dp_rx.c 39 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410
  1. /*
  2. * Copyright (c) 2016-2017 The Linux Foundation. All rights reserved.
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for
  5. * any purpose with or without fee is hereby granted, provided that the
  6. * above copyright notice and this permission notice appear in all
  7. * copies.
  8. *
  9. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
  10. * WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
  11. * WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
  12. * AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
  13. * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
  14. * PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
  15. * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
  16. * PERFORMANCE OF THIS SOFTWARE.
  17. */
  18. #include "dp_types.h"
  19. #include "dp_rx.h"
  20. #include "dp_peer.h"
  21. #include "hal_rx.h"
  22. #include "hal_api.h"
  23. #include "qdf_nbuf.h"
  24. #include <ieee80211.h>
  25. #ifdef MESH_MODE_SUPPORT
  26. #include "if_meta_hdr.h"
  27. #endif
  28. #include "dp_internal.h"
  29. #include "dp_rx_mon.h"
  30. #ifdef RX_DESC_DEBUG_CHECK
  31. static inline void dp_rx_desc_prep(struct dp_rx_desc *rx_desc, qdf_nbuf_t nbuf)
  32. {
  33. rx_desc->magic = DP_RX_DESC_MAGIC;
  34. rx_desc->nbuf = nbuf;
  35. }
  36. #else
  37. static inline void dp_rx_desc_prep(struct dp_rx_desc *rx_desc, qdf_nbuf_t nbuf)
  38. {
  39. rx_desc->nbuf = nbuf;
  40. }
  41. #endif
  42. /*
  43. * dp_rx_buffers_replenish() - replenish rxdma ring with rx nbufs
  44. * called during dp rx initialization
  45. * and at the end of dp_rx_process.
  46. *
  47. * @soc: core txrx main context
  48. * @mac_id: mac_id which is one of 3 mac_ids
  49. * @dp_rxdma_srng: dp rxdma circular ring
  50. * @rx_desc_pool: Poiter to free Rx descriptor pool
  51. * @num_req_buffers: number of buffer to be replenished
  52. * @desc_list: list of descs if called from dp_rx_process
  53. * or NULL during dp rx initialization or out of buffer
  54. * interrupt.
  55. * @tail: tail of descs list
  56. * @owner: who owns the nbuf (host, NSS etc...)
  57. * Return: return success or failure
  58. */
  59. QDF_STATUS dp_rx_buffers_replenish(struct dp_soc *dp_soc, uint32_t mac_id,
  60. struct dp_srng *dp_rxdma_srng,
  61. struct rx_desc_pool *rx_desc_pool,
  62. uint32_t num_req_buffers,
  63. union dp_rx_desc_list_elem_t **desc_list,
  64. union dp_rx_desc_list_elem_t **tail,
  65. uint8_t owner)
  66. {
  67. uint32_t num_alloc_desc;
  68. uint16_t num_desc_to_free = 0;
  69. struct dp_pdev *dp_pdev = dp_soc->pdev_list[mac_id];
  70. uint32_t num_entries_avail;
  71. uint32_t count;
  72. int sync_hw_ptr = 1;
  73. qdf_dma_addr_t paddr;
  74. qdf_nbuf_t rx_netbuf;
  75. void *rxdma_ring_entry;
  76. union dp_rx_desc_list_elem_t *next;
  77. QDF_STATUS ret;
  78. void *rxdma_srng;
  79. rxdma_srng = dp_rxdma_srng->hal_srng;
  80. if (!rxdma_srng) {
  81. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  82. "rxdma srng not initialized");
  83. DP_STATS_INC(dp_pdev, replenish.rxdma_err, num_req_buffers);
  84. return QDF_STATUS_E_FAILURE;
  85. }
  86. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  87. "requested %d buffers for replenish", num_req_buffers);
  88. /*
  89. * if desc_list is NULL, allocate the descs from freelist
  90. */
  91. if (!(*desc_list)) {
  92. num_alloc_desc = dp_rx_get_free_desc_list(dp_soc, mac_id,
  93. rx_desc_pool,
  94. num_req_buffers,
  95. desc_list,
  96. tail);
  97. if (!num_alloc_desc) {
  98. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  99. "no free rx_descs in freelist");
  100. DP_STATS_INC(dp_pdev, err.desc_alloc_fail,
  101. num_req_buffers);
  102. return QDF_STATUS_E_NOMEM;
  103. }
  104. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  105. "%d rx desc allocated", num_alloc_desc);
  106. num_req_buffers = num_alloc_desc;
  107. }
  108. hal_srng_access_start(dp_soc->hal_soc, rxdma_srng);
  109. num_entries_avail = hal_srng_src_num_avail(dp_soc->hal_soc,
  110. rxdma_srng,
  111. sync_hw_ptr);
  112. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  113. "no of availble entries in rxdma ring: %d",
  114. num_entries_avail);
  115. if (num_entries_avail < num_req_buffers) {
  116. num_desc_to_free = num_req_buffers - num_entries_avail;
  117. num_req_buffers = num_entries_avail;
  118. }
  119. count = 0;
  120. while (count < num_req_buffers) {
  121. rx_netbuf = qdf_nbuf_alloc(dp_pdev->osif_pdev,
  122. RX_BUFFER_SIZE,
  123. RX_BUFFER_RESERVATION,
  124. RX_BUFFER_ALIGNMENT,
  125. FALSE);
  126. if (rx_netbuf == NULL) {
  127. DP_STATS_INC(dp_pdev, replenish.nbuf_alloc_fail, 1);
  128. continue;
  129. }
  130. ret = qdf_nbuf_map_single(dp_soc->osdev, rx_netbuf,
  131. QDF_DMA_BIDIRECTIONAL);
  132. if (ret == QDF_STATUS_E_FAILURE) {
  133. DP_STATS_INC(dp_pdev, replenish.map_err, 1);
  134. continue;
  135. }
  136. paddr = qdf_nbuf_get_frag_paddr(rx_netbuf, 0);
  137. /*
  138. * check if the physical address of nbuf->data is
  139. * less then 0x50000000 then free the nbuf and try
  140. * allocating new nbuf. We can try for 100 times.
  141. * this is a temp WAR till we fix it properly.
  142. */
  143. ret = check_x86_paddr(dp_soc, &rx_netbuf, &paddr, dp_pdev);
  144. if (ret == QDF_STATUS_E_FAILURE) {
  145. DP_STATS_INC(dp_pdev, replenish.x86_fail, 1);
  146. break;
  147. }
  148. count++;
  149. rxdma_ring_entry = hal_srng_src_get_next(dp_soc->hal_soc,
  150. rxdma_srng);
  151. next = (*desc_list)->next;
  152. dp_rx_desc_prep(&((*desc_list)->rx_desc), rx_netbuf);
  153. (*desc_list)->rx_desc.in_use = 1;
  154. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  155. "rx_netbuf=%p, buf=%p, paddr=0x%llx, cookie=%d\n",
  156. rx_netbuf, qdf_nbuf_data(rx_netbuf),
  157. (unsigned long long)paddr, (*desc_list)->rx_desc.cookie);
  158. hal_rxdma_buff_addr_info_set(rxdma_ring_entry, paddr,
  159. (*desc_list)->rx_desc.cookie,
  160. owner);
  161. *desc_list = next;
  162. }
  163. hal_srng_access_end(dp_soc->hal_soc, rxdma_srng);
  164. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  165. "successfully replenished %d buffers", num_req_buffers);
  166. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  167. "%d rx desc added back to free list", num_desc_to_free);
  168. DP_STATS_INC(dp_pdev, buf_freelist, num_desc_to_free);
  169. DP_STATS_INC_PKT(dp_pdev, replenish.pkts, num_req_buffers,
  170. (RX_BUFFER_SIZE * num_req_buffers));
  171. /*
  172. * add any available free desc back to the free list
  173. */
  174. if (*desc_list)
  175. dp_rx_add_desc_list_to_free_list(dp_soc, desc_list, tail,
  176. mac_id, rx_desc_pool);
  177. return QDF_STATUS_SUCCESS;
  178. }
  179. /*
  180. * dp_rx_deliver_raw() - process RAW mode pkts and hand over the
  181. * pkts to RAW mode simulation to
  182. * decapsulate the pkt.
  183. *
  184. * @vdev: vdev on which RAW mode is enabled
  185. * @nbuf_list: list of RAW pkts to process
  186. * @peer: peer object from which the pkt is rx
  187. *
  188. * Return: void
  189. */
  190. void
  191. dp_rx_deliver_raw(struct dp_vdev *vdev, qdf_nbuf_t nbuf_list,
  192. struct dp_peer *peer)
  193. {
  194. qdf_nbuf_t deliver_list_head = NULL;
  195. qdf_nbuf_t deliver_list_tail = NULL;
  196. qdf_nbuf_t nbuf;
  197. nbuf = nbuf_list;
  198. while (nbuf) {
  199. qdf_nbuf_t next = qdf_nbuf_next(nbuf);
  200. DP_RX_LIST_APPEND(deliver_list_head, deliver_list_tail, nbuf);
  201. DP_STATS_INC(vdev->pdev, rx_raw_pkts, 1);
  202. /*
  203. * reset the chfrag_start and chfrag_end bits in nbuf cb
  204. * as this is a non-amsdu pkt and RAW mode simulation expects
  205. * these bit s to be 0 for non-amsdu pkt.
  206. */
  207. if (qdf_nbuf_is_chfrag_start(nbuf) &&
  208. qdf_nbuf_is_chfrag_end(nbuf)) {
  209. qdf_nbuf_set_chfrag_start(nbuf, 0);
  210. qdf_nbuf_set_chfrag_end(nbuf, 0);
  211. }
  212. nbuf = next;
  213. }
  214. vdev->osif_rsim_rx_decap(vdev->osif_vdev, &deliver_list_head,
  215. &deliver_list_tail, (struct cdp_peer*) peer);
  216. vdev->osif_rx(vdev->osif_vdev, deliver_list_head);
  217. }
  218. #ifdef DP_LFR
  219. /*
  220. * In case of LFR, data of a new peer might be sent up
  221. * even before peer is added.
  222. */
  223. static inline struct dp_vdev *
  224. dp_get_vdev_from_peer(struct dp_soc *soc,
  225. uint16_t peer_id,
  226. struct dp_peer *peer,
  227. struct hal_rx_mpdu_desc_info mpdu_desc_info)
  228. {
  229. struct dp_vdev *vdev;
  230. uint8_t vdev_id;
  231. if (unlikely(!peer)) {
  232. if (peer_id != HTT_INVALID_PEER) {
  233. vdev_id = DP_PEER_METADATA_ID_GET(
  234. mpdu_desc_info.peer_meta_data);
  235. QDF_TRACE(QDF_MODULE_ID_DP,
  236. QDF_TRACE_LEVEL_ERROR,
  237. FL("PeerID %d not found use vdevID %d"),
  238. peer_id, vdev_id);
  239. vdev = dp_get_vdev_from_soc_vdev_id_wifi3(soc,
  240. vdev_id);
  241. } else {
  242. QDF_TRACE(QDF_MODULE_ID_DP,
  243. QDF_TRACE_LEVEL_ERROR,
  244. FL("Invalid PeerID %d"),
  245. peer_id);
  246. return NULL;
  247. }
  248. } else {
  249. vdev = peer->vdev;
  250. }
  251. return vdev;
  252. }
  253. /*
  254. * In case of LFR, this is an empty inline function
  255. */
  256. static inline void dp_rx_peer_validity_check(struct dp_peer *peer)
  257. {
  258. }
  259. #else
  260. static inline struct dp_vdev *
  261. dp_get_vdev_from_peer(struct dp_soc *soc,
  262. uint16_t peer_id,
  263. struct dp_peer *peer,
  264. struct hal_rx_mpdu_desc_info mpdu_desc_info)
  265. {
  266. if (unlikely(!peer)) {
  267. QDF_TRACE(QDF_MODULE_ID_DP,
  268. QDF_TRACE_LEVEL_ERROR,
  269. FL("Peer not found for peerID %d"),
  270. peer_id);
  271. return NULL;
  272. } else {
  273. return peer->vdev;
  274. }
  275. }
  276. /*
  277. * Assert if PEER is NULL
  278. */
  279. static inline void dp_rx_peer_validity_check(struct dp_peer *peer)
  280. {
  281. qdf_assert_always(peer);
  282. }
  283. #endif
  284. /**
  285. * dp_rx_intrabss_fwd() - Implements the Intra-BSS forwarding logic
  286. *
  287. * @soc: core txrx main context
  288. * @sa_peer : source peer entry
  289. * @rx_tlv_hdr : start address of rx tlvs
  290. * @nbuf : nbuf that has to be intrabss forwarded
  291. *
  292. * Return: bool: true if it is forwarded else false
  293. */
  294. static bool
  295. dp_rx_intrabss_fwd(struct dp_soc *soc,
  296. struct dp_peer *sa_peer,
  297. uint8_t *rx_tlv_hdr,
  298. qdf_nbuf_t nbuf)
  299. {
  300. uint16_t da_idx;
  301. uint16_t len;
  302. struct dp_peer *da_peer;
  303. struct dp_ast_entry *ast_entry;
  304. qdf_nbuf_t nbuf_copy;
  305. /* check if the destination peer is available in peer table
  306. * and also check if the source peer and destination peer
  307. * belong to the same vap and destination peer is not bss peer.
  308. */
  309. if ((hal_rx_msdu_end_da_is_valid_get(rx_tlv_hdr) &&
  310. !hal_rx_msdu_end_da_is_mcbc_get(rx_tlv_hdr))) {
  311. da_idx = hal_rx_msdu_end_da_idx_get(rx_tlv_hdr);
  312. ast_entry = soc->ast_table[da_idx];
  313. if (!ast_entry)
  314. return false;
  315. da_peer = ast_entry->peer;
  316. if (!da_peer)
  317. return false;
  318. if (da_peer->vdev == sa_peer->vdev && !da_peer->bss_peer) {
  319. memset(nbuf->cb, 0x0, sizeof(nbuf->cb));
  320. len = qdf_nbuf_len(nbuf);
  321. qdf_nbuf_set_ftype(nbuf, CB_FTYPE_INTRABSS_FWD);
  322. if (!dp_tx_send(sa_peer->vdev, nbuf)) {
  323. DP_STATS_INC_PKT(sa_peer, rx.intra_bss.pkts,
  324. 1, len);
  325. return true;
  326. } else {
  327. DP_STATS_INC_PKT(sa_peer, rx.intra_bss.fail, 1,
  328. len);
  329. return false;
  330. }
  331. }
  332. }
  333. /* if it is a broadcast pkt (eg: ARP) and it is not its own
  334. * source, then clone the pkt and send the cloned pkt for
  335. * intra BSS forwarding and original pkt up the network stack
  336. * Note: how do we handle multicast pkts. do we forward
  337. * all multicast pkts as is or let a higher layer module
  338. * like igmpsnoop decide whether to forward or not with
  339. * Mcast enhancement.
  340. */
  341. else if (qdf_unlikely((hal_rx_msdu_end_da_is_mcbc_get(rx_tlv_hdr) &&
  342. !sa_peer->bss_peer))) {
  343. nbuf_copy = qdf_nbuf_copy(nbuf);
  344. if (!nbuf_copy)
  345. return false;
  346. memset(nbuf_copy->cb, 0x0, sizeof(nbuf_copy->cb));
  347. len = qdf_nbuf_len(nbuf_copy);
  348. qdf_nbuf_set_ftype(nbuf_copy, CB_FTYPE_INTRABSS_FWD);
  349. if (dp_tx_send(sa_peer->vdev, nbuf_copy)) {
  350. DP_STATS_INC_PKT(sa_peer, rx.intra_bss.fail, 1, len);
  351. qdf_nbuf_free(nbuf_copy);
  352. } else
  353. DP_STATS_INC_PKT(sa_peer, rx.intra_bss.pkts, 1, len);
  354. }
  355. /* return false as we have to still send the original pkt
  356. * up the stack
  357. */
  358. return false;
  359. }
  360. #ifdef MESH_MODE_SUPPORT
  361. /**
  362. * dp_rx_fill_mesh_stats() - Fills the mesh per packet receive stats
  363. *
  364. * @vdev: DP Virtual device handle
  365. * @nbuf: Buffer pointer
  366. * @rx_tlv_hdr: start of rx tlv header
  367. *
  368. * This function allocated memory for mesh receive stats and fill the
  369. * required stats. Stores the memory address in skb cb.
  370. *
  371. * Return: void
  372. */
  373. static
  374. void dp_rx_fill_mesh_stats(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
  375. uint8_t *rx_tlv_hdr)
  376. {
  377. struct mesh_recv_hdr_s *rx_info = NULL;
  378. uint32_t pkt_type;
  379. uint32_t nss;
  380. uint32_t rate_mcs;
  381. uint32_t bw;
  382. /* fill recv mesh stats */
  383. rx_info = qdf_mem_malloc(sizeof(struct mesh_recv_hdr_s));
  384. /* upper layers are resposible to free this memory */
  385. if (rx_info == NULL) {
  386. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  387. "Memory allocation failed for mesh rx stats");
  388. DP_STATS_INC(vdev->pdev, mesh_mem_alloc, 1);
  389. return;
  390. }
  391. rx_info->rs_flags = MESH_RXHDR_VER1;
  392. if (qdf_nbuf_is_chfrag_start(nbuf))
  393. rx_info->rs_flags |= MESH_RX_FIRST_MSDU;
  394. if (qdf_nbuf_is_chfrag_end(nbuf))
  395. rx_info->rs_flags |= MESH_RX_LAST_MSDU;
  396. if (hal_rx_attn_msdu_get_is_decrypted(rx_tlv_hdr)) {
  397. rx_info->rs_flags |= MESH_RX_DECRYPTED;
  398. rx_info->rs_keyix = hal_rx_msdu_get_keyid(rx_tlv_hdr);
  399. }
  400. rx_info->rs_rssi = hal_rx_msdu_start_get_rssi(rx_tlv_hdr);
  401. rx_info->rs_channel = hal_rx_msdu_start_get_freq(rx_tlv_hdr);
  402. pkt_type = hal_rx_msdu_start_get_pkt_type(rx_tlv_hdr);
  403. rate_mcs = hal_rx_msdu_start_rate_mcs_get(rx_tlv_hdr);
  404. bw = hal_rx_msdu_start_bw_get(rx_tlv_hdr);
  405. nss = hal_rx_msdu_start_nss_get(rx_tlv_hdr);
  406. rx_info->rs_ratephy1 = rate_mcs | (nss << 0x8) | (pkt_type << 16) |
  407. (bw << 24);
  408. qdf_nbuf_set_fctx_type(nbuf, (void *)rx_info, CB_FTYPE_MESH_RX_INFO);
  409. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_DEBUG,
  410. FL("Mesh rx stats: flags %x, rssi %x, chn %x, rate %x, kix %x"),
  411. rx_info->rs_flags,
  412. rx_info->rs_rssi,
  413. rx_info->rs_channel,
  414. rx_info->rs_ratephy1,
  415. rx_info->rs_keyix);
  416. }
  417. /**
  418. * dp_rx_fill_mesh_stats() - Filters mesh unwanted packets
  419. *
  420. * @vdev: DP Virtual device handle
  421. * @nbuf: Buffer pointer
  422. * @rx_tlv_hdr: start of rx tlv header
  423. *
  424. * This checks if the received packet is matching any filter out
  425. * catogery and and drop the packet if it matches.
  426. *
  427. * Return: status(0 indicates drop, 1 indicate to no drop)
  428. */
  429. static inline
  430. QDF_STATUS dp_rx_filter_mesh_packets(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
  431. uint8_t *rx_tlv_hdr)
  432. {
  433. union dp_align_mac_addr mac_addr;
  434. if (qdf_unlikely(vdev->mesh_rx_filter)) {
  435. if (vdev->mesh_rx_filter & MESH_FILTER_OUT_FROMDS)
  436. if (hal_rx_mpdu_get_fr_ds(rx_tlv_hdr))
  437. return QDF_STATUS_SUCCESS;
  438. if (vdev->mesh_rx_filter & MESH_FILTER_OUT_TODS)
  439. if (hal_rx_mpdu_get_to_ds(rx_tlv_hdr))
  440. return QDF_STATUS_SUCCESS;
  441. if (vdev->mesh_rx_filter & MESH_FILTER_OUT_NODS)
  442. if (!hal_rx_mpdu_get_fr_ds(rx_tlv_hdr)
  443. && !hal_rx_mpdu_get_to_ds(rx_tlv_hdr))
  444. return QDF_STATUS_SUCCESS;
  445. if (vdev->mesh_rx_filter & MESH_FILTER_OUT_RA) {
  446. if (hal_rx_mpdu_get_addr1(rx_tlv_hdr,
  447. &mac_addr.raw[0]))
  448. return QDF_STATUS_E_FAILURE;
  449. if (!qdf_mem_cmp(&mac_addr.raw[0],
  450. &vdev->mac_addr.raw[0],
  451. DP_MAC_ADDR_LEN))
  452. return QDF_STATUS_SUCCESS;
  453. }
  454. if (vdev->mesh_rx_filter & MESH_FILTER_OUT_TA) {
  455. if (hal_rx_mpdu_get_addr2(rx_tlv_hdr,
  456. &mac_addr.raw[0]))
  457. return QDF_STATUS_E_FAILURE;
  458. if (!qdf_mem_cmp(&mac_addr.raw[0],
  459. &vdev->mac_addr.raw[0],
  460. DP_MAC_ADDR_LEN))
  461. return QDF_STATUS_SUCCESS;
  462. }
  463. }
  464. return QDF_STATUS_E_FAILURE;
  465. }
  466. #else
  467. static
  468. void dp_rx_fill_mesh_stats(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
  469. uint8_t *rx_tlv_hdr)
  470. {
  471. }
  472. static inline
  473. QDF_STATUS dp_rx_filter_mesh_packets(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
  474. uint8_t *rx_tlv_hdr)
  475. {
  476. return QDF_STATUS_E_FAILURE;
  477. }
  478. #endif
  479. #ifdef CONFIG_WIN
  480. /**
  481. * dp_rx_nac_filter(): Function to perform filtering of non-associated
  482. * clients
  483. * @pdev: DP pdev handle
  484. * @rx_pkt_hdr: Rx packet Header
  485. *
  486. * return: dp_vdev*
  487. */
  488. static
  489. struct dp_vdev *dp_rx_nac_filter(struct dp_pdev *pdev,
  490. uint8_t *rx_pkt_hdr)
  491. {
  492. struct ieee80211_frame *wh;
  493. struct dp_neighbour_peer *peer = NULL;
  494. wh = (struct ieee80211_frame *)rx_pkt_hdr;
  495. if ((wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) != IEEE80211_FC1_DIR_TODS)
  496. return NULL;
  497. qdf_spin_lock_bh(&pdev->neighbour_peer_mutex);
  498. TAILQ_FOREACH(peer, &pdev->neighbour_peers_list,
  499. neighbour_peer_list_elem) {
  500. if (qdf_mem_cmp(&peer->neighbour_peers_macaddr.raw[0],
  501. wh->i_addr2, DP_MAC_ADDR_LEN) == 0) {
  502. QDF_TRACE(
  503. QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
  504. FL("NAC configuration matched for mac-%2x:%2x:%2x:%2x:%2x:%2x"),
  505. peer->neighbour_peers_macaddr.raw[0],
  506. peer->neighbour_peers_macaddr.raw[1],
  507. peer->neighbour_peers_macaddr.raw[2],
  508. peer->neighbour_peers_macaddr.raw[3],
  509. peer->neighbour_peers_macaddr.raw[4],
  510. peer->neighbour_peers_macaddr.raw[5]);
  511. qdf_spin_unlock_bh(&pdev->neighbour_peer_mutex);
  512. return pdev->monitor_vdev;
  513. }
  514. }
  515. qdf_spin_unlock_bh(&pdev->neighbour_peer_mutex);
  516. return NULL;
  517. }
  518. /**
  519. * dp_rx_process_invalid_peer(): Function to pass invalid peer list to umac
  520. * @soc: DP SOC handle
  521. * @mpdu: mpdu for which peer is invalid
  522. *
  523. * return: integer type
  524. */
  525. uint8_t dp_rx_process_invalid_peer(struct dp_soc *soc, qdf_nbuf_t mpdu)
  526. {
  527. struct dp_invalid_peer_msg msg;
  528. struct dp_vdev *vdev = NULL;
  529. struct dp_pdev *pdev = NULL;
  530. struct ieee80211_frame *wh;
  531. uint8_t i;
  532. uint8_t *rx_pkt_hdr;
  533. rx_pkt_hdr = hal_rx_pkt_hdr_get(qdf_nbuf_data(mpdu));
  534. wh = (struct ieee80211_frame *)rx_pkt_hdr;
  535. if (!DP_FRAME_IS_DATA(wh)) {
  536. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  537. "NAWDS valid only for data frames");
  538. return 1;
  539. }
  540. if (qdf_nbuf_len(mpdu) < sizeof(struct ieee80211_frame)) {
  541. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  542. "Invalid nbuf length");
  543. return 1;
  544. }
  545. for (i = 0; i < MAX_PDEV_CNT; i++) {
  546. pdev = soc->pdev_list[i];
  547. if (!pdev) {
  548. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  549. "PDEV not found");
  550. continue;
  551. }
  552. if (pdev->filter_neighbour_peers) {
  553. /* Next Hop scenario not yet handle */
  554. vdev = dp_rx_nac_filter(pdev, rx_pkt_hdr);
  555. if (vdev) {
  556. dp_rx_mon_deliver(soc, i,
  557. soc->invalid_peer_head_msdu,
  558. soc->invalid_peer_tail_msdu);
  559. return 0;
  560. }
  561. }
  562. TAILQ_FOREACH(vdev, &pdev->vdev_list, vdev_list_elem) {
  563. if (qdf_mem_cmp(wh->i_addr1, vdev->mac_addr.raw,
  564. DP_MAC_ADDR_LEN) == 0) {
  565. goto out;
  566. }
  567. }
  568. }
  569. if (!vdev) {
  570. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  571. "VDEV not found");
  572. return 1;
  573. }
  574. out:
  575. msg.wh = wh;
  576. qdf_nbuf_pull_head(mpdu, RX_PKT_TLVS_LEN);
  577. msg.nbuf = mpdu;
  578. msg.vdev_id = vdev->vdev_id;
  579. if (pdev->soc->cdp_soc.ol_ops->rx_invalid_peer)
  580. return pdev->soc->cdp_soc.ol_ops->rx_invalid_peer(
  581. pdev->osif_pdev, &msg);
  582. return 0;
  583. }
  584. #else
  585. uint8_t dp_rx_process_invalid_peer(struct dp_soc *soc, qdf_nbuf_t mpdu)
  586. {
  587. return 0;
  588. }
  589. #endif
  590. #if defined(FEATURE_LRO)
  591. static void dp_rx_print_lro_info(uint8_t *rx_tlv)
  592. {
  593. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO,
  594. FL("----------------------RX DESC LRO----------------------\n"));
  595. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO,
  596. FL("lro_eligible 0x%x"), HAL_RX_TLV_GET_LRO_ELIGIBLE(rx_tlv));
  597. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO,
  598. FL("pure_ack 0x%x"), HAL_RX_TLV_GET_TCP_PURE_ACK(rx_tlv));
  599. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO,
  600. FL("chksum 0x%x"), HAL_RX_TLV_GET_TCP_CHKSUM(rx_tlv));
  601. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO,
  602. FL("TCP seq num 0x%x"), HAL_RX_TLV_GET_TCP_SEQ(rx_tlv));
  603. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO,
  604. FL("TCP ack num 0x%x"), HAL_RX_TLV_GET_TCP_ACK(rx_tlv));
  605. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO,
  606. FL("TCP window 0x%x"), HAL_RX_TLV_GET_TCP_WIN(rx_tlv));
  607. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO,
  608. FL("TCP protocol 0x%x"), HAL_RX_TLV_GET_TCP_PROTO(rx_tlv));
  609. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO,
  610. FL("TCP offset 0x%x"), HAL_RX_TLV_GET_TCP_OFFSET(rx_tlv));
  611. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO,
  612. FL("toeplitz 0x%x"), HAL_RX_TLV_GET_FLOW_ID_TOEPLITZ(rx_tlv));
  613. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO,
  614. FL("---------------------------------------------------------\n"));
  615. }
  616. /**
  617. * dp_rx_lro() - LRO related processing
  618. * @rx_tlv: TLV data extracted from the rx packet
  619. * @peer: destination peer of the msdu
  620. * @msdu: network buffer
  621. * @ctx: LRO context
  622. *
  623. * This function performs the LRO related processing of the msdu
  624. *
  625. * Return: true: LRO enabled false: LRO is not enabled
  626. */
  627. static void dp_rx_lro(uint8_t *rx_tlv, struct dp_peer *peer,
  628. qdf_nbuf_t msdu, qdf_lro_ctx_t ctx)
  629. {
  630. if (!peer || !peer->vdev || !peer->vdev->lro_enable) {
  631. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO,
  632. FL("no peer, no vdev or LRO disabled"));
  633. QDF_NBUF_CB_RX_LRO_ELIGIBLE(msdu) = 0;
  634. return;
  635. }
  636. qdf_assert(rx_tlv);
  637. dp_rx_print_lro_info(rx_tlv);
  638. QDF_NBUF_CB_RX_LRO_ELIGIBLE(msdu) =
  639. HAL_RX_TLV_GET_LRO_ELIGIBLE(rx_tlv);
  640. QDF_NBUF_CB_RX_TCP_PURE_ACK(msdu) =
  641. HAL_RX_TLV_GET_TCP_PURE_ACK(rx_tlv);
  642. QDF_NBUF_CB_RX_TCP_CHKSUM(msdu) =
  643. HAL_RX_TLV_GET_TCP_CHKSUM(rx_tlv);
  644. QDF_NBUF_CB_RX_TCP_SEQ_NUM(msdu) =
  645. HAL_RX_TLV_GET_TCP_SEQ(rx_tlv);
  646. QDF_NBUF_CB_RX_TCP_ACK_NUM(msdu) =
  647. HAL_RX_TLV_GET_TCP_ACK(rx_tlv);
  648. QDF_NBUF_CB_RX_TCP_WIN(msdu) =
  649. HAL_RX_TLV_GET_TCP_WIN(rx_tlv);
  650. QDF_NBUF_CB_RX_TCP_PROTO(msdu) =
  651. HAL_RX_TLV_GET_TCP_PROTO(rx_tlv);
  652. QDF_NBUF_CB_RX_IPV6_PROTO(msdu) =
  653. HAL_RX_TLV_GET_IPV6(rx_tlv);
  654. QDF_NBUF_CB_RX_TCP_OFFSET(msdu) =
  655. HAL_RX_TLV_GET_TCP_OFFSET(rx_tlv);
  656. QDF_NBUF_CB_RX_FLOW_ID_TOEPLITZ(msdu) =
  657. HAL_RX_TLV_GET_FLOW_ID_TOEPLITZ(rx_tlv);
  658. QDF_NBUF_CB_RX_LRO_CTX(msdu) = (unsigned char *)ctx;
  659. }
  660. #else
  661. static void dp_rx_lro(uint8_t *rx_tlv, struct dp_peer *peer,
  662. qdf_nbuf_t msdu, qdf_lro_ctx_t ctx)
  663. {
  664. }
  665. #endif
  666. static inline void dp_rx_adjust_nbuf_len(qdf_nbuf_t nbuf, uint16_t *mpdu_len)
  667. {
  668. if (*mpdu_len >= (RX_BUFFER_SIZE - RX_PKT_TLVS_LEN))
  669. qdf_nbuf_set_pktlen(nbuf, RX_BUFFER_SIZE);
  670. else
  671. qdf_nbuf_set_pktlen(nbuf, (*mpdu_len + RX_PKT_TLVS_LEN));
  672. *mpdu_len -= (RX_BUFFER_SIZE - RX_PKT_TLVS_LEN);
  673. }
  674. /**
  675. * dp_rx_sg_create() - create a frag_list for MSDUs which are spread across
  676. * multiple nbufs.
  677. * @nbuf: nbuf which can may be part of frag_list.
  678. * @rx_tlv_hdr: pointer to the start of RX TLV headers.
  679. * @mpdu_len: mpdu length.
  680. * @is_first_frag: is this the first nbuf in the fragmented MSDU.
  681. * @frag_list_len: length of all the fragments combined.
  682. * @head_frag_nbuf: parent nbuf
  683. * @frag_list_head: pointer to the first nbuf in the frag_list.
  684. * @frag_list_tail: pointer to the last nbuf in the frag_list.
  685. *
  686. * This function implements the creation of RX frag_list for cases
  687. * where an MSDU is spread across multiple nbufs.
  688. *
  689. */
  690. void dp_rx_sg_create(qdf_nbuf_t nbuf, uint8_t *rx_tlv_hdr,
  691. uint16_t *mpdu_len, bool *is_first_frag,
  692. uint16_t *frag_list_len, qdf_nbuf_t *head_frag_nbuf,
  693. qdf_nbuf_t *frag_list_head, qdf_nbuf_t *frag_list_tail)
  694. {
  695. if (qdf_unlikely(qdf_nbuf_is_chfrag_cont(nbuf))) {
  696. if (!(*is_first_frag)) {
  697. *is_first_frag = 1;
  698. qdf_nbuf_set_chfrag_start(nbuf, 1);
  699. *mpdu_len = hal_rx_msdu_start_msdu_len_get(rx_tlv_hdr);
  700. dp_rx_adjust_nbuf_len(nbuf, mpdu_len);
  701. *head_frag_nbuf = nbuf;
  702. } else {
  703. dp_rx_adjust_nbuf_len(nbuf, mpdu_len);
  704. qdf_nbuf_pull_head(nbuf, RX_PKT_TLVS_LEN);
  705. *frag_list_len += qdf_nbuf_len(nbuf);
  706. DP_RX_LIST_APPEND(*frag_list_head,
  707. *frag_list_tail,
  708. nbuf);
  709. }
  710. } else {
  711. if (qdf_unlikely(*is_first_frag)) {
  712. qdf_nbuf_set_chfrag_start(nbuf, 0);
  713. dp_rx_adjust_nbuf_len(nbuf, mpdu_len);
  714. qdf_nbuf_pull_head(nbuf,
  715. RX_PKT_TLVS_LEN);
  716. *frag_list_len += qdf_nbuf_len(nbuf);
  717. DP_RX_LIST_APPEND(*frag_list_head,
  718. *frag_list_tail,
  719. nbuf);
  720. qdf_nbuf_append_ext_list(*head_frag_nbuf,
  721. *frag_list_head,
  722. *frag_list_len);
  723. *is_first_frag = 0;
  724. return;
  725. }
  726. *head_frag_nbuf = nbuf;
  727. }
  728. }
  729. /**
  730. * dp_rx_process() - Brain of the Rx processing functionality
  731. * Called from the bottom half (tasklet/NET_RX_SOFTIRQ)
  732. * @soc: core txrx main context
  733. * @hal_ring: opaque pointer to the HAL Rx Ring, which will be serviced
  734. * @quota: No. of units (packets) that can be serviced in one shot.
  735. *
  736. * This function implements the core of Rx functionality. This is
  737. * expected to handle only non-error frames.
  738. *
  739. * Return: uint32_t: No. of elements processed
  740. */
  741. uint32_t
  742. dp_rx_process(struct dp_intr *int_ctx, void *hal_ring, uint32_t quota)
  743. {
  744. void *hal_soc;
  745. void *ring_desc;
  746. struct dp_rx_desc *rx_desc = NULL;
  747. qdf_nbuf_t nbuf;
  748. union dp_rx_desc_list_elem_t *head[MAX_PDEV_CNT] = { NULL };
  749. union dp_rx_desc_list_elem_t *tail[MAX_PDEV_CNT] = { NULL };
  750. uint32_t rx_bufs_used = 0, rx_buf_cookie, l2_hdr_offset;
  751. uint16_t msdu_len;
  752. uint16_t peer_id;
  753. struct dp_peer *peer = NULL;
  754. struct dp_vdev *vdev = NULL;
  755. struct dp_vdev *vdev_list[WLAN_UMAC_PSOC_MAX_VDEVS] = { NULL };
  756. uint32_t pkt_len;
  757. struct hal_rx_mpdu_desc_info mpdu_desc_info;
  758. struct hal_rx_msdu_desc_info msdu_desc_info;
  759. enum hal_reo_error_status error;
  760. uint32_t peer_mdata;
  761. uint8_t *rx_tlv_hdr;
  762. uint32_t rx_bufs_reaped[MAX_PDEV_CNT] = { 0 };
  763. uint32_t sgi, mcs, tid, nss, bw, reception_type, pkt_type;
  764. uint64_t vdev_map = 0;
  765. uint8_t mac_id;
  766. uint16_t i, vdev_cnt = 0;
  767. uint32_t ampdu_flag, amsdu_flag;
  768. struct ether_header *eh;
  769. struct dp_pdev *pdev;
  770. struct dp_srng *dp_rxdma_srng;
  771. struct rx_desc_pool *rx_desc_pool;
  772. struct dp_soc *soc = int_ctx->soc;
  773. uint8_t ring_id;
  774. uint8_t core_id;
  775. bool is_first_frag = 0;
  776. uint16_t mpdu_len = 0;
  777. qdf_nbuf_t head_frag_nbuf = NULL;
  778. qdf_nbuf_t frag_list_head = NULL;
  779. qdf_nbuf_t frag_list_tail = NULL;
  780. uint16_t frag_list_len = 0;
  781. DP_HIST_INIT();
  782. /* Debug -- Remove later */
  783. qdf_assert(soc && hal_ring);
  784. hal_soc = soc->hal_soc;
  785. /* Debug -- Remove later */
  786. qdf_assert(hal_soc);
  787. if (qdf_unlikely(hal_srng_access_start(hal_soc, hal_ring))) {
  788. /*
  789. * Need API to convert from hal_ring pointer to
  790. * Ring Type / Ring Id combo
  791. */
  792. DP_STATS_INC(soc, rx.err.hal_ring_access_fail, 1);
  793. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  794. FL("HAL RING Access Failed -- %p"), hal_ring);
  795. hal_srng_access_end(hal_soc, hal_ring);
  796. goto done;
  797. }
  798. /*
  799. * start reaping the buffers from reo ring and queue
  800. * them in per vdev queue.
  801. * Process the received pkts in a different per vdev loop.
  802. */
  803. while (qdf_likely((ring_desc =
  804. hal_srng_dst_get_next(hal_soc, hal_ring))
  805. && quota)) {
  806. error = HAL_RX_ERROR_STATUS_GET(ring_desc);
  807. ring_id = hal_srng_ring_id_get(hal_ring);
  808. if (qdf_unlikely(error == HAL_REO_ERROR_DETECTED)) {
  809. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  810. FL("HAL RING 0x%p:error %d"), hal_ring, error);
  811. DP_STATS_INC(soc, rx.err.hal_reo_error[ring_id], 1);
  812. /* Don't know how to deal with this -- assert */
  813. qdf_assert(0);
  814. }
  815. rx_buf_cookie = HAL_RX_REO_BUF_COOKIE_GET(ring_desc);
  816. rx_desc = dp_rx_cookie_2_va_rxdma_buf(soc, rx_buf_cookie);
  817. qdf_assert(rx_desc);
  818. rx_bufs_reaped[rx_desc->pool_id]++;
  819. /* TODO */
  820. /*
  821. * Need a separate API for unmapping based on
  822. * phyiscal address
  823. */
  824. qdf_nbuf_unmap_single(soc->osdev, rx_desc->nbuf,
  825. QDF_DMA_BIDIRECTIONAL);
  826. core_id = smp_processor_id();
  827. DP_STATS_INC(soc, rx.ring_packets[core_id][ring_id], 1);
  828. /* Get MPDU DESC info */
  829. hal_rx_mpdu_desc_info_get(ring_desc, &mpdu_desc_info);
  830. peer_id = DP_PEER_METADATA_PEER_ID_GET(
  831. mpdu_desc_info.peer_meta_data);
  832. hal_rx_mpdu_peer_meta_data_set(qdf_nbuf_data(rx_desc->nbuf),
  833. mpdu_desc_info.peer_meta_data);
  834. peer = dp_peer_find_by_id(soc, peer_id);
  835. vdev = dp_get_vdev_from_peer(soc, peer_id, peer,
  836. mpdu_desc_info);
  837. if (!vdev) {
  838. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  839. FL("vdev is NULL"));
  840. DP_STATS_INC(soc, rx.err.invalid_vdev, 1);
  841. qdf_nbuf_free(rx_desc->nbuf);
  842. goto fail;
  843. }
  844. if (!((vdev_map >> vdev->vdev_id) & 1)) {
  845. vdev_map |= 1 << vdev->vdev_id;
  846. vdev_list[vdev_cnt] = vdev;
  847. vdev_cnt++;
  848. }
  849. /* Get MSDU DESC info */
  850. hal_rx_msdu_desc_info_get(ring_desc, &msdu_desc_info);
  851. /*
  852. * save msdu flags first, last and continuation msdu in
  853. * nbuf->cb
  854. */
  855. if (msdu_desc_info.msdu_flags & HAL_MSDU_F_FIRST_MSDU_IN_MPDU)
  856. qdf_nbuf_set_chfrag_start(rx_desc->nbuf, 1);
  857. if (msdu_desc_info.msdu_flags & HAL_MSDU_F_MSDU_CONTINUATION)
  858. qdf_nbuf_set_chfrag_cont(rx_desc->nbuf, 1);
  859. if (msdu_desc_info.msdu_flags & HAL_MSDU_F_LAST_MSDU_IN_MPDU)
  860. qdf_nbuf_set_chfrag_end(rx_desc->nbuf, 1);
  861. DP_STATS_INC_PKT(peer, rx.rcvd_reo[ring_id], 1,
  862. qdf_nbuf_len(rx_desc->nbuf));
  863. ampdu_flag = (mpdu_desc_info.mpdu_flags &
  864. HAL_MPDU_F_AMPDU_FLAG);
  865. DP_STATS_INCC(peer, rx.ampdu_cnt, 1, ampdu_flag);
  866. DP_STATS_INCC(peer, rx.non_ampdu_cnt, 1, !(ampdu_flag));
  867. hal_rx_msdu_desc_info_get(ring_desc, &msdu_desc_info);
  868. amsdu_flag = ((msdu_desc_info.msdu_flags &
  869. HAL_MSDU_F_FIRST_MSDU_IN_MPDU) &&
  870. (msdu_desc_info.msdu_flags &
  871. HAL_MSDU_F_LAST_MSDU_IN_MPDU));
  872. DP_STATS_INCC(peer, rx.non_amsdu_cnt, 1,
  873. amsdu_flag);
  874. DP_STATS_INCC(peer, rx.amsdu_cnt, 1,
  875. !(amsdu_flag));
  876. DP_HIST_PACKET_COUNT_INC(vdev->pdev->pdev_id);
  877. qdf_nbuf_queue_add(&vdev->rxq, rx_desc->nbuf);
  878. fail:
  879. /*
  880. * if continuation bit is set then we have MSDU spread
  881. * across multiple buffers, let us not decrement quota
  882. * till we reap all buffers of that MSDU.
  883. */
  884. if (qdf_likely(!qdf_nbuf_is_chfrag_cont(rx_desc->nbuf)))
  885. quota -= 1;
  886. dp_rx_add_to_free_desc_list(&head[rx_desc->pool_id],
  887. &tail[rx_desc->pool_id],
  888. rx_desc);
  889. }
  890. done:
  891. hal_srng_access_end(hal_soc, hal_ring);
  892. /* Update histogram statistics by looping through pdev's */
  893. DP_RX_HIST_STATS_PER_PDEV();
  894. for (mac_id = 0; mac_id < MAX_PDEV_CNT; mac_id++) {
  895. /*
  896. * continue with next mac_id if no pkts were reaped
  897. * from that pool
  898. */
  899. if (!rx_bufs_reaped[mac_id])
  900. continue;
  901. pdev = soc->pdev_list[mac_id];
  902. dp_rxdma_srng = &pdev->rx_refill_buf_ring;
  903. rx_desc_pool = &soc->rx_desc_buf[mac_id];
  904. dp_rx_buffers_replenish(soc, mac_id, dp_rxdma_srng,
  905. rx_desc_pool, rx_bufs_reaped[mac_id],
  906. &head[mac_id], &tail[mac_id],
  907. HAL_RX_BUF_RBM_SW3_BM);
  908. }
  909. for (i = 0; i < vdev_cnt; i++) {
  910. qdf_nbuf_t deliver_list_head = NULL;
  911. qdf_nbuf_t deliver_list_tail = NULL;
  912. vdev = vdev_list[i];
  913. while ((nbuf = qdf_nbuf_queue_remove(&vdev->rxq))) {
  914. rx_tlv_hdr = qdf_nbuf_data(nbuf);
  915. eh = (struct ether_header *)qdf_nbuf_data(nbuf);
  916. /*
  917. * Check if DMA completed -- msdu_done is the last bit
  918. * to be written
  919. */
  920. if (!hal_rx_attn_msdu_done_get(rx_tlv_hdr)) {
  921. QDF_TRACE(QDF_MODULE_ID_DP,
  922. QDF_TRACE_LEVEL_ERROR,
  923. FL("MSDU DONE failure"));
  924. DP_STATS_INC(vdev->pdev, dropped.msdu_not_done,
  925. 1);
  926. hal_rx_dump_pkt_tlvs(rx_tlv_hdr,
  927. QDF_TRACE_LEVEL_INFO);
  928. qdf_assert(0);
  929. }
  930. /*
  931. * The below condition happens when an MSDU is spread
  932. * across multiple buffers. This can happen in two cases
  933. * 1. The nbuf size is smaller then the received msdu.
  934. * ex: we have set the nbuf size to 2048 during
  935. * nbuf_alloc. but we received an msdu which is
  936. * 2304 bytes in size then this msdu is spread
  937. * across 2 nbufs.
  938. *
  939. * 2. AMSDUs when RAW mode is enabled.
  940. * ex: 1st MSDU is in 1st nbuf and 2nd MSDU is spread
  941. * across 1st nbuf and 2nd nbuf and last MSDU is
  942. * spread across 2nd nbuf and 3rd nbuf.
  943. *
  944. * for these scenarios let us create a skb frag_list and
  945. * append these buffers till the last MSDU of the AMSDU
  946. */
  947. if (qdf_unlikely(vdev->rx_decap_type ==
  948. htt_cmn_pkt_type_raw)) {
  949. dp_rx_sg_create(nbuf, rx_tlv_hdr, &mpdu_len,
  950. &is_first_frag, &frag_list_len,
  951. &head_frag_nbuf,
  952. &frag_list_head,
  953. &frag_list_tail);
  954. if (is_first_frag)
  955. continue;
  956. else {
  957. nbuf = head_frag_nbuf;
  958. rx_tlv_hdr = qdf_nbuf_data(nbuf);
  959. }
  960. }
  961. peer_mdata = hal_rx_mpdu_peer_meta_data_get(rx_tlv_hdr);
  962. peer_id = DP_PEER_METADATA_PEER_ID_GET(peer_mdata);
  963. peer = dp_peer_find_by_id(soc, peer_id);
  964. /*
  965. * This is a redundant sanity check, Ideally peer
  966. * should never be NULL here. if for any reason it
  967. * is NULL we will assert.
  968. * Do nothing for LFR case.
  969. */
  970. dp_rx_peer_validity_check(peer);
  971. if (qdf_unlikely(peer->bss_peer)) {
  972. QDF_TRACE(QDF_MODULE_ID_DP,
  973. QDF_TRACE_LEVEL_INFO,
  974. FL("received pkt with same src MAC"));
  975. DP_STATS_INC(vdev->pdev, dropped.mec, 1);
  976. /* Drop & free packet */
  977. qdf_nbuf_free(nbuf);
  978. /* Statistics */
  979. continue;
  980. }
  981. pdev = vdev->pdev;
  982. if (qdf_likely(
  983. !hal_rx_attn_tcp_udp_cksum_fail_get(rx_tlv_hdr)
  984. &&
  985. !hal_rx_attn_ip_cksum_fail_get(rx_tlv_hdr))) {
  986. qdf_nbuf_rx_cksum_t cksum = {0};
  987. cksum.l4_result =
  988. QDF_NBUF_RX_CKSUM_TCP_UDP_UNNECESSARY;
  989. qdf_nbuf_set_rx_cksum(nbuf, &cksum);
  990. }
  991. sgi = hal_rx_msdu_start_sgi_get(rx_tlv_hdr);
  992. mcs = hal_rx_msdu_start_rate_mcs_get(rx_tlv_hdr);
  993. tid = hal_rx_mpdu_start_tid_get(rx_tlv_hdr);
  994. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
  995. "%s: %d, SGI: %d, tid: %d",
  996. __func__, __LINE__, sgi, tid);
  997. bw = hal_rx_msdu_start_bw_get(rx_tlv_hdr);
  998. reception_type = hal_rx_msdu_start_reception_type_get(
  999. rx_tlv_hdr);
  1000. nss = hal_rx_msdu_start_nss_get(rx_tlv_hdr);
  1001. pkt_type = hal_rx_msdu_start_get_pkt_type(rx_tlv_hdr);
  1002. DP_STATS_INC(vdev->pdev, rx.bw[bw], 1);
  1003. DP_STATS_INC(vdev->pdev,
  1004. rx.reception_type[reception_type], 1);
  1005. DP_STATS_INCC(vdev->pdev, rx.nss[nss], 1,
  1006. ((reception_type == REPT_MU_MIMO) ||
  1007. (reception_type == REPT_MU_OFDMA_MIMO))
  1008. );
  1009. DP_STATS_INC(peer, rx.sgi_count[sgi], 1);
  1010. DP_STATS_INCC(peer, rx.err.mic_err, 1,
  1011. hal_rx_mpdu_end_mic_err_get(
  1012. rx_tlv_hdr));
  1013. DP_STATS_INCC(peer, rx.err.decrypt_err, 1,
  1014. hal_rx_mpdu_end_decrypt_err_get(
  1015. rx_tlv_hdr));
  1016. DP_STATS_INC(peer, rx.wme_ac_type[TID_TO_WME_AC(tid)],
  1017. 1);
  1018. DP_STATS_INC(peer, rx.bw[bw], 1);
  1019. DP_STATS_INC(peer, rx.reception_type[reception_type],
  1020. 1);
  1021. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].
  1022. mcs_count[MAX_MCS], 1,
  1023. ((mcs >= MAX_MCS_11A) && (pkt_type
  1024. == DOT11_A)));
  1025. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].
  1026. mcs_count[mcs], 1,
  1027. ((mcs <= MAX_MCS_11A) && (pkt_type
  1028. == DOT11_A)));
  1029. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].
  1030. mcs_count[MAX_MCS], 1,
  1031. ((mcs >= MAX_MCS_11B)
  1032. && (pkt_type == DOT11_B)));
  1033. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].
  1034. mcs_count[mcs], 1,
  1035. ((mcs <= MAX_MCS_11B)
  1036. && (pkt_type == DOT11_B)));
  1037. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].
  1038. mcs_count[MAX_MCS], 1,
  1039. ((mcs >= MAX_MCS_11A)
  1040. && (pkt_type == DOT11_N)));
  1041. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].
  1042. mcs_count[mcs], 1,
  1043. ((mcs <= MAX_MCS_11A)
  1044. && (pkt_type == DOT11_N)));
  1045. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].
  1046. mcs_count[MAX_MCS], 1,
  1047. ((mcs >= MAX_MCS_11AC)
  1048. && (pkt_type == DOT11_AC)));
  1049. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].
  1050. mcs_count[mcs], 1,
  1051. ((mcs <= MAX_MCS_11AC)
  1052. && (pkt_type == DOT11_AC)));
  1053. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].
  1054. mcs_count[MAX_MCS], 1,
  1055. ((mcs >= (MAX_MCS-1))
  1056. && (pkt_type == DOT11_AX)));
  1057. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].
  1058. mcs_count[mcs], 1,
  1059. ((mcs <= (MAX_MCS-1))
  1060. && (pkt_type == DOT11_AX)));
  1061. /*
  1062. * HW structures call this L3 header padding --
  1063. * even though this is actually the offset from
  1064. * the buffer beginning where the L2 header
  1065. * begins.
  1066. */
  1067. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
  1068. FL("rxhash: flow id toeplitz: 0x%x\n"),
  1069. hal_rx_msdu_start_toeplitz_get(rx_tlv_hdr));
  1070. l2_hdr_offset =
  1071. hal_rx_msdu_end_l3_hdr_padding_get(rx_tlv_hdr);
  1072. msdu_len = hal_rx_msdu_start_msdu_len_get(rx_tlv_hdr);
  1073. pkt_len = msdu_len + l2_hdr_offset + RX_PKT_TLVS_LEN;
  1074. if (unlikely(qdf_nbuf_get_ext_list(nbuf)))
  1075. qdf_nbuf_pull_head(nbuf, RX_PKT_TLVS_LEN);
  1076. else {
  1077. qdf_nbuf_set_pktlen(nbuf, pkt_len);
  1078. qdf_nbuf_pull_head(nbuf,
  1079. RX_PKT_TLVS_LEN +
  1080. l2_hdr_offset);
  1081. }
  1082. if (qdf_unlikely(vdev->mesh_vdev)) {
  1083. if (dp_rx_filter_mesh_packets(vdev, nbuf,
  1084. rx_tlv_hdr)
  1085. == QDF_STATUS_SUCCESS) {
  1086. QDF_TRACE(QDF_MODULE_ID_DP,
  1087. QDF_TRACE_LEVEL_INFO_MED,
  1088. FL("mesh pkt filtered"));
  1089. DP_STATS_INC(vdev->pdev, dropped.mesh_filter,
  1090. 1);
  1091. qdf_nbuf_free(nbuf);
  1092. continue;
  1093. }
  1094. dp_rx_fill_mesh_stats(vdev, nbuf, rx_tlv_hdr);
  1095. }
  1096. #ifdef QCA_WIFI_NAPIER_EMULATION_DBG /* Debug code, remove later */
  1097. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1098. "p_id %d msdu_len %d hdr_off %d",
  1099. peer_id, msdu_len, l2_hdr_offset);
  1100. print_hex_dump(KERN_ERR,
  1101. "\t Pkt Data:", DUMP_PREFIX_NONE, 32, 4,
  1102. qdf_nbuf_data(nbuf), 128, false);
  1103. #endif /* NAPIER_EMULATION */
  1104. if (qdf_likely(vdev->rx_decap_type ==
  1105. htt_cmn_pkt_type_ethernet) &&
  1106. (qdf_likely(!vdev->mesh_vdev))) {
  1107. /* WDS Source Port Learning */
  1108. if (qdf_likely(vdev->wds_enabled))
  1109. dp_rx_wds_srcport_learn(soc,
  1110. rx_tlv_hdr,
  1111. peer,
  1112. nbuf);
  1113. /* Intrabss-fwd */
  1114. if ((vdev->opmode != wlan_op_mode_sta) &&
  1115. !vdev->nawds_enabled)
  1116. if (dp_rx_intrabss_fwd(soc,
  1117. peer,
  1118. rx_tlv_hdr,
  1119. nbuf))
  1120. continue; /* Get next desc */
  1121. }
  1122. rx_bufs_used++;
  1123. dp_rx_lro(rx_tlv_hdr, peer, nbuf, int_ctx->lro_ctx);
  1124. DP_RX_LIST_APPEND(deliver_list_head,
  1125. deliver_list_tail,
  1126. nbuf);
  1127. DP_STATS_INCC_PKT(peer, rx.multicast, 1, pkt_len,
  1128. hal_rx_msdu_end_da_is_mcbc_get(
  1129. rx_tlv_hdr));
  1130. DP_STATS_INC_PKT(peer, rx.to_stack, 1,
  1131. pkt_len);
  1132. if ((pdev->enhanced_stats_en) && likely(peer) &&
  1133. hal_rx_attn_first_mpdu_get(rx_tlv_hdr)) {
  1134. if (soc->cdp_soc.ol_ops->update_dp_stats) {
  1135. soc->cdp_soc.ol_ops->update_dp_stats(
  1136. vdev->pdev->osif_pdev,
  1137. &peer->stats,
  1138. peer_id,
  1139. UPDATE_PEER_STATS);
  1140. dp_aggregate_vdev_stats(peer->vdev);
  1141. soc->cdp_soc.ol_ops->update_dp_stats(
  1142. vdev->pdev->osif_pdev,
  1143. &peer->vdev->stats,
  1144. peer->vdev->vdev_id,
  1145. UPDATE_VDEV_STATS);
  1146. }
  1147. }
  1148. }
  1149. if (qdf_unlikely(vdev->rx_decap_type == htt_cmn_pkt_type_raw) ||
  1150. (vdev->rx_decap_type == htt_cmn_pkt_type_native_wifi))
  1151. dp_rx_deliver_raw(vdev, deliver_list_head, peer);
  1152. else if (qdf_likely(vdev->osif_rx) && deliver_list_head)
  1153. vdev->osif_rx(vdev->osif_vdev, deliver_list_head);
  1154. }
  1155. return rx_bufs_used; /* Assume no scale factor for now */
  1156. }
  1157. /**
  1158. * dp_rx_detach() - detach dp rx
  1159. * @pdev: core txrx pdev context
  1160. *
  1161. * This function will detach DP RX into main device context
  1162. * will free DP Rx resources.
  1163. *
  1164. * Return: void
  1165. */
  1166. void
  1167. dp_rx_pdev_detach(struct dp_pdev *pdev)
  1168. {
  1169. uint8_t pdev_id = pdev->pdev_id;
  1170. struct dp_soc *soc = pdev->soc;
  1171. struct rx_desc_pool *rx_desc_pool;
  1172. rx_desc_pool = &soc->rx_desc_buf[pdev_id];
  1173. dp_rx_desc_pool_free(soc, pdev_id, rx_desc_pool);
  1174. qdf_spinlock_destroy(&soc->rx_desc_mutex[pdev_id]);
  1175. return;
  1176. }
  1177. /**
  1178. * dp_rx_attach() - attach DP RX
  1179. * @pdev: core txrx pdev context
  1180. *
  1181. * This function will attach a DP RX instance into the main
  1182. * device (SOC) context. Will allocate dp rx resource and
  1183. * initialize resources.
  1184. *
  1185. * Return: QDF_STATUS_SUCCESS: success
  1186. * QDF_STATUS_E_RESOURCES: Error return
  1187. */
  1188. QDF_STATUS
  1189. dp_rx_pdev_attach(struct dp_pdev *pdev)
  1190. {
  1191. uint8_t pdev_id = pdev->pdev_id;
  1192. struct dp_soc *soc = pdev->soc;
  1193. struct dp_srng rxdma_srng;
  1194. uint32_t rxdma_entries;
  1195. union dp_rx_desc_list_elem_t *desc_list = NULL;
  1196. union dp_rx_desc_list_elem_t *tail = NULL;
  1197. struct dp_srng *dp_rxdma_srng;
  1198. struct rx_desc_pool *rx_desc_pool;
  1199. if (wlan_cfg_get_dp_pdev_nss_enabled(pdev->wlan_cfg_ctx)) {
  1200. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1201. "nss-wifi<4> skip Rx refil %d", pdev_id);
  1202. return QDF_STATUS_SUCCESS;
  1203. }
  1204. qdf_spinlock_create(&soc->rx_desc_mutex[pdev_id]);
  1205. pdev = soc->pdev_list[pdev_id];
  1206. rxdma_srng = pdev->rx_refill_buf_ring;
  1207. rxdma_entries = rxdma_srng.alloc_size/hal_srng_get_entrysize(
  1208. soc->hal_soc, RXDMA_BUF);
  1209. rx_desc_pool = &soc->rx_desc_buf[pdev_id];
  1210. dp_rx_desc_pool_alloc(soc, pdev_id, rxdma_entries*3, rx_desc_pool);
  1211. /* For Rx buffers, WBM release ring is SW RING 3,for all pdev's */
  1212. dp_rxdma_srng = &pdev->rx_refill_buf_ring;
  1213. dp_rx_buffers_replenish(soc, pdev_id, dp_rxdma_srng, rx_desc_pool,
  1214. rxdma_entries, &desc_list, &tail, HAL_RX_BUF_RBM_SW3_BM);
  1215. return QDF_STATUS_SUCCESS;
  1216. }