msm-pcm-afe-v2.c 24 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912
  1. // SPDX-License-Identifier: GPL-2.0
  2. /* Copyright (c) 2012-2018, The Linux Foundation. All rights reserved.
  3. */
  4. #include <linux/init.h>
  5. #include <linux/err.h>
  6. #include <linux/module.h>
  7. #include <linux/moduleparam.h>
  8. #include <linux/time.h>
  9. #include <linux/wait.h>
  10. #include <linux/platform_device.h>
  11. #include <linux/slab.h>
  12. #include <linux/dma-mapping.h>
  13. #include <sound/core.h>
  14. #include <sound/soc.h>
  15. #include <sound/soc-dapm.h>
  16. #include <sound/pcm.h>
  17. #include <sound/initval.h>
  18. #include <sound/control.h>
  19. #include <asm/dma.h>
  20. #include <dsp/msm_audio_ion.h>
  21. #include <dsp/q6adm-v2.h>
  22. #include "msm-pcm-afe-v2.h"
  23. #define MIN_PLAYBACK_PERIOD_SIZE (128 * 2)
  24. #define MAX_PLAYBACK_PERIOD_SIZE (128 * 2 * 2 * 6)
  25. #define MIN_PLAYBACK_NUM_PERIODS (4)
  26. #define MAX_PLAYBACK_NUM_PERIODS (384)
  27. #define MIN_CAPTURE_PERIOD_SIZE (128 * 2)
  28. #define MAX_CAPTURE_PERIOD_SIZE (192 * 2 * 2 * 8 * 4)
  29. #define MIN_CAPTURE_NUM_PERIODS (4)
  30. #define MAX_CAPTURE_NUM_PERIODS (384)
  31. static struct snd_pcm_hardware msm_afe_hardware_playback = {
  32. .info = (SNDRV_PCM_INFO_MMAP |
  33. SNDRV_PCM_INFO_BLOCK_TRANSFER |
  34. SNDRV_PCM_INFO_MMAP_VALID |
  35. SNDRV_PCM_INFO_INTERLEAVED),
  36. .formats = SNDRV_PCM_FMTBIT_S16_LE|
  37. SNDRV_PCM_FMTBIT_S24_LE,
  38. .rates = (SNDRV_PCM_RATE_8000 |
  39. SNDRV_PCM_RATE_16000 |
  40. SNDRV_PCM_RATE_48000),
  41. .rate_min = 8000,
  42. .rate_max = 48000,
  43. .channels_min = 1,
  44. .channels_max = 6,
  45. .buffer_bytes_max = MAX_PLAYBACK_PERIOD_SIZE *
  46. MAX_PLAYBACK_NUM_PERIODS,
  47. .period_bytes_min = MIN_PLAYBACK_PERIOD_SIZE,
  48. .period_bytes_max = MAX_PLAYBACK_PERIOD_SIZE,
  49. .periods_min = MIN_PLAYBACK_NUM_PERIODS,
  50. .periods_max = MAX_PLAYBACK_NUM_PERIODS,
  51. .fifo_size = 0,
  52. };
  53. static struct snd_pcm_hardware msm_afe_hardware_capture = {
  54. .info = (SNDRV_PCM_INFO_MMAP |
  55. SNDRV_PCM_INFO_BLOCK_TRANSFER |
  56. SNDRV_PCM_INFO_MMAP_VALID |
  57. SNDRV_PCM_INFO_INTERLEAVED),
  58. .formats = SNDRV_PCM_FMTBIT_S16_LE|
  59. SNDRV_PCM_FMTBIT_S24_LE,
  60. .rates = (SNDRV_PCM_RATE_8000 |
  61. SNDRV_PCM_RATE_16000 |
  62. SNDRV_PCM_RATE_48000),
  63. .rate_min = 8000,
  64. .rate_max = 48000,
  65. .channels_min = 1,
  66. .channels_max = 6,
  67. .buffer_bytes_max = MAX_CAPTURE_PERIOD_SIZE *
  68. MAX_CAPTURE_NUM_PERIODS,
  69. .period_bytes_min = MIN_CAPTURE_PERIOD_SIZE,
  70. .period_bytes_max = MAX_CAPTURE_PERIOD_SIZE,
  71. .periods_min = MIN_CAPTURE_NUM_PERIODS,
  72. .periods_max = MAX_CAPTURE_NUM_PERIODS,
  73. .fifo_size = 0,
  74. };
  75. static enum hrtimer_restart afe_hrtimer_callback(struct hrtimer *hrt);
  76. static enum hrtimer_restart afe_hrtimer_rec_callback(struct hrtimer *hrt);
  77. static enum hrtimer_restart afe_hrtimer_callback(struct hrtimer *hrt)
  78. {
  79. struct pcm_afe_info *prtd =
  80. container_of(hrt, struct pcm_afe_info, hrt);
  81. struct snd_pcm_substream *substream = prtd->substream;
  82. struct snd_pcm_runtime *runtime = substream->runtime;
  83. u32 mem_map_handle = 0;
  84. mem_map_handle = afe_req_mmap_handle(prtd->audio_client);
  85. if (!mem_map_handle)
  86. pr_err("%s: mem_map_handle is NULL\n", __func__);
  87. if (prtd->start) {
  88. pr_debug("sending frame to DSP: poll_time: %d\n",
  89. prtd->poll_time);
  90. if (prtd->dsp_cnt == runtime->periods)
  91. prtd->dsp_cnt = 0;
  92. pr_debug("%s: mem_map_handle 0x%x\n", __func__, mem_map_handle);
  93. afe_rt_proxy_port_write(
  94. (prtd->dma_addr +
  95. (prtd->dsp_cnt *
  96. snd_pcm_lib_period_bytes(prtd->substream))), mem_map_handle,
  97. snd_pcm_lib_period_bytes(prtd->substream));
  98. prtd->dsp_cnt++;
  99. hrtimer_forward_now(hrt, ns_to_ktime(prtd->poll_time
  100. * 1000));
  101. return HRTIMER_RESTART;
  102. } else
  103. return HRTIMER_NORESTART;
  104. }
  105. static enum hrtimer_restart afe_hrtimer_rec_callback(struct hrtimer *hrt)
  106. {
  107. struct pcm_afe_info *prtd =
  108. container_of(hrt, struct pcm_afe_info, hrt);
  109. struct snd_pcm_substream *substream = prtd->substream;
  110. struct snd_pcm_runtime *runtime = substream->runtime;
  111. u32 mem_map_handle = 0;
  112. int ret;
  113. mem_map_handle = afe_req_mmap_handle(prtd->audio_client);
  114. if (!mem_map_handle)
  115. pr_err("%s: mem_map_handle is NULL\n", __func__);
  116. if (prtd->start) {
  117. if (prtd->dsp_cnt == runtime->periods)
  118. prtd->dsp_cnt = 0;
  119. pr_debug("%s: mem_map_handle 0x%x\n", __func__, mem_map_handle);
  120. ret = afe_rt_proxy_port_read(
  121. (prtd->dma_addr + (prtd->dsp_cnt
  122. * snd_pcm_lib_period_bytes(prtd->substream))), mem_map_handle,
  123. snd_pcm_lib_period_bytes(prtd->substream));
  124. if (ret < 0) {
  125. pr_err("%s: AFE port read fails: %d\n", __func__, ret);
  126. prtd->start = 0;
  127. return HRTIMER_NORESTART;
  128. }
  129. prtd->dsp_cnt++;
  130. pr_debug("sending frame rec to DSP: poll_time: %d\n",
  131. prtd->poll_time);
  132. hrtimer_forward_now(hrt, ns_to_ktime(prtd->poll_time
  133. * 1000));
  134. return HRTIMER_RESTART;
  135. } else
  136. return HRTIMER_NORESTART;
  137. }
  138. static void pcm_afe_process_tx_pkt(uint32_t opcode,
  139. uint32_t token, uint32_t *payload,
  140. void *priv)
  141. {
  142. struct pcm_afe_info *prtd = priv;
  143. unsigned long dsp_flags;
  144. struct snd_pcm_substream *substream = NULL;
  145. struct snd_pcm_runtime *runtime = NULL;
  146. uint16_t event;
  147. uint64_t period_bytes;
  148. uint64_t bytes_one_sec;
  149. if (prtd == NULL)
  150. return;
  151. substream = prtd->substream;
  152. runtime = substream->runtime;
  153. pr_debug("%s\n", __func__);
  154. spin_lock_irqsave(&prtd->dsp_lock, dsp_flags);
  155. switch (opcode) {
  156. case AFE_EVENT_RT_PROXY_PORT_STATUS: {
  157. event = (uint16_t)((0xFFFF0000 & payload[0]) >> 0x10);
  158. switch (event) {
  159. case AFE_EVENT_RTPORT_START: {
  160. prtd->dsp_cnt = 0;
  161. /* Calculate poll time.
  162. * Split steps to avoid overflow.
  163. * Poll time-time corresponding to one period
  164. * in bytes.
  165. * (Samplerate * channelcount * format) =
  166. * bytes in 1 sec.
  167. * Poll time =
  168. * (period bytes / bytes in one sec) *
  169. * 1000000 micro seconds.
  170. * Multiplication by 1000000 is done in two
  171. * steps to keep the accuracy of poll time.
  172. */
  173. if (prtd->mmap_flag) {
  174. period_bytes = ((uint64_t)(
  175. (snd_pcm_lib_period_bytes(
  176. prtd->substream)) *
  177. 1000));
  178. bytes_one_sec = (runtime->rate
  179. * runtime->channels * 2);
  180. bytes_one_sec =
  181. div_u64(bytes_one_sec, 1000);
  182. prtd->poll_time =
  183. div_u64(period_bytes,
  184. bytes_one_sec);
  185. pr_debug("prtd->poll_time: %d",
  186. prtd->poll_time);
  187. }
  188. break;
  189. }
  190. case AFE_EVENT_RTPORT_STOP:
  191. pr_debug("%s: event!=0\n", __func__);
  192. prtd->start = 0;
  193. snd_pcm_stop(substream, SNDRV_PCM_STATE_SETUP);
  194. break;
  195. case AFE_EVENT_RTPORT_LOW_WM:
  196. pr_debug("%s: Underrun\n", __func__);
  197. break;
  198. case AFE_EVENT_RTPORT_HI_WM:
  199. pr_debug("%s: Overrun\n", __func__);
  200. break;
  201. default:
  202. break;
  203. }
  204. break;
  205. }
  206. case APR_BASIC_RSP_RESULT: {
  207. switch (payload[0]) {
  208. case AFE_PORT_DATA_CMD_RT_PROXY_PORT_WRITE_V2:
  209. pr_debug("write done\n");
  210. prtd->pcm_irq_pos += snd_pcm_lib_period_bytes
  211. (prtd->substream);
  212. snd_pcm_period_elapsed(prtd->substream);
  213. break;
  214. default:
  215. break;
  216. }
  217. break;
  218. }
  219. case RESET_EVENTS:
  220. prtd->pcm_irq_pos += snd_pcm_lib_period_bytes
  221. (prtd->substream);
  222. prtd->reset_event = true;
  223. snd_pcm_period_elapsed(prtd->substream);
  224. break;
  225. default:
  226. break;
  227. }
  228. spin_unlock_irqrestore(&prtd->dsp_lock, dsp_flags);
  229. }
  230. static void pcm_afe_process_rx_pkt(uint32_t opcode,
  231. uint32_t token, uint32_t *payload,
  232. void *priv)
  233. {
  234. struct pcm_afe_info *prtd = priv;
  235. unsigned long dsp_flags;
  236. struct snd_pcm_substream *substream = NULL;
  237. struct snd_pcm_runtime *runtime = NULL;
  238. uint16_t event;
  239. uint64_t period_bytes;
  240. uint64_t bytes_one_sec;
  241. uint32_t mem_map_handle = 0;
  242. if (prtd == NULL)
  243. return;
  244. substream = prtd->substream;
  245. runtime = substream->runtime;
  246. pr_debug("%s\n", __func__);
  247. spin_lock_irqsave(&prtd->dsp_lock, dsp_flags);
  248. switch (opcode) {
  249. case AFE_EVENT_RT_PROXY_PORT_STATUS: {
  250. event = (uint16_t)((0xFFFF0000 & payload[0]) >> 0x10);
  251. switch (event) {
  252. case AFE_EVENT_RTPORT_START: {
  253. prtd->dsp_cnt = 0;
  254. /* Calculate poll time. Split steps to avoid overflow.
  255. * Poll time-time corresponding to one period in bytes.
  256. * (Samplerate * channelcount * format)=bytes in 1 sec.
  257. * Poll time = (period bytes / bytes in one sec) *
  258. * 1000000 micro seconds.
  259. * Multiplication by 1000000 is done in two steps to
  260. * keep the accuracy of poll time.
  261. */
  262. if (prtd->mmap_flag) {
  263. period_bytes = ((uint64_t)(
  264. (snd_pcm_lib_period_bytes(
  265. prtd->substream)) * 1000));
  266. bytes_one_sec = (runtime->rate *
  267. runtime->channels * 2);
  268. bytes_one_sec = div_u64(bytes_one_sec, 1000);
  269. prtd->poll_time =
  270. div_u64(period_bytes, bytes_one_sec);
  271. pr_debug("prtd->poll_time : %d\n",
  272. prtd->poll_time);
  273. } else {
  274. mem_map_handle =
  275. afe_req_mmap_handle(prtd->audio_client);
  276. if (!mem_map_handle)
  277. pr_err("%s:mem_map_handle is NULL\n",
  278. __func__);
  279. /* Do initial read to start transfer */
  280. afe_rt_proxy_port_read((prtd->dma_addr +
  281. (prtd->dsp_cnt *
  282. snd_pcm_lib_period_bytes(
  283. prtd->substream))),
  284. mem_map_handle,
  285. snd_pcm_lib_period_bytes(
  286. prtd->substream));
  287. prtd->dsp_cnt++;
  288. }
  289. break;
  290. }
  291. case AFE_EVENT_RTPORT_STOP:
  292. pr_debug("%s: event!=0\n", __func__);
  293. prtd->start = 0;
  294. snd_pcm_stop(substream, SNDRV_PCM_STATE_SETUP);
  295. break;
  296. case AFE_EVENT_RTPORT_LOW_WM:
  297. pr_debug("%s: Underrun\n", __func__);
  298. break;
  299. case AFE_EVENT_RTPORT_HI_WM:
  300. pr_debug("%s: Overrun\n", __func__);
  301. break;
  302. default:
  303. break;
  304. }
  305. break;
  306. }
  307. case APR_BASIC_RSP_RESULT: {
  308. switch (payload[0]) {
  309. case AFE_PORT_DATA_CMD_RT_PROXY_PORT_READ_V2:
  310. pr_debug("%s :Read done\n", __func__);
  311. prtd->pcm_irq_pos += snd_pcm_lib_period_bytes
  312. (prtd->substream);
  313. if (!prtd->mmap_flag) {
  314. atomic_set(&prtd->rec_bytes_avail, 1);
  315. wake_up(&prtd->read_wait);
  316. }
  317. snd_pcm_period_elapsed(prtd->substream);
  318. break;
  319. default:
  320. break;
  321. }
  322. break;
  323. }
  324. case RESET_EVENTS:
  325. prtd->pcm_irq_pos += snd_pcm_lib_period_bytes
  326. (prtd->substream);
  327. prtd->reset_event = true;
  328. if (!prtd->mmap_flag) {
  329. atomic_set(&prtd->rec_bytes_avail, 1);
  330. wake_up(&prtd->read_wait);
  331. }
  332. snd_pcm_period_elapsed(prtd->substream);
  333. break;
  334. default:
  335. break;
  336. }
  337. spin_unlock_irqrestore(&prtd->dsp_lock, dsp_flags);
  338. }
  339. static int msm_afe_playback_prepare(struct snd_pcm_substream *substream)
  340. {
  341. struct snd_pcm_runtime *runtime = substream->runtime;
  342. struct pcm_afe_info *prtd = runtime->private_data;
  343. struct snd_soc_pcm_runtime *rtd = substream->private_data;
  344. struct snd_soc_dai *dai = rtd->cpu_dai;
  345. int ret = 0;
  346. pr_debug("%s: sample_rate=%d\n", __func__, runtime->rate);
  347. pr_debug("%s: dai->id =%x\n", __func__, dai->id);
  348. ret = afe_register_get_events(dai->id,
  349. pcm_afe_process_tx_pkt, prtd);
  350. if (ret < 0) {
  351. pr_err("afe-pcm:register for events failed\n");
  352. return ret;
  353. }
  354. pr_debug("%s:success\n", __func__);
  355. prtd->prepared++;
  356. return ret;
  357. }
  358. static int msm_afe_capture_prepare(struct snd_pcm_substream *substream)
  359. {
  360. struct snd_pcm_runtime *runtime = substream->runtime;
  361. struct pcm_afe_info *prtd = runtime->private_data;
  362. struct snd_soc_pcm_runtime *rtd = substream->private_data;
  363. struct snd_soc_dai *dai = rtd->cpu_dai;
  364. int ret = 0;
  365. pr_debug("%s\n", __func__);
  366. pr_debug("%s: dai->id =%x\n", __func__, dai->id);
  367. ret = afe_register_get_events(dai->id,
  368. pcm_afe_process_rx_pkt, prtd);
  369. if (ret < 0) {
  370. pr_err("afe-pcm:register for events failed\n");
  371. return ret;
  372. }
  373. pr_debug("%s:success\n", __func__);
  374. prtd->prepared++;
  375. return 0;
  376. }
  377. /* Conventional and unconventional sample rate supported */
  378. static unsigned int supported_sample_rates[] = {
  379. 8000, 16000, 48000
  380. };
  381. static struct snd_pcm_hw_constraint_list constraints_sample_rates = {
  382. .count = ARRAY_SIZE(supported_sample_rates),
  383. .list = supported_sample_rates,
  384. .mask = 0,
  385. };
  386. static int msm_afe_open(struct snd_pcm_substream *substream)
  387. {
  388. struct snd_pcm_runtime *runtime = substream->runtime;
  389. struct pcm_afe_info *prtd = NULL;
  390. int ret = 0;
  391. prtd = kzalloc(sizeof(struct pcm_afe_info), GFP_KERNEL);
  392. if (prtd == NULL)
  393. return -ENOMEM;
  394. pr_debug("prtd %pK\n", prtd);
  395. mutex_init(&prtd->lock);
  396. spin_lock_init(&prtd->dsp_lock);
  397. prtd->dsp_cnt = 0;
  398. mutex_lock(&prtd->lock);
  399. if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
  400. runtime->hw = msm_afe_hardware_playback;
  401. else
  402. runtime->hw = msm_afe_hardware_capture;
  403. prtd->substream = substream;
  404. runtime->private_data = prtd;
  405. prtd->audio_client = q6afe_audio_client_alloc(prtd);
  406. if (!prtd->audio_client) {
  407. pr_debug("%s: Could not allocate memory\n", __func__);
  408. mutex_unlock(&prtd->lock);
  409. kfree(prtd);
  410. return -ENOMEM;
  411. }
  412. atomic_set(&prtd->rec_bytes_avail, 0);
  413. init_waitqueue_head(&prtd->read_wait);
  414. hrtimer_init(&prtd->hrt, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  415. if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
  416. prtd->hrt.function = afe_hrtimer_callback;
  417. else if (substream->stream == SNDRV_PCM_STREAM_CAPTURE)
  418. prtd->hrt.function = afe_hrtimer_rec_callback;
  419. mutex_unlock(&prtd->lock);
  420. ret = snd_pcm_hw_constraint_list(runtime, 0,
  421. SNDRV_PCM_HW_PARAM_RATE,
  422. &constraints_sample_rates);
  423. if (ret < 0)
  424. pr_err("snd_pcm_hw_constraint_list failed\n");
  425. /* Ensure that buffer size is a multiple of period size */
  426. ret = snd_pcm_hw_constraint_integer(runtime,
  427. SNDRV_PCM_HW_PARAM_PERIODS);
  428. if (ret < 0)
  429. pr_err("snd_pcm_hw_constraint_integer failed\n");
  430. if (substream->stream == SNDRV_PCM_STREAM_CAPTURE) {
  431. ret = snd_pcm_hw_constraint_minmax(runtime,
  432. SNDRV_PCM_HW_PARAM_BUFFER_BYTES,
  433. MIN_CAPTURE_NUM_PERIODS * MIN_CAPTURE_PERIOD_SIZE,
  434. MAX_CAPTURE_NUM_PERIODS * MAX_CAPTURE_PERIOD_SIZE);
  435. if (ret < 0) {
  436. pr_err("constraint for buffer bytes min max ret = %d\n",
  437. ret);
  438. }
  439. }
  440. prtd->reset_event = false;
  441. return 0;
  442. }
  443. static int msm_afe_playback_copy(struct snd_pcm_substream *substream,
  444. int channel, unsigned long hwoff,
  445. void __user *buf, unsigned long fbytes)
  446. {
  447. int ret = 0;
  448. struct snd_pcm_runtime *runtime = substream->runtime;
  449. struct pcm_afe_info *prtd = runtime->private_data;
  450. char *hwbuf = runtime->dma_area + hwoff;
  451. u32 mem_map_handle = 0;
  452. pr_debug("%s : appl_ptr 0x%lx hw_ptr 0x%lx dest_to_copy 0x%pK\n",
  453. __func__,
  454. runtime->control->appl_ptr, runtime->status->hw_ptr, hwbuf);
  455. if (copy_from_user(hwbuf, buf, fbytes)) {
  456. pr_err("%s :Failed to copy audio from user buffer\n",
  457. __func__);
  458. ret = -EFAULT;
  459. goto fail;
  460. }
  461. if (!prtd->mmap_flag) {
  462. mem_map_handle = afe_req_mmap_handle(prtd->audio_client);
  463. if (!mem_map_handle) {
  464. pr_err("%s: mem_map_handle is NULL\n", __func__);
  465. ret = -EFAULT;
  466. goto fail;
  467. }
  468. pr_debug("%s : prtd-> dma_addr 0x%lx dsp_cnt %d\n", __func__,
  469. prtd->dma_addr, prtd->dsp_cnt);
  470. if (prtd->dsp_cnt == runtime->periods)
  471. prtd->dsp_cnt = 0;
  472. ret = afe_rt_proxy_port_write(
  473. (prtd->dma_addr + (prtd->dsp_cnt *
  474. snd_pcm_lib_period_bytes(prtd->substream))),
  475. mem_map_handle,
  476. snd_pcm_lib_period_bytes(prtd->substream));
  477. if (ret) {
  478. pr_err("%s: AFE proxy port write failed %d\n",
  479. __func__, ret);
  480. goto fail;
  481. }
  482. prtd->dsp_cnt++;
  483. }
  484. fail:
  485. return ret;
  486. }
  487. static int msm_afe_capture_copy(struct snd_pcm_substream *substream,
  488. int channel, unsigned long hwoff,
  489. void __user *buf, unsigned long fbytes)
  490. {
  491. int ret = 0;
  492. struct snd_pcm_runtime *runtime = substream->runtime;
  493. struct pcm_afe_info *prtd = runtime->private_data;
  494. char *hwbuf = runtime->dma_area + hwoff;
  495. u32 mem_map_handle = 0;
  496. if (!prtd->mmap_flag) {
  497. mem_map_handle = afe_req_mmap_handle(prtd->audio_client);
  498. if (!mem_map_handle) {
  499. pr_err("%s: mem_map_handle is NULL\n", __func__);
  500. ret = -EFAULT;
  501. goto fail;
  502. }
  503. if (prtd->dsp_cnt == runtime->periods)
  504. prtd->dsp_cnt = 0;
  505. ret = afe_rt_proxy_port_read((prtd->dma_addr +
  506. (prtd->dsp_cnt *
  507. snd_pcm_lib_period_bytes(prtd->substream))),
  508. mem_map_handle,
  509. snd_pcm_lib_period_bytes(prtd->substream));
  510. if (ret) {
  511. pr_err("%s: AFE proxy port read failed %d\n",
  512. __func__, ret);
  513. goto fail;
  514. }
  515. prtd->dsp_cnt++;
  516. ret = wait_event_timeout(prtd->read_wait,
  517. atomic_read(&prtd->rec_bytes_avail), 5 * HZ);
  518. if (ret < 0) {
  519. pr_err("%s: wait_event_timeout failed\n", __func__);
  520. ret = -ETIMEDOUT;
  521. goto fail;
  522. }
  523. atomic_set(&prtd->rec_bytes_avail, 0);
  524. }
  525. pr_debug("%s:appl_ptr 0x%lx hw_ptr 0x%lx src_to_copy 0x%pK\n",
  526. __func__, runtime->control->appl_ptr,
  527. runtime->status->hw_ptr, hwbuf);
  528. if (copy_to_user(buf, hwbuf, fbytes)) {
  529. pr_err("%s: copy to user failed\n", __func__);
  530. goto fail;
  531. ret = -EFAULT;
  532. }
  533. fail:
  534. return ret;
  535. }
  536. static int msm_afe_copy(struct snd_pcm_substream *substream, int channel,
  537. unsigned long hwoff, void __user *buf,
  538. unsigned long fbytes)
  539. {
  540. struct snd_pcm_runtime *runtime = substream->runtime;
  541. struct pcm_afe_info *prtd = runtime->private_data;
  542. int ret = 0;
  543. if (prtd->reset_event) {
  544. pr_debug("%s: reset events received from ADSP, return error\n",
  545. __func__);
  546. return -ENETRESET;
  547. }
  548. if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
  549. ret = msm_afe_playback_copy(substream, channel, hwoff,
  550. buf, fbytes);
  551. else if (substream->stream == SNDRV_PCM_STREAM_CAPTURE)
  552. ret = msm_afe_capture_copy(substream, channel, hwoff,
  553. buf, fbytes);
  554. return ret;
  555. }
  556. static int msm_afe_close(struct snd_pcm_substream *substream)
  557. {
  558. int rc = 0;
  559. struct snd_dma_buffer *dma_buf;
  560. struct snd_pcm_runtime *runtime;
  561. struct pcm_afe_info *prtd;
  562. struct snd_soc_pcm_runtime *rtd = NULL;
  563. struct snd_soc_dai *dai = NULL;
  564. int dir = IN;
  565. int ret = 0;
  566. pr_debug("%s\n", __func__);
  567. if (substream == NULL) {
  568. pr_err("substream is NULL\n");
  569. return -EINVAL;
  570. }
  571. rtd = substream->private_data;
  572. dai = rtd->cpu_dai;
  573. runtime = substream->runtime;
  574. prtd = runtime->private_data;
  575. mutex_lock(&prtd->lock);
  576. if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
  577. dir = IN;
  578. ret = afe_unregister_get_events(dai->id);
  579. if (ret < 0)
  580. pr_err("AFE unregister for events failed\n");
  581. } else if (substream->stream == SNDRV_PCM_STREAM_CAPTURE) {
  582. dir = OUT;
  583. ret = afe_unregister_get_events(dai->id);
  584. if (ret < 0)
  585. pr_err("AFE unregister for events failed\n");
  586. }
  587. if (prtd->mmap_flag)
  588. hrtimer_cancel(&prtd->hrt);
  589. rc = afe_cmd_memory_unmap(afe_req_mmap_handle(prtd->audio_client));
  590. if (rc < 0)
  591. pr_err("AFE memory unmap failed\n");
  592. pr_debug("release all buffer\n");
  593. dma_buf = &substream->dma_buffer;
  594. if (dma_buf == NULL) {
  595. pr_debug("dma_buf is NULL\n");
  596. goto done;
  597. }
  598. if (dma_buf->area)
  599. dma_buf->area = NULL;
  600. q6afe_audio_client_buf_free_contiguous(dir, prtd->audio_client);
  601. done:
  602. pr_debug("%s: dai->id =%x\n", __func__, dai->id);
  603. q6afe_audio_client_free(prtd->audio_client);
  604. mutex_unlock(&prtd->lock);
  605. prtd->prepared--;
  606. kfree(prtd);
  607. runtime->private_data = NULL;
  608. return 0;
  609. }
  610. static int msm_afe_prepare(struct snd_pcm_substream *substream)
  611. {
  612. int ret = 0;
  613. struct snd_pcm_runtime *runtime = substream->runtime;
  614. struct pcm_afe_info *prtd = runtime->private_data;
  615. prtd->pcm_irq_pos = 0;
  616. if (prtd->prepared)
  617. return 0;
  618. mutex_lock(&prtd->lock);
  619. if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
  620. ret = msm_afe_playback_prepare(substream);
  621. else if (substream->stream == SNDRV_PCM_STREAM_CAPTURE)
  622. ret = msm_afe_capture_prepare(substream);
  623. mutex_unlock(&prtd->lock);
  624. return ret;
  625. }
  626. static int msm_afe_mmap(struct snd_pcm_substream *substream,
  627. struct vm_area_struct *vma)
  628. {
  629. struct snd_pcm_runtime *runtime = substream->runtime;
  630. struct pcm_afe_info *prtd = runtime->private_data;
  631. struct afe_audio_client *ac = prtd->audio_client;
  632. struct afe_audio_port_data *apd = ac->port;
  633. struct afe_audio_buffer *ab;
  634. int dir = -1;
  635. pr_debug("%s\n", __func__);
  636. prtd->mmap_flag = 1;
  637. if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
  638. dir = IN;
  639. else
  640. dir = OUT;
  641. ab = &(apd[dir].buf[0]);
  642. return msm_audio_ion_mmap((struct audio_buffer *)ab, vma);
  643. }
  644. static int msm_afe_trigger(struct snd_pcm_substream *substream, int cmd)
  645. {
  646. int ret = 0;
  647. struct snd_pcm_runtime *runtime = substream->runtime;
  648. struct pcm_afe_info *prtd = runtime->private_data;
  649. switch (cmd) {
  650. case SNDRV_PCM_TRIGGER_START:
  651. case SNDRV_PCM_TRIGGER_RESUME:
  652. case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
  653. pr_debug("%s: SNDRV_PCM_TRIGGER_START\n", __func__);
  654. prtd->start = 1;
  655. if (prtd->mmap_flag)
  656. hrtimer_start(&prtd->hrt, ns_to_ktime(0),
  657. HRTIMER_MODE_REL);
  658. break;
  659. case SNDRV_PCM_TRIGGER_STOP:
  660. case SNDRV_PCM_TRIGGER_SUSPEND:
  661. case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
  662. pr_debug("%s: SNDRV_PCM_TRIGGER_STOP\n", __func__);
  663. prtd->start = 0;
  664. break;
  665. default:
  666. ret = -EINVAL;
  667. break;
  668. }
  669. return ret;
  670. }
  671. static int msm_afe_hw_params(struct snd_pcm_substream *substream,
  672. struct snd_pcm_hw_params *params)
  673. {
  674. struct snd_pcm_runtime *runtime = substream->runtime;
  675. struct snd_dma_buffer *dma_buf = &substream->dma_buffer;
  676. struct pcm_afe_info *prtd = runtime->private_data;
  677. struct afe_audio_buffer *buf;
  678. int dir, rc;
  679. pr_debug("%s:\n", __func__);
  680. mutex_lock(&prtd->lock);
  681. if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
  682. dir = IN;
  683. else
  684. dir = OUT;
  685. rc = q6afe_audio_client_buf_alloc_contiguous(dir,
  686. prtd->audio_client,
  687. (params_buffer_bytes(params) / params_periods(params)),
  688. params_periods(params));
  689. pr_debug("params_buffer_bytes(params) = %d\n",
  690. (params_buffer_bytes(params)));
  691. pr_debug("params_periods(params) = %d\n",
  692. (params_periods(params)));
  693. pr_debug("params_periodsize(params) = %d\n",
  694. (params_buffer_bytes(params) / params_periods(params)));
  695. if (rc < 0) {
  696. pr_err("Audio Start: Buffer Allocation failed rc = %d\n", rc);
  697. mutex_unlock(&prtd->lock);
  698. return -ENOMEM;
  699. }
  700. buf = prtd->audio_client->port[dir].buf;
  701. if (buf == NULL || buf[0].data == NULL) {
  702. mutex_unlock(&prtd->lock);
  703. return -ENOMEM;
  704. }
  705. pr_debug("%s:buf = %pK\n", __func__, buf);
  706. dma_buf->dev.type = SNDRV_DMA_TYPE_DEV;
  707. dma_buf->dev.dev = substream->pcm->card->dev;
  708. dma_buf->private_data = NULL;
  709. dma_buf->area = buf[0].data;
  710. dma_buf->addr = buf[0].phys;
  711. dma_buf->bytes = params_buffer_bytes(params);
  712. if (!dma_buf->area) {
  713. pr_err("%s:MSM AFE physical memory allocation failed\n",
  714. __func__);
  715. mutex_unlock(&prtd->lock);
  716. return -ENOMEM;
  717. }
  718. memset(dma_buf->area, 0, params_buffer_bytes(params));
  719. prtd->dma_addr = (phys_addr_t) dma_buf->addr;
  720. mutex_unlock(&prtd->lock);
  721. snd_pcm_set_runtime_buffer(substream, &substream->dma_buffer);
  722. rc = afe_memory_map(dma_buf->addr, dma_buf->bytes, prtd->audio_client);
  723. if (rc < 0)
  724. pr_err("fail to map memory to DSP\n");
  725. return rc;
  726. }
  727. static snd_pcm_uframes_t msm_afe_pointer(struct snd_pcm_substream *substream)
  728. {
  729. struct snd_pcm_runtime *runtime = substream->runtime;
  730. struct pcm_afe_info *prtd = runtime->private_data;
  731. if (prtd->pcm_irq_pos >= snd_pcm_lib_buffer_bytes(substream))
  732. prtd->pcm_irq_pos = 0;
  733. if (prtd->reset_event) {
  734. pr_debug("%s: reset events received from ADSP, return XRUN\n",
  735. __func__);
  736. return SNDRV_PCM_POS_XRUN;
  737. }
  738. pr_debug("pcm_irq_pos = %d\n", prtd->pcm_irq_pos);
  739. return bytes_to_frames(runtime, (prtd->pcm_irq_pos));
  740. }
  741. static const struct snd_pcm_ops msm_afe_ops = {
  742. .open = msm_afe_open,
  743. .copy_user = msm_afe_copy,
  744. .hw_params = msm_afe_hw_params,
  745. .trigger = msm_afe_trigger,
  746. .close = msm_afe_close,
  747. .prepare = msm_afe_prepare,
  748. .mmap = msm_afe_mmap,
  749. .pointer = msm_afe_pointer,
  750. };
  751. static int msm_asoc_pcm_new(struct snd_soc_pcm_runtime *rtd)
  752. {
  753. struct snd_card *card = rtd->card->snd_card;
  754. int ret = 0;
  755. pr_debug("%s\n", __func__);
  756. if (!card->dev->coherent_dma_mask)
  757. card->dev->coherent_dma_mask = DMA_BIT_MASK(32);
  758. return ret;
  759. }
  760. static int msm_afe_afe_probe(struct snd_soc_platform *platform)
  761. {
  762. pr_debug("%s\n", __func__);
  763. return 0;
  764. }
  765. static struct snd_soc_platform_driver msm_soc_platform = {
  766. .ops = &msm_afe_ops,
  767. .pcm_new = msm_asoc_pcm_new,
  768. .probe = msm_afe_afe_probe,
  769. };
  770. static int msm_afe_probe(struct platform_device *pdev)
  771. {
  772. pr_debug("%s: dev name %s\n", __func__, dev_name(&pdev->dev));
  773. return snd_soc_register_platform(&pdev->dev,
  774. &msm_soc_platform);
  775. }
  776. static int msm_afe_remove(struct platform_device *pdev)
  777. {
  778. pr_debug("%s\n", __func__);
  779. snd_soc_unregister_platform(&pdev->dev);
  780. return 0;
  781. }
  782. static const struct of_device_id msm_pcm_afe_dt_match[] = {
  783. {.compatible = "qcom,msm-pcm-afe"},
  784. {}
  785. };
  786. MODULE_DEVICE_TABLE(of, msm_pcm_afe_dt_match);
  787. static struct platform_driver msm_afe_driver = {
  788. .driver = {
  789. .name = "msm-pcm-afe",
  790. .owner = THIS_MODULE,
  791. .of_match_table = msm_pcm_afe_dt_match,
  792. },
  793. .probe = msm_afe_probe,
  794. .remove = msm_afe_remove,
  795. };
  796. int __init msm_pcm_afe_init(void)
  797. {
  798. pr_debug("%s\n", __func__);
  799. return platform_driver_register(&msm_afe_driver);
  800. }
  801. void msm_pcm_afe_exit(void)
  802. {
  803. pr_debug("%s\n", __func__);
  804. platform_driver_unregister(&msm_afe_driver);
  805. }
  806. MODULE_DESCRIPTION("AFE PCM module platform driver");
  807. MODULE_LICENSE("GPL v2");