sde_hw_intf.c 25 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964
  1. // SPDX-License-Identifier: GPL-2.0-only
  2. /*
  3. * Copyright (c) 2015-2021, The Linux Foundation. All rights reserved.
  4. */
  5. #include <linux/iopoll.h>
  6. #include "sde_hwio.h"
  7. #include "sde_hw_catalog.h"
  8. #include "sde_hw_intf.h"
  9. #include "sde_dbg.h"
  10. #define INTF_TIMING_ENGINE_EN 0x000
  11. #define INTF_CONFIG 0x004
  12. #define INTF_HSYNC_CTL 0x008
  13. #define INTF_VSYNC_PERIOD_F0 0x00C
  14. #define INTF_VSYNC_PERIOD_F1 0x010
  15. #define INTF_VSYNC_PULSE_WIDTH_F0 0x014
  16. #define INTF_VSYNC_PULSE_WIDTH_F1 0x018
  17. #define INTF_DISPLAY_V_START_F0 0x01C
  18. #define INTF_DISPLAY_V_START_F1 0x020
  19. #define INTF_DISPLAY_V_END_F0 0x024
  20. #define INTF_DISPLAY_V_END_F1 0x028
  21. #define INTF_ACTIVE_V_START_F0 0x02C
  22. #define INTF_ACTIVE_V_START_F1 0x030
  23. #define INTF_ACTIVE_V_END_F0 0x034
  24. #define INTF_ACTIVE_V_END_F1 0x038
  25. #define INTF_DISPLAY_HCTL 0x03C
  26. #define INTF_ACTIVE_HCTL 0x040
  27. #define INTF_BORDER_COLOR 0x044
  28. #define INTF_UNDERFLOW_COLOR 0x048
  29. #define INTF_HSYNC_SKEW 0x04C
  30. #define INTF_POLARITY_CTL 0x050
  31. #define INTF_TEST_CTL 0x054
  32. #define INTF_TP_COLOR0 0x058
  33. #define INTF_TP_COLOR1 0x05C
  34. #define INTF_CONFIG2 0x060
  35. #define INTF_DISPLAY_DATA_HCTL 0x064
  36. #define INTF_ACTIVE_DATA_HCTL 0x068
  37. #define INTF_FRAME_LINE_COUNT_EN 0x0A8
  38. #define INTF_FRAME_COUNT 0x0AC
  39. #define INTF_LINE_COUNT 0x0B0
  40. #define INTF_DEFLICKER_CONFIG 0x0F0
  41. #define INTF_DEFLICKER_STRNG_COEFF 0x0F4
  42. #define INTF_DEFLICKER_WEAK_COEFF 0x0F8
  43. #define INTF_REG_SPLIT_LINK 0x080
  44. #define INTF_DSI_CMD_MODE_TRIGGER_EN 0x084
  45. #define INTF_PANEL_FORMAT 0x090
  46. #define INTF_TPG_ENABLE 0x100
  47. #define INTF_TPG_MAIN_CONTROL 0x104
  48. #define INTF_TPG_VIDEO_CONFIG 0x108
  49. #define INTF_TPG_COMPONENT_LIMITS 0x10C
  50. #define INTF_TPG_RECTANGLE 0x110
  51. #define INTF_TPG_INITIAL_VALUE 0x114
  52. #define INTF_TPG_BLK_WHITE_PATTERN_FRAMES 0x118
  53. #define INTF_TPG_RGB_MAPPING 0x11C
  54. #define INTF_PROG_FETCH_START 0x170
  55. #define INTF_PROG_ROT_START 0x174
  56. #define INTF_MISR_CTRL 0x180
  57. #define INTF_MISR_SIGNATURE 0x184
  58. #define INTF_VSYNC_TIMESTAMP_CTRL 0x210
  59. #define INTF_VSYNC_TIMESTAMP0 0x214
  60. #define INTF_VSYNC_TIMESTAMP1 0x218
  61. #define INTF_WD_TIMER_0_CTL 0x230
  62. #define INTF_WD_TIMER_0_CTL2 0x234
  63. #define INTF_WD_TIMER_0_LOAD_VALUE 0x238
  64. #define INTF_MUX 0x25C
  65. #define INTF_UNDERRUN_COUNT 0x268
  66. #define INTF_STATUS 0x26C
  67. #define INTF_AVR_CONTROL 0x270
  68. #define INTF_AVR_MODE 0x274
  69. #define INTF_AVR_TRIGGER 0x278
  70. #define INTF_AVR_VTOTAL 0x27C
  71. #define INTF_TEAR_MDP_VSYNC_SEL 0x280
  72. #define INTF_TEAR_TEAR_CHECK_EN 0x284
  73. #define INTF_TEAR_SYNC_CONFIG_VSYNC 0x288
  74. #define INTF_TEAR_SYNC_CONFIG_HEIGHT 0x28C
  75. #define INTF_TEAR_SYNC_WRCOUNT 0x290
  76. #define INTF_TEAR_VSYNC_INIT_VAL 0x294
  77. #define INTF_TEAR_INT_COUNT_VAL 0x298
  78. #define INTF_TEAR_SYNC_THRESH 0x29C
  79. #define INTF_TEAR_START_POS 0x2A0
  80. #define INTF_TEAR_RD_PTR_IRQ 0x2A4
  81. #define INTF_TEAR_WR_PTR_IRQ 0x2A8
  82. #define INTF_TEAR_OUT_LINE_COUNT 0x2AC
  83. #define INTF_TEAR_LINE_COUNT 0x2B0
  84. #define INTF_TEAR_AUTOREFRESH_CONFIG 0x2B4
  85. #define INTF_TEAR_TEAR_DETECT_CTRL 0x2B8
  86. static struct sde_intf_cfg *_intf_offset(enum sde_intf intf,
  87. struct sde_mdss_cfg *m,
  88. void __iomem *addr,
  89. struct sde_hw_blk_reg_map *b)
  90. {
  91. int i;
  92. for (i = 0; i < m->intf_count; i++) {
  93. if ((intf == m->intf[i].id) &&
  94. (m->intf[i].type != INTF_NONE)) {
  95. b->base_off = addr;
  96. b->blk_off = m->intf[i].base;
  97. b->length = m->intf[i].len;
  98. b->hwversion = m->hwversion;
  99. b->log_mask = SDE_DBG_MASK_INTF;
  100. return &m->intf[i];
  101. }
  102. }
  103. return ERR_PTR(-EINVAL);
  104. }
  105. static void sde_hw_intf_avr_trigger(struct sde_hw_intf *ctx)
  106. {
  107. struct sde_hw_blk_reg_map *c;
  108. if (!ctx)
  109. return;
  110. c = &ctx->hw;
  111. SDE_REG_WRITE(c, INTF_AVR_TRIGGER, 0x1);
  112. SDE_DEBUG("AVR Triggered\n");
  113. }
  114. static int sde_hw_intf_avr_setup(struct sde_hw_intf *ctx,
  115. const struct intf_timing_params *params,
  116. const struct intf_avr_params *avr_params)
  117. {
  118. struct sde_hw_blk_reg_map *c;
  119. u32 hsync_period, vsync_period;
  120. u32 min_fps, default_fps, diff_fps;
  121. u32 vsync_period_slow;
  122. u32 avr_vtotal;
  123. u32 add_porches = 0;
  124. if (!ctx || !params || !avr_params) {
  125. SDE_ERROR("invalid input parameter(s)\n");
  126. return -EINVAL;
  127. }
  128. c = &ctx->hw;
  129. min_fps = avr_params->min_fps;
  130. default_fps = avr_params->default_fps;
  131. diff_fps = default_fps - min_fps;
  132. hsync_period = params->hsync_pulse_width +
  133. params->h_back_porch + params->width +
  134. params->h_front_porch;
  135. vsync_period = params->vsync_pulse_width +
  136. params->v_back_porch + params->height +
  137. params->v_front_porch;
  138. if (diff_fps)
  139. add_porches = mult_frac(vsync_period, diff_fps, min_fps);
  140. vsync_period_slow = vsync_period + add_porches;
  141. avr_vtotal = vsync_period_slow * hsync_period;
  142. SDE_REG_WRITE(c, INTF_AVR_VTOTAL, avr_vtotal);
  143. return 0;
  144. }
  145. static void sde_hw_intf_avr_ctrl(struct sde_hw_intf *ctx,
  146. const struct intf_avr_params *avr_params)
  147. {
  148. struct sde_hw_blk_reg_map *c;
  149. u32 avr_mode = 0;
  150. u32 avr_ctrl = 0;
  151. if (!ctx || !avr_params)
  152. return;
  153. c = &ctx->hw;
  154. if (avr_params->avr_mode) {
  155. avr_ctrl = BIT(0);
  156. avr_mode =
  157. (avr_params->avr_mode == SDE_RM_QSYNC_ONE_SHOT_MODE) ?
  158. (BIT(0) | BIT(8)) : 0x0;
  159. }
  160. SDE_REG_WRITE(c, INTF_AVR_CONTROL, avr_ctrl);
  161. SDE_REG_WRITE(c, INTF_AVR_MODE, avr_mode);
  162. }
  163. static u32 sde_hw_intf_get_avr_status(struct sde_hw_intf *ctx)
  164. {
  165. struct sde_hw_blk_reg_map *c;
  166. u32 avr_ctrl;
  167. if (!ctx)
  168. return false;
  169. c = &ctx->hw;
  170. avr_ctrl = SDE_REG_READ(c, INTF_AVR_CONTROL);
  171. return avr_ctrl >> 31;
  172. }
  173. static inline void _check_and_set_comp_bit(struct sde_hw_intf *ctx,
  174. bool dsc_4hs_merge, bool compression_en, u32 *intf_cfg2)
  175. {
  176. if (((SDE_HW_MAJOR(ctx->mdss->hwversion) >=
  177. SDE_HW_MAJOR(SDE_HW_VER_700)) &&
  178. compression_en) ||
  179. (IS_SDE_MAJOR_SAME(ctx->mdss->hwversion,
  180. SDE_HW_VER_600) && dsc_4hs_merge))
  181. (*intf_cfg2) |= BIT(12);
  182. }
  183. static void sde_hw_intf_reset_counter(struct sde_hw_intf *ctx)
  184. {
  185. struct sde_hw_blk_reg_map *c = &ctx->hw;
  186. SDE_REG_WRITE(c, INTF_LINE_COUNT, BIT(31));
  187. }
  188. static u64 sde_hw_intf_get_vsync_timestamp(struct sde_hw_intf *ctx)
  189. {
  190. struct sde_hw_blk_reg_map *c = &ctx->hw;
  191. u32 timestamp_lo, timestamp_hi;
  192. u64 timestamp = 0;
  193. timestamp_hi = SDE_REG_READ(c, INTF_VSYNC_TIMESTAMP1);
  194. timestamp_lo = SDE_REG_READ(c, INTF_VSYNC_TIMESTAMP0);
  195. timestamp = timestamp_hi;
  196. timestamp = (timestamp << 32) | timestamp_lo;
  197. return timestamp;
  198. }
  199. static void sde_hw_intf_setup_timing_engine(struct sde_hw_intf *ctx,
  200. const struct intf_timing_params *p,
  201. const struct sde_format *fmt)
  202. {
  203. struct sde_hw_blk_reg_map *c = &ctx->hw;
  204. u32 hsync_period, vsync_period;
  205. u32 display_v_start, display_v_end;
  206. u32 hsync_start_x, hsync_end_x;
  207. u32 hsync_data_start_x, hsync_data_end_x;
  208. u32 active_h_start, active_h_end;
  209. u32 active_v_start, active_v_end;
  210. u32 active_hctl, display_hctl, hsync_ctl;
  211. u32 polarity_ctl, den_polarity, hsync_polarity, vsync_polarity;
  212. u32 panel_format;
  213. u32 intf_cfg, intf_cfg2 = 0;
  214. u32 display_data_hctl = 0, active_data_hctl = 0;
  215. u32 data_width;
  216. bool dp_intf = false;
  217. /* read interface_cfg */
  218. intf_cfg = SDE_REG_READ(c, INTF_CONFIG);
  219. if (ctx->cap->type == INTF_EDP || ctx->cap->type == INTF_DP)
  220. dp_intf = true;
  221. hsync_period = p->hsync_pulse_width + p->h_back_porch + p->width +
  222. p->h_front_porch;
  223. vsync_period = p->vsync_pulse_width + p->v_back_porch + p->height +
  224. p->v_front_porch;
  225. display_v_start = ((p->vsync_pulse_width + p->v_back_porch) *
  226. hsync_period) + p->hsync_skew;
  227. display_v_end = ((vsync_period - p->v_front_porch) * hsync_period) +
  228. p->hsync_skew - 1;
  229. hsync_ctl = (hsync_period << 16) | p->hsync_pulse_width;
  230. hsync_start_x = p->h_back_porch + p->hsync_pulse_width;
  231. hsync_end_x = hsync_period - p->h_front_porch - 1;
  232. /*
  233. * DATA_HCTL_EN controls data timing which can be different from
  234. * video timing. It is recommended to enable it for all cases, except
  235. * if compression is enabled in 1 pixel per clock mode
  236. */
  237. if (!p->compression_en || p->wide_bus_en)
  238. intf_cfg2 |= BIT(4);
  239. if (p->wide_bus_en)
  240. intf_cfg2 |= BIT(0);
  241. /*
  242. * If widebus is disabled:
  243. * For uncompressed stream, the data is valid for the entire active
  244. * window period.
  245. * For compressed stream, data is valid for a shorter time period
  246. * inside the active window depending on the compression ratio.
  247. *
  248. * If widebus is enabled:
  249. * For uncompressed stream, data is valid for only half the active
  250. * window, since the data rate is doubled in this mode.
  251. * p->width holds the adjusted width for DP but unadjusted width for DSI
  252. * For compressed stream, data validity window needs to be adjusted for
  253. * compression ratio and then further halved.
  254. */
  255. data_width = p->width;
  256. if (p->compression_en) {
  257. data_width = DIV_ROUND_UP(p->dce_bytes_per_line, 3);
  258. if (p->wide_bus_en)
  259. data_width >>= 1;
  260. } else if (!dp_intf && p->wide_bus_en) {
  261. data_width = p->width >> 1;
  262. } else {
  263. data_width = p->width;
  264. }
  265. hsync_data_start_x = hsync_start_x;
  266. hsync_data_end_x = hsync_start_x + data_width - 1;
  267. display_hctl = (hsync_end_x << 16) | hsync_start_x;
  268. display_data_hctl = (hsync_data_end_x << 16) | hsync_data_start_x;
  269. if (dp_intf) {
  270. // DP timing adjustment
  271. display_v_start += p->hsync_pulse_width + p->h_back_porch;
  272. display_v_end -= p->h_front_porch;
  273. }
  274. intf_cfg |= BIT(29); /* ACTIVE_H_ENABLE */
  275. intf_cfg |= BIT(30); /* ACTIVE_V_ENABLE */
  276. active_h_start = hsync_start_x;
  277. active_h_end = active_h_start + p->xres - 1;
  278. active_v_start = display_v_start;
  279. active_v_end = active_v_start + (p->yres * hsync_period) - 1;
  280. active_hctl = (active_h_end << 16) | active_h_start;
  281. if (dp_intf) {
  282. display_hctl = active_hctl;
  283. if (p->compression_en) {
  284. active_data_hctl = (hsync_start_x +
  285. p->extra_dto_cycles) << 16;
  286. active_data_hctl += hsync_start_x;
  287. display_data_hctl = active_data_hctl;
  288. }
  289. }
  290. _check_and_set_comp_bit(ctx, p->dsc_4hs_merge, p->compression_en,
  291. &intf_cfg2);
  292. den_polarity = 0;
  293. if (ctx->cap->type == INTF_HDMI) {
  294. hsync_polarity = p->yres >= 720 ? 0 : 1;
  295. vsync_polarity = p->yres >= 720 ? 0 : 1;
  296. } else if (ctx->cap->type == INTF_DP) {
  297. hsync_polarity = p->hsync_polarity;
  298. vsync_polarity = p->vsync_polarity;
  299. } else {
  300. hsync_polarity = 0;
  301. vsync_polarity = 0;
  302. }
  303. polarity_ctl = (den_polarity << 2) | /* DEN Polarity */
  304. (vsync_polarity << 1) | /* VSYNC Polarity */
  305. (hsync_polarity << 0); /* HSYNC Polarity */
  306. if (!SDE_FORMAT_IS_YUV(fmt))
  307. panel_format = (fmt->bits[C0_G_Y] |
  308. (fmt->bits[C1_B_Cb] << 2) |
  309. (fmt->bits[C2_R_Cr] << 4) |
  310. (0x21 << 8));
  311. else
  312. /* Interface treats all the pixel data in RGB888 format */
  313. panel_format = (COLOR_8BIT |
  314. (COLOR_8BIT << 2) |
  315. (COLOR_8BIT << 4) |
  316. (0x21 << 8));
  317. if (p->wide_bus_en)
  318. intf_cfg2 |= BIT(0);
  319. /* Synchronize timing engine enable to TE */
  320. if ((ctx->cap->features & BIT(SDE_INTF_TE_ALIGN_VSYNC))
  321. && p->poms_align_vsync)
  322. intf_cfg2 |= BIT(16);
  323. if (ctx->cfg.split_link_en)
  324. SDE_REG_WRITE(c, INTF_REG_SPLIT_LINK, 0x3);
  325. SDE_REG_WRITE(c, INTF_HSYNC_CTL, hsync_ctl);
  326. SDE_REG_WRITE(c, INTF_VSYNC_PERIOD_F0, vsync_period * hsync_period);
  327. SDE_REG_WRITE(c, INTF_VSYNC_PULSE_WIDTH_F0,
  328. p->vsync_pulse_width * hsync_period);
  329. SDE_REG_WRITE(c, INTF_DISPLAY_HCTL, display_hctl);
  330. SDE_REG_WRITE(c, INTF_DISPLAY_V_START_F0, display_v_start);
  331. SDE_REG_WRITE(c, INTF_DISPLAY_V_END_F0, display_v_end);
  332. SDE_REG_WRITE(c, INTF_ACTIVE_HCTL, active_hctl);
  333. SDE_REG_WRITE(c, INTF_ACTIVE_V_START_F0, active_v_start);
  334. SDE_REG_WRITE(c, INTF_ACTIVE_V_END_F0, active_v_end);
  335. SDE_REG_WRITE(c, INTF_BORDER_COLOR, p->border_clr);
  336. SDE_REG_WRITE(c, INTF_UNDERFLOW_COLOR, p->underflow_clr);
  337. SDE_REG_WRITE(c, INTF_HSYNC_SKEW, p->hsync_skew);
  338. SDE_REG_WRITE(c, INTF_POLARITY_CTL, polarity_ctl);
  339. SDE_REG_WRITE(c, INTF_FRAME_LINE_COUNT_EN, 0x3);
  340. SDE_REG_WRITE(c, INTF_CONFIG, intf_cfg);
  341. SDE_REG_WRITE(c, INTF_PANEL_FORMAT, panel_format);
  342. SDE_REG_WRITE(c, INTF_CONFIG2, intf_cfg2);
  343. SDE_REG_WRITE(c, INTF_DISPLAY_DATA_HCTL, display_data_hctl);
  344. SDE_REG_WRITE(c, INTF_ACTIVE_DATA_HCTL, active_data_hctl);
  345. }
  346. static void sde_hw_intf_enable_timing_engine(
  347. struct sde_hw_intf *intf,
  348. u8 enable)
  349. {
  350. struct sde_hw_blk_reg_map *c = &intf->hw;
  351. /* Note: Display interface select is handled in top block hw layer */
  352. SDE_REG_WRITE(c, INTF_TIMING_ENGINE_EN, enable != 0);
  353. if (enable && (intf->cap->features & BIT(SDE_INTF_VSYNC_TIMESTAMP)))
  354. SDE_REG_WRITE(c, INTF_VSYNC_TIMESTAMP_CTRL, BIT(0));
  355. }
  356. static void sde_hw_intf_setup_prg_fetch(
  357. struct sde_hw_intf *intf,
  358. const struct intf_prog_fetch *fetch)
  359. {
  360. struct sde_hw_blk_reg_map *c = &intf->hw;
  361. int fetch_enable;
  362. /*
  363. * Fetch should always be outside the active lines. If the fetching
  364. * is programmed within active region, hardware behavior is unknown.
  365. */
  366. fetch_enable = SDE_REG_READ(c, INTF_CONFIG);
  367. if (fetch->enable) {
  368. fetch_enable |= BIT(31);
  369. SDE_REG_WRITE(c, INTF_PROG_FETCH_START,
  370. fetch->fetch_start);
  371. } else {
  372. fetch_enable &= ~BIT(31);
  373. }
  374. SDE_REG_WRITE(c, INTF_CONFIG, fetch_enable);
  375. }
  376. static void sde_hw_intf_setup_vsync_source(struct sde_hw_intf *intf,
  377. u32 frame_rate)
  378. {
  379. struct sde_hw_blk_reg_map *c;
  380. u32 reg;
  381. if (!intf)
  382. return;
  383. c = &intf->hw;
  384. SDE_REG_WRITE(c, INTF_WD_TIMER_0_LOAD_VALUE, CALCULATE_WD_LOAD_VALUE(frame_rate));
  385. SDE_REG_WRITE(c, INTF_WD_TIMER_0_CTL, BIT(0)); /* clear timer */
  386. reg = SDE_REG_READ(c, INTF_WD_TIMER_0_CTL2);
  387. reg |= BIT(8); /* enable heartbeat timer */
  388. reg |= BIT(0); /* enable WD timer */
  389. SDE_REG_WRITE(c, INTF_WD_TIMER_0_CTL2, reg);
  390. /* make sure that timers are enabled/disabled for vsync state */
  391. wmb();
  392. }
  393. static void sde_hw_intf_bind_pingpong_blk(
  394. struct sde_hw_intf *intf,
  395. bool enable,
  396. const enum sde_pingpong pp)
  397. {
  398. struct sde_hw_blk_reg_map *c;
  399. u32 mux_cfg;
  400. if (!intf)
  401. return;
  402. c = &intf->hw;
  403. mux_cfg = SDE_REG_READ(c, INTF_MUX);
  404. mux_cfg &= ~0xf000f;
  405. if (enable) {
  406. mux_cfg |= (pp - PINGPONG_0) & 0x7;
  407. /* Splitlink case, pp0->sublink0, pp1->sublink1 */
  408. if (intf->cfg.split_link_en)
  409. mux_cfg = 0x10000;
  410. } else {
  411. mux_cfg = 0xf000f;
  412. }
  413. SDE_REG_WRITE(c, INTF_MUX, mux_cfg);
  414. }
  415. static void sde_hw_intf_get_status(
  416. struct sde_hw_intf *intf,
  417. struct intf_status *s)
  418. {
  419. struct sde_hw_blk_reg_map *c = &intf->hw;
  420. s->is_en = SDE_REG_READ(c, INTF_TIMING_ENGINE_EN);
  421. if (s->is_en) {
  422. s->frame_count = SDE_REG_READ(c, INTF_FRAME_COUNT);
  423. s->line_count = SDE_REG_READ(c, INTF_LINE_COUNT) & 0xffff;
  424. } else {
  425. s->line_count = 0;
  426. s->frame_count = 0;
  427. }
  428. }
  429. static void sde_hw_intf_v1_get_status(
  430. struct sde_hw_intf *intf,
  431. struct intf_status *s)
  432. {
  433. struct sde_hw_blk_reg_map *c = &intf->hw;
  434. s->is_en = SDE_REG_READ(c, INTF_STATUS) & BIT(0);
  435. s->is_prog_fetch_en = (SDE_REG_READ(c, INTF_CONFIG) & BIT(31));
  436. if (s->is_en) {
  437. s->frame_count = SDE_REG_READ(c, INTF_FRAME_COUNT);
  438. s->line_count = SDE_REG_READ(c, INTF_LINE_COUNT) & 0xffff;
  439. } else {
  440. s->line_count = 0;
  441. s->frame_count = 0;
  442. }
  443. }
  444. static void sde_hw_intf_setup_misr(struct sde_hw_intf *intf,
  445. bool enable, u32 frame_count)
  446. {
  447. struct sde_hw_blk_reg_map *c = &intf->hw;
  448. u32 config = 0;
  449. SDE_REG_WRITE(c, INTF_MISR_CTRL, MISR_CTRL_STATUS_CLEAR);
  450. /* clear misr data */
  451. wmb();
  452. if (enable)
  453. config = (frame_count & MISR_FRAME_COUNT_MASK) |
  454. MISR_CTRL_ENABLE |
  455. INTF_MISR_CTRL_FREE_RUN_MASK |
  456. INTF_MISR_CTRL_INPUT_SEL_DATA;
  457. SDE_REG_WRITE(c, INTF_MISR_CTRL, config);
  458. }
  459. static int sde_hw_intf_collect_misr(struct sde_hw_intf *intf, bool nonblock,
  460. u32 *misr_value)
  461. {
  462. struct sde_hw_blk_reg_map *c = &intf->hw;
  463. u32 ctrl = 0;
  464. if (!misr_value)
  465. return -EINVAL;
  466. ctrl = SDE_REG_READ(c, INTF_MISR_CTRL);
  467. if (!nonblock) {
  468. if (ctrl & MISR_CTRL_ENABLE) {
  469. int rc;
  470. rc = readl_poll_timeout(c->base_off + c->blk_off +
  471. INTF_MISR_CTRL, ctrl,
  472. (ctrl & MISR_CTRL_STATUS) > 0, 500,
  473. 84000);
  474. if (rc)
  475. return rc;
  476. } else {
  477. return -EINVAL;
  478. }
  479. }
  480. *misr_value = SDE_REG_READ(c, INTF_MISR_SIGNATURE);
  481. return 0;
  482. }
  483. static u32 sde_hw_intf_get_line_count(struct sde_hw_intf *intf)
  484. {
  485. struct sde_hw_blk_reg_map *c;
  486. if (!intf)
  487. return 0;
  488. c = &intf->hw;
  489. return SDE_REG_READ(c, INTF_LINE_COUNT) & 0xffff;
  490. }
  491. static u32 sde_hw_intf_get_underrun_line_count(struct sde_hw_intf *intf)
  492. {
  493. struct sde_hw_blk_reg_map *c;
  494. u32 hsync_period;
  495. if (!intf)
  496. return 0;
  497. c = &intf->hw;
  498. hsync_period = SDE_REG_READ(c, INTF_HSYNC_CTL);
  499. hsync_period = ((hsync_period & 0xffff0000) >> 16);
  500. return hsync_period ?
  501. SDE_REG_READ(c, INTF_UNDERRUN_COUNT) / hsync_period :
  502. 0xebadebad;
  503. }
  504. static u32 sde_hw_intf_get_intr_status(struct sde_hw_intf *intf)
  505. {
  506. if (!intf)
  507. return -EINVAL;
  508. return SDE_REG_READ(&intf->hw, INTF_INTR_STATUS);
  509. }
  510. static int sde_hw_intf_setup_te_config(struct sde_hw_intf *intf,
  511. struct sde_hw_tear_check *te)
  512. {
  513. struct sde_hw_blk_reg_map *c;
  514. int cfg;
  515. if (!intf)
  516. return -EINVAL;
  517. c = &intf->hw;
  518. cfg = BIT(19); /* VSYNC_COUNTER_EN */
  519. if (te->hw_vsync_mode)
  520. cfg |= BIT(20);
  521. cfg |= te->vsync_count;
  522. SDE_REG_WRITE(c, INTF_TEAR_SYNC_CONFIG_VSYNC, cfg);
  523. SDE_REG_WRITE(c, INTF_TEAR_SYNC_CONFIG_HEIGHT, te->sync_cfg_height);
  524. SDE_REG_WRITE(c, INTF_TEAR_VSYNC_INIT_VAL, te->vsync_init_val);
  525. SDE_REG_WRITE(c, INTF_TEAR_RD_PTR_IRQ, te->rd_ptr_irq);
  526. SDE_REG_WRITE(c, INTF_TEAR_WR_PTR_IRQ, te->wr_ptr_irq);
  527. SDE_REG_WRITE(c, INTF_TEAR_START_POS, te->start_pos);
  528. SDE_REG_WRITE(c, INTF_TEAR_SYNC_THRESH,
  529. ((te->sync_threshold_continue << 16) |
  530. te->sync_threshold_start));
  531. SDE_REG_WRITE(c, INTF_TEAR_SYNC_WRCOUNT,
  532. (te->start_pos + te->sync_threshold_start + 1));
  533. return 0;
  534. }
  535. static int sde_hw_intf_setup_autorefresh_config(struct sde_hw_intf *intf,
  536. struct sde_hw_autorefresh *cfg)
  537. {
  538. struct sde_hw_blk_reg_map *c;
  539. u32 refresh_cfg;
  540. if (!intf || !cfg)
  541. return -EINVAL;
  542. c = &intf->hw;
  543. refresh_cfg = SDE_REG_READ(c, INTF_TEAR_AUTOREFRESH_CONFIG);
  544. if (cfg->enable)
  545. refresh_cfg = BIT(31) | cfg->frame_count;
  546. else
  547. refresh_cfg &= ~BIT(31);
  548. SDE_REG_WRITE(c, INTF_TEAR_AUTOREFRESH_CONFIG, refresh_cfg);
  549. return 0;
  550. }
  551. static int sde_hw_intf_get_autorefresh_config(struct sde_hw_intf *intf,
  552. struct sde_hw_autorefresh *cfg)
  553. {
  554. struct sde_hw_blk_reg_map *c;
  555. u32 val;
  556. if (!intf || !cfg)
  557. return -EINVAL;
  558. c = &intf->hw;
  559. val = SDE_REG_READ(c, INTF_TEAR_AUTOREFRESH_CONFIG);
  560. cfg->enable = (val & BIT(31)) >> 31;
  561. cfg->frame_count = val & 0xffff;
  562. return 0;
  563. }
  564. static int sde_hw_intf_poll_timeout_wr_ptr(struct sde_hw_intf *intf,
  565. u32 timeout_us)
  566. {
  567. struct sde_hw_blk_reg_map *c;
  568. u32 val;
  569. int rc;
  570. if (!intf)
  571. return -EINVAL;
  572. c = &intf->hw;
  573. rc = readl_poll_timeout(c->base_off + c->blk_off + INTF_TEAR_LINE_COUNT,
  574. val, (val & 0xffff) >= 1, 10, timeout_us);
  575. return rc;
  576. }
  577. static int sde_hw_intf_enable_te(struct sde_hw_intf *intf, bool enable)
  578. {
  579. struct sde_hw_blk_reg_map *c;
  580. if (!intf)
  581. return -EINVAL;
  582. c = &intf->hw;
  583. SDE_REG_WRITE(c, INTF_TEAR_TEAR_CHECK_EN, enable);
  584. if (enable && (intf->cap->features & BIT(SDE_INTF_VSYNC_TIMESTAMP)))
  585. SDE_REG_WRITE(c, INTF_VSYNC_TIMESTAMP_CTRL, BIT(0));
  586. return 0;
  587. }
  588. static void sde_hw_intf_update_te(struct sde_hw_intf *intf,
  589. struct sde_hw_tear_check *te)
  590. {
  591. struct sde_hw_blk_reg_map *c;
  592. int cfg;
  593. if (!intf || !te)
  594. return;
  595. c = &intf->hw;
  596. cfg = SDE_REG_READ(c, INTF_TEAR_SYNC_THRESH);
  597. cfg &= ~0xFFFF;
  598. cfg |= te->sync_threshold_start;
  599. SDE_REG_WRITE(c, INTF_TEAR_SYNC_THRESH, cfg);
  600. }
  601. static int sde_hw_intf_connect_external_te(struct sde_hw_intf *intf,
  602. bool enable_external_te)
  603. {
  604. struct sde_hw_blk_reg_map *c = &intf->hw;
  605. u32 cfg;
  606. int orig;
  607. if (!intf)
  608. return -EINVAL;
  609. c = &intf->hw;
  610. cfg = SDE_REG_READ(c, INTF_TEAR_SYNC_CONFIG_VSYNC);
  611. orig = (bool)(cfg & BIT(20));
  612. if (enable_external_te)
  613. cfg |= BIT(20);
  614. else
  615. cfg &= ~BIT(20);
  616. SDE_REG_WRITE(c, INTF_TEAR_SYNC_CONFIG_VSYNC, cfg);
  617. return orig;
  618. }
  619. static int sde_hw_intf_get_vsync_info(struct sde_hw_intf *intf,
  620. struct sde_hw_pp_vsync_info *info)
  621. {
  622. struct sde_hw_blk_reg_map *c = &intf->hw;
  623. u32 val;
  624. if (!intf || !info)
  625. return -EINVAL;
  626. c = &intf->hw;
  627. val = SDE_REG_READ(c, INTF_TEAR_VSYNC_INIT_VAL);
  628. info->rd_ptr_init_val = val & 0xffff;
  629. val = SDE_REG_READ(c, INTF_TEAR_INT_COUNT_VAL);
  630. info->rd_ptr_frame_count = (val & 0xffff0000) >> 16;
  631. info->rd_ptr_line_count = val & 0xffff;
  632. val = SDE_REG_READ(c, INTF_TEAR_LINE_COUNT);
  633. info->wr_ptr_line_count = val & 0xffff;
  634. val = SDE_REG_READ(c, INTF_FRAME_COUNT);
  635. info->intf_frame_count = val;
  636. return 0;
  637. }
  638. static int sde_hw_intf_v1_check_and_reset_tearcheck(struct sde_hw_intf *intf,
  639. struct intf_tear_status *status)
  640. {
  641. struct sde_hw_blk_reg_map *c = &intf->hw;
  642. u32 start_pos;
  643. if (!intf || !status)
  644. return -EINVAL;
  645. c = &intf->hw;
  646. status->read_count = SDE_REG_READ(c, INTF_TEAR_INT_COUNT_VAL);
  647. start_pos = SDE_REG_READ(c, INTF_TEAR_START_POS);
  648. status->write_count = SDE_REG_READ(c, INTF_TEAR_SYNC_WRCOUNT);
  649. status->write_count &= 0xffff0000;
  650. status->write_count |= start_pos;
  651. SDE_REG_WRITE(c, INTF_TEAR_SYNC_WRCOUNT, status->write_count);
  652. return 0;
  653. }
  654. static void sde_hw_intf_vsync_sel(struct sde_hw_intf *intf,
  655. u32 vsync_source)
  656. {
  657. struct sde_hw_blk_reg_map *c;
  658. if (!intf)
  659. return;
  660. c = &intf->hw;
  661. SDE_REG_WRITE(c, INTF_TEAR_MDP_VSYNC_SEL, (vsync_source & 0xf));
  662. }
  663. static void sde_hw_intf_enable_compressed_input(struct sde_hw_intf *intf,
  664. bool compression_en, bool dsc_4hs_merge)
  665. {
  666. struct sde_hw_blk_reg_map *c;
  667. u32 intf_cfg2;
  668. if (!intf)
  669. return;
  670. /*
  671. * callers can either call this function to enable/disable the 64 bit
  672. * compressed input or this configuration can be applied along
  673. * with timing generation parameters
  674. */
  675. c = &intf->hw;
  676. intf_cfg2 = SDE_REG_READ(c, INTF_CONFIG2);
  677. _check_and_set_comp_bit(intf, dsc_4hs_merge, compression_en,
  678. &intf_cfg2);
  679. SDE_REG_WRITE(c, INTF_CONFIG2, intf_cfg2);
  680. }
  681. static void sde_hw_intf_enable_wide_bus(struct sde_hw_intf *intf,
  682. bool enable)
  683. {
  684. struct sde_hw_blk_reg_map *c;
  685. u32 intf_cfg2;
  686. if (!intf)
  687. return;
  688. c = &intf->hw;
  689. intf_cfg2 = SDE_REG_READ(c, INTF_CONFIG2);
  690. intf_cfg2 &= ~BIT(0);
  691. intf_cfg2 |= enable ? BIT(0) : 0;
  692. SDE_REG_WRITE(c, INTF_CONFIG2, intf_cfg2);
  693. }
  694. static void _setup_intf_ops(struct sde_hw_intf_ops *ops,
  695. unsigned long cap)
  696. {
  697. ops->setup_timing_gen = sde_hw_intf_setup_timing_engine;
  698. ops->setup_prg_fetch = sde_hw_intf_setup_prg_fetch;
  699. ops->enable_timing = sde_hw_intf_enable_timing_engine;
  700. ops->setup_misr = sde_hw_intf_setup_misr;
  701. ops->collect_misr = sde_hw_intf_collect_misr;
  702. ops->get_line_count = sde_hw_intf_get_line_count;
  703. ops->get_underrun_line_count = sde_hw_intf_get_underrun_line_count;
  704. ops->get_intr_status = sde_hw_intf_get_intr_status;
  705. ops->avr_setup = sde_hw_intf_avr_setup;
  706. ops->avr_trigger = sde_hw_intf_avr_trigger;
  707. ops->avr_ctrl = sde_hw_intf_avr_ctrl;
  708. ops->enable_compressed_input = sde_hw_intf_enable_compressed_input;
  709. ops->enable_wide_bus = sde_hw_intf_enable_wide_bus;
  710. if (cap & BIT(SDE_INTF_STATUS))
  711. ops->get_status = sde_hw_intf_v1_get_status;
  712. else
  713. ops->get_status = sde_hw_intf_get_status;
  714. if (cap & BIT(SDE_INTF_INPUT_CTRL))
  715. ops->bind_pingpong_blk = sde_hw_intf_bind_pingpong_blk;
  716. if (cap & BIT(SDE_INTF_WD_TIMER))
  717. ops->setup_vsync_source = sde_hw_intf_setup_vsync_source;
  718. if (cap & BIT(SDE_INTF_AVR_STATUS))
  719. ops->get_avr_status = sde_hw_intf_get_avr_status;
  720. if (cap & BIT(SDE_INTF_TE)) {
  721. ops->setup_tearcheck = sde_hw_intf_setup_te_config;
  722. ops->enable_tearcheck = sde_hw_intf_enable_te;
  723. ops->update_tearcheck = sde_hw_intf_update_te;
  724. ops->connect_external_te = sde_hw_intf_connect_external_te;
  725. ops->get_vsync_info = sde_hw_intf_get_vsync_info;
  726. ops->setup_autorefresh = sde_hw_intf_setup_autorefresh_config;
  727. ops->get_autorefresh = sde_hw_intf_get_autorefresh_config;
  728. ops->poll_timeout_wr_ptr = sde_hw_intf_poll_timeout_wr_ptr;
  729. ops->vsync_sel = sde_hw_intf_vsync_sel;
  730. ops->check_and_reset_tearcheck =
  731. sde_hw_intf_v1_check_and_reset_tearcheck;
  732. }
  733. if (cap & BIT(SDE_INTF_RESET_COUNTER))
  734. ops->reset_counter = sde_hw_intf_reset_counter;
  735. if (cap & BIT(SDE_INTF_VSYNC_TIMESTAMP))
  736. ops->get_vsync_timestamp = sde_hw_intf_get_vsync_timestamp;
  737. }
  738. static struct sde_hw_blk_ops sde_hw_ops = {
  739. .start = NULL,
  740. .stop = NULL,
  741. };
  742. struct sde_hw_intf *sde_hw_intf_init(enum sde_intf idx,
  743. void __iomem *addr,
  744. struct sde_mdss_cfg *m)
  745. {
  746. struct sde_hw_intf *c;
  747. struct sde_intf_cfg *cfg;
  748. int rc;
  749. c = kzalloc(sizeof(*c), GFP_KERNEL);
  750. if (!c)
  751. return ERR_PTR(-ENOMEM);
  752. cfg = _intf_offset(idx, m, addr, &c->hw);
  753. if (IS_ERR_OR_NULL(cfg)) {
  754. kfree(c);
  755. pr_err("failed to create sde_hw_intf %d\n", idx);
  756. return ERR_PTR(-EINVAL);
  757. }
  758. /*
  759. * Assign ops
  760. */
  761. c->idx = idx;
  762. c->cap = cfg;
  763. c->mdss = m;
  764. _setup_intf_ops(&c->ops, c->cap->features);
  765. rc = sde_hw_blk_init(&c->base, SDE_HW_BLK_INTF, idx, &sde_hw_ops);
  766. if (rc) {
  767. SDE_ERROR("failed to init hw blk %d\n", rc);
  768. goto blk_init_error;
  769. }
  770. sde_dbg_reg_register_dump_range(SDE_DBG_NAME, cfg->name, c->hw.blk_off,
  771. c->hw.blk_off + c->hw.length, c->hw.xin_id);
  772. return c;
  773. blk_init_error:
  774. kfree(c);
  775. return ERR_PTR(rc);
  776. }
  777. void sde_hw_intf_destroy(struct sde_hw_intf *intf)
  778. {
  779. if (intf)
  780. sde_hw_blk_destroy(&intf->base);
  781. kfree(intf);
  782. }