode(struct snd_kcontrol *kcontrol,
  2085. struct snd_ctl_elem_value *ucontrol)
  2086. {
  2087. struct snd_soc_component *component =
  2088. snd_soc_kcontrol_component(kcontrol);
  2089. struct device *rx_dev = NULL;
  2090. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  2091. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  2092. return -EINVAL;
  2093. ucontrol->value.integer.value[0] = rx_priv->hph_hd2_mode;
  2094. return 0;
  2095. }
  2096. static int lpass_cdc_rx_macro_put_hph_hd2_mode(struct snd_kcontrol *kcontrol,
  2097. struct snd_ctl_elem_value *ucontrol)
  2098. {
  2099. struct snd_soc_component *component =
  2100. snd_soc_kcontrol_component(kcontrol);
  2101. struct device *rx_dev = NULL;
  2102. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  2103. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  2104. return -EINVAL;
  2105. rx_priv->hph_hd2_mode = ucontrol->value.integer.value[0];
  2106. return 0;
  2107. }
  2108. static int lpass_cdc_rx_macro_get_hph_pwr_mode(struct snd_kcontrol *kcontrol,
  2109. struct snd_ctl_elem_value *ucontrol)
  2110. {
  2111. struct snd_soc_component *component =
  2112. snd_soc_kcontrol_component(kcontrol);
  2113. struct device *rx_dev = NULL;
  2114. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  2115. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  2116. return -EINVAL;
  2117. ucontrol->value.integer.value[0] = rx_priv->hph_pwr_mode;
  2118. return 0;
  2119. }
  2120. static int lpass_cdc_rx_macro_put_hph_pwr_mode(struct snd_kcontrol *kcontrol,
  2121. struct snd_ctl_elem_value *ucontrol)
  2122. {
  2123. struct snd_soc_component *component =
  2124. snd_soc_kcontrol_component(kcontrol);
  2125. struct device *rx_dev = NULL;
  2126. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  2127. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  2128. return -EINVAL;
  2129. rx_priv->hph_pwr_mode = ucontrol->value.integer.value[0];
  2130. return 0;
  2131. }
  2132. static int lpass_cdc_rx_macro_vbat_bcl_gsm_mode_func_get(struct snd_kcontrol *kcontrol,
  2133. struct snd_ctl_elem_value *ucontrol)
  2134. {
  2135. struct snd_soc_component *component =
  2136. snd_soc_kcontrol_component(kcontrol);
  2137. ucontrol->value.integer.value[0] =
  2138. ((snd_soc_component_read(
  2139. component, LPASS_CDC_RX_BCL_VBAT_CFG) & 0x04) ?
  2140. 1 : 0);
  2141. dev_dbg(component->dev, "%s: value: %lu\n", __func__,
  2142. ucontrol->value.integer.value[0]);
  2143. return 0;
  2144. }
  2145. static int lpass_cdc_rx_macro_vbat_bcl_gsm_mode_func_put(struct snd_kcontrol *kcontrol,
  2146. struct snd_ctl_elem_value *ucontrol)
  2147. {
  2148. struct snd_soc_component *component =
  2149. snd_soc_kcontrol_component(kcontrol);
  2150. dev_dbg(component->dev, "%s: value: %lu\n", __func__,
  2151. ucontrol->value.integer.value[0]);
  2152. /* Set Vbat register configuration for GSM mode bit based on value */
  2153. if (ucontrol->value.integer.value[0])
  2154. snd_soc_component_update_bits(component,
  2155. LPASS_CDC_RX_BCL_VBAT_CFG,
  2156. 0x04, 0x04);
  2157. else
  2158. snd_soc_component_update_bits(component,
  2159. LPASS_CDC_RX_BCL_VBAT_CFG,
  2160. 0x04, 0x00);
  2161. return 0;
  2162. }
  2163. static int lpass_cdc_rx_macro_soft_clip_enable_get(struct snd_kcontrol *kcontrol,
  2164. struct snd_ctl_elem_value *ucontrol)
  2165. {
  2166. struct snd_soc_component *component =
  2167. snd_soc_kcontrol_component(kcontrol);
  2168. struct device *rx_dev = NULL;
  2169. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  2170. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  2171. return -EINVAL;
  2172. ucontrol->value.integer.value[0] = rx_priv->is_softclip_on;
  2173. dev_dbg(component->dev, "%s: ucontrol->value.integer.value[0] = %ld\n",
  2174. __func__, ucontrol->value.integer.value[0]);
  2175. return 0;
  2176. }
  2177. static int lpass_cdc_rx_macro_soft_clip_enable_put(struct snd_kcontrol *kcontrol,
  2178. struct snd_ctl_elem_value *ucontrol)
  2179. {
  2180. struct snd_soc_component *component =
  2181. snd_soc_kcontrol_component(kcontrol);
  2182. struct device *rx_dev = NULL;
  2183. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  2184. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  2185. return -EINVAL;
  2186. rx_priv->is_softclip_on = ucontrol->value.integer.value[0];
  2187. dev_dbg(component->dev, "%s: soft clip enable = %d\n", __func__,
  2188. rx_priv->is_softclip_on);
  2189. return 0;
  2190. }
  2191. static int lpass_cdc_rx_macro_aux_hpf_mode_get(struct snd_kcontrol *kcontrol,
  2192. struct snd_ctl_elem_value *ucontrol)
  2193. {
  2194. struct snd_soc_component *component =
  2195. snd_soc_kcontrol_component(kcontrol);
  2196. struct device *rx_dev = NULL;
  2197. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  2198. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  2199. return -EINVAL;
  2200. ucontrol->value.integer.value[0] = rx_priv->is_aux_hpf_on;
  2201. dev_dbg(component->dev, "%s: ucontrol->value.integer.value[0] = %ld\n",
  2202. __func__, ucontrol->value.integer.value[0]);
  2203. return 0;
  2204. }
  2205. static int lpass_cdc_rx_macro_aux_hpf_mode_put(struct snd_kcontrol *kcontrol,
  2206. struct snd_ctl_elem_value *ucontrol)
  2207. {
  2208. struct snd_soc_component *component =
  2209. snd_soc_kcontrol_component(kcontrol);
  2210. struct device *rx_dev = NULL;
  2211. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  2212. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  2213. return -EINVAL;
  2214. rx_priv->is_aux_hpf_on = ucontrol->value.integer.value[0];
  2215. dev_dbg(component->dev, "%s: aux hpf enable = %d\n", __func__,
  2216. rx_priv->is_aux_hpf_on);
  2217. return 0;
  2218. }
  2219. static int lpass_cdc_rx_macro_enable_vbat(struct snd_soc_dapm_widget *w,
  2220. struct snd_kcontrol *kcontrol,
  2221. int event)
  2222. {
  2223. struct snd_soc_component *component =
  2224. snd_soc_dapm_to_component(w->dapm);
  2225. struct device *rx_dev = NULL;
  2226. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  2227. dev_dbg(component->dev, "%s %s %d\n", __func__, w->name, event);
  2228. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  2229. return -EINVAL;
  2230. switch (event) {
  2231. case SND_SOC_DAPM_PRE_PMU:
  2232. /* Enable clock for VBAT block */
  2233. snd_soc_component_update_bits(component,
  2234. LPASS_CDC_RX_BCL_VBAT_PATH_CTL, 0x10, 0x10);
  2235. /* Enable VBAT block */
  2236. snd_soc_component_update_bits(component,
  2237. LPASS_CDC_RX_BCL_VBAT_CFG, 0x01, 0x01);
  2238. /* Update interpolator with 384K path */
  2239. snd_soc_component_update_bits(component,
  2240. LPASS_CDC_RX_RX2_RX_PATH_CFG1, 0x80, 0x80);
  2241. /* Update DSM FS rate */
  2242. snd_soc_component_update_bits(component,
  2243. LPASS_CDC_RX_RX2_RX_PATH_SEC7, 0x02, 0x02);
  2244. /* Use attenuation mode */
  2245. snd_soc_component_update_bits(component,
  2246. LPASS_CDC_RX_BCL_VBAT_CFG, 0x02, 0x00);
  2247. /* BCL block needs softclip clock to be enabled */
  2248. lpass_cdc_rx_macro_enable_softclip_clk(component, rx_priv, true);
  2249. /* Enable VBAT at channel level */
  2250. snd_soc_component_update_bits(component,
  2251. LPASS_CDC_RX_RX2_RX_PATH_CFG1, 0x02, 0x02);
  2252. /* Set the ATTK1 gain */
  2253. snd_soc_component_update_bits(component,
  2254. LPASS_CDC_RX_BCL_VBAT_BCL_GAIN_UPD1,
  2255. 0xFF, 0xFF);
  2256. snd_soc_component_update_bits(component,
  2257. LPASS_CDC_RX_BCL_VBAT_BCL_GAIN_UPD2,
  2258. 0xFF, 0x03);
  2259. snd_soc_component_update_bits(component,
  2260. LPASS_CDC_RX_BCL_VBAT_BCL_GAIN_UPD3,
  2261. 0xFF, 0x00);
  2262. /* Set the ATTK2 gain */
  2263. snd_soc_component_update_bits(component,
  2264. LPASS_CDC_RX_BCL_VBAT_BCL_GAIN_UPD4,
  2265. 0xFF, 0xFF);
  2266. snd_soc_component_update_bits(component,
  2267. LPASS_CDC_RX_BCL_VBAT_BCL_GAIN_UPD5,
  2268. 0xFF, 0x03);
  2269. snd_soc_component_update_bits(component,
  2270. LPASS_CDC_RX_BCL_VBAT_BCL_GAIN_UPD6,
  2271. 0xFF, 0x00);
  2272. /* Set the ATTK3 gain */
  2273. snd_soc_component_update_bits(component,
  2274. LPASS_CDC_RX_BCL_VBAT_BCL_GAIN_UPD7,
  2275. 0xFF, 0xFF);
  2276. snd_soc_component_update_bits(component,
  2277. LPASS_CDC_RX_BCL_VBAT_BCL_GAIN_UPD8,
  2278. 0xFF, 0x03);
  2279. snd_soc_component_update_bits(component,
  2280. LPASS_CDC_RX_BCL_VBAT_BCL_GAIN_UPD9,
  2281. 0xFF, 0x00);
  2282. /* Enable CB decode block clock */
  2283. snd_soc_component_update_bits(component,
  2284. LPASS_CDC_RX_CB_DECODE_CB_DECODE_CTL1, 0x01, 0x01);
  2285. /* Enable BCL path */
  2286. snd_soc_component_update_bits(component,
  2287. LPASS_CDC_RX_CB_DECODE_CB_DECODE_CTL2, 0x01, 0x01);
  2288. /* Request for BCL data */
  2289. snd_soc_component_update_bits(component,
  2290. LPASS_CDC_RX_CB_DECODE_CB_DECODE_CTL3, 0x01, 0x01);
  2291. break;
  2292. case SND_SOC_DAPM_POST_PMD:
  2293. snd_soc_component_update_bits(component,
  2294. LPASS_CDC_RX_CB_DECODE_CB_DECODE_CTL3, 0x01, 0x00);
  2295. snd_soc_component_update_bits(component,
  2296. LPASS_CDC_RX_CB_DECODE_CB_DECODE_CTL2, 0x01, 0x00);
  2297. snd_soc_component_update_bits(component,
  2298. LPASS_CDC_RX_CB_DECODE_CB_DECODE_CTL1, 0x01, 0x00);
  2299. snd_soc_component_update_bits(component,
  2300. LPASS_CDC_RX_RX2_RX_PATH_CFG1,
  2301. 0x80, 0x00);
  2302. snd_soc_component_update_bits(component,
  2303. LPASS_CDC_RX_RX2_RX_PATH_SEC7,
  2304. 0x02, 0x00);
  2305. snd_soc_component_update_bits(component,
  2306. LPASS_CDC_RX_BCL_VBAT_CFG,
  2307. 0x02, 0x02);
  2308. snd_soc_component_update_bits(component,
  2309. LPASS_CDC_RX_RX2_RX_PATH_CFG1,
  2310. 0x02, 0x00);
  2311. snd_soc_component_update_bits(component,
  2312. LPASS_CDC_RX_BCL_VBAT_BCL_GAIN_UPD1,
  2313. 0xFF, 0x00);
  2314. snd_soc_component_update_bits(component,
  2315. LPASS_CDC_RX_BCL_VBAT_BCL_GAIN_UPD2,
  2316. 0xFF, 0x00);
  2317. snd_soc_component_update_bits(component,
  2318. LPASS_CDC_RX_BCL_VBAT_BCL_GAIN_UPD3,
  2319. 0xFF, 0x00);
  2320. snd_soc_component_update_bits(component,
  2321. LPASS_CDC_RX_BCL_VBAT_BCL_GAIN_UPD4,
  2322. 0xFF, 0x00);
  2323. snd_soc_component_update_bits(component,
  2324. LPASS_CDC_RX_BCL_VBAT_BCL_GAIN_UPD5,
  2325. 0xFF, 0x00);
  2326. snd_soc_component_update_bits(component,
  2327. LPASS_CDC_RX_BCL_VBAT_BCL_GAIN_UPD6,
  2328. 0xFF, 0x00);
  2329. snd_soc_component_update_bits(component,
  2330. LPASS_CDC_RX_BCL_VBAT_BCL_GAIN_UPD7,
  2331. 0xFF, 0x00);
  2332. snd_soc_component_update_bits(component,
  2333. LPASS_CDC_RX_BCL_VBAT_BCL_GAIN_UPD8,
  2334. 0xFF, 0x00);
  2335. snd_soc_component_update_bits(component,
  2336. LPASS_CDC_RX_BCL_VBAT_BCL_GAIN_UPD9,
  2337. 0xFF, 0x00);
  2338. lpass_cdc_rx_macro_enable_softclip_clk(component, rx_priv, false);
  2339. snd_soc_component_update_bits(component,
  2340. LPASS_CDC_RX_BCL_VBAT_CFG, 0x01, 0x00);
  2341. snd_soc_component_update_bits(component,
  2342. LPASS_CDC_RX_BCL_VBAT_PATH_CTL, 0x10, 0x00);
  2343. break;
  2344. default:
  2345. dev_err_ratelimited(rx_dev, "%s: Invalid event %d\n", __func__, event);
  2346. break;
  2347. }
  2348. return 0;
  2349. }
  2350. static void lpass_cdc_rx_macro_idle_detect_control(struct snd_soc_component *component,
  2351. struct lpass_cdc_rx_macro_priv *rx_priv,
  2352. int interp, int event)
  2353. {
  2354. int reg = 0, mask = 0, val = 0;
  2355. if (!rx_priv->idle_det_cfg.hph_idle_detect_en)
  2356. return;
  2357. if (!rx_priv->is_pcm_enabled)
  2358. return;
  2359. if (interp == INTERP_HPHL) {
  2360. reg = LPASS_CDC_RX_IDLE_DETECT_PATH_CTL;
  2361. mask = 0x01;
  2362. val = 0x01;
  2363. }
  2364. if (interp == INTERP_HPHR) {
  2365. reg = LPASS_CDC_RX_IDLE_DETECT_PATH_CTL;
  2366. mask = 0x02;
  2367. val = 0x02;
  2368. }
  2369. if (reg && SND_SOC_DAPM_EVENT_ON(event))
  2370. snd_soc_component_update_bits(component, reg, mask, val);
  2371. if (reg && SND_SOC_DAPM_EVENT_OFF(event)) {
  2372. snd_soc_component_update_bits(component, reg, mask, 0x00);
  2373. rx_priv->idle_det_cfg.hph_idle_thr = 0;
  2374. snd_soc_component_write(component,
  2375. LPASS_CDC_RX_IDLE_DETECT_CFG3, 0x0);
  2376. }
  2377. }
  2378. static void lpass_cdc_rx_macro_hphdelay_lutbypass(struct snd_soc_component *component,
  2379. struct lpass_cdc_rx_macro_priv *rx_priv,
  2380. u16 interp_idx, int event)
  2381. {
  2382. u16 hph_lut_bypass_reg = 0;
  2383. u16 hph_comp_ctrl7 = 0;
  2384. if (rx_priv->is_pcm_enabled)
  2385. return;
  2386. switch (interp_idx) {
  2387. case INTERP_HPHL:
  2388. hph_lut_bypass_reg = LPASS_CDC_RX_TOP_HPHL_COMP_LUT;
  2389. hph_comp_ctrl7 = LPASS_CDC_RX_COMPANDER0_CTL7;
  2390. break;
  2391. case INTERP_HPHR:
  2392. hph_lut_bypass_reg = LPASS_CDC_RX_TOP_HPHR_COMP_LUT;
  2393. hph_comp_ctrl7 = LPASS_CDC_RX_COMPANDER1_CTL7;
  2394. break;
  2395. default:
  2396. break;
  2397. }
  2398. if (hph_lut_bypass_reg && SND_SOC_DAPM_EVENT_ON(event)) {
  2399. if (interp_idx == INTERP_HPHL) {
  2400. if (rx_priv->is_ear_mode_on)
  2401. snd_soc_component_update_bits(component,
  2402. LPASS_CDC_RX_RX0_RX_PATH_CFG1,
  2403. 0x02, 0x02);
  2404. else
  2405. snd_soc_component_update_bits(component,
  2406. hph_lut_bypass_reg,
  2407. 0x80, 0x80);
  2408. } else {
  2409. snd_soc_component_update_bits(component,
  2410. hph_lut_bypass_reg,
  2411. 0x80, 0x80);
  2412. }
  2413. if (rx_priv->hph_pwr_mode)
  2414. snd_soc_component_update_bits(component,
  2415. hph_comp_ctrl7,
  2416. 0x20, 0x00);
  2417. }
  2418. if (hph_lut_bypass_reg && SND_SOC_DAPM_EVENT_OFF(event)) {
  2419. snd_soc_component_update_bits(component,
  2420. LPASS_CDC_RX_RX0_RX_PATH_CFG1,
  2421. 0x02, 0x00);
  2422. snd_soc_component_update_bits(component, hph_lut_bypass_reg,
  2423. 0x80, 0x00);
  2424. snd_soc_component_update_bits(component, hph_comp_ctrl7,
  2425. 0x20, 0x20);
  2426. }
  2427. }
  2428. static int lpass_cdc_rx_macro_enable_interp_clk(struct snd_soc_component *component,
  2429. int event, int interp_idx)
  2430. {
  2431. u16 main_reg = 0, dsm_reg = 0, rx_cfg2_reg = 0;
  2432. struct device *rx_dev = NULL;
  2433. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  2434. if (!component) {
  2435. pr_err_ratelimited("%s: component is NULL\n", __func__);
  2436. return -EINVAL;
  2437. }
  2438. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  2439. return -EINVAL;
  2440. main_reg = LPASS_CDC_RX_RX0_RX_PATH_CTL +
  2441. (interp_idx * LPASS_CDC_RX_MACRO_RX_PATH_OFFSET);
  2442. dsm_reg = LPASS_CDC_RX_RX0_RX_PATH_DSM_CTL +
  2443. (interp_idx * LPASS_CDC_RX_MACRO_RX_PATH_OFFSET);
  2444. if (interp_idx == INTERP_AUX)
  2445. dsm_reg = LPASS_CDC_RX_RX2_RX_PATH_DSM_CTL;
  2446. rx_cfg2_reg = LPASS_CDC_RX_RX0_RX_PATH_CFG2 +
  2447. (interp_idx * LPASS_CDC_RX_MACRO_RX_PATH_OFFSET);
  2448. if (SND_SOC_DAPM_EVENT_ON(event)) {
  2449. if (rx_priv->main_clk_users[interp_idx] == 0) {
  2450. /* Main path PGA mute enable */
  2451. snd_soc_component_update_bits(component, main_reg,
  2452. 0x10, 0x10);
  2453. snd_soc_component_update_bits(component, dsm_reg,
  2454. 0x01, 0x01);
  2455. /* Clk Enable */
  2456. snd_soc_component_update_bits(component, main_reg,
  2457. 0x20, 0x20);
  2458. snd_soc_component_update_bits(component, rx_cfg2_reg,
  2459. 0x03, 0x03);
  2460. lpass_cdc_rx_macro_idle_detect_control(component, rx_priv,
  2461. interp_idx, event);
  2462. if (rx_priv->hph_hd2_mode)
  2463. lpass_cdc_rx_macro_hd2_control(
  2464. component, rx_priv, interp_idx, event);
  2465. lpass_cdc_rx_macro_hphdelay_lutbypass(component, rx_priv,
  2466. interp_idx, event);
  2467. lpass_cdc_rx_macro_droop_setting(component,
  2468. rx_priv, interp_idx, event);
  2469. lpass_cdc_rx_macro_config_compander(component, rx_priv,
  2470. interp_idx, event);
  2471. if (interp_idx == INTERP_AUX) {
  2472. lpass_cdc_rx_macro_config_softclip(component, rx_priv,
  2473. event);
  2474. lpass_cdc_rx_macro_config_aux_hpf(component, rx_priv,
  2475. event);
  2476. }
  2477. lpass_cdc_rx_macro_config_classh(component, rx_priv,
  2478. interp_idx, event);
  2479. /*select PCM path and swr clk is 9.6MHz*/
  2480. if (rx_priv->is_pcm_enabled && !rx_priv->is_native_on &&
  2481. interp_idx != INTERP_AUX) {
  2482. if (rx_priv->pcm_select_users == 0)
  2483. snd_soc_component_update_bits(component,
  2484. LPASS_CDC_RX_TOP_SWR_CTRL, 0x02, 0x02);
  2485. ++rx_priv->pcm_select_users;
  2486. }
  2487. lpass_cdc_notify_wcd_rx_clk(rx_dev, rx_priv->is_native_on);
  2488. }
  2489. rx_priv->main_clk_users[interp_idx]++;
  2490. }
  2491. if (SND_SOC_DAPM_EVENT_OFF(event)) {
  2492. rx_priv->main_clk_users[interp_idx]--;
  2493. if (rx_priv->main_clk_users[interp_idx] <= 0) {
  2494. rx_priv->main_clk_users[interp_idx] = 0;
  2495. /* Main path PGA mute enable */
  2496. snd_soc_component_update_bits(component, main_reg,
  2497. 0x10, 0x10);
  2498. /*Unselect PCM path*/
  2499. if (rx_priv->is_pcm_enabled && !rx_priv->is_native_on &&
  2500. interp_idx != INTERP_AUX) {
  2501. if (rx_priv->pcm_select_users == 1)
  2502. snd_soc_component_update_bits(component,
  2503. LPASS_CDC_RX_TOP_SWR_CTRL, 0x02, 0x00);
  2504. --rx_priv->pcm_select_users;
  2505. if (rx_priv->pcm_select_users < 0)
  2506. rx_priv->pcm_select_users = 0;
  2507. }
  2508. /* Clk Disable */
  2509. snd_soc_component_update_bits(component, dsm_reg,
  2510. 0x01, 0x00);
  2511. snd_soc_component_update_bits(component, main_reg,
  2512. 0x20, 0x00);
  2513. /* Reset enable and disable */
  2514. snd_soc_component_update_bits(component, main_reg,
  2515. 0x40, 0x40);
  2516. snd_soc_component_update_bits(component, main_reg,
  2517. 0x40, 0x00);
  2518. /* Reset rate to 48K*/
  2519. snd_soc_component_update_bits(component, main_reg,
  2520. 0x0F, 0x04);
  2521. snd_soc_component_update_bits(component, rx_cfg2_reg,
  2522. 0x03, 0x00);
  2523. lpass_cdc_rx_macro_config_classh(component, rx_priv,
  2524. interp_idx, event);
  2525. lpass_cdc_rx_macro_config_compander(component, rx_priv,
  2526. interp_idx, event);
  2527. if (interp_idx == INTERP_AUX) {
  2528. lpass_cdc_rx_macro_config_softclip(component, rx_priv,
  2529. event);
  2530. lpass_cdc_rx_macro_config_aux_hpf(component, rx_priv,
  2531. event);
  2532. }
  2533. lpass_cdc_rx_macro_hphdelay_lutbypass(component, rx_priv,
  2534. interp_idx, event);
  2535. if (rx_priv->hph_hd2_mode)
  2536. lpass_cdc_rx_macro_hd2_control(component,
  2537. rx_priv, interp_idx, event);
  2538. lpass_cdc_rx_macro_idle_detect_control(component, rx_priv,
  2539. interp_idx, event);
  2540. }
  2541. }
  2542. dev_dbg(component->dev, "%s event %d main_clk_users %d\n",
  2543. __func__, event, rx_priv->main_clk_users[interp_idx]);
  2544. return rx_priv->main_clk_users[interp_idx];
  2545. }
  2546. static int lpass_cdc_rx_macro_enable_rx_path_clk(struct snd_soc_dapm_widget *w,
  2547. struct snd_kcontrol *kcontrol, int event)
  2548. {
  2549. struct snd_soc_component *component =
  2550. snd_soc_dapm_to_component(w->dapm);
  2551. u16 sidetone_reg = 0, fs_reg = 0;
  2552. dev_dbg(component->dev, "%s %d %d\n", __func__, event, w->shift);
  2553. sidetone_reg = LPASS_CDC_RX_RX0_RX_PATH_CFG1 +
  2554. LPASS_CDC_RX_MACRO_RX_PATH_OFFSET * (w->shift);
  2555. fs_reg = LPASS_CDC_RX_RX0_RX_PATH_CTL +
  2556. LPASS_CDC_RX_MACRO_RX_PATH_OFFSET * (w->shift);
  2557. switch (event) {
  2558. case SND_SOC_DAPM_PRE_PMU:
  2559. lpass_cdc_rx_macro_enable_interp_clk(component, event, w->shift);
  2560. snd_soc_component_update_bits(component, sidetone_reg,
  2561. 0x10, 0x10);
  2562. snd_soc_component_update_bits(component, fs_reg,
  2563. 0x20, 0x20);
  2564. break;
  2565. case SND_SOC_DAPM_POST_PMD:
  2566. snd_soc_component_update_bits(component, sidetone_reg,
  2567. 0x10, 0x00);
  2568. lpass_cdc_rx_macro_enable_interp_clk(component, event, w->shift);
  2569. break;
  2570. default:
  2571. break;
  2572. };
  2573. return 0;
  2574. }
  2575. static void lpass_cdc_rx_macro_restore_iir_coeff(struct lpass_cdc_rx_macro_priv *rx_priv, int iir_idx,
  2576. int band_idx)
  2577. {
  2578. u16 reg_add = 0, coeff_idx = 0, idx = 0;
  2579. struct regmap *regmap = dev_get_regmap(rx_priv->dev->parent, NULL);
  2580. if (regmap == NULL) {
  2581. dev_err_ratelimited(rx_priv->dev, "%s: regmap is NULL\n", __func__);
  2582. return;
  2583. }
  2584. regmap_write(regmap,
  2585. (LPASS_CDC_RX_SIDETONE_IIR0_IIR_COEF_B1_CTL + 0x80 * iir_idx),
  2586. (band_idx * BAND_MAX * sizeof(uint32_t)) & 0x7F);
  2587. reg_add = LPASS_CDC_RX_SIDETONE_IIR0_IIR_COEF_B2_CTL + 0x80 * iir_idx;
  2588. /* 5 coefficients per band and 4 writes per coefficient */
  2589. for (coeff_idx = 0; coeff_idx < LPASS_CDC_RX_MACRO_SIDETONE_IIR_COEFF_MAX;
  2590. coeff_idx++) {
  2591. /* Four 8 bit values(one 32 bit) per coefficient */
  2592. regmap_write(regmap, reg_add,
  2593. rx_priv->sidetone_coeff_array[iir_idx][band_idx][idx++]);
  2594. regmap_write(regmap, reg_add,
  2595. rx_priv->sidetone_coeff_array[iir_idx][band_idx][idx++]);
  2596. regmap_write(regmap, reg_add,
  2597. rx_priv->sidetone_coeff_array[iir_idx][band_idx][idx++]);
  2598. regmap_write(regmap, reg_add,
  2599. rx_priv->sidetone_coeff_array[iir_idx][band_idx][idx++]);
  2600. }
  2601. }
  2602. static int lpass_cdc_rx_macro_iir_enable_audio_mixer_get(struct snd_kcontrol *kcontrol,
  2603. struct snd_ctl_elem_value *ucontrol)
  2604. {
  2605. struct snd_soc_component *component =
  2606. snd_soc_kcontrol_component(kcontrol);
  2607. int iir_idx = ((struct soc_multi_mixer_control *)
  2608. kcontrol->private_value)->reg;
  2609. int band_idx = ((struct soc_multi_mixer_control *)
  2610. kcontrol->private_value)->shift;
  2611. /* IIR filter band registers are at integer multiples of 0x80 */
  2612. u16 iir_reg = LPASS_CDC_RX_SIDETONE_IIR0_IIR_CTL + 0x80 * iir_idx;
  2613. ucontrol->value.integer.value[0] = (
  2614. snd_soc_component_read(component, iir_reg) &
  2615. (1 << band_idx)) != 0;
  2616. dev_dbg(component->dev, "%s: IIR #%d band #%d enable %d\n", __func__,
  2617. iir_idx, band_idx,
  2618. (uint32_t)ucontrol->value.integer.value[0]);
  2619. return 0;
  2620. }
  2621. static int lpass_cdc_rx_macro_iir_enable_audio_mixer_put(struct snd_kcontrol *kcontrol,
  2622. struct snd_ctl_elem_value *ucontrol)
  2623. {
  2624. struct snd_soc_component *component =
  2625. snd_soc_kcontrol_component(kcontrol);
  2626. int iir_idx = ((struct soc_multi_mixer_control *)
  2627. kcontrol->private_value)->reg;
  2628. int band_idx = ((struct soc_multi_mixer_control *)
  2629. kcontrol->private_value)->shift;
  2630. bool iir_band_en_status = 0;
  2631. int value = ucontrol->value.integer.value[0];
  2632. u16 iir_reg = LPASS_CDC_RX_SIDETONE_IIR0_IIR_CTL + 0x80 * iir_idx;
  2633. struct device *rx_dev = NULL;
  2634. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  2635. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  2636. return -EINVAL;
  2637. lpass_cdc_rx_macro_restore_iir_coeff(rx_priv, iir_idx, band_idx);
  2638. /* Mask first 5 bits, 6-8 are reserved */
  2639. snd_soc_component_update_bits(component, iir_reg, (1 << band_idx),
  2640. (value << band_idx));
  2641. iir_band_en_status = ((snd_soc_component_read(component, iir_reg) &
  2642. (1 << band_idx)) != 0);
  2643. dev_dbg(component->dev, "%s: IIR #%d band #%d enable %d\n", __func__,
  2644. iir_idx, band_idx, iir_band_en_status);
  2645. return 0;
  2646. }
  2647. static uint32_t get_iir_band_coeff(struct snd_soc_component *component,
  2648. int iir_idx, int band_idx,
  2649. int coeff_idx)
  2650. {
  2651. uint32_t value = 0;
  2652. /* Address does not automatically update if reading */
  2653. snd_soc_component_write(component,
  2654. (LPASS_CDC_RX_SIDETONE_IIR0_IIR_COEF_B1_CTL + 0x80 * iir_idx),
  2655. ((band_idx * BAND_MAX + coeff_idx)
  2656. * sizeof(uint32_t)) & 0x7F);
  2657. value |= snd_soc_component_read(component,
  2658. (LPASS_CDC_RX_SIDETONE_IIR0_IIR_COEF_B2_CTL + 0x80 * iir_idx));
  2659. snd_soc_component_write(component,
  2660. (LPASS_CDC_RX_SIDETONE_IIR0_IIR_COEF_B1_CTL + 0x80 * iir_idx),
  2661. ((band_idx * BAND_MAX + coeff_idx)
  2662. * sizeof(uint32_t) + 1) & 0x7F);
  2663. value |= (snd_soc_component_read(component,
  2664. (LPASS_CDC_RX_SIDETONE_IIR0_IIR_COEF_B2_CTL +
  2665. 0x80 * iir_idx)) << 8);
  2666. snd_soc_component_write(component,
  2667. (LPASS_CDC_RX_SIDETONE_IIR0_IIR_COEF_B1_CTL + 0x80 * iir_idx),
  2668. ((band_idx * BAND_MAX + coeff_idx)
  2669. * sizeof(uint32_t) + 2) & 0x7F);
  2670. value |= (snd_soc_component_read(component,
  2671. (LPASS_CDC_RX_SIDETONE_IIR0_IIR_COEF_B2_CTL +
  2672. 0x80 * iir_idx)) << 16);
  2673. snd_soc_component_write(component,
  2674. (LPASS_CDC_RX_SIDETONE_IIR0_IIR_COEF_B1_CTL + 0x80 * iir_idx),
  2675. ((band_idx * BAND_MAX + coeff_idx)
  2676. * sizeof(uint32_t) + 3) & 0x7F);
  2677. /* Mask bits top 2 bits since they are reserved */
  2678. value |= ((snd_soc_component_read(component,
  2679. (LPASS_CDC_RX_SIDETONE_IIR0_IIR_COEF_B2_CTL +
  2680. 0x80 * iir_idx)) & 0x3F) << 24);
  2681. return value;
  2682. }
  2683. static int lpass_cdc_rx_macro_iir_filter_info(struct snd_kcontrol *kcontrol,
  2684. struct snd_ctl_elem_info *ucontrol)
  2685. {
  2686. struct lpass_cdc_rx_macro_iir_filter_ctl *ctl =
  2687. (struct lpass_cdc_rx_macro_iir_filter_ctl *)kcontrol->private_value;
  2688. struct soc_bytes_ext *params = &ctl->bytes_ext;
  2689. ucontrol->type = SNDRV_CTL_ELEM_TYPE_BYTES;
  2690. ucontrol->count = params->max;
  2691. return 0;
  2692. }
  2693. static int lpass_cdc_rx_macro_iir_band_audio_mixer_get(struct snd_kcontrol *kcontrol,
  2694. struct snd_ctl_elem_value *ucontrol)
  2695. {
  2696. struct snd_soc_component *component =
  2697. snd_soc_kcontrol_component(kcontrol);
  2698. struct lpass_cdc_rx_macro_iir_filter_ctl *ctl =
  2699. (struct lpass_cdc_rx_macro_iir_filter_ctl *)kcontrol->private_value;
  2700. struct soc_bytes_ext *params = &ctl->bytes_ext;
  2701. int iir_idx = ctl->iir_idx;
  2702. int band_idx = ctl->band_idx;
  2703. u32 coeff[BAND_MAX];
  2704. int coeff_idx = 0;
  2705. for (coeff_idx = 0; coeff_idx < LPASS_CDC_RX_MACRO_SIDETONE_IIR_COEFF_MAX;
  2706. coeff_idx++) {
  2707. coeff[coeff_idx] =
  2708. get_iir_band_coeff(component, iir_idx, band_idx, coeff_idx);
  2709. }
  2710. memcpy(ucontrol->value.bytes.data, &coeff[0], params->max);
  2711. dev_dbg(component->dev, "%s: IIR #%d band #%d b0 = 0x%x\n"
  2712. "%s: IIR #%d band #%d b1 = 0x%x\n"
  2713. "%s: IIR #%d band #%d b2 = 0x%x\n"
  2714. "%s: IIR #%d band #%d a1 = 0x%x\n"
  2715. "%s: IIR #%d band #%d a2 = 0x%x\n",
  2716. __func__, iir_idx, band_idx, coeff[0],
  2717. __func__, iir_idx, band_idx, coeff[1],
  2718. __func__, iir_idx, band_idx, coeff[2],
  2719. __func__, iir_idx, band_idx, coeff[3],
  2720. __func__, iir_idx, band_idx, coeff[4]);
  2721. return 0;
  2722. }
  2723. static void set_iir_band_coeff(struct snd_soc_component *component,
  2724. int iir_idx, int band_idx,
  2725. uint32_t value)
  2726. {
  2727. snd_soc_component_write(component,
  2728. (LPASS_CDC_RX_SIDETONE_IIR0_IIR_COEF_B2_CTL + 0x80 * iir_idx),
  2729. (value & 0xFF));
  2730. snd_soc_component_write(component,
  2731. (LPASS_CDC_RX_SIDETONE_IIR0_IIR_COEF_B2_CTL + 0x80 * iir_idx),
  2732. (value >> 8) & 0xFF);
  2733. snd_soc_component_write(component,
  2734. (LPASS_CDC_RX_SIDETONE_IIR0_IIR_COEF_B2_CTL + 0x80 * iir_idx),
  2735. (value >> 16) & 0xFF);
  2736. /* Mask top 2 bits, 7-8 are reserved */
  2737. snd_soc_component_write(component,
  2738. (LPASS_CDC_RX_SIDETONE_IIR0_IIR_COEF_B2_CTL + 0x80 * iir_idx),
  2739. (value >> 24) & 0x3F);
  2740. }
  2741. static int lpass_cdc_rx_macro_iir_band_audio_mixer_put(struct snd_kcontrol *kcontrol,
  2742. struct snd_ctl_elem_value *ucontrol)
  2743. {
  2744. struct snd_soc_component *component =
  2745. snd_soc_kcontrol_component(kcontrol);
  2746. struct lpass_cdc_rx_macro_iir_filter_ctl *ctl =
  2747. (struct lpass_cdc_rx_macro_iir_filter_ctl *)kcontrol->private_value;
  2748. struct soc_bytes_ext *params = &ctl->bytes_ext;
  2749. int iir_idx = ctl->iir_idx;
  2750. int band_idx = ctl->band_idx;
  2751. u32 coeff[BAND_MAX];
  2752. int coeff_idx, idx = 0;
  2753. struct device *rx_dev = NULL;
  2754. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  2755. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  2756. return -EINVAL;
  2757. memcpy(&coeff[0], ucontrol->value.bytes.data, params->max);
  2758. /*
  2759. * Mask top bit it is reserved
  2760. * Updates addr automatically for each B2 write
  2761. */
  2762. snd_soc_component_write(component,
  2763. (LPASS_CDC_RX_SIDETONE_IIR0_IIR_COEF_B1_CTL + 0x80 * iir_idx),
  2764. (band_idx * BAND_MAX * sizeof(uint32_t)) & 0x7F);
  2765. /* Store the coefficients in sidetone coeff array */
  2766. for (coeff_idx = 0; coeff_idx < LPASS_CDC_RX_MACRO_SIDETONE_IIR_COEFF_MAX;
  2767. coeff_idx++) {
  2768. uint32_t value = coeff[coeff_idx];
  2769. set_iir_band_coeff(component, iir_idx, band_idx, value);
  2770. /* Four 8 bit values(one 32 bit) per coefficient */
  2771. rx_priv->sidetone_coeff_array[iir_idx][band_idx][idx++] =
  2772. (value & 0xFF);
  2773. rx_priv->sidetone_coeff_array[iir_idx][band_idx][idx++] =
  2774. (value >> 8) & 0xFF;
  2775. rx_priv->sidetone_coeff_array[iir_idx][band_idx][idx++] =
  2776. (value >> 16) & 0xFF;
  2777. rx_priv->sidetone_coeff_array[iir_idx][band_idx][idx++] =
  2778. (value >> 24) & 0xFF;
  2779. }
  2780. pr_debug("%s: IIR #%d band #%d b0 = 0x%x\n"
  2781. "%s: IIR #%d band #%d b1 = 0x%x\n"
  2782. "%s: IIR #%d band #%d b2 = 0x%x\n"
  2783. "%s: IIR #%d band #%d a1 = 0x%x\n"
  2784. "%s: IIR #%d band #%d a2 = 0x%x\n",
  2785. __func__, iir_idx, band_idx,
  2786. get_iir_band_coeff(component, iir_idx, band_idx, 0),
  2787. __func__, iir_idx, band_idx,
  2788. get_iir_band_coeff(component, iir_idx, band_idx, 1),
  2789. __func__, iir_idx, band_idx,
  2790. get_iir_band_coeff(component, iir_idx, band_idx, 2),
  2791. __func__, iir_idx, band_idx,
  2792. get_iir_band_coeff(component, iir_idx, band_idx, 3),
  2793. __func__, iir_idx, band_idx,
  2794. get_iir_band_coeff(component, iir_idx, band_idx, 4));
  2795. return 0;
  2796. }
  2797. static int lpass_cdc_rx_macro_set_iir_gain(struct snd_soc_dapm_widget *w,
  2798. struct snd_kcontrol *kcontrol, int event)
  2799. {
  2800. struct snd_soc_component *component =
  2801. snd_soc_dapm_to_component(w->dapm);
  2802. dev_dbg(component->dev, "%s: event = %d\n", __func__, event);
  2803. switch (event) {
  2804. case SND_SOC_DAPM_POST_PMU: /* fall through */
  2805. case SND_SOC_DAPM_PRE_PMD:
  2806. if (strnstr(w->name, "IIR0", sizeof("IIR0"))) {
  2807. snd_soc_component_write(component,
  2808. LPASS_CDC_RX_SIDETONE_IIR0_IIR_GAIN_B1_CTL,
  2809. snd_soc_component_read(component,
  2810. LPASS_CDC_RX_SIDETONE_IIR0_IIR_GAIN_B1_CTL));
  2811. snd_soc_component_write(component,
  2812. LPASS_CDC_RX_SIDETONE_IIR0_IIR_GAIN_B2_CTL,
  2813. snd_soc_component_read(component,
  2814. LPASS_CDC_RX_SIDETONE_IIR0_IIR_GAIN_B2_CTL));
  2815. snd_soc_component_write(component,
  2816. LPASS_CDC_RX_SIDETONE_IIR0_IIR_GAIN_B3_CTL,
  2817. snd_soc_component_read(component,
  2818. LPASS_CDC_RX_SIDETONE_IIR0_IIR_GAIN_B3_CTL));
  2819. snd_soc_component_write(component,
  2820. LPASS_CDC_RX_SIDETONE_IIR0_IIR_GAIN_B4_CTL,
  2821. snd_soc_component_read(component,
  2822. LPASS_CDC_RX_SIDETONE_IIR0_IIR_GAIN_B4_CTL));
  2823. } else {
  2824. snd_soc_component_write(component,
  2825. LPASS_CDC_RX_SIDETONE_IIR1_IIR_GAIN_B1_CTL,
  2826. snd_soc_component_read(component,
  2827. LPASS_CDC_RX_SIDETONE_IIR1_IIR_GAIN_B1_CTL));
  2828. snd_soc_component_write(component,
  2829. LPASS_CDC_RX_SIDETONE_IIR1_IIR_GAIN_B2_CTL,
  2830. snd_soc_component_read(component,
  2831. LPASS_CDC_RX_SIDETONE_IIR1_IIR_GAIN_B2_CTL));
  2832. snd_soc_component_write(component,
  2833. LPASS_CDC_RX_SIDETONE_IIR1_IIR_GAIN_B3_CTL,
  2834. snd_soc_component_read(component,
  2835. LPASS_CDC_RX_SIDETONE_IIR1_IIR_GAIN_B3_CTL));
  2836. snd_soc_component_write(component,
  2837. LPASS_CDC_RX_SIDETONE_IIR1_IIR_GAIN_B4_CTL,
  2838. snd_soc_component_read(component,
  2839. LPASS_CDC_RX_SIDETONE_IIR1_IIR_GAIN_B4_CTL));
  2840. }
  2841. break;
  2842. }
  2843. return 0;
  2844. }
  2845. static int lpass_cdc_rx_macro_fir_filter_enable_get(struct snd_kcontrol *kcontrol,
  2846. struct snd_ctl_elem_value *ucontrol)
  2847. {
  2848. struct snd_soc_component *component =
  2849. snd_soc_kcontrol_component(kcontrol);
  2850. struct device *rx_dev = NULL;
  2851. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  2852. if (!component) {
  2853. pr_err_ratelimited("%s: component is NULL\n", __func__);
  2854. return -EINVAL;
  2855. }
  2856. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  2857. return -EINVAL;
  2858. ucontrol->value.bytes.data[0] = (unsigned char)rx_priv->is_fir_filter_on;
  2859. return 0;
  2860. }
  2861. static int lpass_cdc_rx_macro_fir_filter_enable_put(struct snd_kcontrol *kcontrol,
  2862. struct snd_ctl_elem_value *ucontrol)
  2863. {
  2864. struct snd_soc_component *component =
  2865. snd_soc_kcontrol_component(kcontrol);
  2866. struct device *rx_dev = NULL;
  2867. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  2868. int ret = 0;
  2869. if (!component) {
  2870. pr_err_ratelimited("%s: component is NULL\n", __func__);
  2871. return -EINVAL;
  2872. }
  2873. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  2874. return -EINVAL;
  2875. if (!rx_priv->hifi_fir_clk) {
  2876. dev_dbg(rx_priv->dev, "%s: Undefined HIFI FIR Clock.\n",
  2877. __func__);
  2878. return 0;
  2879. }
  2880. if (!rx_priv->is_fir_capable) {
  2881. dev_dbg(rx_priv->dev, "%s: HIFI FIR is not supported.\n",
  2882. __func__);
  2883. return 0;
  2884. }
  2885. rx_priv->is_fir_filter_on =
  2886. (!ucontrol->value.bytes.data[0] ? false : true);
  2887. dev_dbg(rx_priv->dev, "%s:is_fir_filter_on=%d\n",
  2888. __func__, rx_priv->is_fir_filter_on);
  2889. if (rx_priv->is_fir_filter_on) {
  2890. ret = clk_prepare_enable(rx_priv->hifi_fir_clk);
  2891. if (ret < 0) {
  2892. dev_err_ratelimited(rx_priv->dev, "%s:hifi_fir_clk enable failed\n",
  2893. __func__);
  2894. return ret;
  2895. }
  2896. snd_soc_component_write(component, LPASS_CDC_RX_RX0_RX_FIR_CFG,
  2897. rx_priv->fir_total_coeff_num[RX0_PATH]);
  2898. dev_dbg(component->dev, "%s: HIFI FIR Path:%d total coefficients"
  2899. " number written: %d.\n",
  2900. __func__, RX0_PATH,
  2901. rx_priv->fir_total_coeff_num[RX0_PATH]);
  2902. snd_soc_component_write(component, LPASS_CDC_RX_RX1_RX_FIR_CFG,
  2903. rx_priv->fir_total_coeff_num[RX1_PATH]);
  2904. dev_dbg(component->dev, "%s: HIFI FIR Path:%d total coefficients"
  2905. " number written: %d.\n",
  2906. __func__, RX1_PATH,
  2907. rx_priv->fir_total_coeff_num[RX1_PATH]);
  2908. /* Enable HIFI_FEAT_EN bit */
  2909. snd_soc_component_update_bits(component, LPASS_CDC_RX_TOP_TOP_CFG1, 0x01, 0x01);
  2910. /* Enable FIR_CLK_EN */
  2911. snd_soc_component_update_bits(component, LPASS_CDC_RX_RX0_RX_PATH_CTL, 0x80, 0x80);
  2912. snd_soc_component_update_bits(component, LPASS_CDC_RX_RX1_RX_PATH_CTL, 0x80, 0x80);
  2913. /* Start the FIR filter */
  2914. snd_soc_component_update_bits(component, LPASS_CDC_RX_RX0_RX_FIR_CTL, 0x0D, 0x05);
  2915. snd_soc_component_update_bits(component, LPASS_CDC_RX_RX1_RX_FIR_CTL, 0x0D, 0x05);
  2916. } else {
  2917. /* Stop the FIR filter */
  2918. snd_soc_component_update_bits(component, LPASS_CDC_RX_RX0_RX_FIR_CTL, 0x0D, 0x00);
  2919. snd_soc_component_update_bits(component, LPASS_CDC_RX_RX1_RX_FIR_CTL, 0x0D, 0x00);
  2920. /* Disable FIR_CLK_EN */
  2921. snd_soc_component_update_bits(component, LPASS_CDC_RX_RX0_RX_PATH_CTL, 0x80, 0x00);
  2922. snd_soc_component_update_bits(component, LPASS_CDC_RX_RX1_RX_PATH_CTL, 0x80, 0x00);
  2923. /* Disable HIFI_FEAT_EN bit */
  2924. snd_soc_component_update_bits(component, LPASS_CDC_RX_TOP_TOP_CFG1, 0x01, 0x00);
  2925. clk_disable_unprepare(rx_priv->hifi_fir_clk);
  2926. }
  2927. return 0;
  2928. }
  2929. static int lpass_cdc_rx_macro_fir_filter_info(struct snd_kcontrol *kcontrol,
  2930. struct snd_ctl_elem_info *ucontrol)
  2931. {
  2932. struct lpass_cdc_rx_macro_fir_filter_ctl *ctl =
  2933. (struct lpass_cdc_rx_macro_fir_filter_ctl *)kcontrol->private_value;
  2934. struct soc_bytes_ext *params = &ctl->bytes_ext;
  2935. ucontrol->type = SNDRV_CTL_ELEM_TYPE_BYTES;
  2936. ucontrol->count = params->max;
  2937. return 0;
  2938. }
  2939. static int lpass_cdc_rx_macro_fir_audio_mixer_get(struct snd_kcontrol *kcontrol,
  2940. struct snd_ctl_elem_value *ucontrol)
  2941. {
  2942. struct snd_soc_component *component =
  2943. snd_soc_kcontrol_component(kcontrol);
  2944. struct lpass_cdc_rx_macro_fir_filter_ctl *ctl =
  2945. (struct lpass_cdc_rx_macro_fir_filter_ctl *)kcontrol->private_value;
  2946. unsigned int path_idx = ctl->path_idx;
  2947. unsigned int grp_idx = ctl->grp_idx;
  2948. u32 num_coeff_grp = 0;
  2949. u32 readArray[LPASS_CDC_RX_MACRO_FIR_COEFF_ARRAY_MAX];
  2950. unsigned int coeff_idx = 0, array_idx = 0;
  2951. unsigned int copy_size;
  2952. struct device *rx_dev = NULL;
  2953. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  2954. if (!component) {
  2955. pr_err_ratelimited("%s: component is NULL\n", __func__);
  2956. return -EINVAL;
  2957. }
  2958. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  2959. return -EINVAL;
  2960. if (path_idx >= FIR_PATH_MAX) {
  2961. dev_err_ratelimited(rx_priv->dev, "%s: path_idx:%d is invalid\n",
  2962. __func__, path_idx);
  2963. return -EINVAL;
  2964. }
  2965. if (grp_idx >= GRP_MAX) {
  2966. dev_err_ratelimited(rx_priv->dev, "%s: grp_idx:%d is invalid\n",
  2967. __func__, grp_idx);
  2968. return -EINVAL;
  2969. }
  2970. num_coeff_grp = rx_priv->num_fir_coeff[path_idx][grp_idx];
  2971. readArray[array_idx++] = num_coeff_grp;
  2972. for (coeff_idx = 0; coeff_idx < num_coeff_grp; coeff_idx++) {
  2973. readArray[array_idx++] =
  2974. rx_priv->fir_coeff_array[path_idx][grp_idx][coeff_idx];
  2975. }
  2976. copy_size = array_idx;
  2977. memcpy(ucontrol->value.bytes.data, &readArray[0], sizeof(readArray[0]) * copy_size);
  2978. return 0;
  2979. }
  2980. static int set_fir_filter_coeff(struct snd_soc_component *component,
  2981. struct lpass_cdc_rx_macro_priv *rx_priv,
  2982. unsigned int path_idx)
  2983. {
  2984. int grp_idx = 0, coeff_idx = 0;
  2985. unsigned int ret = 0;
  2986. unsigned int max_coeff_num, num_coeff_grp;
  2987. unsigned int path_ctl_addr = 0, wdata0_addr = 0, coeff_addr = 0;
  2988. unsigned int fir_ctl_addr = 0;
  2989. bool all_coeff_written = true;
  2990. switch (path_idx) {
  2991. case RX0_PATH:
  2992. path_ctl_addr = LPASS_CDC_RX_RX0_RX_PATH_CTL;
  2993. wdata0_addr = LPASS_CDC_RX_RX0_RX_FIR_COEFF_WDATA0;
  2994. coeff_addr = LPASS_CDC_RX_RX0_RX_FIR_COEFF_ADDR;
  2995. fir_ctl_addr = LPASS_CDC_RX_RX0_RX_FIR_CTL;
  2996. break;
  2997. case RX1_PATH:
  2998. path_ctl_addr = LPASS_CDC_RX_RX1_RX_PATH_CTL;
  2999. wdata0_addr = LPASS_CDC_RX_RX1_RX_FIR_COEFF_WDATA0;
  3000. coeff_addr = LPASS_CDC_RX_RX1_RX_FIR_COEFF_ADDR;
  3001. fir_ctl_addr = LPASS_CDC_RX_RX1_RX_FIR_CTL;
  3002. break;
  3003. default:
  3004. dev_err_ratelimited(rx_priv->dev,
  3005. "%s: inavlid FIR ID: %d\n", __func__, path_idx);
  3006. ret = -EINVAL;
  3007. goto exit;
  3008. }
  3009. max_coeff_num = LPASS_CDC_RX_MACRO_FIR_COEFF_MAX;
  3010. for (grp_idx = 0; grp_idx < GRP_MAX; grp_idx++)
  3011. all_coeff_written = all_coeff_written &&
  3012. rx_priv->is_fir_coeff_written[path_idx][grp_idx];
  3013. if (all_coeff_written)
  3014. goto exit;
  3015. ret = lpass_cdc_rx_macro_mclk_enable(rx_priv, 1, false);
  3016. if (ret < 0) {
  3017. dev_err_ratelimited(rx_priv->dev, "%s:rx_macro_mclk enable failed\n",
  3018. __func__);
  3019. goto exit;
  3020. }
  3021. ret = clk_prepare_enable(rx_priv->hifi_fir_clk);
  3022. if (ret < 0) {
  3023. dev_err_ratelimited(rx_priv->dev, "%s:hifi_fir_clk enable failed\n",
  3024. __func__);
  3025. goto disable_mclk_block;
  3026. }
  3027. /* Enable HIFI_FEAT_EN bit */
  3028. snd_soc_component_update_bits(component, LPASS_CDC_RX_TOP_TOP_CFG1, 0x01, 0x01);
  3029. /* Enable FIR_CLK_EN, datapath reset */
  3030. snd_soc_component_update_bits(component, path_ctl_addr, 0xC0, 0xC0);
  3031. /* Enable FIR_CLK_EN, Release Reset */
  3032. snd_soc_component_update_bits(component, path_ctl_addr, 0xC0, 0x80);
  3033. /* wait for data ram initialization after enabling clock */
  3034. usleep_range(10, 11);
  3035. for (grp_idx = 0; grp_idx < GRP_MAX; grp_idx++) {
  3036. unsigned int coeff_idx_start = 0, array_idx = 0;
  3037. /* Skip if this group is written and no futher update */
  3038. if (rx_priv->is_fir_coeff_written[path_idx][grp_idx])
  3039. continue;
  3040. num_coeff_grp = rx_priv->num_fir_coeff[path_idx][grp_idx];
  3041. if (num_coeff_grp > max_coeff_num) {
  3042. dev_err_ratelimited(rx_priv->dev,
  3043. "%s: inavlid number of RX_FIR coefficients:%d"
  3044. " in path:%d, group:%d\n",
  3045. __func__, num_coeff_grp, path_idx, grp_idx);
  3046. ret = -EINVAL;
  3047. goto disable_FIR;
  3048. }
  3049. coeff_idx_start = grp_idx * max_coeff_num;
  3050. for (coeff_idx = coeff_idx_start;
  3051. coeff_idx < coeff_idx_start + num_coeff_grp / 2 * 2;
  3052. coeff_idx += 2) {
  3053. unsigned int addr_offset = coeff_idx / 2;
  3054. /* First coefficient in pair */
  3055. u32 value = rx_priv->fir_coeff_array[path_idx][grp_idx][array_idx++];
  3056. dev_dbg(rx_priv->dev, "%s: val of coeff_idx:%d, COEFF:0x%x\n",
  3057. __func__, coeff_idx, value);
  3058. snd_soc_component_write(component, wdata0_addr,
  3059. value & 0xFF);
  3060. snd_soc_component_write(component, wdata0_addr + 0x4,
  3061. (value >> 8) & 0xFF);
  3062. snd_soc_component_write(component, wdata0_addr + 0x8,
  3063. (value >> 16) & 0xFF);
  3064. snd_soc_component_write(component, wdata0_addr + 0xC,
  3065. (value >> 24) & 0xFF);
  3066. /* Second coefficient in pair */
  3067. value = rx_priv->fir_coeff_array[path_idx][grp_idx][array_idx++];
  3068. dev_dbg(rx_priv->dev, "%s: val of coeff_idx:%d, COEFF:0x%x\n",
  3069. __func__, coeff_idx, value);
  3070. snd_soc_component_write(component, wdata0_addr + 0x10,
  3071. value & 0xFF);
  3072. snd_soc_component_write(component, wdata0_addr + 0x14,
  3073. (value >> 8) & 0xFF);
  3074. snd_soc_component_write(component, wdata0_addr + 0x18,
  3075. (value >> 16) & 0xFF);
  3076. snd_soc_component_write(component, wdata0_addr + 0x1C,
  3077. (value >> 24) & 0xFF);
  3078. snd_soc_component_write(component, coeff_addr, addr_offset);
  3079. snd_soc_component_update_bits(component, fir_ctl_addr, 0x02, 0x02);
  3080. usleep_range(13, 15);
  3081. snd_soc_component_update_bits(component, fir_ctl_addr, 0x02, 0x00);
  3082. }
  3083. /* odd number of coefficients in this group, handle last one */
  3084. if (num_coeff_grp % 2 != 0) {
  3085. int addr_offset = coeff_idx / 2;
  3086. /* First coefficient in pair */
  3087. u32 value = rx_priv->fir_coeff_array[path_idx][grp_idx][array_idx++];
  3088. dev_dbg(rx_priv->dev, "%s: val of coeff_idx:%d, COEFF:0x%x\n",
  3089. __func__, coeff_idx, value);
  3090. snd_soc_component_write(component, wdata0_addr,
  3091. value & 0xFF);
  3092. snd_soc_component_write(component, wdata0_addr + 0x4,
  3093. (value >> 8) & 0xFF);
  3094. snd_soc_component_write(component, wdata0_addr + 0x8,
  3095. (value >> 16) & 0xFF);
  3096. snd_soc_component_write(component, wdata0_addr + 0xC,
  3097. (value >> 24) & 0xFF);
  3098. /* Second coefficient in pair */
  3099. dev_dbg(rx_priv->dev, "%s: val of coeff_idx:%d, COEFF:0x%x\n",
  3100. __func__, coeff_idx, 0x0);
  3101. snd_soc_component_write(component, wdata0_addr + 0x10, 0x0);
  3102. snd_soc_component_write(component, wdata0_addr + 0x14, 0x0);
  3103. snd_soc_component_write(component, wdata0_addr + 0x18, 0x0);
  3104. snd_soc_component_write(component, wdata0_addr + 0x1C, 0x0);
  3105. snd_soc_component_write(component, coeff_addr, addr_offset);
  3106. snd_soc_component_update_bits(component, fir_ctl_addr, 0x02, 0x02);
  3107. usleep_range(13, 15);
  3108. snd_soc_component_update_bits(component, fir_ctl_addr, 0x02, 0x00);
  3109. }
  3110. rx_priv->is_fir_coeff_written[path_idx][grp_idx] = true;
  3111. dev_dbg(component->dev, "%s: HIFI FIR Path:%d Group:%d coefficients"
  3112. " updated.\n",
  3113. __func__, path_idx, grp_idx);
  3114. }
  3115. disable_FIR:
  3116. /* disable FIR_CLK_EN */
  3117. snd_soc_component_update_bits(component, path_ctl_addr, 0x80, 0x00);
  3118. /* Disable HIFI_FEAT_EN bit */
  3119. snd_soc_component_update_bits(component, LPASS_CDC_RX_TOP_TOP_CFG1, 0x01, 0x00);
  3120. clk_disable_unprepare(rx_priv->hifi_fir_clk);
  3121. disable_mclk_block:
  3122. lpass_cdc_rx_macro_mclk_enable(rx_priv, 0, false);
  3123. exit:
  3124. return ret;
  3125. }
  3126. static int lpass_cdc_rx_macro_fir_audio_mixer_put(struct snd_kcontrol *kcontrol,
  3127. struct snd_ctl_elem_value *ucontrol)
  3128. {
  3129. struct snd_soc_component *component =
  3130. snd_soc_kcontrol_component(kcontrol);
  3131. struct lpass_cdc_rx_macro_fir_filter_ctl *ctl =
  3132. (struct lpass_cdc_rx_macro_fir_filter_ctl *)kcontrol->private_value;
  3133. unsigned int path_idx = ctl->path_idx;
  3134. unsigned int grp_idx = ctl->grp_idx;
  3135. u32 ele_size = 0, num_coeff_grp = 0;
  3136. u32 coeff[LPASS_CDC_RX_MACRO_FIR_COEFF_ARRAY_MAX];
  3137. int ret = 0;
  3138. unsigned int stored_total_num = 0;
  3139. unsigned int grp_iidx = 0, coeff_idx = 0, array_idx = 0;
  3140. struct device *rx_dev = NULL;
  3141. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  3142. if (!component) {
  3143. pr_err_ratelimited("%s: component is NULL\n", __func__);
  3144. return -EINVAL;
  3145. }
  3146. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  3147. return -EINVAL;
  3148. if (path_idx >= FIR_PATH_MAX) {
  3149. dev_err_ratelimited(rx_priv->dev, "%s: path_idx:%d is invalid\n",
  3150. __func__, path_idx);
  3151. return -EINVAL;
  3152. }
  3153. if (grp_idx >= GRP_MAX) {
  3154. dev_err_ratelimited(rx_priv->dev, "%s: grp_idx:%d is invalid\n",
  3155. __func__, grp_idx);
  3156. return -EINVAL;
  3157. }
  3158. if (!rx_priv->hifi_fir_clk) {
  3159. dev_dbg(rx_priv->dev, "%s: Undefined HIFI FIR Clock.\n",
  3160. __func__);
  3161. return 0;
  3162. }
  3163. if (!rx_priv->is_fir_capable) {
  3164. dev_dbg(rx_priv->dev, "%s: HIFI FIR is not supported.\n",
  3165. __func__);
  3166. return 0;
  3167. }
  3168. ele_size = sizeof(coeff[0]);
  3169. memcpy(&coeff[0], ucontrol->value.bytes.data, ele_size);
  3170. num_coeff_grp = coeff[0];
  3171. dev_dbg(rx_priv->dev, "%s: bytes.data: path:%d, grp:%d, num_coeff_grp:%d\n",
  3172. __func__, path_idx, grp_idx, num_coeff_grp);
  3173. if (num_coeff_grp > LPASS_CDC_RX_MACRO_FIR_COEFF_MAX) {
  3174. dev_err_ratelimited(rx_priv->dev,
  3175. "%s: inavlid number of RX_FIR coefficients:%d in path:%d, group:%d\n",
  3176. __func__, num_coeff_grp, path_idx, grp_idx);
  3177. rx_priv->num_fir_coeff[path_idx][grp_idx] = 0;
  3178. return -EINVAL;
  3179. } else {
  3180. rx_priv->num_fir_coeff[path_idx][grp_idx] = num_coeff_grp;
  3181. }
  3182. memcpy(&coeff[1], &(ucontrol->value.bytes.data[ele_size]), ele_size * num_coeff_grp);
  3183. /* Store the coefficients in FIR coeff array */
  3184. array_idx = 1;
  3185. for (coeff_idx = 0; coeff_idx < num_coeff_grp; coeff_idx++)
  3186. rx_priv->fir_coeff_array[path_idx][grp_idx][coeff_idx] = coeff[array_idx++];
  3187. /* Clear the written flag so this group is ready to be written */
  3188. rx_priv->is_fir_coeff_written[path_idx][grp_idx] = false;
  3189. stored_total_num = 0;
  3190. for (grp_iidx = 0; grp_iidx < GRP_MAX; grp_iidx++) {
  3191. stored_total_num += rx_priv->num_fir_coeff[path_idx][grp_iidx];
  3192. }
  3193. /* Only write coeffs if total num matches, otherwise delay the write */
  3194. if (rx_priv->fir_total_coeff_num[path_idx] == stored_total_num)
  3195. ret = set_fir_filter_coeff(component, rx_priv, path_idx);
  3196. return ret;
  3197. }
  3198. static int lpass_cdc_rx_macro_fir_coeff_num_get(struct snd_kcontrol *kcontrol,
  3199. struct snd_ctl_elem_value *ucontrol)
  3200. {
  3201. struct snd_soc_component *component =
  3202. snd_soc_kcontrol_component(kcontrol);
  3203. unsigned int path_idx = ((struct soc_multi_mixer_control *)
  3204. kcontrol->private_value)->shift;
  3205. struct device *rx_dev = NULL;
  3206. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  3207. if (!component) {
  3208. pr_err_ratelimited("%s: component is NULL\n", __func__);
  3209. return -EINVAL;
  3210. }
  3211. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  3212. return -EINVAL;
  3213. if (path_idx >= FIR_PATH_MAX) {
  3214. dev_err_ratelimited(rx_priv->dev, "%s: path_idx:%d is invalid\n",
  3215. __func__, path_idx);
  3216. return -EINVAL;
  3217. }
  3218. ucontrol->value.bytes.data[0] = rx_priv->fir_total_coeff_num[path_idx];
  3219. return 0;
  3220. }
  3221. static int lpass_cdc_rx_macro_fir_coeff_num_put(struct snd_kcontrol *kcontrol,
  3222. struct snd_ctl_elem_value *ucontrol)
  3223. {
  3224. struct snd_soc_component *component =
  3225. snd_soc_kcontrol_component(kcontrol);
  3226. unsigned int path_idx = ((struct soc_multi_mixer_control *)
  3227. kcontrol->private_value)->shift;
  3228. u8 fir_total_coeff_num = ucontrol->value.bytes.data[0];
  3229. struct device *rx_dev = NULL;
  3230. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  3231. unsigned int ret = 0;
  3232. unsigned int grp_idx, stored_total_num;
  3233. if (!component) {
  3234. pr_err_ratelimited("%s: component is NULL\n", __func__);
  3235. return -EINVAL;
  3236. }
  3237. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  3238. return -EINVAL;
  3239. if (fir_total_coeff_num > LPASS_CDC_RX_MACRO_FIR_COEFF_MAX * GRP_MAX) {
  3240. dev_err_ratelimited(rx_priv->dev,
  3241. "%s: inavlid total number of RX_FIR coefficients:%d"
  3242. " in path:%d\n",
  3243. __func__, fir_total_coeff_num, path_idx);
  3244. rx_priv->fir_total_coeff_num[path_idx] = 0;
  3245. return -EINVAL;
  3246. } else {
  3247. rx_priv->fir_total_coeff_num[path_idx] = fir_total_coeff_num;
  3248. }
  3249. dev_dbg(component->dev, "%s: HIFI FIR Path:%d total coefficients"
  3250. " number updated in private data: %d.\n",
  3251. __func__, path_idx, fir_total_coeff_num);
  3252. stored_total_num = 0;
  3253. for (grp_idx = 0; grp_idx < GRP_MAX; grp_idx++)
  3254. stored_total_num += rx_priv->num_fir_coeff[path_idx][grp_idx];
  3255. if (fir_total_coeff_num == stored_total_num)
  3256. ret = set_fir_filter_coeff(component, rx_priv, path_idx);
  3257. return ret;
  3258. }
  3259. static const struct snd_kcontrol_new lpass_cdc_rx_macro_snd_controls[] = {
  3260. SOC_SINGLE_S8_TLV("RX_RX0 Digital Volume",
  3261. LPASS_CDC_RX_RX0_RX_VOL_CTL,
  3262. -84, 40, digital_gain),
  3263. SOC_SINGLE_S8_TLV("RX_RX1 Digital Volume",
  3264. LPASS_CDC_RX_RX1_RX_VOL_CTL,
  3265. -84, 40, digital_gain),
  3266. SOC_SINGLE_S8_TLV("RX_RX2 Digital Volume",
  3267. LPASS_CDC_RX_RX2_RX_VOL_CTL,
  3268. -84, 40, digital_gain),
  3269. SOC_SINGLE_S8_TLV("RX_RX0 Mix Digital Volume",
  3270. LPASS_CDC_RX_RX0_RX_VOL_MIX_CTL,
  3271. -84, 40, digital_gain),
  3272. SOC_SINGLE_S8_TLV("RX_RX1 Mix Digital Volume",
  3273. LPASS_CDC_RX_RX1_RX_VOL_MIX_CTL,
  3274. -84, 40, digital_gain),
  3275. SOC_SINGLE_S8_TLV("RX_RX2 Mix Digital Volume",
  3276. LPASS_CDC_RX_RX2_RX_VOL_MIX_CTL,
  3277. -84, 40, digital_gain),
  3278. SOC_SINGLE_EXT("RX_COMP1 Switch", SND_SOC_NOPM, LPASS_CDC_RX_MACRO_COMP1, 1, 0,
  3279. lpass_cdc_rx_macro_get_compander, lpass_cdc_rx_macro_set_compander),
  3280. SOC_SINGLE_EXT("RX_COMP2 Switch", SND_SOC_NOPM, LPASS_CDC_RX_MACRO_COMP2, 1, 0,
  3281. lpass_cdc_rx_macro_get_compander, lpass_cdc_rx_macro_set_compander),
  3282. SOC_SINGLE_EXT("RX_HPH PCM", SND_SOC_NOPM, 0, 1, 0,
  3283. lpass_cdc_rx_macro_get_pcm_path, lpass_cdc_rx_macro_put_pcm_path),
  3284. SOC_SINGLE_EXT("RX0 FIR Coeff Num", SND_SOC_NOPM, RX0_PATH,
  3285. (LPASS_CDC_RX_MACRO_FIR_COEFF_MAX * GRP_MAX), 0,
  3286. lpass_cdc_rx_macro_fir_coeff_num_get, lpass_cdc_rx_macro_fir_coeff_num_put),
  3287. SOC_SINGLE_EXT("RX1 FIR Coeff Num", SND_SOC_NOPM, RX1_PATH,
  3288. (LPASS_CDC_RX_MACRO_FIR_COEFF_MAX * GRP_MAX), 0,
  3289. lpass_cdc_rx_macro_fir_coeff_num_get, lpass_cdc_rx_macro_fir_coeff_num_put),
  3290. SOC_ENUM_EXT("HPH Idle Detect", hph_idle_detect_enum,
  3291. lpass_cdc_rx_macro_hph_idle_detect_get, lpass_cdc_rx_macro_hph_idle_detect_put),
  3292. SOC_ENUM_EXT("RX_EAR Mode", lpass_cdc_rx_macro_ear_mode_enum,
  3293. lpass_cdc_rx_macro_get_ear_mode, lpass_cdc_rx_macro_put_ear_mode),
  3294. SOC_ENUM_EXT("RX_FIR Filter", lpass_cdc_rx_macro_fir_filter_enum,
  3295. lpass_cdc_rx_macro_fir_filter_enable_get, lpass_cdc_rx_macro_fir_filter_enable_put),
  3296. SOC_ENUM_EXT("RX_HPH HD2 Mode", lpass_cdc_rx_macro_hph_hd2_mode_enum,
  3297. lpass_cdc_rx_macro_get_hph_hd2_mode, lpass_cdc_rx_macro_put_hph_hd2_mode),
  3298. SOC_ENUM_EXT("RX_HPH_PWR_MODE", lpass_cdc_rx_macro_hph_pwr_mode_enum,
  3299. lpass_cdc_rx_macro_get_hph_pwr_mode, lpass_cdc_rx_macro_put_hph_pwr_mode),
  3300. SOC_ENUM_EXT("RX_GSM mode Enable", lpass_cdc_rx_macro_vbat_bcl_gsm_mode_enum,
  3301. lpass_cdc_rx_macro_vbat_bcl_gsm_mode_func_get,
  3302. lpass_cdc_rx_macro_vbat_bcl_gsm_mode_func_put),
  3303. SOC_SINGLE_EXT("RX_Softclip Enable", SND_SOC_NOPM, 0, 1, 0,
  3304. lpass_cdc_rx_macro_soft_clip_enable_get,
  3305. lpass_cdc_rx_macro_soft_clip_enable_put),
  3306. SOC_SINGLE_EXT("AUX_HPF Enable", SND_SOC_NOPM, 0, 1, 0,
  3307. lpass_cdc_rx_macro_aux_hpf_mode_get,
  3308. lpass_cdc_rx_macro_aux_hpf_mode_put),
  3309. SOC_SINGLE_S8_TLV("IIR0 INP0 Volume",
  3310. LPASS_CDC_RX_SIDETONE_IIR0_IIR_GAIN_B1_CTL, -84, 40,
  3311. digital_gain),
  3312. SOC_SINGLE_S8_TLV("IIR0 INP1 Volume",
  3313. LPASS_CDC_RX_SIDETONE_IIR0_IIR_GAIN_B2_CTL, -84, 40,
  3314. digital_gain),
  3315. SOC_SINGLE_S8_TLV("IIR0 INP2 Volume",
  3316. LPASS_CDC_RX_SIDETONE_IIR0_IIR_GAIN_B3_CTL, -84, 40,
  3317. digital_gain),
  3318. SOC_SINGLE_S8_TLV("IIR0 INP3 Volume",
  3319. LPASS_CDC_RX_SIDETONE_IIR0_IIR_GAIN_B4_CTL, -84, 40,
  3320. digital_gain),
  3321. SOC_SINGLE_S8_TLV("IIR1 INP0 Volume",
  3322. LPASS_CDC_RX_SIDETONE_IIR1_IIR_GAIN_B1_CTL, -84, 40,
  3323. digital_gain),
  3324. SOC_SINGLE_S8_TLV("IIR1 INP1 Volume",
  3325. LPASS_CDC_RX_SIDETONE_IIR1_IIR_GAIN_B2_CTL, -84, 40,
  3326. digital_gain),
  3327. SOC_SINGLE_S8_TLV("IIR1 INP2 Volume",
  3328. LPASS_CDC_RX_SIDETONE_IIR1_IIR_GAIN_B3_CTL, -84, 40,
  3329. digital_gain),
  3330. SOC_SINGLE_S8_TLV("IIR1 INP3 Volume",
  3331. LPASS_CDC_RX_SIDETONE_IIR1_IIR_GAIN_B4_CTL, -84, 40,
  3332. digital_gain),
  3333. SOC_SINGLE_EXT("IIR0 Enable Band1", IIR0, BAND1, 1, 0,
  3334. lpass_cdc_rx_macro_iir_enable_audio_mixer_get,
  3335. lpass_cdc_rx_macro_iir_enable_audio_mixer_put),
  3336. SOC_SINGLE_EXT("IIR0 Enable Band2", IIR0, BAND2, 1, 0,
  3337. lpass_cdc_rx_macro_iir_enable_audio_mixer_get,
  3338. lpass_cdc_rx_macro_iir_enable_audio_mixer_put),
  3339. SOC_SINGLE_EXT("IIR0 Enable Band3", IIR0, BAND3, 1, 0,
  3340. lpass_cdc_rx_macro_iir_enable_audio_mixer_get,
  3341. lpass_cdc_rx_macro_iir_enable_audio_mixer_put),
  3342. SOC_SINGLE_EXT("IIR0 Enable Band4", IIR0, BAND4, 1, 0,
  3343. lpass_cdc_rx_macro_iir_enable_audio_mixer_get,
  3344. lpass_cdc_rx_macro_iir_enable_audio_mixer_put),
  3345. SOC_SINGLE_EXT("IIR0 Enable Band5", IIR0, BAND5, 1, 0,
  3346. lpass_cdc_rx_macro_iir_enable_audio_mixer_get,
  3347. lpass_cdc_rx_macro_iir_enable_audio_mixer_put),
  3348. SOC_SINGLE_EXT("IIR1 Enable Band1", IIR1, BAND1, 1, 0,
  3349. lpass_cdc_rx_macro_iir_enable_audio_mixer_get,
  3350. lpass_cdc_rx_macro_iir_enable_audio_mixer_put),
  3351. SOC_SINGLE_EXT("IIR1 Enable Band2", IIR1, BAND2, 1, 0,
  3352. lpass_cdc_rx_macro_iir_enable_audio_mixer_get,
  3353. lpass_cdc_rx_macro_iir_enable_audio_mixer_put),
  3354. SOC_SINGLE_EXT("IIR1 Enable Band3", IIR1, BAND3, 1, 0,
  3355. lpass_cdc_rx_macro_iir_enable_audio_mixer_get,
  3356. lpass_cdc_rx_macro_iir_enable_audio_mixer_put),
  3357. SOC_SINGLE_EXT("IIR1 Enable Band4", IIR1, BAND4, 1, 0,
  3358. lpass_cdc_rx_macro_iir_enable_audio_mixer_get,
  3359. lpass_cdc_rx_macro_iir_enable_audio_mixer_put),
  3360. SOC_SINGLE_EXT("IIR1 Enable Band5", IIR1, BAND5, 1, 0,
  3361. lpass_cdc_rx_macro_iir_enable_audio_mixer_get,
  3362. lpass_cdc_rx_macro_iir_enable_audio_mixer_put),
  3363. LPASS_CDC_RX_MACRO_IIR_FILTER_CTL("IIR0 Band1", IIR0, BAND1),
  3364. LPASS_CDC_RX_MACRO_IIR_FILTER_CTL("IIR0 Band2", IIR0, BAND2),
  3365. LPASS_CDC_RX_MACRO_IIR_FILTER_CTL("IIR0 Band3", IIR0, BAND3),
  3366. LPASS_CDC_RX_MACRO_IIR_FILTER_CTL("IIR0 Band4", IIR0, BAND4),
  3367. LPASS_CDC_RX_MACRO_IIR_FILTER_CTL("IIR0 Band5", IIR0, BAND5),
  3368. LPASS_CDC_RX_MACRO_IIR_FILTER_CTL("IIR1 Band1", IIR1, BAND1),
  3369. LPASS_CDC_RX_MACRO_IIR_FILTER_CTL("IIR1 Band2", IIR1, BAND2),
  3370. LPASS_CDC_RX_MACRO_IIR_FILTER_CTL("IIR1 Band3", IIR1, BAND3),
  3371. LPASS_CDC_RX_MACRO_IIR_FILTER_CTL("IIR1 Band4", IIR1, BAND4),
  3372. LPASS_CDC_RX_MACRO_IIR_FILTER_CTL("IIR1 Band5", IIR1, BAND5),
  3373. LPASS_CDC_RX_MACRO_FIR_FILTER_CTL("RX0 FIR Coeff Group0", RX0_PATH, GRP0),
  3374. LPASS_CDC_RX_MACRO_FIR_FILTER_CTL("RX0 FIR Coeff Group1", RX0_PATH, GRP1),
  3375. LPASS_CDC_RX_MACRO_FIR_FILTER_CTL("RX1 FIR Coeff Group0", RX1_PATH, GRP0),
  3376. LPASS_CDC_RX_MACRO_FIR_FILTER_CTL("RX1 FIR Coeff Group1", RX1_PATH, GRP1),
  3377. };
  3378. static int lpass_cdc_rx_macro_enable_echo(struct snd_soc_dapm_widget *w,
  3379. struct snd_kcontrol *kcontrol,
  3380. int event)
  3381. {
  3382. struct snd_soc_component *component =
  3383. snd_soc_dapm_to_component(w->dapm);
  3384. struct device *rx_dev = NULL;
  3385. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  3386. u16 val = 0, ec_hq_reg = 0;
  3387. int ec_tx = 0;
  3388. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  3389. return -EINVAL;
  3390. dev_dbg(rx_dev, "%s %d %s\n", __func__, event, w->name);
  3391. val = snd_soc_component_read(component,
  3392. LPASS_CDC_RX_INP_MUX_RX_MIX_CFG4);
  3393. if (!(strcmp(w->name, "RX MIX TX0 MUX")))
  3394. ec_tx = ((val & 0xf0) >> 0x4) - 1;
  3395. else if (!(strcmp(w->name, "RX MIX TX1 MUX")))
  3396. ec_tx = (val & 0x0f) - 1;
  3397. val = snd_soc_component_read(component,
  3398. LPASS_CDC_RX_INP_MUX_RX_MIX_CFG5);
  3399. if (!(strcmp(w->name, "RX MIX TX2 MUX")))
  3400. ec_tx = (val & 0x0f) - 1;
  3401. if (ec_tx < 0 || (ec_tx >= LPASS_CDC_RX_MACRO_EC_MUX_MAX)) {
  3402. dev_err_ratelimited(rx_dev, "%s: EC mix control not set correctly\n",
  3403. __func__);
  3404. return -EINVAL;
  3405. }
  3406. ec_hq_reg = LPASS_CDC_RX_EC_REF_HQ0_EC_REF_HQ_PATH_CTL +
  3407. 0x40 * ec_tx;
  3408. snd_soc_component_update_bits(component, ec_hq_reg, 0x01, 0x01);
  3409. ec_hq_reg = LPASS_CDC_RX_EC_REF_HQ0_EC_REF_HQ_CFG0 +
  3410. 0x40 * ec_tx;
  3411. /* default set to 48k */
  3412. snd_soc_component_update_bits(component, ec_hq_reg, 0x1E, 0x08);
  3413. return 0;
  3414. }
  3415. static const struct snd_soc_dapm_widget lpass_cdc_rx_macro_dapm_widgets[] = {
  3416. SND_SOC_DAPM_AIF_IN("RX AIF1 PB", "RX_MACRO_AIF1 Playback", 0,
  3417. SND_SOC_NOPM, 0, 0),
  3418. SND_SOC_DAPM_AIF_IN("RX AIF2 PB", "RX_MACRO_AIF2 Playback", 0,
  3419. SND_SOC_NOPM, 0, 0),
  3420. SND_SOC_DAPM_AIF_IN("RX AIF3 PB", "RX_MACRO_AIF3 Playback", 0,
  3421. SND_SOC_NOPM, 0, 0),
  3422. SND_SOC_DAPM_AIF_IN("RX AIF4 PB", "RX_MACRO_AIF4 Playback", 0,
  3423. SND_SOC_NOPM, 0, 0),
  3424. SND_SOC_DAPM_AIF_OUT("RX AIF_ECHO", "RX_AIF_ECHO Capture", 0,
  3425. SND_SOC_NOPM, 0, 0),
  3426. SND_SOC_DAPM_AIF_IN("RX AIF5 PB", "RX_MACRO_AIF5 Playback", 0,
  3427. SND_SOC_NOPM, 0, 0),
  3428. SND_SOC_DAPM_AIF_IN("RX AIF6 PB", "RX_MACRO_AIF6 Playback", 0,
  3429. SND_SOC_NOPM, 0, 0),
  3430. LPASS_CDC_RX_MACRO_DAPM_MUX("RX_MACRO RX0 MUX", LPASS_CDC_RX_MACRO_RX0, lpass_cdc_rx_macro_rx0),
  3431. LPASS_CDC_RX_MACRO_DAPM_MUX("RX_MACRO RX1 MUX", LPASS_CDC_RX_MACRO_RX1, lpass_cdc_rx_macro_rx1),
  3432. LPASS_CDC_RX_MACRO_DAPM_MUX("RX_MACRO RX2 MUX", LPASS_CDC_RX_MACRO_RX2, lpass_cdc_rx_macro_rx2),
  3433. LPASS_CDC_RX_MACRO_DAPM_MUX("RX_MACRO RX3 MUX", LPASS_CDC_RX_MACRO_RX3, lpass_cdc_rx_macro_rx3),
  3434. LPASS_CDC_RX_MACRO_DAPM_MUX("RX_MACRO RX4 MUX", LPASS_CDC_RX_MACRO_RX4, lpass_cdc_rx_macro_rx4),
  3435. LPASS_CDC_RX_MACRO_DAPM_MUX("RX_MACRO RX5 MUX", LPASS_CDC_RX_MACRO_RX5, lpass_cdc_rx_macro_rx5),
  3436. SND_SOC_DAPM_MIXER("RX_RX0", SND_SOC_NOPM, 0, 0, NULL, 0),
  3437. SND_SOC_DAPM_MIXER("RX_RX1", SND_SOC_NOPM, 0, 0, NULL, 0),
  3438. SND_SOC_DAPM_MIXER("RX_RX2", SND_SOC_NOPM, 0, 0, NULL, 0),
  3439. SND_SOC_DAPM_MIXER("RX_RX3", SND_SOC_NOPM, 0, 0, NULL, 0),
  3440. SND_SOC_DAPM_MIXER("RX_RX4", SND_SOC_NOPM, 0, 0, NULL, 0),
  3441. SND_SOC_DAPM_MIXER("RX_RX5", SND_SOC_NOPM, 0, 0, NULL, 0),
  3442. LPASS_CDC_RX_MACRO_DAPM_MUX("IIR0 INP0 MUX", 0, iir0_inp0),
  3443. LPASS_CDC_RX_MACRO_DAPM_MUX("IIR0 INP1 MUX", 0, iir0_inp1),
  3444. LPASS_CDC_RX_MACRO_DAPM_MUX("IIR0 INP2 MUX", 0, iir0_inp2),
  3445. LPASS_CDC_RX_MACRO_DAPM_MUX("IIR0 INP3 MUX", 0, iir0_inp3),
  3446. LPASS_CDC_RX_MACRO_DAPM_MUX("IIR1 INP0 MUX", 0, iir1_inp0),
  3447. LPASS_CDC_RX_MACRO_DAPM_MUX("IIR1 INP1 MUX", 0, iir1_inp1),
  3448. LPASS_CDC_RX_MACRO_DAPM_MUX("IIR1 INP2 MUX", 0, iir1_inp2),
  3449. LPASS_CDC_RX_MACRO_DAPM_MUX("IIR1 INP3 MUX", 0, iir1_inp3),
  3450. SND_SOC_DAPM_MUX_E("RX MIX TX0 MUX", SND_SOC_NOPM,
  3451. LPASS_CDC_RX_MACRO_EC0_MUX, 0,
  3452. &rx_mix_tx0_mux, lpass_cdc_rx_macro_enable_echo,
  3453. SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD),
  3454. SND_SOC_DAPM_MUX_E("RX MIX TX1 MUX", SND_SOC_NOPM,
  3455. LPASS_CDC_RX_MACRO_EC1_MUX, 0,
  3456. &rx_mix_tx1_mux, lpass_cdc_rx_macro_enable_echo,
  3457. SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD),
  3458. SND_SOC_DAPM_MUX_E("RX MIX TX2 MUX", SND_SOC_NOPM,
  3459. LPASS_CDC_RX_MACRO_EC2_MUX, 0,
  3460. &rx_mix_tx2_mux, lpass_cdc_rx_macro_enable_echo,
  3461. SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD),
  3462. SND_SOC_DAPM_MIXER_E("IIR0", LPASS_CDC_RX_SIDETONE_IIR0_IIR_PATH_CTL,
  3463. 4, 0, NULL, 0, lpass_cdc_rx_macro_set_iir_gain,
  3464. SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_PRE_PMD),
  3465. SND_SOC_DAPM_MIXER_E("IIR1", LPASS_CDC_RX_SIDETONE_IIR1_IIR_PATH_CTL,
  3466. 4, 0, NULL, 0, lpass_cdc_rx_macro_set_iir_gain,
  3467. SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_PRE_PMD),
  3468. SND_SOC_DAPM_MIXER("SRC0", LPASS_CDC_RX_SIDETONE_SRC0_ST_SRC_PATH_CTL,
  3469. 4, 0, NULL, 0),
  3470. SND_SOC_DAPM_MIXER("SRC1", LPASS_CDC_RX_SIDETONE_SRC1_ST_SRC_PATH_CTL,
  3471. 4, 0, NULL, 0),
  3472. LPASS_CDC_RX_MACRO_DAPM_MUX("RX INT0 DEM MUX", 0, rx_int0_dem_inp),
  3473. LPASS_CDC_RX_MACRO_DAPM_MUX("RX INT1 DEM MUX", 0, rx_int1_dem_inp),
  3474. SND_SOC_DAPM_MUX_E("RX INT0_2 MUX", SND_SOC_NOPM, INTERP_HPHL, 0,
  3475. &rx_int0_2_mux, lpass_cdc_rx_macro_enable_mix_path,
  3476. SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMU |
  3477. SND_SOC_DAPM_POST_PMD),
  3478. SND_SOC_DAPM_MUX_E("RX INT1_2 MUX", SND_SOC_NOPM, INTERP_HPHR, 0,
  3479. &rx_int1_2_mux, lpass_cdc_rx_macro_enable_mix_path,
  3480. SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMU |
  3481. SND_SOC_DAPM_POST_PMD),
  3482. SND_SOC_DAPM_MUX_E("RX INT2_2 MUX", SND_SOC_NOPM, INTERP_AUX, 0,
  3483. &rx_int2_2_mux, lpass_cdc_rx_macro_enable_mix_path,
  3484. SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMU |
  3485. SND_SOC_DAPM_POST_PMD),
  3486. LPASS_CDC_RX_MACRO_DAPM_MUX("RX INT0_1 MIX1 INP0", 0, rx_int0_1_mix_inp0),
  3487. LPASS_CDC_RX_MACRO_DAPM_MUX("RX INT0_1 MIX1 INP1", 0, rx_int0_1_mix_inp1),
  3488. LPASS_CDC_RX_MACRO_DAPM_MUX("RX INT0_1 MIX1 INP2", 0, rx_int0_1_mix_inp2),
  3489. LPASS_CDC_RX_MACRO_DAPM_MUX("RX INT1_1 MIX1 INP0", 0, rx_int1_1_mix_inp0),
  3490. LPASS_CDC_RX_MACRO_DAPM_MUX("RX INT1_1 MIX1 INP1", 0, rx_int1_1_mix_inp1),
  3491. LPASS_CDC_RX_MACRO_DAPM_MUX("RX INT1_1 MIX1 INP2", 0, rx_int1_1_mix_inp2),
  3492. LPASS_CDC_RX_MACRO_DAPM_MUX("RX INT2_1 MIX1 INP0", 0, rx_int2_1_mix_inp0),
  3493. LPASS_CDC_RX_MACRO_DAPM_MUX("RX INT2_1 MIX1 INP1", 0, rx_int2_1_mix_inp1),
  3494. LPASS_CDC_RX_MACRO_DAPM_MUX("RX INT2_1 MIX1 INP2", 0, rx_int2_1_mix_inp2),
  3495. SND_SOC_DAPM_MUX_E("RX INT0_1 INTERP", SND_SOC_NOPM, INTERP_HPHL, 0,
  3496. &rx_int0_1_interp_mux, lpass_cdc_rx_macro_enable_main_path,
  3497. SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMU |
  3498. SND_SOC_DAPM_POST_PMD),
  3499. SND_SOC_DAPM_MUX_E("RX INT1_1 INTERP", SND_SOC_NOPM, INTERP_HPHR, 0,
  3500. &rx_int1_1_interp_mux, lpass_cdc_rx_macro_enable_main_path,
  3501. SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMU |
  3502. SND_SOC_DAPM_POST_PMD),
  3503. SND_SOC_DAPM_MUX_E("RX INT2_1 INTERP", SND_SOC_NOPM, INTERP_AUX, 0,
  3504. &rx_int2_1_interp_mux, lpass_cdc_rx_macro_enable_main_path,
  3505. SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMU |
  3506. SND_SOC_DAPM_POST_PMD),
  3507. LPASS_CDC_RX_MACRO_DAPM_MUX("RX INT0_2 INTERP", 0, rx_int0_2_interp),
  3508. LPASS_CDC_RX_MACRO_DAPM_MUX("RX INT1_2 INTERP", 0, rx_int1_2_interp),
  3509. LPASS_CDC_RX_MACRO_DAPM_MUX("RX INT2_2 INTERP", 0, rx_int2_2_interp),
  3510. SND_SOC_DAPM_MIXER("RX INT0_1 MIX1", SND_SOC_NOPM, 0, 0, NULL, 0),
  3511. SND_SOC_DAPM_MIXER("RX INT0 SEC MIX", SND_SOC_NOPM, 0, 0, NULL, 0),
  3512. SND_SOC_DAPM_MIXER("RX INT1_1 MIX1", SND_SOC_NOPM, 0, 0, NULL, 0),
  3513. SND_SOC_DAPM_MIXER("RX INT1 SEC MIX", SND_SOC_NOPM, 0, 0, NULL, 0),
  3514. SND_SOC_DAPM_MIXER("RX INT2_1 MIX1", SND_SOC_NOPM, 0, 0, NULL, 0),
  3515. SND_SOC_DAPM_MIXER("RX INT2 SEC MIX", SND_SOC_NOPM, 0, 0, NULL, 0),
  3516. SND_SOC_DAPM_MUX_E("RX INT0 MIX2 INP", SND_SOC_NOPM, INTERP_HPHL,
  3517. 0, &rx_int0_mix2_inp_mux, lpass_cdc_rx_macro_enable_rx_path_clk,
  3518. SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD),
  3519. SND_SOC_DAPM_MUX_E("RX INT1 MIX2 INP", SND_SOC_NOPM, INTERP_HPHR,
  3520. 0, &rx_int1_mix2_inp_mux, lpass_cdc_rx_macro_enable_rx_path_clk,
  3521. SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD),
  3522. SND_SOC_DAPM_MUX_E("RX INT2 MIX2 INP", SND_SOC_NOPM, INTERP_AUX,
  3523. 0, &rx_int2_mix2_inp_mux, lpass_cdc_rx_macro_enable_rx_path_clk,
  3524. SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD),
  3525. SND_SOC_DAPM_MIXER_E("RX INT2_1 VBAT", SND_SOC_NOPM,
  3526. 0, 0, rx_int2_1_vbat_mix_switch,
  3527. ARRAY_SIZE(rx_int2_1_vbat_mix_switch),
  3528. lpass_cdc_rx_macro_enable_vbat,
  3529. SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD),
  3530. SND_SOC_DAPM_MIXER("RX INT0 MIX2", SND_SOC_NOPM, 0, 0, NULL, 0),
  3531. SND_SOC_DAPM_MIXER("RX INT1 MIX2", SND_SOC_NOPM, 0, 0, NULL, 0),
  3532. SND_SOC_DAPM_MIXER("RX INT2 MIX2", SND_SOC_NOPM, 0, 0, NULL, 0),
  3533. SND_SOC_DAPM_OUTPUT("HPHL_OUT"),
  3534. SND_SOC_DAPM_OUTPUT("HPHR_OUT"),
  3535. SND_SOC_DAPM_OUTPUT("AUX_OUT"),
  3536. SND_SOC_DAPM_OUTPUT("PCM_OUT"),
  3537. SND_SOC_DAPM_INPUT("RX_TX DEC0_INP"),
  3538. SND_SOC_DAPM_INPUT("RX_TX DEC1_INP"),
  3539. SND_SOC_DAPM_INPUT("RX_TX DEC2_INP"),
  3540. SND_SOC_DAPM_INPUT("RX_TX DEC3_INP"),
  3541. SND_SOC_DAPM_SUPPLY_S("RX_MCLK", 0, SND_SOC_NOPM, 0, 0,
  3542. lpass_cdc_rx_macro_mclk_event, SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD),
  3543. };
  3544. static const struct snd_soc_dapm_route rx_audio_map[] = {
  3545. {"RX AIF1 PB", NULL, "RX_MCLK"},
  3546. {"RX AIF2 PB", NULL, "RX_MCLK"},
  3547. {"RX AIF3 PB", NULL, "RX_MCLK"},
  3548. {"RX AIF4 PB", NULL, "RX_MCLK"},
  3549. {"RX AIF6 PB", NULL, "RX_MCLK"},
  3550. {"PCM_OUT", NULL, "RX AIF6 PB"},
  3551. {"RX_MACRO RX0 MUX", "AIF1_PB", "RX AIF1 PB"},
  3552. {"RX_MACRO RX1 MUX", "AIF1_PB", "RX AIF1 PB"},
  3553. {"RX_MACRO RX2 MUX", "AIF1_PB", "RX AIF1 PB"},
  3554. {"RX_MACRO RX3 MUX", "AIF1_PB", "RX AIF1 PB"},
  3555. {"RX_MACRO RX4 MUX", "AIF1_PB", "RX AIF1 PB"},
  3556. {"RX_MACRO RX5 MUX", "AIF1_PB", "RX AIF1 PB"},
  3557. {"RX_MACRO RX0 MUX", "AIF2_PB", "RX AIF2 PB"},
  3558. {"RX_MACRO RX1 MUX", "AIF2_PB", "RX AIF2 PB"},
  3559. {"RX_MACRO RX2 MUX", "AIF2_PB", "RX AIF2 PB"},
  3560. {"RX_MACRO RX3 MUX", "AIF2_PB", "RX AIF2 PB"},
  3561. {"RX_MACRO RX4 MUX", "AIF2_PB", "RX AIF2 PB"},
  3562. {"RX_MACRO RX5 MUX", "AIF2_PB", "RX AIF2 PB"},
  3563. {"RX_MACRO RX0 MUX", "AIF3_PB", "RX AIF3 PB"},
  3564. {"RX_MACRO RX1 MUX", "AIF3_PB", "RX AIF3 PB"},
  3565. {"RX_MACRO RX2 MUX", "AIF3_PB", "RX AIF3 PB"},
  3566. {"RX_MACRO RX3 MUX", "AIF3_PB", "RX AIF3 PB"},
  3567. {"RX_MACRO RX4 MUX", "AIF3_PB", "RX AIF3 PB"},
  3568. {"RX_MACRO RX5 MUX", "AIF3_PB", "RX AIF3 PB"},
  3569. {"RX_MACRO RX0 MUX", "AIF4_PB", "RX AIF4 PB"},
  3570. {"RX_MACRO RX1 MUX", "AIF4_PB", "RX AIF4 PB"},
  3571. {"RX_MACRO RX2 MUX", "AIF4_PB", "RX AIF4 PB"},
  3572. {"RX_MACRO RX3 MUX", "AIF4_PB", "RX AIF4 PB"},
  3573. {"RX_MACRO RX4 MUX", "AIF4_PB", "RX AIF4 PB"},
  3574. {"RX_MACRO RX5 MUX", "AIF4_PB", "RX AIF4 PB"},
  3575. {"RX_RX0", NULL, "RX_MACRO RX0 MUX"},
  3576. {"RX_RX1", NULL, "RX_MACRO RX1 MUX"},
  3577. {"RX_RX2", NULL, "RX_MACRO RX2 MUX"},
  3578. {"RX_RX3", NULL, "RX_MACRO RX3 MUX"},
  3579. {"RX_RX4", NULL, "RX_MACRO RX4 MUX"},
  3580. {"RX_RX5", NULL, "RX_MACRO RX5 MUX"},
  3581. {"RX INT0_1 MIX1 INP0", "RX0", "RX_RX0"},
  3582. {"RX INT0_1 MIX1 INP0", "RX1", "RX_RX1"},
  3583. {"RX INT0_1 MIX1 INP0", "RX2", "RX_RX2"},
  3584. {"RX INT0_1 MIX1 INP0", "RX3", "RX_RX3"},
  3585. {"RX INT0_1 MIX1 INP0", "RX4", "RX_RX4"},
  3586. {"RX INT0_1 MIX1 INP0", "RX5", "RX_RX5"},
  3587. {"RX INT0_1 MIX1 INP0", "IIR0", "IIR0"},
  3588. {"RX INT0_1 MIX1 INP0", "IIR1", "IIR1"},
  3589. {"RX INT0_1 MIX1 INP0", "DEC0", "RX_TX DEC0_INP"},
  3590. {"RX INT0_1 MIX1 INP0", "DEC1", "RX_TX DEC1_INP"},
  3591. {"RX INT0_1 MIX1 INP1", "RX0", "RX_RX0"},
  3592. {"RX INT0_1 MIX1 INP1", "RX1", "RX_RX1"},
  3593. {"RX INT0_1 MIX1 INP1", "RX2", "RX_RX2"},
  3594. {"RX INT0_1 MIX1 INP1", "RX3", "RX_RX3"},
  3595. {"RX INT0_1 MIX1 INP1", "RX4", "RX_RX4"},
  3596. {"RX INT0_1 MIX1 INP1", "RX5", "RX_RX5"},
  3597. {"RX INT0_1 MIX1 INP1", "IIR0", "IIR0"},
  3598. {"RX INT0_1 MIX1 INP1", "IIR1", "IIR1"},
  3599. {"RX INT0_1 MIX1 INP1", "DEC0", "RX_TX DEC0_INP"},
  3600. {"RX INT0_1 MIX1 INP1", "DEC1", "RX_TX DEC1_INP"},
  3601. {"RX INT0_1 MIX1 INP2", "RX0", "RX_RX0"},
  3602. {"RX INT0_1 MIX1 INP2", "RX1", "RX_RX1"},
  3603. {"RX INT0_1 MIX1 INP2", "RX2", "RX_RX2"},
  3604. {"RX INT0_1 MIX1 INP2", "RX3", "RX_RX3"},
  3605. {"RX INT0_1 MIX1 INP2", "RX4", "RX_RX4"},
  3606. {"RX INT0_1 MIX1 INP2", "RX5", "RX_RX5"},
  3607. {"RX INT0_1 MIX1 INP2", "IIR0", "IIR0"},
  3608. {"RX INT0_1 MIX1 INP2", "IIR1", "IIR1"},
  3609. {"RX INT0_1 MIX1 INP2", "DEC0", "RX_TX DEC0_INP"},
  3610. {"RX INT0_1 MIX1 INP2", "DEC1", "RX_TX DEC1_INP"},
  3611. {"RX INT1_1 MIX1 INP0", "RX0", "RX_RX0"},
  3612. {"RX INT1_1 MIX1 INP0", "RX1", "RX_RX1"},
  3613. {"RX INT1_1 MIX1 INP0", "RX2", "RX_RX2"},
  3614. {"RX INT1_1 MIX1 INP0", "RX3", "RX_RX3"},
  3615. {"RX INT1_1 MIX1 INP0", "RX4", "RX_RX4"},
  3616. {"RX INT1_1 MIX1 INP0", "RX5", "RX_RX5"},
  3617. {"RX INT1_1 MIX1 INP0", "IIR0", "IIR0"},
  3618. {"RX INT1_1 MIX1 INP0", "IIR1", "IIR1"},
  3619. {"RX INT1_1 MIX1 INP0", "DEC0", "RX_TX DEC0_INP"},
  3620. {"RX INT1_1 MIX1 INP0", "DEC1", "RX_TX DEC1_INP"},
  3621. {"RX INT1_1 MIX1 INP1", "RX0", "RX_RX0"},
  3622. {"RX INT1_1 MIX1 INP1", "RX1", "RX_RX1"},
  3623. {"RX INT1_1 MIX1 INP1", "RX2", "RX_RX2"},
  3624. {"RX INT1_1 MIX1 INP1", "RX3", "RX_RX3"},
  3625. {"RX INT1_1 MIX1 INP1", "RX4", "RX_RX4"},
  3626. {"RX INT1_1 MIX1 INP1", "RX5", "RX_RX5"},
  3627. {"RX INT1_1 MIX1 INP1", "IIR0", "IIR0"},
  3628. {"RX INT1_1 MIX1 INP1", "IIR1", "IIR1"},
  3629. {"RX INT1_1 MIX1 INP1", "DEC0", "RX_TX DEC0_INP"},
  3630. {"RX INT1_1 MIX1 INP1", "DEC1", "RX_TX DEC1_INP"},
  3631. {"RX INT1_1 MIX1 INP2", "RX0", "RX_RX0"},
  3632. {"RX INT1_1 MIX1 INP2", "RX1", "RX_RX1"},
  3633. {"RX INT1_1 MIX1 INP2", "RX2", "RX_RX2"},
  3634. {"RX INT1_1 MIX1 INP2", "RX3", "RX_RX3"},
  3635. {"RX INT1_1 MIX1 INP2", "RX4", "RX_RX4"},
  3636. {"RX INT1_1 MIX1 INP2", "RX5", "RX_RX5"},
  3637. {"RX INT1_1 MIX1 INP2", "IIR0", "IIR0"},
  3638. {"RX INT1_1 MIX1 INP2", "IIR1", "IIR1"},
  3639. {"RX INT1_1 MIX1 INP2", "DEC0", "RX_TX DEC0_INP"},
  3640. {"RX INT1_1 MIX1 INP2", "DEC1", "RX_TX DEC1_INP"},
  3641. {"RX INT2_1 MIX1 INP0", "RX0", "RX_RX0"},
  3642. {"RX INT2_1 MIX1 INP0", "RX1", "RX_RX1"},
  3643. {"RX INT2_1 MIX1 INP0", "RX2", "RX_RX2"},
  3644. {"RX INT2_1 MIX1 INP0", "RX3", "RX_RX3"},
  3645. {"RX INT2_1 MIX1 INP0", "RX4", "RX_RX4"},
  3646. {"RX INT2_1 MIX1 INP0", "RX5", "RX_RX5"},
  3647. {"RX INT2_1 MIX1 INP0", "IIR0", "IIR0"},
  3648. {"RX INT2_1 MIX1 INP0", "IIR1", "IIR1"},
  3649. {"RX INT2_1 MIX1 INP0", "DEC0", "RX_TX DEC0_INP"},
  3650. {"RX INT2_1 MIX1 INP0", "DEC1", "RX_TX DEC1_INP"},
  3651. {"RX INT2_1 MIX1 INP1", "RX0", "RX_RX0"},
  3652. {"RX INT2_1 MIX1 INP1", "RX1", "RX_RX1"},
  3653. {"RX INT2_1 MIX1 INP1", "RX2", "RX_RX2"},
  3654. {"RX INT2_1 MIX1 INP1", "RX3", "RX_RX3"},
  3655. {"RX INT2_1 MIX1 INP1", "RX4", "RX_RX4"},
  3656. {"RX INT2_1 MIX1 INP1", "RX5", "RX_RX5"},
  3657. {"RX INT2_1 MIX1 INP1", "IIR0", "IIR0"},
  3658. {"RX INT2_1 MIX1 INP1", "IIR1", "IIR1"},
  3659. {"RX INT2_1 MIX1 INP1", "DEC0", "RX_TX DEC0_INP"},
  3660. {"RX INT2_1 MIX1 INP1", "DEC1", "RX_TX DEC1_INP"},
  3661. {"RX INT2_1 MIX1 INP2", "RX0", "RX_RX0"},
  3662. {"RX INT2_1 MIX1 INP2", "RX1", "RX_RX1"},
  3663. {"RX INT2_1 MIX1 INP2", "RX2", "RX_RX2"},
  3664. {"RX INT2_1 MIX1 INP2", "RX3", "RX_RX3"},
  3665. {"RX INT2_1 MIX1 INP2", "RX4", "RX_RX4"},
  3666. {"RX INT2_1 MIX1 INP2", "RX5", "RX_RX5"},
  3667. {"RX INT2_1 MIX1 INP2", "IIR0", "IIR0"},
  3668. {"RX INT2_1 MIX1 INP2", "IIR1", "IIR1"},
  3669. {"RX INT2_1 MIX1 INP2", "DEC0", "RX_TX DEC0_INP"},
  3670. {"RX INT2_1 MIX1 INP2", "DEC1", "RX_TX DEC1_INP"},
  3671. {"RX INT0_1 MIX1", NULL, "RX INT0_1 MIX1 INP0"},
  3672. {"RX INT0_1 MIX1", NULL, "RX INT0_1 MIX1 INP1"},
  3673. {"RX INT0_1 MIX1", NULL, "RX INT0_1 MIX1 INP2"},
  3674. {"RX INT1_1 MIX1", NULL, "RX INT1_1 MIX1 INP0"},
  3675. {"RX INT1_1 MIX1", NULL, "RX INT1_1 MIX1 INP1"},
  3676. {"RX INT1_1 MIX1", NULL, "RX INT1_1 MIX1 INP2"},
  3677. {"RX INT2_1 MIX1", NULL, "RX INT2_1 MIX1 INP0"},
  3678. {"RX INT2_1 MIX1", NULL, "RX INT2_1 MIX1 INP1"},
  3679. {"RX INT2_1 MIX1", NULL, "RX INT2_1 MIX1 INP2"},
  3680. {"RX MIX TX0 MUX", "RX_MIX0", "RX INT0 SEC MIX"},
  3681. {"RX MIX TX0 MUX", "RX_MIX1", "RX INT1 SEC MIX"},
  3682. {"RX MIX TX0 MUX", "RX_MIX2", "RX INT2 SEC MIX"},
  3683. {"RX MIX TX1 MUX", "RX_MIX0", "RX INT0 SEC MIX"},
  3684. {"RX MIX TX1 MUX", "RX_MIX1", "RX INT1 SEC MIX"},
  3685. {"RX MIX TX1 MUX", "RX_MIX2", "RX INT2 SEC MIX"},
  3686. {"RX MIX TX2 MUX", "RX_MIX0", "RX INT0 SEC MIX"},
  3687. {"RX MIX TX2 MUX", "RX_MIX1", "RX INT1 SEC MIX"},
  3688. {"RX MIX TX2 MUX", "RX_MIX2", "RX INT2 SEC MIX"},
  3689. {"RX AIF_ECHO", NULL, "RX MIX TX0 MUX"},
  3690. {"RX AIF_ECHO", NULL, "RX MIX TX1 MUX"},
  3691. {"RX AIF_ECHO", NULL, "RX MIX TX2 MUX"},
  3692. {"RX AIF_ECHO", NULL, "RX_MCLK"},
  3693. /* Mixing path INT0 */
  3694. {"RX INT0_2 MUX", "RX0", "RX_RX0"},
  3695. {"RX INT0_2 MUX", "RX1", "RX_RX1"},
  3696. {"RX INT0_2 MUX", "RX2", "RX_RX2"},
  3697. {"RX INT0_2 MUX", "RX3", "RX_RX3"},
  3698. {"RX INT0_2 MUX", "RX4", "RX_RX4"},
  3699. {"RX INT0_2 MUX", "RX5", "RX_RX5"},
  3700. {"RX INT0_2 INTERP", NULL, "RX INT0_2 MUX"},
  3701. {"RX INT0 SEC MIX", NULL, "RX INT0_2 INTERP"},
  3702. /* Mixing path INT1 */
  3703. {"RX INT1_2 MUX", "RX0", "RX_RX0"},
  3704. {"RX INT1_2 MUX", "RX1", "RX_RX1"},
  3705. {"RX INT1_2 MUX", "RX2", "RX_RX2"},
  3706. {"RX INT1_2 MUX", "RX3", "RX_RX3"},
  3707. {"RX INT1_2 MUX", "RX4", "RX_RX4"},
  3708. {"RX INT1_2 MUX", "RX5", "RX_RX5"},
  3709. {"RX INT1_2 INTERP", NULL, "RX INT1_2 MUX"},
  3710. {"RX INT1 SEC MIX", NULL, "RX INT1_2 INTERP"},
  3711. /* Mixing path INT2 */
  3712. {"RX INT2_2 MUX", "RX0", "RX_RX0"},
  3713. {"RX INT2_2 MUX", "RX1", "RX_RX1"},
  3714. {"RX INT2_2 MUX", "RX2", "RX_RX2"},
  3715. {"RX INT2_2 MUX", "RX3", "RX_RX3"},
  3716. {"RX INT2_2 MUX", "RX4", "RX_RX4"},
  3717. {"RX INT2_2 MUX", "RX5", "RX_RX5"},
  3718. {"RX INT2_2 INTERP", NULL, "RX INT2_2 MUX"},
  3719. {"RX INT2 SEC MIX", NULL, "RX INT2_2 INTERP"},
  3720. {"RX INT0_1 INTERP", NULL, "RX INT0_1 MIX1"},
  3721. {"RX INT0 SEC MIX", NULL, "RX INT0_1 INTERP"},
  3722. {"RX INT0 MIX2", NULL, "RX INT0 SEC MIX"},
  3723. {"RX INT0 MIX2", NULL, "RX INT0 MIX2 INP"},
  3724. {"RX INT0 DEM MUX", "CLSH_DSM_OUT", "RX INT0 MIX2"},
  3725. {"HPHL_OUT", NULL, "RX INT0 DEM MUX"},
  3726. {"HPHL_OUT", NULL, "RX_MCLK"},
  3727. {"RX INT1_1 INTERP", NULL, "RX INT1_1 MIX1"},
  3728. {"RX INT1 SEC MIX", NULL, "RX INT1_1 INTERP"},
  3729. {"RX INT1 MIX2", NULL, "RX INT1 SEC MIX"},
  3730. {"RX INT1 MIX2", NULL, "RX INT1 MIX2 INP"},
  3731. {"RX INT1 DEM MUX", "CLSH_DSM_OUT", "RX INT1 MIX2"},
  3732. {"HPHR_OUT", NULL, "RX INT1 DEM MUX"},
  3733. {"HPHR_OUT", NULL, "RX_MCLK"},
  3734. {"RX INT2_1 INTERP", NULL, "RX INT2_1 MIX1"},
  3735. {"RX INT2_1 VBAT", "RX AUX VBAT Enable", "RX INT2_1 INTERP"},
  3736. {"RX INT2 SEC MIX", NULL, "RX INT2_1 VBAT"},
  3737. {"RX INT2 SEC MIX", NULL, "RX INT2_1 INTERP"},
  3738. {"RX INT2 MIX2", NULL, "RX INT2 SEC MIX"},
  3739. {"RX INT2 MIX2", NULL, "RX INT2 MIX2 INP"},
  3740. {"AUX_OUT", NULL, "RX INT2 MIX2"},
  3741. {"AUX_OUT", NULL, "RX_MCLK"},
  3742. {"IIR0", NULL, "RX_MCLK"},
  3743. {"IIR0", NULL, "IIR0 INP0 MUX"},
  3744. {"IIR0 INP0 MUX", "DEC0", "RX_TX DEC0_INP"},
  3745. {"IIR0 INP0 MUX", "DEC1", "RX_TX DEC1_INP"},
  3746. {"IIR0 INP0 MUX", "DEC2", "RX_TX DEC2_INP"},
  3747. {"IIR0 INP0 MUX", "DEC3", "RX_TX DEC3_INP"},
  3748. {"IIR0 INP0 MUX", "RX0", "RX_RX0"},
  3749. {"IIR0 INP0 MUX", "RX1", "RX_RX1"},
  3750. {"IIR0 INP0 MUX", "RX2", "RX_RX2"},
  3751. {"IIR0 INP0 MUX", "RX3", "RX_RX3"},
  3752. {"IIR0 INP0 MUX", "RX4", "RX_RX4"},
  3753. {"IIR0 INP0 MUX", "RX5", "RX_RX5"},
  3754. {"IIR0", NULL, "IIR0 INP1 MUX"},
  3755. {"IIR0 INP1 MUX", "DEC0", "RX_TX DEC0_INP"},
  3756. {"IIR0 INP1 MUX", "DEC1", "RX_TX DEC1_INP"},
  3757. {"IIR0 INP1 MUX", "DEC2", "RX_TX DEC2_INP"},
  3758. {"IIR0 INP1 MUX", "DEC3", "RX_TX DEC3_INP"},
  3759. {"IIR0 INP1 MUX", "RX0", "RX_RX0"},
  3760. {"IIR0 INP1 MUX", "RX1", "RX_RX1"},
  3761. {"IIR0 INP1 MUX", "RX2", "RX_RX2"},
  3762. {"IIR0 INP1 MUX", "RX3", "RX_RX3"},
  3763. {"IIR0 INP1 MUX", "RX4", "RX_RX4"},
  3764. {"IIR0 INP1 MUX", "RX5", "RX_RX5"},
  3765. {"IIR0", NULL, "IIR0 INP2 MUX"},
  3766. {"IIR0 INP2 MUX", "DEC0", "RX_TX DEC0_INP"},
  3767. {"IIR0 INP2 MUX", "DEC1", "RX_TX DEC1_INP"},
  3768. {"IIR0 INP2 MUX", "DEC2", "RX_TX DEC2_INP"},
  3769. {"IIR0 INP2 MUX", "DEC3", "RX_TX DEC3_INP"},
  3770. {"IIR0 INP2 MUX", "RX0", "RX_RX0"},
  3771. {"IIR0 INP2 MUX", "RX1", "RX_RX1"},
  3772. {"IIR0 INP2 MUX", "RX2", "RX_RX2"},
  3773. {"IIR0 INP2 MUX", "RX3", "RX_RX3"},
  3774. {"IIR0 INP2 MUX", "RX4", "RX_RX4"},
  3775. {"IIR0 INP2 MUX", "RX5", "RX_RX5"},
  3776. {"IIR0", NULL, "IIR0 INP3 MUX"},
  3777. {"IIR0 INP3 MUX", "DEC0", "RX_TX DEC0_INP"},
  3778. {"IIR0 INP3 MUX", "DEC1", "RX_TX DEC1_INP"},
  3779. {"IIR0 INP3 MUX", "DEC2", "RX_TX DEC2_INP"},
  3780. {"IIR0 INP3 MUX", "DEC3", "RX_TX DEC3_INP"},
  3781. {"IIR0 INP3 MUX", "RX0", "RX_RX0"},
  3782. {"IIR0 INP3 MUX", "RX1", "RX_RX1"},
  3783. {"IIR0 INP3 MUX", "RX2", "RX_RX2"},
  3784. {"IIR0 INP3 MUX", "RX3", "RX_RX3"},
  3785. {"IIR0 INP3 MUX", "RX4", "RX_RX4"},
  3786. {"IIR0 INP3 MUX", "RX5", "RX_RX5"},
  3787. {"IIR1", NULL, "RX_MCLK"},
  3788. {"IIR1", NULL, "IIR1 INP0 MUX"},
  3789. {"IIR1 INP0 MUX", "DEC0", "RX_TX DEC0_INP"},
  3790. {"IIR1 INP0 MUX", "DEC1", "RX_TX DEC1_INP"},
  3791. {"IIR1 INP0 MUX", "DEC2", "RX_TX DEC2_INP"},
  3792. {"IIR1 INP0 MUX", "DEC3", "RX_TX DEC3_INP"},
  3793. {"IIR1 INP0 MUX", "RX0", "RX_RX0"},
  3794. {"IIR1 INP0 MUX", "RX1", "RX_RX1"},
  3795. {"IIR1 INP0 MUX", "RX2", "RX_RX2"},
  3796. {"IIR1 INP0 MUX", "RX3", "RX_RX3"},
  3797. {"IIR1 INP0 MUX", "RX4", "RX_RX4"},
  3798. {"IIR1 INP0 MUX", "RX5", "RX_RX5"},
  3799. {"IIR1", NULL, "IIR1 INP1 MUX"},
  3800. {"IIR1 INP1 MUX", "DEC0", "RX_TX DEC0_INP"},
  3801. {"IIR1 INP1 MUX", "DEC1", "RX_TX DEC1_INP"},
  3802. {"IIR1 INP1 MUX", "DEC2", "RX_TX DEC2_INP"},
  3803. {"IIR1 INP1 MUX", "DEC3", "RX_TX DEC3_INP"},
  3804. {"IIR1 INP1 MUX", "RX0", "RX_RX0"},
  3805. {"IIR1 INP1 MUX", "RX1", "RX_RX1"},
  3806. {"IIR1 INP1 MUX", "RX2", "RX_RX2"},
  3807. {"IIR1 INP1 MUX", "RX3", "RX_RX3"},
  3808. {"IIR1 INP1 MUX", "RX4", "RX_RX4"},
  3809. {"IIR1 INP1 MUX", "RX5", "RX_RX5"},
  3810. {"IIR1", NULL, "IIR1 INP2 MUX"},
  3811. {"IIR1 INP2 MUX", "DEC0", "RX_TX DEC0_INP"},
  3812. {"IIR1 INP2 MUX", "DEC1", "RX_TX DEC1_INP"},
  3813. {"IIR1 INP2 MUX", "DEC2", "RX_TX DEC2_INP"},
  3814. {"IIR1 INP2 MUX", "DEC3", "RX_TX DEC3_INP"},
  3815. {"IIR1 INP2 MUX", "RX0", "RX_RX0"},
  3816. {"IIR1 INP2 MUX", "RX1", "RX_RX1"},
  3817. {"IIR1 INP2 MUX", "RX2", "RX_RX2"},
  3818. {"IIR1 INP2 MUX", "RX3", "RX_RX3"},
  3819. {"IIR1 INP2 MUX", "RX4", "RX_RX4"},
  3820. {"IIR1 INP2 MUX", "RX5", "RX_RX5"},
  3821. {"IIR1", NULL, "IIR1 INP3 MUX"},
  3822. {"IIR1 INP3 MUX", "DEC0", "RX_TX DEC0_INP"},
  3823. {"IIR1 INP3 MUX", "DEC1", "RX_TX DEC1_INP"},
  3824. {"IIR1 INP3 MUX", "DEC2", "RX_TX DEC2_INP"},
  3825. {"IIR1 INP3 MUX", "DEC3", "RX_TX DEC3_INP"},
  3826. {"IIR1 INP3 MUX", "RX0", "RX_RX0"},
  3827. {"IIR1 INP3 MUX", "RX1", "RX_RX1"},
  3828. {"IIR1 INP3 MUX", "RX2", "RX_RX2"},
  3829. {"IIR1 INP3 MUX", "RX3", "RX_RX3"},
  3830. {"IIR1 INP3 MUX", "RX4", "RX_RX4"},
  3831. {"IIR1 INP3 MUX", "RX5", "RX_RX5"},
  3832. {"SRC0", NULL, "IIR0"},
  3833. {"SRC1", NULL, "IIR1"},
  3834. {"RX INT0 MIX2 INP", "SRC0", "SRC0"},
  3835. {"RX INT0 MIX2 INP", "SRC1", "SRC1"},
  3836. {"RX INT1 MIX2 INP", "SRC0", "SRC0"},
  3837. {"RX INT1 MIX2 INP", "SRC1", "SRC1"},
  3838. {"RX INT2 MIX2 INP", "SRC0", "SRC0"},
  3839. {"RX INT2 MIX2 INP", "SRC1", "SRC1"},
  3840. };
  3841. static int lpass_cdc_rx_macro_core_vote(void *handle, bool enable)
  3842. {
  3843. int rc = 0;
  3844. struct lpass_cdc_rx_macro_priv *rx_priv = (struct lpass_cdc_rx_macro_priv *) handle;
  3845. if (rx_priv == NULL) {
  3846. pr_err_ratelimited("%s: rx priv data is NULL\n", __func__);
  3847. return -EINVAL;
  3848. }
  3849. if (!rx_priv->pre_dev_up && enable) {
  3850. pr_debug("%s: adsp is not up\n", __func__);
  3851. return -EINVAL;
  3852. }
  3853. if (enable) {
  3854. pm_runtime_get_sync(rx_priv->dev);
  3855. if (lpass_cdc_check_core_votes(rx_priv->dev))
  3856. rc = 0;
  3857. else
  3858. rc = -ENOTSYNC;
  3859. } else {
  3860. pm_runtime_put_autosuspend(rx_priv->dev);
  3861. pm_runtime_mark_last_busy(rx_priv->dev);
  3862. }
  3863. return rc;
  3864. }
  3865. static int rx_swrm_clock(void *handle, bool enable)
  3866. {
  3867. struct lpass_cdc_rx_macro_priv *rx_priv = (struct lpass_cdc_rx_macro_priv *) handle;
  3868. struct regmap *regmap = dev_get_regmap(rx_priv->dev->parent, NULL);
  3869. int ret = 0;
  3870. if (regmap == NULL) {
  3871. dev_err_ratelimited(rx_priv->dev, "%s: regmap is NULL\n", __func__);
  3872. return -EINVAL;
  3873. }
  3874. mutex_lock(&rx_priv->swr_clk_lock);
  3875. dev_dbg(rx_priv->dev, "%s: swrm clock %s\n",
  3876. __func__, (enable ? "enable" : "disable"));
  3877. if (enable) {
  3878. pm_runtime_get_sync(rx_priv->dev);
  3879. if (rx_priv->swr_clk_users == 0) {
  3880. ret = msm_cdc_pinctrl_select_active_state(
  3881. rx_priv->rx_swr_gpio_p);
  3882. if (ret < 0) {
  3883. dev_err_ratelimited(rx_priv->dev,
  3884. "%s: rx swr pinctrl enable failed\n",
  3885. __func__);
  3886. pm_runtime_mark_last_busy(rx_priv->dev);
  3887. pm_runtime_put_autosuspend(rx_priv->dev);
  3888. goto exit;
  3889. }
  3890. ret = lpass_cdc_rx_macro_mclk_enable(rx_priv, 1, true);
  3891. if (ret < 0) {
  3892. msm_cdc_pinctrl_select_sleep_state(
  3893. rx_priv->rx_swr_gpio_p);
  3894. dev_err_ratelimited(rx_priv->dev,
  3895. "%s: rx request clock enable failed\n",
  3896. __func__);
  3897. pm_runtime_mark_last_busy(rx_priv->dev);
  3898. pm_runtime_put_autosuspend(rx_priv->dev);
  3899. goto exit;
  3900. }
  3901. if (rx_priv->reset_swr)
  3902. regmap_update_bits(regmap,
  3903. LPASS_CDC_RX_CLK_RST_CTRL_SWR_CONTROL,
  3904. 0x02, 0x02);
  3905. regmap_update_bits(regmap,
  3906. LPASS_CDC_RX_CLK_RST_CTRL_SWR_CONTROL,
  3907. 0x01, 0x01);
  3908. if (rx_priv->reset_swr)
  3909. regmap_update_bits(regmap,
  3910. LPASS_CDC_RX_CLK_RST_CTRL_SWR_CONTROL,
  3911. 0x02, 0x00);
  3912. rx_priv->reset_swr = false;
  3913. }
  3914. pm_runtime_mark_last_busy(rx_priv->dev);
  3915. pm_runtime_put_autosuspend(rx_priv->dev);
  3916. rx_priv->swr_clk_users++;
  3917. } else {
  3918. if (rx_priv->swr_clk_users <= 0) {
  3919. dev_err_ratelimited(rx_priv->dev,
  3920. "%s: rx swrm clock users already reset\n",
  3921. __func__);
  3922. rx_priv->swr_clk_users = 0;
  3923. goto exit;
  3924. }
  3925. rx_priv->swr_clk_users--;
  3926. if (rx_priv->swr_clk_users == 0) {
  3927. regmap_update_bits(regmap,
  3928. LPASS_CDC_RX_CLK_RST_CTRL_SWR_CONTROL,
  3929. 0x01, 0x00);
  3930. lpass_cdc_rx_macro_mclk_enable(rx_priv, 0, true);
  3931. ret = msm_cdc_pinctrl_select_sleep_state(
  3932. rx_priv->rx_swr_gpio_p);
  3933. if (ret < 0) {
  3934. dev_err_ratelimited(rx_priv->dev,
  3935. "%s: rx swr pinctrl disable failed\n",
  3936. __func__);
  3937. goto exit;
  3938. }
  3939. }
  3940. }
  3941. dev_dbg(rx_priv->dev, "%s: swrm clock users %d\n",
  3942. __func__, rx_priv->swr_clk_users);
  3943. exit:
  3944. mutex_unlock(&rx_priv->swr_clk_lock);
  3945. return ret;
  3946. }
  3947. /**
  3948. * lpass_cdc_rx_set_fir_capability - Set RX HIFI FIR Filter capability
  3949. *
  3950. * @component: Codec component ptr.
  3951. * @capable: if the target have RX HIFI FIR available.
  3952. *
  3953. * Set RX HIFI FIR capability, stored the capability into RX macro private data.
  3954. */
  3955. int lpass_cdc_rx_set_fir_capability(struct snd_soc_component *component, bool capable)
  3956. {
  3957. struct device *rx_dev = NULL;
  3958. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  3959. if (!component) {
  3960. pr_err_ratelimited("%s: component is NULL\n", __func__);
  3961. return -EINVAL;
  3962. }
  3963. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  3964. return -EINVAL;
  3965. rx_priv->is_fir_capable = capable;
  3966. return 0;
  3967. }
  3968. EXPORT_SYMBOL(lpass_cdc_rx_set_fir_capability);
  3969. static const struct lpass_cdc_rx_macro_reg_mask_val
  3970. lpass_cdc_rx_macro_reg_init[] = {
  3971. {LPASS_CDC_RX_RX0_RX_PATH_SEC7, 0x07, 0x02},
  3972. {LPASS_CDC_RX_RX1_RX_PATH_SEC7, 0x07, 0x02},
  3973. {LPASS_CDC_RX_RX2_RX_PATH_SEC7, 0x07, 0x02},
  3974. {LPASS_CDC_RX_RX0_RX_PATH_CFG3, 0x03, 0x02},
  3975. {LPASS_CDC_RX_RX1_RX_PATH_CFG3, 0x03, 0x02},
  3976. {LPASS_CDC_RX_RX2_RX_PATH_CFG3, 0x03, 0x02},
  3977. };
  3978. static int lpass_cdc_rx_macro_init(struct snd_soc_component *component)
  3979. {
  3980. struct snd_soc_dapm_context *dapm =
  3981. snd_soc_component_get_dapm(component);
  3982. int ret = 0;
  3983. struct device *rx_dev = NULL;
  3984. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  3985. int i;
  3986. rx_dev = lpass_cdc_get_device_ptr(component->dev, RX_MACRO);
  3987. if (!rx_dev) {
  3988. dev_err(component->dev,
  3989. "%s: null device for macro!\n", __func__);
  3990. return -EINVAL;
  3991. }
  3992. rx_priv = dev_get_drvdata(rx_dev);
  3993. if (!rx_priv) {
  3994. dev_err(component->dev,
  3995. "%s: priv is null for macro!\n", __func__);
  3996. return -EINVAL;
  3997. }
  3998. ret = snd_soc_dapm_new_controls(dapm, lpass_cdc_rx_macro_dapm_widgets,
  3999. ARRAY_SIZE(lpass_cdc_rx_macro_dapm_widgets));
  4000. if (ret < 0) {
  4001. dev_err(rx_dev, "%s: failed to add controls\n", __func__);
  4002. return ret;
  4003. }
  4004. ret = snd_soc_dapm_add_routes(dapm, rx_audio_map,
  4005. ARRAY_SIZE(rx_audio_map));
  4006. if (ret < 0) {
  4007. dev_err(rx_dev, "%s: failed to add routes\n", __func__);
  4008. return ret;
  4009. }
  4010. ret = snd_soc_dapm_new_widgets(dapm->card);
  4011. if (ret < 0) {
  4012. dev_err(rx_dev, "%s: failed to add widgets\n", __func__);
  4013. return ret;
  4014. }
  4015. ret = snd_soc_add_component_controls(component, lpass_cdc_rx_macro_snd_controls,
  4016. ARRAY_SIZE(lpass_cdc_rx_macro_snd_controls));
  4017. if (ret < 0) {
  4018. dev_err(rx_dev, "%s: failed to add snd_ctls\n", __func__);
  4019. return ret;
  4020. }
  4021. rx_priv->dev_up = true;
  4022. rx_priv->rx0_gain_val = 0;
  4023. rx_priv->rx1_gain_val = 0;
  4024. snd_soc_dapm_ignore_suspend(dapm, "RX_MACRO_AIF1 Playback");
  4025. snd_soc_dapm_ignore_suspend(dapm, "RX_MACRO_AIF2 Playback");
  4026. snd_soc_dapm_ignore_suspend(dapm, "RX_MACRO_AIF3 Playback");
  4027. snd_soc_dapm_ignore_suspend(dapm, "RX_MACRO_AIF4 Playback");
  4028. snd_soc_dapm_ignore_suspend(dapm, "RX_MACRO_AIF5 Playback");
  4029. snd_soc_dapm_ignore_suspend(dapm, "RX_MACRO_AIF6 Playback");
  4030. snd_soc_dapm_ignore_suspend(dapm, "HPHL_OUT");
  4031. snd_soc_dapm_ignore_suspend(dapm, "HPHR_OUT");
  4032. snd_soc_dapm_ignore_suspend(dapm, "AUX_OUT");
  4033. snd_soc_dapm_ignore_suspend(dapm, "PCM_OUT");
  4034. snd_soc_dapm_ignore_suspend(dapm, "RX_TX DEC0_INP");
  4035. snd_soc_dapm_ignore_suspend(dapm, "RX_TX DEC1_INP");
  4036. snd_soc_dapm_ignore_suspend(dapm, "RX_TX DEC2_INP");
  4037. snd_soc_dapm_ignore_suspend(dapm, "RX_TX DEC3_INP");
  4038. snd_soc_dapm_sync(dapm);
  4039. for (i = 0; i < ARRAY_SIZE(lpass_cdc_rx_macro_reg_init); i++)
  4040. snd_soc_component_update_bits(component,
  4041. lpass_cdc_rx_macro_reg_init[i].reg,
  4042. lpass_cdc_rx_macro_reg_init[i].mask,
  4043. lpass_cdc_rx_macro_reg_init[i].val);
  4044. rx_priv->component = component;
  4045. return 0;
  4046. }
  4047. static int lpass_cdc_rx_macro_deinit(struct snd_soc_component *component)
  4048. {
  4049. struct device *rx_dev = NULL;
  4050. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  4051. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  4052. return -EINVAL;
  4053. rx_priv->component = NULL;
  4054. return 0;
  4055. }
  4056. static void lpass_cdc_rx_macro_add_child_devices(struct work_struct *work)
  4057. {
  4058. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  4059. struct platform_device *pdev = NULL;
  4060. struct device_node *node = NULL;
  4061. struct rx_swr_ctrl_data *swr_ctrl_data = NULL, *temp = NULL;
  4062. int ret = 0;
  4063. u16 count = 0, ctrl_num = 0;
  4064. struct rx_swr_ctrl_platform_data *platdata = NULL;
  4065. char plat_dev_name[RX_SWR_STRING_LEN] = "";
  4066. bool rx_swr_master_node = false;
  4067. rx_priv = container_of(work, struct lpass_cdc_rx_macro_priv,
  4068. lpass_cdc_rx_macro_add_child_devices_work);
  4069. if (!rx_priv) {
  4070. pr_err("%s: Memory for rx_priv does not exist\n",
  4071. __func__);
  4072. return;
  4073. }
  4074. if (!rx_priv->dev) {
  4075. pr_err("%s: RX device does not exist\n", __func__);
  4076. return;
  4077. }
  4078. if(!rx_priv->dev->of_node) {
  4079. dev_err(rx_priv->dev,
  4080. "%s: DT node for RX dev does not exist\n", __func__);
  4081. return;
  4082. }
  4083. platdata = &rx_priv->swr_plat_data;
  4084. rx_priv->child_count = 0;
  4085. for_each_available_child_of_node(rx_priv->dev->of_node, node) {
  4086. rx_swr_master_node = false;
  4087. if (strnstr(node->name, "rx_swr_master",
  4088. strlen("rx_swr_master")) != NULL)
  4089. rx_swr_master_node = true;
  4090. if(rx_swr_master_node)
  4091. strlcpy(plat_dev_name, "rx_swr_ctrl",
  4092. (RX_SWR_STRING_LEN - 1));
  4093. else
  4094. strlcpy(plat_dev_name, node->name,
  4095. (RX_SWR_STRING_LEN - 1));
  4096. pdev = platform_device_alloc(plat_dev_name, -1);
  4097. if (!pdev) {
  4098. dev_err(rx_priv->dev, "%s: pdev memory alloc failed\n",
  4099. __func__);
  4100. ret = -ENOMEM;
  4101. goto err;
  4102. }
  4103. pdev->dev.parent = rx_priv->dev;
  4104. pdev->dev.of_node = node;
  4105. if (rx_swr_master_node) {
  4106. ret = platform_device_add_data(pdev, platdata,
  4107. sizeof(*platdata));
  4108. if (ret) {
  4109. dev_err(&pdev->dev,
  4110. "%s: cannot add plat data ctrl:%d\n",
  4111. __func__, ctrl_num);
  4112. goto fail_pdev_add;
  4113. }
  4114. temp = krealloc(swr_ctrl_data,
  4115. (ctrl_num + 1) * sizeof(
  4116. struct rx_swr_ctrl_data),
  4117. GFP_KERNEL);
  4118. if (!temp) {
  4119. ret = -ENOMEM;
  4120. goto fail_pdev_add;
  4121. }
  4122. swr_ctrl_data = temp;
  4123. swr_ctrl_data[ctrl_num].rx_swr_pdev = pdev;
  4124. ctrl_num++;
  4125. dev_dbg(&pdev->dev,
  4126. "%s: Adding soundwire ctrl device(s)\n",
  4127. __func__);
  4128. rx_priv->swr_ctrl_data = swr_ctrl_data;
  4129. }
  4130. ret = platform_device_add(pdev);
  4131. if (ret) {
  4132. dev_err(&pdev->dev,
  4133. "%s: Cannot add platform device\n",
  4134. __func__);
  4135. goto fail_pdev_add;
  4136. }
  4137. if (rx_priv->child_count < LPASS_CDC_RX_MACRO_CHILD_DEVICES_MAX)
  4138. rx_priv->pdev_child_devices[
  4139. rx_priv->child_count++] = pdev;
  4140. else
  4141. goto err;
  4142. }
  4143. return;
  4144. fail_pdev_add:
  4145. for (count = 0; count < rx_priv->child_count; count++)
  4146. platform_device_put(rx_priv->pdev_child_devices[count]);
  4147. err:
  4148. return;
  4149. }
  4150. static void lpass_cdc_rx_macro_init_ops(struct macro_ops *ops, char __iomem *rx_io_base)
  4151. {
  4152. memset(ops, 0, sizeof(struct macro_ops));
  4153. ops->init = lpass_cdc_rx_macro_init;
  4154. ops->exit = lpass_cdc_rx_macro_deinit;
  4155. ops->io_base = rx_io_base;
  4156. ops->dai_ptr = lpass_cdc_rx_macro_dai;
  4157. ops->num_dais = ARRAY_SIZE(lpass_cdc_rx_macro_dai);
  4158. ops->event_handler = lpass_cdc_rx_macro_event_handler;
  4159. ops->set_port_map = lpass_cdc_rx_macro_set_port_map;
  4160. }
  4161. static int lpass_cdc_rx_macro_probe(struct platform_device *pdev)
  4162. {
  4163. struct macro_ops ops = {0};
  4164. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  4165. u32 rx_base_addr = 0, muxsel = 0;
  4166. char __iomem *rx_io_base = NULL, *muxsel_io = NULL;
  4167. int ret = 0;
  4168. u32 default_clk_id = 0;
  4169. struct clk *hifi_fir_clk = NULL;
  4170. u32 is_used_rx_swr_gpio = 1;
  4171. const char *is_used_rx_swr_gpio_dt = "qcom,is-used-swr-gpio";
  4172. if (!lpass_cdc_is_va_macro_registered(&pdev->dev)) {
  4173. dev_err(&pdev->dev,
  4174. "%s: va-macro not registered yet, defer\n", __func__);
  4175. return -EPROBE_DEFER;
  4176. }
  4177. rx_priv = devm_kzalloc(&pdev->dev, sizeof(struct lpass_cdc_rx_macro_priv),
  4178. GFP_KERNEL);
  4179. if (!rx_priv)
  4180. return -ENOMEM;
  4181. rx_priv->pre_dev_up = true;
  4182. rx_priv->dev = &pdev->dev;
  4183. ret = of_property_read_u32(pdev->dev.of_node, "reg",
  4184. &rx_base_addr);
  4185. if (ret) {
  4186. dev_err(&pdev->dev, "%s: could not find %s entry in dt\n",
  4187. __func__, "reg");
  4188. return ret;
  4189. }
  4190. ret = of_property_read_u32(pdev->dev.of_node, "qcom,rx_mclk_mode_muxsel",
  4191. &muxsel);
  4192. if (ret) {
  4193. dev_err(&pdev->dev, "%s: could not find %s entry in dt\n",
  4194. __func__, "reg");
  4195. return ret;
  4196. }
  4197. ret = of_property_read_u32(pdev->dev.of_node, "qcom,default-clk-id",
  4198. &default_clk_id);
  4199. if (ret) {
  4200. dev_err(&pdev->dev, "%s: could not find %s entry in dt\n",
  4201. __func__, "qcom,default-clk-id");
  4202. default_clk_id = RX_CORE_CLK;
  4203. }
  4204. if (of_find_property(pdev->dev.of_node, is_used_rx_swr_gpio_dt,
  4205. NULL)) {
  4206. ret = of_property_read_u32(pdev->dev.of_node,
  4207. is_used_rx_swr_gpio_dt,
  4208. &is_used_rx_swr_gpio);
  4209. if (ret) {
  4210. dev_err(&pdev->dev, "%s: error reading %s in dt\n",
  4211. __func__, is_used_rx_swr_gpio_dt);
  4212. is_used_rx_swr_gpio = 1;
  4213. }
  4214. }
  4215. rx_priv->rx_swr_gpio_p = of_parse_phandle(pdev->dev.of_node,
  4216. "qcom,rx-swr-gpios", 0);
  4217. if (!rx_priv->rx_swr_gpio_p && is_used_rx_swr_gpio) {
  4218. dev_err(&pdev->dev, "%s: swr_gpios handle not provided!\n",
  4219. __func__);
  4220. return -EINVAL;
  4221. }
  4222. if (msm_cdc_pinctrl_get_state(rx_priv->rx_swr_gpio_p) < 0 &&
  4223. is_used_rx_swr_gpio) {
  4224. dev_err(&pdev->dev, "%s: failed to get swr pin state\n",
  4225. __func__);
  4226. return -EPROBE_DEFER;
  4227. }
  4228. msm_cdc_pinctrl_set_wakeup_capable(
  4229. rx_priv->rx_swr_gpio_p, false);
  4230. rx_io_base = devm_ioremap(&pdev->dev, rx_base_addr,
  4231. LPASS_CDC_RX_MACRO_MAX_OFFSET);
  4232. if (!rx_io_base) {
  4233. dev_err(&pdev->dev, "%s: ioremap failed\n", __func__);
  4234. return -ENOMEM;
  4235. }
  4236. rx_priv->rx_io_base = rx_io_base;
  4237. muxsel_io = devm_ioremap(&pdev->dev, muxsel, 0x4);
  4238. if (!muxsel_io) {
  4239. dev_err(&pdev->dev, "%s: ioremap failed for muxsel\n",
  4240. __func__);
  4241. return -ENOMEM;
  4242. }
  4243. rx_priv->rx_mclk_mode_muxsel = muxsel_io;
  4244. rx_priv->reset_swr = true;
  4245. INIT_WORK(&rx_priv->lpass_cdc_rx_macro_add_child_devices_work,
  4246. lpass_cdc_rx_macro_add_child_devices);
  4247. rx_priv->swr_plat_data.handle = (void *) rx_priv;
  4248. rx_priv->swr_plat_data.read = NULL;
  4249. rx_priv->swr_plat_data.write = NULL;
  4250. rx_priv->swr_plat_data.bulk_write = NULL;
  4251. rx_priv->swr_plat_data.clk = rx_swrm_clock;
  4252. rx_priv->swr_plat_data.core_vote = lpass_cdc_rx_macro_core_vote;
  4253. rx_priv->swr_plat_data.handle_irq = NULL;
  4254. rx_priv->clk_id = default_clk_id;
  4255. rx_priv->default_clk_id = default_clk_id;
  4256. ops.clk_id_req = rx_priv->clk_id;
  4257. ops.default_clk_id = default_clk_id;
  4258. hifi_fir_clk = devm_clk_get(&pdev->dev, "rx_mclk2_2x_clk");
  4259. if (IS_ERR(hifi_fir_clk)) {
  4260. ret = PTR_ERR(hifi_fir_clk);
  4261. dev_dbg(&pdev->dev, "%s: clk get %s failed %d\n",
  4262. __func__, "rx_mclk2_2x_clk", ret);
  4263. hifi_fir_clk = NULL;
  4264. }
  4265. rx_priv->hifi_fir_clk = hifi_fir_clk;
  4266. rx_priv->is_aux_hpf_on = 1;
  4267. dev_set_drvdata(&pdev->dev, rx_priv);
  4268. mutex_init(&rx_priv->mclk_lock);
  4269. mutex_init(&rx_priv->swr_clk_lock);
  4270. lpass_cdc_rx_macro_init_ops(&ops, rx_io_base);
  4271. ret = lpass_cdc_register_macro(&pdev->dev, RX_MACRO, &ops);
  4272. if (ret) {
  4273. dev_err(&pdev->dev,
  4274. "%s: register macro failed\n", __func__);
  4275. goto err_reg_macro;
  4276. }
  4277. pm_runtime_set_autosuspend_delay(&pdev->dev, AUTO_SUSPEND_DELAY);
  4278. pm_runtime_use_autosuspend(&pdev->dev);
  4279. pm_runtime_set_suspended(&pdev->dev);
  4280. pm_suspend_ignore_children(&pdev->dev, true);
  4281. pm_runtime_enable(&pdev->dev);
  4282. schedule_work(&rx_priv->lpass_cdc_rx_macro_add_child_devices_work);
  4283. return 0;
  4284. err_reg_macro:
  4285. mutex_destroy(&rx_priv->mclk_lock);
  4286. mutex_destroy(&rx_priv->swr_clk_lock);
  4287. return ret;
  4288. }
  4289. static int lpass_cdc_rx_macro_remove(struct platform_device *pdev)
  4290. {
  4291. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  4292. u16 count = 0;
  4293. rx_priv = dev_get_drvdata(&pdev->dev);
  4294. if (!rx_priv)
  4295. return -EINVAL;
  4296. for (count = 0; count < rx_priv->child_count &&
  4297. count < LPASS_CDC_RX_MACRO_CHILD_DEVICES_MAX; count++)
  4298. platform_device_unregister(rx_priv->pdev_child_devices[count]);
  4299. pm_runtime_disable(&pdev->dev);
  4300. pm_runtime_set_suspended(&pdev->dev);
  4301. lpass_cdc_unregister_macro(&pdev->dev, RX_MACRO);
  4302. mutex_destroy(&rx_priv->mclk_lock);
  4303. mutex_destroy(&rx_priv->swr_clk_lock);
  4304. kfree(rx_priv->swr_ctrl_data);
  4305. return 0;
  4306. }
  4307. static const struct of_device_id lpass_cdc_rx_macro_dt_match[] = {
  4308. {.compatible = "qcom,lpass-cdc-rx-macro"},
  4309. {}
  4310. };
  4311. static const struct dev_pm_ops lpass_cdc_dev_pm_ops = {
  4312. SET_SYSTEM_SLEEP_PM_OPS(
  4313. pm_runtime_force_suspend,
  4314. pm_runtime_force_resume
  4315. )
  4316. SET_RUNTIME_PM_OPS(
  4317. lpass_cdc_runtime_suspend,
  4318. lpass_cdc_runtime_resume,
  4319. NULL
  4320. )
  4321. };
  4322. static struct platform_driver lpass_cdc_rx_macro_driver = {
  4323. .driver = {
  4324. .name = "lpass_cdc_rx_macro",
  4325. .owner = THIS_MODULE,
  4326. .pm = &lpass_cdc_dev_pm_ops,
  4327. .of_match_table = lpass_cdc_rx_macro_dt_match,
  4328. .suppress_bind_attrs = true,
  4329. },
  4330. .probe = lpass_cdc_rx_macro_probe,
  4331. .remove = lpass_cdc_rx_macro_remove,
  4332. };
  4333. module_platform_driver(lpass_cdc_rx_macro_driver);
  4334. MODULE_DESCRIPTION("RX macro driver");
  4335. MODULE_LICENSE("GPL v2");