dp_tx.c 210 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948
  1. /*
  2. * Copyright (c) 2016-2021 The Linux Foundation. All rights reserved.
  3. * Copyright (c) 2021-2023 Qualcomm Innovation Center, Inc. All rights reserved.
  4. *
  5. * Permission to use, copy, modify, and/or distribute this software for
  6. * any purpose with or without fee is hereby granted, provided that the
  7. * above copyright notice and this permission notice appear in all
  8. * copies.
  9. *
  10. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
  11. * WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
  12. * WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
  13. * AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
  14. * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
  15. * PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
  16. * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
  17. * PERFORMANCE OF THIS SOFTWARE.
  18. */
  19. #include "htt.h"
  20. #include "dp_htt.h"
  21. #include "hal_hw_headers.h"
  22. #include "dp_tx.h"
  23. #include "dp_tx_desc.h"
  24. #include "dp_peer.h"
  25. #include "dp_types.h"
  26. #include "hal_tx.h"
  27. #include "qdf_mem.h"
  28. #include "qdf_nbuf.h"
  29. #include "qdf_net_types.h"
  30. #include "qdf_module.h"
  31. #include <wlan_cfg.h>
  32. #include "dp_ipa.h"
  33. #if defined(MESH_MODE_SUPPORT) || defined(FEATURE_PERPKT_INFO)
  34. #include "if_meta_hdr.h"
  35. #endif
  36. #include "enet.h"
  37. #include "dp_internal.h"
  38. #ifdef ATH_SUPPORT_IQUE
  39. #include "dp_txrx_me.h"
  40. #endif
  41. #include "dp_hist.h"
  42. #ifdef WLAN_DP_FEATURE_SW_LATENCY_MGR
  43. #include <wlan_dp_swlm.h>
  44. #endif
  45. #ifdef WIFI_MONITOR_SUPPORT
  46. #include <dp_mon.h>
  47. #endif
  48. #ifdef FEATURE_WDS
  49. #include "dp_txrx_wds.h"
  50. #endif
  51. #include "cdp_txrx_cmn_reg.h"
  52. #ifdef CONFIG_SAWF
  53. #include <dp_sawf.h>
  54. #endif
  55. /* Flag to skip CCE classify when mesh or tid override enabled */
  56. #define DP_TX_SKIP_CCE_CLASSIFY \
  57. (DP_TXRX_HLOS_TID_OVERRIDE_ENABLED | DP_TX_MESH_ENABLED)
  58. /* TODO Add support in TSO */
  59. #define DP_DESC_NUM_FRAG(x) 0
  60. /* disable TQM_BYPASS */
  61. #define TQM_BYPASS_WAR 0
  62. #define DP_RETRY_COUNT 7
  63. #ifdef WLAN_PEER_JITTER
  64. #define DP_AVG_JITTER_WEIGHT_DENOM 4
  65. #define DP_AVG_DELAY_WEIGHT_DENOM 3
  66. #endif
  67. #ifdef QCA_DP_TX_FW_METADATA_V2
  68. #define DP_TX_TCL_METADATA_PDEV_ID_SET(_var, _val)\
  69. HTT_TX_TCL_METADATA_V2_PDEV_ID_SET(_var, _val)
  70. #define DP_TX_TCL_METADATA_VALID_HTT_SET(_var, _val) \
  71. HTT_TX_TCL_METADATA_V2_VALID_HTT_SET(_var, _val)
  72. #define DP_TX_TCL_METADATA_TYPE_SET(_var, _val) \
  73. HTT_TX_TCL_METADATA_TYPE_V2_SET(_var, _val)
  74. #define DP_TX_TCL_METADATA_HOST_INSPECTED_SET(_var, _val) \
  75. HTT_TX_TCL_METADATA_V2_HOST_INSPECTED_SET(_var, _val)
  76. #define DP_TX_TCL_METADATA_PEER_ID_SET(_var, _val) \
  77. HTT_TX_TCL_METADATA_V2_PEER_ID_SET(_var, _val)
  78. #define DP_TX_TCL_METADATA_VDEV_ID_SET(_var, _val) \
  79. HTT_TX_TCL_METADATA_V2_VDEV_ID_SET(_var, _val)
  80. #define DP_TCL_METADATA_TYPE_PEER_BASED \
  81. HTT_TCL_METADATA_V2_TYPE_PEER_BASED
  82. #define DP_TCL_METADATA_TYPE_VDEV_BASED \
  83. HTT_TCL_METADATA_V2_TYPE_VDEV_BASED
  84. #else
  85. #define DP_TX_TCL_METADATA_PDEV_ID_SET(_var, _val)\
  86. HTT_TX_TCL_METADATA_PDEV_ID_SET(_var, _val)
  87. #define DP_TX_TCL_METADATA_VALID_HTT_SET(_var, _val) \
  88. HTT_TX_TCL_METADATA_VALID_HTT_SET(_var, _val)
  89. #define DP_TX_TCL_METADATA_TYPE_SET(_var, _val) \
  90. HTT_TX_TCL_METADATA_TYPE_SET(_var, _val)
  91. #define DP_TX_TCL_METADATA_HOST_INSPECTED_SET(_var, _val) \
  92. HTT_TX_TCL_METADATA_HOST_INSPECTED_SET(_var, _val)
  93. #define DP_TX_TCL_METADATA_PEER_ID_SET(_var, _val) \
  94. HTT_TX_TCL_METADATA_PEER_ID_SET(_var, _val)
  95. #define DP_TX_TCL_METADATA_VDEV_ID_SET(_var, _val) \
  96. HTT_TX_TCL_METADATA_VDEV_ID_SET(_var, _val)
  97. #define DP_TCL_METADATA_TYPE_PEER_BASED \
  98. HTT_TCL_METADATA_TYPE_PEER_BASED
  99. #define DP_TCL_METADATA_TYPE_VDEV_BASED \
  100. HTT_TCL_METADATA_TYPE_VDEV_BASED
  101. #endif
  102. #define DP_GET_HW_LINK_ID_FRM_PPDU_ID(PPDU_ID, LINK_ID_OFFSET, LINK_ID_BITS) \
  103. (((PPDU_ID) >> (LINK_ID_OFFSET)) & ((1 << (LINK_ID_BITS)) - 1))
  104. /*mapping between hal encrypt type and cdp_sec_type*/
  105. uint8_t sec_type_map[MAX_CDP_SEC_TYPE] = {HAL_TX_ENCRYPT_TYPE_NO_CIPHER,
  106. HAL_TX_ENCRYPT_TYPE_WEP_128,
  107. HAL_TX_ENCRYPT_TYPE_WEP_104,
  108. HAL_TX_ENCRYPT_TYPE_WEP_40,
  109. HAL_TX_ENCRYPT_TYPE_TKIP_WITH_MIC,
  110. HAL_TX_ENCRYPT_TYPE_TKIP_NO_MIC,
  111. HAL_TX_ENCRYPT_TYPE_AES_CCMP_128,
  112. HAL_TX_ENCRYPT_TYPE_WAPI,
  113. HAL_TX_ENCRYPT_TYPE_AES_CCMP_256,
  114. HAL_TX_ENCRYPT_TYPE_AES_GCMP_128,
  115. HAL_TX_ENCRYPT_TYPE_AES_GCMP_256,
  116. HAL_TX_ENCRYPT_TYPE_WAPI_GCM_SM4};
  117. qdf_export_symbol(sec_type_map);
  118. #ifdef WLAN_FEATURE_DP_TX_DESC_HISTORY
  119. static inline enum dp_tx_event_type dp_tx_get_event_type(uint32_t flags)
  120. {
  121. enum dp_tx_event_type type;
  122. if (flags & DP_TX_DESC_FLAG_FLUSH)
  123. type = DP_TX_DESC_FLUSH;
  124. else if (flags & DP_TX_DESC_FLAG_TX_COMP_ERR)
  125. type = DP_TX_COMP_UNMAP_ERR;
  126. else if (flags & DP_TX_DESC_FLAG_COMPLETED_TX)
  127. type = DP_TX_COMP_UNMAP;
  128. else
  129. type = DP_TX_DESC_UNMAP;
  130. return type;
  131. }
  132. static inline void
  133. dp_tx_desc_history_add(struct dp_soc *soc, dma_addr_t paddr,
  134. qdf_nbuf_t skb, uint32_t sw_cookie,
  135. enum dp_tx_event_type type)
  136. {
  137. struct dp_tx_tcl_history *tx_tcl_history = &soc->tx_tcl_history;
  138. struct dp_tx_comp_history *tx_comp_history = &soc->tx_comp_history;
  139. struct dp_tx_desc_event *entry;
  140. uint32_t idx;
  141. uint16_t slot;
  142. switch (type) {
  143. case DP_TX_COMP_UNMAP:
  144. case DP_TX_COMP_UNMAP_ERR:
  145. case DP_TX_COMP_MSDU_EXT:
  146. if (qdf_unlikely(!tx_comp_history->allocated))
  147. return;
  148. dp_get_frag_hist_next_atomic_idx(&tx_comp_history->index, &idx,
  149. &slot,
  150. DP_TX_COMP_HIST_SLOT_SHIFT,
  151. DP_TX_COMP_HIST_PER_SLOT_MAX,
  152. DP_TX_COMP_HISTORY_SIZE);
  153. entry = &tx_comp_history->entry[slot][idx];
  154. break;
  155. case DP_TX_DESC_MAP:
  156. case DP_TX_DESC_UNMAP:
  157. case DP_TX_DESC_COOKIE:
  158. case DP_TX_DESC_FLUSH:
  159. if (qdf_unlikely(!tx_tcl_history->allocated))
  160. return;
  161. dp_get_frag_hist_next_atomic_idx(&tx_tcl_history->index, &idx,
  162. &slot,
  163. DP_TX_TCL_HIST_SLOT_SHIFT,
  164. DP_TX_TCL_HIST_PER_SLOT_MAX,
  165. DP_TX_TCL_HISTORY_SIZE);
  166. entry = &tx_tcl_history->entry[slot][idx];
  167. break;
  168. default:
  169. dp_info_rl("Invalid dp_tx_event_type: %d", type);
  170. return;
  171. }
  172. entry->skb = skb;
  173. entry->paddr = paddr;
  174. entry->sw_cookie = sw_cookie;
  175. entry->type = type;
  176. entry->ts = qdf_get_log_timestamp();
  177. }
  178. static inline void
  179. dp_tx_tso_seg_history_add(struct dp_soc *soc,
  180. struct qdf_tso_seg_elem_t *tso_seg,
  181. qdf_nbuf_t skb, uint32_t sw_cookie,
  182. enum dp_tx_event_type type)
  183. {
  184. int i;
  185. for (i = 1; i < tso_seg->seg.num_frags; i++) {
  186. dp_tx_desc_history_add(soc, tso_seg->seg.tso_frags[i].paddr,
  187. skb, sw_cookie, type);
  188. }
  189. if (!tso_seg->next)
  190. dp_tx_desc_history_add(soc, tso_seg->seg.tso_frags[0].paddr,
  191. skb, 0xFFFFFFFF, type);
  192. }
  193. static inline void
  194. dp_tx_tso_history_add(struct dp_soc *soc, struct qdf_tso_info_t tso_info,
  195. qdf_nbuf_t skb, uint32_t sw_cookie,
  196. enum dp_tx_event_type type)
  197. {
  198. struct qdf_tso_seg_elem_t *curr_seg = tso_info.tso_seg_list;
  199. uint32_t num_segs = tso_info.num_segs;
  200. while (num_segs) {
  201. dp_tx_tso_seg_history_add(soc, curr_seg, skb, sw_cookie, type);
  202. curr_seg = curr_seg->next;
  203. num_segs--;
  204. }
  205. }
  206. #else
  207. static inline enum dp_tx_event_type dp_tx_get_event_type(uint32_t flags)
  208. {
  209. return DP_TX_DESC_INVAL_EVT;
  210. }
  211. static inline void
  212. dp_tx_desc_history_add(struct dp_soc *soc, dma_addr_t paddr,
  213. qdf_nbuf_t skb, uint32_t sw_cookie,
  214. enum dp_tx_event_type type)
  215. {
  216. }
  217. static inline void
  218. dp_tx_tso_seg_history_add(struct dp_soc *soc,
  219. struct qdf_tso_seg_elem_t *tso_seg,
  220. qdf_nbuf_t skb, uint32_t sw_cookie,
  221. enum dp_tx_event_type type)
  222. {
  223. }
  224. static inline void
  225. dp_tx_tso_history_add(struct dp_soc *soc, struct qdf_tso_info_t tso_info,
  226. qdf_nbuf_t skb, uint32_t sw_cookie,
  227. enum dp_tx_event_type type)
  228. {
  229. }
  230. #endif /* WLAN_FEATURE_DP_TX_DESC_HISTORY */
  231. /**
  232. * dp_is_tput_high() - Check if throughput is high
  233. *
  234. * @soc: core txrx main context
  235. *
  236. * The current function is based of the RTPM tput policy variable where RTPM is
  237. * avoided based on throughput.
  238. */
  239. static inline int dp_is_tput_high(struct dp_soc *soc)
  240. {
  241. return dp_get_rtpm_tput_policy_requirement(soc);
  242. }
  243. #if defined(FEATURE_TSO)
  244. /**
  245. * dp_tx_tso_unmap_segment() - Unmap TSO segment
  246. *
  247. * @soc: core txrx main context
  248. * @seg_desc: tso segment descriptor
  249. * @num_seg_desc: tso number segment descriptor
  250. */
  251. static void dp_tx_tso_unmap_segment(
  252. struct dp_soc *soc,
  253. struct qdf_tso_seg_elem_t *seg_desc,
  254. struct qdf_tso_num_seg_elem_t *num_seg_desc)
  255. {
  256. TSO_DEBUG("%s: Unmap the tso segment", __func__);
  257. if (qdf_unlikely(!seg_desc)) {
  258. DP_TRACE(ERROR, "%s %d TSO desc is NULL!",
  259. __func__, __LINE__);
  260. qdf_assert(0);
  261. } else if (qdf_unlikely(!num_seg_desc)) {
  262. DP_TRACE(ERROR, "%s %d TSO num desc is NULL!",
  263. __func__, __LINE__);
  264. qdf_assert(0);
  265. } else {
  266. bool is_last_seg;
  267. /* no tso segment left to do dma unmap */
  268. if (num_seg_desc->num_seg.tso_cmn_num_seg < 1)
  269. return;
  270. is_last_seg = (num_seg_desc->num_seg.tso_cmn_num_seg == 1) ?
  271. true : false;
  272. qdf_nbuf_unmap_tso_segment(soc->osdev,
  273. seg_desc, is_last_seg);
  274. num_seg_desc->num_seg.tso_cmn_num_seg--;
  275. }
  276. }
  277. /**
  278. * dp_tx_tso_desc_release() - Release the tso segment and tso_cmn_num_seg
  279. * back to the freelist
  280. *
  281. * @soc: soc device handle
  282. * @tx_desc: Tx software descriptor
  283. */
  284. static void dp_tx_tso_desc_release(struct dp_soc *soc,
  285. struct dp_tx_desc_s *tx_desc)
  286. {
  287. TSO_DEBUG("%s: Free the tso descriptor", __func__);
  288. if (qdf_unlikely(!tx_desc->msdu_ext_desc->tso_desc)) {
  289. dp_tx_err("SO desc is NULL!");
  290. qdf_assert(0);
  291. } else if (qdf_unlikely(!tx_desc->msdu_ext_desc->tso_num_desc)) {
  292. dp_tx_err("TSO num desc is NULL!");
  293. qdf_assert(0);
  294. } else {
  295. struct qdf_tso_num_seg_elem_t *tso_num_desc =
  296. (struct qdf_tso_num_seg_elem_t *)tx_desc->
  297. msdu_ext_desc->tso_num_desc;
  298. /* Add the tso num segment into the free list */
  299. if (tso_num_desc->num_seg.tso_cmn_num_seg == 0) {
  300. dp_tso_num_seg_free(soc, tx_desc->pool_id,
  301. tx_desc->msdu_ext_desc->
  302. tso_num_desc);
  303. tx_desc->msdu_ext_desc->tso_num_desc = NULL;
  304. DP_STATS_INC(tx_desc->pdev, tso_stats.tso_comp, 1);
  305. }
  306. /* Add the tso segment into the free list*/
  307. dp_tx_tso_desc_free(soc,
  308. tx_desc->pool_id, tx_desc->msdu_ext_desc->
  309. tso_desc);
  310. tx_desc->msdu_ext_desc->tso_desc = NULL;
  311. }
  312. }
  313. #else
  314. static void dp_tx_tso_unmap_segment(
  315. struct dp_soc *soc,
  316. struct qdf_tso_seg_elem_t *seg_desc,
  317. struct qdf_tso_num_seg_elem_t *num_seg_desc)
  318. {
  319. }
  320. static void dp_tx_tso_desc_release(struct dp_soc *soc,
  321. struct dp_tx_desc_s *tx_desc)
  322. {
  323. }
  324. #endif
  325. #ifdef WLAN_SUPPORT_PPEDS
  326. static inline int
  327. dp_tx_release_ds_tx_desc(struct dp_soc *soc, struct dp_tx_desc_s *tx_desc,
  328. uint8_t desc_pool_id)
  329. {
  330. if (tx_desc->flags & DP_TX_DESC_FLAG_PPEDS) {
  331. __dp_tx_outstanding_dec(soc);
  332. dp_tx_desc_free(soc, tx_desc, desc_pool_id);
  333. return 1;
  334. }
  335. return 0;
  336. }
  337. #else
  338. static inline int
  339. dp_tx_release_ds_tx_desc(struct dp_soc *soc, struct dp_tx_desc_s *tx_desc,
  340. uint8_t desc_pool_id)
  341. {
  342. return 0;
  343. }
  344. #endif
  345. void
  346. dp_tx_desc_release(struct dp_soc *soc, struct dp_tx_desc_s *tx_desc,
  347. uint8_t desc_pool_id)
  348. {
  349. struct dp_pdev *pdev = tx_desc->pdev;
  350. uint8_t comp_status = 0;
  351. if (dp_tx_release_ds_tx_desc(soc, tx_desc, desc_pool_id))
  352. return;
  353. qdf_assert(pdev);
  354. soc = pdev->soc;
  355. dp_tx_outstanding_dec(pdev);
  356. if (tx_desc->msdu_ext_desc) {
  357. if (tx_desc->frm_type == dp_tx_frm_tso)
  358. dp_tx_tso_desc_release(soc, tx_desc);
  359. if (tx_desc->flags & DP_TX_DESC_FLAG_ME)
  360. dp_tx_me_free_buf(tx_desc->pdev,
  361. tx_desc->msdu_ext_desc->me_buffer);
  362. dp_tx_ext_desc_free(soc, tx_desc->msdu_ext_desc, desc_pool_id);
  363. tx_desc->msdu_ext_desc = NULL;
  364. }
  365. if (tx_desc->flags & DP_TX_DESC_FLAG_TO_FW)
  366. qdf_atomic_dec(&soc->num_tx_exception);
  367. if (HAL_TX_COMP_RELEASE_SOURCE_TQM ==
  368. tx_desc->buffer_src)
  369. comp_status = hal_tx_comp_get_release_reason(&tx_desc->comp,
  370. soc->hal_soc);
  371. else
  372. comp_status = HAL_TX_COMP_RELEASE_REASON_FW;
  373. dp_tx_debug("Tx Completion Release desc %d status %d outstanding %d",
  374. tx_desc->id, comp_status,
  375. qdf_atomic_read(&pdev->num_tx_outstanding));
  376. if (tx_desc->flags & DP_TX_DESC_FLAG_SPECIAL)
  377. dp_tx_spcl_desc_free(soc, tx_desc, desc_pool_id);
  378. else
  379. dp_tx_desc_free(soc, tx_desc, desc_pool_id);
  380. return;
  381. }
  382. /**
  383. * dp_tx_prepare_htt_metadata() - Prepare HTT metadata for special frames
  384. * @vdev: DP vdev Handle
  385. * @nbuf: skb
  386. * @msdu_info: msdu_info required to create HTT metadata
  387. *
  388. * Prepares and fills HTT metadata in the frame pre-header for special frames
  389. * that should be transmitted using varying transmit parameters.
  390. * There are 2 VDEV modes that currently needs this special metadata -
  391. * 1) Mesh Mode
  392. * 2) DSRC Mode
  393. *
  394. * Return: HTT metadata size
  395. *
  396. */
  397. static uint8_t dp_tx_prepare_htt_metadata(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
  398. struct dp_tx_msdu_info_s *msdu_info)
  399. {
  400. uint32_t *meta_data = msdu_info->meta_data;
  401. struct htt_tx_msdu_desc_ext2_t *desc_ext =
  402. (struct htt_tx_msdu_desc_ext2_t *) meta_data;
  403. uint8_t htt_desc_size;
  404. /* Size rounded of multiple of 8 bytes */
  405. uint8_t htt_desc_size_aligned;
  406. uint8_t *hdr = NULL;
  407. /*
  408. * Metadata - HTT MSDU Extension header
  409. */
  410. htt_desc_size = sizeof(struct htt_tx_msdu_desc_ext2_t);
  411. htt_desc_size_aligned = (htt_desc_size + 7) & ~0x7;
  412. if (vdev->mesh_vdev || msdu_info->is_tx_sniffer ||
  413. HTT_TX_MSDU_EXT2_DESC_FLAG_VALID_KEY_FLAGS_GET(msdu_info->
  414. meta_data[0]) ||
  415. msdu_info->exception_fw) {
  416. if (qdf_unlikely(qdf_nbuf_headroom(nbuf) <
  417. htt_desc_size_aligned)) {
  418. nbuf = qdf_nbuf_realloc_headroom(nbuf,
  419. htt_desc_size_aligned);
  420. if (!nbuf) {
  421. /*
  422. * qdf_nbuf_realloc_headroom won't do skb_clone
  423. * as skb_realloc_headroom does. so, no free is
  424. * needed here.
  425. */
  426. DP_STATS_INC(vdev,
  427. tx_i[msdu_info->xmit_type].dropped.headroom_insufficient,
  428. 1);
  429. qdf_print(" %s[%d] skb_realloc_headroom failed",
  430. __func__, __LINE__);
  431. return 0;
  432. }
  433. }
  434. /* Fill and add HTT metaheader */
  435. hdr = qdf_nbuf_push_head(nbuf, htt_desc_size_aligned);
  436. if (!hdr) {
  437. dp_tx_err("Error in filling HTT metadata");
  438. return 0;
  439. }
  440. qdf_mem_copy(hdr, desc_ext, htt_desc_size);
  441. } else if (vdev->opmode == wlan_op_mode_ocb) {
  442. /* Todo - Add support for DSRC */
  443. }
  444. return htt_desc_size_aligned;
  445. }
  446. /**
  447. * dp_tx_prepare_tso_ext_desc() - Prepare MSDU extension descriptor for TSO
  448. * @tso_seg: TSO segment to process
  449. * @ext_desc: Pointer to MSDU extension descriptor
  450. *
  451. * Return: void
  452. */
  453. #if defined(FEATURE_TSO)
  454. static void dp_tx_prepare_tso_ext_desc(struct qdf_tso_seg_t *tso_seg,
  455. void *ext_desc)
  456. {
  457. uint8_t num_frag;
  458. uint32_t tso_flags;
  459. /*
  460. * Set tso_en, tcp_flags(NS, CWR, ECE, URG, ACK, PSH, RST, SYN, FIN),
  461. * tcp_flag_mask
  462. *
  463. * Checksum enable flags are set in TCL descriptor and not in Extension
  464. * Descriptor (H/W ignores checksum_en flags in MSDU ext descriptor)
  465. */
  466. tso_flags = *(uint32_t *) &tso_seg->tso_flags;
  467. hal_tx_ext_desc_set_tso_flags(ext_desc, tso_flags);
  468. hal_tx_ext_desc_set_msdu_length(ext_desc, tso_seg->tso_flags.l2_len,
  469. tso_seg->tso_flags.ip_len);
  470. hal_tx_ext_desc_set_tcp_seq(ext_desc, tso_seg->tso_flags.tcp_seq_num);
  471. hal_tx_ext_desc_set_ip_id(ext_desc, tso_seg->tso_flags.ip_id);
  472. for (num_frag = 0; num_frag < tso_seg->num_frags; num_frag++) {
  473. uint32_t lo = 0;
  474. uint32_t hi = 0;
  475. qdf_assert_always((tso_seg->tso_frags[num_frag].paddr) &&
  476. (tso_seg->tso_frags[num_frag].length));
  477. qdf_dmaaddr_to_32s(
  478. tso_seg->tso_frags[num_frag].paddr, &lo, &hi);
  479. hal_tx_ext_desc_set_buffer(ext_desc, num_frag, lo, hi,
  480. tso_seg->tso_frags[num_frag].length);
  481. }
  482. return;
  483. }
  484. #else
  485. static void dp_tx_prepare_tso_ext_desc(struct qdf_tso_seg_t *tso_seg,
  486. void *ext_desc)
  487. {
  488. return;
  489. }
  490. #endif
  491. #if defined(FEATURE_TSO)
  492. /**
  493. * dp_tx_free_tso_seg_list() - Loop through the tso segments
  494. * allocated and free them
  495. * @soc: soc handle
  496. * @free_seg: list of tso segments
  497. * @msdu_info: msdu descriptor
  498. *
  499. * Return: void
  500. */
  501. static void dp_tx_free_tso_seg_list(
  502. struct dp_soc *soc,
  503. struct qdf_tso_seg_elem_t *free_seg,
  504. struct dp_tx_msdu_info_s *msdu_info)
  505. {
  506. struct qdf_tso_seg_elem_t *next_seg;
  507. while (free_seg) {
  508. next_seg = free_seg->next;
  509. dp_tx_tso_desc_free(soc,
  510. msdu_info->tx_queue.desc_pool_id,
  511. free_seg);
  512. free_seg = next_seg;
  513. }
  514. }
  515. /**
  516. * dp_tx_free_tso_num_seg_list() - Loop through the tso num segments
  517. * allocated and free them
  518. * @soc: soc handle
  519. * @free_num_seg: list of tso number segments
  520. * @msdu_info: msdu descriptor
  521. *
  522. * Return: void
  523. */
  524. static void dp_tx_free_tso_num_seg_list(
  525. struct dp_soc *soc,
  526. struct qdf_tso_num_seg_elem_t *free_num_seg,
  527. struct dp_tx_msdu_info_s *msdu_info)
  528. {
  529. struct qdf_tso_num_seg_elem_t *next_num_seg;
  530. while (free_num_seg) {
  531. next_num_seg = free_num_seg->next;
  532. dp_tso_num_seg_free(soc,
  533. msdu_info->tx_queue.desc_pool_id,
  534. free_num_seg);
  535. free_num_seg = next_num_seg;
  536. }
  537. }
  538. /**
  539. * dp_tx_unmap_tso_seg_list() - Loop through the tso segments
  540. * do dma unmap for each segment
  541. * @soc: soc handle
  542. * @free_seg: list of tso segments
  543. * @num_seg_desc: tso number segment descriptor
  544. *
  545. * Return: void
  546. */
  547. static void dp_tx_unmap_tso_seg_list(
  548. struct dp_soc *soc,
  549. struct qdf_tso_seg_elem_t *free_seg,
  550. struct qdf_tso_num_seg_elem_t *num_seg_desc)
  551. {
  552. struct qdf_tso_seg_elem_t *next_seg;
  553. if (qdf_unlikely(!num_seg_desc)) {
  554. DP_TRACE(ERROR, "TSO number seg desc is NULL!");
  555. return;
  556. }
  557. while (free_seg) {
  558. next_seg = free_seg->next;
  559. dp_tx_tso_unmap_segment(soc, free_seg, num_seg_desc);
  560. free_seg = next_seg;
  561. }
  562. }
  563. #ifdef FEATURE_TSO_STATS
  564. /**
  565. * dp_tso_get_stats_idx() - Retrieve the tso packet id
  566. * @pdev: pdev handle
  567. *
  568. * Return: id
  569. */
  570. static uint32_t dp_tso_get_stats_idx(struct dp_pdev *pdev)
  571. {
  572. uint32_t stats_idx;
  573. stats_idx = (((uint32_t)qdf_atomic_inc_return(&pdev->tso_idx))
  574. % CDP_MAX_TSO_PACKETS);
  575. return stats_idx;
  576. }
  577. #else
  578. static int dp_tso_get_stats_idx(struct dp_pdev *pdev)
  579. {
  580. return 0;
  581. }
  582. #endif /* FEATURE_TSO_STATS */
  583. /**
  584. * dp_tx_free_remaining_tso_desc() - do dma unmap for tso segments if any,
  585. * free the tso segments descriptor and
  586. * tso num segments descriptor
  587. * @soc: soc handle
  588. * @msdu_info: msdu descriptor
  589. * @tso_seg_unmap: flag to show if dma unmap is necessary
  590. *
  591. * Return: void
  592. */
  593. static void dp_tx_free_remaining_tso_desc(struct dp_soc *soc,
  594. struct dp_tx_msdu_info_s *msdu_info,
  595. bool tso_seg_unmap)
  596. {
  597. struct qdf_tso_info_t *tso_info = &msdu_info->u.tso_info;
  598. struct qdf_tso_seg_elem_t *free_seg = tso_info->tso_seg_list;
  599. struct qdf_tso_num_seg_elem_t *tso_num_desc =
  600. tso_info->tso_num_seg_list;
  601. /* do dma unmap for each segment */
  602. if (tso_seg_unmap)
  603. dp_tx_unmap_tso_seg_list(soc, free_seg, tso_num_desc);
  604. /* free all tso number segment descriptor though looks only have 1 */
  605. dp_tx_free_tso_num_seg_list(soc, tso_num_desc, msdu_info);
  606. /* free all tso segment descriptor */
  607. dp_tx_free_tso_seg_list(soc, free_seg, msdu_info);
  608. }
  609. /**
  610. * dp_tx_prepare_tso() - Given a jumbo msdu, prepare the TSO info
  611. * @vdev: virtual device handle
  612. * @msdu: network buffer
  613. * @msdu_info: meta data associated with the msdu
  614. *
  615. * Return: QDF_STATUS_SUCCESS success
  616. */
  617. static QDF_STATUS dp_tx_prepare_tso(struct dp_vdev *vdev,
  618. qdf_nbuf_t msdu, struct dp_tx_msdu_info_s *msdu_info)
  619. {
  620. struct qdf_tso_seg_elem_t *tso_seg;
  621. int num_seg = qdf_nbuf_get_tso_num_seg(msdu);
  622. struct dp_soc *soc = vdev->pdev->soc;
  623. struct dp_pdev *pdev = vdev->pdev;
  624. struct qdf_tso_info_t *tso_info;
  625. struct qdf_tso_num_seg_elem_t *tso_num_seg;
  626. tso_info = &msdu_info->u.tso_info;
  627. tso_info->curr_seg = NULL;
  628. tso_info->tso_seg_list = NULL;
  629. tso_info->num_segs = num_seg;
  630. msdu_info->frm_type = dp_tx_frm_tso;
  631. tso_info->tso_num_seg_list = NULL;
  632. TSO_DEBUG(" %s: num_seg: %d", __func__, num_seg);
  633. while (num_seg) {
  634. tso_seg = dp_tx_tso_desc_alloc(
  635. soc, msdu_info->tx_queue.desc_pool_id);
  636. if (tso_seg) {
  637. tso_seg->next = tso_info->tso_seg_list;
  638. tso_info->tso_seg_list = tso_seg;
  639. num_seg--;
  640. } else {
  641. dp_err_rl("Failed to alloc tso seg desc");
  642. DP_STATS_INC_PKT(vdev->pdev,
  643. tso_stats.tso_no_mem_dropped, 1,
  644. qdf_nbuf_len(msdu));
  645. dp_tx_free_remaining_tso_desc(soc, msdu_info, false);
  646. return QDF_STATUS_E_NOMEM;
  647. }
  648. }
  649. TSO_DEBUG(" %s: num_seg: %d", __func__, num_seg);
  650. tso_num_seg = dp_tso_num_seg_alloc(soc,
  651. msdu_info->tx_queue.desc_pool_id);
  652. if (tso_num_seg) {
  653. tso_num_seg->next = tso_info->tso_num_seg_list;
  654. tso_info->tso_num_seg_list = tso_num_seg;
  655. } else {
  656. DP_TRACE(ERROR, "%s: Failed to alloc - Number of segs desc",
  657. __func__);
  658. dp_tx_free_remaining_tso_desc(soc, msdu_info, false);
  659. return QDF_STATUS_E_NOMEM;
  660. }
  661. msdu_info->num_seg =
  662. qdf_nbuf_get_tso_info(soc->osdev, msdu, tso_info);
  663. TSO_DEBUG(" %s: msdu_info->num_seg: %d", __func__,
  664. msdu_info->num_seg);
  665. if (!(msdu_info->num_seg)) {
  666. /*
  667. * Free allocated TSO seg desc and number seg desc,
  668. * do unmap for segments if dma map has done.
  669. */
  670. DP_TRACE(ERROR, "%s: Failed to get tso info", __func__);
  671. dp_tx_free_remaining_tso_desc(soc, msdu_info, true);
  672. return QDF_STATUS_E_INVAL;
  673. }
  674. dp_tx_tso_history_add(soc, msdu_info->u.tso_info,
  675. msdu, 0, DP_TX_DESC_MAP);
  676. tso_info->curr_seg = tso_info->tso_seg_list;
  677. tso_info->msdu_stats_idx = dp_tso_get_stats_idx(pdev);
  678. dp_tso_packet_update(pdev, tso_info->msdu_stats_idx,
  679. msdu, msdu_info->num_seg);
  680. dp_tso_segment_stats_update(pdev, tso_info->tso_seg_list,
  681. tso_info->msdu_stats_idx);
  682. dp_stats_tso_segment_histogram_update(pdev, msdu_info->num_seg);
  683. return QDF_STATUS_SUCCESS;
  684. }
  685. #else
  686. static QDF_STATUS dp_tx_prepare_tso(struct dp_vdev *vdev,
  687. qdf_nbuf_t msdu, struct dp_tx_msdu_info_s *msdu_info)
  688. {
  689. return QDF_STATUS_E_NOMEM;
  690. }
  691. #endif
  692. QDF_COMPILE_TIME_ASSERT(dp_tx_htt_metadata_len_check,
  693. (DP_TX_MSDU_INFO_META_DATA_DWORDS * 4 >=
  694. sizeof(struct htt_tx_msdu_desc_ext2_t)));
  695. /**
  696. * dp_tx_prepare_ext_desc() - Allocate and prepare MSDU extension descriptor
  697. * @vdev: DP Vdev handle
  698. * @msdu_info: MSDU info to be setup in MSDU extension descriptor
  699. * @desc_pool_id: Descriptor Pool ID
  700. *
  701. * Return:
  702. */
  703. static
  704. struct dp_tx_ext_desc_elem_s *dp_tx_prepare_ext_desc(struct dp_vdev *vdev,
  705. struct dp_tx_msdu_info_s *msdu_info, uint8_t desc_pool_id)
  706. {
  707. uint8_t i;
  708. uint8_t cached_ext_desc[HAL_TX_EXT_DESC_WITH_META_DATA];
  709. struct dp_tx_seg_info_s *seg_info;
  710. struct dp_tx_ext_desc_elem_s *msdu_ext_desc;
  711. struct dp_soc *soc = vdev->pdev->soc;
  712. /* Allocate an extension descriptor */
  713. msdu_ext_desc = dp_tx_ext_desc_alloc(soc, desc_pool_id);
  714. qdf_mem_zero(&cached_ext_desc[0], HAL_TX_EXT_DESC_WITH_META_DATA);
  715. if (!msdu_ext_desc) {
  716. DP_STATS_INC(vdev,
  717. tx_i[msdu_info->xmit_type].dropped.desc_na.num, 1);
  718. return NULL;
  719. }
  720. if (msdu_info->exception_fw &&
  721. qdf_unlikely(vdev->mesh_vdev)) {
  722. qdf_mem_copy(&cached_ext_desc[HAL_TX_EXTENSION_DESC_LEN_BYTES],
  723. &msdu_info->meta_data[0],
  724. sizeof(struct htt_tx_msdu_desc_ext2_t));
  725. qdf_atomic_inc(&soc->num_tx_exception);
  726. msdu_ext_desc->flags |= DP_TX_EXT_DESC_FLAG_METADATA_VALID;
  727. }
  728. switch (msdu_info->frm_type) {
  729. case dp_tx_frm_sg:
  730. case dp_tx_frm_me:
  731. case dp_tx_frm_raw:
  732. seg_info = msdu_info->u.sg_info.curr_seg;
  733. /* Update the buffer pointers in MSDU Extension Descriptor */
  734. for (i = 0; i < seg_info->frag_cnt; i++) {
  735. hal_tx_ext_desc_set_buffer(&cached_ext_desc[0], i,
  736. seg_info->frags[i].paddr_lo,
  737. seg_info->frags[i].paddr_hi,
  738. seg_info->frags[i].len);
  739. }
  740. break;
  741. case dp_tx_frm_tso:
  742. dp_tx_prepare_tso_ext_desc(&msdu_info->u.tso_info.curr_seg->seg,
  743. &cached_ext_desc[0]);
  744. break;
  745. default:
  746. break;
  747. }
  748. QDF_TRACE_HEX_DUMP(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  749. cached_ext_desc, HAL_TX_EXT_DESC_WITH_META_DATA);
  750. hal_tx_ext_desc_sync(&cached_ext_desc[0],
  751. msdu_ext_desc->vaddr);
  752. return msdu_ext_desc;
  753. }
  754. /**
  755. * dp_tx_trace_pkt() - Trace TX packet at DP layer
  756. * @soc: datapath SOC
  757. * @skb: skb to be traced
  758. * @msdu_id: msdu_id of the packet
  759. * @vdev_id: vdev_id of the packet
  760. * @op_mode: Vdev Operation mode
  761. *
  762. * Return: None
  763. */
  764. #ifdef DP_DISABLE_TX_PKT_TRACE
  765. static void dp_tx_trace_pkt(struct dp_soc *soc,
  766. qdf_nbuf_t skb, uint16_t msdu_id,
  767. uint8_t vdev_id, enum QDF_OPMODE op_mode)
  768. {
  769. }
  770. #else
  771. static void dp_tx_trace_pkt(struct dp_soc *soc,
  772. qdf_nbuf_t skb, uint16_t msdu_id,
  773. uint8_t vdev_id, enum QDF_OPMODE op_mode)
  774. {
  775. if (dp_is_tput_high(soc))
  776. return;
  777. QDF_NBUF_CB_TX_PACKET_TRACK(skb) = QDF_NBUF_TX_PKT_DATA_TRACK;
  778. QDF_NBUF_CB_TX_DP_TRACE(skb) = 1;
  779. DPTRACE(qdf_dp_trace_ptr(skb,
  780. QDF_DP_TRACE_LI_DP_TX_PACKET_PTR_RECORD,
  781. QDF_TRACE_DEFAULT_PDEV_ID,
  782. qdf_nbuf_data_addr(skb),
  783. sizeof(qdf_nbuf_data(skb)),
  784. msdu_id, vdev_id, 0,
  785. op_mode));
  786. qdf_dp_trace_log_pkt(vdev_id, skb, QDF_TX, QDF_TRACE_DEFAULT_PDEV_ID,
  787. op_mode);
  788. DPTRACE(qdf_dp_trace_data_pkt(skb, QDF_TRACE_DEFAULT_PDEV_ID,
  789. QDF_DP_TRACE_LI_DP_TX_PACKET_RECORD,
  790. msdu_id, QDF_TX));
  791. }
  792. #endif
  793. #ifdef WLAN_DP_FEATURE_MARK_ICMP_REQ_TO_FW
  794. /**
  795. * dp_tx_is_nbuf_marked_exception() - Check if the packet has been marked as
  796. * exception by the upper layer (OS_IF)
  797. * @soc: DP soc handle
  798. * @nbuf: packet to be transmitted
  799. *
  800. * Return: 1 if the packet is marked as exception,
  801. * 0, if the packet is not marked as exception.
  802. */
  803. static inline int dp_tx_is_nbuf_marked_exception(struct dp_soc *soc,
  804. qdf_nbuf_t nbuf)
  805. {
  806. return QDF_NBUF_CB_TX_PACKET_TO_FW(nbuf);
  807. }
  808. #else
  809. static inline int dp_tx_is_nbuf_marked_exception(struct dp_soc *soc,
  810. qdf_nbuf_t nbuf)
  811. {
  812. return 0;
  813. }
  814. #endif
  815. #ifdef DP_TRAFFIC_END_INDICATION
  816. /**
  817. * dp_tx_get_traffic_end_indication_pkt() - Allocate and prepare packet to send
  818. * as indication to fw to inform that
  819. * data stream has ended
  820. * @vdev: DP vdev handle
  821. * @nbuf: original buffer from network stack
  822. *
  823. * Return: NULL on failure,
  824. * nbuf on success
  825. */
  826. static inline qdf_nbuf_t
  827. dp_tx_get_traffic_end_indication_pkt(struct dp_vdev *vdev,
  828. qdf_nbuf_t nbuf)
  829. {
  830. /* Packet length should be enough to copy upto L3 header */
  831. uint8_t end_nbuf_len = 64;
  832. uint8_t htt_desc_size_aligned;
  833. uint8_t htt_desc_size;
  834. qdf_nbuf_t end_nbuf;
  835. if (qdf_unlikely(QDF_NBUF_CB_GET_PACKET_TYPE(nbuf) ==
  836. QDF_NBUF_CB_PACKET_TYPE_END_INDICATION)) {
  837. htt_desc_size = sizeof(struct htt_tx_msdu_desc_ext2_t);
  838. htt_desc_size_aligned = (htt_desc_size + 7) & ~0x7;
  839. end_nbuf = qdf_nbuf_queue_remove(&vdev->end_ind_pkt_q);
  840. if (!end_nbuf) {
  841. end_nbuf = qdf_nbuf_alloc(NULL,
  842. (htt_desc_size_aligned +
  843. end_nbuf_len),
  844. htt_desc_size_aligned,
  845. 8, false);
  846. if (!end_nbuf) {
  847. dp_err("Packet allocation failed");
  848. goto out;
  849. }
  850. } else {
  851. qdf_nbuf_reset(end_nbuf, htt_desc_size_aligned, 8);
  852. }
  853. qdf_mem_copy(qdf_nbuf_data(end_nbuf), qdf_nbuf_data(nbuf),
  854. end_nbuf_len);
  855. qdf_nbuf_set_pktlen(end_nbuf, end_nbuf_len);
  856. return end_nbuf;
  857. }
  858. out:
  859. return NULL;
  860. }
  861. /**
  862. * dp_tx_send_traffic_end_indication_pkt() - Send indication packet to FW
  863. * via exception path.
  864. * @vdev: DP vdev handle
  865. * @end_nbuf: skb to send as indication
  866. * @msdu_info: msdu_info of original nbuf
  867. * @peer_id: peer id
  868. *
  869. * Return: None
  870. */
  871. static inline void
  872. dp_tx_send_traffic_end_indication_pkt(struct dp_vdev *vdev,
  873. qdf_nbuf_t end_nbuf,
  874. struct dp_tx_msdu_info_s *msdu_info,
  875. uint16_t peer_id)
  876. {
  877. struct dp_tx_msdu_info_s e_msdu_info = {0};
  878. qdf_nbuf_t nbuf;
  879. struct htt_tx_msdu_desc_ext2_t *desc_ext =
  880. (struct htt_tx_msdu_desc_ext2_t *)(e_msdu_info.meta_data);
  881. e_msdu_info.tx_queue = msdu_info->tx_queue;
  882. e_msdu_info.tid = msdu_info->tid;
  883. e_msdu_info.exception_fw = 1;
  884. e_msdu_info.xmit_type = msdu_info->xmit_type;
  885. desc_ext->host_tx_desc_pool = 1;
  886. desc_ext->traffic_end_indication = 1;
  887. nbuf = dp_tx_send_msdu_single(vdev, end_nbuf, &e_msdu_info,
  888. peer_id, NULL);
  889. if (nbuf) {
  890. dp_err("Traffic end indication packet tx failed");
  891. qdf_nbuf_free(nbuf);
  892. }
  893. }
  894. /**
  895. * dp_tx_traffic_end_indication_set_desc_flag() - Set tx descriptor flag to
  896. * mark it traffic end indication
  897. * packet.
  898. * @tx_desc: Tx descriptor pointer
  899. * @msdu_info: msdu_info structure pointer
  900. *
  901. * Return: None
  902. */
  903. static inline void
  904. dp_tx_traffic_end_indication_set_desc_flag(struct dp_tx_desc_s *tx_desc,
  905. struct dp_tx_msdu_info_s *msdu_info)
  906. {
  907. struct htt_tx_msdu_desc_ext2_t *desc_ext =
  908. (struct htt_tx_msdu_desc_ext2_t *)(msdu_info->meta_data);
  909. if (qdf_unlikely(desc_ext->traffic_end_indication))
  910. tx_desc->flags |= DP_TX_DESC_FLAG_TRAFFIC_END_IND;
  911. }
  912. /**
  913. * dp_tx_traffic_end_indication_enq_ind_pkt() - Enqueue the packet instead of
  914. * freeing which are associated
  915. * with traffic end indication
  916. * flagged descriptor.
  917. * @soc: dp soc handle
  918. * @desc: Tx descriptor pointer
  919. * @nbuf: buffer pointer
  920. *
  921. * Return: True if packet gets enqueued else false
  922. */
  923. static bool
  924. dp_tx_traffic_end_indication_enq_ind_pkt(struct dp_soc *soc,
  925. struct dp_tx_desc_s *desc,
  926. qdf_nbuf_t nbuf)
  927. {
  928. struct dp_vdev *vdev = NULL;
  929. if (qdf_unlikely((desc->flags &
  930. DP_TX_DESC_FLAG_TRAFFIC_END_IND) != 0)) {
  931. vdev = dp_vdev_get_ref_by_id(soc, desc->vdev_id,
  932. DP_MOD_ID_TX_COMP);
  933. if (vdev) {
  934. qdf_nbuf_queue_add(&vdev->end_ind_pkt_q, nbuf);
  935. dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_TX_COMP);
  936. return true;
  937. }
  938. }
  939. return false;
  940. }
  941. /**
  942. * dp_tx_traffic_end_indication_is_enabled() - get the feature
  943. * enable/disable status
  944. * @vdev: dp vdev handle
  945. *
  946. * Return: True if feature is enable else false
  947. */
  948. static inline bool
  949. dp_tx_traffic_end_indication_is_enabled(struct dp_vdev *vdev)
  950. {
  951. return qdf_unlikely(vdev->traffic_end_ind_en);
  952. }
  953. static inline qdf_nbuf_t
  954. dp_tx_send_msdu_single_wrapper(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
  955. struct dp_tx_msdu_info_s *msdu_info,
  956. uint16_t peer_id, qdf_nbuf_t end_nbuf)
  957. {
  958. if (dp_tx_traffic_end_indication_is_enabled(vdev))
  959. end_nbuf = dp_tx_get_traffic_end_indication_pkt(vdev, nbuf);
  960. nbuf = dp_tx_send_msdu_single(vdev, nbuf, msdu_info, peer_id, NULL);
  961. if (qdf_unlikely(end_nbuf))
  962. dp_tx_send_traffic_end_indication_pkt(vdev, end_nbuf,
  963. msdu_info, peer_id);
  964. return nbuf;
  965. }
  966. #else
  967. static inline qdf_nbuf_t
  968. dp_tx_get_traffic_end_indication_pkt(struct dp_vdev *vdev,
  969. qdf_nbuf_t nbuf)
  970. {
  971. return NULL;
  972. }
  973. static inline void
  974. dp_tx_send_traffic_end_indication_pkt(struct dp_vdev *vdev,
  975. qdf_nbuf_t end_nbuf,
  976. struct dp_tx_msdu_info_s *msdu_info,
  977. uint16_t peer_id)
  978. {}
  979. static inline void
  980. dp_tx_traffic_end_indication_set_desc_flag(struct dp_tx_desc_s *tx_desc,
  981. struct dp_tx_msdu_info_s *msdu_info)
  982. {}
  983. static inline bool
  984. dp_tx_traffic_end_indication_enq_ind_pkt(struct dp_soc *soc,
  985. struct dp_tx_desc_s *desc,
  986. qdf_nbuf_t nbuf)
  987. {
  988. return false;
  989. }
  990. static inline bool
  991. dp_tx_traffic_end_indication_is_enabled(struct dp_vdev *vdev)
  992. {
  993. return false;
  994. }
  995. static inline qdf_nbuf_t
  996. dp_tx_send_msdu_single_wrapper(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
  997. struct dp_tx_msdu_info_s *msdu_info,
  998. uint16_t peer_id, qdf_nbuf_t end_nbuf)
  999. {
  1000. return dp_tx_send_msdu_single(vdev, nbuf, msdu_info, peer_id, NULL);
  1001. }
  1002. #endif
  1003. #if defined(QCA_SUPPORT_WDS_EXTENDED)
  1004. static bool
  1005. dp_tx_is_wds_ast_override_en(struct dp_soc *soc,
  1006. struct cdp_tx_exception_metadata *tx_exc_metadata)
  1007. {
  1008. if (soc->features.wds_ext_ast_override_enable &&
  1009. tx_exc_metadata && tx_exc_metadata->is_wds_extended)
  1010. return true;
  1011. return false;
  1012. }
  1013. #else
  1014. static bool
  1015. dp_tx_is_wds_ast_override_en(struct dp_soc *soc,
  1016. struct cdp_tx_exception_metadata *tx_exc_metadata)
  1017. {
  1018. return false;
  1019. }
  1020. #endif
  1021. /**
  1022. * dp_tx_prepare_desc_single() - Allocate and prepare Tx descriptor
  1023. * @vdev: DP vdev handle
  1024. * @nbuf: skb
  1025. * @desc_pool_id: Descriptor pool ID
  1026. * @msdu_info: Metadata to the fw
  1027. * @tx_exc_metadata: Handle that holds exception path metadata
  1028. *
  1029. * Allocate and prepare Tx descriptor with msdu information.
  1030. *
  1031. * Return: Pointer to Tx Descriptor on success,
  1032. * NULL on failure
  1033. */
  1034. static
  1035. struct dp_tx_desc_s *dp_tx_prepare_desc_single(struct dp_vdev *vdev,
  1036. qdf_nbuf_t nbuf, uint8_t desc_pool_id,
  1037. struct dp_tx_msdu_info_s *msdu_info,
  1038. struct cdp_tx_exception_metadata *tx_exc_metadata)
  1039. {
  1040. uint8_t align_pad;
  1041. uint8_t is_exception = 0;
  1042. uint8_t htt_hdr_size;
  1043. struct dp_tx_desc_s *tx_desc;
  1044. struct dp_pdev *pdev = vdev->pdev;
  1045. struct dp_soc *soc = pdev->soc;
  1046. uint8_t xmit_type = msdu_info->xmit_type;
  1047. if (dp_tx_limit_check(vdev, nbuf))
  1048. return NULL;
  1049. /* Allocate software Tx descriptor */
  1050. if (nbuf->protocol == QDF_NBUF_TRAC_EAPOL_ETH_TYPE)
  1051. tx_desc = dp_tx_spcl_desc_alloc(soc, desc_pool_id);
  1052. else
  1053. tx_desc = dp_tx_desc_alloc(soc, desc_pool_id);
  1054. if (qdf_unlikely(!tx_desc)) {
  1055. DP_STATS_INC(vdev,
  1056. tx_i[xmit_type].dropped.desc_na.num, 1);
  1057. DP_STATS_INC(vdev,
  1058. tx_i[xmit_type].dropped.desc_na_exc_alloc_fail.num,
  1059. 1);
  1060. return NULL;
  1061. }
  1062. dp_tx_outstanding_inc(pdev);
  1063. /* Initialize the SW tx descriptor */
  1064. tx_desc->nbuf = nbuf;
  1065. tx_desc->frm_type = dp_tx_frm_std;
  1066. tx_desc->tx_encap_type = ((tx_exc_metadata &&
  1067. (tx_exc_metadata->tx_encap_type != CDP_INVALID_TX_ENCAP_TYPE)) ?
  1068. tx_exc_metadata->tx_encap_type : vdev->tx_encap_type);
  1069. tx_desc->vdev_id = vdev->vdev_id;
  1070. tx_desc->pdev = pdev;
  1071. tx_desc->msdu_ext_desc = NULL;
  1072. tx_desc->pkt_offset = 0;
  1073. tx_desc->length = qdf_nbuf_headlen(nbuf);
  1074. dp_tx_trace_pkt(soc, nbuf, tx_desc->id, vdev->vdev_id,
  1075. vdev->qdf_opmode);
  1076. if (qdf_unlikely(vdev->multipass_en)) {
  1077. if (!dp_tx_multipass_process(soc, vdev, nbuf, msdu_info))
  1078. goto failure;
  1079. }
  1080. /* Packets marked by upper layer (OS-IF) to be sent to FW */
  1081. if (dp_tx_is_nbuf_marked_exception(soc, nbuf))
  1082. is_exception = 1;
  1083. /* for BE chipsets if wds extension was enbled will not mark FW
  1084. * in desc will mark ast index based search for ast index.
  1085. */
  1086. if (dp_tx_is_wds_ast_override_en(soc, tx_exc_metadata))
  1087. return tx_desc;
  1088. /*
  1089. * For special modes (vdev_type == ocb or mesh), data frames should be
  1090. * transmitted using varying transmit parameters (tx spec) which include
  1091. * transmit rate, power, priority, channel, channel bandwidth , nss etc.
  1092. * These are filled in HTT MSDU descriptor and sent in frame pre-header.
  1093. * These frames are sent as exception packets to firmware.
  1094. *
  1095. * HW requirement is that metadata should always point to a
  1096. * 8-byte aligned address. So we add alignment pad to start of buffer.
  1097. * HTT Metadata should be ensured to be multiple of 8-bytes,
  1098. * to get 8-byte aligned start address along with align_pad added
  1099. *
  1100. * |-----------------------------|
  1101. * | |
  1102. * |-----------------------------| <-----Buffer Pointer Address given
  1103. * | | ^ in HW descriptor (aligned)
  1104. * | HTT Metadata | |
  1105. * | | |
  1106. * | | | Packet Offset given in descriptor
  1107. * | | |
  1108. * |-----------------------------| |
  1109. * | Alignment Pad | v
  1110. * |-----------------------------| <----- Actual buffer start address
  1111. * | SKB Data | (Unaligned)
  1112. * | |
  1113. * | |
  1114. * | |
  1115. * | |
  1116. * | |
  1117. * |-----------------------------|
  1118. */
  1119. if (qdf_unlikely((msdu_info->exception_fw)) ||
  1120. (vdev->opmode == wlan_op_mode_ocb) ||
  1121. (tx_exc_metadata &&
  1122. tx_exc_metadata->is_tx_sniffer)) {
  1123. align_pad = ((unsigned long) qdf_nbuf_data(nbuf)) & 0x7;
  1124. if (qdf_unlikely(qdf_nbuf_headroom(nbuf) < align_pad)) {
  1125. DP_STATS_INC(vdev,
  1126. tx_i[xmit_type].dropped.headroom_insufficient,
  1127. 1);
  1128. goto failure;
  1129. }
  1130. if (qdf_nbuf_push_head(nbuf, align_pad) == NULL) {
  1131. dp_tx_err("qdf_nbuf_push_head failed");
  1132. goto failure;
  1133. }
  1134. htt_hdr_size = dp_tx_prepare_htt_metadata(vdev, nbuf,
  1135. msdu_info);
  1136. if (htt_hdr_size == 0)
  1137. goto failure;
  1138. tx_desc->length = qdf_nbuf_headlen(nbuf);
  1139. tx_desc->pkt_offset = align_pad + htt_hdr_size;
  1140. tx_desc->flags |= DP_TX_DESC_FLAG_TO_FW;
  1141. dp_tx_traffic_end_indication_set_desc_flag(tx_desc,
  1142. msdu_info);
  1143. is_exception = 1;
  1144. tx_desc->length -= tx_desc->pkt_offset;
  1145. }
  1146. #if !TQM_BYPASS_WAR
  1147. if (is_exception || tx_exc_metadata)
  1148. #endif
  1149. {
  1150. /* Temporary WAR due to TQM VP issues */
  1151. tx_desc->flags |= DP_TX_DESC_FLAG_TO_FW;
  1152. qdf_atomic_inc(&soc->num_tx_exception);
  1153. }
  1154. return tx_desc;
  1155. failure:
  1156. dp_tx_desc_release(soc, tx_desc, desc_pool_id);
  1157. return NULL;
  1158. }
  1159. /**
  1160. * dp_tx_prepare_desc() - Allocate and prepare Tx descriptor for multisegment
  1161. * frame
  1162. * @vdev: DP vdev handle
  1163. * @nbuf: skb
  1164. * @msdu_info: Info to be setup in MSDU descriptor and MSDU extension descriptor
  1165. * @desc_pool_id : Descriptor Pool ID
  1166. *
  1167. * Allocate and prepare Tx descriptor with msdu and fragment descritor
  1168. * information. For frames with fragments, allocate and prepare
  1169. * an MSDU extension descriptor
  1170. *
  1171. * Return: Pointer to Tx Descriptor on success,
  1172. * NULL on failure
  1173. */
  1174. static struct dp_tx_desc_s *dp_tx_prepare_desc(struct dp_vdev *vdev,
  1175. qdf_nbuf_t nbuf, struct dp_tx_msdu_info_s *msdu_info,
  1176. uint8_t desc_pool_id)
  1177. {
  1178. struct dp_tx_desc_s *tx_desc;
  1179. struct dp_tx_ext_desc_elem_s *msdu_ext_desc;
  1180. struct dp_pdev *pdev = vdev->pdev;
  1181. struct dp_soc *soc = pdev->soc;
  1182. if (dp_tx_limit_check(vdev, nbuf))
  1183. return NULL;
  1184. /* Allocate software Tx descriptor */
  1185. if (nbuf->protocol == QDF_NBUF_TRAC_EAPOL_ETH_TYPE)
  1186. tx_desc = dp_tx_spcl_desc_alloc(soc, desc_pool_id);
  1187. else
  1188. tx_desc = dp_tx_desc_alloc(soc, desc_pool_id);
  1189. if (!tx_desc) {
  1190. DP_STATS_INC(vdev,
  1191. tx_i[msdu_info->xmit_type].dropped.desc_na.num, 1);
  1192. return NULL;
  1193. }
  1194. dp_tx_tso_seg_history_add(soc, msdu_info->u.tso_info.curr_seg,
  1195. nbuf, tx_desc->id, DP_TX_DESC_COOKIE);
  1196. dp_tx_outstanding_inc(pdev);
  1197. /* Initialize the SW tx descriptor */
  1198. tx_desc->nbuf = nbuf;
  1199. tx_desc->frm_type = msdu_info->frm_type;
  1200. tx_desc->tx_encap_type = vdev->tx_encap_type;
  1201. tx_desc->vdev_id = vdev->vdev_id;
  1202. tx_desc->pdev = pdev;
  1203. tx_desc->pkt_offset = 0;
  1204. dp_tx_trace_pkt(soc, nbuf, tx_desc->id, vdev->vdev_id,
  1205. vdev->qdf_opmode);
  1206. /* Handle scattered frames - TSO/SG/ME */
  1207. /* Allocate and prepare an extension descriptor for scattered frames */
  1208. msdu_ext_desc = dp_tx_prepare_ext_desc(vdev, msdu_info, desc_pool_id);
  1209. if (!msdu_ext_desc) {
  1210. dp_tx_info("Tx Extension Descriptor Alloc Fail");
  1211. goto failure;
  1212. }
  1213. #if !TQM_BYPASS_WAR
  1214. if (qdf_unlikely(msdu_info->exception_fw) ||
  1215. dp_tx_is_nbuf_marked_exception(soc, nbuf))
  1216. #endif
  1217. {
  1218. /* Temporary WAR due to TQM VP issues */
  1219. tx_desc->flags |= DP_TX_DESC_FLAG_TO_FW;
  1220. qdf_atomic_inc(&soc->num_tx_exception);
  1221. }
  1222. tx_desc->msdu_ext_desc = msdu_ext_desc;
  1223. tx_desc->flags |= DP_TX_DESC_FLAG_FRAG;
  1224. msdu_ext_desc->tso_desc = msdu_info->u.tso_info.curr_seg;
  1225. msdu_ext_desc->tso_num_desc = msdu_info->u.tso_info.tso_num_seg_list;
  1226. tx_desc->dma_addr = msdu_ext_desc->paddr;
  1227. if (msdu_ext_desc->flags & DP_TX_EXT_DESC_FLAG_METADATA_VALID)
  1228. tx_desc->length = HAL_TX_EXT_DESC_WITH_META_DATA;
  1229. else
  1230. tx_desc->length = HAL_TX_EXTENSION_DESC_LEN_BYTES;
  1231. return tx_desc;
  1232. failure:
  1233. dp_tx_desc_release(soc, tx_desc, desc_pool_id);
  1234. return NULL;
  1235. }
  1236. /**
  1237. * dp_tx_prepare_raw() - Prepare RAW packet TX
  1238. * @vdev: DP vdev handle
  1239. * @nbuf: buffer pointer
  1240. * @seg_info: Pointer to Segment info Descriptor to be prepared
  1241. * @msdu_info: MSDU info to be setup in MSDU descriptor and MSDU extension
  1242. * descriptor
  1243. *
  1244. * Return:
  1245. */
  1246. static qdf_nbuf_t dp_tx_prepare_raw(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
  1247. struct dp_tx_seg_info_s *seg_info, struct dp_tx_msdu_info_s *msdu_info)
  1248. {
  1249. qdf_nbuf_t curr_nbuf = NULL;
  1250. uint16_t total_len = 0;
  1251. qdf_dma_addr_t paddr;
  1252. int32_t i;
  1253. int32_t mapped_buf_num = 0;
  1254. struct dp_tx_sg_info_s *sg_info = &msdu_info->u.sg_info;
  1255. qdf_dot3_qosframe_t *qos_wh = (qdf_dot3_qosframe_t *) nbuf->data;
  1256. DP_STATS_INC_PKT(vdev, tx_i[msdu_info->xmit_type].raw.raw_pkt,
  1257. 1, qdf_nbuf_len(nbuf));
  1258. /* Continue only if frames are of DATA type */
  1259. if (!DP_FRAME_IS_DATA(qos_wh)) {
  1260. DP_STATS_INC(vdev,
  1261. tx_i[msdu_info->xmit_type].raw.invalid_raw_pkt_datatype,
  1262. 1);
  1263. dp_tx_debug("Pkt. recd is of not data type");
  1264. goto error;
  1265. }
  1266. /* SWAR for HW: Enable WEP bit in the AMSDU frames for RAW mode */
  1267. if (vdev->raw_mode_war &&
  1268. (qos_wh->i_fc[0] & QDF_IEEE80211_FC0_SUBTYPE_QOS) &&
  1269. (qos_wh->i_qos[0] & IEEE80211_QOS_AMSDU))
  1270. qos_wh->i_fc[1] |= IEEE80211_FC1_WEP;
  1271. for (curr_nbuf = nbuf, i = 0; curr_nbuf;
  1272. curr_nbuf = qdf_nbuf_next(curr_nbuf), i++) {
  1273. /*
  1274. * Number of nbuf's must not exceed the size of the frags
  1275. * array in seg_info.
  1276. */
  1277. if (i >= DP_TX_MAX_NUM_FRAGS) {
  1278. dp_err_rl("nbuf cnt exceeds the max number of segs");
  1279. DP_STATS_INC(vdev,
  1280. tx_i[msdu_info->xmit_type].raw.num_frags_overflow_err,
  1281. 1);
  1282. goto error;
  1283. }
  1284. if (QDF_STATUS_SUCCESS !=
  1285. qdf_nbuf_map_nbytes_single(vdev->osdev,
  1286. curr_nbuf,
  1287. QDF_DMA_TO_DEVICE,
  1288. curr_nbuf->len)) {
  1289. dp_tx_err("%s dma map error ", __func__);
  1290. DP_STATS_INC(vdev,
  1291. tx_i[msdu_info->xmit_type].raw.dma_map_error,
  1292. 1);
  1293. goto error;
  1294. }
  1295. /* Update the count of mapped nbuf's */
  1296. mapped_buf_num++;
  1297. paddr = qdf_nbuf_get_frag_paddr(curr_nbuf, 0);
  1298. seg_info->frags[i].paddr_lo = paddr;
  1299. seg_info->frags[i].paddr_hi = ((uint64_t)paddr >> 32);
  1300. seg_info->frags[i].len = qdf_nbuf_len(curr_nbuf);
  1301. seg_info->frags[i].vaddr = (void *) curr_nbuf;
  1302. total_len += qdf_nbuf_len(curr_nbuf);
  1303. }
  1304. seg_info->frag_cnt = i;
  1305. seg_info->total_len = total_len;
  1306. seg_info->next = NULL;
  1307. sg_info->curr_seg = seg_info;
  1308. msdu_info->frm_type = dp_tx_frm_raw;
  1309. msdu_info->num_seg = 1;
  1310. return nbuf;
  1311. error:
  1312. i = 0;
  1313. while (nbuf) {
  1314. curr_nbuf = nbuf;
  1315. if (i < mapped_buf_num) {
  1316. qdf_nbuf_unmap_nbytes_single(vdev->osdev, curr_nbuf,
  1317. QDF_DMA_TO_DEVICE,
  1318. curr_nbuf->len);
  1319. i++;
  1320. }
  1321. nbuf = qdf_nbuf_next(nbuf);
  1322. qdf_nbuf_free(curr_nbuf);
  1323. }
  1324. return NULL;
  1325. }
  1326. /**
  1327. * dp_tx_raw_prepare_unset() - unmap the chain of nbufs belonging to RAW frame.
  1328. * @soc: DP soc handle
  1329. * @nbuf: Buffer pointer
  1330. *
  1331. * unmap the chain of nbufs that belong to this RAW frame.
  1332. *
  1333. * Return: None
  1334. */
  1335. static void dp_tx_raw_prepare_unset(struct dp_soc *soc,
  1336. qdf_nbuf_t nbuf)
  1337. {
  1338. qdf_nbuf_t cur_nbuf = nbuf;
  1339. do {
  1340. qdf_nbuf_unmap_nbytes_single(soc->osdev, cur_nbuf,
  1341. QDF_DMA_TO_DEVICE,
  1342. cur_nbuf->len);
  1343. cur_nbuf = qdf_nbuf_next(cur_nbuf);
  1344. } while (cur_nbuf);
  1345. }
  1346. #ifdef VDEV_PEER_PROTOCOL_COUNT
  1347. void dp_vdev_peer_stats_update_protocol_cnt_tx(struct dp_vdev *vdev_hdl,
  1348. qdf_nbuf_t nbuf)
  1349. {
  1350. qdf_nbuf_t nbuf_local;
  1351. struct dp_vdev *vdev_local = vdev_hdl;
  1352. do {
  1353. if (qdf_likely(!((vdev_local)->peer_protocol_count_track)))
  1354. break;
  1355. nbuf_local = nbuf;
  1356. if (qdf_unlikely(((vdev_local)->tx_encap_type) ==
  1357. htt_cmn_pkt_type_raw))
  1358. break;
  1359. else if (qdf_unlikely(qdf_nbuf_is_nonlinear((nbuf_local))))
  1360. break;
  1361. else if (qdf_nbuf_is_tso((nbuf_local)))
  1362. break;
  1363. dp_vdev_peer_stats_update_protocol_cnt((vdev_local),
  1364. (nbuf_local),
  1365. NULL, 1, 0);
  1366. } while (0);
  1367. }
  1368. #endif
  1369. #ifdef WLAN_DP_FEATURE_SW_LATENCY_MGR
  1370. void dp_tx_update_stats(struct dp_soc *soc,
  1371. struct dp_tx_desc_s *tx_desc,
  1372. uint8_t ring_id)
  1373. {
  1374. uint32_t stats_len = dp_tx_get_pkt_len(tx_desc);
  1375. DP_STATS_INC_PKT(soc, tx.egress[ring_id], 1, stats_len);
  1376. }
  1377. int
  1378. dp_tx_attempt_coalescing(struct dp_soc *soc, struct dp_vdev *vdev,
  1379. struct dp_tx_desc_s *tx_desc,
  1380. uint8_t tid,
  1381. struct dp_tx_msdu_info_s *msdu_info,
  1382. uint8_t ring_id)
  1383. {
  1384. struct dp_swlm *swlm = &soc->swlm;
  1385. union swlm_data swlm_query_data;
  1386. struct dp_swlm_tcl_data tcl_data;
  1387. QDF_STATUS status;
  1388. int ret;
  1389. if (!swlm->is_enabled)
  1390. return msdu_info->skip_hp_update;
  1391. tcl_data.nbuf = tx_desc->nbuf;
  1392. tcl_data.tid = tid;
  1393. tcl_data.ring_id = ring_id;
  1394. tcl_data.pkt_len = dp_tx_get_pkt_len(tx_desc);
  1395. tcl_data.num_ll_connections = vdev->num_latency_critical_conn;
  1396. swlm_query_data.tcl_data = &tcl_data;
  1397. status = dp_swlm_tcl_pre_check(soc, &tcl_data);
  1398. if (QDF_IS_STATUS_ERROR(status)) {
  1399. dp_swlm_tcl_reset_session_data(soc, ring_id);
  1400. DP_STATS_INC(swlm, tcl[ring_id].coalesce_fail, 1);
  1401. return 0;
  1402. }
  1403. ret = dp_swlm_query_policy(soc, TCL_DATA, swlm_query_data);
  1404. if (ret) {
  1405. DP_STATS_INC(swlm, tcl[ring_id].coalesce_success, 1);
  1406. } else {
  1407. DP_STATS_INC(swlm, tcl[ring_id].coalesce_fail, 1);
  1408. }
  1409. return ret;
  1410. }
  1411. void
  1412. dp_tx_ring_access_end(struct dp_soc *soc, hal_ring_handle_t hal_ring_hdl,
  1413. int coalesce)
  1414. {
  1415. if (coalesce)
  1416. dp_tx_hal_ring_access_end_reap(soc, hal_ring_hdl);
  1417. else
  1418. dp_tx_hal_ring_access_end(soc, hal_ring_hdl);
  1419. }
  1420. static inline void
  1421. dp_tx_is_hp_update_required(uint32_t i, struct dp_tx_msdu_info_s *msdu_info)
  1422. {
  1423. if (((i + 1) < msdu_info->num_seg))
  1424. msdu_info->skip_hp_update = 1;
  1425. else
  1426. msdu_info->skip_hp_update = 0;
  1427. }
  1428. static inline void
  1429. dp_flush_tcp_hp(struct dp_soc *soc, uint8_t ring_id)
  1430. {
  1431. hal_ring_handle_t hal_ring_hdl =
  1432. dp_tx_get_hal_ring_hdl(soc, ring_id);
  1433. if (dp_tx_hal_ring_access_start(soc, hal_ring_hdl)) {
  1434. dp_err("Fillmore: SRNG access start failed");
  1435. return;
  1436. }
  1437. dp_tx_ring_access_end_wrapper(soc, hal_ring_hdl, 0);
  1438. }
  1439. static inline void
  1440. dp_tx_check_and_flush_hp(struct dp_soc *soc,
  1441. QDF_STATUS status,
  1442. struct dp_tx_msdu_info_s *msdu_info)
  1443. {
  1444. if (QDF_IS_STATUS_ERROR(status) && !msdu_info->skip_hp_update) {
  1445. dp_flush_tcp_hp(soc,
  1446. (msdu_info->tx_queue.ring_id & DP_TX_QUEUE_MASK));
  1447. }
  1448. }
  1449. #else
  1450. static inline void
  1451. dp_tx_is_hp_update_required(uint32_t i, struct dp_tx_msdu_info_s *msdu_info)
  1452. {
  1453. }
  1454. static inline void
  1455. dp_tx_check_and_flush_hp(struct dp_soc *soc,
  1456. QDF_STATUS status,
  1457. struct dp_tx_msdu_info_s *msdu_info)
  1458. {
  1459. }
  1460. #endif
  1461. #ifdef FEATURE_RUNTIME_PM
  1462. void
  1463. dp_tx_ring_access_end_wrapper(struct dp_soc *soc,
  1464. hal_ring_handle_t hal_ring_hdl,
  1465. int coalesce)
  1466. {
  1467. int ret;
  1468. /*
  1469. * Avoid runtime get and put APIs under high throughput scenarios.
  1470. */
  1471. if (dp_get_rtpm_tput_policy_requirement(soc)) {
  1472. dp_tx_ring_access_end(soc, hal_ring_hdl, coalesce);
  1473. return;
  1474. }
  1475. ret = hif_rtpm_get(HIF_RTPM_GET_ASYNC, HIF_RTPM_ID_DP);
  1476. if (QDF_IS_STATUS_SUCCESS(ret)) {
  1477. if (hif_system_pm_state_check(soc->hif_handle)) {
  1478. dp_tx_hal_ring_access_end_reap(soc, hal_ring_hdl);
  1479. hal_srng_set_event(hal_ring_hdl, HAL_SRNG_FLUSH_EVENT);
  1480. hal_srng_inc_flush_cnt(hal_ring_hdl);
  1481. } else {
  1482. dp_tx_ring_access_end(soc, hal_ring_hdl, coalesce);
  1483. }
  1484. hif_rtpm_put(HIF_RTPM_PUT_ASYNC, HIF_RTPM_ID_DP);
  1485. } else {
  1486. dp_runtime_get(soc);
  1487. dp_tx_hal_ring_access_end_reap(soc, hal_ring_hdl);
  1488. hal_srng_set_event(hal_ring_hdl, HAL_SRNG_FLUSH_EVENT);
  1489. qdf_atomic_inc(&soc->tx_pending_rtpm);
  1490. hal_srng_inc_flush_cnt(hal_ring_hdl);
  1491. dp_runtime_put(soc);
  1492. }
  1493. }
  1494. #else
  1495. #ifdef DP_POWER_SAVE
  1496. void
  1497. dp_tx_ring_access_end_wrapper(struct dp_soc *soc,
  1498. hal_ring_handle_t hal_ring_hdl,
  1499. int coalesce)
  1500. {
  1501. if (hif_system_pm_state_check(soc->hif_handle)) {
  1502. dp_tx_hal_ring_access_end_reap(soc, hal_ring_hdl);
  1503. hal_srng_set_event(hal_ring_hdl, HAL_SRNG_FLUSH_EVENT);
  1504. hal_srng_inc_flush_cnt(hal_ring_hdl);
  1505. } else {
  1506. dp_tx_ring_access_end(soc, hal_ring_hdl, coalesce);
  1507. }
  1508. }
  1509. #endif
  1510. #endif
  1511. /**
  1512. * dp_tx_get_tid() - Obtain TID to be used for this frame
  1513. * @vdev: DP vdev handle
  1514. * @nbuf: skb
  1515. * @msdu_info: msdu descriptor
  1516. *
  1517. * Extract the DSCP or PCP information from frame and map into TID value.
  1518. *
  1519. * Return: void
  1520. */
  1521. static void dp_tx_get_tid(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
  1522. struct dp_tx_msdu_info_s *msdu_info)
  1523. {
  1524. uint8_t tos = 0, dscp_tid_override = 0;
  1525. uint8_t *hdr_ptr, *L3datap;
  1526. uint8_t is_mcast = 0;
  1527. qdf_ether_header_t *eh = NULL;
  1528. qdf_ethervlan_header_t *evh = NULL;
  1529. uint16_t ether_type;
  1530. qdf_llc_t *llcHdr;
  1531. struct dp_pdev *pdev = (struct dp_pdev *)vdev->pdev;
  1532. DP_TX_TID_OVERRIDE(msdu_info, nbuf);
  1533. if (qdf_likely(vdev->tx_encap_type != htt_cmn_pkt_type_raw)) {
  1534. eh = (qdf_ether_header_t *)nbuf->data;
  1535. hdr_ptr = (uint8_t *)(eh->ether_dhost);
  1536. L3datap = hdr_ptr + sizeof(qdf_ether_header_t);
  1537. } else {
  1538. qdf_dot3_qosframe_t *qos_wh =
  1539. (qdf_dot3_qosframe_t *) nbuf->data;
  1540. msdu_info->tid = qos_wh->i_fc[0] & DP_FC0_SUBTYPE_QOS ?
  1541. qos_wh->i_qos[0] & DP_QOS_TID : 0;
  1542. return;
  1543. }
  1544. is_mcast = DP_FRAME_IS_MULTICAST(hdr_ptr);
  1545. ether_type = eh->ether_type;
  1546. llcHdr = (qdf_llc_t *)(nbuf->data + sizeof(qdf_ether_header_t));
  1547. /*
  1548. * Check if packet is dot3 or eth2 type.
  1549. */
  1550. if (DP_FRAME_IS_LLC(ether_type) && DP_FRAME_IS_SNAP(llcHdr)) {
  1551. ether_type = (uint16_t)*(nbuf->data + 2*QDF_MAC_ADDR_SIZE +
  1552. sizeof(*llcHdr));
  1553. if (ether_type == htons(ETHERTYPE_VLAN)) {
  1554. L3datap = hdr_ptr + sizeof(qdf_ethervlan_header_t) +
  1555. sizeof(*llcHdr);
  1556. ether_type = (uint16_t)*(nbuf->data + 2*QDF_MAC_ADDR_SIZE
  1557. + sizeof(*llcHdr) +
  1558. sizeof(qdf_net_vlanhdr_t));
  1559. } else {
  1560. L3datap = hdr_ptr + sizeof(qdf_ether_header_t) +
  1561. sizeof(*llcHdr);
  1562. }
  1563. } else {
  1564. if (ether_type == htons(ETHERTYPE_VLAN)) {
  1565. evh = (qdf_ethervlan_header_t *) eh;
  1566. ether_type = evh->ether_type;
  1567. L3datap = hdr_ptr + sizeof(qdf_ethervlan_header_t);
  1568. }
  1569. }
  1570. /*
  1571. * Find priority from IP TOS DSCP field
  1572. */
  1573. if (qdf_nbuf_is_ipv4_pkt(nbuf)) {
  1574. qdf_net_iphdr_t *ip = (qdf_net_iphdr_t *) L3datap;
  1575. if (qdf_nbuf_is_ipv4_dhcp_pkt(nbuf)) {
  1576. /* Only for unicast frames */
  1577. if (!is_mcast) {
  1578. /* send it on VO queue */
  1579. msdu_info->tid = DP_VO_TID;
  1580. }
  1581. } else {
  1582. /*
  1583. * IP frame: exclude ECN bits 0-1 and map DSCP bits 2-7
  1584. * from TOS byte.
  1585. */
  1586. tos = ip->ip_tos;
  1587. dscp_tid_override = 1;
  1588. }
  1589. } else if (qdf_nbuf_is_ipv6_pkt(nbuf)) {
  1590. /* TODO
  1591. * use flowlabel
  1592. *igmpmld cases to be handled in phase 2
  1593. */
  1594. unsigned long ver_pri_flowlabel;
  1595. unsigned long pri;
  1596. ver_pri_flowlabel = *(unsigned long *) L3datap;
  1597. pri = (ntohl(ver_pri_flowlabel) & IPV6_FLOWINFO_PRIORITY) >>
  1598. DP_IPV6_PRIORITY_SHIFT;
  1599. tos = pri;
  1600. dscp_tid_override = 1;
  1601. } else if (qdf_nbuf_is_ipv4_eapol_pkt(nbuf))
  1602. msdu_info->tid = DP_VO_TID;
  1603. else if (qdf_nbuf_is_ipv4_arp_pkt(nbuf)) {
  1604. /* Only for unicast frames */
  1605. if (!is_mcast) {
  1606. /* send ucast arp on VO queue */
  1607. msdu_info->tid = DP_VO_TID;
  1608. }
  1609. }
  1610. /*
  1611. * Assign all MCAST packets to BE
  1612. */
  1613. if (qdf_unlikely(vdev->tx_encap_type != htt_cmn_pkt_type_raw)) {
  1614. if (is_mcast) {
  1615. tos = 0;
  1616. dscp_tid_override = 1;
  1617. }
  1618. }
  1619. if (dscp_tid_override == 1) {
  1620. tos = (tos >> DP_IP_DSCP_SHIFT) & DP_IP_DSCP_MASK;
  1621. msdu_info->tid = pdev->dscp_tid_map[vdev->dscp_tid_map_id][tos];
  1622. }
  1623. if (msdu_info->tid >= CDP_MAX_DATA_TIDS)
  1624. msdu_info->tid = CDP_MAX_DATA_TIDS - 1;
  1625. return;
  1626. }
  1627. /**
  1628. * dp_tx_classify_tid() - Obtain TID to be used for this frame
  1629. * @vdev: DP vdev handle
  1630. * @nbuf: skb
  1631. * @msdu_info: msdu descriptor
  1632. *
  1633. * Software based TID classification is required when more than 2 DSCP-TID
  1634. * mapping tables are needed.
  1635. * Hardware supports 2 DSCP-TID mapping tables for HKv1 and 48 for HKv2.
  1636. *
  1637. * Return: void
  1638. */
  1639. static inline void dp_tx_classify_tid(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
  1640. struct dp_tx_msdu_info_s *msdu_info)
  1641. {
  1642. DP_TX_TID_OVERRIDE(msdu_info, nbuf);
  1643. /*
  1644. * skip_sw_tid_classification flag will set in below cases-
  1645. * 1. vdev->dscp_tid_map_id < pdev->soc->num_hw_dscp_tid_map
  1646. * 2. hlos_tid_override enabled for vdev
  1647. * 3. mesh mode enabled for vdev
  1648. */
  1649. if (qdf_likely(vdev->skip_sw_tid_classification)) {
  1650. /* Update tid in msdu_info from skb priority */
  1651. if (qdf_unlikely(vdev->skip_sw_tid_classification
  1652. & DP_TXRX_HLOS_TID_OVERRIDE_ENABLED)) {
  1653. uint32_t tid = qdf_nbuf_get_priority(nbuf);
  1654. if (tid == DP_TX_INVALID_QOS_TAG)
  1655. return;
  1656. msdu_info->tid = tid;
  1657. return;
  1658. }
  1659. return;
  1660. }
  1661. dp_tx_get_tid(vdev, nbuf, msdu_info);
  1662. }
  1663. #ifdef FEATURE_WLAN_TDLS
  1664. /**
  1665. * dp_tx_update_tdls_flags() - Update descriptor flags for TDLS frame
  1666. * @soc: datapath SOC
  1667. * @vdev: datapath vdev
  1668. * @tx_desc: TX descriptor
  1669. *
  1670. * Return: None
  1671. */
  1672. static void dp_tx_update_tdls_flags(struct dp_soc *soc,
  1673. struct dp_vdev *vdev,
  1674. struct dp_tx_desc_s *tx_desc)
  1675. {
  1676. if (vdev) {
  1677. if (vdev->is_tdls_frame) {
  1678. tx_desc->flags |= DP_TX_DESC_FLAG_TDLS_FRAME;
  1679. vdev->is_tdls_frame = false;
  1680. }
  1681. }
  1682. }
  1683. static uint8_t dp_htt_tx_comp_get_status(struct dp_soc *soc, char *htt_desc)
  1684. {
  1685. uint8_t tx_status = HTT_TX_FW2WBM_TX_STATUS_MAX;
  1686. switch (soc->arch_id) {
  1687. case CDP_ARCH_TYPE_LI:
  1688. tx_status = HTT_TX_WBM_COMPLETION_V2_TX_STATUS_GET(htt_desc[0]);
  1689. break;
  1690. case CDP_ARCH_TYPE_BE:
  1691. tx_status = HTT_TX_WBM_COMPLETION_V3_TX_STATUS_GET(htt_desc[0]);
  1692. break;
  1693. case CDP_ARCH_TYPE_RH:
  1694. {
  1695. uint32_t *msg_word = (uint32_t *)htt_desc;
  1696. tx_status = HTT_TX_MSDU_INFO_RELEASE_REASON_GET(
  1697. *(msg_word + 3));
  1698. }
  1699. break;
  1700. default:
  1701. dp_err("Incorrect CDP_ARCH %d", soc->arch_id);
  1702. QDF_BUG(0);
  1703. }
  1704. return tx_status;
  1705. }
  1706. /**
  1707. * dp_non_std_htt_tx_comp_free_buff() - Free the non std tx packet buffer
  1708. * @soc: dp_soc handle
  1709. * @tx_desc: TX descriptor
  1710. *
  1711. * Return: None
  1712. */
  1713. static void dp_non_std_htt_tx_comp_free_buff(struct dp_soc *soc,
  1714. struct dp_tx_desc_s *tx_desc)
  1715. {
  1716. uint8_t tx_status = 0;
  1717. uint8_t htt_tx_status[HAL_TX_COMP_HTT_STATUS_LEN];
  1718. qdf_nbuf_t nbuf = tx_desc->nbuf;
  1719. struct dp_vdev *vdev = dp_vdev_get_ref_by_id(soc, tx_desc->vdev_id,
  1720. DP_MOD_ID_TDLS);
  1721. if (qdf_unlikely(!vdev)) {
  1722. dp_err_rl("vdev is null!");
  1723. goto error;
  1724. }
  1725. hal_tx_comp_get_htt_desc(&tx_desc->comp, htt_tx_status);
  1726. tx_status = dp_htt_tx_comp_get_status(soc, htt_tx_status);
  1727. dp_debug("vdev_id: %d tx_status: %d", tx_desc->vdev_id, tx_status);
  1728. if (vdev->tx_non_std_data_callback.func) {
  1729. qdf_nbuf_set_next(nbuf, NULL);
  1730. vdev->tx_non_std_data_callback.func(
  1731. vdev->tx_non_std_data_callback.ctxt,
  1732. nbuf, tx_status);
  1733. dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_TDLS);
  1734. return;
  1735. } else {
  1736. dp_err_rl("callback func is null");
  1737. }
  1738. dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_TDLS);
  1739. error:
  1740. qdf_nbuf_unmap_single(soc->osdev, nbuf, QDF_DMA_TO_DEVICE);
  1741. qdf_nbuf_free(nbuf);
  1742. }
  1743. /**
  1744. * dp_tx_msdu_single_map() - do nbuf map
  1745. * @vdev: DP vdev handle
  1746. * @tx_desc: DP TX descriptor pointer
  1747. * @nbuf: skb pointer
  1748. *
  1749. * For TDLS frame, use qdf_nbuf_map_single() to align with the unmap
  1750. * operation done in other component.
  1751. *
  1752. * Return: QDF_STATUS
  1753. */
  1754. static inline QDF_STATUS dp_tx_msdu_single_map(struct dp_vdev *vdev,
  1755. struct dp_tx_desc_s *tx_desc,
  1756. qdf_nbuf_t nbuf)
  1757. {
  1758. if (qdf_likely(!(tx_desc->flags & DP_TX_DESC_FLAG_TDLS_FRAME)))
  1759. return qdf_nbuf_map_nbytes_single(vdev->osdev,
  1760. nbuf,
  1761. QDF_DMA_TO_DEVICE,
  1762. nbuf->len);
  1763. else
  1764. return qdf_nbuf_map_single(vdev->osdev, nbuf,
  1765. QDF_DMA_TO_DEVICE);
  1766. }
  1767. #else
  1768. static inline void dp_tx_update_tdls_flags(struct dp_soc *soc,
  1769. struct dp_vdev *vdev,
  1770. struct dp_tx_desc_s *tx_desc)
  1771. {
  1772. }
  1773. static inline void dp_non_std_htt_tx_comp_free_buff(struct dp_soc *soc,
  1774. struct dp_tx_desc_s *tx_desc)
  1775. {
  1776. }
  1777. static inline QDF_STATUS dp_tx_msdu_single_map(struct dp_vdev *vdev,
  1778. struct dp_tx_desc_s *tx_desc,
  1779. qdf_nbuf_t nbuf)
  1780. {
  1781. return qdf_nbuf_map_nbytes_single(vdev->osdev,
  1782. nbuf,
  1783. QDF_DMA_TO_DEVICE,
  1784. nbuf->len);
  1785. }
  1786. #endif
  1787. static inline
  1788. qdf_dma_addr_t dp_tx_nbuf_map_regular(struct dp_vdev *vdev,
  1789. struct dp_tx_desc_s *tx_desc,
  1790. qdf_nbuf_t nbuf)
  1791. {
  1792. QDF_STATUS ret = QDF_STATUS_E_FAILURE;
  1793. ret = dp_tx_msdu_single_map(vdev, tx_desc, nbuf);
  1794. if (qdf_unlikely(QDF_IS_STATUS_ERROR(ret)))
  1795. return 0;
  1796. return qdf_nbuf_mapped_paddr_get(nbuf);
  1797. }
  1798. static inline
  1799. void dp_tx_nbuf_unmap_regular(struct dp_soc *soc, struct dp_tx_desc_s *desc)
  1800. {
  1801. qdf_nbuf_unmap_nbytes_single_paddr(soc->osdev,
  1802. desc->nbuf,
  1803. desc->dma_addr,
  1804. QDF_DMA_TO_DEVICE,
  1805. desc->length);
  1806. }
  1807. #ifdef QCA_DP_TX_RMNET_OPTIMIZATION
  1808. static inline bool
  1809. is_nbuf_frm_rmnet(qdf_nbuf_t nbuf, struct dp_tx_msdu_info_s *msdu_info)
  1810. {
  1811. struct net_device *ingress_dev;
  1812. skb_frag_t *frag;
  1813. uint16_t buf_len = 0;
  1814. uint16_t linear_data_len = 0;
  1815. uint8_t *payload_addr = NULL;
  1816. ingress_dev = dev_get_by_index(dev_net(nbuf->dev), nbuf->skb_iif);
  1817. if (!ingress_dev)
  1818. return false;
  1819. if ((ingress_dev->priv_flags & IFF_PHONY_HEADROOM)) {
  1820. qdf_net_if_release_dev((struct qdf_net_if *)ingress_dev);
  1821. frag = &(skb_shinfo(nbuf)->frags[0]);
  1822. buf_len = skb_frag_size(frag);
  1823. payload_addr = (uint8_t *)skb_frag_address(frag);
  1824. linear_data_len = skb_headlen(nbuf);
  1825. buf_len += linear_data_len;
  1826. payload_addr = payload_addr - linear_data_len;
  1827. memcpy(payload_addr, nbuf->data, linear_data_len);
  1828. msdu_info->frm_type = dp_tx_frm_rmnet;
  1829. msdu_info->buf_len = buf_len;
  1830. msdu_info->payload_addr = payload_addr;
  1831. return true;
  1832. }
  1833. qdf_net_if_release_dev((struct qdf_net_if *)ingress_dev);
  1834. return false;
  1835. }
  1836. static inline
  1837. qdf_dma_addr_t dp_tx_rmnet_nbuf_map(struct dp_tx_msdu_info_s *msdu_info,
  1838. struct dp_tx_desc_s *tx_desc)
  1839. {
  1840. qdf_dma_addr_t paddr;
  1841. paddr = (qdf_dma_addr_t)qdf_mem_virt_to_phys(msdu_info->payload_addr);
  1842. tx_desc->length = msdu_info->buf_len;
  1843. qdf_nbuf_dma_clean_range((void *)msdu_info->payload_addr,
  1844. (void *)(msdu_info->payload_addr +
  1845. msdu_info->buf_len));
  1846. tx_desc->flags |= DP_TX_DESC_FLAG_RMNET;
  1847. return paddr;
  1848. }
  1849. #else
  1850. static inline bool
  1851. is_nbuf_frm_rmnet(qdf_nbuf_t nbuf, struct dp_tx_msdu_info_s *msdu_info)
  1852. {
  1853. return false;
  1854. }
  1855. static inline
  1856. qdf_dma_addr_t dp_tx_rmnet_nbuf_map(struct dp_tx_msdu_info_s *msdu_info,
  1857. struct dp_tx_desc_s *tx_desc)
  1858. {
  1859. return 0;
  1860. }
  1861. #endif
  1862. #if defined(QCA_DP_TX_NBUF_NO_MAP_UNMAP) && !defined(BUILD_X86)
  1863. static inline
  1864. qdf_dma_addr_t dp_tx_nbuf_map(struct dp_vdev *vdev,
  1865. struct dp_tx_desc_s *tx_desc,
  1866. qdf_nbuf_t nbuf)
  1867. {
  1868. if (qdf_likely(tx_desc->flags & DP_TX_DESC_FLAG_SIMPLE)) {
  1869. qdf_nbuf_dma_clean_range((void *)nbuf->data,
  1870. (void *)(nbuf->data + nbuf->len));
  1871. return (qdf_dma_addr_t)qdf_mem_virt_to_phys(nbuf->data);
  1872. } else {
  1873. return dp_tx_nbuf_map_regular(vdev, tx_desc, nbuf);
  1874. }
  1875. }
  1876. static inline
  1877. void dp_tx_nbuf_unmap(struct dp_soc *soc,
  1878. struct dp_tx_desc_s *desc)
  1879. {
  1880. if (qdf_unlikely(!(desc->flags &
  1881. (DP_TX_DESC_FLAG_SIMPLE | DP_TX_DESC_FLAG_RMNET))))
  1882. return dp_tx_nbuf_unmap_regular(soc, desc);
  1883. }
  1884. #else
  1885. static inline
  1886. qdf_dma_addr_t dp_tx_nbuf_map(struct dp_vdev *vdev,
  1887. struct dp_tx_desc_s *tx_desc,
  1888. qdf_nbuf_t nbuf)
  1889. {
  1890. return dp_tx_nbuf_map_regular(vdev, tx_desc, nbuf);
  1891. }
  1892. static inline
  1893. void dp_tx_nbuf_unmap(struct dp_soc *soc,
  1894. struct dp_tx_desc_s *desc)
  1895. {
  1896. return dp_tx_nbuf_unmap_regular(soc, desc);
  1897. }
  1898. #endif
  1899. #if defined(WLAN_TX_PKT_CAPTURE_ENH) || defined(FEATURE_PERPKT_INFO)
  1900. static inline
  1901. void dp_tx_enh_unmap(struct dp_soc *soc, struct dp_tx_desc_s *desc)
  1902. {
  1903. if (qdf_likely(!(desc->flags & DP_TX_DESC_FLAG_UNMAP_DONE))) {
  1904. dp_tx_nbuf_unmap(soc, desc);
  1905. desc->flags |= DP_TX_DESC_FLAG_UNMAP_DONE;
  1906. }
  1907. }
  1908. static inline void dp_tx_unmap(struct dp_soc *soc, struct dp_tx_desc_s *desc)
  1909. {
  1910. if (qdf_likely(!(desc->flags & DP_TX_DESC_FLAG_UNMAP_DONE)))
  1911. dp_tx_nbuf_unmap(soc, desc);
  1912. }
  1913. #else
  1914. static inline
  1915. void dp_tx_enh_unmap(struct dp_soc *soc, struct dp_tx_desc_s *desc)
  1916. {
  1917. }
  1918. static inline void dp_tx_unmap(struct dp_soc *soc, struct dp_tx_desc_s *desc)
  1919. {
  1920. dp_tx_nbuf_unmap(soc, desc);
  1921. }
  1922. #endif
  1923. #ifdef MESH_MODE_SUPPORT
  1924. /**
  1925. * dp_tx_update_mesh_flags() - Update descriptor flags for mesh VAP
  1926. * @soc: datapath SOC
  1927. * @vdev: datapath vdev
  1928. * @tx_desc: TX descriptor
  1929. *
  1930. * Return: None
  1931. */
  1932. static inline void dp_tx_update_mesh_flags(struct dp_soc *soc,
  1933. struct dp_vdev *vdev,
  1934. struct dp_tx_desc_s *tx_desc)
  1935. {
  1936. if (qdf_unlikely(vdev->mesh_vdev))
  1937. tx_desc->flags |= DP_TX_DESC_FLAG_MESH_MODE;
  1938. }
  1939. /**
  1940. * dp_mesh_tx_comp_free_buff() - Free the mesh tx packet buffer
  1941. * @soc: dp_soc handle
  1942. * @tx_desc: TX descriptor
  1943. * @delayed_free: delay the nbuf free
  1944. *
  1945. * Return: nbuf to be freed late
  1946. */
  1947. static inline qdf_nbuf_t dp_mesh_tx_comp_free_buff(struct dp_soc *soc,
  1948. struct dp_tx_desc_s *tx_desc,
  1949. bool delayed_free)
  1950. {
  1951. qdf_nbuf_t nbuf = tx_desc->nbuf;
  1952. struct dp_vdev *vdev = NULL;
  1953. uint8_t xmit_type = qdf_nbuf_get_vdev_xmit_type(nbuf);
  1954. vdev = dp_vdev_get_ref_by_id(soc, tx_desc->vdev_id, DP_MOD_ID_MESH);
  1955. if (tx_desc->flags & DP_TX_DESC_FLAG_TO_FW) {
  1956. if (vdev)
  1957. DP_STATS_INC(vdev,
  1958. tx_i[xmit_type].mesh.completion_fw, 1);
  1959. if (delayed_free)
  1960. return nbuf;
  1961. qdf_nbuf_free(nbuf);
  1962. } else {
  1963. if (vdev && vdev->osif_tx_free_ext) {
  1964. vdev->osif_tx_free_ext((nbuf));
  1965. } else {
  1966. if (delayed_free)
  1967. return nbuf;
  1968. qdf_nbuf_free(nbuf);
  1969. }
  1970. }
  1971. if (vdev)
  1972. dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_MESH);
  1973. return NULL;
  1974. }
  1975. #else
  1976. static inline void dp_tx_update_mesh_flags(struct dp_soc *soc,
  1977. struct dp_vdev *vdev,
  1978. struct dp_tx_desc_s *tx_desc)
  1979. {
  1980. }
  1981. static inline qdf_nbuf_t dp_mesh_tx_comp_free_buff(struct dp_soc *soc,
  1982. struct dp_tx_desc_s *tx_desc,
  1983. bool delayed_free)
  1984. {
  1985. return NULL;
  1986. }
  1987. #endif
  1988. int dp_tx_frame_is_drop(struct dp_vdev *vdev, uint8_t *srcmac, uint8_t *dstmac)
  1989. {
  1990. struct dp_pdev *pdev = NULL;
  1991. struct dp_ast_entry *src_ast_entry = NULL;
  1992. struct dp_ast_entry *dst_ast_entry = NULL;
  1993. struct dp_soc *soc = NULL;
  1994. qdf_assert(vdev);
  1995. pdev = vdev->pdev;
  1996. qdf_assert(pdev);
  1997. soc = pdev->soc;
  1998. dst_ast_entry = dp_peer_ast_hash_find_by_pdevid
  1999. (soc, dstmac, vdev->pdev->pdev_id);
  2000. src_ast_entry = dp_peer_ast_hash_find_by_pdevid
  2001. (soc, srcmac, vdev->pdev->pdev_id);
  2002. if (dst_ast_entry && src_ast_entry) {
  2003. if (dst_ast_entry->peer_id ==
  2004. src_ast_entry->peer_id)
  2005. return 1;
  2006. }
  2007. return 0;
  2008. }
  2009. #if defined(WLAN_FEATURE_11BE_MLO) && defined(WLAN_MLO_MULTI_CHIP) && \
  2010. defined(WLAN_MCAST_MLO)
  2011. /* MLO peer id for reinject*/
  2012. #define DP_MLO_MCAST_REINJECT_PEER_ID 0XFFFD
  2013. /* MLO vdev id inc offset */
  2014. #define DP_MLO_VDEV_ID_OFFSET 0x80
  2015. #ifdef QCA_SUPPORT_WDS_EXTENDED
  2016. static inline bool
  2017. dp_tx_wds_ext_check(struct cdp_tx_exception_metadata *tx_exc_metadata)
  2018. {
  2019. if (tx_exc_metadata && tx_exc_metadata->is_wds_extended)
  2020. return true;
  2021. return false;
  2022. }
  2023. #else
  2024. static inline bool
  2025. dp_tx_wds_ext_check(struct cdp_tx_exception_metadata *tx_exc_metadata)
  2026. {
  2027. return false;
  2028. }
  2029. #endif
  2030. static inline void
  2031. dp_tx_bypass_reinjection(struct dp_soc *soc, struct dp_tx_desc_s *tx_desc,
  2032. struct cdp_tx_exception_metadata *tx_exc_metadata)
  2033. {
  2034. /* wds ext enabled will not set the TO_FW bit */
  2035. if (dp_tx_wds_ext_check(tx_exc_metadata))
  2036. return;
  2037. if (!(tx_desc->flags & DP_TX_DESC_FLAG_TO_FW)) {
  2038. tx_desc->flags |= DP_TX_DESC_FLAG_TO_FW;
  2039. qdf_atomic_inc(&soc->num_tx_exception);
  2040. }
  2041. }
  2042. static inline void
  2043. dp_tx_update_mcast_param(uint16_t peer_id,
  2044. uint16_t *htt_tcl_metadata,
  2045. struct dp_vdev *vdev,
  2046. struct dp_tx_msdu_info_s *msdu_info)
  2047. {
  2048. if (peer_id == DP_MLO_MCAST_REINJECT_PEER_ID) {
  2049. *htt_tcl_metadata = 0;
  2050. DP_TX_TCL_METADATA_TYPE_SET(
  2051. *htt_tcl_metadata,
  2052. HTT_TCL_METADATA_V2_TYPE_GLOBAL_SEQ_BASED);
  2053. HTT_TX_TCL_METADATA_GLBL_SEQ_NO_SET(*htt_tcl_metadata,
  2054. msdu_info->gsn);
  2055. msdu_info->vdev_id = vdev->vdev_id + DP_MLO_VDEV_ID_OFFSET;
  2056. HTT_TX_TCL_METADATA_GLBL_SEQ_HOST_INSPECTED_SET(
  2057. *htt_tcl_metadata, 1);
  2058. } else {
  2059. msdu_info->vdev_id = vdev->vdev_id;
  2060. }
  2061. }
  2062. #else
  2063. static inline void
  2064. dp_tx_bypass_reinjection(struct dp_soc *soc, struct dp_tx_desc_s *tx_desc,
  2065. struct cdp_tx_exception_metadata *tx_exc_metadata)
  2066. {
  2067. }
  2068. static inline void
  2069. dp_tx_update_mcast_param(uint16_t peer_id,
  2070. uint16_t *htt_tcl_metadata,
  2071. struct dp_vdev *vdev,
  2072. struct dp_tx_msdu_info_s *msdu_info)
  2073. {
  2074. }
  2075. #endif
  2076. #ifdef DP_TX_SW_DROP_STATS_INC
  2077. static void tx_sw_drop_stats_inc(struct dp_pdev *pdev,
  2078. qdf_nbuf_t nbuf,
  2079. enum cdp_tx_sw_drop drop_code)
  2080. {
  2081. /* EAPOL Drop stats */
  2082. if (qdf_nbuf_is_ipv4_eapol_pkt(nbuf)) {
  2083. switch (drop_code) {
  2084. case TX_DESC_ERR:
  2085. DP_STATS_INC(pdev, eap_drop_stats.tx_desc_err, 1);
  2086. break;
  2087. case TX_HAL_RING_ACCESS_ERR:
  2088. DP_STATS_INC(pdev,
  2089. eap_drop_stats.tx_hal_ring_access_err, 1);
  2090. break;
  2091. case TX_DMA_MAP_ERR:
  2092. DP_STATS_INC(pdev, eap_drop_stats.tx_dma_map_err, 1);
  2093. break;
  2094. case TX_HW_ENQUEUE:
  2095. DP_STATS_INC(pdev, eap_drop_stats.tx_hw_enqueue, 1);
  2096. break;
  2097. case TX_SW_ENQUEUE:
  2098. DP_STATS_INC(pdev, eap_drop_stats.tx_sw_enqueue, 1);
  2099. break;
  2100. default:
  2101. dp_info_rl("Invalid eapol_drop code: %d", drop_code);
  2102. break;
  2103. }
  2104. }
  2105. }
  2106. #else
  2107. static void tx_sw_drop_stats_inc(struct dp_pdev *pdev,
  2108. qdf_nbuf_t nbuf,
  2109. enum cdp_tx_sw_drop drop_code)
  2110. {
  2111. }
  2112. #endif
  2113. #ifdef WLAN_FEATURE_TX_LATENCY_STATS
  2114. /**
  2115. * dp_tx_latency_stats_enabled() - check enablement of transmit latency
  2116. * statistics
  2117. * @vdev: DP vdev handle
  2118. *
  2119. * Return: true if transmit latency statistics is enabled, false otherwise.
  2120. */
  2121. static inline bool dp_tx_latency_stats_enabled(struct dp_vdev *vdev)
  2122. {
  2123. return qdf_atomic_read(&vdev->tx_latency_cfg.enabled);
  2124. }
  2125. /**
  2126. * dp_tx_latency_stats_report_enabled() - check enablement of async report
  2127. * for transmit latency statistics
  2128. * @vdev: DP vdev handle
  2129. *
  2130. * Return: true if transmit latency statistics is enabled, false otherwise.
  2131. */
  2132. static inline bool dp_tx_latency_stats_report_enabled(struct dp_vdev *vdev)
  2133. {
  2134. return qdf_atomic_read(&vdev->tx_latency_cfg.report);
  2135. }
  2136. /**
  2137. * dp_tx_get_driver_ingress_ts() - get driver ingress timestamp from nbuf
  2138. * @vdev: DP vdev handle
  2139. * @msdu_info: pointer to MSDU Descriptor
  2140. * @nbuf: original buffer from network stack
  2141. *
  2142. * Return: None
  2143. */
  2144. static inline void
  2145. dp_tx_get_driver_ingress_ts(struct dp_vdev *vdev,
  2146. struct dp_tx_msdu_info_s *msdu_info,
  2147. qdf_nbuf_t nbuf)
  2148. {
  2149. if (!dp_tx_latency_stats_enabled(vdev))
  2150. return;
  2151. msdu_info->driver_ingress_ts = qdf_nbuf_get_tx_ts(nbuf, true);
  2152. }
  2153. /**
  2154. * dp_tx_update_ts_on_enqueued() - set driver ingress/egress timestamp in
  2155. * tx descriptor
  2156. * @vdev: DP vdev handle
  2157. * @msdu_info: pointer to MSDU Descriptor
  2158. * @tx_desc: pointer to tx descriptor
  2159. *
  2160. * Return: None
  2161. */
  2162. static inline void
  2163. dp_tx_update_ts_on_enqueued(struct dp_vdev *vdev,
  2164. struct dp_tx_msdu_info_s *msdu_info,
  2165. struct dp_tx_desc_s *tx_desc)
  2166. {
  2167. if (!dp_tx_latency_stats_enabled(vdev))
  2168. return;
  2169. tx_desc->driver_ingress_ts = msdu_info->driver_ingress_ts;
  2170. tx_desc->driver_egress_ts = qdf_ktime_real_get();
  2171. }
  2172. /**
  2173. * dp_tx_latency_stats_update_bucket() - update transmit latency statistics
  2174. * for specified type
  2175. * @vdev: DP vdev handle
  2176. * @tx_latency: pointer to transmit latency stats
  2177. * @idx: index of the statistics
  2178. * @type: transmit latency type
  2179. * @value: latency to be recorded
  2180. *
  2181. * Return: None
  2182. */
  2183. static inline void
  2184. dp_tx_latency_stats_update_bucket(struct dp_vdev *vdev,
  2185. struct dp_tx_latency *tx_latency,
  2186. int idx, enum cdp_tx_latency_type type,
  2187. uint32_t value)
  2188. {
  2189. int32_t granularity;
  2190. int lvl;
  2191. granularity =
  2192. qdf_atomic_read(&vdev->tx_latency_cfg.granularity[type]);
  2193. if (qdf_unlikely(!granularity))
  2194. return;
  2195. lvl = value / granularity;
  2196. if (lvl >= CDP_TX_LATENCY_DISTR_LV_MAX)
  2197. lvl = CDP_TX_LATENCY_DISTR_LV_MAX - 1;
  2198. qdf_atomic_inc(&tx_latency->stats[idx][type].msdus_accum);
  2199. qdf_atomic_add(value, &tx_latency->stats[idx][type].latency_accum);
  2200. qdf_atomic_inc(&tx_latency->stats[idx][type].distribution[lvl]);
  2201. }
  2202. /**
  2203. * dp_tx_latency_stats_update() - update transmit latency statistics on
  2204. * msdu transmit completed
  2205. * @soc: dp soc handle
  2206. * @txrx_peer: txrx peer handle
  2207. * @tx_desc: pointer to tx descriptor
  2208. * @ts: tx completion status
  2209. * @link_id: link id
  2210. *
  2211. * Return: None
  2212. */
  2213. static inline void
  2214. dp_tx_latency_stats_update(struct dp_soc *soc,
  2215. struct dp_txrx_peer *txrx_peer,
  2216. struct dp_tx_desc_s *tx_desc,
  2217. struct hal_tx_completion_status *ts,
  2218. uint8_t link_id)
  2219. {
  2220. uint32_t driver_latency, ring_buf_latency, hw_latency;
  2221. QDF_STATUS status = QDF_STATUS_E_INVAL;
  2222. int64_t current_ts, ingress, egress;
  2223. struct dp_vdev *vdev = txrx_peer->vdev;
  2224. struct dp_tx_latency *tx_latency;
  2225. uint8_t idx;
  2226. if (!dp_tx_latency_stats_enabled(vdev))
  2227. return;
  2228. if (!tx_desc->driver_ingress_ts || !tx_desc->driver_egress_ts)
  2229. return;
  2230. status = dp_tx_compute_hw_delay_us(ts, vdev->delta_tsf, &hw_latency);
  2231. if (QDF_IS_STATUS_ERROR(status))
  2232. return;
  2233. ingress = qdf_ktime_to_us(tx_desc->driver_ingress_ts);
  2234. egress = qdf_ktime_to_us(tx_desc->driver_egress_ts);
  2235. driver_latency = (uint32_t)(egress - ingress);
  2236. current_ts = qdf_ktime_to_us(qdf_ktime_real_get());
  2237. ring_buf_latency = (uint32_t)(current_ts - egress);
  2238. tx_latency = &txrx_peer->stats[link_id].tx_latency;
  2239. idx = tx_latency->cur_idx;
  2240. dp_tx_latency_stats_update_bucket(txrx_peer->vdev, tx_latency, idx,
  2241. CDP_TX_LATENCY_TYPE_DRIVER,
  2242. driver_latency);
  2243. dp_tx_latency_stats_update_bucket(txrx_peer->vdev, tx_latency, idx,
  2244. CDP_TX_LATENCY_TYPE_RING_BUF,
  2245. ring_buf_latency);
  2246. dp_tx_latency_stats_update_bucket(txrx_peer->vdev, tx_latency, idx,
  2247. CDP_TX_LATENCY_TYPE_HW, hw_latency);
  2248. }
  2249. /**
  2250. * dp_tx_latency_stats_clear_bucket() - clear specified transmit latency
  2251. * statistics for specified type
  2252. * @tx_latency: pointer to transmit latency stats
  2253. * @idx: index of the statistics
  2254. * @type: transmit latency type
  2255. *
  2256. * Return: None
  2257. */
  2258. static inline void
  2259. dp_tx_latency_stats_clear_bucket(struct dp_tx_latency *tx_latency,
  2260. int idx, enum cdp_tx_latency_type type)
  2261. {
  2262. int lvl;
  2263. struct dp_tx_latency_stats *stats;
  2264. stats = &tx_latency->stats[idx][type];
  2265. qdf_atomic_init(&stats->msdus_accum);
  2266. qdf_atomic_init(&stats->latency_accum);
  2267. for (lvl = 0; lvl < CDP_TX_LATENCY_DISTR_LV_MAX; lvl++)
  2268. qdf_atomic_init(&stats->distribution[lvl]);
  2269. }
  2270. /**
  2271. * dp_tx_latency_stats_clear_buckets() - clear specified transmit latency
  2272. * statistics
  2273. * @tx_latency: pointer to transmit latency stats
  2274. * @idx: index of the statistics
  2275. *
  2276. * Return: None
  2277. */
  2278. static void
  2279. dp_tx_latency_stats_clear_buckets(struct dp_tx_latency *tx_latency,
  2280. int idx)
  2281. {
  2282. int type;
  2283. for (type = 0; type < CDP_TX_LATENCY_TYPE_MAX; type++)
  2284. dp_tx_latency_stats_clear_bucket(tx_latency, idx, type);
  2285. }
  2286. /**
  2287. * dp_tx_latency_stats_update_cca() - update transmit latency statistics for
  2288. * CCA
  2289. * @soc: dp soc handle
  2290. * @peer_id: peer id
  2291. * @granularity: granularity of distribution
  2292. * @distribution: distribution of transmit latency statistics
  2293. * @avg: average of CCA latency(in microseconds) within a cycle
  2294. *
  2295. * Return: None
  2296. */
  2297. void
  2298. dp_tx_latency_stats_update_cca(struct dp_soc *soc, uint16_t peer_id,
  2299. uint32_t granularity, uint32_t *distribution,
  2300. uint32_t avg)
  2301. {
  2302. int lvl, idx;
  2303. uint8_t link_id;
  2304. struct dp_tx_latency *tx_latency;
  2305. struct dp_tx_latency_stats *stats;
  2306. int32_t cur_granularity;
  2307. struct dp_vdev *vdev;
  2308. struct dp_tx_latency_config *cfg;
  2309. struct dp_txrx_peer *txrx_peer;
  2310. struct dp_peer *peer;
  2311. peer = dp_peer_get_ref_by_id(soc, peer_id, DP_MOD_ID_HTT);
  2312. if (!peer) {
  2313. dp_err_rl("Peer not found peer id %d", peer_id);
  2314. return;
  2315. }
  2316. if (IS_MLO_DP_MLD_PEER(peer))
  2317. goto out;
  2318. vdev = peer->vdev;
  2319. if (!dp_tx_latency_stats_enabled(vdev))
  2320. goto out;
  2321. cfg = &vdev->tx_latency_cfg;
  2322. cur_granularity =
  2323. qdf_atomic_read(&cfg->granularity[CDP_TX_LATENCY_TYPE_CCA]);
  2324. /* in unit of ms */
  2325. cur_granularity /= 1000;
  2326. if (cur_granularity != granularity) {
  2327. dp_info_rl("invalid granularity, cur %d report %d",
  2328. cur_granularity, granularity);
  2329. goto out;
  2330. }
  2331. txrx_peer = dp_get_txrx_peer(peer);
  2332. if (qdf_unlikely(!txrx_peer)) {
  2333. dp_err_rl("txrx_peer NULL for MAC: " QDF_MAC_ADDR_FMT,
  2334. QDF_MAC_ADDR_REF(peer->mac_addr.raw));
  2335. goto out;
  2336. }
  2337. link_id = dp_get_peer_link_id(peer);
  2338. if (link_id >= txrx_peer->stats_arr_size)
  2339. goto out;
  2340. tx_latency = &txrx_peer->stats[link_id].tx_latency;
  2341. idx = tx_latency->cur_idx;
  2342. stats = &tx_latency->stats[idx][CDP_TX_LATENCY_TYPE_CCA];
  2343. qdf_atomic_set(&stats->latency_accum, avg);
  2344. qdf_atomic_set(&stats->msdus_accum, (avg ? 1 : 0));
  2345. for (lvl = 0; lvl < CDP_TX_LATENCY_DISTR_LV_MAX; lvl++)
  2346. qdf_atomic_set(&stats->distribution[lvl],
  2347. distribution[lvl]);
  2348. /* prepare for the next cycle */
  2349. tx_latency->cur_idx = 1 - idx;
  2350. dp_tx_latency_stats_clear_buckets(tx_latency, tx_latency->cur_idx);
  2351. out:
  2352. dp_peer_unref_delete(peer, DP_MOD_ID_HTT);
  2353. }
  2354. /**
  2355. * dp_tx_latency_stats_get_per_peer() - get transmit latency statistics for a
  2356. * peer
  2357. * @soc: dp soc handle
  2358. * @peer: dp peer Handle
  2359. * @latency: buffer to hold transmit latency statistics
  2360. *
  2361. * Return: QDF_STATUS
  2362. */
  2363. static QDF_STATUS
  2364. dp_tx_latency_stats_get_per_peer(struct dp_soc *soc, struct dp_peer *peer,
  2365. struct cdp_tx_latency *latency)
  2366. {
  2367. int lvl, type, link_id;
  2368. int32_t latency_accum, msdus_accum;
  2369. struct dp_vdev *vdev;
  2370. struct dp_txrx_peer *txrx_peer;
  2371. struct dp_tx_latency *tx_latency;
  2372. struct dp_tx_latency_config *cfg;
  2373. struct dp_tx_latency_stats *stats;
  2374. uint8_t last_idx;
  2375. if (unlikely(!latency))
  2376. return QDF_STATUS_E_INVAL;
  2377. /* Authenticated link/legacy peer only */
  2378. if (IS_MLO_DP_MLD_PEER(peer) || peer->state != OL_TXRX_PEER_STATE_AUTH)
  2379. return QDF_STATUS_E_INVAL;
  2380. vdev = peer->vdev;
  2381. if (peer->bss_peer && vdev->opmode == wlan_op_mode_ap)
  2382. return QDF_STATUS_E_INVAL;
  2383. txrx_peer = dp_get_txrx_peer(peer);
  2384. if (!txrx_peer)
  2385. return QDF_STATUS_E_INVAL;
  2386. link_id = dp_get_peer_link_id(peer);
  2387. if (link_id >= txrx_peer->stats_arr_size)
  2388. return QDF_STATUS_E_INVAL;
  2389. tx_latency = &txrx_peer->stats[link_id].tx_latency;
  2390. qdf_mem_zero(latency, sizeof(*latency));
  2391. qdf_mem_copy(latency->mac_remote.bytes,
  2392. peer->mac_addr.raw, QDF_MAC_ADDR_SIZE);
  2393. last_idx = 1 - tx_latency->cur_idx;
  2394. cfg = &vdev->tx_latency_cfg;
  2395. for (type = 0; type < CDP_TX_LATENCY_TYPE_MAX; type++) {
  2396. latency->stats[type].granularity =
  2397. qdf_atomic_read(&cfg->granularity[type]);
  2398. stats = &tx_latency->stats[last_idx][type];
  2399. msdus_accum = qdf_atomic_read(&stats->msdus_accum);
  2400. if (!msdus_accum)
  2401. continue;
  2402. latency_accum = qdf_atomic_read(&stats->latency_accum);
  2403. latency->stats[type].average = latency_accum / msdus_accum;
  2404. for (lvl = 0; lvl < CDP_TX_LATENCY_DISTR_LV_MAX; lvl++) {
  2405. latency->stats[type].distribution[lvl] =
  2406. qdf_atomic_read(&stats->distribution[lvl]);
  2407. }
  2408. }
  2409. return QDF_STATUS_SUCCESS;
  2410. }
  2411. /**
  2412. * dp_tx_latency_stats_get_peer_iter() - iterator to get transmit latency
  2413. * statistics for specified peer
  2414. * @soc: dp soc handle
  2415. * @peer: dp peer Handle
  2416. * @arg: list to hold transmit latency statistics for peers
  2417. *
  2418. * Return: None
  2419. */
  2420. static void
  2421. dp_tx_latency_stats_get_peer_iter(struct dp_soc *soc,
  2422. struct dp_peer *peer,
  2423. void *arg)
  2424. {
  2425. struct dp_vdev *vdev;
  2426. struct dp_txrx_peer *txrx_peer;
  2427. struct cdp_tx_latency *latency;
  2428. QDF_STATUS status;
  2429. qdf_list_t *stats_list = (qdf_list_t *)arg;
  2430. /* Authenticated link/legacy peer only */
  2431. if (IS_MLO_DP_MLD_PEER(peer) || peer->state != OL_TXRX_PEER_STATE_AUTH)
  2432. return;
  2433. txrx_peer = dp_get_txrx_peer(peer);
  2434. if (!txrx_peer)
  2435. return;
  2436. vdev = peer->vdev;
  2437. latency = qdf_mem_malloc(sizeof(*latency));
  2438. if (!latency)
  2439. return;
  2440. status = dp_tx_latency_stats_get_per_peer(soc, peer, latency);
  2441. if (QDF_IS_STATUS_ERROR(status))
  2442. goto out;
  2443. status = qdf_list_insert_back(stats_list, &latency->node);
  2444. if (QDF_IS_STATUS_ERROR(status))
  2445. goto out;
  2446. return;
  2447. out:
  2448. qdf_mem_free(latency);
  2449. }
  2450. /**
  2451. * dp_tx_latency_stats_rpt_per_vdev() - report transmit latency statistics for
  2452. * specified vdev
  2453. * @soc: dp soc handle
  2454. * @vdev: dp vdev Handle
  2455. *
  2456. * Return: None
  2457. */
  2458. static void
  2459. dp_tx_latency_stats_rpt_per_vdev(struct dp_soc *soc, struct dp_vdev *vdev)
  2460. {
  2461. qdf_list_t stats_list;
  2462. struct cdp_tx_latency *entry, *next;
  2463. if (!soc->tx_latency_cb || !dp_tx_latency_stats_report_enabled(vdev))
  2464. return;
  2465. qdf_list_create(&stats_list, 0);
  2466. dp_vdev_iterate_peer(vdev, dp_tx_latency_stats_get_peer_iter,
  2467. &stats_list, DP_MOD_ID_CDP);
  2468. if (qdf_list_empty(&stats_list))
  2469. goto out;
  2470. soc->tx_latency_cb(vdev->vdev_id, &stats_list);
  2471. qdf_list_for_each_del(&stats_list, entry, next, node) {
  2472. qdf_list_remove_node(&stats_list, &entry->node);
  2473. qdf_mem_free(entry);
  2474. }
  2475. out:
  2476. qdf_list_destroy(&stats_list);
  2477. }
  2478. /**
  2479. * dp_tx_latency_stats_report() - report transmit latency statistics for each
  2480. * vdev of specified pdev
  2481. * @soc: dp soc handle
  2482. * @pdev: dp pdev Handle
  2483. *
  2484. * Return: None
  2485. */
  2486. void dp_tx_latency_stats_report(struct dp_soc *soc, struct dp_pdev *pdev)
  2487. {
  2488. struct dp_vdev *vdev;
  2489. if (!soc->tx_latency_cb)
  2490. return;
  2491. qdf_spin_lock_bh(&pdev->vdev_list_lock);
  2492. DP_PDEV_ITERATE_VDEV_LIST(pdev, vdev) {
  2493. dp_tx_latency_stats_rpt_per_vdev(soc, vdev);
  2494. }
  2495. qdf_spin_unlock_bh(&pdev->vdev_list_lock);
  2496. }
  2497. /**
  2498. * dp_tx_latency_stats_clear_per_peer() - iterator to clear transmit latency
  2499. * statistics for specified peer
  2500. * @soc: dp soc handle
  2501. * @peer: dp pdev Handle
  2502. * @arg: argument from iterator
  2503. *
  2504. * Return: None
  2505. */
  2506. static void
  2507. dp_tx_latency_stats_clear_per_peer(struct dp_soc *soc, struct dp_peer *peer,
  2508. void *arg)
  2509. {
  2510. int link_id;
  2511. struct dp_tx_latency *tx_latency;
  2512. struct dp_txrx_peer *txrx_peer = dp_get_txrx_peer(peer);
  2513. if (!txrx_peer) {
  2514. dp_err("no txrx peer, skip");
  2515. return;
  2516. }
  2517. for (link_id = 0; link_id < txrx_peer->stats_arr_size; link_id++) {
  2518. tx_latency = &txrx_peer->stats[link_id].tx_latency;
  2519. dp_tx_latency_stats_clear_buckets(tx_latency, 0);
  2520. dp_tx_latency_stats_clear_buckets(tx_latency, 1);
  2521. }
  2522. }
  2523. /**
  2524. * dp_tx_latency_stats_clear_per_vdev() - clear transmit latency statistics
  2525. * for specified vdev
  2526. * @vdev: dp vdev handle
  2527. *
  2528. * Return: None
  2529. */
  2530. static inline void dp_tx_latency_stats_clear_per_vdev(struct dp_vdev *vdev)
  2531. {
  2532. dp_vdev_iterate_peer(vdev, dp_tx_latency_stats_clear_per_peer,
  2533. NULL, DP_MOD_ID_CDP);
  2534. }
  2535. /**
  2536. * dp_tx_latency_stats_fetch() - fetch transmit latency statistics for
  2537. * specified link mac address
  2538. * @soc_hdl: Handle to struct dp_soc
  2539. * @vdev_id: vdev id
  2540. * @mac: link mac address of remote peer
  2541. * @latency: buffer to hold per-link transmit latency statistics
  2542. *
  2543. * Return: QDF_STATUS
  2544. */
  2545. QDF_STATUS
  2546. dp_tx_latency_stats_fetch(struct cdp_soc_t *soc_hdl,
  2547. uint8_t vdev_id, uint8_t *mac,
  2548. struct cdp_tx_latency *latency)
  2549. {
  2550. struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
  2551. struct cdp_peer_info peer_info = {0};
  2552. struct dp_peer *peer;
  2553. QDF_STATUS status;
  2554. /* MAC addr of link peer may be the same as MLD peer,
  2555. * so specify the type as CDP_LINK_PEER_TYPE here to
  2556. * get link peer explicitly.
  2557. */
  2558. DP_PEER_INFO_PARAMS_INIT(&peer_info, vdev_id, mac, false,
  2559. CDP_LINK_PEER_TYPE);
  2560. peer = dp_peer_hash_find_wrapper(soc, &peer_info, DP_MOD_ID_CDP);
  2561. if (!peer) {
  2562. dp_err_rl("peer(vdev id %d mac " QDF_MAC_ADDR_FMT ") not found",
  2563. vdev_id, QDF_MAC_ADDR_REF(mac));
  2564. return QDF_STATUS_E_INVAL;
  2565. }
  2566. status = dp_tx_latency_stats_get_per_peer(soc, peer, latency);
  2567. dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
  2568. return status;
  2569. }
  2570. /**
  2571. * dp_tx_latency_stats_config() - config transmit latency statistics for
  2572. * specified vdev
  2573. * @soc_hdl: Handle to struct dp_soc
  2574. * @vdev_id: vdev id
  2575. * @cfg: configuration for transmit latency statistics
  2576. *
  2577. * Return: QDF_STATUS
  2578. */
  2579. QDF_STATUS
  2580. dp_tx_latency_stats_config(struct cdp_soc_t *soc_hdl, uint8_t vdev_id,
  2581. struct cdp_tx_latency_config *cfg)
  2582. {
  2583. struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
  2584. struct dp_vdev *vdev;
  2585. QDF_STATUS status = QDF_STATUS_E_INVAL;
  2586. uint32_t cca_granularity;
  2587. int type;
  2588. vdev = dp_vdev_get_ref_by_id(soc, vdev_id, DP_MOD_ID_CDP);
  2589. if (!vdev) {
  2590. dp_err_rl("vdev %d does not exist", vdev_id);
  2591. return QDF_STATUS_E_FAILURE;
  2592. }
  2593. /* disable to ignore upcoming updates */
  2594. qdf_atomic_set(&vdev->tx_latency_cfg.enabled, 0);
  2595. dp_tx_latency_stats_clear_per_vdev(vdev);
  2596. if (!cfg->enable)
  2597. goto send_htt;
  2598. qdf_atomic_set(&vdev->tx_latency_cfg.report, (cfg->report ? 1 : 0));
  2599. for (type = 0; type < CDP_TX_LATENCY_TYPE_MAX; type++)
  2600. qdf_atomic_set(&vdev->tx_latency_cfg.granularity[type],
  2601. cfg->granularity[type]);
  2602. send_htt:
  2603. /* in units of ms */
  2604. cca_granularity = cfg->granularity[CDP_TX_LATENCY_TYPE_CCA] / 1000;
  2605. status = dp_h2t_tx_latency_stats_cfg_msg_send(soc, vdev_id,
  2606. cfg->enable, cfg->period,
  2607. cca_granularity);
  2608. if (QDF_IS_STATUS_ERROR(status)) {
  2609. dp_err_rl("failed to send htt msg: %d", status);
  2610. goto out;
  2611. }
  2612. qdf_atomic_set(&vdev->tx_latency_cfg.enabled, (cfg->enable ? 1 : 0));
  2613. out:
  2614. dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
  2615. return status;
  2616. }
  2617. /**
  2618. * dp_tx_latency_stats_register_cb() - register transmit latency statistics
  2619. * callback
  2620. * @handle: Handle to struct dp_soc
  2621. * @cb: callback function for transmit latency statistics
  2622. *
  2623. * Return: QDF_STATUS
  2624. */
  2625. QDF_STATUS
  2626. dp_tx_latency_stats_register_cb(struct cdp_soc_t *handle, cdp_tx_latency_cb cb)
  2627. {
  2628. struct dp_soc *soc = (struct dp_soc *)handle;
  2629. if (!soc || !cb) {
  2630. dp_err("soc or cb is NULL");
  2631. return QDF_STATUS_E_INVAL;
  2632. }
  2633. soc->tx_latency_cb = cb;
  2634. return QDF_STATUS_SUCCESS;
  2635. }
  2636. #else
  2637. static inline void
  2638. dp_tx_get_driver_ingress_ts(struct dp_vdev *vdev,
  2639. struct dp_tx_msdu_info_s *msdu_info,
  2640. qdf_nbuf_t nbuf)
  2641. {
  2642. }
  2643. static inline void
  2644. dp_tx_update_ts_on_enqueued(struct dp_vdev *vdev,
  2645. struct dp_tx_msdu_info_s *msdu_info,
  2646. struct dp_tx_desc_s *tx_desc)
  2647. {
  2648. }
  2649. static inline void
  2650. dp_tx_latency_stats_update(struct dp_soc *soc,
  2651. struct dp_txrx_peer *txrx_peer,
  2652. struct dp_tx_desc_s *tx_desc,
  2653. struct hal_tx_completion_status *ts,
  2654. uint8_t link_id)
  2655. {
  2656. }
  2657. #endif
  2658. qdf_nbuf_t
  2659. dp_tx_send_msdu_single(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
  2660. struct dp_tx_msdu_info_s *msdu_info, uint16_t peer_id,
  2661. struct cdp_tx_exception_metadata *tx_exc_metadata)
  2662. {
  2663. struct dp_pdev *pdev = vdev->pdev;
  2664. struct dp_soc *soc = pdev->soc;
  2665. struct dp_tx_desc_s *tx_desc;
  2666. QDF_STATUS status;
  2667. struct dp_tx_queue *tx_q = &(msdu_info->tx_queue);
  2668. uint16_t htt_tcl_metadata = 0;
  2669. enum cdp_tx_sw_drop drop_code = TX_MAX_DROP;
  2670. uint8_t tid = msdu_info->tid;
  2671. struct cdp_tid_tx_stats *tid_stats = NULL;
  2672. qdf_dma_addr_t paddr;
  2673. /* Setup Tx descriptor for an MSDU, and MSDU extension descriptor */
  2674. tx_desc = dp_tx_prepare_desc_single(vdev, nbuf, tx_q->desc_pool_id,
  2675. msdu_info, tx_exc_metadata);
  2676. if (!tx_desc) {
  2677. dp_err_rl("Tx_desc prepare Fail vdev_id %d vdev %pK queue %d",
  2678. vdev->vdev_id, vdev, tx_q->desc_pool_id);
  2679. drop_code = TX_DESC_ERR;
  2680. goto fail_return;
  2681. }
  2682. dp_tx_update_tdls_flags(soc, vdev, tx_desc);
  2683. if (qdf_unlikely(peer_id == DP_INVALID_PEER)) {
  2684. htt_tcl_metadata = vdev->htt_tcl_metadata;
  2685. DP_TX_TCL_METADATA_HOST_INSPECTED_SET(htt_tcl_metadata, 1);
  2686. } else if (qdf_unlikely(peer_id != HTT_INVALID_PEER)) {
  2687. DP_TX_TCL_METADATA_TYPE_SET(htt_tcl_metadata,
  2688. DP_TCL_METADATA_TYPE_PEER_BASED);
  2689. DP_TX_TCL_METADATA_PEER_ID_SET(htt_tcl_metadata,
  2690. peer_id);
  2691. dp_tx_bypass_reinjection(soc, tx_desc, tx_exc_metadata);
  2692. } else
  2693. htt_tcl_metadata = vdev->htt_tcl_metadata;
  2694. if (msdu_info->exception_fw)
  2695. DP_TX_TCL_METADATA_VALID_HTT_SET(htt_tcl_metadata, 1);
  2696. dp_tx_desc_update_fast_comp_flag(soc, tx_desc,
  2697. !pdev->enhanced_stats_en);
  2698. dp_tx_update_mesh_flags(soc, vdev, tx_desc);
  2699. if (qdf_unlikely(msdu_info->frm_type == dp_tx_frm_rmnet))
  2700. paddr = dp_tx_rmnet_nbuf_map(msdu_info, tx_desc);
  2701. else
  2702. paddr = dp_tx_nbuf_map(vdev, tx_desc, nbuf);
  2703. if (!paddr) {
  2704. /* Handle failure */
  2705. dp_err("qdf_nbuf_map failed");
  2706. DP_STATS_INC(vdev,
  2707. tx_i[msdu_info->xmit_type].dropped.dma_error, 1);
  2708. drop_code = TX_DMA_MAP_ERR;
  2709. goto release_desc;
  2710. }
  2711. tx_desc->dma_addr = paddr;
  2712. dp_tx_desc_history_add(soc, tx_desc->dma_addr, nbuf,
  2713. tx_desc->id, DP_TX_DESC_MAP);
  2714. dp_tx_update_mcast_param(peer_id, &htt_tcl_metadata, vdev, msdu_info);
  2715. /* Enqueue the Tx MSDU descriptor to HW for transmit */
  2716. status = soc->arch_ops.tx_hw_enqueue(soc, vdev, tx_desc,
  2717. htt_tcl_metadata,
  2718. tx_exc_metadata, msdu_info);
  2719. if (status != QDF_STATUS_SUCCESS) {
  2720. dp_tx_err_rl("Tx_hw_enqueue Fail tx_desc %pK queue %d",
  2721. tx_desc, tx_q->ring_id);
  2722. dp_tx_desc_history_add(soc, tx_desc->dma_addr, nbuf,
  2723. tx_desc->id, DP_TX_DESC_UNMAP);
  2724. dp_tx_nbuf_unmap(soc, tx_desc);
  2725. drop_code = TX_HW_ENQUEUE;
  2726. goto release_desc;
  2727. }
  2728. dp_tx_update_ts_on_enqueued(vdev, msdu_info, tx_desc);
  2729. tx_sw_drop_stats_inc(pdev, nbuf, drop_code);
  2730. return NULL;
  2731. release_desc:
  2732. dp_tx_desc_release(soc, tx_desc, tx_q->desc_pool_id);
  2733. fail_return:
  2734. dp_tx_get_tid(vdev, nbuf, msdu_info);
  2735. tx_sw_drop_stats_inc(pdev, nbuf, drop_code);
  2736. tid_stats = &pdev->stats.tid_stats.
  2737. tid_tx_stats[tx_q->ring_id][tid];
  2738. tid_stats->swdrop_cnt[drop_code]++;
  2739. return nbuf;
  2740. }
  2741. /**
  2742. * dp_tdls_tx_comp_free_buff() - Free non std buffer when TDLS flag is set
  2743. * @soc: Soc handle
  2744. * @desc: software Tx descriptor to be processed
  2745. *
  2746. * Return: 0 if Success
  2747. */
  2748. #ifdef FEATURE_WLAN_TDLS
  2749. static inline int
  2750. dp_tdls_tx_comp_free_buff(struct dp_soc *soc, struct dp_tx_desc_s *desc)
  2751. {
  2752. /* If it is TDLS mgmt, don't unmap or free the frame */
  2753. if (desc->flags & DP_TX_DESC_FLAG_TDLS_FRAME) {
  2754. dp_non_std_htt_tx_comp_free_buff(soc, desc);
  2755. return 0;
  2756. }
  2757. return 1;
  2758. }
  2759. #else
  2760. static inline int
  2761. dp_tdls_tx_comp_free_buff(struct dp_soc *soc, struct dp_tx_desc_s *desc)
  2762. {
  2763. return 1;
  2764. }
  2765. #endif
  2766. qdf_nbuf_t dp_tx_comp_free_buf(struct dp_soc *soc, struct dp_tx_desc_s *desc,
  2767. bool delayed_free)
  2768. {
  2769. qdf_nbuf_t nbuf = desc->nbuf;
  2770. enum dp_tx_event_type type = dp_tx_get_event_type(desc->flags);
  2771. /* nbuf already freed in vdev detach path */
  2772. if (!nbuf)
  2773. return NULL;
  2774. if (!dp_tdls_tx_comp_free_buff(soc, desc))
  2775. return NULL;
  2776. /* 0 : MSDU buffer, 1 : MLE */
  2777. if (desc->msdu_ext_desc) {
  2778. /* TSO free */
  2779. if (hal_tx_ext_desc_get_tso_enable(
  2780. desc->msdu_ext_desc->vaddr)) {
  2781. dp_tx_desc_history_add(soc, desc->dma_addr, desc->nbuf,
  2782. desc->id, DP_TX_COMP_MSDU_EXT);
  2783. dp_tx_tso_seg_history_add(soc,
  2784. desc->msdu_ext_desc->tso_desc,
  2785. desc->nbuf, desc->id, type);
  2786. /* unmap eash TSO seg before free the nbuf */
  2787. dp_tx_tso_unmap_segment(soc,
  2788. desc->msdu_ext_desc->tso_desc,
  2789. desc->msdu_ext_desc->
  2790. tso_num_desc);
  2791. goto nbuf_free;
  2792. }
  2793. if (qdf_unlikely(desc->frm_type == dp_tx_frm_sg)) {
  2794. void *msdu_ext_desc = desc->msdu_ext_desc->vaddr;
  2795. qdf_dma_addr_t iova;
  2796. uint32_t frag_len;
  2797. uint32_t i;
  2798. qdf_nbuf_unmap_nbytes_single(soc->osdev, nbuf,
  2799. QDF_DMA_TO_DEVICE,
  2800. qdf_nbuf_headlen(nbuf));
  2801. for (i = 1; i < DP_TX_MAX_NUM_FRAGS; i++) {
  2802. hal_tx_ext_desc_get_frag_info(msdu_ext_desc, i,
  2803. &iova,
  2804. &frag_len);
  2805. if (!iova || !frag_len)
  2806. break;
  2807. qdf_mem_unmap_page(soc->osdev, iova, frag_len,
  2808. QDF_DMA_TO_DEVICE);
  2809. }
  2810. goto nbuf_free;
  2811. }
  2812. }
  2813. /* If it's ME frame, dont unmap the cloned nbuf's */
  2814. if ((desc->flags & DP_TX_DESC_FLAG_ME) && qdf_nbuf_is_cloned(nbuf))
  2815. goto nbuf_free;
  2816. dp_tx_desc_history_add(soc, desc->dma_addr, desc->nbuf, desc->id, type);
  2817. dp_tx_unmap(soc, desc);
  2818. if (desc->flags & DP_TX_DESC_FLAG_MESH_MODE)
  2819. return dp_mesh_tx_comp_free_buff(soc, desc, delayed_free);
  2820. if (dp_tx_traffic_end_indication_enq_ind_pkt(soc, desc, nbuf))
  2821. return NULL;
  2822. nbuf_free:
  2823. if (delayed_free)
  2824. return nbuf;
  2825. qdf_nbuf_free(nbuf);
  2826. return NULL;
  2827. }
  2828. /**
  2829. * dp_tx_sg_unmap_buf() - Unmap scatter gather fragments
  2830. * @soc: DP soc handle
  2831. * @nbuf: skb
  2832. * @msdu_info: MSDU info
  2833. *
  2834. * Return: None
  2835. */
  2836. static inline void
  2837. dp_tx_sg_unmap_buf(struct dp_soc *soc, qdf_nbuf_t nbuf,
  2838. struct dp_tx_msdu_info_s *msdu_info)
  2839. {
  2840. uint32_t cur_idx;
  2841. struct dp_tx_seg_info_s *seg = msdu_info->u.sg_info.curr_seg;
  2842. qdf_nbuf_unmap_nbytes_single(soc->osdev, nbuf, QDF_DMA_TO_DEVICE,
  2843. qdf_nbuf_headlen(nbuf));
  2844. for (cur_idx = 1; cur_idx < seg->frag_cnt; cur_idx++)
  2845. qdf_mem_unmap_page(soc->osdev, (qdf_dma_addr_t)
  2846. (seg->frags[cur_idx].paddr_lo | ((uint64_t)
  2847. seg->frags[cur_idx].paddr_hi) << 32),
  2848. seg->frags[cur_idx].len,
  2849. QDF_DMA_TO_DEVICE);
  2850. }
  2851. #if QDF_LOCK_STATS
  2852. noinline
  2853. #else
  2854. #endif
  2855. qdf_nbuf_t dp_tx_send_msdu_multiple(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
  2856. struct dp_tx_msdu_info_s *msdu_info)
  2857. {
  2858. uint32_t i;
  2859. struct dp_pdev *pdev = vdev->pdev;
  2860. struct dp_soc *soc = pdev->soc;
  2861. struct dp_tx_desc_s *tx_desc;
  2862. bool is_cce_classified = false;
  2863. QDF_STATUS status;
  2864. uint16_t htt_tcl_metadata = 0;
  2865. struct dp_tx_queue *tx_q = &msdu_info->tx_queue;
  2866. struct cdp_tid_tx_stats *tid_stats = NULL;
  2867. uint8_t prep_desc_fail = 0, hw_enq_fail = 0;
  2868. if (msdu_info->frm_type == dp_tx_frm_me)
  2869. nbuf = msdu_info->u.sg_info.curr_seg->nbuf;
  2870. i = 0;
  2871. /* Print statement to track i and num_seg */
  2872. /*
  2873. * For each segment (maps to 1 MSDU) , prepare software and hardware
  2874. * descriptors using information in msdu_info
  2875. */
  2876. while (i < msdu_info->num_seg) {
  2877. /*
  2878. * Setup Tx descriptor for an MSDU, and MSDU extension
  2879. * descriptor
  2880. */
  2881. tx_desc = dp_tx_prepare_desc(vdev, nbuf, msdu_info,
  2882. tx_q->desc_pool_id);
  2883. if (!tx_desc) {
  2884. if (msdu_info->frm_type == dp_tx_frm_me) {
  2885. prep_desc_fail++;
  2886. dp_tx_me_free_buf(pdev,
  2887. (void *)(msdu_info->u.sg_info
  2888. .curr_seg->frags[0].vaddr));
  2889. if (prep_desc_fail == msdu_info->num_seg) {
  2890. /*
  2891. * Unmap is needed only if descriptor
  2892. * preparation failed for all segments.
  2893. */
  2894. qdf_nbuf_unmap(soc->osdev,
  2895. msdu_info->u.sg_info.
  2896. curr_seg->nbuf,
  2897. QDF_DMA_TO_DEVICE);
  2898. }
  2899. /*
  2900. * Free the nbuf for the current segment
  2901. * and make it point to the next in the list.
  2902. * For me, there are as many segments as there
  2903. * are no of clients.
  2904. */
  2905. qdf_nbuf_free(msdu_info->u.sg_info
  2906. .curr_seg->nbuf);
  2907. if (msdu_info->u.sg_info.curr_seg->next) {
  2908. msdu_info->u.sg_info.curr_seg =
  2909. msdu_info->u.sg_info
  2910. .curr_seg->next;
  2911. nbuf = msdu_info->u.sg_info
  2912. .curr_seg->nbuf;
  2913. }
  2914. i++;
  2915. continue;
  2916. }
  2917. if (msdu_info->frm_type == dp_tx_frm_tso) {
  2918. dp_tx_tso_seg_history_add(
  2919. soc,
  2920. msdu_info->u.tso_info.curr_seg,
  2921. nbuf, 0, DP_TX_DESC_UNMAP);
  2922. dp_tx_tso_unmap_segment(soc,
  2923. msdu_info->u.tso_info.
  2924. curr_seg,
  2925. msdu_info->u.tso_info.
  2926. tso_num_seg_list);
  2927. if (msdu_info->u.tso_info.curr_seg->next) {
  2928. msdu_info->u.tso_info.curr_seg =
  2929. msdu_info->u.tso_info.curr_seg->next;
  2930. i++;
  2931. continue;
  2932. }
  2933. }
  2934. if (msdu_info->frm_type == dp_tx_frm_sg)
  2935. dp_tx_sg_unmap_buf(soc, nbuf, msdu_info);
  2936. goto done;
  2937. }
  2938. if (msdu_info->frm_type == dp_tx_frm_me) {
  2939. tx_desc->msdu_ext_desc->me_buffer =
  2940. (struct dp_tx_me_buf_t *)msdu_info->
  2941. u.sg_info.curr_seg->frags[0].vaddr;
  2942. tx_desc->flags |= DP_TX_DESC_FLAG_ME;
  2943. }
  2944. if (is_cce_classified)
  2945. tx_desc->flags |= DP_TX_DESC_FLAG_TO_FW;
  2946. htt_tcl_metadata = vdev->htt_tcl_metadata;
  2947. if (msdu_info->exception_fw) {
  2948. DP_TX_TCL_METADATA_VALID_HTT_SET(htt_tcl_metadata, 1);
  2949. }
  2950. dp_tx_is_hp_update_required(i, msdu_info);
  2951. /*
  2952. * For frames with multiple segments (TSO, ME), jump to next
  2953. * segment.
  2954. */
  2955. if (msdu_info->frm_type == dp_tx_frm_tso) {
  2956. if (msdu_info->u.tso_info.curr_seg->next) {
  2957. msdu_info->u.tso_info.curr_seg =
  2958. msdu_info->u.tso_info.curr_seg->next;
  2959. /*
  2960. * If this is a jumbo nbuf, then increment the
  2961. * number of nbuf users for each additional
  2962. * segment of the msdu. This will ensure that
  2963. * the skb is freed only after receiving tx
  2964. * completion for all segments of an nbuf
  2965. */
  2966. qdf_nbuf_inc_users(nbuf);
  2967. /* Check with MCL if this is needed */
  2968. /* nbuf = msdu_info->u.tso_info.curr_seg->nbuf;
  2969. */
  2970. }
  2971. }
  2972. dp_tx_update_mcast_param(DP_INVALID_PEER,
  2973. &htt_tcl_metadata,
  2974. vdev,
  2975. msdu_info);
  2976. /*
  2977. * Enqueue the Tx MSDU descriptor to HW for transmit
  2978. */
  2979. status = soc->arch_ops.tx_hw_enqueue(soc, vdev, tx_desc,
  2980. htt_tcl_metadata,
  2981. NULL, msdu_info);
  2982. dp_tx_check_and_flush_hp(soc, status, msdu_info);
  2983. if (status != QDF_STATUS_SUCCESS) {
  2984. dp_info_rl("Tx_hw_enqueue Fail tx_desc %pK queue %d",
  2985. tx_desc, tx_q->ring_id);
  2986. dp_tx_get_tid(vdev, nbuf, msdu_info);
  2987. tid_stats = &pdev->stats.tid_stats.
  2988. tid_tx_stats[tx_q->ring_id][msdu_info->tid];
  2989. tid_stats->swdrop_cnt[TX_HW_ENQUEUE]++;
  2990. if (msdu_info->frm_type == dp_tx_frm_me) {
  2991. hw_enq_fail++;
  2992. if (hw_enq_fail == msdu_info->num_seg) {
  2993. /*
  2994. * Unmap is needed only if enqueue
  2995. * failed for all segments.
  2996. */
  2997. qdf_nbuf_unmap(soc->osdev,
  2998. msdu_info->u.sg_info.
  2999. curr_seg->nbuf,
  3000. QDF_DMA_TO_DEVICE);
  3001. }
  3002. /*
  3003. * Free the nbuf for the current segment
  3004. * and make it point to the next in the list.
  3005. * For me, there are as many segments as there
  3006. * are no of clients.
  3007. */
  3008. qdf_nbuf_free(msdu_info->u.sg_info
  3009. .curr_seg->nbuf);
  3010. dp_tx_desc_release(soc, tx_desc,
  3011. tx_q->desc_pool_id);
  3012. if (msdu_info->u.sg_info.curr_seg->next) {
  3013. msdu_info->u.sg_info.curr_seg =
  3014. msdu_info->u.sg_info
  3015. .curr_seg->next;
  3016. nbuf = msdu_info->u.sg_info
  3017. .curr_seg->nbuf;
  3018. } else
  3019. break;
  3020. i++;
  3021. continue;
  3022. }
  3023. /*
  3024. * For TSO frames, the nbuf users increment done for
  3025. * the current segment has to be reverted, since the
  3026. * hw enqueue for this segment failed
  3027. */
  3028. if (msdu_info->frm_type == dp_tx_frm_tso &&
  3029. msdu_info->u.tso_info.curr_seg) {
  3030. /*
  3031. * unmap and free current,
  3032. * retransmit remaining segments
  3033. */
  3034. dp_tx_comp_free_buf(soc, tx_desc, false);
  3035. i++;
  3036. dp_tx_desc_release(soc, tx_desc,
  3037. tx_q->desc_pool_id);
  3038. continue;
  3039. }
  3040. if (msdu_info->frm_type == dp_tx_frm_sg)
  3041. dp_tx_sg_unmap_buf(soc, nbuf, msdu_info);
  3042. dp_tx_desc_release(soc, tx_desc, tx_q->desc_pool_id);
  3043. goto done;
  3044. }
  3045. dp_tx_update_ts_on_enqueued(vdev, msdu_info, tx_desc);
  3046. /*
  3047. * TODO
  3048. * if tso_info structure can be modified to have curr_seg
  3049. * as first element, following 2 blocks of code (for TSO and SG)
  3050. * can be combined into 1
  3051. */
  3052. /*
  3053. * For Multicast-Unicast converted packets,
  3054. * each converted frame (for a client) is represented as
  3055. * 1 segment
  3056. */
  3057. if ((msdu_info->frm_type == dp_tx_frm_sg) ||
  3058. (msdu_info->frm_type == dp_tx_frm_me)) {
  3059. if (msdu_info->u.sg_info.curr_seg->next) {
  3060. msdu_info->u.sg_info.curr_seg =
  3061. msdu_info->u.sg_info.curr_seg->next;
  3062. nbuf = msdu_info->u.sg_info.curr_seg->nbuf;
  3063. } else
  3064. break;
  3065. }
  3066. i++;
  3067. }
  3068. nbuf = NULL;
  3069. done:
  3070. return nbuf;
  3071. }
  3072. /**
  3073. * dp_tx_prepare_sg()- Extract SG info from NBUF and prepare msdu_info
  3074. * for SG frames
  3075. * @vdev: DP vdev handle
  3076. * @nbuf: skb
  3077. * @seg_info: Pointer to Segment info Descriptor to be prepared
  3078. * @msdu_info: MSDU info to be setup in MSDU descriptor and MSDU extension desc.
  3079. *
  3080. * Return: NULL on success,
  3081. * nbuf when it fails to send
  3082. */
  3083. static qdf_nbuf_t dp_tx_prepare_sg(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
  3084. struct dp_tx_seg_info_s *seg_info, struct dp_tx_msdu_info_s *msdu_info)
  3085. {
  3086. uint32_t cur_frag, nr_frags, i;
  3087. qdf_dma_addr_t paddr;
  3088. struct dp_tx_sg_info_s *sg_info;
  3089. uint8_t xmit_type = msdu_info->xmit_type;
  3090. sg_info = &msdu_info->u.sg_info;
  3091. nr_frags = qdf_nbuf_get_nr_frags(nbuf);
  3092. if (QDF_STATUS_SUCCESS !=
  3093. qdf_nbuf_map_nbytes_single(vdev->osdev, nbuf,
  3094. QDF_DMA_TO_DEVICE,
  3095. qdf_nbuf_headlen(nbuf))) {
  3096. dp_tx_err("dma map error");
  3097. DP_STATS_INC(vdev, tx_i[xmit_type].sg.dma_map_error,
  3098. 1);
  3099. qdf_nbuf_free(nbuf);
  3100. return NULL;
  3101. }
  3102. paddr = qdf_nbuf_mapped_paddr_get(nbuf);
  3103. seg_info->frags[0].paddr_lo = paddr;
  3104. seg_info->frags[0].paddr_hi = ((uint64_t) paddr) >> 32;
  3105. seg_info->frags[0].len = qdf_nbuf_headlen(nbuf);
  3106. seg_info->frags[0].vaddr = (void *) nbuf;
  3107. for (cur_frag = 0; cur_frag < nr_frags; cur_frag++) {
  3108. if (QDF_STATUS_SUCCESS != qdf_nbuf_frag_map(vdev->osdev,
  3109. nbuf, 0,
  3110. QDF_DMA_TO_DEVICE,
  3111. cur_frag)) {
  3112. dp_tx_err("frag dma map error");
  3113. DP_STATS_INC(vdev,
  3114. tx_i[xmit_type].sg.dma_map_error,
  3115. 1);
  3116. goto map_err;
  3117. }
  3118. paddr = qdf_nbuf_get_tx_frag_paddr(nbuf);
  3119. seg_info->frags[cur_frag + 1].paddr_lo = paddr;
  3120. seg_info->frags[cur_frag + 1].paddr_hi =
  3121. ((uint64_t) paddr) >> 32;
  3122. seg_info->frags[cur_frag + 1].len =
  3123. qdf_nbuf_get_frag_size(nbuf, cur_frag);
  3124. }
  3125. seg_info->frag_cnt = (cur_frag + 1);
  3126. seg_info->total_len = qdf_nbuf_len(nbuf);
  3127. seg_info->next = NULL;
  3128. sg_info->curr_seg = seg_info;
  3129. msdu_info->frm_type = dp_tx_frm_sg;
  3130. msdu_info->num_seg = 1;
  3131. return nbuf;
  3132. map_err:
  3133. /* restore paddr into nbuf before calling unmap */
  3134. qdf_nbuf_mapped_paddr_set(nbuf,
  3135. (qdf_dma_addr_t)(seg_info->frags[0].paddr_lo |
  3136. ((uint64_t)
  3137. seg_info->frags[0].paddr_hi) << 32));
  3138. qdf_nbuf_unmap_nbytes_single(vdev->osdev, nbuf,
  3139. QDF_DMA_TO_DEVICE,
  3140. seg_info->frags[0].len);
  3141. for (i = 1; i <= cur_frag; i++) {
  3142. qdf_mem_unmap_page(vdev->osdev, (qdf_dma_addr_t)
  3143. (seg_info->frags[i].paddr_lo | ((uint64_t)
  3144. seg_info->frags[i].paddr_hi) << 32),
  3145. seg_info->frags[i].len,
  3146. QDF_DMA_TO_DEVICE);
  3147. }
  3148. qdf_nbuf_free(nbuf);
  3149. return NULL;
  3150. }
  3151. /**
  3152. * dp_tx_add_tx_sniffer_meta_data()- Add tx_sniffer meta hdr info
  3153. * @vdev: DP vdev handle
  3154. * @msdu_info: MSDU info to be setup in MSDU descriptor and MSDU extension desc.
  3155. * @ppdu_cookie: PPDU cookie that should be replayed in the ppdu completions
  3156. *
  3157. * Return: NULL on failure,
  3158. * nbuf when extracted successfully
  3159. */
  3160. static
  3161. void dp_tx_add_tx_sniffer_meta_data(struct dp_vdev *vdev,
  3162. struct dp_tx_msdu_info_s *msdu_info,
  3163. uint16_t ppdu_cookie)
  3164. {
  3165. struct htt_tx_msdu_desc_ext2_t *meta_data =
  3166. (struct htt_tx_msdu_desc_ext2_t *)&msdu_info->meta_data[0];
  3167. qdf_mem_zero(meta_data, sizeof(struct htt_tx_msdu_desc_ext2_t));
  3168. HTT_TX_MSDU_EXT2_DESC_FLAG_SEND_AS_STANDALONE_SET
  3169. (msdu_info->meta_data[5], 1);
  3170. HTT_TX_MSDU_EXT2_DESC_FLAG_HOST_OPAQUE_VALID_SET
  3171. (msdu_info->meta_data[5], 1);
  3172. HTT_TX_MSDU_EXT2_DESC_HOST_OPAQUE_COOKIE_SET
  3173. (msdu_info->meta_data[6], ppdu_cookie);
  3174. msdu_info->exception_fw = 1;
  3175. msdu_info->is_tx_sniffer = 1;
  3176. }
  3177. #ifdef MESH_MODE_SUPPORT
  3178. /**
  3179. * dp_tx_extract_mesh_meta_data()- Extract mesh meta hdr info from nbuf
  3180. * and prepare msdu_info for mesh frames.
  3181. * @vdev: DP vdev handle
  3182. * @nbuf: skb
  3183. * @msdu_info: MSDU info to be setup in MSDU descriptor and MSDU extension desc.
  3184. *
  3185. * Return: NULL on failure,
  3186. * nbuf when extracted successfully
  3187. */
  3188. static
  3189. qdf_nbuf_t dp_tx_extract_mesh_meta_data(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
  3190. struct dp_tx_msdu_info_s *msdu_info)
  3191. {
  3192. struct meta_hdr_s *mhdr;
  3193. struct htt_tx_msdu_desc_ext2_t *meta_data =
  3194. (struct htt_tx_msdu_desc_ext2_t *)&msdu_info->meta_data[0];
  3195. mhdr = (struct meta_hdr_s *)qdf_nbuf_data(nbuf);
  3196. if (CB_FTYPE_MESH_TX_INFO != qdf_nbuf_get_tx_ftype(nbuf)) {
  3197. msdu_info->exception_fw = 0;
  3198. goto remove_meta_hdr;
  3199. }
  3200. msdu_info->exception_fw = 1;
  3201. qdf_mem_zero(meta_data, sizeof(struct htt_tx_msdu_desc_ext2_t));
  3202. meta_data->host_tx_desc_pool = 1;
  3203. meta_data->update_peer_cache = 1;
  3204. meta_data->learning_frame = 1;
  3205. if (!(mhdr->flags & METAHDR_FLAG_AUTO_RATE)) {
  3206. meta_data->power = mhdr->power;
  3207. meta_data->mcs_mask = 1 << mhdr->rate_info[0].mcs;
  3208. meta_data->nss_mask = 1 << mhdr->rate_info[0].nss;
  3209. meta_data->pream_type = mhdr->rate_info[0].preamble_type;
  3210. meta_data->retry_limit = mhdr->rate_info[0].max_tries;
  3211. meta_data->dyn_bw = 1;
  3212. meta_data->valid_pwr = 1;
  3213. meta_data->valid_mcs_mask = 1;
  3214. meta_data->valid_nss_mask = 1;
  3215. meta_data->valid_preamble_type = 1;
  3216. meta_data->valid_retries = 1;
  3217. meta_data->valid_bw_info = 1;
  3218. }
  3219. if (mhdr->flags & METAHDR_FLAG_NOENCRYPT) {
  3220. meta_data->encrypt_type = 0;
  3221. meta_data->valid_encrypt_type = 1;
  3222. meta_data->learning_frame = 0;
  3223. }
  3224. meta_data->valid_key_flags = 1;
  3225. meta_data->key_flags = (mhdr->keyix & 0x3);
  3226. remove_meta_hdr:
  3227. if (qdf_nbuf_pull_head(nbuf, sizeof(struct meta_hdr_s)) == NULL) {
  3228. dp_tx_err("qdf_nbuf_pull_head failed");
  3229. qdf_nbuf_free(nbuf);
  3230. return NULL;
  3231. }
  3232. msdu_info->tid = qdf_nbuf_get_priority(nbuf);
  3233. dp_tx_info("Meta hdr %0x %0x %0x %0x %0x %0x"
  3234. " tid %d to_fw %d",
  3235. msdu_info->meta_data[0],
  3236. msdu_info->meta_data[1],
  3237. msdu_info->meta_data[2],
  3238. msdu_info->meta_data[3],
  3239. msdu_info->meta_data[4],
  3240. msdu_info->meta_data[5],
  3241. msdu_info->tid, msdu_info->exception_fw);
  3242. return nbuf;
  3243. }
  3244. #else
  3245. static
  3246. qdf_nbuf_t dp_tx_extract_mesh_meta_data(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
  3247. struct dp_tx_msdu_info_s *msdu_info)
  3248. {
  3249. return nbuf;
  3250. }
  3251. #endif
  3252. /**
  3253. * dp_check_exc_metadata() - Checks if parameters are valid
  3254. * @tx_exc: holds all exception path parameters
  3255. *
  3256. * Return: true when all the parameters are valid else false
  3257. *
  3258. */
  3259. static bool dp_check_exc_metadata(struct cdp_tx_exception_metadata *tx_exc)
  3260. {
  3261. bool invalid_tid = (tx_exc->tid >= DP_MAX_TIDS && tx_exc->tid !=
  3262. HTT_INVALID_TID);
  3263. bool invalid_encap_type =
  3264. (tx_exc->tx_encap_type > htt_cmn_pkt_num_types &&
  3265. tx_exc->tx_encap_type != CDP_INVALID_TX_ENCAP_TYPE);
  3266. bool invalid_sec_type = (tx_exc->sec_type > cdp_num_sec_types &&
  3267. tx_exc->sec_type != CDP_INVALID_SEC_TYPE);
  3268. bool invalid_cookie = (tx_exc->is_tx_sniffer == 1 &&
  3269. tx_exc->ppdu_cookie == 0);
  3270. if (tx_exc->is_intrabss_fwd)
  3271. return true;
  3272. if (invalid_tid || invalid_encap_type || invalid_sec_type ||
  3273. invalid_cookie) {
  3274. return false;
  3275. }
  3276. return true;
  3277. }
  3278. #ifdef ATH_SUPPORT_IQUE
  3279. bool dp_tx_mcast_enhance(struct dp_vdev *vdev, qdf_nbuf_t nbuf)
  3280. {
  3281. qdf_ether_header_t *eh;
  3282. uint8_t xmit_type = qdf_nbuf_get_vdev_xmit_type(nbuf);
  3283. /* Mcast to Ucast Conversion*/
  3284. if (qdf_likely(!vdev->mcast_enhancement_en))
  3285. return true;
  3286. eh = (qdf_ether_header_t *)qdf_nbuf_data(nbuf);
  3287. if (DP_FRAME_IS_MULTICAST((eh)->ether_dhost) &&
  3288. !DP_FRAME_IS_BROADCAST((eh)->ether_dhost)) {
  3289. dp_verbose_debug("Mcast frm for ME %pK", vdev);
  3290. qdf_nbuf_set_next(nbuf, NULL);
  3291. DP_STATS_INC_PKT(vdev, tx_i[xmit_type].mcast_en.mcast_pkt, 1,
  3292. qdf_nbuf_len(nbuf));
  3293. if (dp_tx_prepare_send_me(vdev, nbuf) ==
  3294. QDF_STATUS_SUCCESS) {
  3295. return false;
  3296. }
  3297. if (qdf_unlikely(vdev->igmp_mcast_enhanc_en > 0)) {
  3298. if (dp_tx_prepare_send_igmp_me(vdev, nbuf) ==
  3299. QDF_STATUS_SUCCESS) {
  3300. return false;
  3301. }
  3302. }
  3303. }
  3304. return true;
  3305. }
  3306. #else
  3307. bool dp_tx_mcast_enhance(struct dp_vdev *vdev, qdf_nbuf_t nbuf)
  3308. {
  3309. return true;
  3310. }
  3311. #endif
  3312. #ifdef QCA_SUPPORT_WDS_EXTENDED
  3313. /**
  3314. * dp_tx_mcast_drop() - Drop mcast frame if drop_tx_mcast is set in WDS_EXT
  3315. * @vdev: vdev handle
  3316. * @nbuf: skb
  3317. *
  3318. * Return: true if frame is dropped, false otherwise
  3319. */
  3320. static inline bool dp_tx_mcast_drop(struct dp_vdev *vdev, qdf_nbuf_t nbuf)
  3321. {
  3322. uint8_t xmit_type = qdf_nbuf_get_vdev_xmit_type(nbuf);
  3323. /* Drop tx mcast and WDS Extended feature check */
  3324. if (qdf_unlikely((vdev->drop_tx_mcast) && (vdev->wds_ext_enabled))) {
  3325. qdf_ether_header_t *eh = (qdf_ether_header_t *)
  3326. qdf_nbuf_data(nbuf);
  3327. if (DP_FRAME_IS_MULTICAST((eh)->ether_dhost)) {
  3328. DP_STATS_INC(vdev,
  3329. tx_i[xmit_type].dropped.tx_mcast_drop, 1);
  3330. return true;
  3331. }
  3332. }
  3333. return false;
  3334. }
  3335. #else
  3336. static inline bool dp_tx_mcast_drop(struct dp_vdev *vdev, qdf_nbuf_t nbuf)
  3337. {
  3338. return false;
  3339. }
  3340. #endif
  3341. /**
  3342. * dp_tx_per_pkt_vdev_id_check() - vdev id check for frame
  3343. * @nbuf: qdf_nbuf_t
  3344. * @vdev: struct dp_vdev *
  3345. *
  3346. * Allow packet for processing only if it is for peer client which is
  3347. * connected with same vap. Drop packet if client is connected to
  3348. * different vap.
  3349. *
  3350. * Return: QDF_STATUS
  3351. */
  3352. static inline QDF_STATUS
  3353. dp_tx_per_pkt_vdev_id_check(qdf_nbuf_t nbuf, struct dp_vdev *vdev)
  3354. {
  3355. struct dp_ast_entry *dst_ast_entry = NULL;
  3356. qdf_ether_header_t *eh = (qdf_ether_header_t *)qdf_nbuf_data(nbuf);
  3357. if (DP_FRAME_IS_MULTICAST((eh)->ether_dhost) ||
  3358. DP_FRAME_IS_BROADCAST((eh)->ether_dhost))
  3359. return QDF_STATUS_SUCCESS;
  3360. qdf_spin_lock_bh(&vdev->pdev->soc->ast_lock);
  3361. dst_ast_entry = dp_peer_ast_hash_find_by_vdevid(vdev->pdev->soc,
  3362. eh->ether_dhost,
  3363. vdev->vdev_id);
  3364. /* If there is no ast entry, return failure */
  3365. if (qdf_unlikely(!dst_ast_entry)) {
  3366. qdf_spin_unlock_bh(&vdev->pdev->soc->ast_lock);
  3367. return QDF_STATUS_E_FAILURE;
  3368. }
  3369. qdf_spin_unlock_bh(&vdev->pdev->soc->ast_lock);
  3370. return QDF_STATUS_SUCCESS;
  3371. }
  3372. /**
  3373. * dp_tx_nawds_handler() - NAWDS handler
  3374. *
  3375. * @soc: DP soc handle
  3376. * @vdev: DP vdev handle
  3377. * @msdu_info: msdu_info required to create HTT metadata
  3378. * @nbuf: skb
  3379. * @sa_peer_id:
  3380. *
  3381. * This API transfers the multicast frames with the peer id
  3382. * on NAWDS enabled peer.
  3383. *
  3384. * Return: none
  3385. */
  3386. void dp_tx_nawds_handler(struct dp_soc *soc, struct dp_vdev *vdev,
  3387. struct dp_tx_msdu_info_s *msdu_info,
  3388. qdf_nbuf_t nbuf, uint16_t sa_peer_id)
  3389. {
  3390. struct dp_peer *peer = NULL;
  3391. qdf_nbuf_t nbuf_clone = NULL;
  3392. uint16_t peer_id = DP_INVALID_PEER;
  3393. struct dp_txrx_peer *txrx_peer;
  3394. uint8_t link_id = 0;
  3395. /* This check avoids pkt forwarding which is entered
  3396. * in the ast table but still doesn't have valid peerid.
  3397. */
  3398. if (sa_peer_id == HTT_INVALID_PEER)
  3399. return;
  3400. qdf_spin_lock_bh(&vdev->peer_list_lock);
  3401. TAILQ_FOREACH(peer, &vdev->peer_list, peer_list_elem) {
  3402. txrx_peer = dp_get_txrx_peer(peer);
  3403. if (!txrx_peer)
  3404. continue;
  3405. if (!txrx_peer->bss_peer && txrx_peer->nawds_enabled) {
  3406. peer_id = peer->peer_id;
  3407. if (!dp_peer_is_primary_link_peer(peer))
  3408. continue;
  3409. /* In the case of wds ext peer mcast traffic will be
  3410. * sent as part of VLAN interface
  3411. */
  3412. if (dp_peer_is_wds_ext_peer(txrx_peer))
  3413. continue;
  3414. /* Multicast packets needs to be
  3415. * dropped in case of intra bss forwarding
  3416. */
  3417. if (sa_peer_id == txrx_peer->peer_id) {
  3418. dp_tx_debug("multicast packet");
  3419. DP_PEER_PER_PKT_STATS_INC(txrx_peer,
  3420. tx.nawds_mcast_drop,
  3421. 1, link_id);
  3422. continue;
  3423. }
  3424. nbuf_clone = qdf_nbuf_clone(nbuf);
  3425. if (!nbuf_clone) {
  3426. QDF_TRACE(QDF_MODULE_ID_DP,
  3427. QDF_TRACE_LEVEL_ERROR,
  3428. FL("nbuf clone failed"));
  3429. break;
  3430. }
  3431. nbuf_clone = dp_tx_send_msdu_single(vdev, nbuf_clone,
  3432. msdu_info, peer_id,
  3433. NULL);
  3434. if (nbuf_clone) {
  3435. dp_tx_debug("pkt send failed");
  3436. qdf_nbuf_free(nbuf_clone);
  3437. } else {
  3438. if (peer_id != DP_INVALID_PEER)
  3439. DP_PEER_PER_PKT_STATS_INC_PKT(txrx_peer,
  3440. tx.nawds_mcast,
  3441. 1, qdf_nbuf_len(nbuf), link_id);
  3442. }
  3443. }
  3444. }
  3445. qdf_spin_unlock_bh(&vdev->peer_list_lock);
  3446. }
  3447. #ifdef WLAN_MCAST_MLO
  3448. static inline bool
  3449. dp_tx_check_mesh_vdev(struct dp_vdev *vdev,
  3450. struct cdp_tx_exception_metadata *tx_exc_metadata)
  3451. {
  3452. if (!tx_exc_metadata->is_mlo_mcast && qdf_unlikely(vdev->mesh_vdev))
  3453. return true;
  3454. return false;
  3455. }
  3456. #else
  3457. static inline bool
  3458. dp_tx_check_mesh_vdev(struct dp_vdev *vdev,
  3459. struct cdp_tx_exception_metadata *tx_exc_metadata)
  3460. {
  3461. if (qdf_unlikely(vdev->mesh_vdev))
  3462. return true;
  3463. return false;
  3464. }
  3465. #endif
  3466. qdf_nbuf_t
  3467. dp_tx_send_exception(struct cdp_soc_t *soc_hdl, uint8_t vdev_id,
  3468. qdf_nbuf_t nbuf,
  3469. struct cdp_tx_exception_metadata *tx_exc_metadata)
  3470. {
  3471. struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
  3472. struct dp_tx_msdu_info_s msdu_info;
  3473. struct dp_vdev *vdev = dp_vdev_get_ref_by_id(soc, vdev_id,
  3474. DP_MOD_ID_TX_EXCEPTION);
  3475. uint8_t xmit_type = qdf_nbuf_get_vdev_xmit_type(nbuf);
  3476. if (qdf_unlikely(!vdev))
  3477. goto fail;
  3478. qdf_mem_zero(&msdu_info, sizeof(msdu_info));
  3479. if (!tx_exc_metadata)
  3480. goto fail;
  3481. msdu_info.tid = tx_exc_metadata->tid;
  3482. msdu_info.xmit_type = xmit_type;
  3483. dp_verbose_debug("skb "QDF_MAC_ADDR_FMT,
  3484. QDF_MAC_ADDR_REF(nbuf->data));
  3485. DP_STATS_INC_PKT(vdev, tx_i[xmit_type].rcvd, 1, qdf_nbuf_len(nbuf));
  3486. if (qdf_unlikely(!dp_check_exc_metadata(tx_exc_metadata))) {
  3487. dp_tx_err("Invalid parameters in exception path");
  3488. goto fail;
  3489. }
  3490. /* for peer based metadata check if peer is valid */
  3491. if (tx_exc_metadata->peer_id != CDP_INVALID_PEER) {
  3492. struct dp_peer *peer = NULL;
  3493. peer = dp_peer_get_ref_by_id(vdev->pdev->soc,
  3494. tx_exc_metadata->peer_id,
  3495. DP_MOD_ID_TX_EXCEPTION);
  3496. if (qdf_unlikely(!peer)) {
  3497. DP_STATS_INC(vdev,
  3498. tx_i[xmit_type].dropped.invalid_peer_id_in_exc_path,
  3499. 1);
  3500. goto fail;
  3501. }
  3502. dp_peer_unref_delete(peer, DP_MOD_ID_TX_EXCEPTION);
  3503. }
  3504. /* Basic sanity checks for unsupported packets */
  3505. /* MESH mode */
  3506. if (dp_tx_check_mesh_vdev(vdev, tx_exc_metadata)) {
  3507. dp_tx_err("Mesh mode is not supported in exception path");
  3508. goto fail;
  3509. }
  3510. /*
  3511. * Classify the frame and call corresponding
  3512. * "prepare" function which extracts the segment (TSO)
  3513. * and fragmentation information (for TSO , SG, ME, or Raw)
  3514. * into MSDU_INFO structure which is later used to fill
  3515. * SW and HW descriptors.
  3516. */
  3517. if (qdf_nbuf_is_tso(nbuf)) {
  3518. dp_verbose_debug("TSO frame %pK", vdev);
  3519. DP_STATS_INC_PKT(vdev->pdev, tso_stats.num_tso_pkts, 1,
  3520. qdf_nbuf_len(nbuf));
  3521. if (dp_tx_prepare_tso(vdev, nbuf, &msdu_info)) {
  3522. DP_STATS_INC_PKT(vdev->pdev, tso_stats.dropped_host, 1,
  3523. qdf_nbuf_len(nbuf));
  3524. goto fail;
  3525. }
  3526. DP_STATS_INC(vdev,
  3527. tx_i[xmit_type].rcvd.num, msdu_info.num_seg - 1);
  3528. goto send_multiple;
  3529. }
  3530. /* SG */
  3531. if (qdf_unlikely(qdf_nbuf_is_nonlinear(nbuf))) {
  3532. struct dp_tx_seg_info_s seg_info = {0};
  3533. nbuf = dp_tx_prepare_sg(vdev, nbuf, &seg_info, &msdu_info);
  3534. if (!nbuf)
  3535. goto fail;
  3536. dp_verbose_debug("non-TSO SG frame %pK", vdev);
  3537. DP_STATS_INC_PKT(vdev, tx_i[xmit_type].sg.sg_pkt, 1,
  3538. qdf_nbuf_len(nbuf));
  3539. goto send_multiple;
  3540. }
  3541. if (qdf_likely(tx_exc_metadata->is_tx_sniffer)) {
  3542. DP_STATS_INC_PKT(vdev, tx_i[xmit_type].sniffer_rcvd, 1,
  3543. qdf_nbuf_len(nbuf));
  3544. dp_tx_add_tx_sniffer_meta_data(vdev, &msdu_info,
  3545. tx_exc_metadata->ppdu_cookie);
  3546. }
  3547. /*
  3548. * Get HW Queue to use for this frame.
  3549. * TCL supports upto 4 DMA rings, out of which 3 rings are
  3550. * dedicated for data and 1 for command.
  3551. * "queue_id" maps to one hardware ring.
  3552. * With each ring, we also associate a unique Tx descriptor pool
  3553. * to minimize lock contention for these resources.
  3554. */
  3555. dp_tx_get_queue(vdev, nbuf, &msdu_info.tx_queue);
  3556. DP_STATS_INC(vdev,
  3557. tx_i[xmit_type].rcvd_per_core[msdu_info.tx_queue.desc_pool_id],
  3558. 1);
  3559. /*
  3560. * if the packet is mcast packet send through mlo_macst handler
  3561. * for all prnt_vdevs
  3562. */
  3563. if (soc->arch_ops.dp_tx_mlo_mcast_send) {
  3564. nbuf = soc->arch_ops.dp_tx_mlo_mcast_send(soc, vdev,
  3565. nbuf,
  3566. tx_exc_metadata);
  3567. if (!nbuf)
  3568. goto fail;
  3569. }
  3570. if (qdf_likely(tx_exc_metadata->is_intrabss_fwd)) {
  3571. if (qdf_unlikely(vdev->nawds_enabled)) {
  3572. /*
  3573. * This is a multicast packet
  3574. */
  3575. dp_tx_nawds_handler(soc, vdev, &msdu_info, nbuf,
  3576. tx_exc_metadata->peer_id);
  3577. DP_STATS_INC_PKT(vdev, tx_i[xmit_type].nawds_mcast,
  3578. 1, qdf_nbuf_len(nbuf));
  3579. }
  3580. nbuf = dp_tx_send_msdu_single(vdev, nbuf, &msdu_info,
  3581. DP_INVALID_PEER, NULL);
  3582. } else {
  3583. /*
  3584. * Check exception descriptors
  3585. */
  3586. if (dp_tx_exception_limit_check(vdev, xmit_type))
  3587. goto fail;
  3588. /* Single linear frame */
  3589. /*
  3590. * If nbuf is a simple linear frame, use send_single function to
  3591. * prepare direct-buffer type TCL descriptor and enqueue to TCL
  3592. * SRNG. There is no need to setup a MSDU extension descriptor.
  3593. */
  3594. nbuf = dp_tx_send_msdu_single(vdev, nbuf, &msdu_info,
  3595. tx_exc_metadata->peer_id,
  3596. tx_exc_metadata);
  3597. }
  3598. dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_TX_EXCEPTION);
  3599. return nbuf;
  3600. send_multiple:
  3601. nbuf = dp_tx_send_msdu_multiple(vdev, nbuf, &msdu_info);
  3602. fail:
  3603. if (vdev)
  3604. dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_TX_EXCEPTION);
  3605. dp_verbose_debug("pkt send failed");
  3606. return nbuf;
  3607. }
  3608. qdf_nbuf_t
  3609. dp_tx_send_exception_vdev_id_check(struct cdp_soc_t *soc_hdl,
  3610. uint8_t vdev_id, qdf_nbuf_t nbuf,
  3611. struct cdp_tx_exception_metadata *tx_exc_metadata)
  3612. {
  3613. struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
  3614. struct dp_vdev *vdev = dp_vdev_get_ref_by_id(soc, vdev_id,
  3615. DP_MOD_ID_TX_EXCEPTION);
  3616. uint8_t xmit_type = qdf_nbuf_get_vdev_xmit_type(nbuf);
  3617. if (qdf_unlikely(!vdev))
  3618. goto fail;
  3619. if (qdf_unlikely(dp_tx_per_pkt_vdev_id_check(nbuf, vdev)
  3620. == QDF_STATUS_E_FAILURE)) {
  3621. DP_STATS_INC(vdev,
  3622. tx_i[xmit_type].dropped.fail_per_pkt_vdev_id_check,
  3623. 1);
  3624. goto fail;
  3625. }
  3626. /* Unref count as it will again be taken inside dp_tx_exception */
  3627. dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_TX_EXCEPTION);
  3628. return dp_tx_send_exception(soc_hdl, vdev_id, nbuf, tx_exc_metadata);
  3629. fail:
  3630. if (vdev)
  3631. dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_TX_EXCEPTION);
  3632. dp_verbose_debug("pkt send failed");
  3633. return nbuf;
  3634. }
  3635. #ifdef MESH_MODE_SUPPORT
  3636. qdf_nbuf_t dp_tx_send_mesh(struct cdp_soc_t *soc_hdl, uint8_t vdev_id,
  3637. qdf_nbuf_t nbuf)
  3638. {
  3639. struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
  3640. struct meta_hdr_s *mhdr;
  3641. qdf_nbuf_t nbuf_mesh = NULL;
  3642. qdf_nbuf_t nbuf_clone = NULL;
  3643. struct dp_vdev *vdev;
  3644. uint8_t no_enc_frame = 0;
  3645. uint8_t xmit_type = qdf_nbuf_get_vdev_xmit_type(nbuf);
  3646. nbuf_mesh = qdf_nbuf_unshare(nbuf);
  3647. if (!nbuf_mesh) {
  3648. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  3649. "qdf_nbuf_unshare failed");
  3650. return nbuf;
  3651. }
  3652. vdev = dp_vdev_get_ref_by_id(soc, vdev_id, DP_MOD_ID_MESH);
  3653. if (!vdev) {
  3654. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  3655. "vdev is NULL for vdev_id %d", vdev_id);
  3656. return nbuf;
  3657. }
  3658. nbuf = nbuf_mesh;
  3659. mhdr = (struct meta_hdr_s *)qdf_nbuf_data(nbuf);
  3660. if ((vdev->sec_type != cdp_sec_type_none) &&
  3661. (mhdr->flags & METAHDR_FLAG_NOENCRYPT))
  3662. no_enc_frame = 1;
  3663. if (mhdr->flags & METAHDR_FLAG_NOQOS)
  3664. qdf_nbuf_set_priority(nbuf, HTT_TX_EXT_TID_NON_QOS_MCAST_BCAST);
  3665. if ((mhdr->flags & METAHDR_FLAG_INFO_UPDATED) &&
  3666. !no_enc_frame) {
  3667. nbuf_clone = qdf_nbuf_clone(nbuf);
  3668. if (!nbuf_clone) {
  3669. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  3670. "qdf_nbuf_clone failed");
  3671. dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_MESH);
  3672. return nbuf;
  3673. }
  3674. qdf_nbuf_set_tx_ftype(nbuf_clone, CB_FTYPE_MESH_TX_INFO);
  3675. }
  3676. if (nbuf_clone) {
  3677. if (!dp_tx_send(soc_hdl, vdev_id, nbuf_clone)) {
  3678. DP_STATS_INC(vdev, tx_i[xmit_type].mesh.exception_fw,
  3679. 1);
  3680. } else {
  3681. qdf_nbuf_free(nbuf_clone);
  3682. }
  3683. }
  3684. if (no_enc_frame)
  3685. qdf_nbuf_set_tx_ftype(nbuf, CB_FTYPE_MESH_TX_INFO);
  3686. else
  3687. qdf_nbuf_set_tx_ftype(nbuf, CB_FTYPE_INVALID);
  3688. nbuf = dp_tx_send(soc_hdl, vdev_id, nbuf);
  3689. if ((!nbuf) && no_enc_frame) {
  3690. DP_STATS_INC(vdev, tx_i[xmit_type].mesh.exception_fw, 1);
  3691. }
  3692. dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_MESH);
  3693. return nbuf;
  3694. }
  3695. #else
  3696. qdf_nbuf_t dp_tx_send_mesh(struct cdp_soc_t *soc_hdl, uint8_t vdev_id,
  3697. qdf_nbuf_t nbuf)
  3698. {
  3699. return dp_tx_send(soc_hdl, vdev_id, nbuf);
  3700. }
  3701. #endif
  3702. #ifdef QCA_DP_TX_NBUF_AND_NBUF_DATA_PREFETCH
  3703. static inline
  3704. void dp_tx_prefetch_nbuf_data(qdf_nbuf_t nbuf)
  3705. {
  3706. if (nbuf) {
  3707. qdf_prefetch(&nbuf->len);
  3708. qdf_prefetch(&nbuf->data);
  3709. }
  3710. }
  3711. #else
  3712. static inline
  3713. void dp_tx_prefetch_nbuf_data(qdf_nbuf_t nbuf)
  3714. {
  3715. }
  3716. #endif
  3717. #ifdef DP_UMAC_HW_RESET_SUPPORT
  3718. qdf_nbuf_t dp_tx_drop(struct cdp_soc_t *soc_hdl, uint8_t vdev_id,
  3719. qdf_nbuf_t nbuf)
  3720. {
  3721. struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
  3722. struct dp_vdev *vdev = NULL;
  3723. uint8_t xmit_type = qdf_nbuf_get_vdev_xmit_type(nbuf);
  3724. vdev = soc->vdev_id_map[vdev_id];
  3725. if (qdf_unlikely(!vdev))
  3726. return nbuf;
  3727. DP_STATS_INC(vdev, tx_i[xmit_type].dropped.drop_ingress, 1);
  3728. return nbuf;
  3729. }
  3730. qdf_nbuf_t dp_tx_exc_drop(struct cdp_soc_t *soc_hdl, uint8_t vdev_id,
  3731. qdf_nbuf_t nbuf,
  3732. struct cdp_tx_exception_metadata *tx_exc_metadata)
  3733. {
  3734. return dp_tx_drop(soc_hdl, vdev_id, nbuf);
  3735. }
  3736. #endif
  3737. #ifdef FEATURE_DIRECT_LINK
  3738. /**
  3739. * dp_vdev_tx_mark_to_fw() - Mark to_fw bit for the tx packet
  3740. * @nbuf: skb
  3741. * @vdev: DP vdev handle
  3742. *
  3743. * Return: None
  3744. */
  3745. static inline void dp_vdev_tx_mark_to_fw(qdf_nbuf_t nbuf, struct dp_vdev *vdev)
  3746. {
  3747. if (qdf_unlikely(vdev->to_fw))
  3748. QDF_NBUF_CB_TX_PACKET_TO_FW(nbuf) = 1;
  3749. }
  3750. #else
  3751. static inline void dp_vdev_tx_mark_to_fw(qdf_nbuf_t nbuf, struct dp_vdev *vdev)
  3752. {
  3753. }
  3754. #endif
  3755. qdf_nbuf_t dp_tx_send(struct cdp_soc_t *soc_hdl, uint8_t vdev_id,
  3756. qdf_nbuf_t nbuf)
  3757. {
  3758. struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
  3759. uint16_t peer_id = HTT_INVALID_PEER;
  3760. /*
  3761. * doing a memzero is causing additional function call overhead
  3762. * so doing static stack clearing
  3763. */
  3764. struct dp_tx_msdu_info_s msdu_info = {0};
  3765. struct dp_vdev *vdev = NULL;
  3766. qdf_nbuf_t end_nbuf = NULL;
  3767. uint8_t xmit_type;
  3768. if (qdf_unlikely(vdev_id >= MAX_VDEV_CNT))
  3769. return nbuf;
  3770. /*
  3771. * dp_vdev_get_ref_by_id does does a atomic operation avoid using
  3772. * this in per packet path.
  3773. *
  3774. * As in this path vdev memory is already protected with netdev
  3775. * tx lock
  3776. */
  3777. vdev = soc->vdev_id_map[vdev_id];
  3778. if (qdf_unlikely(!vdev))
  3779. return nbuf;
  3780. dp_tx_get_driver_ingress_ts(vdev, &msdu_info, nbuf);
  3781. dp_vdev_tx_mark_to_fw(nbuf, vdev);
  3782. /*
  3783. * Set Default Host TID value to invalid TID
  3784. * (TID override disabled)
  3785. */
  3786. msdu_info.tid = HTT_TX_EXT_TID_INVALID;
  3787. xmit_type = qdf_nbuf_get_vdev_xmit_type(nbuf);
  3788. msdu_info.xmit_type = xmit_type;
  3789. DP_STATS_INC_PKT(vdev, tx_i[xmit_type].rcvd, 1, qdf_nbuf_len(nbuf));
  3790. if (qdf_unlikely(vdev->mesh_vdev)) {
  3791. qdf_nbuf_t nbuf_mesh = dp_tx_extract_mesh_meta_data(vdev, nbuf,
  3792. &msdu_info);
  3793. if (!nbuf_mesh) {
  3794. dp_verbose_debug("Extracting mesh metadata failed");
  3795. return nbuf;
  3796. }
  3797. nbuf = nbuf_mesh;
  3798. }
  3799. /*
  3800. * Get HW Queue to use for this frame.
  3801. * TCL supports upto 4 DMA rings, out of which 3 rings are
  3802. * dedicated for data and 1 for command.
  3803. * "queue_id" maps to one hardware ring.
  3804. * With each ring, we also associate a unique Tx descriptor pool
  3805. * to minimize lock contention for these resources.
  3806. */
  3807. dp_tx_get_queue(vdev, nbuf, &msdu_info.tx_queue);
  3808. DP_STATS_INC(vdev,
  3809. tx_i[xmit_type].rcvd_per_core[msdu_info.tx_queue.desc_pool_id],
  3810. 1);
  3811. /*
  3812. * TCL H/W supports 2 DSCP-TID mapping tables.
  3813. * Table 1 - Default DSCP-TID mapping table
  3814. * Table 2 - 1 DSCP-TID override table
  3815. *
  3816. * If we need a different DSCP-TID mapping for this vap,
  3817. * call tid_classify to extract DSCP/ToS from frame and
  3818. * map to a TID and store in msdu_info. This is later used
  3819. * to fill in TCL Input descriptor (per-packet TID override).
  3820. */
  3821. dp_tx_classify_tid(vdev, nbuf, &msdu_info);
  3822. /*
  3823. * Classify the frame and call corresponding
  3824. * "prepare" function which extracts the segment (TSO)
  3825. * and fragmentation information (for TSO , SG, ME, or Raw)
  3826. * into MSDU_INFO structure which is later used to fill
  3827. * SW and HW descriptors.
  3828. */
  3829. if (qdf_nbuf_is_tso(nbuf)) {
  3830. dp_verbose_debug("TSO frame %pK", vdev);
  3831. DP_STATS_INC_PKT(vdev->pdev, tso_stats.num_tso_pkts, 1,
  3832. qdf_nbuf_len(nbuf));
  3833. if (dp_tx_prepare_tso(vdev, nbuf, &msdu_info)) {
  3834. DP_STATS_INC_PKT(vdev->pdev, tso_stats.dropped_host, 1,
  3835. qdf_nbuf_len(nbuf));
  3836. return nbuf;
  3837. }
  3838. DP_STATS_INC(vdev, tx_i[xmit_type].rcvd.num,
  3839. msdu_info.num_seg - 1);
  3840. goto send_multiple;
  3841. }
  3842. /* SG */
  3843. if (qdf_unlikely(qdf_nbuf_is_nonlinear(nbuf))) {
  3844. if (qdf_nbuf_get_nr_frags(nbuf) > DP_TX_MAX_NUM_FRAGS - 1) {
  3845. if (qdf_unlikely(qdf_nbuf_linearize(nbuf)))
  3846. return nbuf;
  3847. } else {
  3848. struct dp_tx_seg_info_s seg_info = {0};
  3849. if (qdf_unlikely(is_nbuf_frm_rmnet(nbuf, &msdu_info)))
  3850. goto send_single;
  3851. nbuf = dp_tx_prepare_sg(vdev, nbuf, &seg_info,
  3852. &msdu_info);
  3853. if (!nbuf)
  3854. return NULL;
  3855. dp_verbose_debug("non-TSO SG frame %pK", vdev);
  3856. DP_STATS_INC_PKT(vdev, tx_i[xmit_type].sg.sg_pkt, 1,
  3857. qdf_nbuf_len(nbuf));
  3858. goto send_multiple;
  3859. }
  3860. }
  3861. if (qdf_unlikely(!dp_tx_mcast_enhance(vdev, nbuf)))
  3862. return NULL;
  3863. if (qdf_unlikely(dp_tx_mcast_drop(vdev, nbuf)))
  3864. return nbuf;
  3865. /* RAW */
  3866. if (qdf_unlikely(vdev->tx_encap_type == htt_cmn_pkt_type_raw)) {
  3867. struct dp_tx_seg_info_s seg_info = {0};
  3868. nbuf = dp_tx_prepare_raw(vdev, nbuf, &seg_info, &msdu_info);
  3869. if (!nbuf)
  3870. return NULL;
  3871. dp_verbose_debug("Raw frame %pK", vdev);
  3872. goto send_multiple;
  3873. }
  3874. if (qdf_unlikely(vdev->nawds_enabled)) {
  3875. qdf_ether_header_t *eh = (qdf_ether_header_t *)
  3876. qdf_nbuf_data(nbuf);
  3877. if (DP_FRAME_IS_MULTICAST((eh)->ether_dhost)) {
  3878. uint16_t sa_peer_id = DP_INVALID_PEER;
  3879. if (!soc->ast_offload_support) {
  3880. struct dp_ast_entry *ast_entry = NULL;
  3881. qdf_spin_lock_bh(&soc->ast_lock);
  3882. ast_entry = dp_peer_ast_hash_find_by_pdevid
  3883. (soc,
  3884. (uint8_t *)(eh->ether_shost),
  3885. vdev->pdev->pdev_id);
  3886. if (ast_entry)
  3887. sa_peer_id = ast_entry->peer_id;
  3888. qdf_spin_unlock_bh(&soc->ast_lock);
  3889. }
  3890. dp_tx_nawds_handler(soc, vdev, &msdu_info, nbuf,
  3891. sa_peer_id);
  3892. }
  3893. peer_id = DP_INVALID_PEER;
  3894. DP_STATS_INC_PKT(vdev, tx_i[xmit_type].nawds_mcast,
  3895. 1, qdf_nbuf_len(nbuf));
  3896. }
  3897. send_single:
  3898. /* Single linear frame */
  3899. /*
  3900. * If nbuf is a simple linear frame, use send_single function to
  3901. * prepare direct-buffer type TCL descriptor and enqueue to TCL
  3902. * SRNG. There is no need to setup a MSDU extension descriptor.
  3903. */
  3904. dp_tx_prefetch_nbuf_data(nbuf);
  3905. nbuf = dp_tx_send_msdu_single_wrapper(vdev, nbuf, &msdu_info,
  3906. peer_id, end_nbuf);
  3907. return nbuf;
  3908. send_multiple:
  3909. nbuf = dp_tx_send_msdu_multiple(vdev, nbuf, &msdu_info);
  3910. if (qdf_unlikely(nbuf && msdu_info.frm_type == dp_tx_frm_raw))
  3911. dp_tx_raw_prepare_unset(vdev->pdev->soc, nbuf);
  3912. return nbuf;
  3913. }
  3914. qdf_nbuf_t dp_tx_send_vdev_id_check(struct cdp_soc_t *soc_hdl,
  3915. uint8_t vdev_id, qdf_nbuf_t nbuf)
  3916. {
  3917. struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
  3918. struct dp_vdev *vdev = NULL;
  3919. uint8_t xmit_type = qdf_nbuf_get_vdev_xmit_type(nbuf);
  3920. if (qdf_unlikely(vdev_id >= MAX_VDEV_CNT))
  3921. return nbuf;
  3922. /*
  3923. * dp_vdev_get_ref_by_id does does a atomic operation avoid using
  3924. * this in per packet path.
  3925. *
  3926. * As in this path vdev memory is already protected with netdev
  3927. * tx lock
  3928. */
  3929. vdev = soc->vdev_id_map[vdev_id];
  3930. if (qdf_unlikely(!vdev))
  3931. return nbuf;
  3932. if (qdf_unlikely(dp_tx_per_pkt_vdev_id_check(nbuf, vdev)
  3933. == QDF_STATUS_E_FAILURE)) {
  3934. DP_STATS_INC(vdev,
  3935. tx_i[xmit_type].dropped.fail_per_pkt_vdev_id_check,
  3936. 1);
  3937. return nbuf;
  3938. }
  3939. return dp_tx_send(soc_hdl, vdev_id, nbuf);
  3940. }
  3941. #ifdef UMAC_SUPPORT_PROXY_ARP
  3942. /**
  3943. * dp_tx_proxy_arp() - Tx proxy arp handler
  3944. * @vdev: datapath vdev handle
  3945. * @nbuf: sk buffer
  3946. *
  3947. * Return: status
  3948. */
  3949. int dp_tx_proxy_arp(struct dp_vdev *vdev, qdf_nbuf_t nbuf)
  3950. {
  3951. if (vdev->osif_proxy_arp)
  3952. return vdev->osif_proxy_arp(vdev->osif_vdev, nbuf);
  3953. /*
  3954. * when UMAC_SUPPORT_PROXY_ARP is defined, we expect
  3955. * osif_proxy_arp has a valid function pointer assigned
  3956. * to it
  3957. */
  3958. dp_tx_err("valid function pointer for osif_proxy_arp is expected!!\n");
  3959. return QDF_STATUS_NOT_INITIALIZED;
  3960. }
  3961. #else
  3962. int dp_tx_proxy_arp(struct dp_vdev *vdev, qdf_nbuf_t nbuf)
  3963. {
  3964. return QDF_STATUS_SUCCESS;
  3965. }
  3966. #endif
  3967. #if defined(WLAN_FEATURE_11BE_MLO) && defined(WLAN_MLO_MULTI_CHIP) && \
  3968. !defined(CONFIG_MLO_SINGLE_DEV)
  3969. #ifdef WLAN_MCAST_MLO
  3970. static bool
  3971. dp_tx_reinject_mlo_hdl(struct dp_soc *soc, struct dp_vdev *vdev,
  3972. struct dp_tx_desc_s *tx_desc,
  3973. qdf_nbuf_t nbuf,
  3974. uint8_t reinject_reason)
  3975. {
  3976. if (reinject_reason == HTT_TX_FW2WBM_REINJECT_REASON_MLO_MCAST) {
  3977. if (soc->arch_ops.dp_tx_mcast_handler)
  3978. soc->arch_ops.dp_tx_mcast_handler(soc, vdev, nbuf);
  3979. dp_tx_desc_release(soc, tx_desc, tx_desc->pool_id);
  3980. return true;
  3981. }
  3982. return false;
  3983. }
  3984. #else /* WLAN_MCAST_MLO */
  3985. static inline bool
  3986. dp_tx_reinject_mlo_hdl(struct dp_soc *soc, struct dp_vdev *vdev,
  3987. struct dp_tx_desc_s *tx_desc,
  3988. qdf_nbuf_t nbuf,
  3989. uint8_t reinject_reason)
  3990. {
  3991. return false;
  3992. }
  3993. #endif /* WLAN_MCAST_MLO */
  3994. #else
  3995. static inline bool
  3996. dp_tx_reinject_mlo_hdl(struct dp_soc *soc, struct dp_vdev *vdev,
  3997. struct dp_tx_desc_s *tx_desc,
  3998. qdf_nbuf_t nbuf,
  3999. uint8_t reinject_reason)
  4000. {
  4001. return false;
  4002. }
  4003. #endif
  4004. void dp_tx_reinject_handler(struct dp_soc *soc,
  4005. struct dp_vdev *vdev,
  4006. struct dp_tx_desc_s *tx_desc,
  4007. uint8_t *status,
  4008. uint8_t reinject_reason)
  4009. {
  4010. struct dp_peer *peer = NULL;
  4011. uint32_t peer_id = HTT_INVALID_PEER;
  4012. qdf_nbuf_t nbuf = tx_desc->nbuf;
  4013. qdf_nbuf_t nbuf_copy = NULL;
  4014. struct dp_tx_msdu_info_s msdu_info;
  4015. #ifdef WDS_VENDOR_EXTENSION
  4016. int is_mcast = 0, is_ucast = 0;
  4017. int num_peers_3addr = 0;
  4018. qdf_ether_header_t *eth_hdr = (qdf_ether_header_t *)(qdf_nbuf_data(nbuf));
  4019. struct ieee80211_frame_addr4 *wh = (struct ieee80211_frame_addr4 *)(qdf_nbuf_data(nbuf));
  4020. #endif
  4021. struct dp_txrx_peer *txrx_peer;
  4022. uint8_t xmit_type = qdf_nbuf_get_vdev_xmit_type(nbuf);
  4023. qdf_assert(vdev);
  4024. dp_tx_debug("Tx reinject path");
  4025. DP_STATS_INC_PKT(vdev, tx_i[xmit_type].reinject_pkts, 1,
  4026. qdf_nbuf_len(tx_desc->nbuf));
  4027. if (dp_tx_reinject_mlo_hdl(soc, vdev, tx_desc, nbuf, reinject_reason))
  4028. return;
  4029. #ifdef WDS_VENDOR_EXTENSION
  4030. if (qdf_unlikely(vdev->tx_encap_type != htt_cmn_pkt_type_raw)) {
  4031. is_mcast = (IS_MULTICAST(wh->i_addr1)) ? 1 : 0;
  4032. } else {
  4033. is_mcast = (IS_MULTICAST(eth_hdr->ether_dhost)) ? 1 : 0;
  4034. }
  4035. is_ucast = !is_mcast;
  4036. qdf_spin_lock_bh(&vdev->peer_list_lock);
  4037. TAILQ_FOREACH(peer, &vdev->peer_list, peer_list_elem) {
  4038. txrx_peer = dp_get_txrx_peer(peer);
  4039. if (!txrx_peer || txrx_peer->bss_peer)
  4040. continue;
  4041. /* Detect wds peers that use 3-addr framing for mcast.
  4042. * if there are any, the bss_peer is used to send the
  4043. * the mcast frame using 3-addr format. all wds enabled
  4044. * peers that use 4-addr framing for mcast frames will
  4045. * be duplicated and sent as 4-addr frames below.
  4046. */
  4047. if (!txrx_peer->wds_enabled ||
  4048. !txrx_peer->wds_ecm.wds_tx_mcast_4addr) {
  4049. num_peers_3addr = 1;
  4050. break;
  4051. }
  4052. }
  4053. qdf_spin_unlock_bh(&vdev->peer_list_lock);
  4054. #endif
  4055. if (qdf_unlikely(vdev->mesh_vdev)) {
  4056. DP_TX_FREE_SINGLE_BUF(vdev->pdev->soc, tx_desc->nbuf);
  4057. } else {
  4058. qdf_spin_lock_bh(&vdev->peer_list_lock);
  4059. TAILQ_FOREACH(peer, &vdev->peer_list, peer_list_elem) {
  4060. txrx_peer = dp_get_txrx_peer(peer);
  4061. if (!txrx_peer)
  4062. continue;
  4063. if ((txrx_peer->peer_id != HTT_INVALID_PEER) &&
  4064. #ifdef WDS_VENDOR_EXTENSION
  4065. /*
  4066. * . if 3-addr STA, then send on BSS Peer
  4067. * . if Peer WDS enabled and accept 4-addr mcast,
  4068. * send mcast on that peer only
  4069. * . if Peer WDS enabled and accept 4-addr ucast,
  4070. * send ucast on that peer only
  4071. */
  4072. ((txrx_peer->bss_peer && num_peers_3addr && is_mcast) ||
  4073. (txrx_peer->wds_enabled &&
  4074. ((is_mcast && txrx_peer->wds_ecm.wds_tx_mcast_4addr) ||
  4075. (is_ucast &&
  4076. txrx_peer->wds_ecm.wds_tx_ucast_4addr))))) {
  4077. #else
  4078. (txrx_peer->bss_peer &&
  4079. (dp_tx_proxy_arp(vdev, nbuf) == QDF_STATUS_SUCCESS))) {
  4080. #endif
  4081. peer_id = DP_INVALID_PEER;
  4082. nbuf_copy = qdf_nbuf_copy(nbuf);
  4083. if (!nbuf_copy) {
  4084. dp_tx_debug("nbuf copy failed");
  4085. break;
  4086. }
  4087. qdf_mem_zero(&msdu_info, sizeof(msdu_info));
  4088. dp_tx_get_queue(vdev, nbuf,
  4089. &msdu_info.tx_queue);
  4090. msdu_info.xmit_type =
  4091. qdf_nbuf_get_vdev_xmit_type(nbuf);
  4092. nbuf_copy = dp_tx_send_msdu_single(vdev,
  4093. nbuf_copy,
  4094. &msdu_info,
  4095. peer_id,
  4096. NULL);
  4097. if (nbuf_copy) {
  4098. dp_tx_debug("pkt send failed");
  4099. qdf_nbuf_free(nbuf_copy);
  4100. }
  4101. }
  4102. }
  4103. qdf_spin_unlock_bh(&vdev->peer_list_lock);
  4104. qdf_nbuf_unmap_nbytes_single(vdev->osdev, nbuf,
  4105. QDF_DMA_TO_DEVICE, nbuf->len);
  4106. qdf_nbuf_free(nbuf);
  4107. }
  4108. dp_tx_desc_release(soc, tx_desc, tx_desc->pool_id);
  4109. }
  4110. void dp_tx_inspect_handler(struct dp_soc *soc,
  4111. struct dp_vdev *vdev,
  4112. struct dp_tx_desc_s *tx_desc,
  4113. uint8_t *status)
  4114. {
  4115. uint8_t xmit_type = qdf_nbuf_get_vdev_xmit_type(tx_desc->nbuf);
  4116. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
  4117. "%s Tx inspect path",
  4118. __func__);
  4119. DP_STATS_INC_PKT(vdev, tx_i[xmit_type].inspect_pkts, 1,
  4120. qdf_nbuf_len(tx_desc->nbuf));
  4121. DP_TX_FREE_SINGLE_BUF(soc, tx_desc->nbuf);
  4122. dp_tx_desc_release(soc, tx_desc, tx_desc->pool_id);
  4123. }
  4124. #ifdef MESH_MODE_SUPPORT
  4125. /**
  4126. * dp_tx_comp_fill_tx_completion_stats() - Fill per packet Tx completion stats
  4127. * in mesh meta header
  4128. * @tx_desc: software descriptor head pointer
  4129. * @ts: pointer to tx completion stats
  4130. * Return: none
  4131. */
  4132. static
  4133. void dp_tx_comp_fill_tx_completion_stats(struct dp_tx_desc_s *tx_desc,
  4134. struct hal_tx_completion_status *ts)
  4135. {
  4136. qdf_nbuf_t netbuf = tx_desc->nbuf;
  4137. if (!tx_desc->msdu_ext_desc) {
  4138. if (qdf_nbuf_pull_head(netbuf, tx_desc->pkt_offset) == NULL) {
  4139. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  4140. "netbuf %pK offset %d",
  4141. netbuf, tx_desc->pkt_offset);
  4142. return;
  4143. }
  4144. }
  4145. }
  4146. #else
  4147. static
  4148. void dp_tx_comp_fill_tx_completion_stats(struct dp_tx_desc_s *tx_desc,
  4149. struct hal_tx_completion_status *ts)
  4150. {
  4151. }
  4152. #endif
  4153. #ifdef CONFIG_SAWF
  4154. static void dp_tx_update_peer_sawf_stats(struct dp_soc *soc,
  4155. struct dp_vdev *vdev,
  4156. struct dp_txrx_peer *txrx_peer,
  4157. struct dp_tx_desc_s *tx_desc,
  4158. struct hal_tx_completion_status *ts,
  4159. uint8_t tid)
  4160. {
  4161. dp_sawf_tx_compl_update_peer_stats(soc, vdev, txrx_peer, tx_desc,
  4162. ts, tid);
  4163. }
  4164. static void dp_tx_compute_delay_avg(struct cdp_delay_tx_stats *tx_delay,
  4165. uint32_t nw_delay,
  4166. uint32_t sw_delay,
  4167. uint32_t hw_delay)
  4168. {
  4169. dp_peer_tid_delay_avg(tx_delay,
  4170. nw_delay,
  4171. sw_delay,
  4172. hw_delay);
  4173. }
  4174. #else
  4175. static void dp_tx_update_peer_sawf_stats(struct dp_soc *soc,
  4176. struct dp_vdev *vdev,
  4177. struct dp_txrx_peer *txrx_peer,
  4178. struct dp_tx_desc_s *tx_desc,
  4179. struct hal_tx_completion_status *ts,
  4180. uint8_t tid)
  4181. {
  4182. }
  4183. static inline void
  4184. dp_tx_compute_delay_avg(struct cdp_delay_tx_stats *tx_delay,
  4185. uint32_t nw_delay, uint32_t sw_delay,
  4186. uint32_t hw_delay)
  4187. {
  4188. }
  4189. #endif
  4190. #ifdef QCA_PEER_EXT_STATS
  4191. #ifdef WLAN_CONFIG_TX_DELAY
  4192. static void dp_tx_compute_tid_delay(struct cdp_delay_tid_stats *stats,
  4193. struct dp_tx_desc_s *tx_desc,
  4194. struct hal_tx_completion_status *ts,
  4195. struct dp_vdev *vdev)
  4196. {
  4197. struct dp_soc *soc = vdev->pdev->soc;
  4198. struct cdp_delay_tx_stats *tx_delay = &stats->tx_delay;
  4199. int64_t timestamp_ingress, timestamp_hw_enqueue;
  4200. uint32_t sw_enqueue_delay, fwhw_transmit_delay = 0;
  4201. if (!ts->valid)
  4202. return;
  4203. timestamp_ingress = qdf_nbuf_get_timestamp_us(tx_desc->nbuf);
  4204. timestamp_hw_enqueue = qdf_ktime_to_us(tx_desc->timestamp);
  4205. sw_enqueue_delay = (uint32_t)(timestamp_hw_enqueue - timestamp_ingress);
  4206. dp_hist_update_stats(&tx_delay->tx_swq_delay, sw_enqueue_delay);
  4207. if (soc->arch_ops.dp_tx_compute_hw_delay)
  4208. if (!soc->arch_ops.dp_tx_compute_hw_delay(soc, vdev, ts,
  4209. &fwhw_transmit_delay))
  4210. dp_hist_update_stats(&tx_delay->hwtx_delay,
  4211. fwhw_transmit_delay);
  4212. dp_tx_compute_delay_avg(tx_delay, 0, sw_enqueue_delay,
  4213. fwhw_transmit_delay);
  4214. }
  4215. #else
  4216. /**
  4217. * dp_tx_compute_tid_delay() - Compute per TID delay
  4218. * @stats: Per TID delay stats
  4219. * @tx_desc: Software Tx descriptor
  4220. * @ts: Tx completion status
  4221. * @vdev: vdev
  4222. *
  4223. * Compute the software enqueue and hw enqueue delays and
  4224. * update the respective histograms
  4225. *
  4226. * Return: void
  4227. */
  4228. static void dp_tx_compute_tid_delay(struct cdp_delay_tid_stats *stats,
  4229. struct dp_tx_desc_s *tx_desc,
  4230. struct hal_tx_completion_status *ts,
  4231. struct dp_vdev *vdev)
  4232. {
  4233. struct cdp_delay_tx_stats *tx_delay = &stats->tx_delay;
  4234. int64_t current_timestamp, timestamp_ingress, timestamp_hw_enqueue;
  4235. uint32_t sw_enqueue_delay, fwhw_transmit_delay;
  4236. current_timestamp = qdf_ktime_to_ms(qdf_ktime_real_get());
  4237. timestamp_ingress = qdf_nbuf_get_timestamp(tx_desc->nbuf);
  4238. timestamp_hw_enqueue = qdf_ktime_to_ms(tx_desc->timestamp);
  4239. sw_enqueue_delay = (uint32_t)(timestamp_hw_enqueue - timestamp_ingress);
  4240. fwhw_transmit_delay = (uint32_t)(current_timestamp -
  4241. timestamp_hw_enqueue);
  4242. /*
  4243. * Update the Tx software enqueue delay and HW enque-Completion delay.
  4244. */
  4245. dp_hist_update_stats(&tx_delay->tx_swq_delay, sw_enqueue_delay);
  4246. dp_hist_update_stats(&tx_delay->hwtx_delay, fwhw_transmit_delay);
  4247. }
  4248. #endif
  4249. /**
  4250. * dp_tx_update_peer_delay_stats() - Update the peer delay stats
  4251. * @txrx_peer: DP peer context
  4252. * @tx_desc: Tx software descriptor
  4253. * @ts: Tx completion status
  4254. * @ring_id: Rx CPU context ID/CPU_ID
  4255. *
  4256. * Update the peer extended stats. These are enhanced other
  4257. * delay stats per msdu level.
  4258. *
  4259. * Return: void
  4260. */
  4261. static void dp_tx_update_peer_delay_stats(struct dp_txrx_peer *txrx_peer,
  4262. struct dp_tx_desc_s *tx_desc,
  4263. struct hal_tx_completion_status *ts,
  4264. uint8_t ring_id)
  4265. {
  4266. struct dp_pdev *pdev = txrx_peer->vdev->pdev;
  4267. struct dp_soc *soc = NULL;
  4268. struct dp_peer_delay_stats *delay_stats = NULL;
  4269. uint8_t tid;
  4270. soc = pdev->soc;
  4271. if (qdf_likely(!wlan_cfg_is_peer_ext_stats_enabled(soc->wlan_cfg_ctx)))
  4272. return;
  4273. if (!txrx_peer->delay_stats)
  4274. return;
  4275. tid = ts->tid;
  4276. delay_stats = txrx_peer->delay_stats;
  4277. /*
  4278. * For non-TID packets use the TID 9
  4279. */
  4280. if (qdf_unlikely(tid >= CDP_MAX_DATA_TIDS))
  4281. tid = CDP_MAX_DATA_TIDS - 1;
  4282. dp_tx_compute_tid_delay(&delay_stats->delay_tid_stats[tid][ring_id],
  4283. tx_desc, ts, txrx_peer->vdev);
  4284. }
  4285. #else
  4286. static inline
  4287. void dp_tx_update_peer_delay_stats(struct dp_txrx_peer *txrx_peer,
  4288. struct dp_tx_desc_s *tx_desc,
  4289. struct hal_tx_completion_status *ts,
  4290. uint8_t ring_id)
  4291. {
  4292. }
  4293. #endif
  4294. #ifdef WLAN_PEER_JITTER
  4295. /**
  4296. * dp_tx_jitter_get_avg_jitter() - compute the average jitter
  4297. * @curr_delay: Current delay
  4298. * @prev_delay: Previous delay
  4299. * @avg_jitter: Average Jitter
  4300. * Return: Newly Computed Average Jitter
  4301. */
  4302. static uint32_t dp_tx_jitter_get_avg_jitter(uint32_t curr_delay,
  4303. uint32_t prev_delay,
  4304. uint32_t avg_jitter)
  4305. {
  4306. uint32_t curr_jitter;
  4307. int32_t jitter_diff;
  4308. curr_jitter = qdf_abs(curr_delay - prev_delay);
  4309. if (!avg_jitter)
  4310. return curr_jitter;
  4311. jitter_diff = curr_jitter - avg_jitter;
  4312. if (jitter_diff < 0)
  4313. avg_jitter = avg_jitter -
  4314. (qdf_abs(jitter_diff) >> DP_AVG_JITTER_WEIGHT_DENOM);
  4315. else
  4316. avg_jitter = avg_jitter +
  4317. (qdf_abs(jitter_diff) >> DP_AVG_JITTER_WEIGHT_DENOM);
  4318. return avg_jitter;
  4319. }
  4320. /**
  4321. * dp_tx_jitter_get_avg_delay() - compute the average delay
  4322. * @curr_delay: Current delay
  4323. * @avg_delay: Average delay
  4324. * Return: Newly Computed Average Delay
  4325. */
  4326. static uint32_t dp_tx_jitter_get_avg_delay(uint32_t curr_delay,
  4327. uint32_t avg_delay)
  4328. {
  4329. int32_t delay_diff;
  4330. if (!avg_delay)
  4331. return curr_delay;
  4332. delay_diff = curr_delay - avg_delay;
  4333. if (delay_diff < 0)
  4334. avg_delay = avg_delay - (qdf_abs(delay_diff) >>
  4335. DP_AVG_DELAY_WEIGHT_DENOM);
  4336. else
  4337. avg_delay = avg_delay + (qdf_abs(delay_diff) >>
  4338. DP_AVG_DELAY_WEIGHT_DENOM);
  4339. return avg_delay;
  4340. }
  4341. #ifdef WLAN_CONFIG_TX_DELAY
  4342. /**
  4343. * dp_tx_compute_cur_delay() - get the current delay
  4344. * @soc: soc handle
  4345. * @vdev: vdev structure for data path state
  4346. * @ts: Tx completion status
  4347. * @curr_delay: current delay
  4348. * @tx_desc: tx descriptor
  4349. * Return: void
  4350. */
  4351. static
  4352. QDF_STATUS dp_tx_compute_cur_delay(struct dp_soc *soc,
  4353. struct dp_vdev *vdev,
  4354. struct hal_tx_completion_status *ts,
  4355. uint32_t *curr_delay,
  4356. struct dp_tx_desc_s *tx_desc)
  4357. {
  4358. QDF_STATUS status = QDF_STATUS_E_FAILURE;
  4359. if (soc->arch_ops.dp_tx_compute_hw_delay)
  4360. status = soc->arch_ops.dp_tx_compute_hw_delay(soc, vdev, ts,
  4361. curr_delay);
  4362. return status;
  4363. }
  4364. #else
  4365. static
  4366. QDF_STATUS dp_tx_compute_cur_delay(struct dp_soc *soc,
  4367. struct dp_vdev *vdev,
  4368. struct hal_tx_completion_status *ts,
  4369. uint32_t *curr_delay,
  4370. struct dp_tx_desc_s *tx_desc)
  4371. {
  4372. int64_t current_timestamp, timestamp_hw_enqueue;
  4373. current_timestamp = qdf_ktime_to_us(qdf_ktime_real_get());
  4374. timestamp_hw_enqueue = qdf_ktime_to_us(tx_desc->timestamp);
  4375. *curr_delay = (uint32_t)(current_timestamp - timestamp_hw_enqueue);
  4376. return QDF_STATUS_SUCCESS;
  4377. }
  4378. #endif
  4379. /**
  4380. * dp_tx_compute_tid_jitter() - compute per tid per ring jitter
  4381. * @jitter: per tid per ring jitter stats
  4382. * @ts: Tx completion status
  4383. * @vdev: vdev structure for data path state
  4384. * @tx_desc: tx descriptor
  4385. * Return: void
  4386. */
  4387. static void dp_tx_compute_tid_jitter(struct cdp_peer_tid_stats *jitter,
  4388. struct hal_tx_completion_status *ts,
  4389. struct dp_vdev *vdev,
  4390. struct dp_tx_desc_s *tx_desc)
  4391. {
  4392. uint32_t curr_delay, avg_delay, avg_jitter, prev_delay;
  4393. struct dp_soc *soc = vdev->pdev->soc;
  4394. QDF_STATUS status = QDF_STATUS_E_FAILURE;
  4395. if (ts->status != HAL_TX_TQM_RR_FRAME_ACKED) {
  4396. jitter->tx_drop += 1;
  4397. return;
  4398. }
  4399. status = dp_tx_compute_cur_delay(soc, vdev, ts, &curr_delay,
  4400. tx_desc);
  4401. if (QDF_IS_STATUS_SUCCESS(status)) {
  4402. avg_delay = jitter->tx_avg_delay;
  4403. avg_jitter = jitter->tx_avg_jitter;
  4404. prev_delay = jitter->tx_prev_delay;
  4405. avg_jitter = dp_tx_jitter_get_avg_jitter(curr_delay,
  4406. prev_delay,
  4407. avg_jitter);
  4408. avg_delay = dp_tx_jitter_get_avg_delay(curr_delay, avg_delay);
  4409. jitter->tx_avg_delay = avg_delay;
  4410. jitter->tx_avg_jitter = avg_jitter;
  4411. jitter->tx_prev_delay = curr_delay;
  4412. jitter->tx_total_success += 1;
  4413. } else if (status == QDF_STATUS_E_FAILURE) {
  4414. jitter->tx_avg_err += 1;
  4415. }
  4416. }
  4417. /* dp_tx_update_peer_jitter_stats() - Update the peer jitter stats
  4418. * @txrx_peer: DP peer context
  4419. * @tx_desc: Tx software descriptor
  4420. * @ts: Tx completion status
  4421. * @ring_id: Rx CPU context ID/CPU_ID
  4422. * Return: void
  4423. */
  4424. static void dp_tx_update_peer_jitter_stats(struct dp_txrx_peer *txrx_peer,
  4425. struct dp_tx_desc_s *tx_desc,
  4426. struct hal_tx_completion_status *ts,
  4427. uint8_t ring_id)
  4428. {
  4429. struct dp_pdev *pdev = txrx_peer->vdev->pdev;
  4430. struct dp_soc *soc = pdev->soc;
  4431. struct cdp_peer_tid_stats *jitter_stats = NULL;
  4432. uint8_t tid;
  4433. struct cdp_peer_tid_stats *rx_tid = NULL;
  4434. if (qdf_likely(!wlan_cfg_is_peer_jitter_stats_enabled(soc->wlan_cfg_ctx)))
  4435. return;
  4436. if (!txrx_peer->jitter_stats)
  4437. return;
  4438. tid = ts->tid;
  4439. jitter_stats = txrx_peer->jitter_stats;
  4440. /*
  4441. * For non-TID packets use the TID 9
  4442. */
  4443. if (qdf_unlikely(tid >= CDP_MAX_DATA_TIDS))
  4444. tid = CDP_MAX_DATA_TIDS - 1;
  4445. rx_tid = &jitter_stats[tid * CDP_MAX_TXRX_CTX + ring_id];
  4446. dp_tx_compute_tid_jitter(rx_tid,
  4447. ts, txrx_peer->vdev, tx_desc);
  4448. }
  4449. #else
  4450. static void dp_tx_update_peer_jitter_stats(struct dp_txrx_peer *txrx_peer,
  4451. struct dp_tx_desc_s *tx_desc,
  4452. struct hal_tx_completion_status *ts,
  4453. uint8_t ring_id)
  4454. {
  4455. }
  4456. #endif
  4457. #ifdef HW_TX_DELAY_STATS_ENABLE
  4458. /**
  4459. * dp_update_tx_delay_stats() - update the delay stats
  4460. * @vdev: vdev handle
  4461. * @delay: delay in ms or us based on the flag delay_in_us
  4462. * @tid: tid value
  4463. * @mode: type of tx delay mode
  4464. * @ring_id: ring number
  4465. * @delay_in_us: flag to indicate whether the delay is in ms or us
  4466. *
  4467. * Return: none
  4468. */
  4469. static inline
  4470. void dp_update_tx_delay_stats(struct dp_vdev *vdev, uint32_t delay, uint8_t tid,
  4471. uint8_t mode, uint8_t ring_id, bool delay_in_us)
  4472. {
  4473. struct cdp_tid_tx_stats *tstats =
  4474. &vdev->stats.tid_tx_stats[ring_id][tid];
  4475. dp_update_delay_stats(tstats, NULL, delay, tid, mode, ring_id,
  4476. delay_in_us);
  4477. }
  4478. #else
  4479. static inline
  4480. void dp_update_tx_delay_stats(struct dp_vdev *vdev, uint32_t delay, uint8_t tid,
  4481. uint8_t mode, uint8_t ring_id, bool delay_in_us)
  4482. {
  4483. struct cdp_tid_tx_stats *tstats =
  4484. &vdev->pdev->stats.tid_stats.tid_tx_stats[ring_id][tid];
  4485. dp_update_delay_stats(tstats, NULL, delay, tid, mode, ring_id,
  4486. delay_in_us);
  4487. }
  4488. #endif
  4489. void dp_tx_compute_delay(struct dp_vdev *vdev, struct dp_tx_desc_s *tx_desc,
  4490. uint8_t tid, uint8_t ring_id)
  4491. {
  4492. int64_t current_timestamp, timestamp_ingress, timestamp_hw_enqueue;
  4493. uint32_t sw_enqueue_delay, fwhw_transmit_delay, interframe_delay;
  4494. uint32_t fwhw_transmit_delay_us;
  4495. if (qdf_likely(!vdev->pdev->delay_stats_flag) &&
  4496. qdf_likely(!dp_is_vdev_tx_delay_stats_enabled(vdev)))
  4497. return;
  4498. if (dp_is_vdev_tx_delay_stats_enabled(vdev)) {
  4499. fwhw_transmit_delay_us =
  4500. qdf_ktime_to_us(qdf_ktime_real_get()) -
  4501. qdf_ktime_to_us(tx_desc->timestamp);
  4502. /*
  4503. * Delay between packet enqueued to HW and Tx completion in us
  4504. */
  4505. dp_update_tx_delay_stats(vdev, fwhw_transmit_delay_us, tid,
  4506. CDP_DELAY_STATS_FW_HW_TRANSMIT,
  4507. ring_id, true);
  4508. /*
  4509. * For MCL, only enqueue to completion delay is required
  4510. * so return if the vdev flag is enabled.
  4511. */
  4512. return;
  4513. }
  4514. current_timestamp = qdf_ktime_to_ms(qdf_ktime_real_get());
  4515. timestamp_hw_enqueue = qdf_ktime_to_ms(tx_desc->timestamp);
  4516. fwhw_transmit_delay = (uint32_t)(current_timestamp -
  4517. timestamp_hw_enqueue);
  4518. if (!timestamp_hw_enqueue)
  4519. return;
  4520. /*
  4521. * Delay between packet enqueued to HW and Tx completion in ms
  4522. */
  4523. dp_update_tx_delay_stats(vdev, fwhw_transmit_delay, tid,
  4524. CDP_DELAY_STATS_FW_HW_TRANSMIT, ring_id,
  4525. false);
  4526. timestamp_ingress = qdf_nbuf_get_timestamp(tx_desc->nbuf);
  4527. sw_enqueue_delay = (uint32_t)(timestamp_hw_enqueue - timestamp_ingress);
  4528. interframe_delay = (uint32_t)(timestamp_ingress -
  4529. vdev->prev_tx_enq_tstamp);
  4530. /*
  4531. * Delay in software enqueue
  4532. */
  4533. dp_update_tx_delay_stats(vdev, sw_enqueue_delay, tid,
  4534. CDP_DELAY_STATS_SW_ENQ, ring_id,
  4535. false);
  4536. /*
  4537. * Update interframe delay stats calculated at hardstart receive point.
  4538. * Value of vdev->prev_tx_enq_tstamp will be 0 for 1st frame, so
  4539. * interframe delay will not be calculate correctly for 1st frame.
  4540. * On the other side, this will help in avoiding extra per packet check
  4541. * of !vdev->prev_tx_enq_tstamp.
  4542. */
  4543. dp_update_tx_delay_stats(vdev, interframe_delay, tid,
  4544. CDP_DELAY_STATS_TX_INTERFRAME, ring_id,
  4545. false);
  4546. vdev->prev_tx_enq_tstamp = timestamp_ingress;
  4547. }
  4548. #ifdef DISABLE_DP_STATS
  4549. static
  4550. inline void dp_update_no_ack_stats(qdf_nbuf_t nbuf,
  4551. struct dp_txrx_peer *txrx_peer,
  4552. uint8_t link_id)
  4553. {
  4554. }
  4555. #else
  4556. static inline void
  4557. dp_update_no_ack_stats(qdf_nbuf_t nbuf, struct dp_txrx_peer *txrx_peer,
  4558. uint8_t link_id)
  4559. {
  4560. enum qdf_proto_subtype subtype = QDF_PROTO_INVALID;
  4561. DPTRACE(qdf_dp_track_noack_check(nbuf, &subtype));
  4562. if (subtype != QDF_PROTO_INVALID)
  4563. DP_PEER_PER_PKT_STATS_INC(txrx_peer, tx.no_ack_count[subtype],
  4564. 1, link_id);
  4565. }
  4566. #endif
  4567. #ifndef QCA_ENHANCED_STATS_SUPPORT
  4568. #ifdef DP_PEER_EXTENDED_API
  4569. static inline uint8_t
  4570. dp_tx_get_mpdu_retry_threshold(struct dp_txrx_peer *txrx_peer)
  4571. {
  4572. return txrx_peer->mpdu_retry_threshold;
  4573. }
  4574. #else
  4575. static inline uint8_t
  4576. dp_tx_get_mpdu_retry_threshold(struct dp_txrx_peer *txrx_peer)
  4577. {
  4578. return 0;
  4579. }
  4580. #endif
  4581. /**
  4582. * dp_tx_update_peer_extd_stats()- Update Tx extended path stats for peer
  4583. *
  4584. * @ts: Tx compltion status
  4585. * @txrx_peer: datapath txrx_peer handle
  4586. * @link_id: Link id
  4587. *
  4588. * Return: void
  4589. */
  4590. static inline void
  4591. dp_tx_update_peer_extd_stats(struct hal_tx_completion_status *ts,
  4592. struct dp_txrx_peer *txrx_peer, uint8_t link_id)
  4593. {
  4594. uint8_t mcs, pkt_type, dst_mcs_idx;
  4595. uint8_t retry_threshold = dp_tx_get_mpdu_retry_threshold(txrx_peer);
  4596. mcs = ts->mcs;
  4597. pkt_type = ts->pkt_type;
  4598. /* do HW to SW pkt type conversion */
  4599. pkt_type = (pkt_type >= HAL_DOT11_MAX ? DOT11_MAX :
  4600. hal_2_dp_pkt_type_map[pkt_type]);
  4601. dst_mcs_idx = dp_get_mcs_array_index_by_pkt_type_mcs(pkt_type, mcs);
  4602. if (MCS_INVALID_ARRAY_INDEX != dst_mcs_idx)
  4603. DP_PEER_EXTD_STATS_INC(txrx_peer,
  4604. tx.pkt_type[pkt_type].mcs_count[dst_mcs_idx],
  4605. 1, link_id);
  4606. DP_PEER_EXTD_STATS_INC(txrx_peer, tx.sgi_count[ts->sgi], 1, link_id);
  4607. DP_PEER_EXTD_STATS_INC(txrx_peer, tx.bw[ts->bw], 1, link_id);
  4608. DP_PEER_EXTD_STATS_UPD(txrx_peer, tx.last_ack_rssi, ts->ack_frame_rssi,
  4609. link_id);
  4610. DP_PEER_EXTD_STATS_INC(txrx_peer,
  4611. tx.wme_ac_type[TID_TO_WME_AC(ts->tid)], 1,
  4612. link_id);
  4613. DP_PEER_EXTD_STATS_INCC(txrx_peer, tx.stbc, 1, ts->stbc, link_id);
  4614. DP_PEER_EXTD_STATS_INCC(txrx_peer, tx.ldpc, 1, ts->ldpc, link_id);
  4615. DP_PEER_EXTD_STATS_INCC(txrx_peer, tx.retries, 1, ts->transmit_cnt > 1,
  4616. link_id);
  4617. if (ts->first_msdu) {
  4618. DP_PEER_EXTD_STATS_INCC(txrx_peer, tx.retries_mpdu, 1,
  4619. ts->transmit_cnt > 1, link_id);
  4620. if (!retry_threshold)
  4621. return;
  4622. DP_PEER_EXTD_STATS_INCC(txrx_peer, tx.mpdu_success_with_retries,
  4623. qdf_do_div(ts->transmit_cnt,
  4624. retry_threshold),
  4625. ts->transmit_cnt > retry_threshold,
  4626. link_id);
  4627. }
  4628. }
  4629. #else
  4630. static inline void
  4631. dp_tx_update_peer_extd_stats(struct hal_tx_completion_status *ts,
  4632. struct dp_txrx_peer *txrx_peer, uint8_t link_id)
  4633. {
  4634. }
  4635. #endif
  4636. #if defined(WLAN_FEATURE_11BE_MLO) && \
  4637. (defined(QCA_ENHANCED_STATS_SUPPORT) || \
  4638. defined(DP_MLO_LINK_STATS_SUPPORT))
  4639. static inline uint8_t
  4640. dp_tx_get_link_id_from_ppdu_id(struct dp_soc *soc,
  4641. struct hal_tx_completion_status *ts,
  4642. struct dp_txrx_peer *txrx_peer,
  4643. struct dp_vdev *vdev)
  4644. {
  4645. uint8_t hw_link_id = 0;
  4646. uint32_t ppdu_id;
  4647. uint8_t link_id_offset, link_id_bits;
  4648. if (!txrx_peer->is_mld_peer || !vdev->pdev->link_peer_stats)
  4649. return 0;
  4650. link_id_offset = soc->link_id_offset;
  4651. link_id_bits = soc->link_id_bits;
  4652. ppdu_id = ts->ppdu_id;
  4653. hw_link_id = ((DP_GET_HW_LINK_ID_FRM_PPDU_ID(ppdu_id, link_id_offset,
  4654. link_id_bits)) + 1);
  4655. if (hw_link_id > DP_MAX_MLO_LINKS) {
  4656. hw_link_id = 0;
  4657. DP_PEER_PER_PKT_STATS_INC(
  4658. txrx_peer,
  4659. tx.inval_link_id_pkt_cnt, 1, hw_link_id);
  4660. }
  4661. return hw_link_id;
  4662. }
  4663. #else
  4664. static inline uint8_t
  4665. dp_tx_get_link_id_from_ppdu_id(struct dp_soc *soc,
  4666. struct hal_tx_completion_status *ts,
  4667. struct dp_txrx_peer *txrx_peer,
  4668. struct dp_vdev *vdev)
  4669. {
  4670. return 0;
  4671. }
  4672. #endif
  4673. /**
  4674. * dp_tx_update_peer_stats() - Update peer stats from Tx completion indications
  4675. * per wbm ring
  4676. *
  4677. * @tx_desc: software descriptor head pointer
  4678. * @ts: Tx completion status
  4679. * @txrx_peer: peer handle
  4680. * @ring_id: ring number
  4681. * @link_id: Link id
  4682. *
  4683. * Return: None
  4684. */
  4685. static inline void
  4686. dp_tx_update_peer_stats(struct dp_tx_desc_s *tx_desc,
  4687. struct hal_tx_completion_status *ts,
  4688. struct dp_txrx_peer *txrx_peer, uint8_t ring_id,
  4689. uint8_t link_id)
  4690. {
  4691. struct dp_pdev *pdev = txrx_peer->vdev->pdev;
  4692. uint8_t tid = ts->tid;
  4693. uint32_t length;
  4694. struct cdp_tid_tx_stats *tid_stats;
  4695. if (!pdev)
  4696. return;
  4697. if (qdf_unlikely(tid >= CDP_MAX_DATA_TIDS))
  4698. tid = CDP_MAX_DATA_TIDS - 1;
  4699. tid_stats = &pdev->stats.tid_stats.tid_tx_stats[ring_id][tid];
  4700. if (ts->release_src != HAL_TX_COMP_RELEASE_SOURCE_TQM) {
  4701. dp_err_rl("Release source:%d is not from TQM", ts->release_src);
  4702. DP_PEER_PER_PKT_STATS_INC(txrx_peer, tx.release_src_not_tqm, 1,
  4703. link_id);
  4704. return;
  4705. }
  4706. length = qdf_nbuf_len(tx_desc->nbuf);
  4707. DP_PEER_STATS_FLAT_INC_PKT(txrx_peer, comp_pkt, 1, length);
  4708. if (qdf_unlikely(pdev->delay_stats_flag) ||
  4709. qdf_unlikely(dp_is_vdev_tx_delay_stats_enabled(txrx_peer->vdev)))
  4710. dp_tx_compute_delay(txrx_peer->vdev, tx_desc, tid, ring_id);
  4711. if (ts->status < CDP_MAX_TX_TQM_STATUS) {
  4712. tid_stats->tqm_status_cnt[ts->status]++;
  4713. }
  4714. if (qdf_likely(ts->status == HAL_TX_TQM_RR_FRAME_ACKED)) {
  4715. DP_PEER_PER_PKT_STATS_INCC(txrx_peer, tx.retry_count, 1,
  4716. ts->transmit_cnt > 1, link_id);
  4717. DP_PEER_PER_PKT_STATS_INCC(txrx_peer, tx.multiple_retry_count,
  4718. 1, ts->transmit_cnt > 2, link_id);
  4719. DP_PEER_PER_PKT_STATS_INCC(txrx_peer, tx.ofdma, 1, ts->ofdma,
  4720. link_id);
  4721. DP_PEER_PER_PKT_STATS_INCC(txrx_peer, tx.amsdu_cnt, 1,
  4722. ts->msdu_part_of_amsdu, link_id);
  4723. DP_PEER_PER_PKT_STATS_INCC(txrx_peer, tx.non_amsdu_cnt, 1,
  4724. !ts->msdu_part_of_amsdu, link_id);
  4725. txrx_peer->stats[link_id].per_pkt_stats.tx.last_tx_ts =
  4726. qdf_system_ticks();
  4727. dp_tx_update_peer_extd_stats(ts, txrx_peer, link_id);
  4728. return;
  4729. }
  4730. /*
  4731. * tx_failed is ideally supposed to be updated from HTT ppdu
  4732. * completion stats. But in IPQ807X/IPQ6018 chipsets owing to
  4733. * hw limitation there are no completions for failed cases.
  4734. * Hence updating tx_failed from data path. Please note that
  4735. * if tx_failed is fixed to be from ppdu, then this has to be
  4736. * removed
  4737. */
  4738. DP_PEER_STATS_FLAT_INC(txrx_peer, tx_failed, 1);
  4739. DP_PEER_PER_PKT_STATS_INCC(txrx_peer, tx.failed_retry_count, 1,
  4740. ts->transmit_cnt > DP_RETRY_COUNT,
  4741. link_id);
  4742. dp_update_no_ack_stats(tx_desc->nbuf, txrx_peer, link_id);
  4743. if (ts->status == HAL_TX_TQM_RR_REM_CMD_AGED) {
  4744. DP_PEER_PER_PKT_STATS_INC(txrx_peer, tx.dropped.age_out, 1,
  4745. link_id);
  4746. } else if (ts->status == HAL_TX_TQM_RR_REM_CMD_REM) {
  4747. DP_PEER_PER_PKT_STATS_INC_PKT(txrx_peer, tx.dropped.fw_rem, 1,
  4748. length, link_id);
  4749. } else if (ts->status == HAL_TX_TQM_RR_REM_CMD_NOTX) {
  4750. DP_PEER_PER_PKT_STATS_INC(txrx_peer, tx.dropped.fw_rem_notx, 1,
  4751. link_id);
  4752. } else if (ts->status == HAL_TX_TQM_RR_REM_CMD_TX) {
  4753. DP_PEER_PER_PKT_STATS_INC(txrx_peer, tx.dropped.fw_rem_tx, 1,
  4754. link_id);
  4755. } else if (ts->status == HAL_TX_TQM_RR_FW_REASON1) {
  4756. DP_PEER_PER_PKT_STATS_INC(txrx_peer, tx.dropped.fw_reason1, 1,
  4757. link_id);
  4758. } else if (ts->status == HAL_TX_TQM_RR_FW_REASON2) {
  4759. DP_PEER_PER_PKT_STATS_INC(txrx_peer, tx.dropped.fw_reason2, 1,
  4760. link_id);
  4761. } else if (ts->status == HAL_TX_TQM_RR_FW_REASON3) {
  4762. DP_PEER_PER_PKT_STATS_INC(txrx_peer, tx.dropped.fw_reason3, 1,
  4763. link_id);
  4764. } else if (ts->status == HAL_TX_TQM_RR_REM_CMD_DISABLE_QUEUE) {
  4765. DP_PEER_PER_PKT_STATS_INC(txrx_peer,
  4766. tx.dropped.fw_rem_queue_disable, 1,
  4767. link_id);
  4768. } else if (ts->status == HAL_TX_TQM_RR_REM_CMD_TILL_NONMATCHING) {
  4769. DP_PEER_PER_PKT_STATS_INC(txrx_peer,
  4770. tx.dropped.fw_rem_no_match, 1,
  4771. link_id);
  4772. } else if (ts->status == HAL_TX_TQM_RR_DROP_THRESHOLD) {
  4773. DP_PEER_PER_PKT_STATS_INC(txrx_peer,
  4774. tx.dropped.drop_threshold, 1,
  4775. link_id);
  4776. } else if (ts->status == HAL_TX_TQM_RR_LINK_DESC_UNAVAILABLE) {
  4777. DP_PEER_PER_PKT_STATS_INC(txrx_peer,
  4778. tx.dropped.drop_link_desc_na, 1,
  4779. link_id);
  4780. } else if (ts->status == HAL_TX_TQM_RR_DROP_OR_INVALID_MSDU) {
  4781. DP_PEER_PER_PKT_STATS_INC(txrx_peer,
  4782. tx.dropped.invalid_drop, 1,
  4783. link_id);
  4784. } else if (ts->status == HAL_TX_TQM_RR_MULTICAST_DROP) {
  4785. DP_PEER_PER_PKT_STATS_INC(txrx_peer,
  4786. tx.dropped.mcast_vdev_drop, 1,
  4787. link_id);
  4788. } else {
  4789. DP_PEER_PER_PKT_STATS_INC(txrx_peer, tx.dropped.invalid_rr, 1,
  4790. link_id);
  4791. }
  4792. }
  4793. #ifdef QCA_LL_TX_FLOW_CONTROL_V2
  4794. /**
  4795. * dp_tx_flow_pool_lock() - take flow pool lock
  4796. * @soc: core txrx main context
  4797. * @tx_desc: tx desc
  4798. *
  4799. * Return: None
  4800. */
  4801. static inline
  4802. void dp_tx_flow_pool_lock(struct dp_soc *soc,
  4803. struct dp_tx_desc_s *tx_desc)
  4804. {
  4805. struct dp_tx_desc_pool_s *pool;
  4806. uint8_t desc_pool_id;
  4807. desc_pool_id = tx_desc->pool_id;
  4808. pool = &soc->tx_desc[desc_pool_id];
  4809. qdf_spin_lock_bh(&pool->flow_pool_lock);
  4810. }
  4811. /**
  4812. * dp_tx_flow_pool_unlock() - release flow pool lock
  4813. * @soc: core txrx main context
  4814. * @tx_desc: tx desc
  4815. *
  4816. * Return: None
  4817. */
  4818. static inline
  4819. void dp_tx_flow_pool_unlock(struct dp_soc *soc,
  4820. struct dp_tx_desc_s *tx_desc)
  4821. {
  4822. struct dp_tx_desc_pool_s *pool;
  4823. uint8_t desc_pool_id;
  4824. desc_pool_id = tx_desc->pool_id;
  4825. pool = &soc->tx_desc[desc_pool_id];
  4826. qdf_spin_unlock_bh(&pool->flow_pool_lock);
  4827. }
  4828. #else
  4829. static inline
  4830. void dp_tx_flow_pool_lock(struct dp_soc *soc, struct dp_tx_desc_s *tx_desc)
  4831. {
  4832. }
  4833. static inline
  4834. void dp_tx_flow_pool_unlock(struct dp_soc *soc, struct dp_tx_desc_s *tx_desc)
  4835. {
  4836. }
  4837. #endif
  4838. /**
  4839. * dp_tx_notify_completion() - Notify tx completion for this desc
  4840. * @soc: core txrx main context
  4841. * @vdev: datapath vdev handle
  4842. * @tx_desc: tx desc
  4843. * @netbuf: buffer
  4844. * @status: tx status
  4845. *
  4846. * Return: none
  4847. */
  4848. static inline void dp_tx_notify_completion(struct dp_soc *soc,
  4849. struct dp_vdev *vdev,
  4850. struct dp_tx_desc_s *tx_desc,
  4851. qdf_nbuf_t netbuf,
  4852. uint8_t status)
  4853. {
  4854. void *osif_dev;
  4855. ol_txrx_completion_fp tx_compl_cbk = NULL;
  4856. uint16_t flag = BIT(QDF_TX_RX_STATUS_DOWNLOAD_SUCC);
  4857. qdf_assert(tx_desc);
  4858. if (!vdev ||
  4859. !vdev->osif_vdev) {
  4860. return;
  4861. }
  4862. osif_dev = vdev->osif_vdev;
  4863. tx_compl_cbk = vdev->tx_comp;
  4864. if (status == HAL_TX_TQM_RR_FRAME_ACKED)
  4865. flag |= BIT(QDF_TX_RX_STATUS_OK);
  4866. if (tx_compl_cbk)
  4867. tx_compl_cbk(netbuf, osif_dev, flag);
  4868. }
  4869. /**
  4870. * dp_tx_sojourn_stats_process() - Collect sojourn stats
  4871. * @pdev: pdev handle
  4872. * @txrx_peer: DP peer context
  4873. * @tid: tid value
  4874. * @txdesc_ts: timestamp from txdesc
  4875. * @ppdu_id: ppdu id
  4876. * @link_id: link id
  4877. *
  4878. * Return: none
  4879. */
  4880. #ifdef FEATURE_PERPKT_INFO
  4881. static inline void dp_tx_sojourn_stats_process(struct dp_pdev *pdev,
  4882. struct dp_txrx_peer *txrx_peer,
  4883. uint8_t tid,
  4884. uint64_t txdesc_ts,
  4885. uint32_t ppdu_id,
  4886. uint8_t link_id)
  4887. {
  4888. uint64_t delta_ms;
  4889. struct cdp_tx_sojourn_stats *sojourn_stats;
  4890. struct dp_peer *primary_link_peer = NULL;
  4891. struct dp_soc *link_peer_soc = NULL;
  4892. if (qdf_unlikely(!pdev->enhanced_stats_en))
  4893. return;
  4894. if (qdf_unlikely(tid == HTT_INVALID_TID ||
  4895. tid >= CDP_DATA_TID_MAX))
  4896. return;
  4897. if (qdf_unlikely(!pdev->sojourn_buf))
  4898. return;
  4899. primary_link_peer = dp_get_primary_link_peer_by_id(pdev->soc,
  4900. txrx_peer->peer_id,
  4901. DP_MOD_ID_TX_COMP);
  4902. if (qdf_unlikely(!primary_link_peer))
  4903. return;
  4904. sojourn_stats = (struct cdp_tx_sojourn_stats *)
  4905. qdf_nbuf_data(pdev->sojourn_buf);
  4906. link_peer_soc = primary_link_peer->vdev->pdev->soc;
  4907. sojourn_stats->cookie = (void *)
  4908. dp_monitor_peer_get_peerstats_ctx(link_peer_soc,
  4909. primary_link_peer);
  4910. delta_ms = qdf_ktime_to_ms(qdf_ktime_real_get()) -
  4911. txdesc_ts;
  4912. qdf_ewma_tx_lag_add(&txrx_peer->stats[link_id].per_pkt_stats.tx.avg_sojourn_msdu[tid],
  4913. delta_ms);
  4914. sojourn_stats->sum_sojourn_msdu[tid] = delta_ms;
  4915. sojourn_stats->num_msdus[tid] = 1;
  4916. sojourn_stats->avg_sojourn_msdu[tid].internal =
  4917. txrx_peer->stats[link_id].
  4918. per_pkt_stats.tx.avg_sojourn_msdu[tid].internal;
  4919. dp_wdi_event_handler(WDI_EVENT_TX_SOJOURN_STAT, pdev->soc,
  4920. pdev->sojourn_buf, HTT_INVALID_PEER,
  4921. WDI_NO_VAL, pdev->pdev_id);
  4922. sojourn_stats->sum_sojourn_msdu[tid] = 0;
  4923. sojourn_stats->num_msdus[tid] = 0;
  4924. sojourn_stats->avg_sojourn_msdu[tid].internal = 0;
  4925. dp_peer_unref_delete(primary_link_peer, DP_MOD_ID_TX_COMP);
  4926. }
  4927. #else
  4928. static inline void dp_tx_sojourn_stats_process(struct dp_pdev *pdev,
  4929. struct dp_txrx_peer *txrx_peer,
  4930. uint8_t tid,
  4931. uint64_t txdesc_ts,
  4932. uint32_t ppdu_id)
  4933. {
  4934. }
  4935. #endif
  4936. #ifdef WLAN_FEATURE_PKT_CAPTURE_V2
  4937. void dp_send_completion_to_pkt_capture(struct dp_soc *soc,
  4938. struct dp_tx_desc_s *desc,
  4939. struct hal_tx_completion_status *ts)
  4940. {
  4941. dp_wdi_event_handler(WDI_EVENT_PKT_CAPTURE_TX_DATA, soc,
  4942. desc, ts->peer_id,
  4943. WDI_NO_VAL, desc->pdev->pdev_id);
  4944. }
  4945. #endif
  4946. void
  4947. dp_tx_comp_process_desc(struct dp_soc *soc,
  4948. struct dp_tx_desc_s *desc,
  4949. struct hal_tx_completion_status *ts,
  4950. struct dp_txrx_peer *txrx_peer)
  4951. {
  4952. uint64_t time_latency = 0;
  4953. uint16_t peer_id = DP_INVALID_PEER_ID;
  4954. /*
  4955. * m_copy/tx_capture modes are not supported for
  4956. * scatter gather packets
  4957. */
  4958. if (qdf_unlikely(!!desc->pdev->latency_capture_enable)) {
  4959. time_latency = (qdf_ktime_to_ms(qdf_ktime_real_get()) -
  4960. qdf_ktime_to_ms(desc->timestamp));
  4961. }
  4962. dp_send_completion_to_pkt_capture(soc, desc, ts);
  4963. if (dp_tx_pkt_tracepoints_enabled())
  4964. qdf_trace_dp_packet(desc->nbuf, QDF_TX,
  4965. desc->msdu_ext_desc ?
  4966. desc->msdu_ext_desc->tso_desc : NULL,
  4967. qdf_ktime_to_us(desc->timestamp));
  4968. if (!(desc->msdu_ext_desc)) {
  4969. dp_tx_enh_unmap(soc, desc);
  4970. if (txrx_peer)
  4971. peer_id = txrx_peer->peer_id;
  4972. if (QDF_STATUS_SUCCESS ==
  4973. dp_monitor_tx_add_to_comp_queue(soc, desc, ts, peer_id)) {
  4974. return;
  4975. }
  4976. if (QDF_STATUS_SUCCESS ==
  4977. dp_get_completion_indication_for_stack(soc,
  4978. desc->pdev,
  4979. txrx_peer, ts,
  4980. desc->nbuf,
  4981. time_latency)) {
  4982. dp_send_completion_to_stack(soc,
  4983. desc->pdev,
  4984. ts->peer_id,
  4985. ts->ppdu_id,
  4986. desc->nbuf);
  4987. return;
  4988. }
  4989. }
  4990. desc->flags |= DP_TX_DESC_FLAG_COMPLETED_TX;
  4991. dp_tx_comp_free_buf(soc, desc, false);
  4992. }
  4993. #ifdef DISABLE_DP_STATS
  4994. /**
  4995. * dp_tx_update_connectivity_stats() - update tx connectivity stats
  4996. * @soc: core txrx main context
  4997. * @vdev: virtual device instance
  4998. * @tx_desc: tx desc
  4999. * @status: tx status
  5000. *
  5001. * Return: none
  5002. */
  5003. static inline
  5004. void dp_tx_update_connectivity_stats(struct dp_soc *soc,
  5005. struct dp_vdev *vdev,
  5006. struct dp_tx_desc_s *tx_desc,
  5007. uint8_t status)
  5008. {
  5009. }
  5010. #else
  5011. static inline
  5012. void dp_tx_update_connectivity_stats(struct dp_soc *soc,
  5013. struct dp_vdev *vdev,
  5014. struct dp_tx_desc_s *tx_desc,
  5015. uint8_t status)
  5016. {
  5017. void *osif_dev;
  5018. ol_txrx_stats_rx_fp stats_cbk;
  5019. uint8_t pkt_type;
  5020. qdf_assert(tx_desc);
  5021. if (!vdev ||
  5022. !vdev->osif_vdev ||
  5023. !vdev->stats_cb)
  5024. return;
  5025. osif_dev = vdev->osif_vdev;
  5026. stats_cbk = vdev->stats_cb;
  5027. stats_cbk(tx_desc->nbuf, osif_dev, PKT_TYPE_TX_HOST_FW_SENT, &pkt_type);
  5028. if (status == HAL_TX_TQM_RR_FRAME_ACKED)
  5029. stats_cbk(tx_desc->nbuf, osif_dev, PKT_TYPE_TX_ACK_CNT,
  5030. &pkt_type);
  5031. }
  5032. #endif
  5033. #if defined(WLAN_FEATURE_TSF_AUTO_REPORT) || defined(WLAN_CONFIG_TX_DELAY)
  5034. /* Mask for bit29 ~ bit31 */
  5035. #define DP_TX_TS_BIT29_31_MASK 0xE0000000
  5036. /* Timestamp value (unit us) if bit29 is set */
  5037. #define DP_TX_TS_BIT29_SET_VALUE BIT(29)
  5038. /**
  5039. * dp_tx_adjust_enqueue_buffer_ts() - adjust the enqueue buffer_timestamp
  5040. * @ack_ts: OTA ack timestamp, unit us.
  5041. * @enqueue_ts: TCL enqueue TX data to TQM timestamp, unit us.
  5042. * @base_delta_ts: base timestamp delta for ack_ts and enqueue_ts
  5043. *
  5044. * this function will restore the bit29 ~ bit31 3 bits value for
  5045. * buffer_timestamp in wbm2sw ring entry, currently buffer_timestamp only
  5046. * can support 0x7FFF * 1024 us (29 bits), but if the timestamp is >
  5047. * 0x7FFF * 1024 us, bit29~ bit31 will be lost.
  5048. *
  5049. * Return: the adjusted buffer_timestamp value
  5050. */
  5051. static inline
  5052. uint32_t dp_tx_adjust_enqueue_buffer_ts(uint32_t ack_ts,
  5053. uint32_t enqueue_ts,
  5054. uint32_t base_delta_ts)
  5055. {
  5056. uint32_t ack_buffer_ts;
  5057. uint32_t ack_buffer_ts_bit29_31;
  5058. uint32_t adjusted_enqueue_ts;
  5059. /* corresponding buffer_timestamp value when receive OTA Ack */
  5060. ack_buffer_ts = ack_ts - base_delta_ts;
  5061. ack_buffer_ts_bit29_31 = ack_buffer_ts & DP_TX_TS_BIT29_31_MASK;
  5062. /* restore the bit29 ~ bit31 value */
  5063. adjusted_enqueue_ts = ack_buffer_ts_bit29_31 | enqueue_ts;
  5064. /*
  5065. * if actual enqueue_ts value occupied 29 bits only, this enqueue_ts
  5066. * value + real UL delay overflow 29 bits, then 30th bit (bit-29)
  5067. * should not be marked, otherwise extra 0x20000000 us is added to
  5068. * enqueue_ts.
  5069. */
  5070. if (qdf_unlikely(adjusted_enqueue_ts > ack_buffer_ts))
  5071. adjusted_enqueue_ts -= DP_TX_TS_BIT29_SET_VALUE;
  5072. return adjusted_enqueue_ts;
  5073. }
  5074. QDF_STATUS
  5075. dp_tx_compute_hw_delay_us(struct hal_tx_completion_status *ts,
  5076. uint32_t delta_tsf,
  5077. uint32_t *delay_us)
  5078. {
  5079. uint32_t buffer_ts;
  5080. uint32_t delay;
  5081. if (!delay_us)
  5082. return QDF_STATUS_E_INVAL;
  5083. /* Tx_rate_stats_info_valid is 0 and tsf is invalid then */
  5084. if (!ts->valid)
  5085. return QDF_STATUS_E_INVAL;
  5086. /* buffer_timestamp is in units of 1024 us and is [31:13] of
  5087. * WBM_RELEASE_RING_4. After left shift 10 bits, it's
  5088. * valid up to 29 bits.
  5089. */
  5090. buffer_ts = ts->buffer_timestamp << 10;
  5091. buffer_ts = dp_tx_adjust_enqueue_buffer_ts(ts->tsf,
  5092. buffer_ts, delta_tsf);
  5093. delay = ts->tsf - buffer_ts - delta_tsf;
  5094. if (qdf_unlikely(delay & 0x80000000)) {
  5095. dp_err_rl("delay = 0x%x (-ve)\n"
  5096. "release_src = %d\n"
  5097. "ppdu_id = 0x%x\n"
  5098. "peer_id = 0x%x\n"
  5099. "tid = 0x%x\n"
  5100. "release_reason = %d\n"
  5101. "tsf = %u (0x%x)\n"
  5102. "buffer_timestamp = %u (0x%x)\n"
  5103. "delta_tsf = %u (0x%x)\n",
  5104. delay, ts->release_src, ts->ppdu_id, ts->peer_id,
  5105. ts->tid, ts->status, ts->tsf, ts->tsf,
  5106. ts->buffer_timestamp, ts->buffer_timestamp,
  5107. delta_tsf, delta_tsf);
  5108. delay = 0;
  5109. goto end;
  5110. }
  5111. delay &= 0x1FFFFFFF; /* mask 29 BITS */
  5112. if (delay > 0x1000000) {
  5113. dp_info_rl("----------------------\n"
  5114. "Tx completion status:\n"
  5115. "----------------------\n"
  5116. "release_src = %d\n"
  5117. "ppdu_id = 0x%x\n"
  5118. "release_reason = %d\n"
  5119. "tsf = %u (0x%x)\n"
  5120. "buffer_timestamp = %u (0x%x)\n"
  5121. "delta_tsf = %u (0x%x)\n",
  5122. ts->release_src, ts->ppdu_id, ts->status,
  5123. ts->tsf, ts->tsf, ts->buffer_timestamp,
  5124. ts->buffer_timestamp, delta_tsf, delta_tsf);
  5125. return QDF_STATUS_E_FAILURE;
  5126. }
  5127. end:
  5128. *delay_us = delay;
  5129. return QDF_STATUS_SUCCESS;
  5130. }
  5131. void dp_set_delta_tsf(struct cdp_soc_t *soc_hdl, uint8_t vdev_id,
  5132. uint32_t delta_tsf)
  5133. {
  5134. struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
  5135. struct dp_vdev *vdev = dp_vdev_get_ref_by_id(soc, vdev_id,
  5136. DP_MOD_ID_CDP);
  5137. if (!vdev) {
  5138. dp_err_rl("vdev %d does not exist", vdev_id);
  5139. return;
  5140. }
  5141. vdev->delta_tsf = delta_tsf;
  5142. dp_debug("vdev id %u delta_tsf %u", vdev_id, delta_tsf);
  5143. dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
  5144. }
  5145. #endif
  5146. #ifdef WLAN_FEATURE_TSF_UPLINK_DELAY
  5147. QDF_STATUS dp_set_tsf_ul_delay_report(struct cdp_soc_t *soc_hdl,
  5148. uint8_t vdev_id, bool enable)
  5149. {
  5150. struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
  5151. struct dp_vdev *vdev = dp_vdev_get_ref_by_id(soc, vdev_id,
  5152. DP_MOD_ID_CDP);
  5153. if (!vdev) {
  5154. dp_err_rl("vdev %d does not exist", vdev_id);
  5155. return QDF_STATUS_E_FAILURE;
  5156. }
  5157. qdf_atomic_set(&vdev->ul_delay_report, enable);
  5158. dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
  5159. return QDF_STATUS_SUCCESS;
  5160. }
  5161. QDF_STATUS dp_get_uplink_delay(struct cdp_soc_t *soc_hdl, uint8_t vdev_id,
  5162. uint32_t *val)
  5163. {
  5164. struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
  5165. struct dp_vdev *vdev;
  5166. uint32_t delay_accum;
  5167. uint32_t pkts_accum;
  5168. vdev = dp_vdev_get_ref_by_id(soc, vdev_id, DP_MOD_ID_CDP);
  5169. if (!vdev) {
  5170. dp_err_rl("vdev %d does not exist", vdev_id);
  5171. return QDF_STATUS_E_FAILURE;
  5172. }
  5173. if (!qdf_atomic_read(&vdev->ul_delay_report)) {
  5174. dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
  5175. return QDF_STATUS_E_FAILURE;
  5176. }
  5177. /* Average uplink delay based on current accumulated values */
  5178. delay_accum = qdf_atomic_read(&vdev->ul_delay_accum);
  5179. pkts_accum = qdf_atomic_read(&vdev->ul_pkts_accum);
  5180. *val = delay_accum / pkts_accum;
  5181. dp_debug("uplink_delay %u delay_accum %u pkts_accum %u", *val,
  5182. delay_accum, pkts_accum);
  5183. /* Reset accumulated values to 0 */
  5184. qdf_atomic_set(&vdev->ul_delay_accum, 0);
  5185. qdf_atomic_set(&vdev->ul_pkts_accum, 0);
  5186. dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
  5187. return QDF_STATUS_SUCCESS;
  5188. }
  5189. static void dp_tx_update_uplink_delay(struct dp_soc *soc, struct dp_vdev *vdev,
  5190. struct hal_tx_completion_status *ts)
  5191. {
  5192. uint32_t ul_delay;
  5193. if (qdf_unlikely(!vdev)) {
  5194. dp_info_rl("vdev is null or delete in progress");
  5195. return;
  5196. }
  5197. if (!qdf_atomic_read(&vdev->ul_delay_report))
  5198. return;
  5199. if (QDF_IS_STATUS_ERROR(dp_tx_compute_hw_delay_us(ts,
  5200. vdev->delta_tsf,
  5201. &ul_delay)))
  5202. return;
  5203. ul_delay /= 1000; /* in unit of ms */
  5204. qdf_atomic_add(ul_delay, &vdev->ul_delay_accum);
  5205. qdf_atomic_inc(&vdev->ul_pkts_accum);
  5206. }
  5207. #else /* !WLAN_FEATURE_TSF_UPLINK_DELAY */
  5208. static inline
  5209. void dp_tx_update_uplink_delay(struct dp_soc *soc, struct dp_vdev *vdev,
  5210. struct hal_tx_completion_status *ts)
  5211. {
  5212. }
  5213. #endif /* WLAN_FEATURE_TSF_UPLINK_DELAY */
  5214. #ifndef CONFIG_AP_PLATFORM
  5215. /**
  5216. * dp_update_mcast_stats() - Update Tx Mcast stats
  5217. * @txrx_peer: txrx_peer pointer
  5218. * @link_id: Link ID
  5219. * @length: packet length
  5220. * @nbuf: nbuf handle
  5221. *
  5222. * Return: None
  5223. */
  5224. static inline void
  5225. dp_update_mcast_stats(struct dp_txrx_peer *txrx_peer, uint8_t link_id,
  5226. uint32_t length, qdf_nbuf_t nbuf)
  5227. {
  5228. if (QDF_NBUF_CB_GET_IS_MCAST(nbuf))
  5229. DP_PEER_PER_PKT_STATS_INC_PKT(txrx_peer, tx.mcast, 1,
  5230. length, link_id);
  5231. }
  5232. #else
  5233. static inline void
  5234. dp_update_mcast_stats(struct dp_txrx_peer *txrx_peer, uint8_t link_id,
  5235. uint32_t length, qdf_nbuf_t nbuf)
  5236. {
  5237. }
  5238. #endif
  5239. void dp_tx_comp_process_tx_status(struct dp_soc *soc,
  5240. struct dp_tx_desc_s *tx_desc,
  5241. struct hal_tx_completion_status *ts,
  5242. struct dp_txrx_peer *txrx_peer,
  5243. uint8_t ring_id)
  5244. {
  5245. uint32_t length;
  5246. qdf_ether_header_t *eh;
  5247. struct dp_vdev *vdev = NULL;
  5248. qdf_nbuf_t nbuf = tx_desc->nbuf;
  5249. enum qdf_dp_tx_rx_status dp_status;
  5250. uint8_t link_id = 0;
  5251. enum QDF_OPMODE op_mode = QDF_MAX_NO_OF_MODE;
  5252. if (!nbuf) {
  5253. dp_info_rl("invalid tx descriptor. nbuf NULL");
  5254. goto out;
  5255. }
  5256. eh = (qdf_ether_header_t *)qdf_nbuf_data(nbuf);
  5257. length = dp_tx_get_pkt_len(tx_desc);
  5258. dp_status = dp_tx_hw_to_qdf(ts->status);
  5259. dp_tx_comp_debug("-------------------- \n"
  5260. "Tx Completion Stats: \n"
  5261. "-------------------- \n"
  5262. "ack_frame_rssi = %d \n"
  5263. "first_msdu = %d \n"
  5264. "last_msdu = %d \n"
  5265. "msdu_part_of_amsdu = %d \n"
  5266. "rate_stats valid = %d \n"
  5267. "bw = %d \n"
  5268. "pkt_type = %d \n"
  5269. "stbc = %d \n"
  5270. "ldpc = %d \n"
  5271. "sgi = %d \n"
  5272. "mcs = %d \n"
  5273. "ofdma = %d \n"
  5274. "tones_in_ru = %d \n"
  5275. "tsf = %d \n"
  5276. "ppdu_id = %d \n"
  5277. "transmit_cnt = %d \n"
  5278. "tid = %d \n"
  5279. "peer_id = %d\n"
  5280. "tx_status = %d\n"
  5281. "tx_release_source = %d\n",
  5282. ts->ack_frame_rssi, ts->first_msdu,
  5283. ts->last_msdu, ts->msdu_part_of_amsdu,
  5284. ts->valid, ts->bw, ts->pkt_type, ts->stbc,
  5285. ts->ldpc, ts->sgi, ts->mcs, ts->ofdma,
  5286. ts->tones_in_ru, ts->tsf, ts->ppdu_id,
  5287. ts->transmit_cnt, ts->tid, ts->peer_id,
  5288. ts->status, ts->release_src);
  5289. /* Update SoC level stats */
  5290. DP_STATS_INCC(soc, tx.dropped_fw_removed, 1,
  5291. (ts->status == HAL_TX_TQM_RR_REM_CMD_REM));
  5292. if (!txrx_peer) {
  5293. dp_info_rl("peer is null or deletion in progress");
  5294. DP_STATS_INC_PKT(soc, tx.tx_invalid_peer, 1, length);
  5295. goto out_log;
  5296. }
  5297. vdev = txrx_peer->vdev;
  5298. link_id = dp_tx_get_link_id_from_ppdu_id(soc, ts, txrx_peer, vdev);
  5299. dp_tx_set_nbuf_band(nbuf, txrx_peer, link_id);
  5300. op_mode = vdev->qdf_opmode;
  5301. dp_tx_update_connectivity_stats(soc, vdev, tx_desc, ts->status);
  5302. dp_tx_update_uplink_delay(soc, vdev, ts);
  5303. /* check tx complete notification */
  5304. if (qdf_nbuf_tx_notify_comp_get(nbuf))
  5305. dp_tx_notify_completion(soc, vdev, tx_desc,
  5306. nbuf, ts->status);
  5307. /* Update per-packet stats for mesh mode */
  5308. if (qdf_unlikely(vdev->mesh_vdev) &&
  5309. !(tx_desc->flags & DP_TX_DESC_FLAG_TO_FW))
  5310. dp_tx_comp_fill_tx_completion_stats(tx_desc, ts);
  5311. /* Update peer level stats */
  5312. if (qdf_unlikely(txrx_peer->bss_peer &&
  5313. vdev->opmode == wlan_op_mode_ap)) {
  5314. if (ts->status != HAL_TX_TQM_RR_REM_CMD_REM) {
  5315. DP_PEER_PER_PKT_STATS_INC_PKT(txrx_peer, tx.mcast, 1,
  5316. length, link_id);
  5317. if (txrx_peer->vdev->tx_encap_type ==
  5318. htt_cmn_pkt_type_ethernet &&
  5319. QDF_IS_ADDR_BROADCAST(eh->ether_dhost)) {
  5320. DP_PEER_PER_PKT_STATS_INC_PKT(txrx_peer,
  5321. tx.bcast, 1,
  5322. length, link_id);
  5323. }
  5324. }
  5325. } else {
  5326. DP_PEER_PER_PKT_STATS_INC_PKT(txrx_peer, tx.ucast, 1, length,
  5327. link_id);
  5328. if (ts->status == HAL_TX_TQM_RR_FRAME_ACKED) {
  5329. DP_PEER_PER_PKT_STATS_INC_PKT(txrx_peer, tx.tx_success,
  5330. 1, length, link_id);
  5331. if (qdf_unlikely(txrx_peer->in_twt)) {
  5332. DP_PEER_PER_PKT_STATS_INC_PKT(txrx_peer,
  5333. tx.tx_success_twt,
  5334. 1, length,
  5335. link_id);
  5336. }
  5337. dp_update_mcast_stats(txrx_peer, link_id, length, nbuf);
  5338. }
  5339. }
  5340. dp_tx_update_peer_stats(tx_desc, ts, txrx_peer, ring_id, link_id);
  5341. dp_tx_update_peer_delay_stats(txrx_peer, tx_desc, ts, ring_id);
  5342. dp_tx_update_peer_jitter_stats(txrx_peer, tx_desc, ts, ring_id);
  5343. dp_tx_update_peer_sawf_stats(soc, vdev, txrx_peer, tx_desc,
  5344. ts, ts->tid);
  5345. dp_tx_send_pktlog(soc, vdev->pdev, tx_desc, nbuf, dp_status);
  5346. dp_tx_latency_stats_update(soc, txrx_peer, tx_desc, ts, link_id);
  5347. #ifdef QCA_SUPPORT_RDK_STATS
  5348. if (soc->peerstats_enabled)
  5349. dp_tx_sojourn_stats_process(vdev->pdev, txrx_peer, ts->tid,
  5350. qdf_ktime_to_ms(tx_desc->timestamp),
  5351. ts->ppdu_id, link_id);
  5352. #endif
  5353. out_log:
  5354. DPTRACE(qdf_dp_trace_ptr(tx_desc->nbuf,
  5355. QDF_DP_TRACE_LI_DP_FREE_PACKET_PTR_RECORD,
  5356. QDF_TRACE_DEFAULT_PDEV_ID,
  5357. qdf_nbuf_data_addr(nbuf),
  5358. sizeof(qdf_nbuf_data(nbuf)),
  5359. tx_desc->id, ts->status, dp_status, op_mode));
  5360. out:
  5361. return;
  5362. }
  5363. #if defined(QCA_VDEV_STATS_HW_OFFLOAD_SUPPORT) && \
  5364. defined(QCA_ENHANCED_STATS_SUPPORT)
  5365. void dp_tx_update_peer_basic_stats(struct dp_txrx_peer *txrx_peer,
  5366. uint32_t length, uint8_t tx_status,
  5367. bool update)
  5368. {
  5369. if (update || (!txrx_peer->hw_txrx_stats_en)) {
  5370. DP_PEER_STATS_FLAT_INC_PKT(txrx_peer, comp_pkt, 1, length);
  5371. if (tx_status != HAL_TX_TQM_RR_FRAME_ACKED)
  5372. DP_PEER_STATS_FLAT_INC(txrx_peer, tx_failed, 1);
  5373. }
  5374. }
  5375. #elif defined(QCA_VDEV_STATS_HW_OFFLOAD_SUPPORT)
  5376. void dp_tx_update_peer_basic_stats(struct dp_txrx_peer *txrx_peer,
  5377. uint32_t length, uint8_t tx_status,
  5378. bool update)
  5379. {
  5380. if (!txrx_peer->hw_txrx_stats_en) {
  5381. DP_PEER_STATS_FLAT_INC_PKT(txrx_peer, comp_pkt, 1, length);
  5382. if (tx_status != HAL_TX_TQM_RR_FRAME_ACKED)
  5383. DP_PEER_STATS_FLAT_INC(txrx_peer, tx_failed, 1);
  5384. }
  5385. }
  5386. #else
  5387. void dp_tx_update_peer_basic_stats(struct dp_txrx_peer *txrx_peer,
  5388. uint32_t length, uint8_t tx_status,
  5389. bool update)
  5390. {
  5391. DP_PEER_STATS_FLAT_INC_PKT(txrx_peer, comp_pkt, 1, length);
  5392. if (tx_status != HAL_TX_TQM_RR_FRAME_ACKED)
  5393. DP_PEER_STATS_FLAT_INC(txrx_peer, tx_failed, 1);
  5394. }
  5395. #endif
  5396. /**
  5397. * dp_tx_prefetch_next_nbuf_data(): Prefetch nbuf and nbuf data
  5398. * @next: descriptor of the nrxt buffer
  5399. *
  5400. * Return: none
  5401. */
  5402. #ifdef QCA_DP_RX_NBUF_AND_NBUF_DATA_PREFETCH
  5403. static inline
  5404. void dp_tx_prefetch_next_nbuf_data(struct dp_tx_desc_s *next)
  5405. {
  5406. qdf_nbuf_t nbuf = NULL;
  5407. if (next)
  5408. nbuf = next->nbuf;
  5409. if (nbuf)
  5410. qdf_prefetch(nbuf);
  5411. }
  5412. #else
  5413. static inline
  5414. void dp_tx_prefetch_next_nbuf_data(struct dp_tx_desc_s *next)
  5415. {
  5416. }
  5417. #endif
  5418. /**
  5419. * dp_tx_mcast_reinject_handler() - Tx reinjected multicast packets handler
  5420. * @soc: core txrx main context
  5421. * @desc: software descriptor
  5422. *
  5423. * Return: true when packet is reinjected
  5424. */
  5425. #if defined(WLAN_FEATURE_11BE_MLO) && defined(WLAN_MLO_MULTI_CHIP) && \
  5426. defined(WLAN_MCAST_MLO) && !defined(CONFIG_MLO_SINGLE_DEV)
  5427. static inline bool
  5428. dp_tx_mcast_reinject_handler(struct dp_soc *soc, struct dp_tx_desc_s *desc)
  5429. {
  5430. struct dp_vdev *vdev = NULL;
  5431. uint8_t xmit_type;
  5432. if (desc->tx_status == HAL_TX_TQM_RR_MULTICAST_DROP) {
  5433. if (!soc->arch_ops.dp_tx_mcast_handler ||
  5434. !soc->arch_ops.dp_tx_is_mcast_primary)
  5435. return false;
  5436. vdev = dp_vdev_get_ref_by_id(soc, desc->vdev_id,
  5437. DP_MOD_ID_REINJECT);
  5438. if (qdf_unlikely(!vdev)) {
  5439. dp_tx_comp_info_rl("Unable to get vdev ref %d",
  5440. desc->id);
  5441. return false;
  5442. }
  5443. if (!(soc->arch_ops.dp_tx_is_mcast_primary(soc, vdev))) {
  5444. dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_REINJECT);
  5445. return false;
  5446. }
  5447. xmit_type = qdf_nbuf_get_vdev_xmit_type(desc->nbuf);
  5448. DP_STATS_INC_PKT(vdev, tx_i[xmit_type].reinject_pkts, 1,
  5449. qdf_nbuf_len(desc->nbuf));
  5450. soc->arch_ops.dp_tx_mcast_handler(soc, vdev, desc->nbuf);
  5451. dp_tx_desc_release(soc, desc, desc->pool_id);
  5452. dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_REINJECT);
  5453. return true;
  5454. }
  5455. return false;
  5456. }
  5457. #else
  5458. static inline bool
  5459. dp_tx_mcast_reinject_handler(struct dp_soc *soc, struct dp_tx_desc_s *desc)
  5460. {
  5461. return false;
  5462. }
  5463. #endif
  5464. #ifdef QCA_DP_TX_NBUF_LIST_FREE
  5465. static inline void
  5466. dp_tx_nbuf_queue_head_init(qdf_nbuf_queue_head_t *nbuf_queue_head)
  5467. {
  5468. qdf_nbuf_queue_head_init(nbuf_queue_head);
  5469. }
  5470. static inline void
  5471. dp_tx_nbuf_dev_queue_free(qdf_nbuf_queue_head_t *nbuf_queue_head,
  5472. struct dp_tx_desc_s *desc)
  5473. {
  5474. qdf_nbuf_t nbuf = NULL;
  5475. nbuf = desc->nbuf;
  5476. if (qdf_likely(desc->flags & DP_TX_DESC_FLAG_FAST))
  5477. qdf_nbuf_dev_queue_head(nbuf_queue_head, nbuf);
  5478. else
  5479. qdf_nbuf_free(nbuf);
  5480. }
  5481. static inline void
  5482. dp_tx_nbuf_dev_queue_free_no_flag(qdf_nbuf_queue_head_t *nbuf_queue_head,
  5483. qdf_nbuf_t nbuf)
  5484. {
  5485. if (!nbuf)
  5486. return;
  5487. if (nbuf->is_from_recycler)
  5488. qdf_nbuf_dev_queue_head(nbuf_queue_head, nbuf);
  5489. else
  5490. qdf_nbuf_free(nbuf);
  5491. }
  5492. static inline void
  5493. dp_tx_nbuf_dev_kfree_list(qdf_nbuf_queue_head_t *nbuf_queue_head)
  5494. {
  5495. qdf_nbuf_dev_kfree_list(nbuf_queue_head);
  5496. }
  5497. #else
  5498. static inline void
  5499. dp_tx_nbuf_queue_head_init(qdf_nbuf_queue_head_t *nbuf_queue_head)
  5500. {
  5501. }
  5502. static inline void
  5503. dp_tx_nbuf_dev_queue_free(qdf_nbuf_queue_head_t *nbuf_queue_head,
  5504. struct dp_tx_desc_s *desc)
  5505. {
  5506. qdf_nbuf_free(desc->nbuf);
  5507. }
  5508. static inline void
  5509. dp_tx_nbuf_dev_queue_free_no_flag(qdf_nbuf_queue_head_t *nbuf_queue_head,
  5510. qdf_nbuf_t nbuf)
  5511. {
  5512. qdf_nbuf_free(nbuf);
  5513. }
  5514. static inline void
  5515. dp_tx_nbuf_dev_kfree_list(qdf_nbuf_queue_head_t *nbuf_queue_head)
  5516. {
  5517. }
  5518. #endif
  5519. #ifdef WLAN_SUPPORT_PPEDS
  5520. static inline void
  5521. dp_tx_update_ppeds_tx_comp_stats(struct dp_soc *soc,
  5522. struct dp_txrx_peer *txrx_peer,
  5523. struct hal_tx_completion_status *ts,
  5524. struct dp_tx_desc_s *desc,
  5525. uint8_t ring_id)
  5526. {
  5527. uint8_t link_id = 0;
  5528. struct dp_vdev *vdev = NULL;
  5529. if (qdf_likely(txrx_peer)) {
  5530. if (!(desc->flags & DP_TX_DESC_FLAG_SIMPLE)) {
  5531. hal_tx_comp_get_status(&desc->comp,
  5532. ts,
  5533. soc->hal_soc);
  5534. vdev = txrx_peer->vdev;
  5535. link_id = dp_tx_get_link_id_from_ppdu_id(soc,
  5536. ts,
  5537. txrx_peer,
  5538. vdev);
  5539. if (link_id < 1 || link_id > DP_MAX_MLO_LINKS)
  5540. link_id = 0;
  5541. dp_tx_update_peer_stats(desc, ts,
  5542. txrx_peer,
  5543. ring_id,
  5544. link_id);
  5545. } else {
  5546. dp_tx_update_peer_basic_stats(txrx_peer, desc->length,
  5547. desc->tx_status, false);
  5548. }
  5549. }
  5550. }
  5551. #else
  5552. static inline void
  5553. dp_tx_update_ppeds_tx_comp_stats(struct dp_soc *soc,
  5554. struct dp_txrx_peer *txrx_peer,
  5555. struct hal_tx_completion_status *ts,
  5556. struct dp_tx_desc_s *desc,
  5557. uint8_t ring_id)
  5558. {
  5559. }
  5560. #endif
  5561. void
  5562. dp_tx_comp_process_desc_list_fast(struct dp_soc *soc,
  5563. struct dp_tx_desc_s *head_desc,
  5564. struct dp_tx_desc_s *tail_desc,
  5565. uint8_t ring_id,
  5566. uint32_t fast_desc_count)
  5567. {
  5568. struct dp_tx_desc_pool_s *pool = NULL;
  5569. pool = dp_get_tx_desc_pool(soc, head_desc->pool_id);
  5570. dp_tx_outstanding_sub(head_desc->pdev, fast_desc_count);
  5571. dp_tx_desc_free_list(pool, head_desc, tail_desc, fast_desc_count);
  5572. }
  5573. void
  5574. dp_tx_comp_process_desc_list(struct dp_soc *soc,
  5575. struct dp_tx_desc_s *comp_head, uint8_t ring_id)
  5576. {
  5577. struct dp_tx_desc_s *desc;
  5578. struct dp_tx_desc_s *next;
  5579. struct hal_tx_completion_status ts;
  5580. struct dp_txrx_peer *txrx_peer = NULL;
  5581. uint16_t peer_id = DP_INVALID_PEER;
  5582. dp_txrx_ref_handle txrx_ref_handle = NULL;
  5583. qdf_nbuf_queue_head_t h;
  5584. desc = comp_head;
  5585. dp_tx_nbuf_queue_head_init(&h);
  5586. while (desc) {
  5587. next = desc->next;
  5588. dp_tx_prefetch_next_nbuf_data(next);
  5589. if (peer_id != desc->peer_id) {
  5590. if (txrx_peer)
  5591. dp_txrx_peer_unref_delete(txrx_ref_handle,
  5592. DP_MOD_ID_TX_COMP);
  5593. peer_id = desc->peer_id;
  5594. txrx_peer =
  5595. dp_txrx_peer_get_ref_by_id(soc, peer_id,
  5596. &txrx_ref_handle,
  5597. DP_MOD_ID_TX_COMP);
  5598. }
  5599. if (dp_tx_mcast_reinject_handler(soc, desc)) {
  5600. desc = next;
  5601. continue;
  5602. }
  5603. if (desc->flags & DP_TX_DESC_FLAG_PPEDS) {
  5604. qdf_nbuf_t nbuf;
  5605. dp_tx_update_ppeds_tx_comp_stats(soc, txrx_peer, &ts,
  5606. desc, ring_id);
  5607. if (desc->pool_id != DP_TX_PPEDS_POOL_ID) {
  5608. nbuf = desc->nbuf;
  5609. dp_tx_nbuf_dev_queue_free_no_flag(&h, nbuf);
  5610. if (desc->flags & DP_TX_DESC_FLAG_SPECIAL)
  5611. dp_tx_spcl_desc_free(soc, desc,
  5612. desc->pool_id);
  5613. else
  5614. dp_tx_desc_free(soc, desc,
  5615. desc->pool_id);
  5616. __dp_tx_outstanding_dec(soc);
  5617. } else {
  5618. nbuf = dp_ppeds_tx_desc_free(soc, desc);
  5619. dp_tx_nbuf_dev_queue_free_no_flag(&h, nbuf);
  5620. }
  5621. desc = next;
  5622. continue;
  5623. }
  5624. if (qdf_likely(desc->flags & DP_TX_DESC_FLAG_SIMPLE)) {
  5625. struct dp_pdev *pdev = desc->pdev;
  5626. if (qdf_likely(txrx_peer))
  5627. dp_tx_update_peer_basic_stats(txrx_peer,
  5628. desc->length,
  5629. desc->tx_status,
  5630. false);
  5631. qdf_assert(pdev);
  5632. dp_tx_outstanding_dec(pdev);
  5633. /*
  5634. * Calling a QDF WRAPPER here is creating significant
  5635. * performance impact so avoided the wrapper call here
  5636. */
  5637. dp_tx_desc_history_add(soc, desc->dma_addr, desc->nbuf,
  5638. desc->id, DP_TX_COMP_UNMAP);
  5639. dp_tx_nbuf_unmap(soc, desc);
  5640. dp_tx_nbuf_dev_queue_free(&h, desc);
  5641. dp_tx_desc_free(soc, desc, desc->pool_id);
  5642. desc = next;
  5643. continue;
  5644. }
  5645. hal_tx_comp_get_status(&desc->comp, &ts, soc->hal_soc);
  5646. dp_tx_comp_process_tx_status(soc, desc, &ts, txrx_peer,
  5647. ring_id);
  5648. dp_tx_comp_process_desc(soc, desc, &ts, txrx_peer);
  5649. dp_tx_desc_release(soc, desc, desc->pool_id);
  5650. desc = next;
  5651. }
  5652. dp_tx_nbuf_dev_kfree_list(&h);
  5653. if (txrx_peer)
  5654. dp_txrx_peer_unref_delete(txrx_ref_handle, DP_MOD_ID_TX_COMP);
  5655. }
  5656. #ifndef WLAN_SOFTUMAC_SUPPORT
  5657. /**
  5658. * dp_tx_dump_tx_desc() - Dump tx desc for debugging
  5659. * @tx_desc: software descriptor head pointer
  5660. *
  5661. * This function will dump tx desc for further debugging
  5662. *
  5663. * Return: none
  5664. */
  5665. static
  5666. void dp_tx_dump_tx_desc(struct dp_tx_desc_s *tx_desc)
  5667. {
  5668. if (tx_desc) {
  5669. dp_tx_comp_warn("tx_desc->nbuf: %pK", tx_desc->nbuf);
  5670. dp_tx_comp_warn("tx_desc->flags: 0x%x", tx_desc->flags);
  5671. dp_tx_comp_warn("tx_desc->id: %u", tx_desc->id);
  5672. dp_tx_comp_warn("tx_desc->dma_addr: 0x%x",
  5673. tx_desc->dma_addr);
  5674. dp_tx_comp_warn("tx_desc->vdev_id: %u",
  5675. tx_desc->vdev_id);
  5676. dp_tx_comp_warn("tx_desc->tx_status: %u",
  5677. tx_desc->tx_status);
  5678. dp_tx_comp_warn("tx_desc->pdev: %pK",
  5679. tx_desc->pdev);
  5680. dp_tx_comp_warn("tx_desc->tx_encap_type: %u",
  5681. tx_desc->tx_encap_type);
  5682. dp_tx_comp_warn("tx_desc->buffer_src: %u",
  5683. tx_desc->buffer_src);
  5684. dp_tx_comp_warn("tx_desc->frm_type: %u",
  5685. tx_desc->frm_type);
  5686. dp_tx_comp_warn("tx_desc->pkt_offset: %u",
  5687. tx_desc->pkt_offset);
  5688. dp_tx_comp_warn("tx_desc->pool_id: %u",
  5689. tx_desc->pool_id);
  5690. }
  5691. }
  5692. #endif
  5693. #ifdef WLAN_FEATURE_RX_SOFTIRQ_TIME_LIMIT
  5694. static inline
  5695. bool dp_tx_comp_loop_pkt_limit_hit(struct dp_soc *soc, int num_reaped,
  5696. int max_reap_limit)
  5697. {
  5698. bool limit_hit = false;
  5699. limit_hit =
  5700. (num_reaped >= max_reap_limit) ? true : false;
  5701. if (limit_hit)
  5702. DP_STATS_INC(soc, tx.tx_comp_loop_pkt_limit_hit, 1);
  5703. return limit_hit;
  5704. }
  5705. static inline bool dp_tx_comp_enable_eol_data_check(struct dp_soc *soc)
  5706. {
  5707. return soc->wlan_cfg_ctx->tx_comp_enable_eol_data_check;
  5708. }
  5709. static inline int dp_tx_comp_get_loop_pkt_limit(struct dp_soc *soc)
  5710. {
  5711. struct wlan_cfg_dp_soc_ctxt *cfg = soc->wlan_cfg_ctx;
  5712. return cfg->tx_comp_loop_pkt_limit;
  5713. }
  5714. #else
  5715. static inline
  5716. bool dp_tx_comp_loop_pkt_limit_hit(struct dp_soc *soc, int num_reaped,
  5717. int max_reap_limit)
  5718. {
  5719. return false;
  5720. }
  5721. static inline bool dp_tx_comp_enable_eol_data_check(struct dp_soc *soc)
  5722. {
  5723. return false;
  5724. }
  5725. static inline int dp_tx_comp_get_loop_pkt_limit(struct dp_soc *soc)
  5726. {
  5727. return 0;
  5728. }
  5729. #endif
  5730. #ifdef WLAN_FEATURE_NEAR_FULL_IRQ
  5731. static inline int
  5732. dp_srng_test_and_update_nf_params(struct dp_soc *soc, struct dp_srng *dp_srng,
  5733. int *max_reap_limit)
  5734. {
  5735. return soc->arch_ops.dp_srng_test_and_update_nf_params(soc, dp_srng,
  5736. max_reap_limit);
  5737. }
  5738. #else
  5739. static inline int
  5740. dp_srng_test_and_update_nf_params(struct dp_soc *soc, struct dp_srng *dp_srng,
  5741. int *max_reap_limit)
  5742. {
  5743. return 0;
  5744. }
  5745. #endif
  5746. #ifdef DP_TX_TRACKING
  5747. void dp_tx_desc_check_corruption(struct dp_tx_desc_s *tx_desc)
  5748. {
  5749. if ((tx_desc->magic != DP_TX_MAGIC_PATTERN_INUSE) &&
  5750. (tx_desc->magic != DP_TX_MAGIC_PATTERN_FREE)) {
  5751. dp_err_rl("tx_desc %u is corrupted", tx_desc->id);
  5752. qdf_trigger_self_recovery(NULL, QDF_TX_DESC_LEAK);
  5753. }
  5754. }
  5755. #endif
  5756. #ifndef WLAN_SOFTUMAC_SUPPORT
  5757. uint32_t dp_tx_comp_handler(struct dp_intr *int_ctx, struct dp_soc *soc,
  5758. hal_ring_handle_t hal_ring_hdl, uint8_t ring_id,
  5759. uint32_t quota)
  5760. {
  5761. void *tx_comp_hal_desc;
  5762. void *last_prefetched_hw_desc = NULL;
  5763. struct dp_tx_desc_s *last_prefetched_sw_desc = NULL;
  5764. hal_soc_handle_t hal_soc;
  5765. uint8_t buffer_src;
  5766. struct dp_tx_desc_s *tx_desc = NULL;
  5767. struct dp_tx_desc_s *head_desc = NULL;
  5768. struct dp_tx_desc_s *tail_desc = NULL;
  5769. struct dp_tx_desc_s *fast_head_desc = NULL;
  5770. struct dp_tx_desc_s *fast_tail_desc = NULL;
  5771. uint32_t num_processed = 0;
  5772. uint32_t fast_desc_count = 0;
  5773. uint32_t count;
  5774. uint32_t num_avail_for_reap = 0;
  5775. bool force_break = false;
  5776. struct dp_srng *tx_comp_ring = &soc->tx_comp_ring[ring_id];
  5777. int max_reap_limit, ring_near_full;
  5778. uint32_t num_entries;
  5779. qdf_nbuf_queue_head_t h;
  5780. DP_HIST_INIT();
  5781. num_entries = hal_srng_get_num_entries(soc->hal_soc, hal_ring_hdl);
  5782. more_data:
  5783. hal_soc = soc->hal_soc;
  5784. /* Re-initialize local variables to be re-used */
  5785. head_desc = NULL;
  5786. tail_desc = NULL;
  5787. count = 0;
  5788. max_reap_limit = dp_tx_comp_get_loop_pkt_limit(soc);
  5789. ring_near_full = dp_srng_test_and_update_nf_params(soc, tx_comp_ring,
  5790. &max_reap_limit);
  5791. if (qdf_unlikely(dp_srng_access_start(int_ctx, soc, hal_ring_hdl))) {
  5792. dp_err("HAL RING Access Failed -- %pK", hal_ring_hdl);
  5793. return 0;
  5794. }
  5795. if (!num_avail_for_reap)
  5796. num_avail_for_reap = hal_srng_dst_num_valid(hal_soc,
  5797. hal_ring_hdl, 0);
  5798. if (num_avail_for_reap >= quota)
  5799. num_avail_for_reap = quota;
  5800. dp_srng_dst_inv_cached_descs(soc, hal_ring_hdl, num_avail_for_reap);
  5801. last_prefetched_hw_desc = dp_srng_dst_prefetch_32_byte_desc(hal_soc,
  5802. hal_ring_hdl,
  5803. num_avail_for_reap);
  5804. dp_tx_nbuf_queue_head_init(&h);
  5805. /* Find head descriptor from completion ring */
  5806. while (qdf_likely(num_avail_for_reap--)) {
  5807. tx_comp_hal_desc = dp_srng_dst_get_next(soc, hal_ring_hdl);
  5808. if (qdf_unlikely(!tx_comp_hal_desc))
  5809. break;
  5810. buffer_src = hal_tx_comp_get_buffer_source(hal_soc,
  5811. tx_comp_hal_desc);
  5812. /* If this buffer was not released by TQM or FW, then it is not
  5813. * Tx completion indication, assert */
  5814. if (qdf_unlikely(buffer_src !=
  5815. HAL_TX_COMP_RELEASE_SOURCE_TQM) &&
  5816. (qdf_unlikely(buffer_src !=
  5817. HAL_TX_COMP_RELEASE_SOURCE_FW))) {
  5818. uint8_t wbm_internal_error;
  5819. dp_err_rl(
  5820. "Tx comp release_src != TQM | FW but from %d",
  5821. buffer_src);
  5822. hal_dump_comp_desc(tx_comp_hal_desc);
  5823. DP_STATS_INC(soc, tx.invalid_release_source, 1);
  5824. /* When WBM sees NULL buffer_addr_info in any of
  5825. * ingress rings it sends an error indication,
  5826. * with wbm_internal_error=1, to a specific ring.
  5827. * The WBM2SW ring used to indicate these errors is
  5828. * fixed in HW, and that ring is being used as Tx
  5829. * completion ring. These errors are not related to
  5830. * Tx completions, and should just be ignored
  5831. */
  5832. wbm_internal_error = hal_get_wbm_internal_error(
  5833. hal_soc,
  5834. tx_comp_hal_desc);
  5835. if (wbm_internal_error) {
  5836. dp_err_rl("Tx comp wbm_internal_error!!");
  5837. DP_STATS_INC(soc, tx.wbm_internal_error[WBM_INT_ERROR_ALL], 1);
  5838. if (HAL_TX_COMP_RELEASE_SOURCE_REO ==
  5839. buffer_src)
  5840. dp_handle_wbm_internal_error(
  5841. soc,
  5842. tx_comp_hal_desc,
  5843. hal_tx_comp_get_buffer_type(
  5844. tx_comp_hal_desc));
  5845. } else {
  5846. dp_err_rl("Tx comp wbm_internal_error false");
  5847. DP_STATS_INC(soc, tx.non_wbm_internal_err, 1);
  5848. }
  5849. continue;
  5850. }
  5851. soc->arch_ops.tx_comp_get_params_from_hal_desc(soc,
  5852. tx_comp_hal_desc,
  5853. &tx_desc);
  5854. if (qdf_unlikely(!tx_desc)) {
  5855. dp_err("unable to retrieve tx_desc!");
  5856. hal_dump_comp_desc(tx_comp_hal_desc);
  5857. DP_STATS_INC(soc, tx.invalid_tx_comp_desc, 1);
  5858. QDF_BUG(0);
  5859. continue;
  5860. }
  5861. tx_desc->buffer_src = buffer_src;
  5862. /*
  5863. * If the release source is FW, process the HTT status
  5864. */
  5865. if (qdf_unlikely(buffer_src ==
  5866. HAL_TX_COMP_RELEASE_SOURCE_FW)) {
  5867. uint8_t htt_tx_status[HAL_TX_COMP_HTT_STATUS_LEN];
  5868. hal_tx_comp_get_htt_desc(tx_comp_hal_desc,
  5869. htt_tx_status);
  5870. /* Collect hw completion contents */
  5871. hal_tx_comp_desc_sync(tx_comp_hal_desc,
  5872. &tx_desc->comp, 1);
  5873. soc->arch_ops.dp_tx_process_htt_completion(
  5874. soc,
  5875. tx_desc,
  5876. htt_tx_status,
  5877. ring_id);
  5878. if (qdf_unlikely(!tx_desc->pdev)) {
  5879. dp_tx_dump_tx_desc(tx_desc);
  5880. }
  5881. } else {
  5882. if (tx_desc->flags & DP_TX_DESC_FLAG_FASTPATH_SIMPLE ||
  5883. tx_desc->flags & DP_TX_DESC_FLAG_PPEDS)
  5884. goto add_to_pool2;
  5885. tx_desc->tx_status =
  5886. hal_tx_comp_get_tx_status(tx_comp_hal_desc);
  5887. tx_desc->buffer_src = buffer_src;
  5888. /*
  5889. * If the fast completion mode is enabled extended
  5890. * metadata from descriptor is not copied
  5891. */
  5892. if (qdf_likely(tx_desc->flags &
  5893. DP_TX_DESC_FLAG_SIMPLE))
  5894. goto add_to_pool;
  5895. /*
  5896. * If the descriptor is already freed in vdev_detach,
  5897. * continue to next descriptor
  5898. */
  5899. if (qdf_unlikely
  5900. ((tx_desc->vdev_id == DP_INVALID_VDEV_ID) &&
  5901. !tx_desc->flags)) {
  5902. dp_tx_comp_info_rl("Descriptor freed in vdev_detach %d",
  5903. tx_desc->id);
  5904. DP_STATS_INC(soc, tx.tx_comp_exception, 1);
  5905. dp_tx_desc_check_corruption(tx_desc);
  5906. continue;
  5907. }
  5908. if (qdf_unlikely(!tx_desc->pdev)) {
  5909. dp_tx_comp_warn("The pdev is NULL in TX desc, ignored.");
  5910. dp_tx_dump_tx_desc(tx_desc);
  5911. DP_STATS_INC(soc, tx.tx_comp_exception, 1);
  5912. continue;
  5913. }
  5914. if (qdf_unlikely(tx_desc->pdev->is_pdev_down)) {
  5915. dp_tx_comp_info_rl("pdev in down state %d",
  5916. tx_desc->id);
  5917. tx_desc->flags |= DP_TX_DESC_FLAG_TX_COMP_ERR;
  5918. dp_tx_comp_free_buf(soc, tx_desc, false);
  5919. dp_tx_desc_release(soc, tx_desc,
  5920. tx_desc->pool_id);
  5921. goto next_desc;
  5922. }
  5923. if (!(tx_desc->flags & DP_TX_DESC_FLAG_ALLOCATED) ||
  5924. !(tx_desc->flags & DP_TX_DESC_FLAG_QUEUED_TX)) {
  5925. dp_tx_comp_alert("Txdesc invalid, flgs = %x,id = %d",
  5926. tx_desc->flags, tx_desc->id);
  5927. qdf_assert_always(0);
  5928. }
  5929. /* Collect hw completion contents */
  5930. hal_tx_comp_desc_sync(tx_comp_hal_desc,
  5931. &tx_desc->comp, 1);
  5932. add_to_pool:
  5933. DP_HIST_PACKET_COUNT_INC(tx_desc->pdev->pdev_id);
  5934. add_to_pool2:
  5935. /* First ring descriptor on the cycle */
  5936. if (tx_desc->flags & DP_TX_DESC_FLAG_FASTPATH_SIMPLE ||
  5937. tx_desc->flags & DP_TX_DESC_FLAG_PPEDS) {
  5938. dp_tx_nbuf_dev_queue_free(&h, tx_desc);
  5939. fast_desc_count++;
  5940. if (!fast_head_desc) {
  5941. fast_head_desc = tx_desc;
  5942. fast_tail_desc = tx_desc;
  5943. }
  5944. fast_tail_desc->next = tx_desc;
  5945. fast_tail_desc = tx_desc;
  5946. dp_tx_desc_clear(tx_desc);
  5947. } else {
  5948. if (!head_desc) {
  5949. head_desc = tx_desc;
  5950. tail_desc = tx_desc;
  5951. }
  5952. tail_desc->next = tx_desc;
  5953. tx_desc->next = NULL;
  5954. tail_desc = tx_desc;
  5955. }
  5956. }
  5957. next_desc:
  5958. num_processed += !(count & DP_TX_NAPI_BUDGET_DIV_MASK);
  5959. /*
  5960. * Processed packet count is more than given quota
  5961. * stop to processing
  5962. */
  5963. count++;
  5964. dp_tx_prefetch_hw_sw_nbuf_desc(soc, hal_soc,
  5965. num_avail_for_reap,
  5966. hal_ring_hdl,
  5967. &last_prefetched_hw_desc,
  5968. &last_prefetched_sw_desc);
  5969. if (dp_tx_comp_loop_pkt_limit_hit(soc, count, max_reap_limit))
  5970. break;
  5971. }
  5972. dp_srng_access_end(int_ctx, soc, hal_ring_hdl);
  5973. /* Process the reaped descriptors that were sent via fast path */
  5974. if (fast_head_desc) {
  5975. dp_tx_comp_process_desc_list_fast(soc, fast_head_desc,
  5976. fast_tail_desc, ring_id,
  5977. fast_desc_count);
  5978. dp_tx_nbuf_dev_kfree_list(&h);
  5979. }
  5980. /* Process the reaped descriptors */
  5981. if (head_desc)
  5982. dp_tx_comp_process_desc_list(soc, head_desc, ring_id);
  5983. DP_STATS_INC(soc, tx.tx_comp[ring_id], count);
  5984. /*
  5985. * If we are processing in near-full condition, there are 3 scenario
  5986. * 1) Ring entries has reached critical state
  5987. * 2) Ring entries are still near high threshold
  5988. * 3) Ring entries are below the safe level
  5989. *
  5990. * One more loop will move the state to normal processing and yield
  5991. */
  5992. if (ring_near_full)
  5993. goto more_data;
  5994. if (dp_tx_comp_enable_eol_data_check(soc)) {
  5995. if (num_processed >= quota)
  5996. force_break = true;
  5997. if (!force_break &&
  5998. hal_srng_dst_peek_sync_locked(soc->hal_soc,
  5999. hal_ring_hdl)) {
  6000. DP_STATS_INC(soc, tx.hp_oos2, 1);
  6001. if (!hif_exec_should_yield(soc->hif_handle,
  6002. int_ctx->dp_intr_id))
  6003. goto more_data;
  6004. num_avail_for_reap =
  6005. hal_srng_dst_num_valid_locked(soc->hal_soc,
  6006. hal_ring_hdl,
  6007. true);
  6008. if (qdf_unlikely(num_entries &&
  6009. (num_avail_for_reap >=
  6010. num_entries >> 1))) {
  6011. DP_STATS_INC(soc, tx.near_full, 1);
  6012. goto more_data;
  6013. }
  6014. }
  6015. }
  6016. DP_TX_HIST_STATS_PER_PDEV();
  6017. return num_processed;
  6018. }
  6019. #endif
  6020. #ifdef FEATURE_WLAN_TDLS
  6021. qdf_nbuf_t dp_tx_non_std(struct cdp_soc_t *soc_hdl, uint8_t vdev_id,
  6022. enum ol_tx_spec tx_spec, qdf_nbuf_t msdu_list)
  6023. {
  6024. struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
  6025. struct dp_vdev *vdev = dp_vdev_get_ref_by_id(soc, vdev_id,
  6026. DP_MOD_ID_TDLS);
  6027. if (!vdev) {
  6028. dp_err("vdev handle for id %d is NULL", vdev_id);
  6029. return NULL;
  6030. }
  6031. if (tx_spec & OL_TX_SPEC_NO_FREE)
  6032. vdev->is_tdls_frame = true;
  6033. dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_TDLS);
  6034. return dp_tx_send(soc_hdl, vdev_id, msdu_list);
  6035. }
  6036. #endif
  6037. QDF_STATUS dp_tx_vdev_attach(struct dp_vdev *vdev)
  6038. {
  6039. int pdev_id;
  6040. /*
  6041. * Fill HTT TCL Metadata with Vdev ID and MAC ID
  6042. */
  6043. DP_TX_TCL_METADATA_TYPE_SET(vdev->htt_tcl_metadata,
  6044. DP_TCL_METADATA_TYPE_VDEV_BASED);
  6045. DP_TX_TCL_METADATA_VDEV_ID_SET(vdev->htt_tcl_metadata,
  6046. vdev->vdev_id);
  6047. pdev_id =
  6048. dp_get_target_pdev_id_for_host_pdev_id(vdev->pdev->soc,
  6049. vdev->pdev->pdev_id);
  6050. DP_TX_TCL_METADATA_PDEV_ID_SET(vdev->htt_tcl_metadata, pdev_id);
  6051. /*
  6052. * Set HTT Extension Valid bit to 0 by default
  6053. */
  6054. DP_TX_TCL_METADATA_VALID_HTT_SET(vdev->htt_tcl_metadata, 0);
  6055. dp_tx_vdev_update_search_flags(vdev);
  6056. return QDF_STATUS_SUCCESS;
  6057. }
  6058. #ifndef FEATURE_WDS
  6059. static inline bool dp_tx_da_search_override(struct dp_vdev *vdev)
  6060. {
  6061. return false;
  6062. }
  6063. #endif
  6064. void dp_tx_vdev_update_search_flags(struct dp_vdev *vdev)
  6065. {
  6066. struct dp_soc *soc = vdev->pdev->soc;
  6067. /*
  6068. * Enable both AddrY (SA based search) and AddrX (Da based search)
  6069. * for TDLS link
  6070. *
  6071. * Enable AddrY (SA based search) only for non-WDS STA and
  6072. * ProxySTA VAP (in HKv1) modes.
  6073. *
  6074. * In all other VAP modes, only DA based search should be
  6075. * enabled
  6076. */
  6077. if (vdev->opmode == wlan_op_mode_sta &&
  6078. vdev->tdls_link_connected)
  6079. vdev->hal_desc_addr_search_flags =
  6080. (HAL_TX_DESC_ADDRX_EN | HAL_TX_DESC_ADDRY_EN);
  6081. else if ((vdev->opmode == wlan_op_mode_sta) &&
  6082. !dp_tx_da_search_override(vdev))
  6083. vdev->hal_desc_addr_search_flags = HAL_TX_DESC_ADDRY_EN;
  6084. else
  6085. vdev->hal_desc_addr_search_flags = HAL_TX_DESC_ADDRX_EN;
  6086. if (vdev->opmode == wlan_op_mode_sta && !vdev->tdls_link_connected)
  6087. vdev->search_type = soc->sta_mode_search_policy;
  6088. else
  6089. vdev->search_type = HAL_TX_ADDR_SEARCH_DEFAULT;
  6090. }
  6091. #ifdef WLAN_SUPPORT_PPEDS
  6092. static inline bool
  6093. dp_is_tx_desc_flush_match(struct dp_pdev *pdev,
  6094. struct dp_vdev *vdev,
  6095. struct dp_tx_desc_s *tx_desc)
  6096. {
  6097. if (!(tx_desc && (tx_desc->flags & DP_TX_DESC_FLAG_ALLOCATED)))
  6098. return false;
  6099. if (tx_desc->flags & DP_TX_DESC_FLAG_PPEDS)
  6100. return true;
  6101. /*
  6102. * if vdev is given, then only check whether desc
  6103. * vdev match. if vdev is NULL, then check whether
  6104. * desc pdev match.
  6105. */
  6106. return vdev ? (tx_desc->vdev_id == vdev->vdev_id) :
  6107. (tx_desc->pdev == pdev);
  6108. }
  6109. #else
  6110. static inline bool
  6111. dp_is_tx_desc_flush_match(struct dp_pdev *pdev,
  6112. struct dp_vdev *vdev,
  6113. struct dp_tx_desc_s *tx_desc)
  6114. {
  6115. if (!(tx_desc && (tx_desc->flags & DP_TX_DESC_FLAG_ALLOCATED)))
  6116. return false;
  6117. /*
  6118. * if vdev is given, then only check whether desc
  6119. * vdev match. if vdev is NULL, then check whether
  6120. * desc pdev match.
  6121. */
  6122. return vdev ? (tx_desc->vdev_id == vdev->vdev_id) :
  6123. (tx_desc->pdev == pdev);
  6124. }
  6125. #endif
  6126. #ifdef QCA_LL_TX_FLOW_CONTROL_V2
  6127. void dp_tx_desc_flush(struct dp_pdev *pdev, struct dp_vdev *vdev,
  6128. bool force_free)
  6129. {
  6130. uint8_t i;
  6131. uint32_t j;
  6132. uint32_t num_desc, page_id, offset;
  6133. uint16_t num_desc_per_page;
  6134. struct dp_soc *soc = pdev->soc;
  6135. struct dp_tx_desc_s *tx_desc = NULL;
  6136. struct dp_tx_desc_pool_s *tx_desc_pool = NULL;
  6137. if (!vdev && !force_free) {
  6138. dp_err("Reset TX desc vdev, Vdev param is required!");
  6139. return;
  6140. }
  6141. for (i = 0; i < MAX_TXDESC_POOLS; i++) {
  6142. tx_desc_pool = &soc->tx_desc[i];
  6143. if (!(tx_desc_pool->pool_size) ||
  6144. IS_TX_DESC_POOL_STATUS_INACTIVE(tx_desc_pool) ||
  6145. !(tx_desc_pool->desc_pages.cacheable_pages))
  6146. continue;
  6147. /*
  6148. * Add flow pool lock protection in case pool is freed
  6149. * due to all tx_desc is recycled when handle TX completion.
  6150. * this is not necessary when do force flush as:
  6151. * a. double lock will happen if dp_tx_desc_release is
  6152. * also trying to acquire it.
  6153. * b. dp interrupt has been disabled before do force TX desc
  6154. * flush in dp_pdev_deinit().
  6155. */
  6156. if (!force_free)
  6157. qdf_spin_lock_bh(&tx_desc_pool->flow_pool_lock);
  6158. num_desc = tx_desc_pool->pool_size;
  6159. num_desc_per_page =
  6160. tx_desc_pool->desc_pages.num_element_per_page;
  6161. for (j = 0; j < num_desc; j++) {
  6162. page_id = j / num_desc_per_page;
  6163. offset = j % num_desc_per_page;
  6164. if (qdf_unlikely(!(tx_desc_pool->
  6165. desc_pages.cacheable_pages)))
  6166. break;
  6167. tx_desc = dp_tx_desc_find(soc, i, page_id, offset,
  6168. false);
  6169. if (dp_is_tx_desc_flush_match(pdev, vdev, tx_desc)) {
  6170. /*
  6171. * Free TX desc if force free is
  6172. * required, otherwise only reset vdev
  6173. * in this TX desc.
  6174. */
  6175. if (force_free) {
  6176. tx_desc->flags |= DP_TX_DESC_FLAG_FLUSH;
  6177. dp_tx_comp_free_buf(soc, tx_desc,
  6178. false);
  6179. dp_tx_desc_release(soc, tx_desc, i);
  6180. } else {
  6181. tx_desc->vdev_id = DP_INVALID_VDEV_ID;
  6182. }
  6183. }
  6184. }
  6185. if (!force_free)
  6186. qdf_spin_unlock_bh(&tx_desc_pool->flow_pool_lock);
  6187. }
  6188. }
  6189. #else /* QCA_LL_TX_FLOW_CONTROL_V2! */
  6190. /**
  6191. * dp_tx_desc_reset_vdev() - reset vdev to NULL in TX Desc
  6192. *
  6193. * @soc: Handle to DP soc structure
  6194. * @tx_desc: pointer of one TX desc
  6195. * @desc_pool_id: TX Desc pool id
  6196. * @spcl_pool: Special pool
  6197. */
  6198. static inline void
  6199. dp_tx_desc_reset_vdev(struct dp_soc *soc, struct dp_tx_desc_s *tx_desc,
  6200. uint8_t desc_pool_id, bool spcl_pool)
  6201. {
  6202. struct dp_tx_desc_pool_s *pool = NULL;
  6203. pool = spcl_pool ? dp_get_spcl_tx_desc_pool(soc, desc_pool_id) :
  6204. dp_get_tx_desc_pool(soc, desc_pool_id);
  6205. TX_DESC_LOCK_LOCK(&pool->lock);
  6206. tx_desc->vdev_id = DP_INVALID_VDEV_ID;
  6207. TX_DESC_LOCK_UNLOCK(&pool->lock);
  6208. }
  6209. void __dp_tx_desc_flush(struct dp_pdev *pdev, struct dp_vdev *vdev,
  6210. bool force_free, bool spcl_pool)
  6211. {
  6212. uint8_t i, num_pool;
  6213. uint32_t j;
  6214. uint32_t num_desc_t, page_id, offset;
  6215. uint16_t num_desc_per_page;
  6216. struct dp_soc *soc = pdev->soc;
  6217. struct dp_tx_desc_s *tx_desc = NULL;
  6218. struct dp_tx_desc_pool_s *tx_desc_pool = NULL;
  6219. if (!vdev && !force_free) {
  6220. dp_err("Reset TX desc vdev, Vdev param is required!");
  6221. return;
  6222. }
  6223. num_pool = wlan_cfg_get_num_tx_desc_pool(soc->wlan_cfg_ctx);
  6224. for (i = 0; i < num_pool; i++) {
  6225. tx_desc_pool = spcl_pool ? dp_get_spcl_tx_desc_pool(soc, i) :
  6226. dp_get_tx_desc_pool(soc, i);
  6227. num_desc_t = tx_desc_pool->elem_count;
  6228. if (!tx_desc_pool->desc_pages.cacheable_pages)
  6229. continue;
  6230. num_desc_per_page =
  6231. tx_desc_pool->desc_pages.num_element_per_page;
  6232. for (j = 0; j < num_desc_t; j++) {
  6233. page_id = j / num_desc_per_page;
  6234. offset = j % num_desc_per_page;
  6235. tx_desc = dp_tx_desc_find(soc, i, page_id, offset,
  6236. spcl_pool);
  6237. if (dp_is_tx_desc_flush_match(pdev, vdev, tx_desc)) {
  6238. if (force_free) {
  6239. dp_tx_comp_free_buf(soc, tx_desc,
  6240. false);
  6241. dp_tx_desc_release(soc, tx_desc, i);
  6242. } else {
  6243. dp_tx_desc_reset_vdev(soc, tx_desc,
  6244. i, spcl_pool);
  6245. }
  6246. }
  6247. }
  6248. }
  6249. }
  6250. void dp_tx_desc_flush(struct dp_pdev *pdev, struct dp_vdev *vdev,
  6251. bool force_free)
  6252. {
  6253. __dp_tx_desc_flush(pdev, vdev, force_free, false);
  6254. __dp_tx_desc_flush(pdev, vdev, force_free, true);
  6255. }
  6256. #endif /* !QCA_LL_TX_FLOW_CONTROL_V2 */
  6257. QDF_STATUS dp_tx_vdev_detach(struct dp_vdev *vdev)
  6258. {
  6259. struct dp_pdev *pdev = vdev->pdev;
  6260. /* Reset TX desc associated to this Vdev as NULL */
  6261. dp_tx_desc_flush(pdev, vdev, false);
  6262. return QDF_STATUS_SUCCESS;
  6263. }
  6264. #ifdef QCA_LL_TX_FLOW_CONTROL_V2
  6265. /* Pools will be allocated dynamically */
  6266. static QDF_STATUS dp_tx_alloc_static_pools(struct dp_soc *soc, int num_pool,
  6267. int num_desc)
  6268. {
  6269. uint8_t i;
  6270. for (i = 0; i < num_pool; i++) {
  6271. qdf_spinlock_create(&soc->tx_desc[i].flow_pool_lock);
  6272. soc->tx_desc[i].status = FLOW_POOL_INACTIVE;
  6273. }
  6274. return QDF_STATUS_SUCCESS;
  6275. }
  6276. static QDF_STATUS dp_tx_spcl_alloc_static_pools(struct dp_soc *soc,
  6277. int num_pool,
  6278. int num_spcl_desc)
  6279. {
  6280. return QDF_STATUS_SUCCESS;
  6281. }
  6282. static QDF_STATUS dp_tx_init_static_pools(struct dp_soc *soc, int num_pool,
  6283. uint32_t num_desc)
  6284. {
  6285. return QDF_STATUS_SUCCESS;
  6286. }
  6287. static QDF_STATUS dp_tx_spcl_init_static_pools(struct dp_soc *soc, int num_pool,
  6288. uint32_t num_spcl_desc)
  6289. {
  6290. return QDF_STATUS_SUCCESS;
  6291. }
  6292. static void dp_tx_deinit_static_pools(struct dp_soc *soc, int num_pool)
  6293. {
  6294. }
  6295. static void dp_tx_spcl_deinit_static_pools(struct dp_soc *soc, int num_pool)
  6296. {
  6297. }
  6298. static void dp_tx_delete_static_pools(struct dp_soc *soc, int num_pool)
  6299. {
  6300. uint8_t i;
  6301. for (i = 0; i < num_pool; i++)
  6302. qdf_spinlock_destroy(&soc->tx_desc[i].flow_pool_lock);
  6303. }
  6304. static void dp_tx_spcl_delete_static_pools(struct dp_soc *soc, int num_pool)
  6305. {
  6306. }
  6307. #else /* QCA_LL_TX_FLOW_CONTROL_V2! */
  6308. static QDF_STATUS dp_tx_alloc_static_pools(struct dp_soc *soc, int num_pool,
  6309. uint32_t num_desc)
  6310. {
  6311. uint8_t i, count;
  6312. struct dp_global_context *dp_global;
  6313. dp_global = wlan_objmgr_get_global_ctx();
  6314. /* Allocate software Tx descriptor pools */
  6315. if (dp_global->tx_desc_pool_alloc_cnt[soc->arch_id] == 0) {
  6316. for (i = 0; i < num_pool; i++) {
  6317. if (dp_tx_desc_pool_alloc(soc, i, num_desc, false)) {
  6318. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  6319. FL("Tx Desc Pool alloc %d failed %pK"),
  6320. i, soc);
  6321. goto fail;
  6322. }
  6323. }
  6324. }
  6325. dp_global->tx_desc_pool_alloc_cnt[soc->arch_id]++;
  6326. return QDF_STATUS_SUCCESS;
  6327. fail:
  6328. for (count = 0; count < i; count++)
  6329. dp_tx_desc_pool_free(soc, count, false);
  6330. return QDF_STATUS_E_NOMEM;
  6331. }
  6332. static QDF_STATUS dp_tx_spcl_alloc_static_pools(struct dp_soc *soc,
  6333. int num_pool,
  6334. uint32_t num_spcl_desc)
  6335. {
  6336. uint8_t j, count;
  6337. struct dp_global_context *dp_global;
  6338. dp_global = wlan_objmgr_get_global_ctx();
  6339. /* Allocate software Tx descriptor pools */
  6340. if (dp_global->spcl_tx_desc_pool_alloc_cnt[soc->arch_id] == 0) {
  6341. for (j = 0; j < num_pool; j++) {
  6342. if (dp_tx_desc_pool_alloc(soc, j, num_spcl_desc, true)) {
  6343. QDF_TRACE(QDF_MODULE_ID_DP,
  6344. QDF_TRACE_LEVEL_ERROR,
  6345. FL("Tx special Desc Pool alloc %d failed %pK"),
  6346. j, soc);
  6347. goto fail;
  6348. }
  6349. }
  6350. }
  6351. dp_global->spcl_tx_desc_pool_alloc_cnt[soc->arch_id]++;
  6352. return QDF_STATUS_SUCCESS;
  6353. fail:
  6354. for (count = 0; count < j; count++)
  6355. dp_tx_desc_pool_free(soc, count, true);
  6356. return QDF_STATUS_E_NOMEM;
  6357. }
  6358. static QDF_STATUS dp_tx_init_static_pools(struct dp_soc *soc, int num_pool,
  6359. uint32_t num_desc)
  6360. {
  6361. uint8_t i;
  6362. struct dp_global_context *dp_global;
  6363. dp_global = wlan_objmgr_get_global_ctx();
  6364. if (dp_global->tx_desc_pool_init_cnt[soc->arch_id] == 0) {
  6365. for (i = 0; i < num_pool; i++) {
  6366. if (dp_tx_desc_pool_init(soc, i, num_desc, false)) {
  6367. QDF_TRACE(QDF_MODULE_ID_DP,
  6368. QDF_TRACE_LEVEL_ERROR,
  6369. FL("Tx Desc Pool init %d failed %pK"),
  6370. i, soc);
  6371. return QDF_STATUS_E_NOMEM;
  6372. }
  6373. }
  6374. }
  6375. dp_global->tx_desc_pool_init_cnt[soc->arch_id]++;
  6376. return QDF_STATUS_SUCCESS;
  6377. }
  6378. static QDF_STATUS dp_tx_spcl_init_static_pools(struct dp_soc *soc, int num_pool,
  6379. uint32_t num_spcl_desc)
  6380. {
  6381. uint8_t i;
  6382. struct dp_global_context *dp_global;
  6383. dp_global = wlan_objmgr_get_global_ctx();
  6384. if (dp_global->spcl_tx_desc_pool_init_cnt[soc->arch_id] == 0) {
  6385. for (i = 0; i < num_pool; i++) {
  6386. if (dp_tx_desc_pool_init(soc, i, num_spcl_desc, true)) {
  6387. QDF_TRACE(QDF_MODULE_ID_DP,
  6388. QDF_TRACE_LEVEL_ERROR,
  6389. FL("Tx special Desc Pool init %d failed %pK"),
  6390. i, soc);
  6391. return QDF_STATUS_E_NOMEM;
  6392. }
  6393. }
  6394. }
  6395. dp_global->spcl_tx_desc_pool_init_cnt[soc->arch_id]++;
  6396. return QDF_STATUS_SUCCESS;
  6397. }
  6398. static void dp_tx_deinit_static_pools(struct dp_soc *soc, int num_pool)
  6399. {
  6400. uint8_t i;
  6401. struct dp_global_context *dp_global;
  6402. dp_global = wlan_objmgr_get_global_ctx();
  6403. dp_global->tx_desc_pool_init_cnt[soc->arch_id]--;
  6404. if (dp_global->tx_desc_pool_init_cnt[soc->arch_id] == 0) {
  6405. for (i = 0; i < num_pool; i++)
  6406. dp_tx_desc_pool_deinit(soc, i, false);
  6407. }
  6408. }
  6409. static void dp_tx_spcl_deinit_static_pools(struct dp_soc *soc, int num_pool)
  6410. {
  6411. uint8_t i;
  6412. struct dp_global_context *dp_global;
  6413. dp_global = wlan_objmgr_get_global_ctx();
  6414. dp_global->spcl_tx_desc_pool_init_cnt[soc->arch_id]--;
  6415. if (dp_global->spcl_tx_desc_pool_init_cnt[soc->arch_id] == 0) {
  6416. for (i = 0; i < num_pool; i++)
  6417. dp_tx_desc_pool_deinit(soc, i, true);
  6418. }
  6419. }
  6420. static void dp_tx_delete_static_pools(struct dp_soc *soc, int num_pool)
  6421. {
  6422. uint8_t i;
  6423. struct dp_global_context *dp_global;
  6424. dp_global = wlan_objmgr_get_global_ctx();
  6425. dp_global->tx_desc_pool_alloc_cnt[soc->arch_id]--;
  6426. if (dp_global->tx_desc_pool_alloc_cnt[soc->arch_id] == 0) {
  6427. for (i = 0; i < num_pool; i++)
  6428. dp_tx_desc_pool_free(soc, i, false);
  6429. }
  6430. }
  6431. static void dp_tx_spcl_delete_static_pools(struct dp_soc *soc, int num_pool)
  6432. {
  6433. uint8_t i;
  6434. struct dp_global_context *dp_global;
  6435. dp_global = wlan_objmgr_get_global_ctx();
  6436. dp_global->spcl_tx_desc_pool_alloc_cnt[soc->arch_id]--;
  6437. if (dp_global->spcl_tx_desc_pool_alloc_cnt[soc->arch_id] == 0) {
  6438. for (i = 0; i < num_pool; i++)
  6439. dp_tx_desc_pool_free(soc, i, true);
  6440. }
  6441. }
  6442. #endif /* !QCA_LL_TX_FLOW_CONTROL_V2 */
  6443. /**
  6444. * dp_tx_tso_cmn_desc_pool_deinit() - de-initialize TSO descriptors
  6445. * @soc: core txrx main context
  6446. * @num_pool: number of pools
  6447. *
  6448. */
  6449. static void dp_tx_tso_cmn_desc_pool_deinit(struct dp_soc *soc, uint8_t num_pool)
  6450. {
  6451. dp_tx_tso_desc_pool_deinit(soc, num_pool);
  6452. dp_tx_tso_num_seg_pool_deinit(soc, num_pool);
  6453. }
  6454. /**
  6455. * dp_tx_tso_cmn_desc_pool_free() - free TSO descriptors
  6456. * @soc: core txrx main context
  6457. * @num_pool: number of pools
  6458. *
  6459. */
  6460. static void dp_tx_tso_cmn_desc_pool_free(struct dp_soc *soc, uint8_t num_pool)
  6461. {
  6462. dp_tx_tso_desc_pool_free(soc, num_pool);
  6463. dp_tx_tso_num_seg_pool_free(soc, num_pool);
  6464. }
  6465. #ifndef WLAN_SOFTUMAC_SUPPORT
  6466. void dp_soc_tx_desc_sw_pools_free(struct dp_soc *soc)
  6467. {
  6468. uint8_t num_pool, num_ext_pool;
  6469. if (wlan_cfg_get_dp_soc_nss_cfg(soc->wlan_cfg_ctx))
  6470. return;
  6471. num_pool = wlan_cfg_get_num_tx_desc_pool(soc->wlan_cfg_ctx);
  6472. num_ext_pool = dp_get_ext_tx_desc_pool_num(soc);
  6473. dp_tx_tso_cmn_desc_pool_free(soc, num_pool);
  6474. dp_tx_ext_desc_pool_free(soc, num_ext_pool);
  6475. dp_tx_delete_static_pools(soc, num_pool);
  6476. dp_tx_spcl_delete_static_pools(soc, num_pool);
  6477. }
  6478. void dp_soc_tx_desc_sw_pools_deinit(struct dp_soc *soc)
  6479. {
  6480. uint8_t num_pool, num_ext_pool;
  6481. if (wlan_cfg_get_dp_soc_nss_cfg(soc->wlan_cfg_ctx))
  6482. return;
  6483. num_pool = wlan_cfg_get_num_tx_desc_pool(soc->wlan_cfg_ctx);
  6484. num_ext_pool = dp_get_ext_tx_desc_pool_num(soc);
  6485. dp_tx_flow_control_deinit(soc);
  6486. dp_tx_tso_cmn_desc_pool_deinit(soc, num_pool);
  6487. dp_tx_ext_desc_pool_deinit(soc, num_ext_pool);
  6488. dp_tx_deinit_static_pools(soc, num_pool);
  6489. dp_tx_spcl_deinit_static_pools(soc, num_pool);
  6490. }
  6491. #else
  6492. void dp_soc_tx_desc_sw_pools_free(struct dp_soc *soc)
  6493. {
  6494. uint8_t num_pool;
  6495. if (wlan_cfg_get_dp_soc_nss_cfg(soc->wlan_cfg_ctx))
  6496. return;
  6497. num_pool = wlan_cfg_get_num_tx_desc_pool(soc->wlan_cfg_ctx);
  6498. dp_tx_delete_static_pools(soc, num_pool);
  6499. dp_tx_spcl_delete_static_pools(soc, num_pool);
  6500. }
  6501. void dp_soc_tx_desc_sw_pools_deinit(struct dp_soc *soc)
  6502. {
  6503. uint8_t num_pool;
  6504. if (wlan_cfg_get_dp_soc_nss_cfg(soc->wlan_cfg_ctx))
  6505. return;
  6506. num_pool = wlan_cfg_get_num_tx_desc_pool(soc->wlan_cfg_ctx);
  6507. dp_tx_flow_control_deinit(soc);
  6508. dp_tx_deinit_static_pools(soc, num_pool);
  6509. dp_tx_spcl_deinit_static_pools(soc, num_pool);
  6510. }
  6511. #endif /*WLAN_SOFTUMAC_SUPPORT*/
  6512. /**
  6513. * dp_tx_tso_cmn_desc_pool_alloc() - TSO cmn desc pool allocator
  6514. * @soc: DP soc handle
  6515. * @num_pool: Number of pools
  6516. * @num_desc: Number of descriptors
  6517. *
  6518. * Reserve TSO descriptor buffers
  6519. *
  6520. * Return: QDF_STATUS_E_FAILURE on failure or
  6521. * QDF_STATUS_SUCCESS on success
  6522. */
  6523. static QDF_STATUS dp_tx_tso_cmn_desc_pool_alloc(struct dp_soc *soc,
  6524. uint8_t num_pool,
  6525. uint32_t num_desc)
  6526. {
  6527. if (dp_tx_tso_desc_pool_alloc(soc, num_pool, num_desc)) {
  6528. dp_err("TSO Desc Pool alloc %d failed %pK", num_pool, soc);
  6529. return QDF_STATUS_E_FAILURE;
  6530. }
  6531. if (dp_tx_tso_num_seg_pool_alloc(soc, num_pool, num_desc)) {
  6532. dp_err("TSO Num of seg Pool alloc %d failed %pK",
  6533. num_pool, soc);
  6534. return QDF_STATUS_E_FAILURE;
  6535. }
  6536. return QDF_STATUS_SUCCESS;
  6537. }
  6538. /**
  6539. * dp_tx_tso_cmn_desc_pool_init() - TSO cmn desc pool init
  6540. * @soc: DP soc handle
  6541. * @num_pool: Number of pools
  6542. * @num_desc: Number of descriptors
  6543. *
  6544. * Initialize TSO descriptor pools
  6545. *
  6546. * Return: QDF_STATUS_E_FAILURE on failure or
  6547. * QDF_STATUS_SUCCESS on success
  6548. */
  6549. static QDF_STATUS dp_tx_tso_cmn_desc_pool_init(struct dp_soc *soc,
  6550. uint8_t num_pool,
  6551. uint32_t num_desc)
  6552. {
  6553. if (dp_tx_tso_desc_pool_init(soc, num_pool, num_desc)) {
  6554. dp_err("TSO Desc Pool alloc %d failed %pK", num_pool, soc);
  6555. return QDF_STATUS_E_FAILURE;
  6556. }
  6557. if (dp_tx_tso_num_seg_pool_init(soc, num_pool, num_desc)) {
  6558. dp_err("TSO Num of seg Pool alloc %d failed %pK",
  6559. num_pool, soc);
  6560. return QDF_STATUS_E_FAILURE;
  6561. }
  6562. return QDF_STATUS_SUCCESS;
  6563. }
  6564. #ifndef WLAN_SOFTUMAC_SUPPORT
  6565. QDF_STATUS dp_soc_tx_desc_sw_pools_alloc(struct dp_soc *soc)
  6566. {
  6567. uint8_t num_pool, num_ext_pool;
  6568. uint32_t num_desc;
  6569. uint32_t num_spcl_desc;
  6570. uint32_t num_ext_desc;
  6571. if (wlan_cfg_get_dp_soc_nss_cfg(soc->wlan_cfg_ctx))
  6572. return QDF_STATUS_SUCCESS;
  6573. num_pool = wlan_cfg_get_num_tx_desc_pool(soc->wlan_cfg_ctx);
  6574. num_ext_pool = dp_get_ext_tx_desc_pool_num(soc);
  6575. num_desc = wlan_cfg_get_num_tx_desc(soc->wlan_cfg_ctx);
  6576. num_spcl_desc = wlan_cfg_get_num_tx_spl_desc(soc->wlan_cfg_ctx);
  6577. num_ext_desc = wlan_cfg_get_num_tx_ext_desc(soc->wlan_cfg_ctx);
  6578. dp_info("Tx Desc Alloc num_pool: %d descs: %d", num_pool, num_desc);
  6579. if ((num_pool > MAX_TXDESC_POOLS) ||
  6580. (num_ext_pool > MAX_TXDESC_POOLS) ||
  6581. (num_desc > WLAN_CFG_NUM_TX_DESC_MAX) ||
  6582. (num_spcl_desc > WLAN_CFG_NUM_TX_SPL_DESC_MAX))
  6583. goto fail1;
  6584. if (dp_tx_alloc_static_pools(soc, num_pool, num_desc))
  6585. goto fail1;
  6586. if (dp_tx_spcl_alloc_static_pools(soc, num_pool, num_spcl_desc))
  6587. goto fail2;
  6588. if (dp_tx_ext_desc_pool_alloc(soc, num_ext_pool, num_ext_desc))
  6589. goto fail3;
  6590. if (wlan_cfg_is_tso_desc_attach_defer(soc->wlan_cfg_ctx))
  6591. return QDF_STATUS_SUCCESS;
  6592. if (dp_tx_tso_cmn_desc_pool_alloc(soc, num_ext_pool, num_ext_desc))
  6593. goto fail4;
  6594. return QDF_STATUS_SUCCESS;
  6595. fail4:
  6596. dp_tx_ext_desc_pool_free(soc, num_ext_pool);
  6597. fail3:
  6598. dp_tx_spcl_delete_static_pools(soc, num_pool);
  6599. fail2:
  6600. dp_tx_delete_static_pools(soc, num_pool);
  6601. fail1:
  6602. return QDF_STATUS_E_RESOURCES;
  6603. }
  6604. QDF_STATUS dp_soc_tx_desc_sw_pools_init(struct dp_soc *soc)
  6605. {
  6606. uint8_t num_pool, num_ext_pool;
  6607. uint32_t num_desc;
  6608. uint32_t num_spcl_desc;
  6609. uint32_t num_ext_desc;
  6610. if (wlan_cfg_get_dp_soc_nss_cfg(soc->wlan_cfg_ctx))
  6611. return QDF_STATUS_SUCCESS;
  6612. num_pool = wlan_cfg_get_num_tx_desc_pool(soc->wlan_cfg_ctx);
  6613. num_ext_pool = dp_get_ext_tx_desc_pool_num(soc);
  6614. num_desc = wlan_cfg_get_num_tx_desc(soc->wlan_cfg_ctx);
  6615. num_spcl_desc = wlan_cfg_get_num_tx_spl_desc(soc->wlan_cfg_ctx);
  6616. num_ext_desc = wlan_cfg_get_num_tx_ext_desc(soc->wlan_cfg_ctx);
  6617. if (dp_tx_init_static_pools(soc, num_pool, num_desc))
  6618. goto fail1;
  6619. if (dp_tx_spcl_init_static_pools(soc, num_pool, num_spcl_desc))
  6620. goto fail2;
  6621. if (dp_tx_ext_desc_pool_init(soc, num_ext_pool, num_ext_desc))
  6622. goto fail3;
  6623. if (wlan_cfg_is_tso_desc_attach_defer(soc->wlan_cfg_ctx))
  6624. return QDF_STATUS_SUCCESS;
  6625. if (dp_tx_tso_cmn_desc_pool_init(soc, num_ext_pool, num_ext_desc))
  6626. goto fail4;
  6627. dp_tx_flow_control_init(soc);
  6628. soc->process_tx_status = CONFIG_PROCESS_TX_STATUS;
  6629. return QDF_STATUS_SUCCESS;
  6630. fail4:
  6631. dp_tx_ext_desc_pool_deinit(soc, num_ext_pool);
  6632. fail3:
  6633. dp_tx_spcl_deinit_static_pools(soc, num_pool);
  6634. fail2:
  6635. dp_tx_deinit_static_pools(soc, num_pool);
  6636. fail1:
  6637. return QDF_STATUS_E_RESOURCES;
  6638. }
  6639. #else
  6640. QDF_STATUS dp_soc_tx_desc_sw_pools_alloc(struct dp_soc *soc)
  6641. {
  6642. uint8_t num_pool;
  6643. uint32_t num_desc;
  6644. uint32_t num_spcl_desc;
  6645. if (wlan_cfg_get_dp_soc_nss_cfg(soc->wlan_cfg_ctx))
  6646. return QDF_STATUS_SUCCESS;
  6647. num_pool = wlan_cfg_get_num_tx_desc_pool(soc->wlan_cfg_ctx);
  6648. num_desc = wlan_cfg_get_num_tx_desc(soc->wlan_cfg_ctx);
  6649. num_spcl_desc = wlan_cfg_get_num_tx_spl_desc(soc->wlan_cfg_ctx);
  6650. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
  6651. "%s Tx Desc Alloc num_pool = %d, descs = %d",
  6652. __func__, num_pool, num_desc);
  6653. if ((num_pool > MAX_TXDESC_POOLS) ||
  6654. (num_desc > WLAN_CFG_NUM_TX_DESC_MAX) ||
  6655. (num_spcl_desc > WLAN_CFG_NUM_TX_SPL_DESC_MAX))
  6656. goto fail1;
  6657. if (dp_tx_alloc_static_pools(soc, num_pool, num_desc))
  6658. goto fail1;
  6659. if (dp_tx_spcl_alloc_static_pools(soc, num_pool, num_spcl_desc))
  6660. goto fail2;
  6661. return QDF_STATUS_SUCCESS;
  6662. fail2:
  6663. dp_tx_delete_static_pools(soc, num_pool);
  6664. fail1:
  6665. return QDF_STATUS_E_RESOURCES;
  6666. }
  6667. QDF_STATUS dp_soc_tx_desc_sw_pools_init(struct dp_soc *soc)
  6668. {
  6669. uint8_t num_pool;
  6670. uint32_t num_desc;
  6671. uint32_t num_spcl_desc;
  6672. if (wlan_cfg_get_dp_soc_nss_cfg(soc->wlan_cfg_ctx))
  6673. return QDF_STATUS_SUCCESS;
  6674. num_pool = wlan_cfg_get_num_tx_desc_pool(soc->wlan_cfg_ctx);
  6675. num_desc = wlan_cfg_get_num_tx_desc(soc->wlan_cfg_ctx);
  6676. num_spcl_desc = wlan_cfg_get_num_tx_spl_desc(soc->wlan_cfg_ctx);
  6677. if (dp_tx_init_static_pools(soc, num_pool, num_desc))
  6678. goto fail;
  6679. if (dp_tx_spcl_init_static_pools(soc, num_pool, num_spcl_desc))
  6680. goto fail1;
  6681. dp_tx_flow_control_init(soc);
  6682. soc->process_tx_status = CONFIG_PROCESS_TX_STATUS;
  6683. return QDF_STATUS_SUCCESS;
  6684. fail1:
  6685. dp_tx_deinit_static_pools(soc, num_pool);
  6686. fail:
  6687. return QDF_STATUS_E_RESOURCES;
  6688. }
  6689. #endif
  6690. QDF_STATUS dp_tso_soc_attach(struct cdp_soc_t *txrx_soc)
  6691. {
  6692. struct dp_soc *soc = (struct dp_soc *)txrx_soc;
  6693. uint8_t num_ext_desc_pool;
  6694. uint32_t num_ext_desc;
  6695. num_ext_desc_pool = dp_get_ext_tx_desc_pool_num(soc);
  6696. num_ext_desc = wlan_cfg_get_num_tx_ext_desc(soc->wlan_cfg_ctx);
  6697. if (dp_tx_tso_cmn_desc_pool_alloc(soc, num_ext_desc_pool, num_ext_desc))
  6698. return QDF_STATUS_E_FAILURE;
  6699. if (dp_tx_tso_cmn_desc_pool_init(soc, num_ext_desc_pool, num_ext_desc))
  6700. return QDF_STATUS_E_FAILURE;
  6701. return QDF_STATUS_SUCCESS;
  6702. }
  6703. QDF_STATUS dp_tso_soc_detach(struct cdp_soc_t *txrx_soc)
  6704. {
  6705. struct dp_soc *soc = (struct dp_soc *)txrx_soc;
  6706. uint8_t num_ext_desc_pool = dp_get_ext_tx_desc_pool_num(soc);
  6707. dp_tx_tso_cmn_desc_pool_deinit(soc, num_ext_desc_pool);
  6708. dp_tx_tso_cmn_desc_pool_free(soc, num_ext_desc_pool);
  6709. return QDF_STATUS_SUCCESS;
  6710. }
  6711. #ifdef CONFIG_DP_PKT_ADD_TIMESTAMP
  6712. void dp_pkt_add_timestamp(struct dp_vdev *vdev,
  6713. enum qdf_pkt_timestamp_index index, uint64_t time,
  6714. qdf_nbuf_t nbuf)
  6715. {
  6716. if (qdf_unlikely(qdf_is_dp_pkt_timestamp_enabled())) {
  6717. uint64_t tsf_time;
  6718. if (vdev->get_tsf_time) {
  6719. vdev->get_tsf_time(vdev->osif_vdev, time, &tsf_time);
  6720. qdf_add_dp_pkt_timestamp(nbuf, index, tsf_time);
  6721. }
  6722. }
  6723. }
  6724. void dp_pkt_get_timestamp(uint64_t *time)
  6725. {
  6726. if (qdf_unlikely(qdf_is_dp_pkt_timestamp_enabled()))
  6727. *time = qdf_get_log_timestamp();
  6728. }
  6729. #endif
  6730. #ifdef QCA_MULTIPASS_SUPPORT
  6731. void dp_tx_add_groupkey_metadata(struct dp_vdev *vdev,
  6732. struct dp_tx_msdu_info_s *msdu_info,
  6733. uint16_t group_key)
  6734. {
  6735. struct htt_tx_msdu_desc_ext2_t *meta_data =
  6736. (struct htt_tx_msdu_desc_ext2_t *)&msdu_info->meta_data[0];
  6737. qdf_mem_zero(meta_data, sizeof(struct htt_tx_msdu_desc_ext2_t));
  6738. /*
  6739. * When attempting to send a multicast packet with multi-passphrase,
  6740. * host shall add HTT EXT meta data "struct htt_tx_msdu_desc_ext2_t"
  6741. * ref htt.h indicating the group_id field in "key_flags" also having
  6742. * "valid_key_flags" as 1. Assign “key_flags = group_key_ix”.
  6743. */
  6744. HTT_TX_MSDU_EXT2_DESC_FLAG_VALID_KEY_FLAGS_SET(msdu_info->meta_data[0],
  6745. 1);
  6746. HTT_TX_MSDU_EXT2_DESC_KEY_FLAGS_SET(msdu_info->meta_data[2], group_key);
  6747. }
  6748. #if defined(WLAN_FEATURE_11BE_MLO) && defined(WLAN_MLO_MULTI_CHIP) && \
  6749. defined(WLAN_MCAST_MLO)
  6750. /**
  6751. * dp_tx_need_mcast_reinject() - If frame needs to be processed in reinject path
  6752. * @vdev: DP vdev handle
  6753. *
  6754. * Return: true if reinject handling is required else false
  6755. */
  6756. static inline bool
  6757. dp_tx_need_mcast_reinject(struct dp_vdev *vdev)
  6758. {
  6759. if (vdev->mlo_vdev && vdev->opmode == wlan_op_mode_ap)
  6760. return true;
  6761. return false;
  6762. }
  6763. #else
  6764. static inline bool
  6765. dp_tx_need_mcast_reinject(struct dp_vdev *vdev)
  6766. {
  6767. return false;
  6768. }
  6769. #endif
  6770. /**
  6771. * dp_tx_need_multipass_process() - If frame needs multipass phrase processing
  6772. * @soc: dp soc handle
  6773. * @vdev: DP vdev handle
  6774. * @buf: frame
  6775. * @vlan_id: vlan id of frame
  6776. *
  6777. * Return: whether peer is special or classic
  6778. */
  6779. static
  6780. uint8_t dp_tx_need_multipass_process(struct dp_soc *soc, struct dp_vdev *vdev,
  6781. qdf_nbuf_t buf, uint16_t *vlan_id)
  6782. {
  6783. struct dp_txrx_peer *txrx_peer = NULL;
  6784. struct dp_peer *peer = NULL;
  6785. qdf_ether_header_t *eh = (qdf_ether_header_t *)qdf_nbuf_data(buf);
  6786. struct vlan_ethhdr *veh = NULL;
  6787. bool not_vlan = ((vdev->tx_encap_type == htt_cmn_pkt_type_raw) ||
  6788. (htons(eh->ether_type) != ETH_P_8021Q));
  6789. if (qdf_unlikely(not_vlan))
  6790. return DP_VLAN_UNTAGGED;
  6791. veh = (struct vlan_ethhdr *)eh;
  6792. *vlan_id = (ntohs(veh->h_vlan_TCI) & VLAN_VID_MASK);
  6793. if (qdf_unlikely(DP_FRAME_IS_MULTICAST((eh)->ether_dhost))) {
  6794. /* look for handling of multicast packets in reinject path */
  6795. if (dp_tx_need_mcast_reinject(vdev))
  6796. return DP_VLAN_UNTAGGED;
  6797. qdf_spin_lock_bh(&vdev->mpass_peer_mutex);
  6798. TAILQ_FOREACH(txrx_peer, &vdev->mpass_peer_list,
  6799. mpass_peer_list_elem) {
  6800. if (*vlan_id == txrx_peer->vlan_id) {
  6801. qdf_spin_unlock_bh(&vdev->mpass_peer_mutex);
  6802. return DP_VLAN_TAGGED_MULTICAST;
  6803. }
  6804. }
  6805. qdf_spin_unlock_bh(&vdev->mpass_peer_mutex);
  6806. return DP_VLAN_UNTAGGED;
  6807. }
  6808. peer = dp_peer_find_hash_find(soc, eh->ether_dhost, 0, DP_VDEV_ALL,
  6809. DP_MOD_ID_TX_MULTIPASS);
  6810. if (qdf_unlikely(!peer))
  6811. return DP_VLAN_UNTAGGED;
  6812. /*
  6813. * Do not drop the frame when vlan_id doesn't match.
  6814. * Send the frame as it is.
  6815. */
  6816. if (*vlan_id == peer->txrx_peer->vlan_id) {
  6817. dp_peer_unref_delete(peer, DP_MOD_ID_TX_MULTIPASS);
  6818. return DP_VLAN_TAGGED_UNICAST;
  6819. }
  6820. dp_peer_unref_delete(peer, DP_MOD_ID_TX_MULTIPASS);
  6821. return DP_VLAN_UNTAGGED;
  6822. }
  6823. #ifndef WLAN_REPEATER_NOT_SUPPORTED
  6824. static inline void
  6825. dp_tx_multipass_send_pkt_to_repeater(struct dp_soc *soc, struct dp_vdev *vdev,
  6826. qdf_nbuf_t nbuf,
  6827. struct dp_tx_msdu_info_s *msdu_info)
  6828. {
  6829. qdf_nbuf_t nbuf_copy = NULL;
  6830. /* AP can have classic clients, special clients &
  6831. * classic repeaters.
  6832. * 1. Classic clients & special client:
  6833. * Remove vlan header, find corresponding group key
  6834. * index, fill in metaheader and enqueue multicast
  6835. * frame to TCL.
  6836. * 2. Classic repeater:
  6837. * Pass through to classic repeater with vlan tag
  6838. * intact without any group key index. Hardware
  6839. * will know which key to use to send frame to
  6840. * repeater.
  6841. */
  6842. nbuf_copy = qdf_nbuf_copy(nbuf);
  6843. /*
  6844. * Send multicast frame to special peers even
  6845. * if pass through to classic repeater fails.
  6846. */
  6847. if (nbuf_copy) {
  6848. struct dp_tx_msdu_info_s msdu_info_copy;
  6849. qdf_mem_zero(&msdu_info_copy, sizeof(msdu_info_copy));
  6850. msdu_info_copy.tid = HTT_TX_EXT_TID_INVALID;
  6851. msdu_info_copy.xmit_type =
  6852. qdf_nbuf_get_vdev_xmit_type(nbuf);
  6853. HTT_TX_MSDU_EXT2_DESC_FLAG_VALID_KEY_FLAGS_SET(msdu_info_copy.meta_data[0], 1);
  6854. nbuf_copy = dp_tx_send_msdu_single(vdev, nbuf_copy,
  6855. &msdu_info_copy,
  6856. HTT_INVALID_PEER, NULL);
  6857. if (nbuf_copy) {
  6858. qdf_nbuf_free(nbuf_copy);
  6859. dp_info_rl("nbuf_copy send failed");
  6860. }
  6861. }
  6862. }
  6863. #else
  6864. static inline void
  6865. dp_tx_multipass_send_pkt_to_repeater(struct dp_soc *soc, struct dp_vdev *vdev,
  6866. qdf_nbuf_t nbuf,
  6867. struct dp_tx_msdu_info_s *msdu_info)
  6868. {
  6869. }
  6870. #endif
  6871. bool dp_tx_multipass_process(struct dp_soc *soc, struct dp_vdev *vdev,
  6872. qdf_nbuf_t nbuf,
  6873. struct dp_tx_msdu_info_s *msdu_info)
  6874. {
  6875. uint16_t vlan_id = 0;
  6876. uint16_t group_key = 0;
  6877. uint8_t is_spcl_peer = DP_VLAN_UNTAGGED;
  6878. if (HTT_TX_MSDU_EXT2_DESC_FLAG_VALID_KEY_FLAGS_GET(msdu_info->meta_data[0]))
  6879. return true;
  6880. is_spcl_peer = dp_tx_need_multipass_process(soc, vdev, nbuf, &vlan_id);
  6881. if ((is_spcl_peer != DP_VLAN_TAGGED_MULTICAST) &&
  6882. (is_spcl_peer != DP_VLAN_TAGGED_UNICAST))
  6883. return true;
  6884. if (is_spcl_peer == DP_VLAN_TAGGED_UNICAST) {
  6885. dp_tx_remove_vlan_tag(vdev, nbuf);
  6886. return true;
  6887. }
  6888. dp_tx_multipass_send_pkt_to_repeater(soc, vdev, nbuf, msdu_info);
  6889. group_key = vdev->iv_vlan_map[vlan_id];
  6890. /*
  6891. * If group key is not installed, drop the frame.
  6892. */
  6893. if (!group_key)
  6894. return false;
  6895. dp_tx_remove_vlan_tag(vdev, nbuf);
  6896. dp_tx_add_groupkey_metadata(vdev, msdu_info, group_key);
  6897. msdu_info->exception_fw = 1;
  6898. return true;
  6899. }
  6900. #endif /* QCA_MULTIPASS_SUPPORT */