hal_srng.c 54 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926
  1. /*
  2. * Copyright (c) 2016-2021 The Linux Foundation. All rights reserved.
  3. * Copyright (c) 2021-2022 Qualcomm Innovation Center, Inc. All rights reserved.
  4. *
  5. * Permission to use, copy, modify, and/or distribute this software for
  6. * any purpose with or without fee is hereby granted, provided that the
  7. * above copyright notice and this permission notice appear in all
  8. * copies.
  9. *
  10. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
  11. * WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
  12. * WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
  13. * AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
  14. * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
  15. * PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
  16. * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
  17. * PERFORMANCE OF THIS SOFTWARE.
  18. */
  19. #include "hal_hw_headers.h"
  20. #include "hal_api.h"
  21. #include "hal_reo.h"
  22. #include "target_type.h"
  23. #include "qdf_module.h"
  24. #include "wcss_version.h"
  25. #include <qdf_tracepoint.h>
  26. struct tcl_data_cmd gtcl_data_symbol __attribute__((used));
  27. #ifdef QCA_WIFI_QCA8074
  28. void hal_qca6290_attach(struct hal_soc *hal);
  29. #endif
  30. #ifdef QCA_WIFI_QCA8074
  31. void hal_qca8074_attach(struct hal_soc *hal);
  32. #endif
  33. #if defined(QCA_WIFI_QCA8074V2) || defined(QCA_WIFI_QCA6018) || \
  34. defined(QCA_WIFI_QCA9574)
  35. void hal_qca8074v2_attach(struct hal_soc *hal);
  36. #endif
  37. #ifdef QCA_WIFI_QCA6390
  38. void hal_qca6390_attach(struct hal_soc *hal);
  39. #endif
  40. #ifdef QCA_WIFI_QCA6490
  41. void hal_qca6490_attach(struct hal_soc *hal);
  42. #endif
  43. #ifdef QCA_WIFI_QCN9000
  44. void hal_qcn9000_attach(struct hal_soc *hal);
  45. #endif
  46. #ifdef QCA_WIFI_QCN9224
  47. void hal_qcn9224v1_attach(struct hal_soc *hal);
  48. void hal_qcn9224v2_attach(struct hal_soc *hal);
  49. #endif
  50. #ifdef QCA_WIFI_QCN6122
  51. void hal_qcn6122_attach(struct hal_soc *hal);
  52. #endif
  53. #ifdef QCA_WIFI_QCA6750
  54. void hal_qca6750_attach(struct hal_soc *hal);
  55. #endif
  56. #ifdef QCA_WIFI_QCA5018
  57. void hal_qca5018_attach(struct hal_soc *hal);
  58. #endif
  59. #ifdef QCA_WIFI_QCA5332
  60. void hal_qca5332_attach(struct hal_soc *hal);
  61. #endif
  62. #ifdef QCA_WIFI_KIWI
  63. void hal_kiwi_attach(struct hal_soc *hal);
  64. #endif
  65. #ifdef ENABLE_VERBOSE_DEBUG
  66. bool is_hal_verbose_debug_enabled;
  67. #endif
  68. #define HAL_REO_DESTINATION_RING_CTRL_IX_0_ADDR(x) ((x) + 0x4)
  69. #define HAL_REO_DESTINATION_RING_CTRL_IX_1_ADDR(x) ((x) + 0x8)
  70. #define HAL_REO_DESTINATION_RING_CTRL_IX_2_ADDR(x) ((x) + 0xc)
  71. #define HAL_REO_DESTINATION_RING_CTRL_IX_3_ADDR(x) ((x) + 0x10)
  72. #ifdef ENABLE_HAL_REG_WR_HISTORY
  73. struct hal_reg_write_fail_history hal_reg_wr_hist;
  74. void hal_reg_wr_fail_history_add(struct hal_soc *hal_soc,
  75. uint32_t offset,
  76. uint32_t wr_val, uint32_t rd_val)
  77. {
  78. struct hal_reg_write_fail_entry *record;
  79. int idx;
  80. idx = hal_history_get_next_index(&hal_soc->reg_wr_fail_hist->index,
  81. HAL_REG_WRITE_HIST_SIZE);
  82. record = &hal_soc->reg_wr_fail_hist->record[idx];
  83. record->timestamp = qdf_get_log_timestamp();
  84. record->reg_offset = offset;
  85. record->write_val = wr_val;
  86. record->read_val = rd_val;
  87. }
  88. static void hal_reg_write_fail_history_init(struct hal_soc *hal)
  89. {
  90. hal->reg_wr_fail_hist = &hal_reg_wr_hist;
  91. qdf_atomic_set(&hal->reg_wr_fail_hist->index, -1);
  92. }
  93. #else
  94. static void hal_reg_write_fail_history_init(struct hal_soc *hal)
  95. {
  96. }
  97. #endif
  98. /**
  99. * hal_get_srng_ring_id() - get the ring id of a descriped ring
  100. * @hal: hal_soc data structure
  101. * @ring_type: type enum describing the ring
  102. * @ring_num: which ring of the ring type
  103. * @mac_id: which mac does the ring belong to (or 0 for non-lmac rings)
  104. *
  105. * Return: the ring id or -EINVAL if the ring does not exist.
  106. */
  107. static int hal_get_srng_ring_id(struct hal_soc *hal, int ring_type,
  108. int ring_num, int mac_id)
  109. {
  110. struct hal_hw_srng_config *ring_config =
  111. HAL_SRNG_CONFIG(hal, ring_type);
  112. int ring_id;
  113. if (ring_num >= ring_config->max_rings) {
  114. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO,
  115. "%s: ring_num exceeded maximum no. of supported rings",
  116. __func__);
  117. /* TODO: This is a programming error. Assert if this happens */
  118. return -EINVAL;
  119. }
  120. /**
  121. * Some DMAC rings share a common source ring, hence don't provide them
  122. * with separate ring IDs per LMAC.
  123. */
  124. if (ring_config->lmac_ring && !ring_config->dmac_cmn_ring) {
  125. ring_id = (ring_config->start_ring_id + ring_num +
  126. (mac_id * HAL_MAX_RINGS_PER_LMAC));
  127. } else {
  128. ring_id = ring_config->start_ring_id + ring_num;
  129. }
  130. return ring_id;
  131. }
  132. static struct hal_srng *hal_get_srng(struct hal_soc *hal, int ring_id)
  133. {
  134. /* TODO: Should we allocate srng structures dynamically? */
  135. return &(hal->srng_list[ring_id]);
  136. }
  137. #ifndef SHADOW_REG_CONFIG_DISABLED
  138. #define HP_OFFSET_IN_REG_START 1
  139. #define OFFSET_FROM_HP_TO_TP 4
  140. static void hal_update_srng_hp_tp_address(struct hal_soc *hal_soc,
  141. int shadow_config_index,
  142. int ring_type,
  143. int ring_num)
  144. {
  145. struct hal_srng *srng;
  146. int ring_id;
  147. struct hal_hw_srng_config *ring_config =
  148. HAL_SRNG_CONFIG(hal_soc, ring_type);
  149. ring_id = hal_get_srng_ring_id(hal_soc, ring_type, ring_num, 0);
  150. if (ring_id < 0)
  151. return;
  152. srng = hal_get_srng(hal_soc, ring_id);
  153. if (ring_config->ring_dir == HAL_SRNG_DST_RING) {
  154. srng->u.dst_ring.tp_addr = SHADOW_REGISTER(shadow_config_index)
  155. + hal_soc->dev_base_addr;
  156. hal_debug("tp_addr=%pK dev base addr %pK index %u",
  157. srng->u.dst_ring.tp_addr, hal_soc->dev_base_addr,
  158. shadow_config_index);
  159. } else {
  160. srng->u.src_ring.hp_addr = SHADOW_REGISTER(shadow_config_index)
  161. + hal_soc->dev_base_addr;
  162. hal_debug("hp_addr=%pK dev base addr %pK index %u",
  163. srng->u.src_ring.hp_addr,
  164. hal_soc->dev_base_addr, shadow_config_index);
  165. }
  166. }
  167. #endif
  168. #ifdef GENERIC_SHADOW_REGISTER_ACCESS_ENABLE
  169. void hal_set_one_target_reg_config(struct hal_soc *hal,
  170. uint32_t target_reg_offset,
  171. int list_index)
  172. {
  173. int i = list_index;
  174. qdf_assert_always(i < MAX_GENERIC_SHADOW_REG);
  175. hal->list_shadow_reg_config[i].target_register =
  176. target_reg_offset;
  177. hal->num_generic_shadow_regs_configured++;
  178. }
  179. qdf_export_symbol(hal_set_one_target_reg_config);
  180. #define REO_R0_DESTINATION_RING_CTRL_ADDR_OFFSET 0x4
  181. #define MAX_REO_REMAP_SHADOW_REGS 4
  182. QDF_STATUS hal_set_shadow_regs(void *hal_soc)
  183. {
  184. uint32_t target_reg_offset;
  185. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  186. int i;
  187. struct hal_hw_srng_config *srng_config =
  188. &hal->hw_srng_table[WBM2SW_RELEASE];
  189. uint32_t reo_reg_base;
  190. reo_reg_base = hal_get_reo_reg_base_offset(hal_soc);
  191. target_reg_offset =
  192. HAL_REO_DESTINATION_RING_CTRL_IX_0_ADDR(reo_reg_base);
  193. for (i = 0; i < MAX_REO_REMAP_SHADOW_REGS; i++) {
  194. hal_set_one_target_reg_config(hal, target_reg_offset, i);
  195. target_reg_offset += REO_R0_DESTINATION_RING_CTRL_ADDR_OFFSET;
  196. }
  197. target_reg_offset = srng_config->reg_start[HP_OFFSET_IN_REG_START];
  198. target_reg_offset += (srng_config->reg_size[HP_OFFSET_IN_REG_START]
  199. * HAL_IPA_TX_COMP_RING_IDX);
  200. hal_set_one_target_reg_config(hal, target_reg_offset, i);
  201. return QDF_STATUS_SUCCESS;
  202. }
  203. qdf_export_symbol(hal_set_shadow_regs);
  204. QDF_STATUS hal_construct_shadow_regs(void *hal_soc)
  205. {
  206. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  207. int shadow_config_index = hal->num_shadow_registers_configured;
  208. int i;
  209. int num_regs = hal->num_generic_shadow_regs_configured;
  210. for (i = 0; i < num_regs; i++) {
  211. qdf_assert_always(shadow_config_index < MAX_SHADOW_REGISTERS);
  212. hal->shadow_config[shadow_config_index].addr =
  213. hal->list_shadow_reg_config[i].target_register;
  214. hal->list_shadow_reg_config[i].shadow_config_index =
  215. shadow_config_index;
  216. hal->list_shadow_reg_config[i].va =
  217. SHADOW_REGISTER(shadow_config_index) +
  218. (uintptr_t)hal->dev_base_addr;
  219. hal_debug("target_reg %x, shadow register 0x%x shadow_index 0x%x",
  220. hal->shadow_config[shadow_config_index].addr,
  221. SHADOW_REGISTER(shadow_config_index),
  222. shadow_config_index);
  223. shadow_config_index++;
  224. hal->num_shadow_registers_configured++;
  225. }
  226. return QDF_STATUS_SUCCESS;
  227. }
  228. qdf_export_symbol(hal_construct_shadow_regs);
  229. #endif
  230. #ifndef SHADOW_REG_CONFIG_DISABLED
  231. QDF_STATUS hal_set_one_shadow_config(void *hal_soc,
  232. int ring_type,
  233. int ring_num)
  234. {
  235. uint32_t target_register;
  236. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  237. struct hal_hw_srng_config *srng_config = &hal->hw_srng_table[ring_type];
  238. int shadow_config_index = hal->num_shadow_registers_configured;
  239. if (shadow_config_index >= MAX_SHADOW_REGISTERS) {
  240. QDF_ASSERT(0);
  241. return QDF_STATUS_E_RESOURCES;
  242. }
  243. hal->num_shadow_registers_configured++;
  244. target_register = srng_config->reg_start[HP_OFFSET_IN_REG_START];
  245. target_register += (srng_config->reg_size[HP_OFFSET_IN_REG_START]
  246. *ring_num);
  247. /* if the ring is a dst ring, we need to shadow the tail pointer */
  248. if (srng_config->ring_dir == HAL_SRNG_DST_RING)
  249. target_register += OFFSET_FROM_HP_TO_TP;
  250. hal->shadow_config[shadow_config_index].addr = target_register;
  251. /* update hp/tp addr in the hal_soc structure*/
  252. hal_update_srng_hp_tp_address(hal_soc, shadow_config_index, ring_type,
  253. ring_num);
  254. hal_debug("target_reg %x, shadow register 0x%x shadow_index 0x%x, ring_type %d, ring num %d",
  255. target_register,
  256. SHADOW_REGISTER(shadow_config_index),
  257. shadow_config_index,
  258. ring_type, ring_num);
  259. return QDF_STATUS_SUCCESS;
  260. }
  261. qdf_export_symbol(hal_set_one_shadow_config);
  262. QDF_STATUS hal_construct_srng_shadow_regs(void *hal_soc)
  263. {
  264. int ring_type, ring_num;
  265. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  266. for (ring_type = 0; ring_type < MAX_RING_TYPES; ring_type++) {
  267. struct hal_hw_srng_config *srng_config =
  268. &hal->hw_srng_table[ring_type];
  269. if (ring_type == CE_SRC ||
  270. ring_type == CE_DST ||
  271. ring_type == CE_DST_STATUS)
  272. continue;
  273. if (srng_config->lmac_ring)
  274. continue;
  275. for (ring_num = 0; ring_num < srng_config->max_rings;
  276. ring_num++)
  277. hal_set_one_shadow_config(hal_soc, ring_type, ring_num);
  278. }
  279. return QDF_STATUS_SUCCESS;
  280. }
  281. qdf_export_symbol(hal_construct_srng_shadow_regs);
  282. #else
  283. QDF_STATUS hal_construct_srng_shadow_regs(void *hal_soc)
  284. {
  285. return QDF_STATUS_SUCCESS;
  286. }
  287. qdf_export_symbol(hal_construct_srng_shadow_regs);
  288. QDF_STATUS hal_set_one_shadow_config(void *hal_soc, int ring_type,
  289. int ring_num)
  290. {
  291. return QDF_STATUS_SUCCESS;
  292. }
  293. qdf_export_symbol(hal_set_one_shadow_config);
  294. #endif
  295. void hal_get_shadow_config(void *hal_soc,
  296. struct pld_shadow_reg_v2_cfg **shadow_config,
  297. int *num_shadow_registers_configured)
  298. {
  299. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  300. *shadow_config = &hal->shadow_config[0].v2;
  301. *num_shadow_registers_configured =
  302. hal->num_shadow_registers_configured;
  303. }
  304. qdf_export_symbol(hal_get_shadow_config);
  305. #ifdef CONFIG_SHADOW_V3
  306. void hal_get_shadow_v3_config(void *hal_soc,
  307. struct pld_shadow_reg_v3_cfg **shadow_config,
  308. int *num_shadow_registers_configured)
  309. {
  310. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  311. *shadow_config = &hal->shadow_config[0].v3;
  312. *num_shadow_registers_configured =
  313. hal->num_shadow_registers_configured;
  314. }
  315. qdf_export_symbol(hal_get_shadow_v3_config);
  316. #endif
  317. static bool hal_validate_shadow_register(struct hal_soc *hal,
  318. uint32_t *destination,
  319. uint32_t *shadow_address)
  320. {
  321. unsigned int index;
  322. uint32_t *shadow_0_offset = SHADOW_REGISTER(0) + hal->dev_base_addr;
  323. int destination_ba_offset =
  324. ((char *)destination) - (char *)hal->dev_base_addr;
  325. index = shadow_address - shadow_0_offset;
  326. if (index >= MAX_SHADOW_REGISTERS) {
  327. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  328. "%s: index %x out of bounds", __func__, index);
  329. goto error;
  330. } else if (hal->shadow_config[index].addr != destination_ba_offset) {
  331. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  332. "%s: sanity check failure, expected %x, found %x",
  333. __func__, destination_ba_offset,
  334. hal->shadow_config[index].addr);
  335. goto error;
  336. }
  337. return true;
  338. error:
  339. qdf_print("baddr %pK, desination %pK, shadow_address %pK s0offset %pK index %x",
  340. hal->dev_base_addr, destination, shadow_address,
  341. shadow_0_offset, index);
  342. QDF_BUG(0);
  343. return false;
  344. }
  345. static void hal_target_based_configure(struct hal_soc *hal)
  346. {
  347. /**
  348. * Indicate Initialization of srngs to avoid force wake
  349. * as umac power collapse is not enabled yet
  350. */
  351. hal->init_phase = true;
  352. switch (hal->target_type) {
  353. #ifdef QCA_WIFI_QCA6290
  354. case TARGET_TYPE_QCA6290:
  355. hal->use_register_windowing = true;
  356. hal_qca6290_attach(hal);
  357. break;
  358. #endif
  359. #ifdef QCA_WIFI_QCA6390
  360. case TARGET_TYPE_QCA6390:
  361. hal->use_register_windowing = true;
  362. hal_qca6390_attach(hal);
  363. break;
  364. #endif
  365. #ifdef QCA_WIFI_QCA6490
  366. case TARGET_TYPE_QCA6490:
  367. hal->use_register_windowing = true;
  368. hal_qca6490_attach(hal);
  369. break;
  370. #endif
  371. #ifdef QCA_WIFI_QCA6750
  372. case TARGET_TYPE_QCA6750:
  373. hal->use_register_windowing = true;
  374. hal->static_window_map = true;
  375. hal_qca6750_attach(hal);
  376. break;
  377. #endif
  378. #ifdef QCA_WIFI_KIWI
  379. case TARGET_TYPE_KIWI:
  380. case TARGET_TYPE_MANGO:
  381. hal->use_register_windowing = true;
  382. hal_kiwi_attach(hal);
  383. break;
  384. #endif
  385. #if defined(QCA_WIFI_QCA8074) && defined(WIFI_TARGET_TYPE_3_0)
  386. case TARGET_TYPE_QCA8074:
  387. hal_qca8074_attach(hal);
  388. break;
  389. #endif
  390. #if defined(QCA_WIFI_QCA8074V2)
  391. case TARGET_TYPE_QCA8074V2:
  392. hal_qca8074v2_attach(hal);
  393. break;
  394. #endif
  395. #if defined(QCA_WIFI_QCA6018)
  396. case TARGET_TYPE_QCA6018:
  397. hal_qca8074v2_attach(hal);
  398. break;
  399. #endif
  400. #if defined(QCA_WIFI_QCA9574)
  401. case TARGET_TYPE_QCA9574:
  402. hal_qca8074v2_attach(hal);
  403. break;
  404. #endif
  405. #if defined(QCA_WIFI_QCN6122)
  406. case TARGET_TYPE_QCN6122:
  407. hal->use_register_windowing = true;
  408. /*
  409. * Static window map is enabled for qcn9000 to use 2mb bar
  410. * size and use multiple windows to write into registers.
  411. */
  412. hal->static_window_map = true;
  413. hal_qcn6122_attach(hal);
  414. break;
  415. #endif
  416. #ifdef QCA_WIFI_QCN9000
  417. case TARGET_TYPE_QCN9000:
  418. hal->use_register_windowing = true;
  419. /*
  420. * Static window map is enabled for qcn9000 to use 2mb bar
  421. * size and use multiple windows to write into registers.
  422. */
  423. hal->static_window_map = true;
  424. hal_qcn9000_attach(hal);
  425. break;
  426. #endif
  427. #ifdef QCA_WIFI_QCA5018
  428. case TARGET_TYPE_QCA5018:
  429. hal->use_register_windowing = true;
  430. hal->static_window_map = true;
  431. hal_qca5018_attach(hal);
  432. break;
  433. #endif
  434. #ifdef QCA_WIFI_QCN9224
  435. case TARGET_TYPE_QCN9224:
  436. hal->use_register_windowing = true;
  437. hal->static_window_map = true;
  438. if (hal->version == 1)
  439. hal_qcn9224v1_attach(hal);
  440. else
  441. hal_qcn9224v2_attach(hal);
  442. break;
  443. #endif
  444. #ifdef QCA_WIFI_QCA5332
  445. case TARGET_TYPE_QCA5332:
  446. hal->use_register_windowing = true;
  447. hal->static_window_map = true;
  448. hal_qca5332_attach(hal);
  449. break;
  450. #endif
  451. default:
  452. break;
  453. }
  454. }
  455. uint32_t hal_get_target_type(hal_soc_handle_t hal_soc_hdl)
  456. {
  457. struct hal_soc *hal_soc = (struct hal_soc *)hal_soc_hdl;
  458. struct hif_target_info *tgt_info =
  459. hif_get_target_info_handle(hal_soc->hif_handle);
  460. return tgt_info->target_type;
  461. }
  462. qdf_export_symbol(hal_get_target_type);
  463. #if defined(FEATURE_HAL_DELAYED_REG_WRITE)
  464. /**
  465. * hal_is_reg_write_tput_level_high() - throughput level for delayed reg writes
  466. * @hal: hal_soc pointer
  467. *
  468. * Return: true if throughput is high, else false.
  469. */
  470. static inline bool hal_is_reg_write_tput_level_high(struct hal_soc *hal)
  471. {
  472. int bw_level = hif_get_bandwidth_level(hal->hif_handle);
  473. return (bw_level >= PLD_BUS_WIDTH_MEDIUM) ? true : false;
  474. }
  475. static inline
  476. char *hal_fill_reg_write_srng_stats(struct hal_srng *srng,
  477. char *buf, qdf_size_t size)
  478. {
  479. qdf_scnprintf(buf, size, "enq %u deq %u coal %u direct %u",
  480. srng->wstats.enqueues, srng->wstats.dequeues,
  481. srng->wstats.coalesces, srng->wstats.direct);
  482. return buf;
  483. }
  484. /* bytes for local buffer */
  485. #define HAL_REG_WRITE_SRNG_STATS_LEN 100
  486. void hal_dump_reg_write_srng_stats(hal_soc_handle_t hal_soc_hdl)
  487. {
  488. struct hal_srng *srng;
  489. char buf[HAL_REG_WRITE_SRNG_STATS_LEN];
  490. struct hal_soc *hal = (struct hal_soc *)hal_soc_hdl;
  491. srng = hal_get_srng(hal, HAL_SRNG_SW2TCL1);
  492. hal_debug("SW2TCL1: %s",
  493. hal_fill_reg_write_srng_stats(srng, buf, sizeof(buf)));
  494. srng = hal_get_srng(hal, HAL_SRNG_WBM2SW0_RELEASE);
  495. hal_debug("WBM2SW0: %s",
  496. hal_fill_reg_write_srng_stats(srng, buf, sizeof(buf)));
  497. srng = hal_get_srng(hal, HAL_SRNG_REO2SW1);
  498. hal_debug("REO2SW1: %s",
  499. hal_fill_reg_write_srng_stats(srng, buf, sizeof(buf)));
  500. srng = hal_get_srng(hal, HAL_SRNG_REO2SW2);
  501. hal_debug("REO2SW2: %s",
  502. hal_fill_reg_write_srng_stats(srng, buf, sizeof(buf)));
  503. srng = hal_get_srng(hal, HAL_SRNG_REO2SW3);
  504. hal_debug("REO2SW3: %s",
  505. hal_fill_reg_write_srng_stats(srng, buf, sizeof(buf)));
  506. }
  507. void hal_dump_reg_write_stats(hal_soc_handle_t hal_soc_hdl)
  508. {
  509. uint32_t *hist;
  510. struct hal_soc *hal = (struct hal_soc *)hal_soc_hdl;
  511. hist = hal->stats.wstats.sched_delay;
  512. hal_debug("wstats: enq %u deq %u coal %u direct %u q_depth %u max_q %u sched-delay hist %u %u %u %u",
  513. qdf_atomic_read(&hal->stats.wstats.enqueues),
  514. hal->stats.wstats.dequeues,
  515. qdf_atomic_read(&hal->stats.wstats.coalesces),
  516. qdf_atomic_read(&hal->stats.wstats.direct),
  517. qdf_atomic_read(&hal->stats.wstats.q_depth),
  518. hal->stats.wstats.max_q_depth,
  519. hist[REG_WRITE_SCHED_DELAY_SUB_100us],
  520. hist[REG_WRITE_SCHED_DELAY_SUB_1000us],
  521. hist[REG_WRITE_SCHED_DELAY_SUB_5000us],
  522. hist[REG_WRITE_SCHED_DELAY_GT_5000us]);
  523. }
  524. int hal_get_reg_write_pending_work(void *hal_soc)
  525. {
  526. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  527. return qdf_atomic_read(&hal->active_work_cnt);
  528. }
  529. #endif
  530. #ifdef FEATURE_HAL_DELAYED_REG_WRITE
  531. #ifdef MEMORY_DEBUG
  532. /*
  533. * Length of the queue(array) used to hold delayed register writes.
  534. * Must be a multiple of 2.
  535. */
  536. #define HAL_REG_WRITE_QUEUE_LEN 128
  537. #else
  538. #define HAL_REG_WRITE_QUEUE_LEN 32
  539. #endif
  540. /**
  541. * hal_process_reg_write_q_elem() - process a regiter write queue element
  542. * @hal: hal_soc pointer
  543. * @q_elem: pointer to hal regiter write queue element
  544. *
  545. * Return: The value which was written to the address
  546. */
  547. static uint32_t
  548. hal_process_reg_write_q_elem(struct hal_soc *hal,
  549. struct hal_reg_write_q_elem *q_elem)
  550. {
  551. struct hal_srng *srng = q_elem->srng;
  552. uint32_t write_val;
  553. SRNG_LOCK(&srng->lock);
  554. srng->reg_write_in_progress = false;
  555. srng->wstats.dequeues++;
  556. if (srng->ring_dir == HAL_SRNG_SRC_RING) {
  557. q_elem->dequeue_val = srng->u.src_ring.hp;
  558. hal_write_address_32_mb(hal,
  559. srng->u.src_ring.hp_addr,
  560. srng->u.src_ring.hp, false);
  561. write_val = srng->u.src_ring.hp;
  562. } else {
  563. q_elem->dequeue_val = srng->u.dst_ring.tp;
  564. hal_write_address_32_mb(hal,
  565. srng->u.dst_ring.tp_addr,
  566. srng->u.dst_ring.tp, false);
  567. write_val = srng->u.dst_ring.tp;
  568. }
  569. q_elem->valid = 0;
  570. srng->last_dequeue_time = q_elem->dequeue_time;
  571. SRNG_UNLOCK(&srng->lock);
  572. return write_val;
  573. }
  574. /**
  575. * hal_reg_write_fill_sched_delay_hist() - fill reg write delay histogram in hal
  576. * @hal: hal_soc pointer
  577. * @delay: delay in us
  578. *
  579. * Return: None
  580. */
  581. static inline void hal_reg_write_fill_sched_delay_hist(struct hal_soc *hal,
  582. uint64_t delay_us)
  583. {
  584. uint32_t *hist;
  585. hist = hal->stats.wstats.sched_delay;
  586. if (delay_us < 100)
  587. hist[REG_WRITE_SCHED_DELAY_SUB_100us]++;
  588. else if (delay_us < 1000)
  589. hist[REG_WRITE_SCHED_DELAY_SUB_1000us]++;
  590. else if (delay_us < 5000)
  591. hist[REG_WRITE_SCHED_DELAY_SUB_5000us]++;
  592. else
  593. hist[REG_WRITE_SCHED_DELAY_GT_5000us]++;
  594. }
  595. #ifdef SHADOW_WRITE_DELAY
  596. #define SHADOW_WRITE_MIN_DELTA_US 5
  597. #define SHADOW_WRITE_DELAY_US 50
  598. /*
  599. * Never add those srngs which are performance relate.
  600. * The delay itself will hit performance heavily.
  601. */
  602. #define IS_SRNG_MATCH(s) ((s)->ring_id == HAL_SRNG_CE_1_DST_STATUS || \
  603. (s)->ring_id == HAL_SRNG_CE_1_DST)
  604. static inline bool hal_reg_write_need_delay(struct hal_reg_write_q_elem *elem)
  605. {
  606. struct hal_srng *srng = elem->srng;
  607. struct hal_soc *hal;
  608. qdf_time_t now;
  609. qdf_iomem_t real_addr;
  610. if (qdf_unlikely(!srng))
  611. return false;
  612. hal = srng->hal_soc;
  613. if (qdf_unlikely(!hal))
  614. return false;
  615. /* Check if it is target srng, and valid shadow reg */
  616. if (qdf_likely(!IS_SRNG_MATCH(srng)))
  617. return false;
  618. if (srng->ring_dir == HAL_SRNG_SRC_RING)
  619. real_addr = SRNG_SRC_ADDR(srng, HP);
  620. else
  621. real_addr = SRNG_DST_ADDR(srng, TP);
  622. if (!hal_validate_shadow_register(hal, real_addr, elem->addr))
  623. return false;
  624. /* Check the time delta from last write of same srng */
  625. now = qdf_get_log_timestamp();
  626. if (qdf_log_timestamp_to_usecs(now - srng->last_dequeue_time) >
  627. SHADOW_WRITE_MIN_DELTA_US)
  628. return false;
  629. /* Delay dequeue, and record */
  630. qdf_udelay(SHADOW_WRITE_DELAY_US);
  631. srng->wstats.dequeue_delay++;
  632. hal->stats.wstats.dequeue_delay++;
  633. return true;
  634. }
  635. #else
  636. static inline bool hal_reg_write_need_delay(struct hal_reg_write_q_elem *elem)
  637. {
  638. return false;
  639. }
  640. #endif
  641. /**
  642. * hal_reg_write_work() - Worker to process delayed writes
  643. * @arg: hal_soc pointer
  644. *
  645. * Return: None
  646. */
  647. static void hal_reg_write_work(void *arg)
  648. {
  649. int32_t q_depth, write_val;
  650. struct hal_soc *hal = arg;
  651. struct hal_reg_write_q_elem *q_elem;
  652. uint64_t delta_us;
  653. uint8_t ring_id;
  654. uint32_t *addr;
  655. uint32_t num_processed = 0;
  656. q_elem = &hal->reg_write_queue[(hal->read_idx)];
  657. q_elem->work_scheduled_time = qdf_get_log_timestamp();
  658. q_elem->cpu_id = qdf_get_cpu();
  659. /* Make sure q_elem consistent in the memory for multi-cores */
  660. qdf_rmb();
  661. if (!q_elem->valid)
  662. return;
  663. q_depth = qdf_atomic_read(&hal->stats.wstats.q_depth);
  664. if (q_depth > hal->stats.wstats.max_q_depth)
  665. hal->stats.wstats.max_q_depth = q_depth;
  666. if (hif_prevent_link_low_power_states(hal->hif_handle)) {
  667. hal->stats.wstats.prevent_l1_fails++;
  668. return;
  669. }
  670. while (true) {
  671. qdf_rmb();
  672. if (!q_elem->valid)
  673. break;
  674. q_elem->dequeue_time = qdf_get_log_timestamp();
  675. ring_id = q_elem->srng->ring_id;
  676. addr = q_elem->addr;
  677. delta_us = qdf_log_timestamp_to_usecs(q_elem->dequeue_time -
  678. q_elem->enqueue_time);
  679. hal_reg_write_fill_sched_delay_hist(hal, delta_us);
  680. hal->stats.wstats.dequeues++;
  681. qdf_atomic_dec(&hal->stats.wstats.q_depth);
  682. if (hal_reg_write_need_delay(q_elem))
  683. hal_verbose_debug("Delay reg writer for srng 0x%x, addr 0x%pK",
  684. q_elem->srng->ring_id, q_elem->addr);
  685. write_val = hal_process_reg_write_q_elem(hal, q_elem);
  686. hal_verbose_debug("read_idx %u srng 0x%x, addr 0x%pK dequeue_val %u sched delay %llu us",
  687. hal->read_idx, ring_id, addr, write_val, delta_us);
  688. qdf_trace_dp_del_reg_write(ring_id, q_elem->enqueue_val,
  689. q_elem->dequeue_val,
  690. q_elem->enqueue_time,
  691. q_elem->dequeue_time);
  692. num_processed++;
  693. hal->read_idx = (hal->read_idx + 1) &
  694. (HAL_REG_WRITE_QUEUE_LEN - 1);
  695. q_elem = &hal->reg_write_queue[(hal->read_idx)];
  696. }
  697. hif_allow_link_low_power_states(hal->hif_handle);
  698. /*
  699. * Decrement active_work_cnt by the number of elements dequeued after
  700. * hif_allow_link_low_power_states.
  701. * This makes sure that hif_try_complete_tasks will wait till we make
  702. * the bus access in hif_allow_link_low_power_states. This will avoid
  703. * race condition between delayed register worker and bus suspend
  704. * (system suspend or runtime suspend).
  705. *
  706. * The following decrement should be done at the end!
  707. */
  708. qdf_atomic_sub(num_processed, &hal->active_work_cnt);
  709. }
  710. static void __hal_flush_reg_write_work(struct hal_soc *hal)
  711. {
  712. qdf_flush_work(&hal->reg_write_work);
  713. qdf_disable_work(&hal->reg_write_work);
  714. }
  715. void hal_flush_reg_write_work(hal_soc_handle_t hal_handle)
  716. { __hal_flush_reg_write_work((struct hal_soc *)hal_handle);
  717. }
  718. /**
  719. * hal_reg_write_enqueue() - enqueue register writes into kworker
  720. * @hal_soc: hal_soc pointer
  721. * @srng: srng pointer
  722. * @addr: iomem address of regiter
  723. * @value: value to be written to iomem address
  724. *
  725. * This function executes from within the SRNG LOCK
  726. *
  727. * Return: None
  728. */
  729. static void hal_reg_write_enqueue(struct hal_soc *hal_soc,
  730. struct hal_srng *srng,
  731. void __iomem *addr,
  732. uint32_t value)
  733. {
  734. struct hal_reg_write_q_elem *q_elem;
  735. uint32_t write_idx;
  736. if (srng->reg_write_in_progress) {
  737. hal_verbose_debug("Already in progress srng ring id 0x%x addr 0x%pK val %u",
  738. srng->ring_id, addr, value);
  739. qdf_atomic_inc(&hal_soc->stats.wstats.coalesces);
  740. srng->wstats.coalesces++;
  741. return;
  742. }
  743. write_idx = qdf_atomic_inc_return(&hal_soc->write_idx);
  744. write_idx = write_idx & (HAL_REG_WRITE_QUEUE_LEN - 1);
  745. q_elem = &hal_soc->reg_write_queue[write_idx];
  746. if (q_elem->valid) {
  747. hal_err("queue full");
  748. QDF_BUG(0);
  749. return;
  750. }
  751. qdf_atomic_inc(&hal_soc->stats.wstats.enqueues);
  752. srng->wstats.enqueues++;
  753. qdf_atomic_inc(&hal_soc->stats.wstats.q_depth);
  754. q_elem->srng = srng;
  755. q_elem->addr = addr;
  756. q_elem->enqueue_val = value;
  757. q_elem->enqueue_time = qdf_get_log_timestamp();
  758. /*
  759. * Before the valid flag is set to true, all the other
  760. * fields in the q_elem needs to be updated in memory.
  761. * Else there is a chance that the dequeuing worker thread
  762. * might read stale entries and process incorrect srng.
  763. */
  764. qdf_wmb();
  765. q_elem->valid = true;
  766. /*
  767. * After all other fields in the q_elem has been updated
  768. * in memory successfully, the valid flag needs to be updated
  769. * in memory in time too.
  770. * Else there is a chance that the dequeuing worker thread
  771. * might read stale valid flag and the work will be bypassed
  772. * for this round. And if there is no other work scheduled
  773. * later, this hal register writing won't be updated any more.
  774. */
  775. qdf_wmb();
  776. srng->reg_write_in_progress = true;
  777. qdf_atomic_inc(&hal_soc->active_work_cnt);
  778. hal_verbose_debug("write_idx %u srng ring id 0x%x addr 0x%pK val %u",
  779. write_idx, srng->ring_id, addr, value);
  780. qdf_queue_work(hal_soc->qdf_dev, hal_soc->reg_write_wq,
  781. &hal_soc->reg_write_work);
  782. }
  783. /**
  784. * hal_delayed_reg_write_init() - Initialization function for delayed reg writes
  785. * @hal_soc: hal_soc pointer
  786. *
  787. * Initialize main data structures to process register writes in a delayed
  788. * workqueue.
  789. *
  790. * Return: QDF_STATUS_SUCCESS on success else a QDF error.
  791. */
  792. static QDF_STATUS hal_delayed_reg_write_init(struct hal_soc *hal)
  793. {
  794. hal->reg_write_wq =
  795. qdf_alloc_high_prior_ordered_workqueue("hal_register_write_wq");
  796. qdf_create_work(0, &hal->reg_write_work, hal_reg_write_work, hal);
  797. hal->reg_write_queue = qdf_mem_malloc(HAL_REG_WRITE_QUEUE_LEN *
  798. sizeof(*hal->reg_write_queue));
  799. if (!hal->reg_write_queue) {
  800. hal_err("unable to allocate memory");
  801. QDF_BUG(0);
  802. return QDF_STATUS_E_NOMEM;
  803. }
  804. /* Initial value of indices */
  805. hal->read_idx = 0;
  806. qdf_atomic_set(&hal->write_idx, -1);
  807. return QDF_STATUS_SUCCESS;
  808. }
  809. /**
  810. * hal_delayed_reg_write_deinit() - De-Initialize delayed reg write processing
  811. * @hal_soc: hal_soc pointer
  812. *
  813. * De-initialize main data structures to process register writes in a delayed
  814. * workqueue.
  815. *
  816. * Return: None
  817. */
  818. static void hal_delayed_reg_write_deinit(struct hal_soc *hal)
  819. {
  820. __hal_flush_reg_write_work(hal);
  821. qdf_flush_workqueue(0, hal->reg_write_wq);
  822. qdf_destroy_workqueue(0, hal->reg_write_wq);
  823. qdf_mem_free(hal->reg_write_queue);
  824. }
  825. #else
  826. static inline QDF_STATUS hal_delayed_reg_write_init(struct hal_soc *hal)
  827. {
  828. return QDF_STATUS_SUCCESS;
  829. }
  830. static inline void hal_delayed_reg_write_deinit(struct hal_soc *hal)
  831. {
  832. }
  833. #endif
  834. #ifdef FEATURE_HAL_DELAYED_REG_WRITE
  835. #ifdef HAL_RECORD_SUSPEND_WRITE
  836. static struct hal_suspend_write_history
  837. g_hal_suspend_write_history[HAL_SUSPEND_WRITE_HISTORY_MAX];
  838. static
  839. void hal_event_suspend_record(uint8_t ring_id, uint32_t value, uint32_t count)
  840. {
  841. uint32_t index = qdf_atomic_read(g_hal_suspend_write_history.index) &
  842. (HAL_SUSPEND_WRITE_HISTORY_MAX - 1);
  843. struct hal_suspend_write_record *cur_event =
  844. &hal_suspend_write_event.record[index];
  845. cur_event->ts = qdf_get_log_timestamp();
  846. cur_event->ring_id = ring_id;
  847. cur_event->value = value;
  848. cur_event->direct_wcount = count;
  849. qdf_atomic_inc(g_hal_suspend_write_history.index);
  850. }
  851. static inline
  852. void hal_record_suspend_write(uint8_t ring_id, uint32_t value, uint32_t count)
  853. {
  854. if (hif_rtpm_get_state() >= HIF_RTPM_STATE_SUSPENDING)
  855. hal_event_suspend_record(ring_id, value, count);
  856. }
  857. #else
  858. static inline
  859. void hal_record_suspend_write(uint8_t ring_id, uint32_t value, uint32_t count)
  860. {
  861. }
  862. #endif
  863. #ifdef QCA_WIFI_QCA6750
  864. void hal_delayed_reg_write(struct hal_soc *hal_soc,
  865. struct hal_srng *srng,
  866. void __iomem *addr,
  867. uint32_t value)
  868. {
  869. uint8_t vote_access;
  870. switch (srng->ring_type) {
  871. case CE_SRC:
  872. case CE_DST:
  873. case CE_DST_STATUS:
  874. vote_access = hif_get_ep_vote_access(hal_soc->hif_handle,
  875. HIF_EP_VOTE_NONDP_ACCESS);
  876. if ((vote_access == HIF_EP_VOTE_ACCESS_DISABLE) ||
  877. (vote_access == HIF_EP_VOTE_INTERMEDIATE_ACCESS &&
  878. PLD_MHI_STATE_L0 ==
  879. pld_get_mhi_state(hal_soc->qdf_dev->dev))) {
  880. hal_write_address_32_mb(hal_soc, addr, value, false);
  881. qdf_atomic_inc(&hal_soc->stats.wstats.direct);
  882. srng->wstats.direct++;
  883. } else {
  884. hal_reg_write_enqueue(hal_soc, srng, addr, value);
  885. }
  886. break;
  887. default:
  888. if (hif_get_ep_vote_access(hal_soc->hif_handle,
  889. HIF_EP_VOTE_DP_ACCESS) ==
  890. HIF_EP_VOTE_ACCESS_DISABLE ||
  891. hal_is_reg_write_tput_level_high(hal_soc) ||
  892. PLD_MHI_STATE_L0 ==
  893. pld_get_mhi_state(hal_soc->qdf_dev->dev)) {
  894. hal_write_address_32_mb(hal_soc, addr, value, false);
  895. qdf_atomic_inc(&hal_soc->stats.wstats.direct);
  896. srng->wstats.direct++;
  897. } else {
  898. hal_reg_write_enqueue(hal_soc, srng, addr, value);
  899. }
  900. break;
  901. }
  902. }
  903. #else
  904. void hal_delayed_reg_write(struct hal_soc *hal_soc,
  905. struct hal_srng *srng,
  906. void __iomem *addr,
  907. uint32_t value)
  908. {
  909. if (hal_is_reg_write_tput_level_high(hal_soc) ||
  910. pld_is_device_awake(hal_soc->qdf_dev->dev)) {
  911. qdf_atomic_inc(&hal_soc->stats.wstats.direct);
  912. srng->wstats.direct++;
  913. hal_write_address_32_mb(hal_soc, addr, value, false);
  914. } else {
  915. hal_reg_write_enqueue(hal_soc, srng, addr, value);
  916. }
  917. hal_record_suspend_write(srng->ring_id, value, srng->wstats.direct);
  918. }
  919. #endif
  920. #endif
  921. /**
  922. * hal_attach - Initialize HAL layer
  923. * @hif_handle: Opaque HIF handle
  924. * @qdf_dev: QDF device
  925. *
  926. * Return: Opaque HAL SOC handle
  927. * NULL on failure (if given ring is not available)
  928. *
  929. * This function should be called as part of HIF initialization (for accessing
  930. * copy engines). DP layer will get hal_soc handle using hif_get_hal_handle()
  931. *
  932. */
  933. void *hal_attach(struct hif_opaque_softc *hif_handle, qdf_device_t qdf_dev)
  934. {
  935. struct hal_soc *hal;
  936. int i;
  937. hal = qdf_mem_malloc(sizeof(*hal));
  938. if (!hal) {
  939. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  940. "%s: hal_soc allocation failed", __func__);
  941. goto fail0;
  942. }
  943. hal->hif_handle = hif_handle;
  944. hal->dev_base_addr = hif_get_dev_ba(hif_handle); /* UMAC */
  945. hal->dev_base_addr_ce = hif_get_dev_ba_ce(hif_handle); /* CE */
  946. hal->qdf_dev = qdf_dev;
  947. hal->shadow_rdptr_mem_vaddr = (uint32_t *)qdf_mem_alloc_consistent(
  948. qdf_dev, qdf_dev->dev, sizeof(*(hal->shadow_rdptr_mem_vaddr)) *
  949. HAL_SRNG_ID_MAX, &(hal->shadow_rdptr_mem_paddr));
  950. if (!hal->shadow_rdptr_mem_paddr) {
  951. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  952. "%s: hal->shadow_rdptr_mem_paddr allocation failed",
  953. __func__);
  954. goto fail1;
  955. }
  956. qdf_mem_zero(hal->shadow_rdptr_mem_vaddr,
  957. sizeof(*(hal->shadow_rdptr_mem_vaddr)) * HAL_SRNG_ID_MAX);
  958. hal->shadow_wrptr_mem_vaddr =
  959. (uint32_t *)qdf_mem_alloc_consistent(qdf_dev, qdf_dev->dev,
  960. sizeof(*(hal->shadow_wrptr_mem_vaddr)) * HAL_MAX_LMAC_RINGS,
  961. &(hal->shadow_wrptr_mem_paddr));
  962. if (!hal->shadow_wrptr_mem_vaddr) {
  963. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  964. "%s: hal->shadow_wrptr_mem_vaddr allocation failed",
  965. __func__);
  966. goto fail2;
  967. }
  968. qdf_mem_zero(hal->shadow_wrptr_mem_vaddr,
  969. sizeof(*(hal->shadow_wrptr_mem_vaddr)) * HAL_MAX_LMAC_RINGS);
  970. for (i = 0; i < HAL_SRNG_ID_MAX; i++) {
  971. hal->srng_list[i].initialized = 0;
  972. hal->srng_list[i].ring_id = i;
  973. }
  974. qdf_spinlock_create(&hal->register_access_lock);
  975. hal->register_window = 0;
  976. hal->target_type = hal_get_target_type(hal_soc_to_hal_soc_handle(hal));
  977. hal->version = hif_get_soc_version(hif_handle);
  978. hal->ops = qdf_mem_malloc(sizeof(*hal->ops));
  979. if (!hal->ops) {
  980. hal_err("unable to allocable memory for HAL ops");
  981. goto fail3;
  982. }
  983. hal_target_based_configure(hal);
  984. hal_reg_write_fail_history_init(hal);
  985. qdf_minidump_log(hal, sizeof(*hal), "hal_soc");
  986. qdf_atomic_init(&hal->active_work_cnt);
  987. hal_delayed_reg_write_init(hal);
  988. hal_reo_shared_qaddr_setup((hal_soc_handle_t)hal);
  989. hif_rtpm_register(HIF_RTPM_ID_HAL_REO_CMD, NULL);
  990. return (void *)hal;
  991. fail3:
  992. qdf_mem_free_consistent(qdf_dev, qdf_dev->dev,
  993. sizeof(*hal->shadow_wrptr_mem_vaddr) *
  994. HAL_MAX_LMAC_RINGS,
  995. hal->shadow_wrptr_mem_vaddr,
  996. hal->shadow_wrptr_mem_paddr, 0);
  997. fail2:
  998. qdf_mem_free_consistent(qdf_dev, qdf_dev->dev,
  999. sizeof(*(hal->shadow_rdptr_mem_vaddr)) * HAL_SRNG_ID_MAX,
  1000. hal->shadow_rdptr_mem_vaddr, hal->shadow_rdptr_mem_paddr, 0);
  1001. fail1:
  1002. qdf_mem_free(hal);
  1003. fail0:
  1004. return NULL;
  1005. }
  1006. qdf_export_symbol(hal_attach);
  1007. /**
  1008. * hal_mem_info - Retrieve hal memory base address
  1009. *
  1010. * @hal_soc: Opaque HAL SOC handle
  1011. * @mem: pointer to structure to be updated with hal mem info
  1012. */
  1013. void hal_get_meminfo(hal_soc_handle_t hal_soc_hdl, struct hal_mem_info *mem)
  1014. {
  1015. struct hal_soc *hal = (struct hal_soc *)hal_soc_hdl;
  1016. mem->dev_base_addr = (void *)hal->dev_base_addr;
  1017. mem->shadow_rdptr_mem_vaddr = (void *)hal->shadow_rdptr_mem_vaddr;
  1018. mem->shadow_wrptr_mem_vaddr = (void *)hal->shadow_wrptr_mem_vaddr;
  1019. mem->shadow_rdptr_mem_paddr = (void *)hal->shadow_rdptr_mem_paddr;
  1020. mem->shadow_wrptr_mem_paddr = (void *)hal->shadow_wrptr_mem_paddr;
  1021. hif_read_phy_mem_base((void *)hal->hif_handle,
  1022. (qdf_dma_addr_t *)&mem->dev_base_paddr);
  1023. mem->lmac_srng_start_id = HAL_SRNG_LMAC1_ID_START;
  1024. return;
  1025. }
  1026. qdf_export_symbol(hal_get_meminfo);
  1027. /**
  1028. * hal_detach - Detach HAL layer
  1029. * @hal_soc: HAL SOC handle
  1030. *
  1031. * Return: Opaque HAL SOC handle
  1032. * NULL on failure (if given ring is not available)
  1033. *
  1034. * This function should be called as part of HIF initialization (for accessing
  1035. * copy engines). DP layer will get hal_soc handle using hif_get_hal_handle()
  1036. *
  1037. */
  1038. extern void hal_detach(void *hal_soc)
  1039. {
  1040. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  1041. hif_rtpm_deregister(HIF_RTPM_ID_HAL_REO_CMD);
  1042. hal_delayed_reg_write_deinit(hal);
  1043. hal_reo_shared_qaddr_detach((hal_soc_handle_t)hal);
  1044. qdf_mem_free(hal->ops);
  1045. qdf_mem_free_consistent(hal->qdf_dev, hal->qdf_dev->dev,
  1046. sizeof(*(hal->shadow_rdptr_mem_vaddr)) * HAL_SRNG_ID_MAX,
  1047. hal->shadow_rdptr_mem_vaddr, hal->shadow_rdptr_mem_paddr, 0);
  1048. qdf_mem_free_consistent(hal->qdf_dev, hal->qdf_dev->dev,
  1049. sizeof(*(hal->shadow_wrptr_mem_vaddr)) * HAL_MAX_LMAC_RINGS,
  1050. hal->shadow_wrptr_mem_vaddr, hal->shadow_wrptr_mem_paddr, 0);
  1051. qdf_minidump_remove(hal, sizeof(*hal), "hal_soc");
  1052. qdf_mem_free(hal);
  1053. return;
  1054. }
  1055. qdf_export_symbol(hal_detach);
  1056. #define HAL_CE_CHANNEL_DST_DEST_CTRL_ADDR(x) ((x) + 0x000000b0)
  1057. #define HAL_CE_CHANNEL_DST_DEST_CTRL_DEST_MAX_LENGTH_BMSK 0x0000ffff
  1058. #define HAL_CE_CHANNEL_DST_DEST_RING_CONSUMER_PREFETCH_TIMER_ADDR(x) ((x) + 0x00000040)
  1059. #define HAL_CE_CHANNEL_DST_DEST_RING_CONSUMER_PREFETCH_TIMER_RMSK 0x00000007
  1060. /**
  1061. * hal_ce_dst_setup - Initialize CE destination ring registers
  1062. * @hal_soc: HAL SOC handle
  1063. * @srng: SRNG ring pointer
  1064. */
  1065. static inline void hal_ce_dst_setup(struct hal_soc *hal, struct hal_srng *srng,
  1066. int ring_num)
  1067. {
  1068. uint32_t reg_val = 0;
  1069. uint32_t reg_addr;
  1070. struct hal_hw_srng_config *ring_config =
  1071. HAL_SRNG_CONFIG(hal, CE_DST);
  1072. /* set DEST_MAX_LENGTH according to ce assignment */
  1073. reg_addr = HAL_CE_CHANNEL_DST_DEST_CTRL_ADDR(
  1074. ring_config->reg_start[R0_INDEX] +
  1075. (ring_num * ring_config->reg_size[R0_INDEX]));
  1076. reg_val = HAL_REG_READ(hal, reg_addr);
  1077. reg_val &= ~HAL_CE_CHANNEL_DST_DEST_CTRL_DEST_MAX_LENGTH_BMSK;
  1078. reg_val |= srng->u.dst_ring.max_buffer_length &
  1079. HAL_CE_CHANNEL_DST_DEST_CTRL_DEST_MAX_LENGTH_BMSK;
  1080. HAL_REG_WRITE(hal, reg_addr, reg_val);
  1081. if (srng->prefetch_timer) {
  1082. reg_addr = HAL_CE_CHANNEL_DST_DEST_RING_CONSUMER_PREFETCH_TIMER_ADDR(
  1083. ring_config->reg_start[R0_INDEX] +
  1084. (ring_num * ring_config->reg_size[R0_INDEX]));
  1085. reg_val = HAL_REG_READ(hal, reg_addr);
  1086. reg_val &= ~HAL_CE_CHANNEL_DST_DEST_RING_CONSUMER_PREFETCH_TIMER_RMSK;
  1087. reg_val |= srng->prefetch_timer;
  1088. HAL_REG_WRITE(hal, reg_addr, reg_val);
  1089. reg_val = HAL_REG_READ(hal, reg_addr);
  1090. }
  1091. }
  1092. /**
  1093. * hal_reo_read_write_ctrl_ix - Read or write REO_DESTINATION_RING_CTRL_IX
  1094. * @hal: HAL SOC handle
  1095. * @read: boolean value to indicate if read or write
  1096. * @ix0: pointer to store IX0 reg value
  1097. * @ix1: pointer to store IX1 reg value
  1098. * @ix2: pointer to store IX2 reg value
  1099. * @ix3: pointer to store IX3 reg value
  1100. */
  1101. void hal_reo_read_write_ctrl_ix(hal_soc_handle_t hal_soc_hdl, bool read,
  1102. uint32_t *ix0, uint32_t *ix1,
  1103. uint32_t *ix2, uint32_t *ix3)
  1104. {
  1105. uint32_t reg_offset;
  1106. struct hal_soc *hal = (struct hal_soc *)hal_soc_hdl;
  1107. uint32_t reo_reg_base;
  1108. reo_reg_base = hal_get_reo_reg_base_offset(hal_soc_hdl);
  1109. if (read) {
  1110. if (ix0) {
  1111. reg_offset =
  1112. HAL_REO_DESTINATION_RING_CTRL_IX_0_ADDR(
  1113. reo_reg_base);
  1114. *ix0 = HAL_REG_READ(hal, reg_offset);
  1115. }
  1116. if (ix1) {
  1117. reg_offset =
  1118. HAL_REO_DESTINATION_RING_CTRL_IX_1_ADDR(
  1119. reo_reg_base);
  1120. *ix1 = HAL_REG_READ(hal, reg_offset);
  1121. }
  1122. if (ix2) {
  1123. reg_offset =
  1124. HAL_REO_DESTINATION_RING_CTRL_IX_2_ADDR(
  1125. reo_reg_base);
  1126. *ix2 = HAL_REG_READ(hal, reg_offset);
  1127. }
  1128. if (ix3) {
  1129. reg_offset =
  1130. HAL_REO_DESTINATION_RING_CTRL_IX_3_ADDR(
  1131. reo_reg_base);
  1132. *ix3 = HAL_REG_READ(hal, reg_offset);
  1133. }
  1134. } else {
  1135. if (ix0) {
  1136. reg_offset =
  1137. HAL_REO_DESTINATION_RING_CTRL_IX_0_ADDR(
  1138. reo_reg_base);
  1139. HAL_REG_WRITE_CONFIRM_RETRY(hal, reg_offset,
  1140. *ix0, true);
  1141. }
  1142. if (ix1) {
  1143. reg_offset =
  1144. HAL_REO_DESTINATION_RING_CTRL_IX_1_ADDR(
  1145. reo_reg_base);
  1146. HAL_REG_WRITE_CONFIRM_RETRY(hal, reg_offset,
  1147. *ix1, true);
  1148. }
  1149. if (ix2) {
  1150. reg_offset =
  1151. HAL_REO_DESTINATION_RING_CTRL_IX_2_ADDR(
  1152. reo_reg_base);
  1153. HAL_REG_WRITE_CONFIRM_RETRY(hal, reg_offset,
  1154. *ix2, true);
  1155. }
  1156. if (ix3) {
  1157. reg_offset =
  1158. HAL_REO_DESTINATION_RING_CTRL_IX_3_ADDR(
  1159. reo_reg_base);
  1160. HAL_REG_WRITE_CONFIRM_RETRY(hal, reg_offset,
  1161. *ix3, true);
  1162. }
  1163. }
  1164. }
  1165. qdf_export_symbol(hal_reo_read_write_ctrl_ix);
  1166. /**
  1167. * hal_srng_dst_set_hp_paddr_confirm() - Set physical address to dest ring head
  1168. * pointer and confirm that write went through by reading back the value
  1169. * @srng: sring pointer
  1170. * @paddr: physical address
  1171. *
  1172. * Return: None
  1173. */
  1174. void hal_srng_dst_set_hp_paddr_confirm(struct hal_srng *srng, uint64_t paddr)
  1175. {
  1176. SRNG_DST_REG_WRITE_CONFIRM(srng, HP_ADDR_LSB, paddr & 0xffffffff);
  1177. SRNG_DST_REG_WRITE_CONFIRM(srng, HP_ADDR_MSB, paddr >> 32);
  1178. }
  1179. qdf_export_symbol(hal_srng_dst_set_hp_paddr_confirm);
  1180. /**
  1181. * hal_srng_dst_init_hp() - Initialize destination ring head
  1182. * pointer
  1183. * @hal_soc: hal_soc handle
  1184. * @srng: sring pointer
  1185. * @vaddr: virtual address
  1186. */
  1187. void hal_srng_dst_init_hp(struct hal_soc_handle *hal_soc,
  1188. struct hal_srng *srng,
  1189. uint32_t *vaddr)
  1190. {
  1191. uint32_t reg_offset;
  1192. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  1193. if (!srng)
  1194. return;
  1195. srng->u.dst_ring.hp_addr = vaddr;
  1196. reg_offset = SRNG_DST_ADDR(srng, HP) - hal->dev_base_addr;
  1197. HAL_REG_WRITE_CONFIRM_RETRY(
  1198. hal, reg_offset, srng->u.dst_ring.cached_hp, true);
  1199. if (vaddr) {
  1200. *srng->u.dst_ring.hp_addr = srng->u.dst_ring.cached_hp;
  1201. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1202. "hp_addr=%pK, cached_hp=%d, hp=%d",
  1203. (void *)srng->u.dst_ring.hp_addr,
  1204. srng->u.dst_ring.cached_hp,
  1205. *srng->u.dst_ring.hp_addr);
  1206. }
  1207. }
  1208. qdf_export_symbol(hal_srng_dst_init_hp);
  1209. /**
  1210. * hal_srng_hw_init - Private function to initialize SRNG HW
  1211. * @hal_soc: HAL SOC handle
  1212. * @srng: SRNG ring pointer
  1213. * @idle_check: Check if ring is idle
  1214. */
  1215. static inline void hal_srng_hw_init(struct hal_soc *hal,
  1216. struct hal_srng *srng, bool idle_check)
  1217. {
  1218. if (srng->ring_dir == HAL_SRNG_SRC_RING)
  1219. hal_srng_src_hw_init(hal, srng, idle_check);
  1220. else
  1221. hal_srng_dst_hw_init(hal, srng, idle_check);
  1222. }
  1223. #if defined(CONFIG_SHADOW_V2) || defined(CONFIG_SHADOW_V3)
  1224. #define ignore_shadow false
  1225. #define CHECK_SHADOW_REGISTERS true
  1226. #else
  1227. #define ignore_shadow true
  1228. #define CHECK_SHADOW_REGISTERS false
  1229. #endif
  1230. #ifdef WLAN_FEATURE_NEAR_FULL_IRQ
  1231. /**
  1232. * hal_srng_is_near_full_irq_supported() - Check if near full irq is
  1233. * supported on this SRNG
  1234. * @hal_soc: HAL SoC handle
  1235. * @ring_type: SRNG type
  1236. * @ring_num: ring number
  1237. *
  1238. * Return: true, if near full irq is supported for this SRNG
  1239. * false, if near full irq is not supported for this SRNG
  1240. */
  1241. bool hal_srng_is_near_full_irq_supported(hal_soc_handle_t hal_soc,
  1242. int ring_type, int ring_num)
  1243. {
  1244. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  1245. struct hal_hw_srng_config *ring_config =
  1246. HAL_SRNG_CONFIG(hal, ring_type);
  1247. return ring_config->nf_irq_support;
  1248. }
  1249. /**
  1250. * hal_srng_set_msi2_params() - Set MSI2 params to SRNG data structure from
  1251. * ring params
  1252. * @srng: SRNG handle
  1253. * @ring_params: ring params for this SRNG
  1254. *
  1255. * Return: None
  1256. */
  1257. static inline void
  1258. hal_srng_set_msi2_params(struct hal_srng *srng,
  1259. struct hal_srng_params *ring_params)
  1260. {
  1261. srng->msi2_addr = ring_params->msi2_addr;
  1262. srng->msi2_data = ring_params->msi2_data;
  1263. }
  1264. /**
  1265. * hal_srng_get_nf_params() - Get the near full MSI2 params from srng
  1266. * @srng: SRNG handle
  1267. * @ring_params: ring params for this SRNG
  1268. *
  1269. * Return: None
  1270. */
  1271. static inline void
  1272. hal_srng_get_nf_params(struct hal_srng *srng,
  1273. struct hal_srng_params *ring_params)
  1274. {
  1275. ring_params->msi2_addr = srng->msi2_addr;
  1276. ring_params->msi2_data = srng->msi2_data;
  1277. }
  1278. /**
  1279. * hal_srng_set_nf_thresholds() - Set the near full thresholds in SRNG
  1280. * @srng: SRNG handle where the params are to be set
  1281. * @ring_params: ring params, from where threshold is to be fetched
  1282. *
  1283. * Return: None
  1284. */
  1285. static inline void
  1286. hal_srng_set_nf_thresholds(struct hal_srng *srng,
  1287. struct hal_srng_params *ring_params)
  1288. {
  1289. srng->u.dst_ring.nf_irq_support = ring_params->nf_irq_support;
  1290. srng->u.dst_ring.high_thresh = ring_params->high_thresh;
  1291. }
  1292. #else
  1293. static inline void
  1294. hal_srng_set_msi2_params(struct hal_srng *srng,
  1295. struct hal_srng_params *ring_params)
  1296. {
  1297. }
  1298. static inline void
  1299. hal_srng_get_nf_params(struct hal_srng *srng,
  1300. struct hal_srng_params *ring_params)
  1301. {
  1302. }
  1303. static inline void
  1304. hal_srng_set_nf_thresholds(struct hal_srng *srng,
  1305. struct hal_srng_params *ring_params)
  1306. {
  1307. }
  1308. #endif
  1309. #if defined(CLEAR_SW2TCL_CONSUMED_DESC)
  1310. /**
  1311. * hal_srng_last_desc_cleared_init - Initialize SRNG last_desc_cleared ptr
  1312. *
  1313. * @srng: Source ring pointer
  1314. *
  1315. * Return: None
  1316. */
  1317. static inline
  1318. void hal_srng_last_desc_cleared_init(struct hal_srng *srng)
  1319. {
  1320. srng->last_desc_cleared = srng->ring_size - srng->entry_size;
  1321. }
  1322. #else
  1323. static inline
  1324. void hal_srng_last_desc_cleared_init(struct hal_srng *srng)
  1325. {
  1326. }
  1327. #endif /* CLEAR_SW2TCL_CONSUMED_DESC */
  1328. #ifdef WLAN_DP_SRNG_USAGE_WM_TRACKING
  1329. static inline void hal_srng_update_high_wm_thresholds(struct hal_srng *srng)
  1330. {
  1331. srng->high_wm.bin_thresh[HAL_SRNG_HIGH_WM_BIN_90_to_100] =
  1332. ((srng->num_entries * 90) / 100);
  1333. srng->high_wm.bin_thresh[HAL_SRNG_HIGH_WM_BIN_80_to_90] =
  1334. ((srng->num_entries * 80) / 100);
  1335. srng->high_wm.bin_thresh[HAL_SRNG_HIGH_WM_BIN_70_to_80] =
  1336. ((srng->num_entries * 70) / 100);
  1337. srng->high_wm.bin_thresh[HAL_SRNG_HIGH_WM_BIN_60_to_70] =
  1338. ((srng->num_entries * 60) / 100);
  1339. srng->high_wm.bin_thresh[HAL_SRNG_HIGH_WM_BIN_50_to_60] =
  1340. ((srng->num_entries * 50) / 100);
  1341. /* Below 50% threshold is not needed */
  1342. srng->high_wm.bin_thresh[HAL_SRNG_HIGH_WM_BIN_BELOW_50_PERCENT] = 0;
  1343. hal_info("ring_id: %u, wm_thresh- <50:%u, 50-60:%u, 60-70:%u, 70-80:%u, 80-90:%u, 90-100:%u",
  1344. srng->ring_id,
  1345. srng->high_wm.bin_thresh[HAL_SRNG_HIGH_WM_BIN_BELOW_50_PERCENT],
  1346. srng->high_wm.bin_thresh[HAL_SRNG_HIGH_WM_BIN_50_to_60],
  1347. srng->high_wm.bin_thresh[HAL_SRNG_HIGH_WM_BIN_60_to_70],
  1348. srng->high_wm.bin_thresh[HAL_SRNG_HIGH_WM_BIN_70_to_80],
  1349. srng->high_wm.bin_thresh[HAL_SRNG_HIGH_WM_BIN_80_to_90],
  1350. srng->high_wm.bin_thresh[HAL_SRNG_HIGH_WM_BIN_90_to_100]);
  1351. }
  1352. #else
  1353. static inline void hal_srng_update_high_wm_thresholds(struct hal_srng *srng)
  1354. {
  1355. }
  1356. #endif
  1357. /**
  1358. * hal_srng_setup - Initialize HW SRNG ring.
  1359. * @hal_soc: Opaque HAL SOC handle
  1360. * @ring_type: one of the types from hal_ring_type
  1361. * @ring_num: Ring number if there are multiple rings of same type (staring
  1362. * from 0)
  1363. * @mac_id: valid MAC Id should be passed if ring type is one of lmac rings
  1364. * @ring_params: SRNG ring params in hal_srng_params structure.
  1365. * @idle_check: Check if ring is idle
  1366. *
  1367. * Callers are expected to allocate contiguous ring memory of size
  1368. * 'num_entries * entry_size' bytes and pass the physical and virtual base
  1369. * addresses through 'ring_base_paddr' and 'ring_base_vaddr' in
  1370. * hal_srng_params structure. Ring base address should be 8 byte aligned
  1371. * and size of each ring entry should be queried using the API
  1372. * hal_srng_get_entrysize
  1373. *
  1374. * Return: Opaque pointer to ring on success
  1375. * NULL on failure (if given ring is not available)
  1376. */
  1377. void *hal_srng_setup(void *hal_soc, int ring_type, int ring_num,
  1378. int mac_id, struct hal_srng_params *ring_params, bool idle_check)
  1379. {
  1380. int ring_id;
  1381. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  1382. struct hal_srng *srng;
  1383. struct hal_hw_srng_config *ring_config =
  1384. HAL_SRNG_CONFIG(hal, ring_type);
  1385. void *dev_base_addr;
  1386. int i;
  1387. ring_id = hal_get_srng_ring_id(hal_soc, ring_type, ring_num, mac_id);
  1388. if (ring_id < 0)
  1389. return NULL;
  1390. hal_verbose_debug("mac_id %d ring_id %d", mac_id, ring_id);
  1391. srng = hal_get_srng(hal_soc, ring_id);
  1392. if (srng->initialized) {
  1393. hal_verbose_debug("Ring (ring_type, ring_num) already initialized");
  1394. return NULL;
  1395. }
  1396. dev_base_addr = hal->dev_base_addr;
  1397. srng->ring_id = ring_id;
  1398. srng->ring_type = ring_type;
  1399. srng->ring_dir = ring_config->ring_dir;
  1400. srng->ring_base_paddr = ring_params->ring_base_paddr;
  1401. srng->ring_base_vaddr = ring_params->ring_base_vaddr;
  1402. srng->entry_size = ring_config->entry_size;
  1403. srng->num_entries = ring_params->num_entries;
  1404. srng->ring_size = srng->num_entries * srng->entry_size;
  1405. srng->ring_size_mask = srng->ring_size - 1;
  1406. srng->ring_vaddr_end = srng->ring_base_vaddr + srng->ring_size;
  1407. srng->msi_addr = ring_params->msi_addr;
  1408. srng->msi_data = ring_params->msi_data;
  1409. srng->intr_timer_thres_us = ring_params->intr_timer_thres_us;
  1410. srng->intr_batch_cntr_thres_entries =
  1411. ring_params->intr_batch_cntr_thres_entries;
  1412. if (!idle_check)
  1413. srng->prefetch_timer = ring_params->prefetch_timer;
  1414. srng->hal_soc = hal_soc;
  1415. hal_srng_set_msi2_params(srng, ring_params);
  1416. hal_srng_update_high_wm_thresholds(srng);
  1417. for (i = 0 ; i < MAX_SRNG_REG_GROUPS; i++) {
  1418. srng->hwreg_base[i] = dev_base_addr + ring_config->reg_start[i]
  1419. + (ring_num * ring_config->reg_size[i]);
  1420. }
  1421. /* Zero out the entire ring memory */
  1422. qdf_mem_zero(srng->ring_base_vaddr, (srng->entry_size *
  1423. srng->num_entries) << 2);
  1424. srng->flags = ring_params->flags;
  1425. /* For cached descriptors flush and invalidate the memory*/
  1426. if (srng->flags & HAL_SRNG_CACHED_DESC) {
  1427. qdf_nbuf_dma_clean_range(
  1428. srng->ring_base_vaddr,
  1429. srng->ring_base_vaddr +
  1430. ((srng->entry_size * srng->num_entries)));
  1431. qdf_nbuf_dma_inv_range(
  1432. srng->ring_base_vaddr,
  1433. srng->ring_base_vaddr +
  1434. ((srng->entry_size * srng->num_entries)));
  1435. }
  1436. #ifdef BIG_ENDIAN_HOST
  1437. /* TODO: See if we should we get these flags from caller */
  1438. srng->flags |= HAL_SRNG_DATA_TLV_SWAP;
  1439. srng->flags |= HAL_SRNG_MSI_SWAP;
  1440. srng->flags |= HAL_SRNG_RING_PTR_SWAP;
  1441. #endif
  1442. hal_srng_last_desc_cleared_init(srng);
  1443. if (srng->ring_dir == HAL_SRNG_SRC_RING) {
  1444. srng->u.src_ring.hp = 0;
  1445. srng->u.src_ring.reap_hp = srng->ring_size -
  1446. srng->entry_size;
  1447. srng->u.src_ring.tp_addr =
  1448. &(hal->shadow_rdptr_mem_vaddr[ring_id]);
  1449. srng->u.src_ring.low_threshold =
  1450. ring_params->low_threshold * srng->entry_size;
  1451. if (srng->u.src_ring.tp_addr)
  1452. qdf_mem_zero(srng->u.src_ring.tp_addr,
  1453. sizeof(*hal->shadow_rdptr_mem_vaddr));
  1454. if (ring_config->lmac_ring) {
  1455. /* For LMAC rings, head pointer updates will be done
  1456. * through FW by writing to a shared memory location
  1457. */
  1458. srng->u.src_ring.hp_addr =
  1459. &(hal->shadow_wrptr_mem_vaddr[ring_id -
  1460. HAL_SRNG_LMAC1_ID_START]);
  1461. srng->flags |= HAL_SRNG_LMAC_RING;
  1462. if (srng->u.src_ring.hp_addr)
  1463. qdf_mem_zero(srng->u.src_ring.hp_addr,
  1464. sizeof(*hal->shadow_wrptr_mem_vaddr));
  1465. } else if (ignore_shadow || (srng->u.src_ring.hp_addr == 0)) {
  1466. srng->u.src_ring.hp_addr =
  1467. hal_get_window_address(hal,
  1468. SRNG_SRC_ADDR(srng, HP));
  1469. if (CHECK_SHADOW_REGISTERS) {
  1470. QDF_TRACE(QDF_MODULE_ID_TXRX,
  1471. QDF_TRACE_LEVEL_ERROR,
  1472. "%s: Ring (%d, %d) missing shadow config",
  1473. __func__, ring_type, ring_num);
  1474. }
  1475. } else {
  1476. hal_validate_shadow_register(hal,
  1477. SRNG_SRC_ADDR(srng, HP),
  1478. srng->u.src_ring.hp_addr);
  1479. }
  1480. } else {
  1481. /* During initialization loop count in all the descriptors
  1482. * will be set to zero, and HW will set it to 1 on completing
  1483. * descriptor update in first loop, and increments it by 1 on
  1484. * subsequent loops (loop count wraps around after reaching
  1485. * 0xffff). The 'loop_cnt' in SW ring state is the expected
  1486. * loop count in descriptors updated by HW (to be processed
  1487. * by SW).
  1488. */
  1489. hal_srng_set_nf_thresholds(srng, ring_params);
  1490. srng->u.dst_ring.loop_cnt = 1;
  1491. srng->u.dst_ring.tp = 0;
  1492. srng->u.dst_ring.hp_addr =
  1493. &(hal->shadow_rdptr_mem_vaddr[ring_id]);
  1494. if (srng->u.dst_ring.hp_addr)
  1495. qdf_mem_zero(srng->u.dst_ring.hp_addr,
  1496. sizeof(*hal->shadow_rdptr_mem_vaddr));
  1497. if (ring_config->lmac_ring) {
  1498. /* For LMAC rings, tail pointer updates will be done
  1499. * through FW by writing to a shared memory location
  1500. */
  1501. srng->u.dst_ring.tp_addr =
  1502. &(hal->shadow_wrptr_mem_vaddr[ring_id -
  1503. HAL_SRNG_LMAC1_ID_START]);
  1504. srng->flags |= HAL_SRNG_LMAC_RING;
  1505. if (srng->u.dst_ring.tp_addr)
  1506. qdf_mem_zero(srng->u.dst_ring.tp_addr,
  1507. sizeof(*hal->shadow_wrptr_mem_vaddr));
  1508. } else if (ignore_shadow || srng->u.dst_ring.tp_addr == 0) {
  1509. srng->u.dst_ring.tp_addr =
  1510. hal_get_window_address(hal,
  1511. SRNG_DST_ADDR(srng, TP));
  1512. if (CHECK_SHADOW_REGISTERS) {
  1513. QDF_TRACE(QDF_MODULE_ID_TXRX,
  1514. QDF_TRACE_LEVEL_ERROR,
  1515. "%s: Ring (%d, %d) missing shadow config",
  1516. __func__, ring_type, ring_num);
  1517. }
  1518. } else {
  1519. hal_validate_shadow_register(hal,
  1520. SRNG_DST_ADDR(srng, TP),
  1521. srng->u.dst_ring.tp_addr);
  1522. }
  1523. }
  1524. if (!(ring_config->lmac_ring)) {
  1525. hal_srng_hw_init(hal, srng, idle_check);
  1526. if (ring_type == CE_DST) {
  1527. srng->u.dst_ring.max_buffer_length = ring_params->max_buffer_length;
  1528. hal_ce_dst_setup(hal, srng, ring_num);
  1529. }
  1530. }
  1531. SRNG_LOCK_INIT(&srng->lock);
  1532. srng->srng_event = 0;
  1533. srng->initialized = true;
  1534. return (void *)srng;
  1535. }
  1536. qdf_export_symbol(hal_srng_setup);
  1537. /**
  1538. * hal_srng_cleanup - Deinitialize HW SRNG ring.
  1539. * @hal_soc: Opaque HAL SOC handle
  1540. * @hal_srng: Opaque HAL SRNG pointer
  1541. */
  1542. void hal_srng_cleanup(void *hal_soc, hal_ring_handle_t hal_ring_hdl)
  1543. {
  1544. struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
  1545. SRNG_LOCK_DESTROY(&srng->lock);
  1546. srng->initialized = 0;
  1547. hal_srng_hw_disable(hal_soc, srng);
  1548. }
  1549. qdf_export_symbol(hal_srng_cleanup);
  1550. /**
  1551. * hal_srng_get_entrysize - Returns size of ring entry in bytes
  1552. * @hal_soc: Opaque HAL SOC handle
  1553. * @ring_type: one of the types from hal_ring_type
  1554. *
  1555. */
  1556. uint32_t hal_srng_get_entrysize(void *hal_soc, int ring_type)
  1557. {
  1558. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  1559. struct hal_hw_srng_config *ring_config =
  1560. HAL_SRNG_CONFIG(hal, ring_type);
  1561. return ring_config->entry_size << 2;
  1562. }
  1563. qdf_export_symbol(hal_srng_get_entrysize);
  1564. /**
  1565. * hal_srng_max_entries - Returns maximum possible number of ring entries
  1566. * @hal_soc: Opaque HAL SOC handle
  1567. * @ring_type: one of the types from hal_ring_type
  1568. *
  1569. * Return: Maximum number of entries for the given ring_type
  1570. */
  1571. uint32_t hal_srng_max_entries(void *hal_soc, int ring_type)
  1572. {
  1573. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  1574. struct hal_hw_srng_config *ring_config =
  1575. HAL_SRNG_CONFIG(hal, ring_type);
  1576. return ring_config->max_size / ring_config->entry_size;
  1577. }
  1578. qdf_export_symbol(hal_srng_max_entries);
  1579. enum hal_srng_dir hal_srng_get_dir(void *hal_soc, int ring_type)
  1580. {
  1581. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  1582. struct hal_hw_srng_config *ring_config =
  1583. HAL_SRNG_CONFIG(hal, ring_type);
  1584. return ring_config->ring_dir;
  1585. }
  1586. /**
  1587. * hal_srng_dump - Dump ring status
  1588. * @srng: hal srng pointer
  1589. */
  1590. void hal_srng_dump(struct hal_srng *srng)
  1591. {
  1592. if (srng->ring_dir == HAL_SRNG_SRC_RING) {
  1593. hal_debug("=== SRC RING %d ===", srng->ring_id);
  1594. hal_debug("hp %u, reap_hp %u, tp %u, cached tp %u",
  1595. srng->u.src_ring.hp,
  1596. srng->u.src_ring.reap_hp,
  1597. *srng->u.src_ring.tp_addr,
  1598. srng->u.src_ring.cached_tp);
  1599. } else {
  1600. hal_debug("=== DST RING %d ===", srng->ring_id);
  1601. hal_debug("tp %u, hp %u, cached tp %u, loop_cnt %u",
  1602. srng->u.dst_ring.tp,
  1603. *srng->u.dst_ring.hp_addr,
  1604. srng->u.dst_ring.cached_hp,
  1605. srng->u.dst_ring.loop_cnt);
  1606. }
  1607. }
  1608. /**
  1609. * hal_get_srng_params - Retrieve SRNG parameters for a given ring from HAL
  1610. *
  1611. * @hal_soc: Opaque HAL SOC handle
  1612. * @hal_ring: Ring pointer (Source or Destination ring)
  1613. * @ring_params: SRNG parameters will be returned through this structure
  1614. */
  1615. extern void hal_get_srng_params(hal_soc_handle_t hal_soc_hdl,
  1616. hal_ring_handle_t hal_ring_hdl,
  1617. struct hal_srng_params *ring_params)
  1618. {
  1619. struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
  1620. int i =0;
  1621. ring_params->ring_id = srng->ring_id;
  1622. ring_params->ring_dir = srng->ring_dir;
  1623. ring_params->entry_size = srng->entry_size;
  1624. ring_params->ring_base_paddr = srng->ring_base_paddr;
  1625. ring_params->ring_base_vaddr = srng->ring_base_vaddr;
  1626. ring_params->num_entries = srng->num_entries;
  1627. ring_params->msi_addr = srng->msi_addr;
  1628. ring_params->msi_data = srng->msi_data;
  1629. ring_params->intr_timer_thres_us = srng->intr_timer_thres_us;
  1630. ring_params->intr_batch_cntr_thres_entries =
  1631. srng->intr_batch_cntr_thres_entries;
  1632. ring_params->low_threshold = srng->u.src_ring.low_threshold;
  1633. ring_params->flags = srng->flags;
  1634. ring_params->ring_id = srng->ring_id;
  1635. for (i = 0 ; i < MAX_SRNG_REG_GROUPS; i++)
  1636. ring_params->hwreg_base[i] = srng->hwreg_base[i];
  1637. hal_srng_get_nf_params(srng, ring_params);
  1638. }
  1639. qdf_export_symbol(hal_get_srng_params);
  1640. void hal_set_low_threshold(hal_ring_handle_t hal_ring_hdl,
  1641. uint32_t low_threshold)
  1642. {
  1643. struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
  1644. srng->u.src_ring.low_threshold = low_threshold * srng->entry_size;
  1645. }
  1646. qdf_export_symbol(hal_set_low_threshold);
  1647. #ifdef FEATURE_RUNTIME_PM
  1648. void
  1649. hal_srng_rtpm_access_end(hal_soc_handle_t hal_soc_hdl,
  1650. hal_ring_handle_t hal_ring_hdl,
  1651. uint32_t rtpm_id)
  1652. {
  1653. if (qdf_unlikely(!hal_ring_hdl)) {
  1654. qdf_print("Error: Invalid hal_ring\n");
  1655. return;
  1656. }
  1657. if (hif_rtpm_get(HIF_RTPM_GET_ASYNC, rtpm_id) == 0) {
  1658. hal_srng_access_end(hal_soc_hdl, hal_ring_hdl);
  1659. hif_rtpm_put(HIF_RTPM_PUT_ASYNC, rtpm_id);
  1660. } else {
  1661. hal_srng_access_end_reap(hal_soc_hdl, hal_ring_hdl);
  1662. hal_srng_set_event(hal_ring_hdl, HAL_SRNG_FLUSH_EVENT);
  1663. hal_srng_inc_flush_cnt(hal_ring_hdl);
  1664. }
  1665. }
  1666. qdf_export_symbol(hal_srng_rtpm_access_end);
  1667. #endif /* FEATURE_RUNTIME_PM */
  1668. #ifdef FORCE_WAKE
  1669. void hal_set_init_phase(hal_soc_handle_t soc, bool init_phase)
  1670. {
  1671. struct hal_soc *hal_soc = (struct hal_soc *)soc;
  1672. hal_soc->init_phase = init_phase;
  1673. }
  1674. #endif /* FORCE_WAKE */