dp_rx_defrag.c 60 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188
  1. /*
  2. * Copyright (c) 2017-2021 The Linux Foundation. All rights reserved.
  3. * Copyright (c) 2021-2023 Qualcomm Innovation Center, Inc. All rights reserved.
  4. *
  5. * Permission to use, copy, modify, and/or distribute this software for
  6. * any purpose with or without fee is hereby granted, provided that the
  7. * above copyright notice and this permission notice appear in all
  8. * copies.
  9. *
  10. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
  11. * WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
  12. * WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
  13. * AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
  14. * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
  15. * PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
  16. * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
  17. * PERFORMANCE OF THIS SOFTWARE.
  18. */
  19. #include "hal_hw_headers.h"
  20. #ifndef RX_DEFRAG_DO_NOT_REINJECT
  21. #ifndef DP_BE_WAR
  22. #include "li/hal_li_rx.h"
  23. #endif
  24. #endif
  25. #include "dp_types.h"
  26. #include "dp_rx.h"
  27. #include "dp_peer.h"
  28. #include "hal_api.h"
  29. #include "qdf_trace.h"
  30. #include "qdf_nbuf.h"
  31. #include "dp_internal.h"
  32. #include "dp_rx_defrag.h"
  33. #include <enet.h> /* LLC_SNAP_HDR_LEN */
  34. #include "dp_rx_defrag.h"
  35. #include "dp_ipa.h"
  36. #include "dp_rx_buffer_pool.h"
  37. const struct dp_rx_defrag_cipher dp_f_ccmp = {
  38. "AES-CCM",
  39. IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN + IEEE80211_WEP_EXTIVLEN,
  40. IEEE80211_WEP_MICLEN,
  41. 0,
  42. };
  43. const struct dp_rx_defrag_cipher dp_f_tkip = {
  44. "TKIP",
  45. IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN + IEEE80211_WEP_EXTIVLEN,
  46. IEEE80211_WEP_CRCLEN,
  47. IEEE80211_WEP_MICLEN,
  48. };
  49. const struct dp_rx_defrag_cipher dp_f_wep = {
  50. "WEP",
  51. IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN,
  52. IEEE80211_WEP_CRCLEN,
  53. 0,
  54. };
  55. /*
  56. * The header and mic length are same for both
  57. * GCMP-128 and GCMP-256.
  58. */
  59. const struct dp_rx_defrag_cipher dp_f_gcmp = {
  60. "AES-GCMP",
  61. WLAN_IEEE80211_GCMP_HEADERLEN,
  62. WLAN_IEEE80211_GCMP_MICLEN,
  63. WLAN_IEEE80211_GCMP_MICLEN,
  64. };
  65. /**
  66. * dp_rx_defrag_frames_free() - Free fragment chain
  67. * @frames: Fragment chain
  68. *
  69. * Iterates through the fragment chain and frees them
  70. * Return: None
  71. */
  72. static void dp_rx_defrag_frames_free(qdf_nbuf_t frames)
  73. {
  74. qdf_nbuf_t next, frag = frames;
  75. while (frag) {
  76. next = qdf_nbuf_next(frag);
  77. dp_rx_nbuf_free(frag);
  78. frag = next;
  79. }
  80. }
  81. /**
  82. * dp_rx_clear_saved_desc_info() - Clears descriptor info
  83. * @txrx_peer: Pointer to the peer data structure
  84. * @tid: Transmit ID (TID)
  85. *
  86. * Saves MPDU descriptor info and MSDU link pointer from REO
  87. * ring descriptor. The cache is created per peer, per TID
  88. *
  89. * Return: None
  90. */
  91. static void dp_rx_clear_saved_desc_info(struct dp_txrx_peer *txrx_peer,
  92. unsigned int tid)
  93. {
  94. if (txrx_peer->rx_tid[tid].dst_ring_desc)
  95. qdf_mem_free(txrx_peer->rx_tid[tid].dst_ring_desc);
  96. txrx_peer->rx_tid[tid].dst_ring_desc = NULL;
  97. txrx_peer->rx_tid[tid].head_frag_desc = NULL;
  98. }
  99. static void dp_rx_return_head_frag_desc(struct dp_txrx_peer *txrx_peer,
  100. unsigned int tid)
  101. {
  102. struct dp_soc *soc;
  103. struct dp_pdev *pdev;
  104. struct dp_srng *dp_rxdma_srng;
  105. struct rx_desc_pool *rx_desc_pool;
  106. union dp_rx_desc_list_elem_t *head = NULL;
  107. union dp_rx_desc_list_elem_t *tail = NULL;
  108. uint8_t pool_id;
  109. pdev = txrx_peer->vdev->pdev;
  110. soc = pdev->soc;
  111. if (txrx_peer->rx_tid[tid].head_frag_desc) {
  112. pool_id = txrx_peer->rx_tid[tid].head_frag_desc->pool_id;
  113. dp_rxdma_srng = &soc->rx_refill_buf_ring[pool_id];
  114. rx_desc_pool = &soc->rx_desc_buf[pool_id];
  115. dp_rx_add_to_free_desc_list(&head, &tail,
  116. txrx_peer->rx_tid[tid].head_frag_desc);
  117. dp_rx_buffers_replenish(soc, 0, dp_rxdma_srng, rx_desc_pool,
  118. 1, &head, &tail, false);
  119. }
  120. if (txrx_peer->rx_tid[tid].dst_ring_desc) {
  121. if (dp_rx_link_desc_return(soc,
  122. txrx_peer->rx_tid[tid].dst_ring_desc,
  123. HAL_BM_ACTION_PUT_IN_IDLE_LIST) !=
  124. QDF_STATUS_SUCCESS)
  125. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  126. "%s: Failed to return link desc", __func__);
  127. }
  128. }
  129. void dp_rx_reorder_flush_frag(struct dp_txrx_peer *txrx_peer,
  130. unsigned int tid)
  131. {
  132. dp_info_rl("Flushing TID %d", tid);
  133. if (!txrx_peer) {
  134. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  135. "%s: NULL peer", __func__);
  136. return;
  137. }
  138. dp_rx_return_head_frag_desc(txrx_peer, tid);
  139. dp_rx_defrag_cleanup(txrx_peer, tid);
  140. }
  141. void dp_rx_defrag_waitlist_flush(struct dp_soc *soc)
  142. {
  143. struct dp_rx_tid_defrag *waitlist_elem = NULL;
  144. struct dp_rx_tid_defrag *tmp;
  145. uint32_t now_ms = qdf_system_ticks_to_msecs(qdf_system_ticks());
  146. TAILQ_HEAD(, dp_rx_tid_defrag) temp_list;
  147. dp_txrx_ref_handle txrx_ref_handle = NULL;
  148. TAILQ_INIT(&temp_list);
  149. dp_debug("Current time %u", now_ms);
  150. qdf_spin_lock_bh(&soc->rx.defrag.defrag_lock);
  151. TAILQ_FOREACH_SAFE(waitlist_elem, &soc->rx.defrag.waitlist,
  152. defrag_waitlist_elem, tmp) {
  153. uint32_t tid;
  154. if (waitlist_elem->defrag_timeout_ms > now_ms)
  155. break;
  156. tid = waitlist_elem->tid;
  157. if (tid >= DP_MAX_TIDS) {
  158. qdf_assert(0);
  159. continue;
  160. }
  161. TAILQ_REMOVE(&soc->rx.defrag.waitlist, waitlist_elem,
  162. defrag_waitlist_elem);
  163. DP_STATS_DEC(soc, rx.rx_frag_wait, 1);
  164. /* Move to temp list and clean-up later */
  165. TAILQ_INSERT_TAIL(&temp_list, waitlist_elem,
  166. defrag_waitlist_elem);
  167. }
  168. if (waitlist_elem) {
  169. soc->rx.defrag.next_flush_ms =
  170. waitlist_elem->defrag_timeout_ms;
  171. } else {
  172. soc->rx.defrag.next_flush_ms =
  173. now_ms + soc->rx.defrag.timeout_ms;
  174. }
  175. qdf_spin_unlock_bh(&soc->rx.defrag.defrag_lock);
  176. TAILQ_FOREACH_SAFE(waitlist_elem, &temp_list,
  177. defrag_waitlist_elem, tmp) {
  178. struct dp_txrx_peer *txrx_peer, *temp_peer = NULL;
  179. qdf_spin_lock_bh(&waitlist_elem->defrag_tid_lock);
  180. TAILQ_REMOVE(&temp_list, waitlist_elem,
  181. defrag_waitlist_elem);
  182. /* get address of current peer */
  183. txrx_peer = waitlist_elem->defrag_peer;
  184. qdf_spin_unlock_bh(&waitlist_elem->defrag_tid_lock);
  185. temp_peer = dp_txrx_peer_get_ref_by_id(soc, txrx_peer->peer_id,
  186. &txrx_ref_handle,
  187. DP_MOD_ID_RX_ERR);
  188. if (temp_peer == txrx_peer) {
  189. qdf_spin_lock_bh(&waitlist_elem->defrag_tid_lock);
  190. dp_rx_reorder_flush_frag(txrx_peer, waitlist_elem->tid);
  191. qdf_spin_unlock_bh(&waitlist_elem->defrag_tid_lock);
  192. }
  193. if (temp_peer)
  194. dp_txrx_peer_unref_delete(txrx_ref_handle,
  195. DP_MOD_ID_RX_ERR);
  196. }
  197. }
  198. void dp_rx_defrag_waitlist_add(struct dp_txrx_peer *txrx_peer,
  199. unsigned int tid)
  200. {
  201. struct dp_soc *psoc = txrx_peer->vdev->pdev->soc;
  202. struct dp_rx_tid_defrag *waitlist_elem = &txrx_peer->rx_tid[tid];
  203. dp_debug("Adding TID %u to waitlist for peer %pK with peer_id = %d ",
  204. tid, txrx_peer, txrx_peer->peer_id);
  205. /* TODO: use LIST macros instead of TAIL macros */
  206. qdf_spin_lock_bh(&psoc->rx.defrag.defrag_lock);
  207. if (TAILQ_EMPTY(&psoc->rx.defrag.waitlist))
  208. psoc->rx.defrag.next_flush_ms =
  209. waitlist_elem->defrag_timeout_ms;
  210. TAILQ_INSERT_TAIL(&psoc->rx.defrag.waitlist, waitlist_elem,
  211. defrag_waitlist_elem);
  212. DP_STATS_INC(psoc, rx.rx_frag_wait, 1);
  213. qdf_spin_unlock_bh(&psoc->rx.defrag.defrag_lock);
  214. }
  215. void dp_rx_defrag_waitlist_remove(struct dp_txrx_peer *txrx_peer,
  216. unsigned int tid)
  217. {
  218. struct dp_pdev *pdev = txrx_peer->vdev->pdev;
  219. struct dp_soc *soc = pdev->soc;
  220. struct dp_rx_tid_defrag *waitlist_elm;
  221. struct dp_rx_tid_defrag *tmp;
  222. dp_debug("Removing TID %u to waitlist for peer %pK peer_id = %d ",
  223. tid, txrx_peer, txrx_peer->peer_id);
  224. if (tid >= DP_MAX_TIDS) {
  225. dp_err("TID out of bounds: %d", tid);
  226. qdf_assert_always(0);
  227. }
  228. qdf_spin_lock_bh(&soc->rx.defrag.defrag_lock);
  229. TAILQ_FOREACH_SAFE(waitlist_elm, &soc->rx.defrag.waitlist,
  230. defrag_waitlist_elem, tmp) {
  231. struct dp_txrx_peer *peer_on_waitlist;
  232. /* get address of current peer */
  233. peer_on_waitlist = waitlist_elm->defrag_peer;
  234. /* Ensure it is TID for same peer */
  235. if (peer_on_waitlist == txrx_peer && waitlist_elm->tid == tid) {
  236. TAILQ_REMOVE(&soc->rx.defrag.waitlist,
  237. waitlist_elm, defrag_waitlist_elem);
  238. DP_STATS_DEC(soc, rx.rx_frag_wait, 1);
  239. }
  240. }
  241. qdf_spin_unlock_bh(&soc->rx.defrag.defrag_lock);
  242. }
  243. QDF_STATUS
  244. dp_rx_defrag_fraglist_insert(struct dp_txrx_peer *txrx_peer, unsigned int tid,
  245. qdf_nbuf_t *head_addr, qdf_nbuf_t *tail_addr,
  246. qdf_nbuf_t frag, uint8_t *all_frag_present)
  247. {
  248. struct dp_soc *soc = txrx_peer->vdev->pdev->soc;
  249. qdf_nbuf_t next;
  250. qdf_nbuf_t prev = NULL;
  251. qdf_nbuf_t cur;
  252. uint16_t head_fragno, cur_fragno, next_fragno;
  253. uint8_t last_morefrag = 1, count = 0;
  254. struct dp_rx_tid_defrag *rx_tid = &txrx_peer->rx_tid[tid];
  255. uint8_t *rx_desc_info;
  256. qdf_assert(frag);
  257. qdf_assert(head_addr);
  258. qdf_assert(tail_addr);
  259. *all_frag_present = 0;
  260. rx_desc_info = qdf_nbuf_data(frag);
  261. cur_fragno = dp_rx_frag_get_mpdu_frag_number(soc, rx_desc_info);
  262. dp_debug("cur_fragno %d\n", cur_fragno);
  263. /* If this is the first fragment */
  264. if (!(*head_addr)) {
  265. *head_addr = *tail_addr = frag;
  266. qdf_nbuf_set_next(*tail_addr, NULL);
  267. rx_tid->curr_frag_num = cur_fragno;
  268. goto insert_done;
  269. }
  270. /* In sequence fragment */
  271. if (cur_fragno > rx_tid->curr_frag_num) {
  272. qdf_nbuf_set_next(*tail_addr, frag);
  273. *tail_addr = frag;
  274. qdf_nbuf_set_next(*tail_addr, NULL);
  275. rx_tid->curr_frag_num = cur_fragno;
  276. } else {
  277. /* Out of sequence fragment */
  278. cur = *head_addr;
  279. rx_desc_info = qdf_nbuf_data(cur);
  280. head_fragno = dp_rx_frag_get_mpdu_frag_number(soc,
  281. rx_desc_info);
  282. if (cur_fragno == head_fragno) {
  283. dp_rx_nbuf_free(frag);
  284. goto insert_fail;
  285. } else if (head_fragno > cur_fragno) {
  286. qdf_nbuf_set_next(frag, cur);
  287. cur = frag;
  288. *head_addr = frag; /* head pointer to be updated */
  289. } else {
  290. while ((cur_fragno > head_fragno) && cur) {
  291. prev = cur;
  292. cur = qdf_nbuf_next(cur);
  293. if (cur) {
  294. rx_desc_info = qdf_nbuf_data(cur);
  295. head_fragno =
  296. dp_rx_frag_get_mpdu_frag_number(
  297. soc,
  298. rx_desc_info);
  299. }
  300. }
  301. if (cur_fragno == head_fragno) {
  302. dp_rx_nbuf_free(frag);
  303. goto insert_fail;
  304. }
  305. qdf_nbuf_set_next(prev, frag);
  306. qdf_nbuf_set_next(frag, cur);
  307. }
  308. }
  309. next = qdf_nbuf_next(*head_addr);
  310. rx_desc_info = qdf_nbuf_data(*tail_addr);
  311. last_morefrag = dp_rx_frag_get_more_frag_bit(soc, rx_desc_info);
  312. /* TODO: optimize the loop */
  313. if (!last_morefrag) {
  314. /* Check if all fragments are present */
  315. do {
  316. rx_desc_info = qdf_nbuf_data(next);
  317. next_fragno =
  318. dp_rx_frag_get_mpdu_frag_number(soc,
  319. rx_desc_info);
  320. count++;
  321. if (next_fragno != count)
  322. break;
  323. next = qdf_nbuf_next(next);
  324. } while (next);
  325. if (!next) {
  326. *all_frag_present = 1;
  327. return QDF_STATUS_SUCCESS;
  328. } else {
  329. /* revisit */
  330. }
  331. }
  332. insert_done:
  333. return QDF_STATUS_SUCCESS;
  334. insert_fail:
  335. return QDF_STATUS_E_FAILURE;
  336. }
  337. /**
  338. * dp_rx_defrag_tkip_decap() - decap tkip encrypted fragment
  339. * @soc: DP SOC
  340. * @msdu: Pointer to the fragment
  341. * @hdrlen: 802.11 header length (mostly useful in 4 addr frames)
  342. *
  343. * decap tkip encrypted fragment
  344. *
  345. * Return: QDF_STATUS
  346. */
  347. static QDF_STATUS
  348. dp_rx_defrag_tkip_decap(struct dp_soc *soc,
  349. qdf_nbuf_t msdu, uint16_t hdrlen)
  350. {
  351. uint8_t *ivp, *orig_hdr;
  352. int rx_desc_len = soc->rx_pkt_tlv_size;
  353. /* start of 802.11 header info */
  354. orig_hdr = (uint8_t *)(qdf_nbuf_data(msdu) + rx_desc_len);
  355. /* TKIP header is located post 802.11 header */
  356. ivp = orig_hdr + hdrlen;
  357. if (!(ivp[IEEE80211_WEP_IVLEN] & IEEE80211_WEP_EXTIV)) {
  358. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  359. "IEEE80211_WEP_EXTIV is missing in TKIP fragment");
  360. return QDF_STATUS_E_DEFRAG_ERROR;
  361. }
  362. qdf_nbuf_trim_tail(msdu, dp_f_tkip.ic_trailer);
  363. return QDF_STATUS_SUCCESS;
  364. }
  365. /**
  366. * dp_rx_defrag_ccmp_demic() - Remove MIC information from CCMP fragment
  367. * @soc: DP SOC
  368. * @nbuf: Pointer to the fragment buffer
  369. * @hdrlen: 802.11 header length (mostly useful in 4 addr frames)
  370. *
  371. * Remove MIC information from CCMP fragment
  372. *
  373. * Return: QDF_STATUS
  374. */
  375. static QDF_STATUS
  376. dp_rx_defrag_ccmp_demic(struct dp_soc *soc, qdf_nbuf_t nbuf, uint16_t hdrlen)
  377. {
  378. uint8_t *ivp, *orig_hdr;
  379. int rx_desc_len = soc->rx_pkt_tlv_size;
  380. /* start of the 802.11 header */
  381. orig_hdr = (uint8_t *)(qdf_nbuf_data(nbuf) + rx_desc_len);
  382. /* CCMP header is located after 802.11 header */
  383. ivp = orig_hdr + hdrlen;
  384. if (!(ivp[IEEE80211_WEP_IVLEN] & IEEE80211_WEP_EXTIV))
  385. return QDF_STATUS_E_DEFRAG_ERROR;
  386. qdf_nbuf_trim_tail(nbuf, dp_f_ccmp.ic_trailer);
  387. return QDF_STATUS_SUCCESS;
  388. }
  389. /**
  390. * dp_rx_defrag_ccmp_decap() - decap CCMP encrypted fragment
  391. * @soc: DP SOC
  392. * @nbuf: Pointer to the fragment
  393. * @hdrlen: length of the header information
  394. *
  395. * decap CCMP encrypted fragment
  396. *
  397. * Return: QDF_STATUS
  398. */
  399. static QDF_STATUS
  400. dp_rx_defrag_ccmp_decap(struct dp_soc *soc, qdf_nbuf_t nbuf, uint16_t hdrlen)
  401. {
  402. uint8_t *ivp, *origHdr;
  403. int rx_desc_len = soc->rx_pkt_tlv_size;
  404. origHdr = (uint8_t *) (qdf_nbuf_data(nbuf) + rx_desc_len);
  405. ivp = origHdr + hdrlen;
  406. if (!(ivp[IEEE80211_WEP_IVLEN] & IEEE80211_WEP_EXTIV))
  407. return QDF_STATUS_E_DEFRAG_ERROR;
  408. return QDF_STATUS_SUCCESS;
  409. }
  410. /**
  411. * dp_rx_defrag_wep_decap() - decap WEP encrypted fragment
  412. * @soc: DP SOC
  413. * @msdu: Pointer to the fragment
  414. * @hdrlen: length of the header information
  415. *
  416. * decap WEP encrypted fragment
  417. *
  418. * Return: QDF_STATUS
  419. */
  420. static QDF_STATUS
  421. dp_rx_defrag_wep_decap(struct dp_soc *soc, qdf_nbuf_t msdu, uint16_t hdrlen)
  422. {
  423. uint8_t *origHdr;
  424. int rx_desc_len = soc->rx_pkt_tlv_size;
  425. origHdr = (uint8_t *) (qdf_nbuf_data(msdu) + rx_desc_len);
  426. qdf_mem_move(origHdr + dp_f_wep.ic_header, origHdr, hdrlen);
  427. qdf_nbuf_trim_tail(msdu, dp_f_wep.ic_trailer);
  428. return QDF_STATUS_SUCCESS;
  429. }
  430. /**
  431. * dp_rx_defrag_hdrsize() - Calculate the header size of the received fragment
  432. * @soc: soc handle
  433. * @nbuf: Pointer to the fragment
  434. *
  435. * Calculate the header size of the received fragment
  436. *
  437. * Return: header size (uint16_t)
  438. */
  439. static uint16_t dp_rx_defrag_hdrsize(struct dp_soc *soc, qdf_nbuf_t nbuf)
  440. {
  441. uint8_t *rx_tlv_hdr = qdf_nbuf_data(nbuf);
  442. uint16_t size = sizeof(struct ieee80211_frame);
  443. uint16_t fc = 0;
  444. uint32_t to_ds, fr_ds;
  445. uint8_t frm_ctrl_valid;
  446. uint16_t frm_ctrl_field;
  447. to_ds = hal_rx_mpdu_get_to_ds(soc->hal_soc, rx_tlv_hdr);
  448. fr_ds = hal_rx_mpdu_get_fr_ds(soc->hal_soc, rx_tlv_hdr);
  449. frm_ctrl_valid =
  450. hal_rx_get_mpdu_frame_control_valid(soc->hal_soc,
  451. rx_tlv_hdr);
  452. frm_ctrl_field = hal_rx_get_frame_ctrl_field(soc->hal_soc, rx_tlv_hdr);
  453. if (to_ds && fr_ds)
  454. size += QDF_MAC_ADDR_SIZE;
  455. if (frm_ctrl_valid) {
  456. fc = frm_ctrl_field;
  457. /* use 1-st byte for validation */
  458. if (DP_RX_DEFRAG_IEEE80211_QOS_HAS_SEQ(fc & 0xff)) {
  459. size += sizeof(uint16_t);
  460. /* use 2-nd byte for validation */
  461. if (((fc & 0xff00) >> 8) & IEEE80211_FC1_ORDER)
  462. size += sizeof(struct ieee80211_htc);
  463. }
  464. }
  465. return size;
  466. }
  467. /**
  468. * dp_rx_defrag_michdr() - Calculate a pseudo MIC header
  469. * @wh0: Pointer to the wireless header of the fragment
  470. * @hdr: Array to hold the pseudo header
  471. *
  472. * Calculate a pseudo MIC header
  473. *
  474. * Return: None
  475. */
  476. static void dp_rx_defrag_michdr(const struct ieee80211_frame *wh0,
  477. uint8_t hdr[])
  478. {
  479. const struct ieee80211_frame_addr4 *wh =
  480. (const struct ieee80211_frame_addr4 *)wh0;
  481. switch (wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) {
  482. case IEEE80211_FC1_DIR_NODS:
  483. DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr, wh->i_addr1); /* DA */
  484. DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr + QDF_MAC_ADDR_SIZE,
  485. wh->i_addr2);
  486. break;
  487. case IEEE80211_FC1_DIR_TODS:
  488. DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr, wh->i_addr3); /* DA */
  489. DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr + QDF_MAC_ADDR_SIZE,
  490. wh->i_addr2);
  491. break;
  492. case IEEE80211_FC1_DIR_FROMDS:
  493. DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr, wh->i_addr1); /* DA */
  494. DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr + QDF_MAC_ADDR_SIZE,
  495. wh->i_addr3);
  496. break;
  497. case IEEE80211_FC1_DIR_DSTODS:
  498. DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr, wh->i_addr3); /* DA */
  499. DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr + QDF_MAC_ADDR_SIZE,
  500. wh->i_addr4);
  501. break;
  502. }
  503. /*
  504. * Bit 7 is QDF_IEEE80211_FC0_SUBTYPE_QOS for data frame, but
  505. * it could also be set for deauth, disassoc, action, etc. for
  506. * a mgt type frame. It comes into picture for MFP.
  507. */
  508. if (wh->i_fc[0] & QDF_IEEE80211_FC0_SUBTYPE_QOS) {
  509. if ((wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) ==
  510. IEEE80211_FC1_DIR_DSTODS) {
  511. const struct ieee80211_qosframe_addr4 *qwh =
  512. (const struct ieee80211_qosframe_addr4 *)wh;
  513. hdr[12] = qwh->i_qos[0] & IEEE80211_QOS_TID;
  514. } else {
  515. const struct ieee80211_qosframe *qwh =
  516. (const struct ieee80211_qosframe *)wh;
  517. hdr[12] = qwh->i_qos[0] & IEEE80211_QOS_TID;
  518. }
  519. } else {
  520. hdr[12] = 0;
  521. }
  522. hdr[13] = hdr[14] = hdr[15] = 0; /* reserved */
  523. }
  524. /**
  525. * dp_rx_defrag_mic() - Calculate MIC header
  526. * @soc: DP SOC
  527. * @key: Pointer to the key
  528. * @wbuf: fragment buffer
  529. * @off: Offset
  530. * @data_len: Data length
  531. * @mic: Array to hold MIC
  532. *
  533. * Calculate a pseudo MIC header
  534. *
  535. * Return: QDF_STATUS
  536. */
  537. static QDF_STATUS dp_rx_defrag_mic(struct dp_soc *soc, const uint8_t *key,
  538. qdf_nbuf_t wbuf, uint16_t off,
  539. uint16_t data_len, uint8_t mic[])
  540. {
  541. uint8_t hdr[16] = { 0, };
  542. uint32_t l, r;
  543. const uint8_t *data;
  544. uint32_t space;
  545. int rx_desc_len = soc->rx_pkt_tlv_size;
  546. dp_rx_defrag_michdr((struct ieee80211_frame *)(qdf_nbuf_data(wbuf)
  547. + rx_desc_len), hdr);
  548. l = dp_rx_get_le32(key);
  549. r = dp_rx_get_le32(key + 4);
  550. /* Michael MIC pseudo header: DA, SA, 3 x 0, Priority */
  551. l ^= dp_rx_get_le32(hdr);
  552. dp_rx_michael_block(l, r);
  553. l ^= dp_rx_get_le32(&hdr[4]);
  554. dp_rx_michael_block(l, r);
  555. l ^= dp_rx_get_le32(&hdr[8]);
  556. dp_rx_michael_block(l, r);
  557. l ^= dp_rx_get_le32(&hdr[12]);
  558. dp_rx_michael_block(l, r);
  559. /* first buffer has special handling */
  560. data = (uint8_t *)qdf_nbuf_data(wbuf) + off;
  561. space = qdf_nbuf_len(wbuf) - off;
  562. for (;; ) {
  563. if (space > data_len)
  564. space = data_len;
  565. /* collect 32-bit blocks from current buffer */
  566. while (space >= sizeof(uint32_t)) {
  567. l ^= dp_rx_get_le32(data);
  568. dp_rx_michael_block(l, r);
  569. data += sizeof(uint32_t);
  570. space -= sizeof(uint32_t);
  571. data_len -= sizeof(uint32_t);
  572. }
  573. if (data_len < sizeof(uint32_t))
  574. break;
  575. wbuf = qdf_nbuf_next(wbuf);
  576. if (!wbuf)
  577. return QDF_STATUS_E_DEFRAG_ERROR;
  578. if (space != 0) {
  579. const uint8_t *data_next;
  580. /*
  581. * Block straddles buffers, split references.
  582. */
  583. data_next =
  584. (uint8_t *)qdf_nbuf_data(wbuf) + off;
  585. if ((qdf_nbuf_len(wbuf)) <
  586. sizeof(uint32_t) - space) {
  587. return QDF_STATUS_E_DEFRAG_ERROR;
  588. }
  589. switch (space) {
  590. case 1:
  591. l ^= dp_rx_get_le32_split(data[0],
  592. data_next[0], data_next[1],
  593. data_next[2]);
  594. data = data_next + 3;
  595. space = (qdf_nbuf_len(wbuf) - off) - 3;
  596. break;
  597. case 2:
  598. l ^= dp_rx_get_le32_split(data[0], data[1],
  599. data_next[0], data_next[1]);
  600. data = data_next + 2;
  601. space = (qdf_nbuf_len(wbuf) - off) - 2;
  602. break;
  603. case 3:
  604. l ^= dp_rx_get_le32_split(data[0], data[1],
  605. data[2], data_next[0]);
  606. data = data_next + 1;
  607. space = (qdf_nbuf_len(wbuf) - off) - 1;
  608. break;
  609. }
  610. dp_rx_michael_block(l, r);
  611. data_len -= sizeof(uint32_t);
  612. } else {
  613. /*
  614. * Setup for next buffer.
  615. */
  616. data = (uint8_t *)qdf_nbuf_data(wbuf) + off;
  617. space = qdf_nbuf_len(wbuf) - off;
  618. }
  619. }
  620. /* Last block and padding (0x5a, 4..7 x 0) */
  621. switch (data_len) {
  622. case 0:
  623. l ^= dp_rx_get_le32_split(0x5a, 0, 0, 0);
  624. break;
  625. case 1:
  626. l ^= dp_rx_get_le32_split(data[0], 0x5a, 0, 0);
  627. break;
  628. case 2:
  629. l ^= dp_rx_get_le32_split(data[0], data[1], 0x5a, 0);
  630. break;
  631. case 3:
  632. l ^= dp_rx_get_le32_split(data[0], data[1], data[2], 0x5a);
  633. break;
  634. }
  635. dp_rx_michael_block(l, r);
  636. dp_rx_michael_block(l, r);
  637. dp_rx_put_le32(mic, l);
  638. dp_rx_put_le32(mic + 4, r);
  639. return QDF_STATUS_SUCCESS;
  640. }
  641. /**
  642. * dp_rx_defrag_tkip_demic() - Remove MIC header from the TKIP frame
  643. * @soc: DP SOC
  644. * @key: Pointer to the key
  645. * @msdu: fragment buffer
  646. * @hdrlen: Length of the header information
  647. *
  648. * Remove MIC information from the TKIP frame
  649. *
  650. * Return: QDF_STATUS
  651. */
  652. static QDF_STATUS dp_rx_defrag_tkip_demic(struct dp_soc *soc,
  653. const uint8_t *key,
  654. qdf_nbuf_t msdu, uint16_t hdrlen)
  655. {
  656. QDF_STATUS status;
  657. uint32_t pktlen = 0, prev_data_len;
  658. uint8_t mic[IEEE80211_WEP_MICLEN];
  659. uint8_t mic0[IEEE80211_WEP_MICLEN];
  660. qdf_nbuf_t prev = NULL, prev0, next;
  661. uint8_t len0 = 0;
  662. next = msdu;
  663. prev0 = msdu;
  664. while (next) {
  665. pktlen += (qdf_nbuf_len(next) - hdrlen);
  666. prev = next;
  667. dp_debug("pktlen %u",
  668. (uint32_t)(qdf_nbuf_len(next) - hdrlen));
  669. next = qdf_nbuf_next(next);
  670. if (next && !qdf_nbuf_next(next))
  671. prev0 = prev;
  672. }
  673. if (!prev) {
  674. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  675. "%s Defrag chaining failed !\n", __func__);
  676. return QDF_STATUS_E_DEFRAG_ERROR;
  677. }
  678. prev_data_len = qdf_nbuf_len(prev) - hdrlen;
  679. if (prev_data_len < dp_f_tkip.ic_miclen) {
  680. if (prev0 == prev) {
  681. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  682. "%s Fragments don't have MIC header !\n", __func__);
  683. return QDF_STATUS_E_DEFRAG_ERROR;
  684. }
  685. len0 = dp_f_tkip.ic_miclen - (uint8_t)prev_data_len;
  686. qdf_nbuf_copy_bits(prev0, qdf_nbuf_len(prev0) - len0, len0,
  687. (caddr_t)mic0);
  688. qdf_nbuf_trim_tail(prev0, len0);
  689. }
  690. qdf_nbuf_copy_bits(prev, (qdf_nbuf_len(prev) -
  691. (dp_f_tkip.ic_miclen - len0)),
  692. (dp_f_tkip.ic_miclen - len0),
  693. (caddr_t)(&mic0[len0]));
  694. qdf_nbuf_trim_tail(prev, (dp_f_tkip.ic_miclen - len0));
  695. pktlen -= dp_f_tkip.ic_miclen;
  696. if (((qdf_nbuf_len(prev) - hdrlen) == 0) && prev != msdu) {
  697. dp_rx_nbuf_free(prev);
  698. qdf_nbuf_set_next(prev0, NULL);
  699. }
  700. status = dp_rx_defrag_mic(soc, key, msdu, hdrlen,
  701. pktlen, mic);
  702. if (QDF_IS_STATUS_ERROR(status))
  703. return status;
  704. if (qdf_mem_cmp(mic, mic0, dp_f_tkip.ic_miclen))
  705. return QDF_STATUS_E_DEFRAG_ERROR;
  706. return QDF_STATUS_SUCCESS;
  707. }
  708. /**
  709. * dp_rx_frag_pull_hdr() - Pulls the RXTLV & the 802.11 headers
  710. * @soc: DP SOC
  711. * @nbuf: buffer pointer
  712. * @hdrsize: size of the header to be pulled
  713. *
  714. * Pull the RXTLV & the 802.11 headers
  715. *
  716. * Return: None
  717. */
  718. static void dp_rx_frag_pull_hdr(struct dp_soc *soc,
  719. qdf_nbuf_t nbuf, uint16_t hdrsize)
  720. {
  721. hal_rx_print_pn(soc->hal_soc, qdf_nbuf_data(nbuf));
  722. qdf_nbuf_pull_head(nbuf, soc->rx_pkt_tlv_size + hdrsize);
  723. dp_debug("final pktlen %d .11len %d",
  724. (uint32_t)qdf_nbuf_len(nbuf), hdrsize);
  725. }
  726. /**
  727. * dp_rx_defrag_pn_check() - Check the PN of current fragmented with prev PN
  728. * @soc: DP SOC
  729. * @msdu: msdu to get the current PN
  730. * @cur_pn128: PN extracted from current msdu
  731. * @prev_pn128: Prev PN
  732. *
  733. * Return: 0 on success, non zero on failure
  734. */
  735. static int dp_rx_defrag_pn_check(struct dp_soc *soc, qdf_nbuf_t msdu,
  736. uint64_t *cur_pn128, uint64_t *prev_pn128)
  737. {
  738. int out_of_order = 0;
  739. hal_rx_tlv_get_pn_num(soc->hal_soc, qdf_nbuf_data(msdu), cur_pn128);
  740. if (cur_pn128[1] == prev_pn128[1])
  741. out_of_order = (cur_pn128[0] - prev_pn128[0] != 1);
  742. else
  743. out_of_order = (cur_pn128[1] - prev_pn128[1] != 1);
  744. return out_of_order;
  745. }
  746. /**
  747. * dp_rx_construct_fraglist() - Construct a nbuf fraglist
  748. * @txrx_peer: Pointer to the txrx peer
  749. * @tid: Transmit ID (TID)
  750. * @head: Pointer to list of fragments
  751. * @hdrsize: Size of the header to be pulled
  752. *
  753. * Construct a nbuf fraglist
  754. *
  755. * Return: None
  756. */
  757. static int
  758. dp_rx_construct_fraglist(struct dp_txrx_peer *txrx_peer, int tid,
  759. qdf_nbuf_t head,
  760. uint16_t hdrsize)
  761. {
  762. struct dp_soc *soc = txrx_peer->vdev->pdev->soc;
  763. qdf_nbuf_t msdu = qdf_nbuf_next(head);
  764. qdf_nbuf_t rx_nbuf = msdu;
  765. struct dp_rx_tid_defrag *rx_tid = &txrx_peer->rx_tid[tid];
  766. uint32_t len = 0;
  767. uint64_t cur_pn128[2] = {0, 0}, prev_pn128[2];
  768. int out_of_order = 0;
  769. int index;
  770. int needs_pn_check = 0;
  771. enum cdp_sec_type sec_type;
  772. prev_pn128[0] = rx_tid->pn128[0];
  773. prev_pn128[1] = rx_tid->pn128[1];
  774. index = hal_rx_msdu_is_wlan_mcast(soc->hal_soc, msdu) ? dp_sec_mcast :
  775. dp_sec_ucast;
  776. sec_type = txrx_peer->security[index].sec_type;
  777. if (!(sec_type == cdp_sec_type_none || sec_type == cdp_sec_type_wep128 ||
  778. sec_type == cdp_sec_type_wep104 || sec_type == cdp_sec_type_wep40))
  779. needs_pn_check = 1;
  780. while (msdu) {
  781. if (qdf_likely(needs_pn_check))
  782. out_of_order = dp_rx_defrag_pn_check(soc, msdu,
  783. &cur_pn128[0],
  784. &prev_pn128[0]);
  785. if (qdf_unlikely(out_of_order)) {
  786. dp_info_rl("cur_pn128[0] 0x%llx cur_pn128[1] 0x%llx prev_pn128[0] 0x%llx prev_pn128[1] 0x%llx",
  787. cur_pn128[0], cur_pn128[1],
  788. prev_pn128[0], prev_pn128[1]);
  789. return QDF_STATUS_E_FAILURE;
  790. }
  791. prev_pn128[0] = cur_pn128[0];
  792. prev_pn128[1] = cur_pn128[1];
  793. /*
  794. * Broadcast and multicast frames should never be fragmented.
  795. * Iterating through all msdus and dropping fragments if even
  796. * one of them has mcast/bcast destination address.
  797. */
  798. if (hal_rx_msdu_is_wlan_mcast(soc->hal_soc, msdu)) {
  799. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  800. "Dropping multicast/broadcast fragments");
  801. return QDF_STATUS_E_FAILURE;
  802. }
  803. dp_rx_frag_pull_hdr(soc, msdu, hdrsize);
  804. len += qdf_nbuf_len(msdu);
  805. msdu = qdf_nbuf_next(msdu);
  806. }
  807. qdf_nbuf_append_ext_list(head, rx_nbuf, len);
  808. qdf_nbuf_set_next(head, NULL);
  809. qdf_nbuf_set_is_frag(head, 1);
  810. dp_debug("head len %d ext len %d data len %d ",
  811. (uint32_t)qdf_nbuf_len(head),
  812. (uint32_t)qdf_nbuf_len(rx_nbuf),
  813. (uint32_t)(head->data_len));
  814. return QDF_STATUS_SUCCESS;
  815. }
  816. /**
  817. * dp_rx_defrag_err() - rx defragmentation error handler
  818. * @vdev: handle to vdev object
  819. * @nbuf: packet buffer
  820. *
  821. * This function handles rx error and send MIC error notification
  822. *
  823. * Return: None
  824. */
  825. static void dp_rx_defrag_err(struct dp_vdev *vdev, qdf_nbuf_t nbuf)
  826. {
  827. struct ol_if_ops *tops = NULL;
  828. struct dp_pdev *pdev = vdev->pdev;
  829. int rx_desc_len = pdev->soc->rx_pkt_tlv_size;
  830. uint8_t *orig_hdr;
  831. struct ieee80211_frame *wh;
  832. struct cdp_rx_mic_err_info mic_failure_info;
  833. orig_hdr = (uint8_t *)(qdf_nbuf_data(nbuf) + rx_desc_len);
  834. wh = (struct ieee80211_frame *)orig_hdr;
  835. qdf_copy_macaddr((struct qdf_mac_addr *)&mic_failure_info.da_mac_addr,
  836. (struct qdf_mac_addr *)&wh->i_addr1);
  837. qdf_copy_macaddr((struct qdf_mac_addr *)&mic_failure_info.ta_mac_addr,
  838. (struct qdf_mac_addr *)&wh->i_addr2);
  839. mic_failure_info.key_id = 0;
  840. mic_failure_info.multicast =
  841. IEEE80211_IS_MULTICAST(wh->i_addr1);
  842. qdf_mem_zero(mic_failure_info.tsc, MIC_SEQ_CTR_SIZE);
  843. mic_failure_info.frame_type = cdp_rx_frame_type_802_11;
  844. mic_failure_info.data = (uint8_t *)wh;
  845. mic_failure_info.vdev_id = vdev->vdev_id;
  846. tops = pdev->soc->cdp_soc.ol_ops;
  847. if (tops->rx_mic_error)
  848. tops->rx_mic_error(pdev->soc->ctrl_psoc, pdev->pdev_id,
  849. &mic_failure_info);
  850. }
  851. /**
  852. * dp_rx_defrag_nwifi_to_8023() - Transcap 802.11 to 802.3
  853. * @soc: dp soc handle
  854. * @txrx_peer: txrx_peer handle
  855. * @tid: Transmit ID (TID)
  856. * @nbuf: Pointer to the fragment buffer
  857. * @hdrsize: Size of headers
  858. *
  859. * Transcap the fragment from 802.11 to 802.3
  860. *
  861. * Return: None
  862. */
  863. static void
  864. dp_rx_defrag_nwifi_to_8023(struct dp_soc *soc, struct dp_txrx_peer *txrx_peer,
  865. int tid, qdf_nbuf_t nbuf, uint16_t hdrsize)
  866. {
  867. struct llc_snap_hdr_t *llchdr;
  868. struct ethernet_hdr_t *eth_hdr;
  869. uint8_t ether_type[2];
  870. uint16_t fc = 0;
  871. union dp_align_mac_addr mac_addr;
  872. uint8_t *rx_desc_info = qdf_mem_malloc(soc->rx_pkt_tlv_size);
  873. struct dp_rx_tid_defrag *rx_tid = &txrx_peer->rx_tid[tid];
  874. struct ieee80211_frame_addr4 wh = {0};
  875. hal_rx_tlv_get_pn_num(soc->hal_soc, qdf_nbuf_data(nbuf), rx_tid->pn128);
  876. hal_rx_print_pn(soc->hal_soc, qdf_nbuf_data(nbuf));
  877. if (!rx_desc_info) {
  878. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  879. "%s: Memory alloc failed ! ", __func__);
  880. QDF_ASSERT(0);
  881. return;
  882. }
  883. qdf_mem_zero(&wh, sizeof(struct ieee80211_frame_addr4));
  884. if (hal_rx_get_mpdu_mac_ad4_valid(soc->hal_soc, qdf_nbuf_data(nbuf)))
  885. qdf_mem_copy(&wh, qdf_nbuf_data(nbuf) + soc->rx_pkt_tlv_size,
  886. hdrsize);
  887. qdf_mem_copy(rx_desc_info, qdf_nbuf_data(nbuf), soc->rx_pkt_tlv_size);
  888. llchdr = (struct llc_snap_hdr_t *)(qdf_nbuf_data(nbuf) +
  889. soc->rx_pkt_tlv_size + hdrsize);
  890. qdf_mem_copy(ether_type, llchdr->ethertype, 2);
  891. qdf_nbuf_pull_head(nbuf, (soc->rx_pkt_tlv_size + hdrsize +
  892. sizeof(struct llc_snap_hdr_t) -
  893. sizeof(struct ethernet_hdr_t)));
  894. eth_hdr = (struct ethernet_hdr_t *)(qdf_nbuf_data(nbuf));
  895. if (hal_rx_get_mpdu_frame_control_valid(soc->hal_soc,
  896. rx_desc_info))
  897. fc = hal_rx_get_frame_ctrl_field(soc->hal_soc, rx_desc_info);
  898. dp_debug("Frame control type: 0x%x", fc);
  899. switch (((fc & 0xff00) >> 8) & IEEE80211_FC1_DIR_MASK) {
  900. case IEEE80211_FC1_DIR_NODS:
  901. hal_rx_mpdu_get_addr1(soc->hal_soc, rx_desc_info,
  902. &mac_addr.raw[0]);
  903. qdf_mem_copy(eth_hdr->dest_addr, &mac_addr.raw[0],
  904. QDF_MAC_ADDR_SIZE);
  905. hal_rx_mpdu_get_addr2(soc->hal_soc, rx_desc_info,
  906. &mac_addr.raw[0]);
  907. qdf_mem_copy(eth_hdr->src_addr, &mac_addr.raw[0],
  908. QDF_MAC_ADDR_SIZE);
  909. break;
  910. case IEEE80211_FC1_DIR_TODS:
  911. hal_rx_mpdu_get_addr3(soc->hal_soc, rx_desc_info,
  912. &mac_addr.raw[0]);
  913. qdf_mem_copy(eth_hdr->dest_addr, &mac_addr.raw[0],
  914. QDF_MAC_ADDR_SIZE);
  915. hal_rx_mpdu_get_addr2(soc->hal_soc, rx_desc_info,
  916. &mac_addr.raw[0]);
  917. qdf_mem_copy(eth_hdr->src_addr, &mac_addr.raw[0],
  918. QDF_MAC_ADDR_SIZE);
  919. break;
  920. case IEEE80211_FC1_DIR_FROMDS:
  921. hal_rx_mpdu_get_addr1(soc->hal_soc, rx_desc_info,
  922. &mac_addr.raw[0]);
  923. qdf_mem_copy(eth_hdr->dest_addr, &mac_addr.raw[0],
  924. QDF_MAC_ADDR_SIZE);
  925. hal_rx_mpdu_get_addr3(soc->hal_soc, rx_desc_info,
  926. &mac_addr.raw[0]);
  927. qdf_mem_copy(eth_hdr->src_addr, &mac_addr.raw[0],
  928. QDF_MAC_ADDR_SIZE);
  929. break;
  930. case IEEE80211_FC1_DIR_DSTODS:
  931. hal_rx_mpdu_get_addr3(soc->hal_soc, rx_desc_info,
  932. &mac_addr.raw[0]);
  933. qdf_mem_copy(eth_hdr->dest_addr, &mac_addr.raw[0],
  934. QDF_MAC_ADDR_SIZE);
  935. qdf_mem_copy(eth_hdr->src_addr, &wh.i_addr4[0],
  936. QDF_MAC_ADDR_SIZE);
  937. break;
  938. default:
  939. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  940. "%s: Unknown frame control type: 0x%x", __func__, fc);
  941. }
  942. qdf_mem_copy(eth_hdr->ethertype, ether_type,
  943. sizeof(ether_type));
  944. qdf_nbuf_push_head(nbuf, soc->rx_pkt_tlv_size);
  945. qdf_mem_copy(qdf_nbuf_data(nbuf), rx_desc_info, soc->rx_pkt_tlv_size);
  946. qdf_mem_free(rx_desc_info);
  947. }
  948. #ifdef RX_DEFRAG_DO_NOT_REINJECT
  949. /**
  950. * dp_rx_defrag_deliver() - Deliver defrag packet to stack
  951. * @txrx_peer: Pointer to the peer
  952. * @tid: Transmit Identifier
  953. * @head: Nbuf to be delivered
  954. *
  955. * Return: None
  956. */
  957. static inline void dp_rx_defrag_deliver(struct dp_txrx_peer *txrx_peer,
  958. unsigned int tid,
  959. qdf_nbuf_t head)
  960. {
  961. struct dp_vdev *vdev = txrx_peer->vdev;
  962. struct dp_soc *soc = vdev->pdev->soc;
  963. qdf_nbuf_t deliver_list_head = NULL;
  964. qdf_nbuf_t deliver_list_tail = NULL;
  965. uint8_t *rx_tlv_hdr;
  966. rx_tlv_hdr = qdf_nbuf_data(head);
  967. QDF_NBUF_CB_RX_VDEV_ID(head) = vdev->vdev_id;
  968. qdf_nbuf_set_tid_val(head, tid);
  969. qdf_nbuf_pull_head(head, soc->rx_pkt_tlv_size);
  970. DP_RX_LIST_APPEND(deliver_list_head, deliver_list_tail,
  971. head);
  972. dp_rx_deliver_to_stack(soc, vdev, txrx_peer, deliver_list_head,
  973. deliver_list_tail);
  974. }
  975. /**
  976. * dp_rx_defrag_reo_reinject() - Reinject the fragment chain back into REO
  977. * @txrx_peer: Pointer to the peer
  978. * @tid: Transmit Identifier
  979. * @head: Buffer to be reinjected back
  980. *
  981. * Reinject the fragment chain back into REO
  982. *
  983. * Return: QDF_STATUS
  984. */
  985. static QDF_STATUS dp_rx_defrag_reo_reinject(struct dp_txrx_peer *txrx_peer,
  986. unsigned int tid, qdf_nbuf_t head)
  987. {
  988. struct dp_rx_reorder_array_elem *rx_reorder_array_elem;
  989. rx_reorder_array_elem = txrx_peer->rx_tid[tid].array;
  990. dp_rx_defrag_deliver(txrx_peer, tid, head);
  991. rx_reorder_array_elem->head = NULL;
  992. rx_reorder_array_elem->tail = NULL;
  993. dp_rx_return_head_frag_desc(txrx_peer, tid);
  994. return QDF_STATUS_SUCCESS;
  995. }
  996. #else
  997. #ifdef WLAN_FEATURE_DP_RX_RING_HISTORY
  998. /**
  999. * dp_rx_reinject_ring_record_entry() - Record reinject ring history
  1000. * @soc: Datapath soc structure
  1001. * @paddr: paddr of the buffer reinjected to SW2REO ring
  1002. * @sw_cookie: SW cookie of the buffer reinjected to SW2REO ring
  1003. * @rbm: Return buffer manager of the buffer reinjected to SW2REO ring
  1004. *
  1005. * Return: None
  1006. */
  1007. static inline void
  1008. dp_rx_reinject_ring_record_entry(struct dp_soc *soc, uint64_t paddr,
  1009. uint32_t sw_cookie, uint8_t rbm)
  1010. {
  1011. struct dp_buf_info_record *record;
  1012. uint32_t idx;
  1013. if (qdf_unlikely(!soc->rx_reinject_ring_history))
  1014. return;
  1015. idx = dp_history_get_next_index(&soc->rx_reinject_ring_history->index,
  1016. DP_RX_REINJECT_HIST_MAX);
  1017. /* No NULL check needed for record since its an array */
  1018. record = &soc->rx_reinject_ring_history->entry[idx];
  1019. record->timestamp = qdf_get_log_timestamp();
  1020. record->hbi.paddr = paddr;
  1021. record->hbi.sw_cookie = sw_cookie;
  1022. record->hbi.rbm = rbm;
  1023. }
  1024. #else
  1025. static inline void
  1026. dp_rx_reinject_ring_record_entry(struct dp_soc *soc, uint64_t paddr,
  1027. uint32_t sw_cookie, uint8_t rbm)
  1028. {
  1029. }
  1030. #endif
  1031. /**
  1032. * dp_rx_defrag_reo_reinject() - Reinject the fragment chain back into REO
  1033. * @txrx_peer: Pointer to the txrx_peer
  1034. * @tid: Transmit Identifier
  1035. * @head: Buffer to be reinjected back
  1036. *
  1037. * Reinject the fragment chain back into REO
  1038. *
  1039. * Return: QDF_STATUS
  1040. */
  1041. static QDF_STATUS dp_rx_defrag_reo_reinject(struct dp_txrx_peer *txrx_peer,
  1042. unsigned int tid, qdf_nbuf_t head)
  1043. {
  1044. struct dp_pdev *pdev = txrx_peer->vdev->pdev;
  1045. struct dp_soc *soc = pdev->soc;
  1046. struct hal_buf_info buf_info;
  1047. struct hal_buf_info temp_buf_info;
  1048. void *link_desc_va;
  1049. void *msdu0, *msdu_desc_info;
  1050. void *ent_ring_desc, *ent_mpdu_desc_info, *ent_qdesc_addr;
  1051. void *dst_mpdu_desc_info;
  1052. uint64_t dst_qdesc_addr;
  1053. qdf_dma_addr_t paddr;
  1054. uint32_t nbuf_len, seq_no, dst_ind;
  1055. uint32_t ret, cookie;
  1056. hal_ring_desc_t dst_ring_desc =
  1057. txrx_peer->rx_tid[tid].dst_ring_desc;
  1058. hal_ring_handle_t hal_srng = soc->reo_reinject_ring.hal_srng;
  1059. struct dp_rx_desc *rx_desc = txrx_peer->rx_tid[tid].head_frag_desc;
  1060. struct dp_rx_reorder_array_elem *rx_reorder_array_elem =
  1061. txrx_peer->rx_tid[tid].array;
  1062. qdf_nbuf_t nbuf_head;
  1063. struct rx_desc_pool *rx_desc_pool = NULL;
  1064. void *buf_addr_info = HAL_RX_REO_BUF_ADDR_INFO_GET(dst_ring_desc);
  1065. uint8_t rx_defrag_rbm_id = dp_rx_get_defrag_bm_id(soc);
  1066. /* do duplicate link desc address check */
  1067. dp_rx_link_desc_refill_duplicate_check(
  1068. soc,
  1069. &soc->last_op_info.reo_reinject_link_desc,
  1070. buf_addr_info);
  1071. nbuf_head = dp_ipa_handle_rx_reo_reinject(soc, head);
  1072. if (qdf_unlikely(!nbuf_head)) {
  1073. dp_err_rl("IPA RX REO reinject failed");
  1074. return QDF_STATUS_E_FAILURE;
  1075. }
  1076. /* update new allocated skb in case IPA is enabled */
  1077. if (nbuf_head != head) {
  1078. head = nbuf_head;
  1079. rx_desc->nbuf = head;
  1080. rx_reorder_array_elem->head = head;
  1081. }
  1082. ent_ring_desc = hal_srng_src_get_next(soc->hal_soc, hal_srng);
  1083. if (!ent_ring_desc) {
  1084. dp_err_rl("HAL src ring next entry NULL");
  1085. return QDF_STATUS_E_FAILURE;
  1086. }
  1087. hal_rx_reo_buf_paddr_get(soc->hal_soc, dst_ring_desc, &buf_info);
  1088. /* buffer_addr_info is the first element of ring_desc */
  1089. hal_rx_buf_cookie_rbm_get(soc->hal_soc, (uint32_t *)dst_ring_desc,
  1090. &buf_info);
  1091. link_desc_va = dp_rx_cookie_2_link_desc_va(soc, &buf_info);
  1092. qdf_assert_always(link_desc_va);
  1093. msdu0 = hal_rx_msdu0_buffer_addr_lsb(soc->hal_soc, link_desc_va);
  1094. nbuf_len = qdf_nbuf_len(head) - soc->rx_pkt_tlv_size;
  1095. HAL_RX_UNIFORM_HDR_SET(link_desc_va, OWNER, UNI_DESC_OWNER_SW);
  1096. HAL_RX_UNIFORM_HDR_SET(link_desc_va, BUFFER_TYPE,
  1097. UNI_DESC_BUF_TYPE_RX_MSDU_LINK);
  1098. /* msdu reconfig */
  1099. msdu_desc_info = hal_rx_msdu_desc_info_ptr_get(soc->hal_soc, msdu0);
  1100. dst_ind = hal_rx_msdu_reo_dst_ind_get(soc->hal_soc, link_desc_va);
  1101. qdf_mem_zero(msdu_desc_info, sizeof(struct rx_msdu_desc_info));
  1102. hal_msdu_desc_info_set(soc->hal_soc, msdu_desc_info, dst_ind, nbuf_len);
  1103. /* change RX TLV's */
  1104. hal_rx_tlv_msdu_len_set(soc->hal_soc, qdf_nbuf_data(head), nbuf_len);
  1105. hal_rx_buf_cookie_rbm_get(soc->hal_soc, (uint32_t *)msdu0,
  1106. &temp_buf_info);
  1107. cookie = temp_buf_info.sw_cookie;
  1108. rx_desc_pool = &soc->rx_desc_buf[pdev->lmac_id];
  1109. /* map the nbuf before reinject it into HW */
  1110. ret = qdf_nbuf_map_nbytes_single(soc->osdev, head,
  1111. QDF_DMA_FROM_DEVICE,
  1112. rx_desc_pool->buf_size);
  1113. if (qdf_unlikely(ret == QDF_STATUS_E_FAILURE)) {
  1114. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1115. "%s: nbuf map failed !", __func__);
  1116. return QDF_STATUS_E_FAILURE;
  1117. }
  1118. dp_ipa_handle_rx_buf_smmu_mapping(soc, head, rx_desc_pool->buf_size,
  1119. true, __func__, __LINE__);
  1120. dp_audio_smmu_map(soc->osdev,
  1121. qdf_mem_paddr_from_dmaaddr(soc->osdev,
  1122. QDF_NBUF_CB_PADDR(head)),
  1123. QDF_NBUF_CB_PADDR(head), rx_desc_pool->buf_size);
  1124. /*
  1125. * As part of rx frag handler buffer was unmapped and rx desc
  1126. * unmapped is set to 1. So again for defrag reinject frame reset
  1127. * it back to 0.
  1128. */
  1129. rx_desc->unmapped = 0;
  1130. paddr = qdf_nbuf_get_frag_paddr(head, 0);
  1131. ret = dp_check_paddr(soc, &head, &paddr, rx_desc_pool);
  1132. if (ret == QDF_STATUS_E_FAILURE) {
  1133. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1134. "%s: x86 check failed !", __func__);
  1135. return QDF_STATUS_E_FAILURE;
  1136. }
  1137. hal_rxdma_buff_addr_info_set(soc->hal_soc, msdu0, paddr, cookie,
  1138. rx_defrag_rbm_id);
  1139. /* Lets fill entrance ring now !!! */
  1140. if (qdf_unlikely(hal_srng_access_start(soc->hal_soc, hal_srng))) {
  1141. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1142. "HAL RING Access For REO entrance SRNG Failed: %pK",
  1143. hal_srng);
  1144. return QDF_STATUS_E_FAILURE;
  1145. }
  1146. dp_rx_reinject_ring_record_entry(soc, paddr, cookie,
  1147. rx_defrag_rbm_id);
  1148. paddr = (uint64_t)buf_info.paddr;
  1149. /* buf addr */
  1150. hal_rxdma_buff_addr_info_set(soc->hal_soc, ent_ring_desc, paddr,
  1151. buf_info.sw_cookie,
  1152. soc->idle_link_bm_id);
  1153. /* mpdu desc info */
  1154. ent_mpdu_desc_info = hal_ent_mpdu_desc_info(soc->hal_soc,
  1155. ent_ring_desc);
  1156. dst_mpdu_desc_info = hal_dst_mpdu_desc_info(soc->hal_soc,
  1157. dst_ring_desc);
  1158. qdf_mem_copy(ent_mpdu_desc_info, dst_mpdu_desc_info,
  1159. sizeof(struct rx_mpdu_desc_info));
  1160. qdf_mem_zero(ent_mpdu_desc_info, sizeof(uint32_t));
  1161. seq_no = hal_rx_get_rx_sequence(soc->hal_soc, rx_desc->rx_buf_start);
  1162. hal_mpdu_desc_info_set(soc->hal_soc, ent_ring_desc, ent_mpdu_desc_info,
  1163. seq_no);
  1164. /* qdesc addr */
  1165. ent_qdesc_addr = hal_get_reo_ent_desc_qdesc_addr(soc->hal_soc,
  1166. (uint8_t *)ent_ring_desc);
  1167. dst_qdesc_addr = soc->arch_ops.get_reo_qdesc_addr(
  1168. soc->hal_soc,
  1169. (uint8_t *)dst_ring_desc,
  1170. qdf_nbuf_data(head),
  1171. txrx_peer, tid);
  1172. qdf_mem_copy(ent_qdesc_addr, &dst_qdesc_addr, 5);
  1173. hal_set_reo_ent_desc_reo_dest_ind(soc->hal_soc,
  1174. (uint8_t *)ent_ring_desc, dst_ind);
  1175. hal_srng_access_end(soc->hal_soc, hal_srng);
  1176. DP_STATS_INC(soc, rx.reo_reinject, 1);
  1177. dp_debug("reinjection done !");
  1178. return QDF_STATUS_SUCCESS;
  1179. }
  1180. #endif
  1181. /**
  1182. * dp_rx_defrag_gcmp_demic() - Remove MIC information from GCMP fragment
  1183. * @soc: Datapath soc structure
  1184. * @nbuf: Pointer to the fragment buffer
  1185. * @hdrlen: 802.11 header length
  1186. *
  1187. * Remove MIC information from GCMP fragment
  1188. *
  1189. * Return: QDF_STATUS
  1190. */
  1191. static QDF_STATUS dp_rx_defrag_gcmp_demic(struct dp_soc *soc, qdf_nbuf_t nbuf,
  1192. uint16_t hdrlen)
  1193. {
  1194. uint8_t *ivp, *orig_hdr;
  1195. int rx_desc_len = soc->rx_pkt_tlv_size;
  1196. /* start of the 802.11 header */
  1197. orig_hdr = (uint8_t *)(qdf_nbuf_data(nbuf) + rx_desc_len);
  1198. /*
  1199. * GCMP header is located after 802.11 header and EXTIV
  1200. * field should always be set to 1 for GCMP protocol.
  1201. */
  1202. ivp = orig_hdr + hdrlen;
  1203. if (!(ivp[IEEE80211_WEP_IVLEN] & IEEE80211_WEP_EXTIV))
  1204. return QDF_STATUS_E_DEFRAG_ERROR;
  1205. qdf_nbuf_trim_tail(nbuf, dp_f_gcmp.ic_trailer);
  1206. return QDF_STATUS_SUCCESS;
  1207. }
  1208. QDF_STATUS dp_rx_defrag(struct dp_txrx_peer *txrx_peer, unsigned int tid,
  1209. qdf_nbuf_t frag_list_head,
  1210. qdf_nbuf_t frag_list_tail)
  1211. {
  1212. qdf_nbuf_t tmp_next;
  1213. qdf_nbuf_t cur = frag_list_head, msdu;
  1214. uint32_t index, tkip_demic = 0;
  1215. uint16_t hdr_space;
  1216. uint8_t key[DEFRAG_IEEE80211_KEY_LEN];
  1217. struct dp_vdev *vdev = txrx_peer->vdev;
  1218. struct dp_soc *soc = vdev->pdev->soc;
  1219. uint8_t status = 0;
  1220. if (!cur)
  1221. return QDF_STATUS_E_DEFRAG_ERROR;
  1222. hdr_space = dp_rx_defrag_hdrsize(soc, cur);
  1223. index = hal_rx_msdu_is_wlan_mcast(soc->hal_soc, cur) ?
  1224. dp_sec_mcast : dp_sec_ucast;
  1225. /* Remove FCS from all fragments */
  1226. while (cur) {
  1227. tmp_next = qdf_nbuf_next(cur);
  1228. qdf_nbuf_set_next(cur, NULL);
  1229. qdf_nbuf_trim_tail(cur, DEFRAG_IEEE80211_FCS_LEN);
  1230. qdf_nbuf_set_next(cur, tmp_next);
  1231. cur = tmp_next;
  1232. }
  1233. cur = frag_list_head;
  1234. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_DEBUG,
  1235. "%s: index %d Security type: %d", __func__,
  1236. index, txrx_peer->security[index].sec_type);
  1237. switch (txrx_peer->security[index].sec_type) {
  1238. case cdp_sec_type_tkip:
  1239. tkip_demic = 1;
  1240. fallthrough;
  1241. case cdp_sec_type_tkip_nomic:
  1242. while (cur) {
  1243. tmp_next = qdf_nbuf_next(cur);
  1244. if (dp_rx_defrag_tkip_decap(soc, cur, hdr_space)) {
  1245. QDF_TRACE(QDF_MODULE_ID_TXRX,
  1246. QDF_TRACE_LEVEL_ERROR,
  1247. "dp_rx_defrag: TKIP decap failed");
  1248. return QDF_STATUS_E_DEFRAG_ERROR;
  1249. }
  1250. cur = tmp_next;
  1251. }
  1252. /* If success, increment header to be stripped later */
  1253. hdr_space += dp_f_tkip.ic_header;
  1254. break;
  1255. case cdp_sec_type_aes_ccmp:
  1256. while (cur) {
  1257. tmp_next = qdf_nbuf_next(cur);
  1258. if (dp_rx_defrag_ccmp_demic(soc, cur, hdr_space)) {
  1259. QDF_TRACE(QDF_MODULE_ID_TXRX,
  1260. QDF_TRACE_LEVEL_ERROR,
  1261. "dp_rx_defrag: CCMP demic failed");
  1262. return QDF_STATUS_E_DEFRAG_ERROR;
  1263. }
  1264. if (dp_rx_defrag_ccmp_decap(soc, cur, hdr_space)) {
  1265. QDF_TRACE(QDF_MODULE_ID_TXRX,
  1266. QDF_TRACE_LEVEL_ERROR,
  1267. "dp_rx_defrag: CCMP decap failed");
  1268. return QDF_STATUS_E_DEFRAG_ERROR;
  1269. }
  1270. cur = tmp_next;
  1271. }
  1272. /* If success, increment header to be stripped later */
  1273. hdr_space += dp_f_ccmp.ic_header;
  1274. break;
  1275. case cdp_sec_type_wep40:
  1276. case cdp_sec_type_wep104:
  1277. case cdp_sec_type_wep128:
  1278. while (cur) {
  1279. tmp_next = qdf_nbuf_next(cur);
  1280. if (dp_rx_defrag_wep_decap(soc, cur, hdr_space)) {
  1281. QDF_TRACE(QDF_MODULE_ID_TXRX,
  1282. QDF_TRACE_LEVEL_ERROR,
  1283. "dp_rx_defrag: WEP decap failed");
  1284. return QDF_STATUS_E_DEFRAG_ERROR;
  1285. }
  1286. cur = tmp_next;
  1287. }
  1288. /* If success, increment header to be stripped later */
  1289. hdr_space += dp_f_wep.ic_header;
  1290. break;
  1291. case cdp_sec_type_aes_gcmp:
  1292. case cdp_sec_type_aes_gcmp_256:
  1293. while (cur) {
  1294. tmp_next = qdf_nbuf_next(cur);
  1295. if (dp_rx_defrag_gcmp_demic(soc, cur, hdr_space)) {
  1296. QDF_TRACE(QDF_MODULE_ID_TXRX,
  1297. QDF_TRACE_LEVEL_ERROR,
  1298. "dp_rx_defrag: GCMP demic failed");
  1299. return QDF_STATUS_E_DEFRAG_ERROR;
  1300. }
  1301. cur = tmp_next;
  1302. }
  1303. hdr_space += dp_f_gcmp.ic_header;
  1304. break;
  1305. default:
  1306. break;
  1307. }
  1308. if (tkip_demic) {
  1309. msdu = frag_list_head;
  1310. qdf_mem_copy(key,
  1311. &txrx_peer->security[index].michael_key[0],
  1312. IEEE80211_WEP_MICLEN);
  1313. status = dp_rx_defrag_tkip_demic(soc, key, msdu,
  1314. soc->rx_pkt_tlv_size +
  1315. hdr_space);
  1316. if (status) {
  1317. dp_rx_defrag_err(vdev, frag_list_head);
  1318. QDF_TRACE(QDF_MODULE_ID_TXRX,
  1319. QDF_TRACE_LEVEL_ERROR,
  1320. "%s: TKIP demic failed status %d",
  1321. __func__, status);
  1322. return QDF_STATUS_E_DEFRAG_ERROR;
  1323. }
  1324. }
  1325. /* Convert the header to 802.3 header */
  1326. dp_rx_defrag_nwifi_to_8023(soc, txrx_peer, tid, frag_list_head,
  1327. hdr_space);
  1328. if (qdf_nbuf_next(frag_list_head)) {
  1329. if (dp_rx_construct_fraglist(txrx_peer, tid, frag_list_head,
  1330. hdr_space))
  1331. return QDF_STATUS_E_DEFRAG_ERROR;
  1332. }
  1333. return QDF_STATUS_SUCCESS;
  1334. }
  1335. void dp_rx_defrag_cleanup(struct dp_txrx_peer *txrx_peer, unsigned int tid)
  1336. {
  1337. struct dp_rx_reorder_array_elem *rx_reorder_array_elem =
  1338. txrx_peer->rx_tid[tid].array;
  1339. if (rx_reorder_array_elem) {
  1340. /* Free up nbufs */
  1341. dp_rx_defrag_frames_free(rx_reorder_array_elem->head);
  1342. rx_reorder_array_elem->head = NULL;
  1343. rx_reorder_array_elem->tail = NULL;
  1344. } else {
  1345. dp_info("Cleanup self peer %pK and TID %u",
  1346. txrx_peer, tid);
  1347. }
  1348. /* Free up saved ring descriptors */
  1349. dp_rx_clear_saved_desc_info(txrx_peer, tid);
  1350. txrx_peer->rx_tid[tid].defrag_timeout_ms = 0;
  1351. txrx_peer->rx_tid[tid].curr_frag_num = 0;
  1352. txrx_peer->rx_tid[tid].curr_seq_num = 0;
  1353. }
  1354. /**
  1355. * dp_rx_defrag_save_info_from_ring_desc() - Save info from REO ring descriptor
  1356. * @soc: Pointer to the SOC data structure
  1357. * @ring_desc: Pointer to the dst ring descriptor
  1358. * @rx_desc: Pointer to rx descriptor
  1359. * @txrx_peer: Pointer to the peer
  1360. * @tid: Transmit Identifier
  1361. *
  1362. * Return: None
  1363. */
  1364. static QDF_STATUS
  1365. dp_rx_defrag_save_info_from_ring_desc(struct dp_soc *soc,
  1366. hal_ring_desc_t ring_desc,
  1367. struct dp_rx_desc *rx_desc,
  1368. struct dp_txrx_peer *txrx_peer,
  1369. unsigned int tid)
  1370. {
  1371. void *dst_ring_desc;
  1372. dst_ring_desc = qdf_mem_malloc(hal_srng_get_entrysize(soc->hal_soc,
  1373. REO_DST));
  1374. if (!dst_ring_desc) {
  1375. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1376. "%s: Memory alloc failed !", __func__);
  1377. QDF_ASSERT(0);
  1378. return QDF_STATUS_E_NOMEM;
  1379. }
  1380. qdf_mem_copy(dst_ring_desc, ring_desc,
  1381. hal_srng_get_entrysize(soc->hal_soc, REO_DST));
  1382. txrx_peer->rx_tid[tid].dst_ring_desc = dst_ring_desc;
  1383. txrx_peer->rx_tid[tid].head_frag_desc = rx_desc;
  1384. return QDF_STATUS_SUCCESS;
  1385. }
  1386. #ifdef DP_RX_DEFRAG_ADDR1_CHECK_WAR
  1387. #ifdef WLAN_FEATURE_11BE_MLO
  1388. /**
  1389. * dp_rx_defrag_vdev_mac_addr_cmp() - function to check whether mac address
  1390. * matches VDEV mac
  1391. * @vdev: dp_vdev object of the VDEV on which this data packet is received
  1392. * @mac_addr: Address to compare
  1393. *
  1394. * Return: 1 if the mac matching,
  1395. * 0 if this frame is not correctly destined to this VDEV/MLD
  1396. */
  1397. static int dp_rx_defrag_vdev_mac_addr_cmp(struct dp_vdev *vdev,
  1398. uint8_t *mac_addr)
  1399. {
  1400. return ((qdf_mem_cmp(mac_addr, &vdev->mac_addr.raw[0],
  1401. QDF_MAC_ADDR_SIZE) == 0) ||
  1402. (qdf_mem_cmp(mac_addr, &vdev->mld_mac_addr.raw[0],
  1403. QDF_MAC_ADDR_SIZE) == 0));
  1404. }
  1405. #else
  1406. static int dp_rx_defrag_vdev_mac_addr_cmp(struct dp_vdev *vdev,
  1407. uint8_t *mac_addr)
  1408. {
  1409. return (qdf_mem_cmp(mac_addr, &vdev->mac_addr.raw[0],
  1410. QDF_MAC_ADDR_SIZE) == 0);
  1411. }
  1412. #endif
  1413. static bool dp_rx_defrag_addr1_check(struct dp_soc *soc,
  1414. struct dp_vdev *vdev,
  1415. uint8_t *rx_tlv_hdr)
  1416. {
  1417. union dp_align_mac_addr mac_addr;
  1418. /* If address1 is not valid discard the fragment */
  1419. if (hal_rx_mpdu_get_addr1(soc->hal_soc, rx_tlv_hdr,
  1420. &mac_addr.raw[0]) != QDF_STATUS_SUCCESS) {
  1421. DP_STATS_INC(soc, rx.err.defrag_ad1_invalid, 1);
  1422. return false;
  1423. }
  1424. /* WAR suggested by HW team to avoid crashing incase of packet
  1425. * corruption issue
  1426. *
  1427. * recipe is to compare VDEV mac or MLD mac address with ADDR1
  1428. * in case of mismatch consider it as corrupted packet and do
  1429. * not process further
  1430. */
  1431. if (!dp_rx_defrag_vdev_mac_addr_cmp(vdev,
  1432. &mac_addr.raw[0])) {
  1433. DP_STATS_INC(soc, rx.err.defrag_ad1_invalid, 1);
  1434. return false;
  1435. }
  1436. return true;
  1437. }
  1438. #else
  1439. static inline bool dp_rx_defrag_addr1_check(struct dp_soc *soc,
  1440. struct dp_vdev *vdev,
  1441. uint8_t *rx_tlv_hdr)
  1442. {
  1443. return true;
  1444. }
  1445. #endif
  1446. /**
  1447. * dp_rx_defrag_store_fragment() - Store incoming fragments
  1448. * @soc: Pointer to the SOC data structure
  1449. * @ring_desc: Pointer to the ring descriptor
  1450. * @head:
  1451. * @tail:
  1452. * @mpdu_desc_info: MPDU descriptor info
  1453. * @tid: Traffic Identifier
  1454. * @rx_desc: Pointer to rx descriptor
  1455. * @rx_bfs: Number of bfs consumed
  1456. *
  1457. * Return: QDF_STATUS
  1458. */
  1459. static QDF_STATUS
  1460. dp_rx_defrag_store_fragment(struct dp_soc *soc,
  1461. hal_ring_desc_t ring_desc,
  1462. union dp_rx_desc_list_elem_t **head,
  1463. union dp_rx_desc_list_elem_t **tail,
  1464. struct hal_rx_mpdu_desc_info *mpdu_desc_info,
  1465. unsigned int tid, struct dp_rx_desc *rx_desc,
  1466. uint32_t *rx_bfs)
  1467. {
  1468. struct dp_rx_reorder_array_elem *rx_reorder_array_elem;
  1469. struct dp_pdev *pdev;
  1470. struct dp_txrx_peer *txrx_peer = NULL;
  1471. dp_txrx_ref_handle txrx_ref_handle = NULL;
  1472. uint16_t peer_id;
  1473. uint8_t fragno, more_frag, all_frag_present = 0;
  1474. uint16_t rxseq = mpdu_desc_info->mpdu_seq;
  1475. QDF_STATUS status;
  1476. struct dp_rx_tid_defrag *rx_tid;
  1477. uint8_t mpdu_sequence_control_valid;
  1478. uint8_t mpdu_frame_control_valid;
  1479. qdf_nbuf_t frag = rx_desc->nbuf;
  1480. uint32_t msdu_len;
  1481. if (qdf_nbuf_len(frag) > 0) {
  1482. dp_info("Dropping unexpected packet with skb_len: %d,"
  1483. "data len: %d, cookie: %d",
  1484. (uint32_t)qdf_nbuf_len(frag), frag->data_len,
  1485. rx_desc->cookie);
  1486. DP_STATS_INC(soc, rx.rx_frag_err_len_error, 1);
  1487. goto discard_frag;
  1488. }
  1489. if (dp_rx_buffer_pool_refill(soc, frag, rx_desc->pool_id)) {
  1490. /* fragment queued back to the pool, free the link desc */
  1491. goto err_free_desc;
  1492. }
  1493. msdu_len = hal_rx_msdu_start_msdu_len_get(soc->hal_soc,
  1494. rx_desc->rx_buf_start);
  1495. qdf_nbuf_set_pktlen(frag, (msdu_len + soc->rx_pkt_tlv_size));
  1496. qdf_nbuf_append_ext_list(frag, NULL, 0);
  1497. /* Check if the packet is from a valid peer */
  1498. peer_id = dp_rx_peer_metadata_peer_id_get(soc,
  1499. mpdu_desc_info->peer_meta_data);
  1500. txrx_peer = dp_txrx_peer_get_ref_by_id(soc, peer_id, &txrx_ref_handle,
  1501. DP_MOD_ID_RX_ERR);
  1502. if (!txrx_peer) {
  1503. /* We should not receive anything from unknown peer
  1504. * however, that might happen while we are in the monitor mode.
  1505. * We don't need to handle that here
  1506. */
  1507. dp_info_rl("Unknown peer with peer_id %d, dropping fragment",
  1508. peer_id);
  1509. DP_STATS_INC(soc, rx.rx_frag_err_no_peer, 1);
  1510. goto discard_frag;
  1511. }
  1512. if (tid >= DP_MAX_TIDS) {
  1513. dp_info("TID out of bounds: %d", tid);
  1514. qdf_assert_always(0);
  1515. goto discard_frag;
  1516. }
  1517. if (!dp_rx_defrag_addr1_check(soc, txrx_peer->vdev,
  1518. rx_desc->rx_buf_start)) {
  1519. dp_info("Invalid address 1");
  1520. goto discard_frag;
  1521. }
  1522. mpdu_sequence_control_valid =
  1523. hal_rx_get_mpdu_sequence_control_valid(soc->hal_soc,
  1524. rx_desc->rx_buf_start);
  1525. /* Invalid MPDU sequence control field, MPDU is of no use */
  1526. if (!mpdu_sequence_control_valid) {
  1527. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1528. "Invalid MPDU seq control field, dropping MPDU");
  1529. qdf_assert(0);
  1530. goto discard_frag;
  1531. }
  1532. mpdu_frame_control_valid =
  1533. hal_rx_get_mpdu_frame_control_valid(soc->hal_soc,
  1534. rx_desc->rx_buf_start);
  1535. /* Invalid frame control field */
  1536. if (!mpdu_frame_control_valid) {
  1537. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1538. "Invalid frame control field, dropping MPDU");
  1539. qdf_assert(0);
  1540. goto discard_frag;
  1541. }
  1542. /* Current mpdu sequence */
  1543. more_frag = dp_rx_frag_get_more_frag_bit(soc, rx_desc->rx_buf_start);
  1544. /* HW does not populate the fragment number as of now
  1545. * need to get from the 802.11 header
  1546. */
  1547. fragno = dp_rx_frag_get_mpdu_frag_number(soc, rx_desc->rx_buf_start);
  1548. pdev = txrx_peer->vdev->pdev;
  1549. rx_tid = &txrx_peer->rx_tid[tid];
  1550. dp_rx_err_send_pktlog(soc, pdev, mpdu_desc_info, frag,
  1551. QDF_TX_RX_STATUS_OK, false);
  1552. qdf_spin_lock_bh(&rx_tid->defrag_tid_lock);
  1553. rx_reorder_array_elem = txrx_peer->rx_tid[tid].array;
  1554. if (!rx_reorder_array_elem) {
  1555. dp_err_rl("Rcvd Fragmented pkt before tid setup for peer %pK",
  1556. txrx_peer);
  1557. qdf_spin_unlock_bh(&rx_tid->defrag_tid_lock);
  1558. goto discard_frag;
  1559. }
  1560. /*
  1561. * !more_frag: no more fragments to be delivered
  1562. * !frag_no: packet is not fragmented
  1563. * !rx_reorder_array_elem->head: no saved fragments so far
  1564. */
  1565. if ((!more_frag) && (!fragno) && (!rx_reorder_array_elem->head)) {
  1566. /* We should not get into this situation here.
  1567. * It means an unfragmented packet with fragment flag
  1568. * is delivered over the REO exception ring.
  1569. * Typically it follows normal rx path.
  1570. */
  1571. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1572. "Rcvd unfragmented pkt on REO Err srng, dropping");
  1573. qdf_spin_unlock_bh(&rx_tid->defrag_tid_lock);
  1574. qdf_assert(0);
  1575. goto discard_frag;
  1576. }
  1577. /* Check if the fragment is for the same sequence or a different one */
  1578. dp_debug("rx_tid %d", tid);
  1579. if (rx_reorder_array_elem->head) {
  1580. dp_debug("rxseq %d\n", rxseq);
  1581. if (rxseq != rx_tid->curr_seq_num) {
  1582. dp_debug("mismatch cur_seq %d rxseq %d\n",
  1583. rx_tid->curr_seq_num, rxseq);
  1584. /* Drop stored fragments if out of sequence
  1585. * fragment is received
  1586. */
  1587. dp_rx_reorder_flush_frag(txrx_peer, tid);
  1588. DP_STATS_INC(soc, rx.rx_frag_oor, 1);
  1589. dp_debug("cur rxseq %d\n", rxseq);
  1590. /*
  1591. * The sequence number for this fragment becomes the
  1592. * new sequence number to be processed
  1593. */
  1594. rx_tid->curr_seq_num = rxseq;
  1595. }
  1596. } else {
  1597. /* Check if we are processing first fragment if it is
  1598. * not first fragment discard fragment.
  1599. */
  1600. if (fragno) {
  1601. qdf_spin_unlock_bh(&rx_tid->defrag_tid_lock);
  1602. goto discard_frag;
  1603. }
  1604. dp_debug("cur rxseq %d\n", rxseq);
  1605. /* Start of a new sequence */
  1606. dp_rx_defrag_cleanup(txrx_peer, tid);
  1607. rx_tid->curr_seq_num = rxseq;
  1608. /* store PN number also */
  1609. }
  1610. /*
  1611. * If the earlier sequence was dropped, this will be the fresh start.
  1612. * Else, continue with next fragment in a given sequence
  1613. */
  1614. status = dp_rx_defrag_fraglist_insert(txrx_peer, tid,
  1615. &rx_reorder_array_elem->head,
  1616. &rx_reorder_array_elem->tail,
  1617. frag, &all_frag_present);
  1618. /*
  1619. * Currently, we can have only 6 MSDUs per-MPDU, if the current
  1620. * packet sequence has more than 6 MSDUs for some reason, we will
  1621. * have to use the next MSDU link descriptor and chain them together
  1622. * before reinjection.
  1623. * ring_desc is validated in dp_rx_err_process.
  1624. */
  1625. if ((fragno == 0) && (status == QDF_STATUS_SUCCESS) &&
  1626. (rx_reorder_array_elem->head == frag)) {
  1627. status = dp_rx_defrag_save_info_from_ring_desc(soc, ring_desc,
  1628. rx_desc,
  1629. txrx_peer, tid);
  1630. if (status != QDF_STATUS_SUCCESS) {
  1631. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1632. "%s: Unable to store ring desc !", __func__);
  1633. qdf_spin_unlock_bh(&rx_tid->defrag_tid_lock);
  1634. goto discard_frag;
  1635. }
  1636. } else {
  1637. dp_rx_add_to_free_desc_list(head, tail, rx_desc);
  1638. (*rx_bfs)++;
  1639. /* Return the non-head link desc */
  1640. if (dp_rx_link_desc_return(soc, ring_desc,
  1641. HAL_BM_ACTION_PUT_IN_IDLE_LIST) !=
  1642. QDF_STATUS_SUCCESS)
  1643. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1644. "%s: Failed to return link desc", __func__);
  1645. }
  1646. if (pdev->soc->rx.flags.defrag_timeout_check)
  1647. dp_rx_defrag_waitlist_remove(txrx_peer, tid);
  1648. /* Yet to receive more fragments for this sequence number */
  1649. if (!all_frag_present) {
  1650. uint32_t now_ms =
  1651. qdf_system_ticks_to_msecs(qdf_system_ticks());
  1652. txrx_peer->rx_tid[tid].defrag_timeout_ms =
  1653. now_ms + pdev->soc->rx.defrag.timeout_ms;
  1654. dp_rx_defrag_waitlist_add(txrx_peer, tid);
  1655. dp_txrx_peer_unref_delete(txrx_ref_handle, DP_MOD_ID_RX_ERR);
  1656. qdf_spin_unlock_bh(&rx_tid->defrag_tid_lock);
  1657. return QDF_STATUS_SUCCESS;
  1658. }
  1659. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_DEBUG,
  1660. "All fragments received for sequence: %d", rxseq);
  1661. /* Process the fragments */
  1662. status = dp_rx_defrag(txrx_peer, tid, rx_reorder_array_elem->head,
  1663. rx_reorder_array_elem->tail);
  1664. if (QDF_IS_STATUS_ERROR(status)) {
  1665. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1666. "Fragment processing failed");
  1667. dp_rx_add_to_free_desc_list(head, tail,
  1668. txrx_peer->rx_tid[tid].head_frag_desc);
  1669. (*rx_bfs)++;
  1670. if (dp_rx_link_desc_return(soc,
  1671. txrx_peer->rx_tid[tid].dst_ring_desc,
  1672. HAL_BM_ACTION_PUT_IN_IDLE_LIST) !=
  1673. QDF_STATUS_SUCCESS)
  1674. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1675. "%s: Failed to return link desc",
  1676. __func__);
  1677. dp_rx_defrag_cleanup(txrx_peer, tid);
  1678. qdf_spin_unlock_bh(&rx_tid->defrag_tid_lock);
  1679. goto end;
  1680. }
  1681. /* Re-inject the fragments back to REO for further processing */
  1682. status = dp_rx_defrag_reo_reinject(txrx_peer, tid,
  1683. rx_reorder_array_elem->head);
  1684. if (QDF_IS_STATUS_SUCCESS(status)) {
  1685. rx_reorder_array_elem->head = NULL;
  1686. rx_reorder_array_elem->tail = NULL;
  1687. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_DEBUG,
  1688. "Fragmented sequence successfully reinjected");
  1689. } else {
  1690. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1691. "Fragmented sequence reinjection failed");
  1692. dp_rx_return_head_frag_desc(txrx_peer, tid);
  1693. }
  1694. dp_rx_defrag_cleanup(txrx_peer, tid);
  1695. qdf_spin_unlock_bh(&rx_tid->defrag_tid_lock);
  1696. dp_txrx_peer_unref_delete(txrx_ref_handle, DP_MOD_ID_RX_ERR);
  1697. return QDF_STATUS_SUCCESS;
  1698. discard_frag:
  1699. dp_rx_nbuf_free(frag);
  1700. err_free_desc:
  1701. dp_rx_add_to_free_desc_list(head, tail, rx_desc);
  1702. if (dp_rx_link_desc_return(soc, ring_desc,
  1703. HAL_BM_ACTION_PUT_IN_IDLE_LIST) !=
  1704. QDF_STATUS_SUCCESS)
  1705. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1706. "%s: Failed to return link desc", __func__);
  1707. (*rx_bfs)++;
  1708. end:
  1709. if (txrx_peer)
  1710. dp_txrx_peer_unref_delete(txrx_ref_handle, DP_MOD_ID_RX_ERR);
  1711. DP_STATS_INC(soc, rx.rx_frag_err, 1);
  1712. return QDF_STATUS_E_DEFRAG_ERROR;
  1713. }
  1714. uint32_t dp_rx_frag_handle(struct dp_soc *soc, hal_ring_desc_t ring_desc,
  1715. struct hal_rx_mpdu_desc_info *mpdu_desc_info,
  1716. struct dp_rx_desc *rx_desc,
  1717. uint8_t *mac_id,
  1718. uint32_t quota)
  1719. {
  1720. uint32_t rx_bufs_used = 0;
  1721. qdf_nbuf_t msdu = NULL;
  1722. uint32_t tid;
  1723. uint32_t rx_bfs = 0;
  1724. struct dp_pdev *pdev;
  1725. QDF_STATUS status = QDF_STATUS_SUCCESS;
  1726. struct rx_desc_pool *rx_desc_pool;
  1727. qdf_assert(soc);
  1728. qdf_assert(mpdu_desc_info);
  1729. qdf_assert(rx_desc);
  1730. dp_debug("Number of MSDUs to process, num_msdus: %d",
  1731. mpdu_desc_info->msdu_count);
  1732. if (qdf_unlikely(mpdu_desc_info->msdu_count == 0)) {
  1733. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1734. "Not sufficient MSDUs to process");
  1735. return rx_bufs_used;
  1736. }
  1737. /* all buffers in MSDU link belong to same pdev */
  1738. pdev = dp_get_pdev_for_lmac_id(soc, rx_desc->pool_id);
  1739. if (!pdev) {
  1740. dp_nofl_debug("pdev is null for pool_id = %d",
  1741. rx_desc->pool_id);
  1742. return rx_bufs_used;
  1743. }
  1744. *mac_id = rx_desc->pool_id;
  1745. msdu = rx_desc->nbuf;
  1746. rx_desc_pool = &soc->rx_desc_buf[rx_desc->pool_id];
  1747. if (rx_desc->unmapped)
  1748. return rx_bufs_used;
  1749. dp_ipa_rx_buf_smmu_mapping_lock(soc);
  1750. dp_rx_nbuf_unmap_pool(soc, rx_desc_pool, rx_desc->nbuf);
  1751. rx_desc->unmapped = 1;
  1752. dp_ipa_rx_buf_smmu_mapping_unlock(soc);
  1753. rx_desc->rx_buf_start = qdf_nbuf_data(msdu);
  1754. tid = hal_rx_mpdu_start_tid_get(soc->hal_soc, rx_desc->rx_buf_start);
  1755. /* Process fragment-by-fragment */
  1756. status = dp_rx_defrag_store_fragment(soc, ring_desc,
  1757. &pdev->free_list_head,
  1758. &pdev->free_list_tail,
  1759. mpdu_desc_info,
  1760. tid, rx_desc, &rx_bfs);
  1761. if (rx_bfs)
  1762. rx_bufs_used += rx_bfs;
  1763. if (!QDF_IS_STATUS_SUCCESS(status))
  1764. dp_info_rl("Rx Defrag err seq#:0x%x msdu_count:%d flags:%d",
  1765. mpdu_desc_info->mpdu_seq,
  1766. mpdu_desc_info->msdu_count,
  1767. mpdu_desc_info->mpdu_flags);
  1768. return rx_bufs_used;
  1769. }
  1770. QDF_STATUS dp_rx_defrag_add_last_frag(struct dp_soc *soc,
  1771. struct dp_txrx_peer *txrx_peer,
  1772. uint16_t tid,
  1773. uint16_t rxseq, qdf_nbuf_t nbuf)
  1774. {
  1775. struct dp_rx_tid_defrag *rx_tid = &txrx_peer->rx_tid[tid];
  1776. struct dp_rx_reorder_array_elem *rx_reorder_array_elem;
  1777. uint8_t all_frag_present;
  1778. uint32_t msdu_len;
  1779. QDF_STATUS status;
  1780. rx_reorder_array_elem = txrx_peer->rx_tid[tid].array;
  1781. /*
  1782. * HW may fill in unexpected peer_id in RX PKT TLV,
  1783. * if this peer_id related peer is valid by coincidence,
  1784. * but actually this peer won't do dp_peer_rx_init(like SAP vdev
  1785. * self peer), then invalid access to rx_reorder_array_elem happened.
  1786. */
  1787. if (!rx_reorder_array_elem) {
  1788. dp_verbose_debug(
  1789. "peer id:%d drop rx frame!",
  1790. txrx_peer->peer_id);
  1791. DP_STATS_INC(soc, rx.err.defrag_peer_uninit, 1);
  1792. dp_rx_nbuf_free(nbuf);
  1793. goto fail;
  1794. }
  1795. if (rx_reorder_array_elem->head &&
  1796. rxseq != rx_tid->curr_seq_num) {
  1797. /* Drop stored fragments if out of sequence
  1798. * fragment is received
  1799. */
  1800. dp_rx_reorder_flush_frag(txrx_peer, tid);
  1801. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1802. "%s: No list found for TID %d Seq# %d",
  1803. __func__, tid, rxseq);
  1804. dp_rx_nbuf_free(nbuf);
  1805. goto fail;
  1806. }
  1807. msdu_len = hal_rx_msdu_start_msdu_len_get(soc->hal_soc,
  1808. qdf_nbuf_data(nbuf));
  1809. qdf_nbuf_set_pktlen(nbuf, (msdu_len + soc->rx_pkt_tlv_size));
  1810. status = dp_rx_defrag_fraglist_insert(txrx_peer, tid,
  1811. &rx_reorder_array_elem->head,
  1812. &rx_reorder_array_elem->tail, nbuf,
  1813. &all_frag_present);
  1814. if (QDF_IS_STATUS_ERROR(status)) {
  1815. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1816. "%s Fragment insert failed", __func__);
  1817. goto fail;
  1818. }
  1819. if (soc->rx.flags.defrag_timeout_check)
  1820. dp_rx_defrag_waitlist_remove(txrx_peer, tid);
  1821. if (!all_frag_present) {
  1822. uint32_t now_ms =
  1823. qdf_system_ticks_to_msecs(qdf_system_ticks());
  1824. txrx_peer->rx_tid[tid].defrag_timeout_ms =
  1825. now_ms + soc->rx.defrag.timeout_ms;
  1826. dp_rx_defrag_waitlist_add(txrx_peer, tid);
  1827. return QDF_STATUS_SUCCESS;
  1828. }
  1829. status = dp_rx_defrag(txrx_peer, tid, rx_reorder_array_elem->head,
  1830. rx_reorder_array_elem->tail);
  1831. if (QDF_IS_STATUS_ERROR(status)) {
  1832. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1833. "%s Fragment processing failed", __func__);
  1834. dp_rx_return_head_frag_desc(txrx_peer, tid);
  1835. dp_rx_defrag_cleanup(txrx_peer, tid);
  1836. goto fail;
  1837. }
  1838. /* Re-inject the fragments back to REO for further processing */
  1839. status = dp_rx_defrag_reo_reinject(txrx_peer, tid,
  1840. rx_reorder_array_elem->head);
  1841. if (QDF_IS_STATUS_SUCCESS(status)) {
  1842. rx_reorder_array_elem->head = NULL;
  1843. rx_reorder_array_elem->tail = NULL;
  1844. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO,
  1845. "%s: Frag seq successfully reinjected",
  1846. __func__);
  1847. } else {
  1848. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1849. "%s: Frag seq reinjection failed", __func__);
  1850. dp_rx_return_head_frag_desc(txrx_peer, tid);
  1851. }
  1852. dp_rx_defrag_cleanup(txrx_peer, tid);
  1853. return QDF_STATUS_SUCCESS;
  1854. fail:
  1855. return QDF_STATUS_E_DEFRAG_ERROR;
  1856. }