lpass-cdc-rx-macro.c 132 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258
  1. // SPDX-License-Identifier: GPL-2.0-only
  2. /* Copyright (c) 2018-2021, The Linux Foundation. All rights reserved.
  3. */
  4. #include <linux/module.h>
  5. #include <linux/init.h>
  6. #include <linux/io.h>
  7. #include <linux/platform_device.h>
  8. #include <linux/clk.h>
  9. #include <linux/pm_runtime.h>
  10. #include <sound/soc.h>
  11. #include <sound/pcm.h>
  12. #include <sound/pcm_params.h>
  13. #include <sound/soc-dapm.h>
  14. #include <sound/tlv.h>
  15. #include <soc/swr-common.h>
  16. #include <soc/swr-wcd.h>
  17. #include <asoc/msm-cdc-pinctrl.h>
  18. #include "lpass-cdc.h"
  19. #include "lpass-cdc-comp.h"
  20. #include "lpass-cdc-registers.h"
  21. #include "lpass-cdc-clk-rsc.h"
  22. #define AUTO_SUSPEND_DELAY 50 /* delay in msec */
  23. #define LPASS_CDC_RX_MACRO_RATES (SNDRV_PCM_RATE_8000 | SNDRV_PCM_RATE_16000 |\
  24. SNDRV_PCM_RATE_32000 | SNDRV_PCM_RATE_48000 |\
  25. SNDRV_PCM_RATE_96000 | SNDRV_PCM_RATE_192000 |\
  26. SNDRV_PCM_RATE_384000)
  27. /* Fractional Rates */
  28. #define LPASS_CDC_RX_MACRO_FRAC_RATES (SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_88200 |\
  29. SNDRV_PCM_RATE_176400 | SNDRV_PCM_RATE_352800)
  30. #define LPASS_CDC_RX_MACRO_FORMATS (SNDRV_PCM_FMTBIT_S16_LE |\
  31. SNDRV_PCM_FMTBIT_S24_LE |\
  32. SNDRV_PCM_FMTBIT_S24_3LE | SNDRV_PCM_FMTBIT_S32_LE)
  33. #define LPASS_CDC_RX_MACRO_ECHO_RATES (SNDRV_PCM_RATE_8000 | SNDRV_PCM_RATE_16000 |\
  34. SNDRV_PCM_RATE_48000)
  35. #define LPASS_CDC_RX_MACRO_ECHO_FORMATS (SNDRV_PCM_FMTBIT_S16_LE |\
  36. SNDRV_PCM_FMTBIT_S24_LE |\
  37. SNDRV_PCM_FMTBIT_S24_3LE)
  38. #define SAMPLING_RATE_44P1KHZ 44100
  39. #define SAMPLING_RATE_88P2KHZ 88200
  40. #define SAMPLING_RATE_176P4KHZ 176400
  41. #define SAMPLING_RATE_352P8KHZ 352800
  42. #define LPASS_CDC_RX_MACRO_MAX_OFFSET 0x1000
  43. #define LPASS_CDC_RX_MACRO_MAX_DMA_CH_PER_PORT 2
  44. #define RX_SWR_STRING_LEN 80
  45. #define LPASS_CDC_RX_MACRO_CHILD_DEVICES_MAX 3
  46. #define LPASS_CDC_RX_MACRO_INTERP_MUX_NUM_INPUTS 3
  47. #define LPASS_CDC_RX_MACRO_SIDETONE_IIR_COEFF_MAX 5
  48. #define STRING(name) #name
  49. #define LPASS_CDC_RX_MACRO_DAPM_ENUM(name, reg, offset, text) \
  50. static SOC_ENUM_SINGLE_DECL(name##_enum, reg, offset, text); \
  51. static const struct snd_kcontrol_new name##_mux = \
  52. SOC_DAPM_ENUM(STRING(name), name##_enum)
  53. #define LPASS_CDC_RX_MACRO_DAPM_ENUM_EXT(name, reg, offset, text, getname, putname) \
  54. static SOC_ENUM_SINGLE_DECL(name##_enum, reg, offset, text); \
  55. static const struct snd_kcontrol_new name##_mux = \
  56. SOC_DAPM_ENUM_EXT(STRING(name), name##_enum, getname, putname)
  57. #define LPASS_CDC_RX_MACRO_DAPM_MUX(name, shift, kctl) \
  58. SND_SOC_DAPM_MUX(name, SND_SOC_NOPM, shift, 0, &kctl##_mux)
  59. #define LPASS_CDC_RX_MACRO_RX_PATH_OFFSET \
  60. (LPASS_CDC_RX_RX1_RX_PATH_CTL - LPASS_CDC_RX_RX0_RX_PATH_CTL)
  61. #define LPASS_CDC_RX_MACRO_COMP_OFFSET \
  62. (LPASS_CDC_RX_COMPANDER1_CTL0 - LPASS_CDC_RX_COMPANDER0_CTL0)
  63. #define MAX_IMPED_PARAMS 6
  64. #define LPASS_CDC_RX_MACRO_EC_MIX_TX0_MASK 0xf0
  65. #define LPASS_CDC_RX_MACRO_EC_MIX_TX1_MASK 0x0f
  66. #define LPASS_CDC_RX_MACRO_EC_MIX_TX2_MASK 0x0f
  67. #define LPASS_CDC_RX_MACRO_GAIN_MAX_VAL 0x28
  68. #define LPASS_CDC_RX_MACRO_GAIN_VAL_UNITY 0x0
  69. /* Define macros to increase PA Gain by half */
  70. #define LPASS_CDC_RX_MACRO_MOD_GAIN (LPASS_CDC_RX_MACRO_GAIN_VAL_UNITY + 6)
  71. #define COMP_MAX_COEFF 25
  72. struct wcd_imped_val {
  73. u32 imped_val;
  74. u8 index;
  75. };
  76. static const struct wcd_imped_val imped_index[] = {
  77. {4, 0},
  78. {5, 1},
  79. {6, 2},
  80. {7, 3},
  81. {8, 4},
  82. {9, 5},
  83. {10, 6},
  84. {11, 7},
  85. {12, 8},
  86. {13, 9},
  87. };
  88. enum {
  89. HPH_ULP,
  90. HPH_LOHIFI,
  91. HPH_MODE_MAX,
  92. };
  93. static struct comp_coeff_val
  94. comp_coeff_table [HPH_MODE_MAX][COMP_MAX_COEFF] = {
  95. {
  96. {0x40, 0x00},
  97. {0x4C, 0x00},
  98. {0x5A, 0x00},
  99. {0x6B, 0x00},
  100. {0x7F, 0x00},
  101. {0x97, 0x00},
  102. {0xB3, 0x00},
  103. {0xD5, 0x00},
  104. {0xFD, 0x00},
  105. {0x2D, 0x01},
  106. {0x66, 0x01},
  107. {0xA7, 0x01},
  108. {0xF8, 0x01},
  109. {0x57, 0x02},
  110. {0xC7, 0x02},
  111. {0x4B, 0x03},
  112. {0xE9, 0x03},
  113. {0xA3, 0x04},
  114. {0x7D, 0x05},
  115. {0x90, 0x06},
  116. {0xD1, 0x07},
  117. {0x49, 0x09},
  118. {0x00, 0x0B},
  119. {0x01, 0x0D},
  120. {0x59, 0x0F},
  121. },
  122. {
  123. {0x40, 0x00},
  124. {0x4C, 0x00},
  125. {0x5A, 0x00},
  126. {0x6B, 0x00},
  127. {0x80, 0x00},
  128. {0x98, 0x00},
  129. {0xB4, 0x00},
  130. {0xD5, 0x00},
  131. {0xFE, 0x00},
  132. {0x2E, 0x01},
  133. {0x66, 0x01},
  134. {0xA9, 0x01},
  135. {0xF8, 0x01},
  136. {0x56, 0x02},
  137. {0xC4, 0x02},
  138. {0x4F, 0x03},
  139. {0xF0, 0x03},
  140. {0xAE, 0x04},
  141. {0x8B, 0x05},
  142. {0x8E, 0x06},
  143. {0xBC, 0x07},
  144. {0x56, 0x09},
  145. {0x0F, 0x0B},
  146. {0x13, 0x0D},
  147. {0x6F, 0x0F},
  148. },
  149. };
  150. enum {
  151. RX_MODE_ULP,
  152. RX_MODE_LOHIFI,
  153. RX_MODE_EAR,
  154. RX_MODE_MAX
  155. };
  156. static struct lpass_cdc_comp_setting comp_setting_table[RX_MODE_MAX] =
  157. {
  158. {12, -60, 12},
  159. {0, -60, 12},
  160. {12, -36, 12},
  161. };
  162. struct lpass_cdc_rx_macro_reg_mask_val {
  163. u16 reg;
  164. u8 mask;
  165. u8 val;
  166. };
  167. static const struct lpass_cdc_rx_macro_reg_mask_val imped_table[][MAX_IMPED_PARAMS] = {
  168. {
  169. {LPASS_CDC_RX_RX0_RX_VOL_CTL, 0xff, 0xf2},
  170. {LPASS_CDC_RX_RX0_RX_VOL_MIX_CTL, 0xff, 0xf2},
  171. {LPASS_CDC_RX_RX0_RX_PATH_SEC1, 0x01, 0x00},
  172. {LPASS_CDC_RX_RX1_RX_VOL_CTL, 0xff, 0xf2},
  173. {LPASS_CDC_RX_RX1_RX_VOL_MIX_CTL, 0xff, 0xf2},
  174. {LPASS_CDC_RX_RX1_RX_PATH_SEC1, 0x01, 0x00},
  175. },
  176. {
  177. {LPASS_CDC_RX_RX0_RX_VOL_CTL, 0xff, 0xf4},
  178. {LPASS_CDC_RX_RX0_RX_VOL_MIX_CTL, 0xff, 0xf4},
  179. {LPASS_CDC_RX_RX0_RX_PATH_SEC1, 0x01, 0x00},
  180. {LPASS_CDC_RX_RX1_RX_VOL_CTL, 0xff, 0xf4},
  181. {LPASS_CDC_RX_RX1_RX_VOL_MIX_CTL, 0xff, 0xf4},
  182. {LPASS_CDC_RX_RX1_RX_PATH_SEC1, 0x01, 0x00},
  183. },
  184. {
  185. {LPASS_CDC_RX_RX0_RX_VOL_CTL, 0xff, 0xf7},
  186. {LPASS_CDC_RX_RX0_RX_VOL_MIX_CTL, 0xff, 0xf7},
  187. {LPASS_CDC_RX_RX0_RX_PATH_SEC1, 0x01, 0x01},
  188. {LPASS_CDC_RX_RX1_RX_VOL_CTL, 0xff, 0xf7},
  189. {LPASS_CDC_RX_RX1_RX_VOL_MIX_CTL, 0xff, 0xf7},
  190. {LPASS_CDC_RX_RX1_RX_PATH_SEC1, 0x01, 0x01},
  191. },
  192. {
  193. {LPASS_CDC_RX_RX0_RX_VOL_CTL, 0xff, 0xf9},
  194. {LPASS_CDC_RX_RX0_RX_VOL_MIX_CTL, 0xff, 0xf9},
  195. {LPASS_CDC_RX_RX0_RX_PATH_SEC1, 0x01, 0x00},
  196. {LPASS_CDC_RX_RX1_RX_VOL_CTL, 0xff, 0xf9},
  197. {LPASS_CDC_RX_RX1_RX_VOL_MIX_CTL, 0xff, 0xf9},
  198. {LPASS_CDC_RX_RX1_RX_PATH_SEC1, 0x01, 0x00},
  199. },
  200. {
  201. {LPASS_CDC_RX_RX0_RX_VOL_CTL, 0xff, 0xfa},
  202. {LPASS_CDC_RX_RX0_RX_VOL_MIX_CTL, 0xff, 0xfa},
  203. {LPASS_CDC_RX_RX0_RX_PATH_SEC1, 0x01, 0x00},
  204. {LPASS_CDC_RX_RX1_RX_VOL_CTL, 0xff, 0xfa},
  205. {LPASS_CDC_RX_RX1_RX_VOL_MIX_CTL, 0xff, 0xfa},
  206. {LPASS_CDC_RX_RX1_RX_PATH_SEC1, 0x01, 0x00},
  207. },
  208. {
  209. {LPASS_CDC_RX_RX0_RX_VOL_CTL, 0xff, 0xfb},
  210. {LPASS_CDC_RX_RX0_RX_VOL_MIX_CTL, 0xff, 0xfb},
  211. {LPASS_CDC_RX_RX0_RX_PATH_SEC1, 0x01, 0x00},
  212. {LPASS_CDC_RX_RX1_RX_VOL_CTL, 0xff, 0xfb},
  213. {LPASS_CDC_RX_RX1_RX_VOL_MIX_CTL, 0xff, 0xfb},
  214. {LPASS_CDC_RX_RX1_RX_PATH_SEC1, 0x01, 0x00},
  215. },
  216. {
  217. {LPASS_CDC_RX_RX0_RX_VOL_CTL, 0xff, 0xfc},
  218. {LPASS_CDC_RX_RX0_RX_VOL_MIX_CTL, 0xff, 0xfc},
  219. {LPASS_CDC_RX_RX0_RX_PATH_SEC1, 0x01, 0x00},
  220. {LPASS_CDC_RX_RX1_RX_VOL_CTL, 0xff, 0xfc},
  221. {LPASS_CDC_RX_RX1_RX_VOL_MIX_CTL, 0xff, 0xfc},
  222. {LPASS_CDC_RX_RX1_RX_PATH_SEC1, 0x01, 0x00},
  223. },
  224. {
  225. {LPASS_CDC_RX_RX0_RX_VOL_CTL, 0xff, 0xfd},
  226. {LPASS_CDC_RX_RX0_RX_VOL_MIX_CTL, 0xff, 0xfd},
  227. {LPASS_CDC_RX_RX0_RX_PATH_SEC1, 0x01, 0x00},
  228. {LPASS_CDC_RX_RX1_RX_VOL_CTL, 0xff, 0xfd},
  229. {LPASS_CDC_RX_RX1_RX_VOL_MIX_CTL, 0xff, 0xfd},
  230. {LPASS_CDC_RX_RX1_RX_PATH_SEC1, 0x01, 0x00},
  231. },
  232. {
  233. {LPASS_CDC_RX_RX0_RX_VOL_CTL, 0xff, 0xfd},
  234. {LPASS_CDC_RX_RX0_RX_VOL_MIX_CTL, 0xff, 0xfd},
  235. {LPASS_CDC_RX_RX0_RX_PATH_SEC1, 0x01, 0x01},
  236. {LPASS_CDC_RX_RX1_RX_VOL_CTL, 0xff, 0xfd},
  237. {LPASS_CDC_RX_RX1_RX_VOL_MIX_CTL, 0xff, 0xfd},
  238. {LPASS_CDC_RX_RX1_RX_PATH_SEC1, 0x01, 0x01},
  239. },
  240. };
  241. enum {
  242. INTERP_HPHL,
  243. INTERP_HPHR,
  244. INTERP_AUX,
  245. INTERP_MAX
  246. };
  247. enum {
  248. LPASS_CDC_RX_MACRO_RX0,
  249. LPASS_CDC_RX_MACRO_RX1,
  250. LPASS_CDC_RX_MACRO_RX2,
  251. LPASS_CDC_RX_MACRO_RX3,
  252. LPASS_CDC_RX_MACRO_RX4,
  253. LPASS_CDC_RX_MACRO_RX5,
  254. LPASS_CDC_RX_MACRO_PORTS_MAX
  255. };
  256. enum {
  257. LPASS_CDC_RX_MACRO_COMP1, /* HPH_L */
  258. LPASS_CDC_RX_MACRO_COMP2, /* HPH_R */
  259. LPASS_CDC_RX_MACRO_COMP_MAX
  260. };
  261. enum {
  262. LPASS_CDC_RX_MACRO_EC0_MUX = 0,
  263. LPASS_CDC_RX_MACRO_EC1_MUX,
  264. LPASS_CDC_RX_MACRO_EC2_MUX,
  265. LPASS_CDC_RX_MACRO_EC_MUX_MAX,
  266. };
  267. enum {
  268. INTn_1_INP_SEL_ZERO = 0,
  269. INTn_1_INP_SEL_DEC0,
  270. INTn_1_INP_SEL_DEC1,
  271. INTn_1_INP_SEL_IIR0,
  272. INTn_1_INP_SEL_IIR1,
  273. INTn_1_INP_SEL_RX0,
  274. INTn_1_INP_SEL_RX1,
  275. INTn_1_INP_SEL_RX2,
  276. INTn_1_INP_SEL_RX3,
  277. INTn_1_INP_SEL_RX4,
  278. INTn_1_INP_SEL_RX5,
  279. };
  280. enum {
  281. INTn_2_INP_SEL_ZERO = 0,
  282. INTn_2_INP_SEL_RX0,
  283. INTn_2_INP_SEL_RX1,
  284. INTn_2_INP_SEL_RX2,
  285. INTn_2_INP_SEL_RX3,
  286. INTn_2_INP_SEL_RX4,
  287. INTn_2_INP_SEL_RX5,
  288. };
  289. enum {
  290. INTERP_MAIN_PATH,
  291. INTERP_MIX_PATH,
  292. };
  293. /* Codec supports 2 IIR filters */
  294. enum {
  295. IIR0 = 0,
  296. IIR1,
  297. IIR_MAX,
  298. };
  299. /* Each IIR has 5 Filter Stages */
  300. enum {
  301. BAND1 = 0,
  302. BAND2,
  303. BAND3,
  304. BAND4,
  305. BAND5,
  306. BAND_MAX,
  307. };
  308. #define LPASS_CDC_RX_MACRO_IIR_FILTER_SIZE (sizeof(u32) * BAND_MAX)
  309. struct lpass_cdc_rx_macro_iir_filter_ctl {
  310. unsigned int iir_idx;
  311. unsigned int band_idx;
  312. struct soc_bytes_ext bytes_ext;
  313. };
  314. #define LPASS_CDC_RX_MACRO_IIR_FILTER_CTL(xname, iidx, bidx) \
  315. { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
  316. .info = lpass_cdc_rx_macro_iir_filter_info, \
  317. .get = lpass_cdc_rx_macro_iir_band_audio_mixer_get, \
  318. .put = lpass_cdc_rx_macro_iir_band_audio_mixer_put, \
  319. .private_value = (unsigned long)&(struct lpass_cdc_rx_macro_iir_filter_ctl) { \
  320. .iir_idx = iidx, \
  321. .band_idx = bidx, \
  322. .bytes_ext = {.max = LPASS_CDC_RX_MACRO_IIR_FILTER_SIZE, }, \
  323. } \
  324. }
  325. struct lpass_cdc_rx_macro_idle_detect_config {
  326. u8 hph_idle_thr;
  327. u8 hph_idle_detect_en;
  328. };
  329. struct interp_sample_rate {
  330. int sample_rate;
  331. int rate_val;
  332. };
  333. static struct interp_sample_rate sr_val_tbl[] = {
  334. {8000, 0x0}, {16000, 0x1}, {32000, 0x3}, {48000, 0x4}, {96000, 0x5},
  335. {192000, 0x6}, {384000, 0x7}, {44100, 0x9}, {88200, 0xA},
  336. {176400, 0xB}, {352800, 0xC},
  337. };
  338. static int lpass_cdc_rx_macro_hw_params(struct snd_pcm_substream *substream,
  339. struct snd_pcm_hw_params *params,
  340. struct snd_soc_dai *dai);
  341. static int lpass_cdc_rx_macro_get_channel_map(struct snd_soc_dai *dai,
  342. unsigned int *tx_num, unsigned int *tx_slot,
  343. unsigned int *rx_num, unsigned int *rx_slot);
  344. static int lpass_cdc_rx_macro_mute_stream(struct snd_soc_dai *dai, int mute, int stream);
  345. static int lpass_cdc_rx_macro_int_dem_inp_mux_put(struct snd_kcontrol *kcontrol,
  346. struct snd_ctl_elem_value *ucontrol);
  347. static int lpass_cdc_rx_macro_mux_get(struct snd_kcontrol *kcontrol,
  348. struct snd_ctl_elem_value *ucontrol);
  349. static int lpass_cdc_rx_macro_mux_put(struct snd_kcontrol *kcontrol,
  350. struct snd_ctl_elem_value *ucontrol);
  351. static int lpass_cdc_rx_macro_enable_interp_clk(struct snd_soc_component *component,
  352. int event, int interp_idx);
  353. /* Hold instance to soundwire platform device */
  354. struct rx_swr_ctrl_data {
  355. struct platform_device *rx_swr_pdev;
  356. };
  357. struct rx_swr_ctrl_platform_data {
  358. void *handle; /* holds codec private data */
  359. int (*read)(void *handle, int reg);
  360. int (*write)(void *handle, int reg, int val);
  361. int (*bulk_write)(void *handle, u32 *reg, u32 *val, size_t len);
  362. int (*clk)(void *handle, bool enable);
  363. int (*core_vote)(void *handle, bool enable);
  364. int (*handle_irq)(void *handle,
  365. irqreturn_t (*swrm_irq_handler)(int irq,
  366. void *data),
  367. void *swrm_handle,
  368. int action);
  369. };
  370. enum {
  371. RX_MACRO_AIF_INVALID = 0,
  372. RX_MACRO_AIF1_PB,
  373. RX_MACRO_AIF2_PB,
  374. RX_MACRO_AIF3_PB,
  375. RX_MACRO_AIF4_PB,
  376. RX_MACRO_AIF_ECHO,
  377. RX_MACRO_AIF5_PB,
  378. RX_MACRO_AIF6_PB,
  379. LPASS_CDC_RX_MACRO_MAX_DAIS,
  380. };
  381. enum {
  382. RX_MACRO_AIF1_CAP = 0,
  383. RX_MACRO_AIF2_CAP,
  384. RX_MACRO_AIF3_CAP,
  385. LPASS_CDC_RX_MACRO_MAX_AIF_CAP_DAIS
  386. };
  387. /*
  388. * @dev: rx macro device pointer
  389. * @comp_enabled: compander enable mixer value set
  390. * @prim_int_users: Users of interpolator
  391. * @rx_mclk_users: RX MCLK users count
  392. * @vi_feed_value: VI sense mask
  393. * @swr_clk_lock: to lock swr master clock operations
  394. * @swr_ctrl_data: SoundWire data structure
  395. * @swr_plat_data: Soundwire platform data
  396. * @lpass_cdc_rx_macro_add_child_devices_work: work for adding child devices
  397. * @rx_swr_gpio_p: used by pinctrl API
  398. * @component: codec handle
  399. */
  400. struct lpass_cdc_rx_macro_priv {
  401. struct device *dev;
  402. int comp_enabled[LPASS_CDC_RX_MACRO_COMP_MAX];
  403. /* Main path clock users count */
  404. int main_clk_users[INTERP_MAX];
  405. int rx_port_value[LPASS_CDC_RX_MACRO_PORTS_MAX];
  406. u16 prim_int_users[INTERP_MAX];
  407. int rx_mclk_users;
  408. int swr_clk_users;
  409. bool dapm_mclk_enable;
  410. bool reset_swr;
  411. int clsh_users;
  412. int rx_mclk_cnt;
  413. bool is_native_on;
  414. bool is_ear_mode_on;
  415. bool dev_up;
  416. bool hph_pwr_mode;
  417. bool hph_hd2_mode;
  418. struct mutex mclk_lock;
  419. struct mutex swr_clk_lock;
  420. struct rx_swr_ctrl_data *swr_ctrl_data;
  421. struct rx_swr_ctrl_platform_data swr_plat_data;
  422. struct work_struct lpass_cdc_rx_macro_add_child_devices_work;
  423. struct device_node *rx_swr_gpio_p;
  424. struct snd_soc_component *component;
  425. unsigned long active_ch_mask[LPASS_CDC_RX_MACRO_MAX_DAIS];
  426. unsigned long active_ch_cnt[LPASS_CDC_RX_MACRO_MAX_DAIS];
  427. u16 bit_width[LPASS_CDC_RX_MACRO_MAX_DAIS];
  428. char __iomem *rx_io_base;
  429. char __iomem *rx_mclk_mode_muxsel;
  430. struct lpass_cdc_rx_macro_idle_detect_config idle_det_cfg;
  431. u8 sidetone_coeff_array[IIR_MAX][BAND_MAX]
  432. [LPASS_CDC_RX_MACRO_SIDETONE_IIR_COEFF_MAX * 4];
  433. struct platform_device *pdev_child_devices
  434. [LPASS_CDC_RX_MACRO_CHILD_DEVICES_MAX];
  435. int child_count;
  436. int is_softclip_on;
  437. int is_aux_hpf_on;
  438. int softclip_clk_users;
  439. u16 clk_id;
  440. u16 default_clk_id;
  441. int8_t rx0_gain_val;
  442. int8_t rx1_gain_val;
  443. };
  444. static struct snd_soc_dai_driver lpass_cdc_rx_macro_dai[];
  445. static const DECLARE_TLV_DB_SCALE(digital_gain, 0, 1, 0);
  446. static const char * const rx_int_mix_mux_text[] = {
  447. "ZERO", "RX0", "RX1", "RX2", "RX3", "RX4", "RX5"
  448. };
  449. static const char * const rx_prim_mix_text[] = {
  450. "ZERO", "DEC0", "DEC1", "IIR0", "IIR1", "RX0", "RX1", "RX2",
  451. "RX3", "RX4", "RX5"
  452. };
  453. static const char * const rx_sidetone_mix_text[] = {
  454. "ZERO", "SRC0", "SRC1", "SRC_SUM"
  455. };
  456. static const char * const iir_inp_mux_text[] = {
  457. "ZERO", "DEC0", "DEC1", "DEC2", "DEC3",
  458. "RX0", "RX1", "RX2", "RX3", "RX4", "RX5"
  459. };
  460. static const char * const rx_int_dem_inp_mux_text[] = {
  461. "NORMAL_DSM_OUT", "CLSH_DSM_OUT",
  462. };
  463. static const char * const rx_int0_1_interp_mux_text[] = {
  464. "ZERO", "RX INT0_1 MIX1",
  465. };
  466. static const char * const rx_int1_1_interp_mux_text[] = {
  467. "ZERO", "RX INT1_1 MIX1",
  468. };
  469. static const char * const rx_int2_1_interp_mux_text[] = {
  470. "ZERO", "RX INT2_1 MIX1",
  471. };
  472. static const char * const rx_int0_2_interp_mux_text[] = {
  473. "ZERO", "RX INT0_2 MUX",
  474. };
  475. static const char * const rx_int1_2_interp_mux_text[] = {
  476. "ZERO", "RX INT1_2 MUX",
  477. };
  478. static const char * const rx_int2_2_interp_mux_text[] = {
  479. "ZERO", "RX INT2_2 MUX",
  480. };
  481. static const char *const lpass_cdc_rx_macro_mux_text[] = {
  482. "ZERO", "AIF1_PB", "AIF2_PB", "AIF3_PB", "AIF4_PB"
  483. };
  484. static const char *const lpass_cdc_rx_macro_ear_mode_text[] = {"OFF", "ON"};
  485. static const struct soc_enum lpass_cdc_rx_macro_ear_mode_enum =
  486. SOC_ENUM_SINGLE_EXT(2, lpass_cdc_rx_macro_ear_mode_text);
  487. static const char *const lpass_cdc_rx_macro_hph_hd2_mode_text[] = {"OFF", "ON"};
  488. static const struct soc_enum lpass_cdc_rx_macro_hph_hd2_mode_enum =
  489. SOC_ENUM_SINGLE_EXT(2, lpass_cdc_rx_macro_hph_hd2_mode_text);
  490. static const char *const lpass_cdc_rx_macro_hph_pwr_mode_text[] = {"ULP", "LOHIFI"};
  491. static const struct soc_enum lpass_cdc_rx_macro_hph_pwr_mode_enum =
  492. SOC_ENUM_SINGLE_EXT(2, lpass_cdc_rx_macro_hph_pwr_mode_text);
  493. static const char * const lpass_cdc_rx_macro_vbat_bcl_gsm_mode_text[] = {"OFF", "ON"};
  494. static const struct soc_enum lpass_cdc_rx_macro_vbat_bcl_gsm_mode_enum =
  495. SOC_ENUM_SINGLE_EXT(2, lpass_cdc_rx_macro_vbat_bcl_gsm_mode_text);
  496. static const struct snd_kcontrol_new rx_int2_1_vbat_mix_switch[] = {
  497. SOC_DAPM_SINGLE("RX AUX VBAT Enable", SND_SOC_NOPM, 0, 1, 0)
  498. };
  499. static const char * const hph_idle_detect_text[] = {"OFF", "ON"};
  500. static SOC_ENUM_SINGLE_EXT_DECL(hph_idle_detect_enum, hph_idle_detect_text);
  501. LPASS_CDC_RX_MACRO_DAPM_ENUM(rx_int0_2, LPASS_CDC_RX_INP_MUX_RX_INT0_CFG1, 0,
  502. rx_int_mix_mux_text);
  503. LPASS_CDC_RX_MACRO_DAPM_ENUM(rx_int1_2, LPASS_CDC_RX_INP_MUX_RX_INT1_CFG1, 0,
  504. rx_int_mix_mux_text);
  505. LPASS_CDC_RX_MACRO_DAPM_ENUM(rx_int2_2, LPASS_CDC_RX_INP_MUX_RX_INT2_CFG1, 0,
  506. rx_int_mix_mux_text);
  507. LPASS_CDC_RX_MACRO_DAPM_ENUM(rx_int0_1_mix_inp0, LPASS_CDC_RX_INP_MUX_RX_INT0_CFG0, 0,
  508. rx_prim_mix_text);
  509. LPASS_CDC_RX_MACRO_DAPM_ENUM(rx_int0_1_mix_inp1, LPASS_CDC_RX_INP_MUX_RX_INT0_CFG0, 4,
  510. rx_prim_mix_text);
  511. LPASS_CDC_RX_MACRO_DAPM_ENUM(rx_int0_1_mix_inp2, LPASS_CDC_RX_INP_MUX_RX_INT0_CFG1, 4,
  512. rx_prim_mix_text);
  513. LPASS_CDC_RX_MACRO_DAPM_ENUM(rx_int1_1_mix_inp0, LPASS_CDC_RX_INP_MUX_RX_INT1_CFG0, 0,
  514. rx_prim_mix_text);
  515. LPASS_CDC_RX_MACRO_DAPM_ENUM(rx_int1_1_mix_inp1, LPASS_CDC_RX_INP_MUX_RX_INT1_CFG0, 4,
  516. rx_prim_mix_text);
  517. LPASS_CDC_RX_MACRO_DAPM_ENUM(rx_int1_1_mix_inp2, LPASS_CDC_RX_INP_MUX_RX_INT1_CFG1, 4,
  518. rx_prim_mix_text);
  519. LPASS_CDC_RX_MACRO_DAPM_ENUM(rx_int2_1_mix_inp0, LPASS_CDC_RX_INP_MUX_RX_INT2_CFG0, 0,
  520. rx_prim_mix_text);
  521. LPASS_CDC_RX_MACRO_DAPM_ENUM(rx_int2_1_mix_inp1, LPASS_CDC_RX_INP_MUX_RX_INT2_CFG0, 4,
  522. rx_prim_mix_text);
  523. LPASS_CDC_RX_MACRO_DAPM_ENUM(rx_int2_1_mix_inp2, LPASS_CDC_RX_INP_MUX_RX_INT2_CFG1, 4,
  524. rx_prim_mix_text);
  525. LPASS_CDC_RX_MACRO_DAPM_ENUM(rx_int0_mix2_inp, LPASS_CDC_RX_INP_MUX_SIDETONE_SRC_CFG0, 2,
  526. rx_sidetone_mix_text);
  527. LPASS_CDC_RX_MACRO_DAPM_ENUM(rx_int1_mix2_inp, LPASS_CDC_RX_INP_MUX_SIDETONE_SRC_CFG0, 4,
  528. rx_sidetone_mix_text);
  529. LPASS_CDC_RX_MACRO_DAPM_ENUM(rx_int2_mix2_inp, LPASS_CDC_RX_INP_MUX_SIDETONE_SRC_CFG0, 6,
  530. rx_sidetone_mix_text);
  531. LPASS_CDC_RX_MACRO_DAPM_ENUM(iir0_inp0, LPASS_CDC_RX_IIR_INP_MUX_IIR0_MIX_CFG0, 0,
  532. iir_inp_mux_text);
  533. LPASS_CDC_RX_MACRO_DAPM_ENUM(iir0_inp1, LPASS_CDC_RX_IIR_INP_MUX_IIR0_MIX_CFG1, 0,
  534. iir_inp_mux_text);
  535. LPASS_CDC_RX_MACRO_DAPM_ENUM(iir0_inp2, LPASS_CDC_RX_IIR_INP_MUX_IIR0_MIX_CFG2, 0,
  536. iir_inp_mux_text);
  537. LPASS_CDC_RX_MACRO_DAPM_ENUM(iir0_inp3, LPASS_CDC_RX_IIR_INP_MUX_IIR0_MIX_CFG3, 0,
  538. iir_inp_mux_text);
  539. LPASS_CDC_RX_MACRO_DAPM_ENUM(iir1_inp0, LPASS_CDC_RX_IIR_INP_MUX_IIR1_MIX_CFG0, 0,
  540. iir_inp_mux_text);
  541. LPASS_CDC_RX_MACRO_DAPM_ENUM(iir1_inp1, LPASS_CDC_RX_IIR_INP_MUX_IIR1_MIX_CFG1, 0,
  542. iir_inp_mux_text);
  543. LPASS_CDC_RX_MACRO_DAPM_ENUM(iir1_inp2, LPASS_CDC_RX_IIR_INP_MUX_IIR1_MIX_CFG2, 0,
  544. iir_inp_mux_text);
  545. LPASS_CDC_RX_MACRO_DAPM_ENUM(iir1_inp3, LPASS_CDC_RX_IIR_INP_MUX_IIR1_MIX_CFG3, 0,
  546. iir_inp_mux_text);
  547. LPASS_CDC_RX_MACRO_DAPM_ENUM(rx_int0_1_interp, SND_SOC_NOPM, 0,
  548. rx_int0_1_interp_mux_text);
  549. LPASS_CDC_RX_MACRO_DAPM_ENUM(rx_int1_1_interp, SND_SOC_NOPM, 0,
  550. rx_int1_1_interp_mux_text);
  551. LPASS_CDC_RX_MACRO_DAPM_ENUM(rx_int2_1_interp, SND_SOC_NOPM, 0,
  552. rx_int2_1_interp_mux_text);
  553. LPASS_CDC_RX_MACRO_DAPM_ENUM(rx_int0_2_interp, SND_SOC_NOPM, 0,
  554. rx_int0_2_interp_mux_text);
  555. LPASS_CDC_RX_MACRO_DAPM_ENUM(rx_int1_2_interp, SND_SOC_NOPM, 0,
  556. rx_int1_2_interp_mux_text);
  557. LPASS_CDC_RX_MACRO_DAPM_ENUM(rx_int2_2_interp, SND_SOC_NOPM, 0,
  558. rx_int2_2_interp_mux_text);
  559. LPASS_CDC_RX_MACRO_DAPM_ENUM_EXT(rx_int0_dem_inp, LPASS_CDC_RX_RX0_RX_PATH_CFG1, 0,
  560. rx_int_dem_inp_mux_text, snd_soc_dapm_get_enum_double,
  561. lpass_cdc_rx_macro_int_dem_inp_mux_put);
  562. LPASS_CDC_RX_MACRO_DAPM_ENUM_EXT(rx_int1_dem_inp, LPASS_CDC_RX_RX1_RX_PATH_CFG1, 0,
  563. rx_int_dem_inp_mux_text, snd_soc_dapm_get_enum_double,
  564. lpass_cdc_rx_macro_int_dem_inp_mux_put);
  565. LPASS_CDC_RX_MACRO_DAPM_ENUM_EXT(lpass_cdc_rx_macro_rx0, SND_SOC_NOPM, 0, lpass_cdc_rx_macro_mux_text,
  566. lpass_cdc_rx_macro_mux_get, lpass_cdc_rx_macro_mux_put);
  567. LPASS_CDC_RX_MACRO_DAPM_ENUM_EXT(lpass_cdc_rx_macro_rx1, SND_SOC_NOPM, 0, lpass_cdc_rx_macro_mux_text,
  568. lpass_cdc_rx_macro_mux_get, lpass_cdc_rx_macro_mux_put);
  569. LPASS_CDC_RX_MACRO_DAPM_ENUM_EXT(lpass_cdc_rx_macro_rx2, SND_SOC_NOPM, 0, lpass_cdc_rx_macro_mux_text,
  570. lpass_cdc_rx_macro_mux_get, lpass_cdc_rx_macro_mux_put);
  571. LPASS_CDC_RX_MACRO_DAPM_ENUM_EXT(lpass_cdc_rx_macro_rx3, SND_SOC_NOPM, 0, lpass_cdc_rx_macro_mux_text,
  572. lpass_cdc_rx_macro_mux_get, lpass_cdc_rx_macro_mux_put);
  573. LPASS_CDC_RX_MACRO_DAPM_ENUM_EXT(lpass_cdc_rx_macro_rx4, SND_SOC_NOPM, 0, lpass_cdc_rx_macro_mux_text,
  574. lpass_cdc_rx_macro_mux_get, lpass_cdc_rx_macro_mux_put);
  575. LPASS_CDC_RX_MACRO_DAPM_ENUM_EXT(lpass_cdc_rx_macro_rx5, SND_SOC_NOPM, 0, lpass_cdc_rx_macro_mux_text,
  576. lpass_cdc_rx_macro_mux_get, lpass_cdc_rx_macro_mux_put);
  577. static const char * const rx_echo_mux_text[] = {
  578. "ZERO", "RX_MIX0", "RX_MIX1", "RX_MIX2"
  579. };
  580. static const struct soc_enum rx_mix_tx2_mux_enum =
  581. SOC_ENUM_SINGLE(LPASS_CDC_RX_INP_MUX_RX_MIX_CFG5, 0, 4,
  582. rx_echo_mux_text);
  583. static const struct snd_kcontrol_new rx_mix_tx2_mux =
  584. SOC_DAPM_ENUM("RX MIX TX2_MUX Mux", rx_mix_tx2_mux_enum);
  585. static const struct soc_enum rx_mix_tx1_mux_enum =
  586. SOC_ENUM_SINGLE(LPASS_CDC_RX_INP_MUX_RX_MIX_CFG4, 0, 4,
  587. rx_echo_mux_text);
  588. static const struct snd_kcontrol_new rx_mix_tx1_mux =
  589. SOC_DAPM_ENUM("RX MIX TX1_MUX Mux", rx_mix_tx1_mux_enum);
  590. static const struct soc_enum rx_mix_tx0_mux_enum =
  591. SOC_ENUM_SINGLE(LPASS_CDC_RX_INP_MUX_RX_MIX_CFG4, 4, 4,
  592. rx_echo_mux_text);
  593. static const struct snd_kcontrol_new rx_mix_tx0_mux =
  594. SOC_DAPM_ENUM("RX MIX TX0_MUX Mux", rx_mix_tx0_mux_enum);
  595. static struct snd_soc_dai_ops lpass_cdc_rx_macro_dai_ops = {
  596. .hw_params = lpass_cdc_rx_macro_hw_params,
  597. .get_channel_map = lpass_cdc_rx_macro_get_channel_map,
  598. .mute_stream = lpass_cdc_rx_macro_mute_stream,
  599. };
  600. static struct snd_soc_dai_driver lpass_cdc_rx_macro_dai[] = {
  601. {
  602. .name = "rx_macro_rx1",
  603. .id = RX_MACRO_AIF1_PB,
  604. .playback = {
  605. .stream_name = "RX_MACRO_AIF1 Playback",
  606. .rates = LPASS_CDC_RX_MACRO_RATES | LPASS_CDC_RX_MACRO_FRAC_RATES,
  607. .formats = LPASS_CDC_RX_MACRO_FORMATS,
  608. .rate_max = 384000,
  609. .rate_min = 8000,
  610. .channels_min = 1,
  611. .channels_max = 2,
  612. },
  613. .ops = &lpass_cdc_rx_macro_dai_ops,
  614. },
  615. {
  616. .name = "rx_macro_rx2",
  617. .id = RX_MACRO_AIF2_PB,
  618. .playback = {
  619. .stream_name = "RX_MACRO_AIF2 Playback",
  620. .rates = LPASS_CDC_RX_MACRO_RATES | LPASS_CDC_RX_MACRO_FRAC_RATES,
  621. .formats = LPASS_CDC_RX_MACRO_FORMATS,
  622. .rate_max = 384000,
  623. .rate_min = 8000,
  624. .channels_min = 1,
  625. .channels_max = 2,
  626. },
  627. .ops = &lpass_cdc_rx_macro_dai_ops,
  628. },
  629. {
  630. .name = "rx_macro_rx3",
  631. .id = RX_MACRO_AIF3_PB,
  632. .playback = {
  633. .stream_name = "RX_MACRO_AIF3 Playback",
  634. .rates = LPASS_CDC_RX_MACRO_RATES | LPASS_CDC_RX_MACRO_FRAC_RATES,
  635. .formats = LPASS_CDC_RX_MACRO_FORMATS,
  636. .rate_max = 384000,
  637. .rate_min = 8000,
  638. .channels_min = 1,
  639. .channels_max = 2,
  640. },
  641. .ops = &lpass_cdc_rx_macro_dai_ops,
  642. },
  643. {
  644. .name = "rx_macro_rx4",
  645. .id = RX_MACRO_AIF4_PB,
  646. .playback = {
  647. .stream_name = "RX_MACRO_AIF4 Playback",
  648. .rates = LPASS_CDC_RX_MACRO_RATES | LPASS_CDC_RX_MACRO_FRAC_RATES,
  649. .formats = LPASS_CDC_RX_MACRO_FORMATS,
  650. .rate_max = 384000,
  651. .rate_min = 8000,
  652. .channels_min = 1,
  653. .channels_max = 2,
  654. },
  655. .ops = &lpass_cdc_rx_macro_dai_ops,
  656. },
  657. {
  658. .name = "rx_macro_echo",
  659. .id = RX_MACRO_AIF_ECHO,
  660. .capture = {
  661. .stream_name = "RX_AIF_ECHO Capture",
  662. .rates = LPASS_CDC_RX_MACRO_ECHO_RATES,
  663. .formats = LPASS_CDC_RX_MACRO_ECHO_FORMATS,
  664. .rate_max = 48000,
  665. .rate_min = 8000,
  666. .channels_min = 1,
  667. .channels_max = 3,
  668. },
  669. .ops = &lpass_cdc_rx_macro_dai_ops,
  670. },
  671. {
  672. .name = "rx_macro_rx5",
  673. .id = RX_MACRO_AIF5_PB,
  674. .playback = {
  675. .stream_name = "RX_MACRO_AIF5 Playback",
  676. .rates = LPASS_CDC_RX_MACRO_RATES | LPASS_CDC_RX_MACRO_FRAC_RATES,
  677. .formats = LPASS_CDC_RX_MACRO_FORMATS,
  678. .rate_max = 384000,
  679. .rate_min = 8000,
  680. .channels_min = 1,
  681. .channels_max = 4,
  682. },
  683. .ops = &lpass_cdc_rx_macro_dai_ops,
  684. },
  685. {
  686. .name = "rx_macro_rx6",
  687. .id = RX_MACRO_AIF6_PB,
  688. .playback = {
  689. .stream_name = "RX_MACRO_AIF6 Playback",
  690. .rates = LPASS_CDC_RX_MACRO_RATES | LPASS_CDC_RX_MACRO_FRAC_RATES,
  691. .formats = LPASS_CDC_RX_MACRO_FORMATS,
  692. .rate_max = 384000,
  693. .rate_min = 8000,
  694. .channels_min = 1,
  695. .channels_max = 4,
  696. },
  697. .ops = &lpass_cdc_rx_macro_dai_ops,
  698. },
  699. };
  700. static int get_impedance_index(int imped)
  701. {
  702. int i = 0;
  703. if (imped < imped_index[i].imped_val) {
  704. pr_debug("%s, detected impedance is less than %d Ohm\n",
  705. __func__, imped_index[i].imped_val);
  706. i = 0;
  707. goto ret;
  708. }
  709. if (imped >= imped_index[ARRAY_SIZE(imped_index) - 1].imped_val) {
  710. pr_debug("%s, detected impedance is greater than %d Ohm\n",
  711. __func__,
  712. imped_index[ARRAY_SIZE(imped_index) - 1].imped_val);
  713. i = ARRAY_SIZE(imped_index) - 1;
  714. goto ret;
  715. }
  716. for (i = 0; i < ARRAY_SIZE(imped_index) - 1; i++) {
  717. if (imped >= imped_index[i].imped_val &&
  718. imped < imped_index[i + 1].imped_val)
  719. break;
  720. }
  721. ret:
  722. pr_debug("%s: selected impedance index = %d\n",
  723. __func__, imped_index[i].index);
  724. return imped_index[i].index;
  725. }
  726. /*
  727. * lpass_cdc_rx_macro_wcd_clsh_imped_config -
  728. * This function updates HPHL and HPHR gain settings
  729. * according to the impedance value.
  730. *
  731. * @component: codec pointer handle
  732. * @imped: impedance value of HPHL/R
  733. * @reset: bool variable to reset registers when teardown
  734. */
  735. static void lpass_cdc_rx_macro_wcd_clsh_imped_config(struct snd_soc_component *component,
  736. int imped, bool reset)
  737. {
  738. int i;
  739. int index = 0;
  740. int table_size;
  741. static const struct lpass_cdc_rx_macro_reg_mask_val
  742. (*imped_table_ptr)[MAX_IMPED_PARAMS];
  743. table_size = ARRAY_SIZE(imped_table);
  744. imped_table_ptr = imped_table;
  745. /* reset = 1, which means request is to reset the register values */
  746. if (reset) {
  747. for (i = 0; i < MAX_IMPED_PARAMS; i++)
  748. snd_soc_component_update_bits(component,
  749. imped_table_ptr[index][i].reg,
  750. imped_table_ptr[index][i].mask, 0);
  751. return;
  752. }
  753. index = get_impedance_index(imped);
  754. if (index >= (ARRAY_SIZE(imped_index) - 1)) {
  755. pr_debug("%s, impedance not in range = %d\n", __func__, imped);
  756. return;
  757. }
  758. if (index >= table_size) {
  759. pr_debug("%s, impedance index not in range = %d\n", __func__,
  760. index);
  761. return;
  762. }
  763. for (i = 0; i < MAX_IMPED_PARAMS; i++)
  764. snd_soc_component_update_bits(component,
  765. imped_table_ptr[index][i].reg,
  766. imped_table_ptr[index][i].mask,
  767. imped_table_ptr[index][i].val);
  768. }
  769. static bool lpass_cdc_rx_macro_get_data(struct snd_soc_component *component,
  770. struct device **rx_dev,
  771. struct lpass_cdc_rx_macro_priv **rx_priv,
  772. const char *func_name)
  773. {
  774. *rx_dev = lpass_cdc_get_device_ptr(component->dev, RX_MACRO);
  775. if (!(*rx_dev)) {
  776. dev_err(component->dev,
  777. "%s: null device for macro!\n", func_name);
  778. return false;
  779. }
  780. *rx_priv = dev_get_drvdata((*rx_dev));
  781. if (!(*rx_priv)) {
  782. dev_err(component->dev,
  783. "%s: priv is null for macro!\n", func_name);
  784. return false;
  785. }
  786. if (!(*rx_priv)->component) {
  787. dev_err(component->dev,
  788. "%s: rx_priv component is not initialized!\n", func_name);
  789. return false;
  790. }
  791. return true;
  792. }
  793. static int lpass_cdc_rx_macro_set_port_map(struct snd_soc_component *component,
  794. u32 usecase, u32 size, void *data)
  795. {
  796. struct device *rx_dev = NULL;
  797. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  798. struct swrm_port_config port_cfg;
  799. int ret = 0;
  800. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  801. return -EINVAL;
  802. memset(&port_cfg, 0, sizeof(port_cfg));
  803. port_cfg.uc = usecase;
  804. port_cfg.size = size;
  805. port_cfg.params = data;
  806. if (rx_priv->swr_ctrl_data)
  807. ret = swrm_wcd_notify(
  808. rx_priv->swr_ctrl_data[0].rx_swr_pdev,
  809. SWR_SET_PORT_MAP, &port_cfg);
  810. return ret;
  811. }
  812. static int lpass_cdc_rx_macro_int_dem_inp_mux_put(struct snd_kcontrol *kcontrol,
  813. struct snd_ctl_elem_value *ucontrol)
  814. {
  815. struct snd_soc_dapm_widget *widget =
  816. snd_soc_dapm_kcontrol_widget(kcontrol);
  817. struct snd_soc_component *component =
  818. snd_soc_dapm_to_component(widget->dapm);
  819. struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
  820. unsigned int val = 0;
  821. unsigned short look_ahead_dly_reg =
  822. LPASS_CDC_RX_RX0_RX_PATH_CFG0;
  823. val = ucontrol->value.enumerated.item[0];
  824. if (val >= e->items)
  825. return -EINVAL;
  826. dev_dbg(component->dev, "%s: wname: %s, val: 0x%x\n", __func__,
  827. widget->name, val);
  828. if (e->reg == LPASS_CDC_RX_RX0_RX_PATH_CFG1)
  829. look_ahead_dly_reg = LPASS_CDC_RX_RX0_RX_PATH_CFG0;
  830. else if (e->reg == LPASS_CDC_RX_RX1_RX_PATH_CFG1)
  831. look_ahead_dly_reg = LPASS_CDC_RX_RX1_RX_PATH_CFG0;
  832. /* Set Look Ahead Delay */
  833. snd_soc_component_update_bits(component, look_ahead_dly_reg,
  834. 0x08, (val ? 0x08 : 0x00));
  835. /* Set DEM INP Select */
  836. return snd_soc_dapm_put_enum_double(kcontrol, ucontrol);
  837. }
  838. static int lpass_cdc_rx_macro_set_prim_interpolator_rate(struct snd_soc_dai *dai,
  839. u8 rate_reg_val,
  840. u32 sample_rate)
  841. {
  842. u8 int_1_mix1_inp = 0;
  843. u32 j = 0, port = 0;
  844. u16 int_mux_cfg0 = 0, int_mux_cfg1 = 0;
  845. u16 int_fs_reg = 0;
  846. u8 int_mux_cfg0_val = 0, int_mux_cfg1_val = 0;
  847. u8 inp0_sel = 0, inp1_sel = 0, inp2_sel = 0;
  848. struct snd_soc_component *component = dai->component;
  849. struct device *rx_dev = NULL;
  850. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  851. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  852. return -EINVAL;
  853. for_each_set_bit(port, &rx_priv->active_ch_mask[dai->id],
  854. LPASS_CDC_RX_MACRO_PORTS_MAX) {
  855. int_1_mix1_inp = port;
  856. if ((int_1_mix1_inp < LPASS_CDC_RX_MACRO_RX0) ||
  857. (int_1_mix1_inp > LPASS_CDC_RX_MACRO_PORTS_MAX)) {
  858. pr_err("%s: Invalid RX port, Dai ID is %d\n",
  859. __func__, dai->id);
  860. return -EINVAL;
  861. }
  862. int_mux_cfg0 = LPASS_CDC_RX_INP_MUX_RX_INT0_CFG0;
  863. /*
  864. * Loop through all interpolator MUX inputs and find out
  865. * to which interpolator input, the rx port
  866. * is connected
  867. */
  868. for (j = 0; j < INTERP_MAX; j++) {
  869. int_mux_cfg1 = int_mux_cfg0 + 4;
  870. int_mux_cfg0_val = snd_soc_component_read(
  871. component, int_mux_cfg0);
  872. int_mux_cfg1_val = snd_soc_component_read(
  873. component, int_mux_cfg1);
  874. inp0_sel = int_mux_cfg0_val & 0x0F;
  875. inp1_sel = (int_mux_cfg0_val >> 4) & 0x0F;
  876. inp2_sel = (int_mux_cfg1_val >> 4) & 0x0F;
  877. if ((inp0_sel == int_1_mix1_inp + INTn_1_INP_SEL_RX0) ||
  878. (inp1_sel == int_1_mix1_inp + INTn_1_INP_SEL_RX0) ||
  879. (inp2_sel == int_1_mix1_inp + INTn_1_INP_SEL_RX0)) {
  880. int_fs_reg = LPASS_CDC_RX_RX0_RX_PATH_CTL +
  881. LPASS_CDC_RX_MACRO_RX_PATH_OFFSET * j;
  882. pr_debug("%s: AIF_PB DAI(%d) connected to INT%u_1\n",
  883. __func__, dai->id, j);
  884. pr_debug("%s: set INT%u_1 sample rate to %u\n",
  885. __func__, j, sample_rate);
  886. /* sample_rate is in Hz */
  887. snd_soc_component_update_bits(component,
  888. int_fs_reg,
  889. 0x0F, rate_reg_val);
  890. }
  891. int_mux_cfg0 += 8;
  892. }
  893. }
  894. return 0;
  895. }
  896. static int lpass_cdc_rx_macro_set_mix_interpolator_rate(struct snd_soc_dai *dai,
  897. u8 rate_reg_val,
  898. u32 sample_rate)
  899. {
  900. u8 int_2_inp = 0;
  901. u32 j = 0, port = 0;
  902. u16 int_mux_cfg1 = 0, int_fs_reg = 0;
  903. u8 int_mux_cfg1_val = 0;
  904. struct snd_soc_component *component = dai->component;
  905. struct device *rx_dev = NULL;
  906. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  907. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  908. return -EINVAL;
  909. for_each_set_bit(port, &rx_priv->active_ch_mask[dai->id],
  910. LPASS_CDC_RX_MACRO_PORTS_MAX) {
  911. int_2_inp = port;
  912. if ((int_2_inp < LPASS_CDC_RX_MACRO_RX0) ||
  913. (int_2_inp > LPASS_CDC_RX_MACRO_PORTS_MAX)) {
  914. pr_err("%s: Invalid RX port, Dai ID is %d\n",
  915. __func__, dai->id);
  916. return -EINVAL;
  917. }
  918. int_mux_cfg1 = LPASS_CDC_RX_INP_MUX_RX_INT0_CFG1;
  919. for (j = 0; j < INTERP_MAX; j++) {
  920. int_mux_cfg1_val = snd_soc_component_read(
  921. component, int_mux_cfg1) &
  922. 0x0F;
  923. if (int_mux_cfg1_val == int_2_inp +
  924. INTn_2_INP_SEL_RX0) {
  925. int_fs_reg = LPASS_CDC_RX_RX0_RX_PATH_MIX_CTL +
  926. LPASS_CDC_RX_MACRO_RX_PATH_OFFSET * j;
  927. pr_debug("%s: AIF_PB DAI(%d) connected to INT%u_2\n",
  928. __func__, dai->id, j);
  929. pr_debug("%s: set INT%u_2 sample rate to %u\n",
  930. __func__, j, sample_rate);
  931. snd_soc_component_update_bits(
  932. component, int_fs_reg,
  933. 0x0F, rate_reg_val);
  934. }
  935. int_mux_cfg1 += 8;
  936. }
  937. }
  938. return 0;
  939. }
  940. static bool lpass_cdc_rx_macro_is_fractional_sample_rate(u32 sample_rate)
  941. {
  942. switch (sample_rate) {
  943. case SAMPLING_RATE_44P1KHZ:
  944. case SAMPLING_RATE_88P2KHZ:
  945. case SAMPLING_RATE_176P4KHZ:
  946. case SAMPLING_RATE_352P8KHZ:
  947. return true;
  948. default:
  949. return false;
  950. }
  951. return false;
  952. }
  953. static int lpass_cdc_rx_macro_set_interpolator_rate(struct snd_soc_dai *dai,
  954. u32 sample_rate)
  955. {
  956. struct snd_soc_component *component = dai->component;
  957. int rate_val = 0;
  958. int i = 0, ret = 0;
  959. struct device *rx_dev = NULL;
  960. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  961. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  962. return -EINVAL;
  963. for (i = 0; i < ARRAY_SIZE(sr_val_tbl); i++) {
  964. if (sample_rate == sr_val_tbl[i].sample_rate) {
  965. rate_val = sr_val_tbl[i].rate_val;
  966. if (lpass_cdc_rx_macro_is_fractional_sample_rate(sample_rate))
  967. rx_priv->is_native_on = true;
  968. else
  969. rx_priv->is_native_on = false;
  970. break;
  971. }
  972. }
  973. if ((i == ARRAY_SIZE(sr_val_tbl)) || (rate_val < 0)) {
  974. dev_err(component->dev, "%s: Unsupported sample rate: %d\n",
  975. __func__, sample_rate);
  976. return -EINVAL;
  977. }
  978. ret = lpass_cdc_rx_macro_set_prim_interpolator_rate(dai, (u8)rate_val, sample_rate);
  979. if (ret)
  980. return ret;
  981. ret = lpass_cdc_rx_macro_set_mix_interpolator_rate(dai, (u8)rate_val, sample_rate);
  982. if (ret)
  983. return ret;
  984. return ret;
  985. }
  986. static int lpass_cdc_rx_macro_hw_params(struct snd_pcm_substream *substream,
  987. struct snd_pcm_hw_params *params,
  988. struct snd_soc_dai *dai)
  989. {
  990. struct snd_soc_component *component = dai->component;
  991. int ret = 0;
  992. struct device *rx_dev = NULL;
  993. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  994. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  995. return -EINVAL;
  996. dev_dbg(component->dev,
  997. "%s: dai_name = %s DAI-ID %x rate %d num_ch %d\n", __func__,
  998. dai->name, dai->id, params_rate(params),
  999. params_channels(params));
  1000. switch (substream->stream) {
  1001. case SNDRV_PCM_STREAM_PLAYBACK:
  1002. ret = lpass_cdc_rx_macro_set_interpolator_rate(dai, params_rate(params));
  1003. if (ret) {
  1004. pr_err("%s: cannot set sample rate: %u\n",
  1005. __func__, params_rate(params));
  1006. return ret;
  1007. }
  1008. rx_priv->bit_width[dai->id] = params_width(params);
  1009. break;
  1010. case SNDRV_PCM_STREAM_CAPTURE:
  1011. default:
  1012. break;
  1013. }
  1014. return 0;
  1015. }
  1016. static int lpass_cdc_rx_macro_get_channel_map(struct snd_soc_dai *dai,
  1017. unsigned int *tx_num, unsigned int *tx_slot,
  1018. unsigned int *rx_num, unsigned int *rx_slot)
  1019. {
  1020. struct snd_soc_component *component = dai->component;
  1021. struct device *rx_dev = NULL;
  1022. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  1023. unsigned int temp = 0, ch_mask = 0;
  1024. u16 val = 0, mask = 0, cnt = 0, i = 0;
  1025. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  1026. return -EINVAL;
  1027. switch (dai->id) {
  1028. case RX_MACRO_AIF1_PB:
  1029. case RX_MACRO_AIF2_PB:
  1030. case RX_MACRO_AIF3_PB:
  1031. case RX_MACRO_AIF4_PB:
  1032. for_each_set_bit(temp, &rx_priv->active_ch_mask[dai->id],
  1033. LPASS_CDC_RX_MACRO_PORTS_MAX) {
  1034. ch_mask |= (1 << temp);
  1035. if (++i == LPASS_CDC_RX_MACRO_MAX_DMA_CH_PER_PORT)
  1036. break;
  1037. }
  1038. /*
  1039. * CDC_DMA_RX_0 port drives RX0/RX1 -- ch_mask 0x1/0x2/0x3
  1040. * CDC_DMA_RX_1 port drives RX2/RX3 -- ch_mask 0x1/0x2/0x3
  1041. * CDC_DMA_RX_2 port drives RX4 -- ch_mask 0x1
  1042. * CDC_DMA_RX_3 port drives RX5 -- ch_mask 0x1
  1043. * AIFn can pair to any CDC_DMA_RX_n port.
  1044. * In general, below convention is used::
  1045. * CDC_DMA_RX_0(AIF1)/CDC_DMA_RX_1(AIF2)/
  1046. * CDC_DMA_RX_2(AIF3)/CDC_DMA_RX_3(AIF4)
  1047. * Above is reflected in machine driver BE dailink
  1048. */
  1049. if (ch_mask & 0x0C)
  1050. ch_mask = ch_mask >> 2;
  1051. if ((ch_mask & 0x10) || (ch_mask & 0x20))
  1052. ch_mask = 0x1;
  1053. *rx_slot = ch_mask;
  1054. *rx_num = rx_priv->active_ch_cnt[dai->id];
  1055. dev_dbg(rx_priv->dev,
  1056. "%s: dai->id:%d, ch_mask:0x%x, active_ch_cnt:%d active_mask: 0x%x\n",
  1057. __func__, dai->id, *rx_slot, *rx_num, rx_priv->active_ch_mask[dai->id]);
  1058. break;
  1059. case RX_MACRO_AIF5_PB:
  1060. *rx_slot = 0x1;
  1061. *rx_num = 0x01;
  1062. dev_dbg(rx_priv->dev,
  1063. "%s: dai->id:%d, ch_mask:0x%x, active_ch_cnt:%d\n",
  1064. __func__, dai->id, *rx_slot, *rx_num);
  1065. break;
  1066. case RX_MACRO_AIF6_PB:
  1067. *rx_slot = 0x1;
  1068. *rx_num = 0x01;
  1069. dev_dbg(rx_priv->dev,
  1070. "%s: dai->id:%d, ch_mask:0x%x, active_ch_cnt:%d\n",
  1071. __func__, dai->id, *rx_slot, *rx_num);
  1072. break;
  1073. case RX_MACRO_AIF_ECHO:
  1074. val = snd_soc_component_read(component,
  1075. LPASS_CDC_RX_INP_MUX_RX_MIX_CFG4);
  1076. if (val & LPASS_CDC_RX_MACRO_EC_MIX_TX0_MASK) {
  1077. mask |= 0x1;
  1078. cnt++;
  1079. }
  1080. if (val & LPASS_CDC_RX_MACRO_EC_MIX_TX1_MASK) {
  1081. mask |= 0x2;
  1082. cnt++;
  1083. }
  1084. val = snd_soc_component_read(component,
  1085. LPASS_CDC_RX_INP_MUX_RX_MIX_CFG5);
  1086. if (val & LPASS_CDC_RX_MACRO_EC_MIX_TX2_MASK) {
  1087. mask |= 0x4;
  1088. cnt++;
  1089. }
  1090. *tx_slot = mask;
  1091. *tx_num = cnt;
  1092. break;
  1093. default:
  1094. dev_err(rx_dev, "%s: Invalid AIF\n", __func__);
  1095. break;
  1096. }
  1097. return 0;
  1098. }
  1099. static int lpass_cdc_rx_macro_mute_stream(struct snd_soc_dai *dai, int mute, int stream)
  1100. {
  1101. struct snd_soc_component *component = dai->component;
  1102. struct device *rx_dev = NULL;
  1103. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  1104. uint16_t j = 0, reg = 0, mix_reg = 0, dsm_reg = 0;
  1105. u16 int_mux_cfg0 = 0, int_mux_cfg1 = 0;
  1106. u8 int_mux_cfg0_val = 0, int_mux_cfg1_val = 0;
  1107. if (mute)
  1108. return 0;
  1109. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  1110. return -EINVAL;
  1111. switch (dai->id) {
  1112. case RX_MACRO_AIF1_PB:
  1113. case RX_MACRO_AIF2_PB:
  1114. case RX_MACRO_AIF3_PB:
  1115. case RX_MACRO_AIF4_PB:
  1116. for (j = 0; j < INTERP_MAX; j++) {
  1117. reg = LPASS_CDC_RX_RX0_RX_PATH_CTL +
  1118. (j * LPASS_CDC_RX_MACRO_RX_PATH_OFFSET);
  1119. mix_reg = LPASS_CDC_RX_RX0_RX_PATH_MIX_CTL +
  1120. (j * LPASS_CDC_RX_MACRO_RX_PATH_OFFSET);
  1121. dsm_reg = LPASS_CDC_RX_RX0_RX_PATH_DSM_CTL +
  1122. (j * LPASS_CDC_RX_MACRO_RX_PATH_OFFSET);
  1123. if (j == INTERP_AUX)
  1124. dsm_reg = LPASS_CDC_RX_RX2_RX_PATH_DSM_CTL;
  1125. int_mux_cfg0 = LPASS_CDC_RX_INP_MUX_RX_INT0_CFG0 + j * 8;
  1126. int_mux_cfg1 = int_mux_cfg0 + 4;
  1127. int_mux_cfg0_val = snd_soc_component_read(component,
  1128. int_mux_cfg0);
  1129. int_mux_cfg1_val = snd_soc_component_read(component,
  1130. int_mux_cfg1);
  1131. if (snd_soc_component_read(component, dsm_reg) & 0x01) {
  1132. if (int_mux_cfg0_val || (int_mux_cfg1_val & 0xF0))
  1133. snd_soc_component_update_bits(component,
  1134. reg, 0x20, 0x20);
  1135. if (int_mux_cfg1_val & 0x0F) {
  1136. snd_soc_component_update_bits(component,
  1137. reg, 0x20, 0x20);
  1138. snd_soc_component_update_bits(component,
  1139. mix_reg, 0x20, 0x20);
  1140. }
  1141. }
  1142. }
  1143. break;
  1144. default:
  1145. break;
  1146. }
  1147. return 0;
  1148. }
  1149. static int lpass_cdc_rx_macro_mclk_enable(
  1150. struct lpass_cdc_rx_macro_priv *rx_priv,
  1151. bool mclk_enable, bool dapm)
  1152. {
  1153. struct regmap *regmap = dev_get_regmap(rx_priv->dev->parent, NULL);
  1154. int ret = 0;
  1155. if (regmap == NULL) {
  1156. dev_err(rx_priv->dev, "%s: regmap is NULL\n", __func__);
  1157. return -EINVAL;
  1158. }
  1159. dev_dbg(rx_priv->dev, "%s: mclk_enable = %u, dapm = %d clk_users= %d\n",
  1160. __func__, mclk_enable, dapm, rx_priv->rx_mclk_users);
  1161. mutex_lock(&rx_priv->mclk_lock);
  1162. if (mclk_enable) {
  1163. if (rx_priv->rx_mclk_users == 0) {
  1164. if (rx_priv->is_native_on)
  1165. rx_priv->clk_id = RX_CORE_CLK;
  1166. ret = lpass_cdc_clk_rsc_request_clock(rx_priv->dev,
  1167. rx_priv->default_clk_id,
  1168. rx_priv->clk_id,
  1169. true);
  1170. if (ret < 0) {
  1171. dev_err(rx_priv->dev,
  1172. "%s: rx request clock enable failed\n",
  1173. __func__);
  1174. goto exit;
  1175. }
  1176. lpass_cdc_clk_rsc_fs_gen_request(rx_priv->dev,
  1177. true);
  1178. regcache_mark_dirty(regmap);
  1179. regcache_sync_region(regmap,
  1180. RX_START_OFFSET,
  1181. RX_MAX_OFFSET);
  1182. regmap_update_bits(regmap,
  1183. LPASS_CDC_RX_CLK_RST_CTRL_MCLK_CONTROL,
  1184. 0x01, 0x01);
  1185. regmap_update_bits(regmap,
  1186. LPASS_CDC_RX_CLK_RST_CTRL_MCLK_CONTROL,
  1187. 0x02, 0x02);
  1188. regmap_update_bits(regmap,
  1189. LPASS_CDC_RX_CLK_RST_CTRL_FS_CNT_CONTROL,
  1190. 0x02, 0x00);
  1191. regmap_update_bits(regmap,
  1192. LPASS_CDC_RX_CLK_RST_CTRL_FS_CNT_CONTROL,
  1193. 0x01, 0x01);
  1194. }
  1195. rx_priv->rx_mclk_users++;
  1196. } else {
  1197. if (rx_priv->rx_mclk_users <= 0) {
  1198. dev_err(rx_priv->dev, "%s: clock already disabled\n",
  1199. __func__);
  1200. rx_priv->rx_mclk_users = 0;
  1201. goto exit;
  1202. }
  1203. rx_priv->rx_mclk_users--;
  1204. if (rx_priv->rx_mclk_users == 0) {
  1205. regmap_update_bits(regmap,
  1206. LPASS_CDC_RX_CLK_RST_CTRL_FS_CNT_CONTROL,
  1207. 0x01, 0x00);
  1208. regmap_update_bits(regmap,
  1209. LPASS_CDC_RX_CLK_RST_CTRL_FS_CNT_CONTROL,
  1210. 0x02, 0x02);
  1211. regmap_update_bits(regmap,
  1212. LPASS_CDC_RX_CLK_RST_CTRL_MCLK_CONTROL,
  1213. 0x02, 0x00);
  1214. regmap_update_bits(regmap,
  1215. LPASS_CDC_RX_CLK_RST_CTRL_MCLK_CONTROL,
  1216. 0x01, 0x00);
  1217. lpass_cdc_clk_rsc_fs_gen_request(rx_priv->dev,
  1218. false);
  1219. lpass_cdc_clk_rsc_request_clock(rx_priv->dev,
  1220. rx_priv->default_clk_id,
  1221. rx_priv->clk_id,
  1222. false);
  1223. rx_priv->clk_id = rx_priv->default_clk_id;
  1224. }
  1225. }
  1226. exit:
  1227. trace_printk("%s: mclk_enable = %u, dapm = %d clk_users= %d\n",
  1228. __func__, mclk_enable, dapm, rx_priv->rx_mclk_users);
  1229. mutex_unlock(&rx_priv->mclk_lock);
  1230. return ret;
  1231. }
  1232. static int lpass_cdc_rx_macro_mclk_event(struct snd_soc_dapm_widget *w,
  1233. struct snd_kcontrol *kcontrol, int event)
  1234. {
  1235. struct snd_soc_component *component =
  1236. snd_soc_dapm_to_component(w->dapm);
  1237. int ret = 0;
  1238. struct device *rx_dev = NULL;
  1239. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  1240. int mclk_freq = MCLK_FREQ;
  1241. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  1242. return -EINVAL;
  1243. dev_dbg(rx_dev, "%s: event = %d\n", __func__, event);
  1244. switch (event) {
  1245. case SND_SOC_DAPM_PRE_PMU:
  1246. if (rx_priv->is_native_on)
  1247. mclk_freq = MCLK_FREQ_NATIVE;
  1248. if (rx_priv->swr_ctrl_data)
  1249. swrm_wcd_notify(
  1250. rx_priv->swr_ctrl_data[0].rx_swr_pdev,
  1251. SWR_CLK_FREQ, &mclk_freq);
  1252. ret = lpass_cdc_rx_macro_mclk_enable(rx_priv, 1, true);
  1253. if (ret)
  1254. rx_priv->dapm_mclk_enable = false;
  1255. else
  1256. rx_priv->dapm_mclk_enable = true;
  1257. break;
  1258. case SND_SOC_DAPM_POST_PMD:
  1259. if (rx_priv->dapm_mclk_enable)
  1260. ret = lpass_cdc_rx_macro_mclk_enable(rx_priv, 0, true);
  1261. break;
  1262. default:
  1263. dev_err(rx_priv->dev,
  1264. "%s: invalid DAPM event %d\n", __func__, event);
  1265. ret = -EINVAL;
  1266. }
  1267. return ret;
  1268. }
  1269. static int lpass_cdc_rx_macro_event_handler(struct snd_soc_component *component,
  1270. u16 event, u32 data)
  1271. {
  1272. u16 reg = 0, reg_mix = 0, rx_idx = 0, mute = 0x0, val = 0;
  1273. struct device *rx_dev = NULL;
  1274. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  1275. int ret = 0;
  1276. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  1277. return -EINVAL;
  1278. switch (event) {
  1279. case LPASS_CDC_MACRO_EVT_RX_MUTE:
  1280. rx_idx = data >> 0x10;
  1281. mute = data & 0xffff;
  1282. val = mute ? 0x10 : 0x00;
  1283. reg = LPASS_CDC_RX_RX0_RX_PATH_CTL + (rx_idx *
  1284. LPASS_CDC_RX_MACRO_RX_PATH_OFFSET);
  1285. reg_mix = LPASS_CDC_RX_RX0_RX_PATH_MIX_CTL + (rx_idx *
  1286. LPASS_CDC_RX_MACRO_RX_PATH_OFFSET);
  1287. snd_soc_component_update_bits(component, reg,
  1288. 0x10, val);
  1289. snd_soc_component_update_bits(component, reg_mix,
  1290. 0x10, val);
  1291. break;
  1292. case LPASS_CDC_MACRO_EVT_RX_COMPANDER_SOFT_RST:
  1293. rx_idx = data >> 0x10;
  1294. if (rx_idx == INTERP_AUX)
  1295. goto done;
  1296. reg = LPASS_CDC_RX_COMPANDER0_CTL0 +
  1297. (rx_idx * LPASS_CDC_RX_MACRO_COMP_OFFSET);
  1298. snd_soc_component_write(component, reg,
  1299. snd_soc_component_read(component, reg));
  1300. break;
  1301. case LPASS_CDC_MACRO_EVT_IMPED_TRUE:
  1302. lpass_cdc_rx_macro_wcd_clsh_imped_config(component, data, true);
  1303. break;
  1304. case LPASS_CDC_MACRO_EVT_IMPED_FALSE:
  1305. lpass_cdc_rx_macro_wcd_clsh_imped_config(component, data, false);
  1306. break;
  1307. case LPASS_CDC_MACRO_EVT_SSR_DOWN:
  1308. trace_printk("%s, enter SSR down\n", __func__);
  1309. rx_priv->dev_up = false;
  1310. if (rx_priv->swr_ctrl_data) {
  1311. swrm_wcd_notify(
  1312. rx_priv->swr_ctrl_data[0].rx_swr_pdev,
  1313. SWR_DEVICE_SSR_DOWN, NULL);
  1314. }
  1315. if ((!pm_runtime_enabled(rx_dev) ||
  1316. !pm_runtime_suspended(rx_dev))) {
  1317. ret = lpass_cdc_runtime_suspend(rx_dev);
  1318. if (!ret) {
  1319. pm_runtime_disable(rx_dev);
  1320. pm_runtime_set_suspended(rx_dev);
  1321. pm_runtime_enable(rx_dev);
  1322. }
  1323. }
  1324. break;
  1325. case LPASS_CDC_MACRO_EVT_PRE_SSR_UP:
  1326. /* enable&disable RX_CORE_CLK to reset GFMUX reg */
  1327. ret = lpass_cdc_clk_rsc_request_clock(rx_priv->dev,
  1328. rx_priv->default_clk_id,
  1329. RX_CORE_CLK, true);
  1330. if (ret < 0)
  1331. dev_err_ratelimited(rx_priv->dev,
  1332. "%s, failed to enable clk, ret:%d\n",
  1333. __func__, ret);
  1334. else
  1335. lpass_cdc_clk_rsc_request_clock(rx_priv->dev,
  1336. rx_priv->default_clk_id,
  1337. RX_CORE_CLK, false);
  1338. break;
  1339. case LPASS_CDC_MACRO_EVT_SSR_UP:
  1340. trace_printk("%s, enter SSR up\n", __func__);
  1341. rx_priv->dev_up = true;
  1342. /* reset swr after ssr/pdr */
  1343. rx_priv->reset_swr = true;
  1344. if (rx_priv->swr_ctrl_data)
  1345. swrm_wcd_notify(
  1346. rx_priv->swr_ctrl_data[0].rx_swr_pdev,
  1347. SWR_DEVICE_SSR_UP, NULL);
  1348. break;
  1349. case LPASS_CDC_MACRO_EVT_CLK_RESET:
  1350. lpass_cdc_rsc_clk_reset(rx_dev, RX_CORE_CLK);
  1351. break;
  1352. case LPASS_CDC_MACRO_EVT_RX_PA_GAIN_UPDATE:
  1353. rx_priv->rx0_gain_val = snd_soc_component_read(component,
  1354. LPASS_CDC_RX_RX0_RX_VOL_CTL);
  1355. rx_priv->rx1_gain_val = snd_soc_component_read(component,
  1356. LPASS_CDC_RX_RX1_RX_VOL_CTL);
  1357. if (data) {
  1358. /* Reduce gain by half only if its greater than -6DB */
  1359. if ((rx_priv->rx0_gain_val >= LPASS_CDC_RX_MACRO_GAIN_VAL_UNITY)
  1360. && (rx_priv->rx0_gain_val <= LPASS_CDC_RX_MACRO_GAIN_MAX_VAL))
  1361. snd_soc_component_update_bits(component,
  1362. LPASS_CDC_RX_RX0_RX_VOL_CTL, 0xFF,
  1363. (rx_priv->rx0_gain_val -
  1364. LPASS_CDC_RX_MACRO_MOD_GAIN));
  1365. if ((rx_priv->rx1_gain_val >= LPASS_CDC_RX_MACRO_GAIN_VAL_UNITY)
  1366. && (rx_priv->rx1_gain_val <= LPASS_CDC_RX_MACRO_GAIN_MAX_VAL))
  1367. snd_soc_component_update_bits(component,
  1368. LPASS_CDC_RX_RX1_RX_VOL_CTL, 0xFF,
  1369. (rx_priv->rx1_gain_val -
  1370. LPASS_CDC_RX_MACRO_MOD_GAIN));
  1371. }
  1372. else {
  1373. /* Reset gain value to default */
  1374. if ((rx_priv->rx0_gain_val >=
  1375. (LPASS_CDC_RX_MACRO_GAIN_VAL_UNITY - LPASS_CDC_RX_MACRO_MOD_GAIN)) &&
  1376. (rx_priv->rx0_gain_val <= (LPASS_CDC_RX_MACRO_GAIN_MAX_VAL -
  1377. LPASS_CDC_RX_MACRO_MOD_GAIN)))
  1378. snd_soc_component_update_bits(component,
  1379. LPASS_CDC_RX_RX0_RX_VOL_CTL, 0xFF,
  1380. (rx_priv->rx0_gain_val +
  1381. LPASS_CDC_RX_MACRO_MOD_GAIN));
  1382. if ((rx_priv->rx1_gain_val >=
  1383. (LPASS_CDC_RX_MACRO_GAIN_VAL_UNITY - LPASS_CDC_RX_MACRO_MOD_GAIN)) &&
  1384. (rx_priv->rx1_gain_val <= (LPASS_CDC_RX_MACRO_GAIN_MAX_VAL -
  1385. LPASS_CDC_RX_MACRO_MOD_GAIN)))
  1386. snd_soc_component_update_bits(component,
  1387. LPASS_CDC_RX_RX1_RX_VOL_CTL, 0xFF,
  1388. (rx_priv->rx1_gain_val +
  1389. LPASS_CDC_RX_MACRO_MOD_GAIN));
  1390. }
  1391. break;
  1392. case LPASS_CDC_MACRO_EVT_HPHL_HD2_ENABLE:
  1393. /* Enable hd2 config for hphl*/
  1394. snd_soc_component_update_bits(component,
  1395. LPASS_CDC_RX_RX0_RX_PATH_CFG0, 0x04, data);
  1396. break;
  1397. case LPASS_CDC_MACRO_EVT_HPHR_HD2_ENABLE:
  1398. /* Enable hd2 config for hphr*/
  1399. snd_soc_component_update_bits(component,
  1400. LPASS_CDC_RX_RX1_RX_PATH_CFG0, 0x04, data);
  1401. break;
  1402. }
  1403. done:
  1404. return ret;
  1405. }
  1406. static int lpass_cdc_rx_macro_find_playback_dai_id_for_port(int port_id,
  1407. struct lpass_cdc_rx_macro_priv *rx_priv)
  1408. {
  1409. int i = 0;
  1410. for (i = RX_MACRO_AIF1_PB; i < LPASS_CDC_RX_MACRO_MAX_DAIS; i++) {
  1411. if (test_bit(port_id, &rx_priv->active_ch_mask[i]))
  1412. return i;
  1413. }
  1414. return -EINVAL;
  1415. }
  1416. static int lpass_cdc_rx_macro_set_idle_detect_thr(struct snd_soc_component *component,
  1417. struct lpass_cdc_rx_macro_priv *rx_priv,
  1418. int interp, int path_type)
  1419. {
  1420. int port_id[4] = { 0, 0, 0, 0 };
  1421. int *port_ptr = NULL;
  1422. int num_ports = 0;
  1423. int bit_width = 0, i = 0;
  1424. int mux_reg = 0, mux_reg_val = 0;
  1425. int dai_id = 0, idle_thr = 0;
  1426. if ((interp != INTERP_HPHL) && (interp != INTERP_HPHR))
  1427. return 0;
  1428. if (!rx_priv->idle_det_cfg.hph_idle_detect_en)
  1429. return 0;
  1430. port_ptr = &port_id[0];
  1431. num_ports = 0;
  1432. /*
  1433. * Read interpolator MUX input registers and find
  1434. * which cdc_dma port is connected and store the port
  1435. * numbers in port_id array.
  1436. */
  1437. if (path_type == INTERP_MIX_PATH) {
  1438. mux_reg = LPASS_CDC_RX_INP_MUX_RX_INT0_CFG1 +
  1439. 2 * interp;
  1440. mux_reg_val = snd_soc_component_read(component, mux_reg) &
  1441. 0x0f;
  1442. if ((mux_reg_val >= INTn_2_INP_SEL_RX0) &&
  1443. (mux_reg_val <= INTn_2_INP_SEL_RX5)) {
  1444. *port_ptr++ = mux_reg_val - 1;
  1445. num_ports++;
  1446. }
  1447. }
  1448. if (path_type == INTERP_MAIN_PATH) {
  1449. mux_reg = LPASS_CDC_RX_INP_MUX_RX_INT1_CFG0 +
  1450. 2 * (interp - 1);
  1451. mux_reg_val = snd_soc_component_read(component, mux_reg) &
  1452. 0x0f;
  1453. i = LPASS_CDC_RX_MACRO_INTERP_MUX_NUM_INPUTS;
  1454. while (i) {
  1455. if ((mux_reg_val >= INTn_1_INP_SEL_RX0) &&
  1456. (mux_reg_val <= INTn_1_INP_SEL_RX5)) {
  1457. *port_ptr++ = mux_reg_val -
  1458. INTn_1_INP_SEL_RX0;
  1459. num_ports++;
  1460. }
  1461. mux_reg_val =
  1462. (snd_soc_component_read(component, mux_reg) &
  1463. 0xf0) >> 4;
  1464. mux_reg += 1;
  1465. i--;
  1466. }
  1467. }
  1468. dev_dbg(component->dev, "%s: num_ports: %d, ports[%d %d %d %d]\n",
  1469. __func__, num_ports, port_id[0], port_id[1],
  1470. port_id[2], port_id[3]);
  1471. i = 0;
  1472. while (num_ports) {
  1473. dai_id = lpass_cdc_rx_macro_find_playback_dai_id_for_port(port_id[i++],
  1474. rx_priv);
  1475. if ((dai_id >= 0) && (dai_id < LPASS_CDC_RX_MACRO_MAX_DAIS)) {
  1476. dev_dbg(component->dev, "%s: dai_id: %d bit_width: %d\n",
  1477. __func__, dai_id,
  1478. rx_priv->bit_width[dai_id]);
  1479. if (rx_priv->bit_width[dai_id] > bit_width)
  1480. bit_width = rx_priv->bit_width[dai_id];
  1481. }
  1482. num_ports--;
  1483. }
  1484. switch (bit_width) {
  1485. case 16:
  1486. idle_thr = 0xff; /* F16 */
  1487. break;
  1488. case 24:
  1489. case 32:
  1490. idle_thr = 0x03; /* F22 */
  1491. break;
  1492. default:
  1493. idle_thr = 0x00;
  1494. break;
  1495. }
  1496. dev_dbg(component->dev, "%s: (new) idle_thr: %d, (cur) idle_thr: %d\n",
  1497. __func__, idle_thr, rx_priv->idle_det_cfg.hph_idle_thr);
  1498. if ((rx_priv->idle_det_cfg.hph_idle_thr == 0) ||
  1499. (idle_thr < rx_priv->idle_det_cfg.hph_idle_thr)) {
  1500. snd_soc_component_write(component,
  1501. LPASS_CDC_RX_IDLE_DETECT_CFG3, idle_thr);
  1502. rx_priv->idle_det_cfg.hph_idle_thr = idle_thr;
  1503. }
  1504. return 0;
  1505. }
  1506. static int lpass_cdc_rx_macro_enable_mix_path(struct snd_soc_dapm_widget *w,
  1507. struct snd_kcontrol *kcontrol, int event)
  1508. {
  1509. struct snd_soc_component *component =
  1510. snd_soc_dapm_to_component(w->dapm);
  1511. u16 gain_reg = 0, mix_reg = 0;
  1512. struct device *rx_dev = NULL;
  1513. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  1514. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  1515. return -EINVAL;
  1516. if (w->shift >= INTERP_MAX) {
  1517. dev_err(component->dev, "%s: Invalid Interpolator value %d for name %s\n",
  1518. __func__, w->shift, w->name);
  1519. return -EINVAL;
  1520. }
  1521. gain_reg = LPASS_CDC_RX_RX0_RX_VOL_MIX_CTL +
  1522. (w->shift * LPASS_CDC_RX_MACRO_RX_PATH_OFFSET);
  1523. mix_reg = LPASS_CDC_RX_RX0_RX_PATH_MIX_CTL +
  1524. (w->shift * LPASS_CDC_RX_MACRO_RX_PATH_OFFSET);
  1525. dev_dbg(component->dev, "%s %d %s\n", __func__, event, w->name);
  1526. switch (event) {
  1527. case SND_SOC_DAPM_PRE_PMU:
  1528. lpass_cdc_rx_macro_set_idle_detect_thr(component, rx_priv, w->shift,
  1529. INTERP_MIX_PATH);
  1530. lpass_cdc_rx_macro_enable_interp_clk(component, event, w->shift);
  1531. break;
  1532. case SND_SOC_DAPM_POST_PMU:
  1533. snd_soc_component_write(component, gain_reg,
  1534. snd_soc_component_read(component, gain_reg));
  1535. break;
  1536. case SND_SOC_DAPM_POST_PMD:
  1537. /* Clk Disable */
  1538. snd_soc_component_update_bits(component, mix_reg, 0x20, 0x00);
  1539. lpass_cdc_rx_macro_enable_interp_clk(component, event, w->shift);
  1540. /* Reset enable and disable */
  1541. snd_soc_component_update_bits(component, mix_reg, 0x40, 0x40);
  1542. snd_soc_component_update_bits(component, mix_reg, 0x40, 0x00);
  1543. break;
  1544. }
  1545. return 0;
  1546. }
  1547. static bool lpass_cdc_rx_macro_adie_lb(struct snd_soc_component *component,
  1548. int interp_idx)
  1549. {
  1550. u16 int_mux_cfg0 = 0, int_mux_cfg1 = 0;
  1551. u8 int_mux_cfg0_val = 0, int_mux_cfg1_val = 0;
  1552. u8 int_n_inp0 = 0, int_n_inp1 = 0, int_n_inp2 = 0;
  1553. int_mux_cfg0 = LPASS_CDC_RX_INP_MUX_RX_INT0_CFG0 + interp_idx * 8;
  1554. int_mux_cfg1 = int_mux_cfg0 + 4;
  1555. int_mux_cfg0_val = snd_soc_component_read(component, int_mux_cfg0);
  1556. int_mux_cfg1_val = snd_soc_component_read(component, int_mux_cfg1);
  1557. int_n_inp0 = int_mux_cfg0_val & 0x0F;
  1558. if (int_n_inp0 == INTn_1_INP_SEL_DEC0 ||
  1559. int_n_inp0 == INTn_1_INP_SEL_DEC1 ||
  1560. int_n_inp0 == INTn_1_INP_SEL_IIR0 ||
  1561. int_n_inp0 == INTn_1_INP_SEL_IIR1)
  1562. return true;
  1563. int_n_inp1 = int_mux_cfg0_val >> 4;
  1564. if (int_n_inp1 == INTn_1_INP_SEL_DEC0 ||
  1565. int_n_inp1 == INTn_1_INP_SEL_DEC1 ||
  1566. int_n_inp1 == INTn_1_INP_SEL_IIR0 ||
  1567. int_n_inp1 == INTn_1_INP_SEL_IIR1)
  1568. return true;
  1569. int_n_inp2 = int_mux_cfg1_val >> 4;
  1570. if (int_n_inp2 == INTn_1_INP_SEL_DEC0 ||
  1571. int_n_inp2 == INTn_1_INP_SEL_DEC1 ||
  1572. int_n_inp2 == INTn_1_INP_SEL_IIR0 ||
  1573. int_n_inp2 == INTn_1_INP_SEL_IIR1)
  1574. return true;
  1575. return false;
  1576. }
  1577. static int lpass_cdc_rx_macro_enable_main_path(struct snd_soc_dapm_widget *w,
  1578. struct snd_kcontrol *kcontrol,
  1579. int event)
  1580. {
  1581. struct snd_soc_component *component =
  1582. snd_soc_dapm_to_component(w->dapm);
  1583. u16 gain_reg = 0;
  1584. u16 reg = 0;
  1585. struct device *rx_dev = NULL;
  1586. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  1587. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  1588. return -EINVAL;
  1589. dev_dbg(component->dev, "%s %d %s\n", __func__, event, w->name);
  1590. if (w->shift >= INTERP_MAX) {
  1591. dev_err(component->dev, "%s: Invalid Interpolator value %d for name %s\n",
  1592. __func__, w->shift, w->name);
  1593. return -EINVAL;
  1594. }
  1595. reg = LPASS_CDC_RX_RX0_RX_PATH_CTL + (w->shift *
  1596. LPASS_CDC_RX_MACRO_RX_PATH_OFFSET);
  1597. gain_reg = LPASS_CDC_RX_RX0_RX_VOL_CTL + (w->shift *
  1598. LPASS_CDC_RX_MACRO_RX_PATH_OFFSET);
  1599. switch (event) {
  1600. case SND_SOC_DAPM_PRE_PMU:
  1601. lpass_cdc_rx_macro_set_idle_detect_thr(component, rx_priv, w->shift,
  1602. INTERP_MAIN_PATH);
  1603. lpass_cdc_rx_macro_enable_interp_clk(component, event, w->shift);
  1604. if (lpass_cdc_rx_macro_adie_lb(component, w->shift))
  1605. snd_soc_component_update_bits(component,
  1606. reg, 0x20, 0x20);
  1607. break;
  1608. case SND_SOC_DAPM_POST_PMU:
  1609. snd_soc_component_write(component, gain_reg,
  1610. snd_soc_component_read(component, gain_reg));
  1611. break;
  1612. case SND_SOC_DAPM_POST_PMD:
  1613. lpass_cdc_rx_macro_enable_interp_clk(component, event, w->shift);
  1614. break;
  1615. }
  1616. return 0;
  1617. }
  1618. static void lpass_cdc_rx_macro_droop_setting(struct snd_soc_component *component,
  1619. int interp_n, int event)
  1620. {
  1621. u8 pcm_rate = 0, val = 0;
  1622. u16 rx0_path_ctl_reg = 0, rx_path_cfg3_reg = 0;
  1623. rx_path_cfg3_reg = LPASS_CDC_RX_RX0_RX_PATH_CFG3 +
  1624. (interp_n * LPASS_CDC_RX_MACRO_RX_PATH_OFFSET);
  1625. rx0_path_ctl_reg = LPASS_CDC_RX_RX0_RX_PATH_CTL +
  1626. (interp_n * LPASS_CDC_RX_MACRO_RX_PATH_OFFSET);
  1627. pcm_rate = (snd_soc_component_read(component, rx0_path_ctl_reg)
  1628. & 0x0F);
  1629. if (pcm_rate < 0x06)
  1630. val = 0x03;
  1631. else if (pcm_rate < 0x08)
  1632. val = 0x01;
  1633. else if (pcm_rate < 0x0B)
  1634. val = 0x02;
  1635. else
  1636. val = 0x00;
  1637. if (SND_SOC_DAPM_EVENT_ON(event))
  1638. snd_soc_component_update_bits(component, rx_path_cfg3_reg,
  1639. 0x03, val);
  1640. if (SND_SOC_DAPM_EVENT_OFF(event))
  1641. snd_soc_component_update_bits(component, rx_path_cfg3_reg,
  1642. 0x03, 0x03);
  1643. }
  1644. static int lpass_cdc_rx_macro_config_compander(struct snd_soc_component *component,
  1645. struct lpass_cdc_rx_macro_priv *rx_priv,
  1646. int interp_n, int event)
  1647. {
  1648. int comp = 0;
  1649. u16 comp_ctl0_reg = 0, comp_ctl8_reg = 0, rx_path_cfg0_reg = 0;
  1650. u16 comp_coeff_lsb_reg = 0, comp_coeff_msb_reg = 0;
  1651. u16 mode = rx_priv->hph_pwr_mode;
  1652. comp = interp_n;
  1653. if (!rx_priv->comp_enabled[comp])
  1654. return 0;
  1655. if (rx_priv->is_ear_mode_on && interp_n == INTERP_HPHL)
  1656. mode = RX_MODE_EAR;
  1657. if (interp_n == INTERP_HPHL) {
  1658. comp_coeff_lsb_reg = LPASS_CDC_RX_TOP_HPHL_COMP_WR_LSB;
  1659. comp_coeff_msb_reg = LPASS_CDC_RX_TOP_HPHL_COMP_WR_MSB;
  1660. } else if (interp_n == INTERP_HPHR) {
  1661. comp_coeff_lsb_reg = LPASS_CDC_RX_TOP_HPHR_COMP_WR_LSB;
  1662. comp_coeff_msb_reg = LPASS_CDC_RX_TOP_HPHR_COMP_WR_MSB;
  1663. } else {
  1664. /* compander coefficients are loaded only for hph path */
  1665. return 0;
  1666. }
  1667. comp_ctl0_reg = LPASS_CDC_RX_COMPANDER0_CTL0 +
  1668. (comp * LPASS_CDC_RX_MACRO_COMP_OFFSET);
  1669. comp_ctl8_reg = LPASS_CDC_RX_COMPANDER0_CTL8 +
  1670. (comp * LPASS_CDC_RX_MACRO_COMP_OFFSET);
  1671. rx_path_cfg0_reg = LPASS_CDC_RX_RX0_RX_PATH_CFG0 +
  1672. (comp * LPASS_CDC_RX_MACRO_RX_PATH_OFFSET);
  1673. if (SND_SOC_DAPM_EVENT_ON(event)) {
  1674. lpass_cdc_load_compander_coeff(component,
  1675. comp_coeff_lsb_reg, comp_coeff_msb_reg,
  1676. comp_coeff_table[rx_priv->hph_pwr_mode],
  1677. COMP_MAX_COEFF);
  1678. lpass_cdc_update_compander_setting(component,
  1679. comp_ctl8_reg,
  1680. &comp_setting_table[mode]);
  1681. /* Enable Compander Clock */
  1682. snd_soc_component_update_bits(component, comp_ctl0_reg,
  1683. 0x01, 0x01);
  1684. snd_soc_component_update_bits(component, comp_ctl0_reg,
  1685. 0x02, 0x02);
  1686. snd_soc_component_update_bits(component, comp_ctl0_reg,
  1687. 0x02, 0x00);
  1688. snd_soc_component_update_bits(component, rx_path_cfg0_reg,
  1689. 0x02, 0x02);
  1690. }
  1691. if (SND_SOC_DAPM_EVENT_OFF(event)) {
  1692. snd_soc_component_update_bits(component, comp_ctl0_reg,
  1693. 0x04, 0x04);
  1694. snd_soc_component_update_bits(component, rx_path_cfg0_reg,
  1695. 0x02, 0x00);
  1696. snd_soc_component_update_bits(component, comp_ctl0_reg,
  1697. 0x01, 0x00);
  1698. snd_soc_component_update_bits(component, comp_ctl0_reg,
  1699. 0x04, 0x00);
  1700. }
  1701. return 0;
  1702. }
  1703. static void lpass_cdc_rx_macro_enable_softclip_clk(struct snd_soc_component *component,
  1704. struct lpass_cdc_rx_macro_priv *rx_priv,
  1705. bool enable)
  1706. {
  1707. if (enable) {
  1708. if (rx_priv->softclip_clk_users == 0)
  1709. snd_soc_component_update_bits(component,
  1710. LPASS_CDC_RX_SOFTCLIP_CRC,
  1711. 0x01, 0x01);
  1712. rx_priv->softclip_clk_users++;
  1713. } else {
  1714. rx_priv->softclip_clk_users--;
  1715. if (rx_priv->softclip_clk_users == 0)
  1716. snd_soc_component_update_bits(component,
  1717. LPASS_CDC_RX_SOFTCLIP_CRC,
  1718. 0x01, 0x00);
  1719. }
  1720. }
  1721. static int lpass_cdc_rx_macro_config_softclip(struct snd_soc_component *component,
  1722. struct lpass_cdc_rx_macro_priv *rx_priv,
  1723. int event)
  1724. {
  1725. dev_dbg(component->dev, "%s: event %d, enabled %d\n",
  1726. __func__, event, rx_priv->is_softclip_on);
  1727. if (!rx_priv->is_softclip_on)
  1728. return 0;
  1729. if (SND_SOC_DAPM_EVENT_ON(event)) {
  1730. /* Enable Softclip clock */
  1731. lpass_cdc_rx_macro_enable_softclip_clk(component, rx_priv, true);
  1732. /* Enable Softclip control */
  1733. snd_soc_component_update_bits(component,
  1734. LPASS_CDC_RX_SOFTCLIP_SOFTCLIP_CTRL, 0x01, 0x01);
  1735. }
  1736. if (SND_SOC_DAPM_EVENT_OFF(event)) {
  1737. snd_soc_component_update_bits(component,
  1738. LPASS_CDC_RX_SOFTCLIP_SOFTCLIP_CTRL, 0x01, 0x00);
  1739. lpass_cdc_rx_macro_enable_softclip_clk(component, rx_priv, false);
  1740. }
  1741. return 0;
  1742. }
  1743. static int lpass_cdc_rx_macro_config_aux_hpf(struct snd_soc_component *component,
  1744. struct lpass_cdc_rx_macro_priv *rx_priv,
  1745. int event)
  1746. {
  1747. dev_dbg(component->dev, "%s: event %d, enabled %d\n",
  1748. __func__, event, rx_priv->is_aux_hpf_on);
  1749. if (SND_SOC_DAPM_EVENT_ON(event)) {
  1750. /* Update Aux HPF control */
  1751. if (!rx_priv->is_aux_hpf_on)
  1752. snd_soc_component_update_bits(component,
  1753. LPASS_CDC_RX_RX2_RX_PATH_CFG1, 0x04, 0x00);
  1754. }
  1755. if (SND_SOC_DAPM_EVENT_OFF(event)) {
  1756. /* Reset to default (HPF=ON) */
  1757. snd_soc_component_update_bits(component,
  1758. LPASS_CDC_RX_RX2_RX_PATH_CFG1, 0x04, 0x04);
  1759. }
  1760. return 0;
  1761. }
  1762. static inline void
  1763. lpass_cdc_rx_macro_enable_clsh_block(struct lpass_cdc_rx_macro_priv *rx_priv, bool enable)
  1764. {
  1765. if ((enable && ++rx_priv->clsh_users == 1) ||
  1766. (!enable && --rx_priv->clsh_users == 0))
  1767. snd_soc_component_update_bits(rx_priv->component,
  1768. LPASS_CDC_RX_CLSH_CRC, 0x01,
  1769. (u8) enable);
  1770. if (rx_priv->clsh_users < 0)
  1771. rx_priv->clsh_users = 0;
  1772. dev_dbg(rx_priv->dev, "%s: clsh_users %d, enable %d", __func__,
  1773. rx_priv->clsh_users, enable);
  1774. }
  1775. static int lpass_cdc_rx_macro_config_classh(struct snd_soc_component *component,
  1776. struct lpass_cdc_rx_macro_priv *rx_priv,
  1777. int interp_n, int event)
  1778. {
  1779. if (SND_SOC_DAPM_EVENT_OFF(event)) {
  1780. lpass_cdc_rx_macro_enable_clsh_block(rx_priv, false);
  1781. return 0;
  1782. }
  1783. if (!SND_SOC_DAPM_EVENT_ON(event))
  1784. return 0;
  1785. lpass_cdc_rx_macro_enable_clsh_block(rx_priv, true);
  1786. if (interp_n == INTERP_HPHL ||
  1787. interp_n == INTERP_HPHR) {
  1788. /*
  1789. * These K1 values depend on the Headphone Impedance
  1790. * For now it is assumed to be 16 ohm
  1791. */
  1792. snd_soc_component_update_bits(component,
  1793. LPASS_CDC_RX_CLSH_K1_LSB,
  1794. 0xFF, 0xC0);
  1795. snd_soc_component_update_bits(component,
  1796. LPASS_CDC_RX_CLSH_K1_MSB,
  1797. 0x0F, 0x00);
  1798. }
  1799. switch (interp_n) {
  1800. case INTERP_HPHL:
  1801. if (rx_priv->is_ear_mode_on)
  1802. snd_soc_component_update_bits(component,
  1803. LPASS_CDC_RX_CLSH_HPH_V_PA,
  1804. 0x3F, 0x39);
  1805. else
  1806. snd_soc_component_update_bits(component,
  1807. LPASS_CDC_RX_CLSH_HPH_V_PA,
  1808. 0x3F, 0x1C);
  1809. snd_soc_component_update_bits(component,
  1810. LPASS_CDC_RX_CLSH_DECAY_CTRL,
  1811. 0x07, 0x00);
  1812. snd_soc_component_update_bits(component,
  1813. LPASS_CDC_RX_RX0_RX_PATH_CFG0,
  1814. 0x40, 0x40);
  1815. break;
  1816. case INTERP_HPHR:
  1817. if (rx_priv->is_ear_mode_on)
  1818. snd_soc_component_update_bits(component,
  1819. LPASS_CDC_RX_CLSH_HPH_V_PA,
  1820. 0x3F, 0x39);
  1821. else
  1822. snd_soc_component_update_bits(component,
  1823. LPASS_CDC_RX_CLSH_HPH_V_PA,
  1824. 0x3F, 0x1C);
  1825. snd_soc_component_update_bits(component,
  1826. LPASS_CDC_RX_CLSH_DECAY_CTRL,
  1827. 0x07, 0x00);
  1828. snd_soc_component_update_bits(component,
  1829. LPASS_CDC_RX_RX1_RX_PATH_CFG0,
  1830. 0x40, 0x40);
  1831. break;
  1832. case INTERP_AUX:
  1833. snd_soc_component_update_bits(component,
  1834. LPASS_CDC_RX_RX2_RX_PATH_CFG0,
  1835. 0x08, 0x08);
  1836. snd_soc_component_update_bits(component,
  1837. LPASS_CDC_RX_RX2_RX_PATH_CFG0,
  1838. 0x10, 0x10);
  1839. break;
  1840. }
  1841. return 0;
  1842. }
  1843. static void lpass_cdc_rx_macro_hd2_control(struct snd_soc_component *component,
  1844. u16 interp_idx, int event)
  1845. {
  1846. u16 hd2_scale_reg = 0;
  1847. u16 hd2_enable_reg = 0;
  1848. switch (interp_idx) {
  1849. case INTERP_HPHL:
  1850. hd2_scale_reg = LPASS_CDC_RX_RX0_RX_PATH_SEC3;
  1851. hd2_enable_reg = LPASS_CDC_RX_RX0_RX_PATH_CFG0;
  1852. break;
  1853. case INTERP_HPHR:
  1854. hd2_scale_reg = LPASS_CDC_RX_RX1_RX_PATH_SEC3;
  1855. hd2_enable_reg = LPASS_CDC_RX_RX1_RX_PATH_CFG0;
  1856. break;
  1857. }
  1858. if (hd2_enable_reg && SND_SOC_DAPM_EVENT_ON(event)) {
  1859. snd_soc_component_update_bits(component, hd2_scale_reg,
  1860. 0x3C, 0x14);
  1861. snd_soc_component_update_bits(component, hd2_enable_reg,
  1862. 0x04, 0x04);
  1863. }
  1864. if (hd2_enable_reg && SND_SOC_DAPM_EVENT_OFF(event)) {
  1865. snd_soc_component_update_bits(component, hd2_enable_reg,
  1866. 0x04, 0x00);
  1867. snd_soc_component_update_bits(component, hd2_scale_reg,
  1868. 0x3C, 0x00);
  1869. }
  1870. }
  1871. static int lpass_cdc_rx_macro_hph_idle_detect_get(struct snd_kcontrol *kcontrol,
  1872. struct snd_ctl_elem_value *ucontrol)
  1873. {
  1874. struct snd_soc_component *component =
  1875. snd_soc_kcontrol_component(kcontrol);
  1876. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  1877. struct device *rx_dev = NULL;
  1878. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  1879. return -EINVAL;
  1880. ucontrol->value.integer.value[0] =
  1881. rx_priv->idle_det_cfg.hph_idle_detect_en;
  1882. return 0;
  1883. }
  1884. static int lpass_cdc_rx_macro_hph_idle_detect_put(struct snd_kcontrol *kcontrol,
  1885. struct snd_ctl_elem_value *ucontrol)
  1886. {
  1887. struct snd_soc_component *component =
  1888. snd_soc_kcontrol_component(kcontrol);
  1889. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  1890. struct device *rx_dev = NULL;
  1891. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  1892. return -EINVAL;
  1893. rx_priv->idle_det_cfg.hph_idle_detect_en =
  1894. ucontrol->value.integer.value[0];
  1895. return 0;
  1896. }
  1897. static int lpass_cdc_rx_macro_get_compander(struct snd_kcontrol *kcontrol,
  1898. struct snd_ctl_elem_value *ucontrol)
  1899. {
  1900. struct snd_soc_component *component =
  1901. snd_soc_kcontrol_component(kcontrol);
  1902. int comp = ((struct soc_multi_mixer_control *)
  1903. kcontrol->private_value)->shift;
  1904. struct device *rx_dev = NULL;
  1905. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  1906. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  1907. return -EINVAL;
  1908. ucontrol->value.integer.value[0] = rx_priv->comp_enabled[comp];
  1909. return 0;
  1910. }
  1911. static int lpass_cdc_rx_macro_set_compander(struct snd_kcontrol *kcontrol,
  1912. struct snd_ctl_elem_value *ucontrol)
  1913. {
  1914. struct snd_soc_component *component =
  1915. snd_soc_kcontrol_component(kcontrol);
  1916. int comp = ((struct soc_multi_mixer_control *)
  1917. kcontrol->private_value)->shift;
  1918. int value = ucontrol->value.integer.value[0];
  1919. struct device *rx_dev = NULL;
  1920. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  1921. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  1922. return -EINVAL;
  1923. dev_dbg(component->dev, "%s: Compander %d enable current %d, new %d\n",
  1924. __func__, comp + 1, rx_priv->comp_enabled[comp], value);
  1925. rx_priv->comp_enabled[comp] = value;
  1926. return 0;
  1927. }
  1928. static int lpass_cdc_rx_macro_mux_get(struct snd_kcontrol *kcontrol,
  1929. struct snd_ctl_elem_value *ucontrol)
  1930. {
  1931. struct snd_soc_dapm_widget *widget =
  1932. snd_soc_dapm_kcontrol_widget(kcontrol);
  1933. struct snd_soc_component *component =
  1934. snd_soc_dapm_to_component(widget->dapm);
  1935. struct device *rx_dev = NULL;
  1936. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  1937. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  1938. return -EINVAL;
  1939. ucontrol->value.integer.value[0] =
  1940. rx_priv->rx_port_value[widget->shift];
  1941. return 0;
  1942. }
  1943. static int lpass_cdc_rx_macro_mux_put(struct snd_kcontrol *kcontrol,
  1944. struct snd_ctl_elem_value *ucontrol)
  1945. {
  1946. struct snd_soc_dapm_widget *widget =
  1947. snd_soc_dapm_kcontrol_widget(kcontrol);
  1948. struct snd_soc_component *component =
  1949. snd_soc_dapm_to_component(widget->dapm);
  1950. struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
  1951. struct snd_soc_dapm_update *update = NULL;
  1952. u32 rx_port_value = ucontrol->value.integer.value[0];
  1953. u32 aif_rst = 0;
  1954. struct device *rx_dev = NULL;
  1955. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  1956. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  1957. return -EINVAL;
  1958. aif_rst = rx_priv->rx_port_value[widget->shift];
  1959. if (!rx_port_value) {
  1960. if (aif_rst == 0) {
  1961. dev_err(rx_dev, "%s:AIF reset already\n", __func__);
  1962. return 0;
  1963. }
  1964. if (aif_rst > RX_MACRO_AIF4_PB) {
  1965. dev_err(rx_dev, "%s: Invalid AIF reset\n", __func__);
  1966. return 0;
  1967. }
  1968. }
  1969. rx_priv->rx_port_value[widget->shift] = rx_port_value;
  1970. dev_dbg(rx_dev, "%s: mux input: %d, mux output: %d, aif_rst: %d\n",
  1971. __func__, rx_port_value, widget->shift, aif_rst);
  1972. switch (rx_port_value) {
  1973. case 0:
  1974. if (rx_priv->active_ch_cnt[aif_rst]) {
  1975. clear_bit(widget->shift,
  1976. &rx_priv->active_ch_mask[aif_rst]);
  1977. rx_priv->active_ch_cnt[aif_rst]--;
  1978. }
  1979. break;
  1980. case 1:
  1981. case 2:
  1982. case 3:
  1983. case 4:
  1984. set_bit(widget->shift,
  1985. &rx_priv->active_ch_mask[rx_port_value]);
  1986. rx_priv->active_ch_cnt[rx_port_value]++;
  1987. break;
  1988. default:
  1989. dev_err(component->dev,
  1990. "%s:Invalid AIF_ID for LPASS_CDC_RX_MACRO MUX %d\n",
  1991. __func__, rx_port_value);
  1992. goto err;
  1993. }
  1994. snd_soc_dapm_mux_update_power(widget->dapm, kcontrol,
  1995. rx_port_value, e, update);
  1996. return 0;
  1997. err:
  1998. return -EINVAL;
  1999. }
  2000. static int lpass_cdc_rx_macro_get_ear_mode(struct snd_kcontrol *kcontrol,
  2001. struct snd_ctl_elem_value *ucontrol)
  2002. {
  2003. struct snd_soc_component *component =
  2004. snd_soc_kcontrol_component(kcontrol);
  2005. struct device *rx_dev = NULL;
  2006. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  2007. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  2008. return -EINVAL;
  2009. ucontrol->value.integer.value[0] = rx_priv->is_ear_mode_on;
  2010. return 0;
  2011. }
  2012. static int lpass_cdc_rx_macro_put_ear_mode(struct snd_kcontrol *kcontrol,
  2013. struct snd_ctl_elem_value *ucontrol)
  2014. {
  2015. struct snd_soc_component *component =
  2016. snd_soc_kcontrol_component(kcontrol);
  2017. struct device *rx_dev = NULL;
  2018. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  2019. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  2020. return -EINVAL;
  2021. rx_priv->is_ear_mode_on =
  2022. (!ucontrol->value.integer.value[0] ? false : true);
  2023. return 0;
  2024. }
  2025. static int lpass_cdc_rx_macro_get_hph_hd2_mode(struct snd_kcontrol *kcontrol,
  2026. struct snd_ctl_elem_value *ucontrol)
  2027. {
  2028. struct snd_soc_component *component =
  2029. snd_soc_kcontrol_component(kcontrol);
  2030. struct device *rx_dev = NULL;
  2031. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  2032. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  2033. return -EINVAL;
  2034. ucontrol->value.integer.value[0] = rx_priv->hph_hd2_mode;
  2035. return 0;
  2036. }
  2037. static int lpass_cdc_rx_macro_put_hph_hd2_mode(struct snd_kcontrol *kcontrol,
  2038. struct snd_ctl_elem_value *ucontrol)
  2039. {
  2040. struct snd_soc_component *component =
  2041. snd_soc_kcontrol_component(kcontrol);
  2042. struct device *rx_dev = NULL;
  2043. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  2044. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  2045. return -EINVAL;
  2046. rx_priv->hph_hd2_mode = ucontrol->value.integer.value[0];
  2047. return 0;
  2048. }
  2049. static int lpass_cdc_rx_macro_get_hph_pwr_mode(struct snd_kcontrol *kcontrol,
  2050. struct snd_ctl_elem_value *ucontrol)
  2051. {
  2052. struct snd_soc_component *component =
  2053. snd_soc_kcontrol_component(kcontrol);
  2054. struct device *rx_dev = NULL;
  2055. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  2056. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  2057. return -EINVAL;
  2058. ucontrol->value.integer.value[0] = rx_priv->hph_pwr_mode;
  2059. return 0;
  2060. }
  2061. static int lpass_cdc_rx_macro_put_hph_pwr_mode(struct snd_kcontrol *kcontrol,
  2062. struct snd_ctl_elem_value *ucontrol)
  2063. {
  2064. struct snd_soc_component *component =
  2065. snd_soc_kcontrol_component(kcontrol);
  2066. struct device *rx_dev = NULL;
  2067. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  2068. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  2069. return -EINVAL;
  2070. rx_priv->hph_pwr_mode = ucontrol->value.integer.value[0];
  2071. return 0;
  2072. }
  2073. static int lpass_cdc_rx_macro_vbat_bcl_gsm_mode_func_get(struct snd_kcontrol *kcontrol,
  2074. struct snd_ctl_elem_value *ucontrol)
  2075. {
  2076. struct snd_soc_component *component =
  2077. snd_soc_kcontrol_component(kcontrol);
  2078. ucontrol->value.integer.value[0] =
  2079. ((snd_soc_component_read(
  2080. component, LPASS_CDC_RX_BCL_VBAT_CFG) & 0x04) ?
  2081. 1 : 0);
  2082. dev_dbg(component->dev, "%s: value: %lu\n", __func__,
  2083. ucontrol->value.integer.value[0]);
  2084. return 0;
  2085. }
  2086. static int lpass_cdc_rx_macro_vbat_bcl_gsm_mode_func_put(struct snd_kcontrol *kcontrol,
  2087. struct snd_ctl_elem_value *ucontrol)
  2088. {
  2089. struct snd_soc_component *component =
  2090. snd_soc_kcontrol_component(kcontrol);
  2091. dev_dbg(component->dev, "%s: value: %lu\n", __func__,
  2092. ucontrol->value.integer.value[0]);
  2093. /* Set Vbat register configuration for GSM mode bit based on value */
  2094. if (ucontrol->value.integer.value[0])
  2095. snd_soc_component_update_bits(component,
  2096. LPASS_CDC_RX_BCL_VBAT_CFG,
  2097. 0x04, 0x04);
  2098. else
  2099. snd_soc_component_update_bits(component,
  2100. LPASS_CDC_RX_BCL_VBAT_CFG,
  2101. 0x04, 0x00);
  2102. return 0;
  2103. }
  2104. static int lpass_cdc_rx_macro_soft_clip_enable_get(struct snd_kcontrol *kcontrol,
  2105. struct snd_ctl_elem_value *ucontrol)
  2106. {
  2107. struct snd_soc_component *component =
  2108. snd_soc_kcontrol_component(kcontrol);
  2109. struct device *rx_dev = NULL;
  2110. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  2111. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  2112. return -EINVAL;
  2113. ucontrol->value.integer.value[0] = rx_priv->is_softclip_on;
  2114. dev_dbg(component->dev, "%s: ucontrol->value.integer.value[0] = %ld\n",
  2115. __func__, ucontrol->value.integer.value[0]);
  2116. return 0;
  2117. }
  2118. static int lpass_cdc_rx_macro_soft_clip_enable_put(struct snd_kcontrol *kcontrol,
  2119. struct snd_ctl_elem_value *ucontrol)
  2120. {
  2121. struct snd_soc_component *component =
  2122. snd_soc_kcontrol_component(kcontrol);
  2123. struct device *rx_dev = NULL;
  2124. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  2125. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  2126. return -EINVAL;
  2127. rx_priv->is_softclip_on = ucontrol->value.integer.value[0];
  2128. dev_dbg(component->dev, "%s: soft clip enable = %d\n", __func__,
  2129. rx_priv->is_softclip_on);
  2130. return 0;
  2131. }
  2132. static int lpass_cdc_rx_macro_aux_hpf_mode_get(struct snd_kcontrol *kcontrol,
  2133. struct snd_ctl_elem_value *ucontrol)
  2134. {
  2135. struct snd_soc_component *component =
  2136. snd_soc_kcontrol_component(kcontrol);
  2137. struct device *rx_dev = NULL;
  2138. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  2139. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  2140. return -EINVAL;
  2141. ucontrol->value.integer.value[0] = rx_priv->is_aux_hpf_on;
  2142. dev_dbg(component->dev, "%s: ucontrol->value.integer.value[0] = %ld\n",
  2143. __func__, ucontrol->value.integer.value[0]);
  2144. return 0;
  2145. }
  2146. static int lpass_cdc_rx_macro_aux_hpf_mode_put(struct snd_kcontrol *kcontrol,
  2147. struct snd_ctl_elem_value *ucontrol)
  2148. {
  2149. struct snd_soc_component *component =
  2150. snd_soc_kcontrol_component(kcontrol);
  2151. struct device *rx_dev = NULL;
  2152. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  2153. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  2154. return -EINVAL;
  2155. rx_priv->is_aux_hpf_on = ucontrol->value.integer.value[0];
  2156. dev_dbg(component->dev, "%s: aux hpf enable = %d\n", __func__,
  2157. rx_priv->is_aux_hpf_on);
  2158. return 0;
  2159. }
  2160. static int lpass_cdc_rx_macro_enable_vbat(struct snd_soc_dapm_widget *w,
  2161. struct snd_kcontrol *kcontrol,
  2162. int event)
  2163. {
  2164. struct snd_soc_component *component =
  2165. snd_soc_dapm_to_component(w->dapm);
  2166. struct device *rx_dev = NULL;
  2167. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  2168. dev_dbg(component->dev, "%s %s %d\n", __func__, w->name, event);
  2169. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  2170. return -EINVAL;
  2171. switch (event) {
  2172. case SND_SOC_DAPM_PRE_PMU:
  2173. /* Enable clock for VBAT block */
  2174. snd_soc_component_update_bits(component,
  2175. LPASS_CDC_RX_BCL_VBAT_PATH_CTL, 0x10, 0x10);
  2176. /* Enable VBAT block */
  2177. snd_soc_component_update_bits(component,
  2178. LPASS_CDC_RX_BCL_VBAT_CFG, 0x01, 0x01);
  2179. /* Update interpolator with 384K path */
  2180. snd_soc_component_update_bits(component,
  2181. LPASS_CDC_RX_RX2_RX_PATH_CFG1, 0x80, 0x80);
  2182. /* Update DSM FS rate */
  2183. snd_soc_component_update_bits(component,
  2184. LPASS_CDC_RX_RX2_RX_PATH_SEC7, 0x02, 0x02);
  2185. /* Use attenuation mode */
  2186. snd_soc_component_update_bits(component,
  2187. LPASS_CDC_RX_BCL_VBAT_CFG, 0x02, 0x00);
  2188. /* BCL block needs softclip clock to be enabled */
  2189. lpass_cdc_rx_macro_enable_softclip_clk(component, rx_priv, true);
  2190. /* Enable VBAT at channel level */
  2191. snd_soc_component_update_bits(component,
  2192. LPASS_CDC_RX_RX2_RX_PATH_CFG1, 0x02, 0x02);
  2193. /* Set the ATTK1 gain */
  2194. snd_soc_component_update_bits(component,
  2195. LPASS_CDC_RX_BCL_VBAT_BCL_GAIN_UPD1,
  2196. 0xFF, 0xFF);
  2197. snd_soc_component_update_bits(component,
  2198. LPASS_CDC_RX_BCL_VBAT_BCL_GAIN_UPD2,
  2199. 0xFF, 0x03);
  2200. snd_soc_component_update_bits(component,
  2201. LPASS_CDC_RX_BCL_VBAT_BCL_GAIN_UPD3,
  2202. 0xFF, 0x00);
  2203. /* Set the ATTK2 gain */
  2204. snd_soc_component_update_bits(component,
  2205. LPASS_CDC_RX_BCL_VBAT_BCL_GAIN_UPD4,
  2206. 0xFF, 0xFF);
  2207. snd_soc_component_update_bits(component,
  2208. LPASS_CDC_RX_BCL_VBAT_BCL_GAIN_UPD5,
  2209. 0xFF, 0x03);
  2210. snd_soc_component_update_bits(component,
  2211. LPASS_CDC_RX_BCL_VBAT_BCL_GAIN_UPD6,
  2212. 0xFF, 0x00);
  2213. /* Set the ATTK3 gain */
  2214. snd_soc_component_update_bits(component,
  2215. LPASS_CDC_RX_BCL_VBAT_BCL_GAIN_UPD7,
  2216. 0xFF, 0xFF);
  2217. snd_soc_component_update_bits(component,
  2218. LPASS_CDC_RX_BCL_VBAT_BCL_GAIN_UPD8,
  2219. 0xFF, 0x03);
  2220. snd_soc_component_update_bits(component,
  2221. LPASS_CDC_RX_BCL_VBAT_BCL_GAIN_UPD9,
  2222. 0xFF, 0x00);
  2223. /* Enable CB decode block clock */
  2224. snd_soc_component_update_bits(component,
  2225. LPASS_CDC_RX_CB_DECODE_CB_DECODE_CTL1, 0x01, 0x01);
  2226. /* Enable BCL path */
  2227. snd_soc_component_update_bits(component,
  2228. LPASS_CDC_RX_CB_DECODE_CB_DECODE_CTL2, 0x01, 0x01);
  2229. /* Request for BCL data */
  2230. snd_soc_component_update_bits(component,
  2231. LPASS_CDC_RX_CB_DECODE_CB_DECODE_CTL3, 0x01, 0x01);
  2232. break;
  2233. case SND_SOC_DAPM_POST_PMD:
  2234. snd_soc_component_update_bits(component,
  2235. LPASS_CDC_RX_CB_DECODE_CB_DECODE_CTL3, 0x01, 0x00);
  2236. snd_soc_component_update_bits(component,
  2237. LPASS_CDC_RX_CB_DECODE_CB_DECODE_CTL2, 0x01, 0x00);
  2238. snd_soc_component_update_bits(component,
  2239. LPASS_CDC_RX_CB_DECODE_CB_DECODE_CTL1, 0x01, 0x00);
  2240. snd_soc_component_update_bits(component,
  2241. LPASS_CDC_RX_RX2_RX_PATH_CFG1,
  2242. 0x80, 0x00);
  2243. snd_soc_component_update_bits(component,
  2244. LPASS_CDC_RX_RX2_RX_PATH_SEC7,
  2245. 0x02, 0x00);
  2246. snd_soc_component_update_bits(component,
  2247. LPASS_CDC_RX_BCL_VBAT_CFG,
  2248. 0x02, 0x02);
  2249. snd_soc_component_update_bits(component,
  2250. LPASS_CDC_RX_RX2_RX_PATH_CFG1,
  2251. 0x02, 0x00);
  2252. snd_soc_component_update_bits(component,
  2253. LPASS_CDC_RX_BCL_VBAT_BCL_GAIN_UPD1,
  2254. 0xFF, 0x00);
  2255. snd_soc_component_update_bits(component,
  2256. LPASS_CDC_RX_BCL_VBAT_BCL_GAIN_UPD2,
  2257. 0xFF, 0x00);
  2258. snd_soc_component_update_bits(component,
  2259. LPASS_CDC_RX_BCL_VBAT_BCL_GAIN_UPD3,
  2260. 0xFF, 0x00);
  2261. snd_soc_component_update_bits(component,
  2262. LPASS_CDC_RX_BCL_VBAT_BCL_GAIN_UPD4,
  2263. 0xFF, 0x00);
  2264. snd_soc_component_update_bits(component,
  2265. LPASS_CDC_RX_BCL_VBAT_BCL_GAIN_UPD5,
  2266. 0xFF, 0x00);
  2267. snd_soc_component_update_bits(component,
  2268. LPASS_CDC_RX_BCL_VBAT_BCL_GAIN_UPD6,
  2269. 0xFF, 0x00);
  2270. snd_soc_component_update_bits(component,
  2271. LPASS_CDC_RX_BCL_VBAT_BCL_GAIN_UPD7,
  2272. 0xFF, 0x00);
  2273. snd_soc_component_update_bits(component,
  2274. LPASS_CDC_RX_BCL_VBAT_BCL_GAIN_UPD8,
  2275. 0xFF, 0x00);
  2276. snd_soc_component_update_bits(component,
  2277. LPASS_CDC_RX_BCL_VBAT_BCL_GAIN_UPD9,
  2278. 0xFF, 0x00);
  2279. lpass_cdc_rx_macro_enable_softclip_clk(component, rx_priv, false);
  2280. snd_soc_component_update_bits(component,
  2281. LPASS_CDC_RX_BCL_VBAT_CFG, 0x01, 0x00);
  2282. snd_soc_component_update_bits(component,
  2283. LPASS_CDC_RX_BCL_VBAT_PATH_CTL, 0x10, 0x00);
  2284. break;
  2285. default:
  2286. dev_err(rx_dev, "%s: Invalid event %d\n", __func__, event);
  2287. break;
  2288. }
  2289. return 0;
  2290. }
  2291. static void lpass_cdc_rx_macro_idle_detect_control(struct snd_soc_component *component,
  2292. struct lpass_cdc_rx_macro_priv *rx_priv,
  2293. int interp, int event)
  2294. {
  2295. int reg = 0, mask = 0, val = 0;
  2296. if (!rx_priv->idle_det_cfg.hph_idle_detect_en)
  2297. return;
  2298. if (interp == INTERP_HPHL) {
  2299. reg = LPASS_CDC_RX_IDLE_DETECT_PATH_CTL;
  2300. mask = 0x01;
  2301. val = 0x01;
  2302. }
  2303. if (interp == INTERP_HPHR) {
  2304. reg = LPASS_CDC_RX_IDLE_DETECT_PATH_CTL;
  2305. mask = 0x02;
  2306. val = 0x02;
  2307. }
  2308. if (reg && SND_SOC_DAPM_EVENT_ON(event))
  2309. snd_soc_component_update_bits(component, reg, mask, val);
  2310. if (reg && SND_SOC_DAPM_EVENT_OFF(event)) {
  2311. snd_soc_component_update_bits(component, reg, mask, 0x00);
  2312. rx_priv->idle_det_cfg.hph_idle_thr = 0;
  2313. snd_soc_component_write(component,
  2314. LPASS_CDC_RX_IDLE_DETECT_CFG3, 0x0);
  2315. }
  2316. }
  2317. static void lpass_cdc_rx_macro_hphdelay_lutbypass(struct snd_soc_component *component,
  2318. struct lpass_cdc_rx_macro_priv *rx_priv,
  2319. u16 interp_idx, int event)
  2320. {
  2321. u16 hph_lut_bypass_reg = 0;
  2322. u16 hph_comp_ctrl7 = 0;
  2323. switch (interp_idx) {
  2324. case INTERP_HPHL:
  2325. hph_lut_bypass_reg = LPASS_CDC_RX_TOP_HPHL_COMP_LUT;
  2326. hph_comp_ctrl7 = LPASS_CDC_RX_COMPANDER0_CTL7;
  2327. break;
  2328. case INTERP_HPHR:
  2329. hph_lut_bypass_reg = LPASS_CDC_RX_TOP_HPHR_COMP_LUT;
  2330. hph_comp_ctrl7 = LPASS_CDC_RX_COMPANDER1_CTL7;
  2331. break;
  2332. default:
  2333. break;
  2334. }
  2335. if (hph_lut_bypass_reg && SND_SOC_DAPM_EVENT_ON(event)) {
  2336. if (interp_idx == INTERP_HPHL) {
  2337. if (rx_priv->is_ear_mode_on)
  2338. snd_soc_component_update_bits(component,
  2339. LPASS_CDC_RX_RX0_RX_PATH_CFG1,
  2340. 0x02, 0x02);
  2341. else
  2342. snd_soc_component_update_bits(component,
  2343. hph_lut_bypass_reg,
  2344. 0x80, 0x80);
  2345. } else {
  2346. snd_soc_component_update_bits(component,
  2347. hph_lut_bypass_reg,
  2348. 0x80, 0x80);
  2349. }
  2350. if (rx_priv->hph_pwr_mode)
  2351. snd_soc_component_update_bits(component,
  2352. hph_comp_ctrl7,
  2353. 0x20, 0x00);
  2354. }
  2355. if (hph_lut_bypass_reg && SND_SOC_DAPM_EVENT_OFF(event)) {
  2356. snd_soc_component_update_bits(component,
  2357. LPASS_CDC_RX_RX0_RX_PATH_CFG1,
  2358. 0x02, 0x00);
  2359. snd_soc_component_update_bits(component, hph_lut_bypass_reg,
  2360. 0x80, 0x00);
  2361. snd_soc_component_update_bits(component, hph_comp_ctrl7,
  2362. 0x20, 0x20);
  2363. }
  2364. }
  2365. static int lpass_cdc_rx_macro_enable_interp_clk(struct snd_soc_component *component,
  2366. int event, int interp_idx)
  2367. {
  2368. u16 main_reg = 0, dsm_reg = 0, rx_cfg2_reg = 0;
  2369. struct device *rx_dev = NULL;
  2370. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  2371. if (!component) {
  2372. pr_err("%s: component is NULL\n", __func__);
  2373. return -EINVAL;
  2374. }
  2375. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  2376. return -EINVAL;
  2377. main_reg = LPASS_CDC_RX_RX0_RX_PATH_CTL +
  2378. (interp_idx * LPASS_CDC_RX_MACRO_RX_PATH_OFFSET);
  2379. dsm_reg = LPASS_CDC_RX_RX0_RX_PATH_DSM_CTL +
  2380. (interp_idx * LPASS_CDC_RX_MACRO_RX_PATH_OFFSET);
  2381. if (interp_idx == INTERP_AUX)
  2382. dsm_reg = LPASS_CDC_RX_RX2_RX_PATH_DSM_CTL;
  2383. rx_cfg2_reg = LPASS_CDC_RX_RX0_RX_PATH_CFG2 +
  2384. (interp_idx * LPASS_CDC_RX_MACRO_RX_PATH_OFFSET);
  2385. if (SND_SOC_DAPM_EVENT_ON(event)) {
  2386. if (rx_priv->main_clk_users[interp_idx] == 0) {
  2387. /* Main path PGA mute enable */
  2388. snd_soc_component_update_bits(component, main_reg,
  2389. 0x10, 0x10);
  2390. snd_soc_component_update_bits(component, dsm_reg,
  2391. 0x01, 0x01);
  2392. snd_soc_component_update_bits(component, rx_cfg2_reg,
  2393. 0x03, 0x03);
  2394. lpass_cdc_rx_macro_idle_detect_control(component, rx_priv,
  2395. interp_idx, event);
  2396. if (rx_priv->hph_hd2_mode)
  2397. lpass_cdc_rx_macro_hd2_control(
  2398. component, interp_idx, event);
  2399. lpass_cdc_rx_macro_hphdelay_lutbypass(component, rx_priv,
  2400. interp_idx, event);
  2401. lpass_cdc_rx_macro_droop_setting(component,
  2402. interp_idx, event);
  2403. lpass_cdc_rx_macro_config_compander(component, rx_priv,
  2404. interp_idx, event);
  2405. if (interp_idx == INTERP_AUX) {
  2406. lpass_cdc_rx_macro_config_softclip(component, rx_priv,
  2407. event);
  2408. lpass_cdc_rx_macro_config_aux_hpf(component, rx_priv,
  2409. event);
  2410. }
  2411. lpass_cdc_rx_macro_config_classh(component, rx_priv,
  2412. interp_idx, event);
  2413. }
  2414. rx_priv->main_clk_users[interp_idx]++;
  2415. }
  2416. if (SND_SOC_DAPM_EVENT_OFF(event)) {
  2417. rx_priv->main_clk_users[interp_idx]--;
  2418. if (rx_priv->main_clk_users[interp_idx] <= 0) {
  2419. rx_priv->main_clk_users[interp_idx] = 0;
  2420. /* Main path PGA mute enable */
  2421. snd_soc_component_update_bits(component, main_reg,
  2422. 0x10, 0x10);
  2423. /* Clk Disable */
  2424. snd_soc_component_update_bits(component, dsm_reg,
  2425. 0x01, 0x00);
  2426. snd_soc_component_update_bits(component, main_reg,
  2427. 0x20, 0x00);
  2428. /* Reset enable and disable */
  2429. snd_soc_component_update_bits(component, main_reg,
  2430. 0x40, 0x40);
  2431. snd_soc_component_update_bits(component, main_reg,
  2432. 0x40, 0x00);
  2433. /* Reset rate to 48K*/
  2434. snd_soc_component_update_bits(component, main_reg,
  2435. 0x0F, 0x04);
  2436. snd_soc_component_update_bits(component, rx_cfg2_reg,
  2437. 0x03, 0x00);
  2438. lpass_cdc_rx_macro_config_classh(component, rx_priv,
  2439. interp_idx, event);
  2440. lpass_cdc_rx_macro_config_compander(component, rx_priv,
  2441. interp_idx, event);
  2442. if (interp_idx == INTERP_AUX) {
  2443. lpass_cdc_rx_macro_config_softclip(component, rx_priv,
  2444. event);
  2445. lpass_cdc_rx_macro_config_aux_hpf(component, rx_priv,
  2446. event);
  2447. }
  2448. lpass_cdc_rx_macro_hphdelay_lutbypass(component, rx_priv,
  2449. interp_idx, event);
  2450. if (rx_priv->hph_hd2_mode)
  2451. lpass_cdc_rx_macro_hd2_control(component, interp_idx,
  2452. event);
  2453. lpass_cdc_rx_macro_idle_detect_control(component, rx_priv,
  2454. interp_idx, event);
  2455. }
  2456. }
  2457. dev_dbg(component->dev, "%s event %d main_clk_users %d\n",
  2458. __func__, event, rx_priv->main_clk_users[interp_idx]);
  2459. return rx_priv->main_clk_users[interp_idx];
  2460. }
  2461. static int lpass_cdc_rx_macro_enable_rx_path_clk(struct snd_soc_dapm_widget *w,
  2462. struct snd_kcontrol *kcontrol, int event)
  2463. {
  2464. struct snd_soc_component *component =
  2465. snd_soc_dapm_to_component(w->dapm);
  2466. u16 sidetone_reg = 0, fs_reg = 0;
  2467. dev_dbg(component->dev, "%s %d %d\n", __func__, event, w->shift);
  2468. sidetone_reg = LPASS_CDC_RX_RX0_RX_PATH_CFG1 +
  2469. LPASS_CDC_RX_MACRO_RX_PATH_OFFSET * (w->shift);
  2470. fs_reg = LPASS_CDC_RX_RX0_RX_PATH_CTL +
  2471. LPASS_CDC_RX_MACRO_RX_PATH_OFFSET * (w->shift);
  2472. switch (event) {
  2473. case SND_SOC_DAPM_PRE_PMU:
  2474. lpass_cdc_rx_macro_enable_interp_clk(component, event, w->shift);
  2475. snd_soc_component_update_bits(component, sidetone_reg,
  2476. 0x10, 0x10);
  2477. snd_soc_component_update_bits(component, fs_reg,
  2478. 0x20, 0x20);
  2479. break;
  2480. case SND_SOC_DAPM_POST_PMD:
  2481. snd_soc_component_update_bits(component, sidetone_reg,
  2482. 0x10, 0x00);
  2483. lpass_cdc_rx_macro_enable_interp_clk(component, event, w->shift);
  2484. break;
  2485. default:
  2486. break;
  2487. };
  2488. return 0;
  2489. }
  2490. static void lpass_cdc_rx_macro_restore_iir_coeff(struct lpass_cdc_rx_macro_priv *rx_priv, int iir_idx,
  2491. int band_idx)
  2492. {
  2493. u16 reg_add = 0, coeff_idx = 0, idx = 0;
  2494. struct regmap *regmap = dev_get_regmap(rx_priv->dev->parent, NULL);
  2495. if (regmap == NULL) {
  2496. dev_err(rx_priv->dev, "%s: regmap is NULL\n", __func__);
  2497. return;
  2498. }
  2499. regmap_write(regmap,
  2500. (LPASS_CDC_RX_SIDETONE_IIR0_IIR_COEF_B1_CTL + 0x80 * iir_idx),
  2501. (band_idx * BAND_MAX * sizeof(uint32_t)) & 0x7F);
  2502. reg_add = LPASS_CDC_RX_SIDETONE_IIR0_IIR_COEF_B2_CTL + 0x80 * iir_idx;
  2503. /* 5 coefficients per band and 4 writes per coefficient */
  2504. for (coeff_idx = 0; coeff_idx < LPASS_CDC_RX_MACRO_SIDETONE_IIR_COEFF_MAX;
  2505. coeff_idx++) {
  2506. /* Four 8 bit values(one 32 bit) per coefficient */
  2507. regmap_write(regmap, reg_add,
  2508. rx_priv->sidetone_coeff_array[iir_idx][band_idx][idx++]);
  2509. regmap_write(regmap, reg_add,
  2510. rx_priv->sidetone_coeff_array[iir_idx][band_idx][idx++]);
  2511. regmap_write(regmap, reg_add,
  2512. rx_priv->sidetone_coeff_array[iir_idx][band_idx][idx++]);
  2513. regmap_write(regmap, reg_add,
  2514. rx_priv->sidetone_coeff_array[iir_idx][band_idx][idx++]);
  2515. }
  2516. }
  2517. static int lpass_cdc_rx_macro_iir_enable_audio_mixer_get(struct snd_kcontrol *kcontrol,
  2518. struct snd_ctl_elem_value *ucontrol)
  2519. {
  2520. struct snd_soc_component *component =
  2521. snd_soc_kcontrol_component(kcontrol);
  2522. int iir_idx = ((struct soc_multi_mixer_control *)
  2523. kcontrol->private_value)->reg;
  2524. int band_idx = ((struct soc_multi_mixer_control *)
  2525. kcontrol->private_value)->shift;
  2526. /* IIR filter band registers are at integer multiples of 0x80 */
  2527. u16 iir_reg = LPASS_CDC_RX_SIDETONE_IIR0_IIR_CTL + 0x80 * iir_idx;
  2528. ucontrol->value.integer.value[0] = (
  2529. snd_soc_component_read(component, iir_reg) &
  2530. (1 << band_idx)) != 0;
  2531. dev_dbg(component->dev, "%s: IIR #%d band #%d enable %d\n", __func__,
  2532. iir_idx, band_idx,
  2533. (uint32_t)ucontrol->value.integer.value[0]);
  2534. return 0;
  2535. }
  2536. static int lpass_cdc_rx_macro_iir_enable_audio_mixer_put(struct snd_kcontrol *kcontrol,
  2537. struct snd_ctl_elem_value *ucontrol)
  2538. {
  2539. struct snd_soc_component *component =
  2540. snd_soc_kcontrol_component(kcontrol);
  2541. int iir_idx = ((struct soc_multi_mixer_control *)
  2542. kcontrol->private_value)->reg;
  2543. int band_idx = ((struct soc_multi_mixer_control *)
  2544. kcontrol->private_value)->shift;
  2545. bool iir_band_en_status = 0;
  2546. int value = ucontrol->value.integer.value[0];
  2547. u16 iir_reg = LPASS_CDC_RX_SIDETONE_IIR0_IIR_CTL + 0x80 * iir_idx;
  2548. struct device *rx_dev = NULL;
  2549. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  2550. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  2551. return -EINVAL;
  2552. lpass_cdc_rx_macro_restore_iir_coeff(rx_priv, iir_idx, band_idx);
  2553. /* Mask first 5 bits, 6-8 are reserved */
  2554. snd_soc_component_update_bits(component, iir_reg, (1 << band_idx),
  2555. (value << band_idx));
  2556. iir_band_en_status = ((snd_soc_component_read(component, iir_reg) &
  2557. (1 << band_idx)) != 0);
  2558. dev_dbg(component->dev, "%s: IIR #%d band #%d enable %d\n", __func__,
  2559. iir_idx, band_idx, iir_band_en_status);
  2560. return 0;
  2561. }
  2562. static uint32_t get_iir_band_coeff(struct snd_soc_component *component,
  2563. int iir_idx, int band_idx,
  2564. int coeff_idx)
  2565. {
  2566. uint32_t value = 0;
  2567. /* Address does not automatically update if reading */
  2568. snd_soc_component_write(component,
  2569. (LPASS_CDC_RX_SIDETONE_IIR0_IIR_COEF_B1_CTL + 0x80 * iir_idx),
  2570. ((band_idx * BAND_MAX + coeff_idx)
  2571. * sizeof(uint32_t)) & 0x7F);
  2572. value |= snd_soc_component_read(component,
  2573. (LPASS_CDC_RX_SIDETONE_IIR0_IIR_COEF_B2_CTL + 0x80 * iir_idx));
  2574. snd_soc_component_write(component,
  2575. (LPASS_CDC_RX_SIDETONE_IIR0_IIR_COEF_B1_CTL + 0x80 * iir_idx),
  2576. ((band_idx * BAND_MAX + coeff_idx)
  2577. * sizeof(uint32_t) + 1) & 0x7F);
  2578. value |= (snd_soc_component_read(component,
  2579. (LPASS_CDC_RX_SIDETONE_IIR0_IIR_COEF_B2_CTL +
  2580. 0x80 * iir_idx)) << 8);
  2581. snd_soc_component_write(component,
  2582. (LPASS_CDC_RX_SIDETONE_IIR0_IIR_COEF_B1_CTL + 0x80 * iir_idx),
  2583. ((band_idx * BAND_MAX + coeff_idx)
  2584. * sizeof(uint32_t) + 2) & 0x7F);
  2585. value |= (snd_soc_component_read(component,
  2586. (LPASS_CDC_RX_SIDETONE_IIR0_IIR_COEF_B2_CTL +
  2587. 0x80 * iir_idx)) << 16);
  2588. snd_soc_component_write(component,
  2589. (LPASS_CDC_RX_SIDETONE_IIR0_IIR_COEF_B1_CTL + 0x80 * iir_idx),
  2590. ((band_idx * BAND_MAX + coeff_idx)
  2591. * sizeof(uint32_t) + 3) & 0x7F);
  2592. /* Mask bits top 2 bits since they are reserved */
  2593. value |= ((snd_soc_component_read(component,
  2594. (LPASS_CDC_RX_SIDETONE_IIR0_IIR_COEF_B2_CTL +
  2595. 16 * iir_idx)) & 0x3F) << 24);
  2596. return value;
  2597. }
  2598. static int lpass_cdc_rx_macro_iir_filter_info(struct snd_kcontrol *kcontrol,
  2599. struct snd_ctl_elem_info *ucontrol)
  2600. {
  2601. struct lpass_cdc_rx_macro_iir_filter_ctl *ctl =
  2602. (struct lpass_cdc_rx_macro_iir_filter_ctl *)kcontrol->private_value;
  2603. struct soc_bytes_ext *params = &ctl->bytes_ext;
  2604. ucontrol->type = SNDRV_CTL_ELEM_TYPE_BYTES;
  2605. ucontrol->count = params->max;
  2606. return 0;
  2607. }
  2608. static int lpass_cdc_rx_macro_iir_band_audio_mixer_get(struct snd_kcontrol *kcontrol,
  2609. struct snd_ctl_elem_value *ucontrol)
  2610. {
  2611. struct snd_soc_component *component =
  2612. snd_soc_kcontrol_component(kcontrol);
  2613. struct lpass_cdc_rx_macro_iir_filter_ctl *ctl =
  2614. (struct lpass_cdc_rx_macro_iir_filter_ctl *)kcontrol->private_value;
  2615. struct soc_bytes_ext *params = &ctl->bytes_ext;
  2616. int iir_idx = ctl->iir_idx;
  2617. int band_idx = ctl->band_idx;
  2618. u32 coeff[BAND_MAX];
  2619. int coeff_idx = 0;
  2620. for (coeff_idx = 0; coeff_idx < LPASS_CDC_RX_MACRO_SIDETONE_IIR_COEFF_MAX;
  2621. coeff_idx++) {
  2622. coeff[coeff_idx] =
  2623. get_iir_band_coeff(component, iir_idx, band_idx, coeff_idx);
  2624. }
  2625. memcpy(ucontrol->value.bytes.data, &coeff[0], params->max);
  2626. dev_dbg(component->dev, "%s: IIR #%d band #%d b0 = 0x%x\n"
  2627. "%s: IIR #%d band #%d b1 = 0x%x\n"
  2628. "%s: IIR #%d band #%d b2 = 0x%x\n"
  2629. "%s: IIR #%d band #%d a1 = 0x%x\n"
  2630. "%s: IIR #%d band #%d a2 = 0x%x\n",
  2631. __func__, iir_idx, band_idx, coeff[0],
  2632. __func__, iir_idx, band_idx, coeff[1],
  2633. __func__, iir_idx, band_idx, coeff[2],
  2634. __func__, iir_idx, band_idx, coeff[3],
  2635. __func__, iir_idx, band_idx, coeff[4]);
  2636. return 0;
  2637. }
  2638. static void set_iir_band_coeff(struct snd_soc_component *component,
  2639. int iir_idx, int band_idx,
  2640. uint32_t value)
  2641. {
  2642. snd_soc_component_write(component,
  2643. (LPASS_CDC_RX_SIDETONE_IIR0_IIR_COEF_B2_CTL + 0x80 * iir_idx),
  2644. (value & 0xFF));
  2645. snd_soc_component_write(component,
  2646. (LPASS_CDC_RX_SIDETONE_IIR0_IIR_COEF_B2_CTL + 0x80 * iir_idx),
  2647. (value >> 8) & 0xFF);
  2648. snd_soc_component_write(component,
  2649. (LPASS_CDC_RX_SIDETONE_IIR0_IIR_COEF_B2_CTL + 0x80 * iir_idx),
  2650. (value >> 16) & 0xFF);
  2651. /* Mask top 2 bits, 7-8 are reserved */
  2652. snd_soc_component_write(component,
  2653. (LPASS_CDC_RX_SIDETONE_IIR0_IIR_COEF_B2_CTL + 0x80 * iir_idx),
  2654. (value >> 24) & 0x3F);
  2655. }
  2656. static int lpass_cdc_rx_macro_iir_band_audio_mixer_put(struct snd_kcontrol *kcontrol,
  2657. struct snd_ctl_elem_value *ucontrol)
  2658. {
  2659. struct snd_soc_component *component =
  2660. snd_soc_kcontrol_component(kcontrol);
  2661. struct lpass_cdc_rx_macro_iir_filter_ctl *ctl =
  2662. (struct lpass_cdc_rx_macro_iir_filter_ctl *)kcontrol->private_value;
  2663. struct soc_bytes_ext *params = &ctl->bytes_ext;
  2664. int iir_idx = ctl->iir_idx;
  2665. int band_idx = ctl->band_idx;
  2666. u32 coeff[BAND_MAX];
  2667. int coeff_idx, idx = 0;
  2668. struct device *rx_dev = NULL;
  2669. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  2670. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  2671. return -EINVAL;
  2672. memcpy(&coeff[0], ucontrol->value.bytes.data, params->max);
  2673. /*
  2674. * Mask top bit it is reserved
  2675. * Updates addr automatically for each B2 write
  2676. */
  2677. snd_soc_component_write(component,
  2678. (LPASS_CDC_RX_SIDETONE_IIR0_IIR_COEF_B1_CTL + 16 * iir_idx),
  2679. (band_idx * BAND_MAX * sizeof(uint32_t)) & 0x7F);
  2680. /* Store the coefficients in sidetone coeff array */
  2681. for (coeff_idx = 0; coeff_idx < LPASS_CDC_RX_MACRO_SIDETONE_IIR_COEFF_MAX;
  2682. coeff_idx++) {
  2683. uint32_t value = coeff[coeff_idx];
  2684. set_iir_band_coeff(component, iir_idx, band_idx, value);
  2685. /* Four 8 bit values(one 32 bit) per coefficient */
  2686. rx_priv->sidetone_coeff_array[iir_idx][band_idx][idx++] =
  2687. (value & 0xFF);
  2688. rx_priv->sidetone_coeff_array[iir_idx][band_idx][idx++] =
  2689. (value >> 8) & 0xFF;
  2690. rx_priv->sidetone_coeff_array[iir_idx][band_idx][idx++] =
  2691. (value >> 16) & 0xFF;
  2692. rx_priv->sidetone_coeff_array[iir_idx][band_idx][idx++] =
  2693. (value >> 24) & 0xFF;
  2694. }
  2695. pr_debug("%s: IIR #%d band #%d b0 = 0x%x\n"
  2696. "%s: IIR #%d band #%d b1 = 0x%x\n"
  2697. "%s: IIR #%d band #%d b2 = 0x%x\n"
  2698. "%s: IIR #%d band #%d a1 = 0x%x\n"
  2699. "%s: IIR #%d band #%d a2 = 0x%x\n",
  2700. __func__, iir_idx, band_idx,
  2701. get_iir_band_coeff(component, iir_idx, band_idx, 0),
  2702. __func__, iir_idx, band_idx,
  2703. get_iir_band_coeff(component, iir_idx, band_idx, 1),
  2704. __func__, iir_idx, band_idx,
  2705. get_iir_band_coeff(component, iir_idx, band_idx, 2),
  2706. __func__, iir_idx, band_idx,
  2707. get_iir_band_coeff(component, iir_idx, band_idx, 3),
  2708. __func__, iir_idx, band_idx,
  2709. get_iir_band_coeff(component, iir_idx, band_idx, 4));
  2710. return 0;
  2711. }
  2712. static int lpass_cdc_rx_macro_set_iir_gain(struct snd_soc_dapm_widget *w,
  2713. struct snd_kcontrol *kcontrol, int event)
  2714. {
  2715. struct snd_soc_component *component =
  2716. snd_soc_dapm_to_component(w->dapm);
  2717. dev_dbg(component->dev, "%s: event = %d\n", __func__, event);
  2718. switch (event) {
  2719. case SND_SOC_DAPM_POST_PMU: /* fall through */
  2720. case SND_SOC_DAPM_PRE_PMD:
  2721. if (strnstr(w->name, "IIR0", sizeof("IIR0"))) {
  2722. snd_soc_component_write(component,
  2723. LPASS_CDC_RX_SIDETONE_IIR0_IIR_GAIN_B1_CTL,
  2724. snd_soc_component_read(component,
  2725. LPASS_CDC_RX_SIDETONE_IIR0_IIR_GAIN_B1_CTL));
  2726. snd_soc_component_write(component,
  2727. LPASS_CDC_RX_SIDETONE_IIR0_IIR_GAIN_B2_CTL,
  2728. snd_soc_component_read(component,
  2729. LPASS_CDC_RX_SIDETONE_IIR0_IIR_GAIN_B2_CTL));
  2730. snd_soc_component_write(component,
  2731. LPASS_CDC_RX_SIDETONE_IIR0_IIR_GAIN_B3_CTL,
  2732. snd_soc_component_read(component,
  2733. LPASS_CDC_RX_SIDETONE_IIR0_IIR_GAIN_B3_CTL));
  2734. snd_soc_component_write(component,
  2735. LPASS_CDC_RX_SIDETONE_IIR0_IIR_GAIN_B4_CTL,
  2736. snd_soc_component_read(component,
  2737. LPASS_CDC_RX_SIDETONE_IIR0_IIR_GAIN_B4_CTL));
  2738. } else {
  2739. snd_soc_component_write(component,
  2740. LPASS_CDC_RX_SIDETONE_IIR1_IIR_GAIN_B1_CTL,
  2741. snd_soc_component_read(component,
  2742. LPASS_CDC_RX_SIDETONE_IIR1_IIR_GAIN_B1_CTL));
  2743. snd_soc_component_write(component,
  2744. LPASS_CDC_RX_SIDETONE_IIR1_IIR_GAIN_B2_CTL,
  2745. snd_soc_component_read(component,
  2746. LPASS_CDC_RX_SIDETONE_IIR1_IIR_GAIN_B2_CTL));
  2747. snd_soc_component_write(component,
  2748. LPASS_CDC_RX_SIDETONE_IIR1_IIR_GAIN_B3_CTL,
  2749. snd_soc_component_read(component,
  2750. LPASS_CDC_RX_SIDETONE_IIR1_IIR_GAIN_B3_CTL));
  2751. snd_soc_component_write(component,
  2752. LPASS_CDC_RX_SIDETONE_IIR1_IIR_GAIN_B4_CTL,
  2753. snd_soc_component_read(component,
  2754. LPASS_CDC_RX_SIDETONE_IIR1_IIR_GAIN_B4_CTL));
  2755. }
  2756. break;
  2757. }
  2758. return 0;
  2759. }
  2760. static const struct snd_kcontrol_new lpass_cdc_rx_macro_snd_controls[] = {
  2761. SOC_SINGLE_S8_TLV("RX_RX0 Digital Volume",
  2762. LPASS_CDC_RX_RX0_RX_VOL_CTL,
  2763. -84, 40, digital_gain),
  2764. SOC_SINGLE_S8_TLV("RX_RX1 Digital Volume",
  2765. LPASS_CDC_RX_RX1_RX_VOL_CTL,
  2766. -84, 40, digital_gain),
  2767. SOC_SINGLE_S8_TLV("RX_RX2 Digital Volume",
  2768. LPASS_CDC_RX_RX2_RX_VOL_CTL,
  2769. -84, 40, digital_gain),
  2770. SOC_SINGLE_S8_TLV("RX_RX0 Mix Digital Volume",
  2771. LPASS_CDC_RX_RX0_RX_VOL_MIX_CTL,
  2772. -84, 40, digital_gain),
  2773. SOC_SINGLE_S8_TLV("RX_RX1 Mix Digital Volume",
  2774. LPASS_CDC_RX_RX1_RX_VOL_MIX_CTL,
  2775. -84, 40, digital_gain),
  2776. SOC_SINGLE_S8_TLV("RX_RX2 Mix Digital Volume",
  2777. LPASS_CDC_RX_RX2_RX_VOL_MIX_CTL,
  2778. -84, 40, digital_gain),
  2779. SOC_SINGLE_EXT("RX_COMP1 Switch", SND_SOC_NOPM, LPASS_CDC_RX_MACRO_COMP1, 1, 0,
  2780. lpass_cdc_rx_macro_get_compander, lpass_cdc_rx_macro_set_compander),
  2781. SOC_SINGLE_EXT("RX_COMP2 Switch", SND_SOC_NOPM, LPASS_CDC_RX_MACRO_COMP2, 1, 0,
  2782. lpass_cdc_rx_macro_get_compander, lpass_cdc_rx_macro_set_compander),
  2783. SOC_ENUM_EXT("HPH Idle Detect", hph_idle_detect_enum,
  2784. lpass_cdc_rx_macro_hph_idle_detect_get, lpass_cdc_rx_macro_hph_idle_detect_put),
  2785. SOC_ENUM_EXT("RX_EAR Mode", lpass_cdc_rx_macro_ear_mode_enum,
  2786. lpass_cdc_rx_macro_get_ear_mode, lpass_cdc_rx_macro_put_ear_mode),
  2787. SOC_ENUM_EXT("RX_HPH HD2 Mode", lpass_cdc_rx_macro_hph_hd2_mode_enum,
  2788. lpass_cdc_rx_macro_get_hph_hd2_mode, lpass_cdc_rx_macro_put_hph_hd2_mode),
  2789. SOC_ENUM_EXT("RX_HPH_PWR_MODE", lpass_cdc_rx_macro_hph_pwr_mode_enum,
  2790. lpass_cdc_rx_macro_get_hph_pwr_mode, lpass_cdc_rx_macro_put_hph_pwr_mode),
  2791. SOC_ENUM_EXT("RX_GSM mode Enable", lpass_cdc_rx_macro_vbat_bcl_gsm_mode_enum,
  2792. lpass_cdc_rx_macro_vbat_bcl_gsm_mode_func_get,
  2793. lpass_cdc_rx_macro_vbat_bcl_gsm_mode_func_put),
  2794. SOC_SINGLE_EXT("RX_Softclip Enable", SND_SOC_NOPM, 0, 1, 0,
  2795. lpass_cdc_rx_macro_soft_clip_enable_get,
  2796. lpass_cdc_rx_macro_soft_clip_enable_put),
  2797. SOC_SINGLE_EXT("AUX_HPF Enable", SND_SOC_NOPM, 0, 1, 0,
  2798. lpass_cdc_rx_macro_aux_hpf_mode_get,
  2799. lpass_cdc_rx_macro_aux_hpf_mode_put),
  2800. SOC_SINGLE_S8_TLV("IIR0 INP0 Volume",
  2801. LPASS_CDC_RX_SIDETONE_IIR0_IIR_GAIN_B1_CTL, -84, 40,
  2802. digital_gain),
  2803. SOC_SINGLE_S8_TLV("IIR0 INP1 Volume",
  2804. LPASS_CDC_RX_SIDETONE_IIR0_IIR_GAIN_B2_CTL, -84, 40,
  2805. digital_gain),
  2806. SOC_SINGLE_S8_TLV("IIR0 INP2 Volume",
  2807. LPASS_CDC_RX_SIDETONE_IIR0_IIR_GAIN_B3_CTL, -84, 40,
  2808. digital_gain),
  2809. SOC_SINGLE_S8_TLV("IIR0 INP3 Volume",
  2810. LPASS_CDC_RX_SIDETONE_IIR0_IIR_GAIN_B4_CTL, -84, 40,
  2811. digital_gain),
  2812. SOC_SINGLE_S8_TLV("IIR1 INP0 Volume",
  2813. LPASS_CDC_RX_SIDETONE_IIR1_IIR_GAIN_B1_CTL, -84, 40,
  2814. digital_gain),
  2815. SOC_SINGLE_S8_TLV("IIR1 INP1 Volume",
  2816. LPASS_CDC_RX_SIDETONE_IIR1_IIR_GAIN_B2_CTL, -84, 40,
  2817. digital_gain),
  2818. SOC_SINGLE_S8_TLV("IIR1 INP2 Volume",
  2819. LPASS_CDC_RX_SIDETONE_IIR1_IIR_GAIN_B3_CTL, -84, 40,
  2820. digital_gain),
  2821. SOC_SINGLE_S8_TLV("IIR1 INP3 Volume",
  2822. LPASS_CDC_RX_SIDETONE_IIR1_IIR_GAIN_B4_CTL, -84, 40,
  2823. digital_gain),
  2824. SOC_SINGLE_EXT("IIR0 Enable Band1", IIR0, BAND1, 1, 0,
  2825. lpass_cdc_rx_macro_iir_enable_audio_mixer_get,
  2826. lpass_cdc_rx_macro_iir_enable_audio_mixer_put),
  2827. SOC_SINGLE_EXT("IIR0 Enable Band2", IIR0, BAND2, 1, 0,
  2828. lpass_cdc_rx_macro_iir_enable_audio_mixer_get,
  2829. lpass_cdc_rx_macro_iir_enable_audio_mixer_put),
  2830. SOC_SINGLE_EXT("IIR0 Enable Band3", IIR0, BAND3, 1, 0,
  2831. lpass_cdc_rx_macro_iir_enable_audio_mixer_get,
  2832. lpass_cdc_rx_macro_iir_enable_audio_mixer_put),
  2833. SOC_SINGLE_EXT("IIR0 Enable Band4", IIR0, BAND4, 1, 0,
  2834. lpass_cdc_rx_macro_iir_enable_audio_mixer_get,
  2835. lpass_cdc_rx_macro_iir_enable_audio_mixer_put),
  2836. SOC_SINGLE_EXT("IIR0 Enable Band5", IIR0, BAND5, 1, 0,
  2837. lpass_cdc_rx_macro_iir_enable_audio_mixer_get,
  2838. lpass_cdc_rx_macro_iir_enable_audio_mixer_put),
  2839. SOC_SINGLE_EXT("IIR1 Enable Band1", IIR1, BAND1, 1, 0,
  2840. lpass_cdc_rx_macro_iir_enable_audio_mixer_get,
  2841. lpass_cdc_rx_macro_iir_enable_audio_mixer_put),
  2842. SOC_SINGLE_EXT("IIR1 Enable Band2", IIR1, BAND2, 1, 0,
  2843. lpass_cdc_rx_macro_iir_enable_audio_mixer_get,
  2844. lpass_cdc_rx_macro_iir_enable_audio_mixer_put),
  2845. SOC_SINGLE_EXT("IIR1 Enable Band3", IIR1, BAND3, 1, 0,
  2846. lpass_cdc_rx_macro_iir_enable_audio_mixer_get,
  2847. lpass_cdc_rx_macro_iir_enable_audio_mixer_put),
  2848. SOC_SINGLE_EXT("IIR1 Enable Band4", IIR1, BAND4, 1, 0,
  2849. lpass_cdc_rx_macro_iir_enable_audio_mixer_get,
  2850. lpass_cdc_rx_macro_iir_enable_audio_mixer_put),
  2851. SOC_SINGLE_EXT("IIR1 Enable Band5", IIR1, BAND5, 1, 0,
  2852. lpass_cdc_rx_macro_iir_enable_audio_mixer_get,
  2853. lpass_cdc_rx_macro_iir_enable_audio_mixer_put),
  2854. LPASS_CDC_RX_MACRO_IIR_FILTER_CTL("IIR0 Band1", IIR0, BAND1),
  2855. LPASS_CDC_RX_MACRO_IIR_FILTER_CTL("IIR0 Band2", IIR0, BAND2),
  2856. LPASS_CDC_RX_MACRO_IIR_FILTER_CTL("IIR0 Band3", IIR0, BAND3),
  2857. LPASS_CDC_RX_MACRO_IIR_FILTER_CTL("IIR0 Band4", IIR0, BAND4),
  2858. LPASS_CDC_RX_MACRO_IIR_FILTER_CTL("IIR0 Band5", IIR0, BAND5),
  2859. LPASS_CDC_RX_MACRO_IIR_FILTER_CTL("IIR1 Band1", IIR1, BAND1),
  2860. LPASS_CDC_RX_MACRO_IIR_FILTER_CTL("IIR1 Band2", IIR1, BAND2),
  2861. LPASS_CDC_RX_MACRO_IIR_FILTER_CTL("IIR1 Band3", IIR1, BAND3),
  2862. LPASS_CDC_RX_MACRO_IIR_FILTER_CTL("IIR1 Band4", IIR1, BAND4),
  2863. LPASS_CDC_RX_MACRO_IIR_FILTER_CTL("IIR1 Band5", IIR1, BAND5),
  2864. };
  2865. static int lpass_cdc_rx_macro_enable_echo(struct snd_soc_dapm_widget *w,
  2866. struct snd_kcontrol *kcontrol,
  2867. int event)
  2868. {
  2869. struct snd_soc_component *component =
  2870. snd_soc_dapm_to_component(w->dapm);
  2871. struct device *rx_dev = NULL;
  2872. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  2873. u16 val = 0, ec_hq_reg = 0;
  2874. int ec_tx = 0;
  2875. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  2876. return -EINVAL;
  2877. dev_dbg(rx_dev, "%s %d %s\n", __func__, event, w->name);
  2878. val = snd_soc_component_read(component,
  2879. LPASS_CDC_RX_INP_MUX_RX_MIX_CFG4);
  2880. if (!(strcmp(w->name, "RX MIX TX0 MUX")))
  2881. ec_tx = ((val & 0xf0) >> 0x4) - 1;
  2882. else if (!(strcmp(w->name, "RX MIX TX1 MUX")))
  2883. ec_tx = (val & 0x0f) - 1;
  2884. val = snd_soc_component_read(component,
  2885. LPASS_CDC_RX_INP_MUX_RX_MIX_CFG5);
  2886. if (!(strcmp(w->name, "RX MIX TX2 MUX")))
  2887. ec_tx = (val & 0x0f) - 1;
  2888. if (ec_tx < 0 || (ec_tx >= LPASS_CDC_RX_MACRO_EC_MUX_MAX)) {
  2889. dev_err(rx_dev, "%s: EC mix control not set correctly\n",
  2890. __func__);
  2891. return -EINVAL;
  2892. }
  2893. ec_hq_reg = LPASS_CDC_RX_EC_REF_HQ0_EC_REF_HQ_PATH_CTL +
  2894. 0x40 * ec_tx;
  2895. snd_soc_component_update_bits(component, ec_hq_reg, 0x01, 0x01);
  2896. ec_hq_reg = LPASS_CDC_RX_EC_REF_HQ0_EC_REF_HQ_CFG0 +
  2897. 0x40 * ec_tx;
  2898. /* default set to 48k */
  2899. snd_soc_component_update_bits(component, ec_hq_reg, 0x1E, 0x08);
  2900. return 0;
  2901. }
  2902. static const struct snd_soc_dapm_widget lpass_cdc_rx_macro_dapm_widgets[] = {
  2903. SND_SOC_DAPM_AIF_IN("RX AIF1 PB", "RX_MACRO_AIF1 Playback", 0,
  2904. SND_SOC_NOPM, 0, 0),
  2905. SND_SOC_DAPM_AIF_IN("RX AIF2 PB", "RX_MACRO_AIF2 Playback", 0,
  2906. SND_SOC_NOPM, 0, 0),
  2907. SND_SOC_DAPM_AIF_IN("RX AIF3 PB", "RX_MACRO_AIF3 Playback", 0,
  2908. SND_SOC_NOPM, 0, 0),
  2909. SND_SOC_DAPM_AIF_IN("RX AIF4 PB", "RX_MACRO_AIF4 Playback", 0,
  2910. SND_SOC_NOPM, 0, 0),
  2911. SND_SOC_DAPM_AIF_OUT("RX AIF_ECHO", "RX_AIF_ECHO Capture", 0,
  2912. SND_SOC_NOPM, 0, 0),
  2913. SND_SOC_DAPM_AIF_IN("RX AIF5 PB", "RX_MACRO_AIF5 Playback", 0,
  2914. SND_SOC_NOPM, 0, 0),
  2915. SND_SOC_DAPM_AIF_IN("RX AIF6 PB", "RX_MACRO_AIF6 Playback", 0,
  2916. SND_SOC_NOPM, 0, 0),
  2917. LPASS_CDC_RX_MACRO_DAPM_MUX("RX_MACRO RX0 MUX", LPASS_CDC_RX_MACRO_RX0, lpass_cdc_rx_macro_rx0),
  2918. LPASS_CDC_RX_MACRO_DAPM_MUX("RX_MACRO RX1 MUX", LPASS_CDC_RX_MACRO_RX1, lpass_cdc_rx_macro_rx1),
  2919. LPASS_CDC_RX_MACRO_DAPM_MUX("RX_MACRO RX2 MUX", LPASS_CDC_RX_MACRO_RX2, lpass_cdc_rx_macro_rx2),
  2920. LPASS_CDC_RX_MACRO_DAPM_MUX("RX_MACRO RX3 MUX", LPASS_CDC_RX_MACRO_RX3, lpass_cdc_rx_macro_rx3),
  2921. LPASS_CDC_RX_MACRO_DAPM_MUX("RX_MACRO RX4 MUX", LPASS_CDC_RX_MACRO_RX4, lpass_cdc_rx_macro_rx4),
  2922. LPASS_CDC_RX_MACRO_DAPM_MUX("RX_MACRO RX5 MUX", LPASS_CDC_RX_MACRO_RX5, lpass_cdc_rx_macro_rx5),
  2923. SND_SOC_DAPM_MIXER("RX_RX0", SND_SOC_NOPM, 0, 0, NULL, 0),
  2924. SND_SOC_DAPM_MIXER("RX_RX1", SND_SOC_NOPM, 0, 0, NULL, 0),
  2925. SND_SOC_DAPM_MIXER("RX_RX2", SND_SOC_NOPM, 0, 0, NULL, 0),
  2926. SND_SOC_DAPM_MIXER("RX_RX3", SND_SOC_NOPM, 0, 0, NULL, 0),
  2927. SND_SOC_DAPM_MIXER("RX_RX4", SND_SOC_NOPM, 0, 0, NULL, 0),
  2928. SND_SOC_DAPM_MIXER("RX_RX5", SND_SOC_NOPM, 0, 0, NULL, 0),
  2929. LPASS_CDC_RX_MACRO_DAPM_MUX("IIR0 INP0 MUX", 0, iir0_inp0),
  2930. LPASS_CDC_RX_MACRO_DAPM_MUX("IIR0 INP1 MUX", 0, iir0_inp1),
  2931. LPASS_CDC_RX_MACRO_DAPM_MUX("IIR0 INP2 MUX", 0, iir0_inp2),
  2932. LPASS_CDC_RX_MACRO_DAPM_MUX("IIR0 INP3 MUX", 0, iir0_inp3),
  2933. LPASS_CDC_RX_MACRO_DAPM_MUX("IIR1 INP0 MUX", 0, iir1_inp0),
  2934. LPASS_CDC_RX_MACRO_DAPM_MUX("IIR1 INP1 MUX", 0, iir1_inp1),
  2935. LPASS_CDC_RX_MACRO_DAPM_MUX("IIR1 INP2 MUX", 0, iir1_inp2),
  2936. LPASS_CDC_RX_MACRO_DAPM_MUX("IIR1 INP3 MUX", 0, iir1_inp3),
  2937. SND_SOC_DAPM_MUX_E("RX MIX TX0 MUX", SND_SOC_NOPM,
  2938. LPASS_CDC_RX_MACRO_EC0_MUX, 0,
  2939. &rx_mix_tx0_mux, lpass_cdc_rx_macro_enable_echo,
  2940. SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD),
  2941. SND_SOC_DAPM_MUX_E("RX MIX TX1 MUX", SND_SOC_NOPM,
  2942. LPASS_CDC_RX_MACRO_EC1_MUX, 0,
  2943. &rx_mix_tx1_mux, lpass_cdc_rx_macro_enable_echo,
  2944. SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD),
  2945. SND_SOC_DAPM_MUX_E("RX MIX TX2 MUX", SND_SOC_NOPM,
  2946. LPASS_CDC_RX_MACRO_EC2_MUX, 0,
  2947. &rx_mix_tx2_mux, lpass_cdc_rx_macro_enable_echo,
  2948. SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD),
  2949. SND_SOC_DAPM_MIXER_E("IIR0", LPASS_CDC_RX_SIDETONE_IIR0_IIR_PATH_CTL,
  2950. 4, 0, NULL, 0, lpass_cdc_rx_macro_set_iir_gain,
  2951. SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_PRE_PMD),
  2952. SND_SOC_DAPM_MIXER_E("IIR1", LPASS_CDC_RX_SIDETONE_IIR1_IIR_PATH_CTL,
  2953. 4, 0, NULL, 0, lpass_cdc_rx_macro_set_iir_gain,
  2954. SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_PRE_PMD),
  2955. SND_SOC_DAPM_MIXER("SRC0", LPASS_CDC_RX_SIDETONE_SRC0_ST_SRC_PATH_CTL,
  2956. 4, 0, NULL, 0),
  2957. SND_SOC_DAPM_MIXER("SRC1", LPASS_CDC_RX_SIDETONE_SRC1_ST_SRC_PATH_CTL,
  2958. 4, 0, NULL, 0),
  2959. LPASS_CDC_RX_MACRO_DAPM_MUX("RX INT0 DEM MUX", 0, rx_int0_dem_inp),
  2960. LPASS_CDC_RX_MACRO_DAPM_MUX("RX INT1 DEM MUX", 0, rx_int1_dem_inp),
  2961. SND_SOC_DAPM_MUX_E("RX INT0_2 MUX", SND_SOC_NOPM, INTERP_HPHL, 0,
  2962. &rx_int0_2_mux, lpass_cdc_rx_macro_enable_mix_path,
  2963. SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMU |
  2964. SND_SOC_DAPM_POST_PMD),
  2965. SND_SOC_DAPM_MUX_E("RX INT1_2 MUX", SND_SOC_NOPM, INTERP_HPHR, 0,
  2966. &rx_int1_2_mux, lpass_cdc_rx_macro_enable_mix_path,
  2967. SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMU |
  2968. SND_SOC_DAPM_POST_PMD),
  2969. SND_SOC_DAPM_MUX_E("RX INT2_2 MUX", SND_SOC_NOPM, INTERP_AUX, 0,
  2970. &rx_int2_2_mux, lpass_cdc_rx_macro_enable_mix_path,
  2971. SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMU |
  2972. SND_SOC_DAPM_POST_PMD),
  2973. LPASS_CDC_RX_MACRO_DAPM_MUX("RX INT0_1 MIX1 INP0", 0, rx_int0_1_mix_inp0),
  2974. LPASS_CDC_RX_MACRO_DAPM_MUX("RX INT0_1 MIX1 INP1", 0, rx_int0_1_mix_inp1),
  2975. LPASS_CDC_RX_MACRO_DAPM_MUX("RX INT0_1 MIX1 INP2", 0, rx_int0_1_mix_inp2),
  2976. LPASS_CDC_RX_MACRO_DAPM_MUX("RX INT1_1 MIX1 INP0", 0, rx_int1_1_mix_inp0),
  2977. LPASS_CDC_RX_MACRO_DAPM_MUX("RX INT1_1 MIX1 INP1", 0, rx_int1_1_mix_inp1),
  2978. LPASS_CDC_RX_MACRO_DAPM_MUX("RX INT1_1 MIX1 INP2", 0, rx_int1_1_mix_inp2),
  2979. LPASS_CDC_RX_MACRO_DAPM_MUX("RX INT2_1 MIX1 INP0", 0, rx_int2_1_mix_inp0),
  2980. LPASS_CDC_RX_MACRO_DAPM_MUX("RX INT2_1 MIX1 INP1", 0, rx_int2_1_mix_inp1),
  2981. LPASS_CDC_RX_MACRO_DAPM_MUX("RX INT2_1 MIX1 INP2", 0, rx_int2_1_mix_inp2),
  2982. SND_SOC_DAPM_MUX_E("RX INT0_1 INTERP", SND_SOC_NOPM, INTERP_HPHL, 0,
  2983. &rx_int0_1_interp_mux, lpass_cdc_rx_macro_enable_main_path,
  2984. SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMU |
  2985. SND_SOC_DAPM_POST_PMD),
  2986. SND_SOC_DAPM_MUX_E("RX INT1_1 INTERP", SND_SOC_NOPM, INTERP_HPHR, 0,
  2987. &rx_int1_1_interp_mux, lpass_cdc_rx_macro_enable_main_path,
  2988. SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMU |
  2989. SND_SOC_DAPM_POST_PMD),
  2990. SND_SOC_DAPM_MUX_E("RX INT2_1 INTERP", SND_SOC_NOPM, INTERP_AUX, 0,
  2991. &rx_int2_1_interp_mux, lpass_cdc_rx_macro_enable_main_path,
  2992. SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMU |
  2993. SND_SOC_DAPM_POST_PMD),
  2994. LPASS_CDC_RX_MACRO_DAPM_MUX("RX INT0_2 INTERP", 0, rx_int0_2_interp),
  2995. LPASS_CDC_RX_MACRO_DAPM_MUX("RX INT1_2 INTERP", 0, rx_int1_2_interp),
  2996. LPASS_CDC_RX_MACRO_DAPM_MUX("RX INT2_2 INTERP", 0, rx_int2_2_interp),
  2997. SND_SOC_DAPM_MIXER("RX INT0_1 MIX1", SND_SOC_NOPM, 0, 0, NULL, 0),
  2998. SND_SOC_DAPM_MIXER("RX INT0 SEC MIX", SND_SOC_NOPM, 0, 0, NULL, 0),
  2999. SND_SOC_DAPM_MIXER("RX INT1_1 MIX1", SND_SOC_NOPM, 0, 0, NULL, 0),
  3000. SND_SOC_DAPM_MIXER("RX INT1 SEC MIX", SND_SOC_NOPM, 0, 0, NULL, 0),
  3001. SND_SOC_DAPM_MIXER("RX INT2_1 MIX1", SND_SOC_NOPM, 0, 0, NULL, 0),
  3002. SND_SOC_DAPM_MIXER("RX INT2 SEC MIX", SND_SOC_NOPM, 0, 0, NULL, 0),
  3003. SND_SOC_DAPM_MUX_E("RX INT0 MIX2 INP", SND_SOC_NOPM, INTERP_HPHL,
  3004. 0, &rx_int0_mix2_inp_mux, lpass_cdc_rx_macro_enable_rx_path_clk,
  3005. SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD),
  3006. SND_SOC_DAPM_MUX_E("RX INT1 MIX2 INP", SND_SOC_NOPM, INTERP_HPHR,
  3007. 0, &rx_int1_mix2_inp_mux, lpass_cdc_rx_macro_enable_rx_path_clk,
  3008. SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD),
  3009. SND_SOC_DAPM_MUX_E("RX INT2 MIX2 INP", SND_SOC_NOPM, INTERP_AUX,
  3010. 0, &rx_int2_mix2_inp_mux, lpass_cdc_rx_macro_enable_rx_path_clk,
  3011. SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD),
  3012. SND_SOC_DAPM_MIXER_E("RX INT2_1 VBAT", SND_SOC_NOPM,
  3013. 0, 0, rx_int2_1_vbat_mix_switch,
  3014. ARRAY_SIZE(rx_int2_1_vbat_mix_switch),
  3015. lpass_cdc_rx_macro_enable_vbat,
  3016. SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD),
  3017. SND_SOC_DAPM_MIXER("RX INT0 MIX2", SND_SOC_NOPM, 0, 0, NULL, 0),
  3018. SND_SOC_DAPM_MIXER("RX INT1 MIX2", SND_SOC_NOPM, 0, 0, NULL, 0),
  3019. SND_SOC_DAPM_MIXER("RX INT2 MIX2", SND_SOC_NOPM, 0, 0, NULL, 0),
  3020. SND_SOC_DAPM_OUTPUT("HPHL_OUT"),
  3021. SND_SOC_DAPM_OUTPUT("HPHR_OUT"),
  3022. SND_SOC_DAPM_OUTPUT("AUX_OUT"),
  3023. SND_SOC_DAPM_OUTPUT("PCM_OUT"),
  3024. SND_SOC_DAPM_INPUT("RX_TX DEC0_INP"),
  3025. SND_SOC_DAPM_INPUT("RX_TX DEC1_INP"),
  3026. SND_SOC_DAPM_INPUT("RX_TX DEC2_INP"),
  3027. SND_SOC_DAPM_INPUT("RX_TX DEC3_INP"),
  3028. SND_SOC_DAPM_SUPPLY_S("RX_MCLK", 0, SND_SOC_NOPM, 0, 0,
  3029. lpass_cdc_rx_macro_mclk_event, SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD),
  3030. };
  3031. static const struct snd_soc_dapm_route rx_audio_map[] = {
  3032. {"RX AIF1 PB", NULL, "RX_MCLK"},
  3033. {"RX AIF2 PB", NULL, "RX_MCLK"},
  3034. {"RX AIF3 PB", NULL, "RX_MCLK"},
  3035. {"RX AIF4 PB", NULL, "RX_MCLK"},
  3036. {"RX AIF6 PB", NULL, "RX_MCLK"},
  3037. {"PCM_OUT", NULL, "RX AIF6 PB"},
  3038. {"RX_MACRO RX0 MUX", "AIF1_PB", "RX AIF1 PB"},
  3039. {"RX_MACRO RX1 MUX", "AIF1_PB", "RX AIF1 PB"},
  3040. {"RX_MACRO RX2 MUX", "AIF1_PB", "RX AIF1 PB"},
  3041. {"RX_MACRO RX3 MUX", "AIF1_PB", "RX AIF1 PB"},
  3042. {"RX_MACRO RX4 MUX", "AIF1_PB", "RX AIF1 PB"},
  3043. {"RX_MACRO RX5 MUX", "AIF1_PB", "RX AIF1 PB"},
  3044. {"RX_MACRO RX0 MUX", "AIF2_PB", "RX AIF2 PB"},
  3045. {"RX_MACRO RX1 MUX", "AIF2_PB", "RX AIF2 PB"},
  3046. {"RX_MACRO RX2 MUX", "AIF2_PB", "RX AIF2 PB"},
  3047. {"RX_MACRO RX3 MUX", "AIF2_PB", "RX AIF2 PB"},
  3048. {"RX_MACRO RX4 MUX", "AIF2_PB", "RX AIF2 PB"},
  3049. {"RX_MACRO RX5 MUX", "AIF2_PB", "RX AIF2 PB"},
  3050. {"RX_MACRO RX0 MUX", "AIF3_PB", "RX AIF3 PB"},
  3051. {"RX_MACRO RX1 MUX", "AIF3_PB", "RX AIF3 PB"},
  3052. {"RX_MACRO RX2 MUX", "AIF3_PB", "RX AIF3 PB"},
  3053. {"RX_MACRO RX3 MUX", "AIF3_PB", "RX AIF3 PB"},
  3054. {"RX_MACRO RX4 MUX", "AIF3_PB", "RX AIF3 PB"},
  3055. {"RX_MACRO RX5 MUX", "AIF3_PB", "RX AIF3 PB"},
  3056. {"RX_MACRO RX0 MUX", "AIF4_PB", "RX AIF4 PB"},
  3057. {"RX_MACRO RX1 MUX", "AIF4_PB", "RX AIF4 PB"},
  3058. {"RX_MACRO RX2 MUX", "AIF4_PB", "RX AIF4 PB"},
  3059. {"RX_MACRO RX3 MUX", "AIF4_PB", "RX AIF4 PB"},
  3060. {"RX_MACRO RX4 MUX", "AIF4_PB", "RX AIF4 PB"},
  3061. {"RX_MACRO RX5 MUX", "AIF4_PB", "RX AIF4 PB"},
  3062. {"RX_RX0", NULL, "RX_MACRO RX0 MUX"},
  3063. {"RX_RX1", NULL, "RX_MACRO RX1 MUX"},
  3064. {"RX_RX2", NULL, "RX_MACRO RX2 MUX"},
  3065. {"RX_RX3", NULL, "RX_MACRO RX3 MUX"},
  3066. {"RX_RX4", NULL, "RX_MACRO RX4 MUX"},
  3067. {"RX_RX5", NULL, "RX_MACRO RX5 MUX"},
  3068. {"RX INT0_1 MIX1 INP0", "RX0", "RX_RX0"},
  3069. {"RX INT0_1 MIX1 INP0", "RX1", "RX_RX1"},
  3070. {"RX INT0_1 MIX1 INP0", "RX2", "RX_RX2"},
  3071. {"RX INT0_1 MIX1 INP0", "RX3", "RX_RX3"},
  3072. {"RX INT0_1 MIX1 INP0", "RX4", "RX_RX4"},
  3073. {"RX INT0_1 MIX1 INP0", "RX5", "RX_RX5"},
  3074. {"RX INT0_1 MIX1 INP0", "IIR0", "IIR0"},
  3075. {"RX INT0_1 MIX1 INP0", "IIR1", "IIR1"},
  3076. {"RX INT0_1 MIX1 INP0", "DEC0", "RX_TX DEC0_INP"},
  3077. {"RX INT0_1 MIX1 INP0", "DEC1", "RX_TX DEC1_INP"},
  3078. {"RX INT0_1 MIX1 INP1", "RX0", "RX_RX0"},
  3079. {"RX INT0_1 MIX1 INP1", "RX1", "RX_RX1"},
  3080. {"RX INT0_1 MIX1 INP1", "RX2", "RX_RX2"},
  3081. {"RX INT0_1 MIX1 INP1", "RX3", "RX_RX3"},
  3082. {"RX INT0_1 MIX1 INP1", "RX4", "RX_RX4"},
  3083. {"RX INT0_1 MIX1 INP1", "RX5", "RX_RX5"},
  3084. {"RX INT0_1 MIX1 INP1", "IIR0", "IIR0"},
  3085. {"RX INT0_1 MIX1 INP1", "IIR1", "IIR1"},
  3086. {"RX INT0_1 MIX1 INP1", "DEC0", "RX_TX DEC0_INP"},
  3087. {"RX INT0_1 MIX1 INP1", "DEC1", "RX_TX DEC1_INP"},
  3088. {"RX INT0_1 MIX1 INP2", "RX0", "RX_RX0"},
  3089. {"RX INT0_1 MIX1 INP2", "RX1", "RX_RX1"},
  3090. {"RX INT0_1 MIX1 INP2", "RX2", "RX_RX2"},
  3091. {"RX INT0_1 MIX1 INP2", "RX3", "RX_RX3"},
  3092. {"RX INT0_1 MIX1 INP2", "RX4", "RX_RX4"},
  3093. {"RX INT0_1 MIX1 INP2", "RX5", "RX_RX5"},
  3094. {"RX INT0_1 MIX1 INP2", "IIR0", "IIR0"},
  3095. {"RX INT0_1 MIX1 INP2", "IIR1", "IIR1"},
  3096. {"RX INT0_1 MIX1 INP2", "DEC0", "RX_TX DEC0_INP"},
  3097. {"RX INT0_1 MIX1 INP2", "DEC1", "RX_TX DEC1_INP"},
  3098. {"RX INT1_1 MIX1 INP0", "RX0", "RX_RX0"},
  3099. {"RX INT1_1 MIX1 INP0", "RX1", "RX_RX1"},
  3100. {"RX INT1_1 MIX1 INP0", "RX2", "RX_RX2"},
  3101. {"RX INT1_1 MIX1 INP0", "RX3", "RX_RX3"},
  3102. {"RX INT1_1 MIX1 INP0", "RX4", "RX_RX4"},
  3103. {"RX INT1_1 MIX1 INP0", "RX5", "RX_RX5"},
  3104. {"RX INT1_1 MIX1 INP0", "IIR0", "IIR0"},
  3105. {"RX INT1_1 MIX1 INP0", "IIR1", "IIR1"},
  3106. {"RX INT1_1 MIX1 INP0", "DEC0", "RX_TX DEC0_INP"},
  3107. {"RX INT1_1 MIX1 INP0", "DEC1", "RX_TX DEC1_INP"},
  3108. {"RX INT1_1 MIX1 INP1", "RX0", "RX_RX0"},
  3109. {"RX INT1_1 MIX1 INP1", "RX1", "RX_RX1"},
  3110. {"RX INT1_1 MIX1 INP1", "RX2", "RX_RX2"},
  3111. {"RX INT1_1 MIX1 INP1", "RX3", "RX_RX3"},
  3112. {"RX INT1_1 MIX1 INP1", "RX4", "RX_RX4"},
  3113. {"RX INT1_1 MIX1 INP1", "RX5", "RX_RX5"},
  3114. {"RX INT1_1 MIX1 INP1", "IIR0", "IIR0"},
  3115. {"RX INT1_1 MIX1 INP1", "IIR1", "IIR1"},
  3116. {"RX INT1_1 MIX1 INP1", "DEC0", "RX_TX DEC0_INP"},
  3117. {"RX INT1_1 MIX1 INP1", "DEC1", "RX_TX DEC1_INP"},
  3118. {"RX INT1_1 MIX1 INP2", "RX0", "RX_RX0"},
  3119. {"RX INT1_1 MIX1 INP2", "RX1", "RX_RX1"},
  3120. {"RX INT1_1 MIX1 INP2", "RX2", "RX_RX2"},
  3121. {"RX INT1_1 MIX1 INP2", "RX3", "RX_RX3"},
  3122. {"RX INT1_1 MIX1 INP2", "RX4", "RX_RX4"},
  3123. {"RX INT1_1 MIX1 INP2", "RX5", "RX_RX5"},
  3124. {"RX INT1_1 MIX1 INP2", "IIR0", "IIR0"},
  3125. {"RX INT1_1 MIX1 INP2", "IIR1", "IIR1"},
  3126. {"RX INT1_1 MIX1 INP2", "DEC0", "RX_TX DEC0_INP"},
  3127. {"RX INT1_1 MIX1 INP2", "DEC1", "RX_TX DEC1_INP"},
  3128. {"RX INT2_1 MIX1 INP0", "RX0", "RX_RX0"},
  3129. {"RX INT2_1 MIX1 INP0", "RX1", "RX_RX1"},
  3130. {"RX INT2_1 MIX1 INP0", "RX2", "RX_RX2"},
  3131. {"RX INT2_1 MIX1 INP0", "RX3", "RX_RX3"},
  3132. {"RX INT2_1 MIX1 INP0", "RX4", "RX_RX4"},
  3133. {"RX INT2_1 MIX1 INP0", "RX5", "RX_RX5"},
  3134. {"RX INT2_1 MIX1 INP0", "IIR0", "IIR0"},
  3135. {"RX INT2_1 MIX1 INP0", "IIR1", "IIR1"},
  3136. {"RX INT2_1 MIX1 INP0", "DEC0", "RX_TX DEC0_INP"},
  3137. {"RX INT2_1 MIX1 INP0", "DEC1", "RX_TX DEC1_INP"},
  3138. {"RX INT2_1 MIX1 INP1", "RX0", "RX_RX0"},
  3139. {"RX INT2_1 MIX1 INP1", "RX1", "RX_RX1"},
  3140. {"RX INT2_1 MIX1 INP1", "RX2", "RX_RX2"},
  3141. {"RX INT2_1 MIX1 INP1", "RX3", "RX_RX3"},
  3142. {"RX INT2_1 MIX1 INP1", "RX4", "RX_RX4"},
  3143. {"RX INT2_1 MIX1 INP1", "RX5", "RX_RX5"},
  3144. {"RX INT2_1 MIX1 INP1", "IIR0", "IIR0"},
  3145. {"RX INT2_1 MIX1 INP1", "IIR1", "IIR1"},
  3146. {"RX INT2_1 MIX1 INP1", "DEC0", "RX_TX DEC0_INP"},
  3147. {"RX INT2_1 MIX1 INP1", "DEC1", "RX_TX DEC1_INP"},
  3148. {"RX INT2_1 MIX1 INP2", "RX0", "RX_RX0"},
  3149. {"RX INT2_1 MIX1 INP2", "RX1", "RX_RX1"},
  3150. {"RX INT2_1 MIX1 INP2", "RX2", "RX_RX2"},
  3151. {"RX INT2_1 MIX1 INP2", "RX3", "RX_RX3"},
  3152. {"RX INT2_1 MIX1 INP2", "RX4", "RX_RX4"},
  3153. {"RX INT2_1 MIX1 INP2", "RX5", "RX_RX5"},
  3154. {"RX INT2_1 MIX1 INP2", "IIR0", "IIR0"},
  3155. {"RX INT2_1 MIX1 INP2", "IIR1", "IIR1"},
  3156. {"RX INT2_1 MIX1 INP2", "DEC0", "RX_TX DEC0_INP"},
  3157. {"RX INT2_1 MIX1 INP2", "DEC1", "RX_TX DEC1_INP"},
  3158. {"RX INT0_1 MIX1", NULL, "RX INT0_1 MIX1 INP0"},
  3159. {"RX INT0_1 MIX1", NULL, "RX INT0_1 MIX1 INP1"},
  3160. {"RX INT0_1 MIX1", NULL, "RX INT0_1 MIX1 INP2"},
  3161. {"RX INT1_1 MIX1", NULL, "RX INT1_1 MIX1 INP0"},
  3162. {"RX INT1_1 MIX1", NULL, "RX INT1_1 MIX1 INP1"},
  3163. {"RX INT1_1 MIX1", NULL, "RX INT1_1 MIX1 INP2"},
  3164. {"RX INT2_1 MIX1", NULL, "RX INT2_1 MIX1 INP0"},
  3165. {"RX INT2_1 MIX1", NULL, "RX INT2_1 MIX1 INP1"},
  3166. {"RX INT2_1 MIX1", NULL, "RX INT2_1 MIX1 INP2"},
  3167. {"RX MIX TX0 MUX", "RX_MIX0", "RX INT0 SEC MIX"},
  3168. {"RX MIX TX0 MUX", "RX_MIX1", "RX INT1 SEC MIX"},
  3169. {"RX MIX TX0 MUX", "RX_MIX2", "RX INT2 SEC MIX"},
  3170. {"RX MIX TX1 MUX", "RX_MIX0", "RX INT0 SEC MIX"},
  3171. {"RX MIX TX1 MUX", "RX_MIX1", "RX INT1 SEC MIX"},
  3172. {"RX MIX TX1 MUX", "RX_MIX2", "RX INT2 SEC MIX"},
  3173. {"RX MIX TX2 MUX", "RX_MIX0", "RX INT0 SEC MIX"},
  3174. {"RX MIX TX2 MUX", "RX_MIX1", "RX INT1 SEC MIX"},
  3175. {"RX MIX TX2 MUX", "RX_MIX2", "RX INT2 SEC MIX"},
  3176. {"RX AIF_ECHO", NULL, "RX MIX TX0 MUX"},
  3177. {"RX AIF_ECHO", NULL, "RX MIX TX1 MUX"},
  3178. {"RX AIF_ECHO", NULL, "RX MIX TX2 MUX"},
  3179. {"RX AIF_ECHO", NULL, "RX_MCLK"},
  3180. /* Mixing path INT0 */
  3181. {"RX INT0_2 MUX", "RX0", "RX_RX0"},
  3182. {"RX INT0_2 MUX", "RX1", "RX_RX1"},
  3183. {"RX INT0_2 MUX", "RX2", "RX_RX2"},
  3184. {"RX INT0_2 MUX", "RX3", "RX_RX3"},
  3185. {"RX INT0_2 MUX", "RX4", "RX_RX4"},
  3186. {"RX INT0_2 MUX", "RX5", "RX_RX5"},
  3187. {"RX INT0_2 INTERP", NULL, "RX INT0_2 MUX"},
  3188. {"RX INT0 SEC MIX", NULL, "RX INT0_2 INTERP"},
  3189. /* Mixing path INT1 */
  3190. {"RX INT1_2 MUX", "RX0", "RX_RX0"},
  3191. {"RX INT1_2 MUX", "RX1", "RX_RX1"},
  3192. {"RX INT1_2 MUX", "RX2", "RX_RX2"},
  3193. {"RX INT1_2 MUX", "RX3", "RX_RX3"},
  3194. {"RX INT1_2 MUX", "RX4", "RX_RX4"},
  3195. {"RX INT1_2 MUX", "RX5", "RX_RX5"},
  3196. {"RX INT1_2 INTERP", NULL, "RX INT1_2 MUX"},
  3197. {"RX INT1 SEC MIX", NULL, "RX INT1_2 INTERP"},
  3198. /* Mixing path INT2 */
  3199. {"RX INT2_2 MUX", "RX0", "RX_RX0"},
  3200. {"RX INT2_2 MUX", "RX1", "RX_RX1"},
  3201. {"RX INT2_2 MUX", "RX2", "RX_RX2"},
  3202. {"RX INT2_2 MUX", "RX3", "RX_RX3"},
  3203. {"RX INT2_2 MUX", "RX4", "RX_RX4"},
  3204. {"RX INT2_2 MUX", "RX5", "RX_RX5"},
  3205. {"RX INT2_2 INTERP", NULL, "RX INT2_2 MUX"},
  3206. {"RX INT2 SEC MIX", NULL, "RX INT2_2 INTERP"},
  3207. {"RX INT0_1 INTERP", NULL, "RX INT0_1 MIX1"},
  3208. {"RX INT0 SEC MIX", NULL, "RX INT0_1 INTERP"},
  3209. {"RX INT0 MIX2", NULL, "RX INT0 SEC MIX"},
  3210. {"RX INT0 MIX2", NULL, "RX INT0 MIX2 INP"},
  3211. {"RX INT0 DEM MUX", "CLSH_DSM_OUT", "RX INT0 MIX2"},
  3212. {"HPHL_OUT", NULL, "RX INT0 DEM MUX"},
  3213. {"HPHL_OUT", NULL, "RX_MCLK"},
  3214. {"RX INT1_1 INTERP", NULL, "RX INT1_1 MIX1"},
  3215. {"RX INT1 SEC MIX", NULL, "RX INT1_1 INTERP"},
  3216. {"RX INT1 MIX2", NULL, "RX INT1 SEC MIX"},
  3217. {"RX INT1 MIX2", NULL, "RX INT1 MIX2 INP"},
  3218. {"RX INT1 DEM MUX", "CLSH_DSM_OUT", "RX INT1 MIX2"},
  3219. {"HPHR_OUT", NULL, "RX INT1 DEM MUX"},
  3220. {"HPHR_OUT", NULL, "RX_MCLK"},
  3221. {"RX INT2_1 INTERP", NULL, "RX INT2_1 MIX1"},
  3222. {"RX INT2_1 VBAT", "RX AUX VBAT Enable", "RX INT2_1 INTERP"},
  3223. {"RX INT2 SEC MIX", NULL, "RX INT2_1 VBAT"},
  3224. {"RX INT2 SEC MIX", NULL, "RX INT2_1 INTERP"},
  3225. {"RX INT2 MIX2", NULL, "RX INT2 SEC MIX"},
  3226. {"RX INT2 MIX2", NULL, "RX INT2 MIX2 INP"},
  3227. {"AUX_OUT", NULL, "RX INT2 MIX2"},
  3228. {"AUX_OUT", NULL, "RX_MCLK"},
  3229. {"IIR0", NULL, "RX_MCLK"},
  3230. {"IIR0", NULL, "IIR0 INP0 MUX"},
  3231. {"IIR0 INP0 MUX", "DEC0", "RX_TX DEC0_INP"},
  3232. {"IIR0 INP0 MUX", "DEC1", "RX_TX DEC1_INP"},
  3233. {"IIR0 INP0 MUX", "DEC2", "RX_TX DEC2_INP"},
  3234. {"IIR0 INP0 MUX", "DEC3", "RX_TX DEC3_INP"},
  3235. {"IIR0 INP0 MUX", "RX0", "RX_RX0"},
  3236. {"IIR0 INP0 MUX", "RX1", "RX_RX1"},
  3237. {"IIR0 INP0 MUX", "RX2", "RX_RX2"},
  3238. {"IIR0 INP0 MUX", "RX3", "RX_RX3"},
  3239. {"IIR0 INP0 MUX", "RX4", "RX_RX4"},
  3240. {"IIR0 INP0 MUX", "RX5", "RX_RX5"},
  3241. {"IIR0", NULL, "IIR0 INP1 MUX"},
  3242. {"IIR0 INP1 MUX", "DEC0", "RX_TX DEC0_INP"},
  3243. {"IIR0 INP1 MUX", "DEC1", "RX_TX DEC1_INP"},
  3244. {"IIR0 INP1 MUX", "DEC2", "RX_TX DEC2_INP"},
  3245. {"IIR0 INP1 MUX", "DEC3", "RX_TX DEC3_INP"},
  3246. {"IIR0 INP1 MUX", "RX0", "RX_RX0"},
  3247. {"IIR0 INP1 MUX", "RX1", "RX_RX1"},
  3248. {"IIR0 INP1 MUX", "RX2", "RX_RX2"},
  3249. {"IIR0 INP1 MUX", "RX3", "RX_RX3"},
  3250. {"IIR0 INP1 MUX", "RX4", "RX_RX4"},
  3251. {"IIR0 INP1 MUX", "RX5", "RX_RX5"},
  3252. {"IIR0", NULL, "IIR0 INP2 MUX"},
  3253. {"IIR0 INP2 MUX", "DEC0", "RX_TX DEC0_INP"},
  3254. {"IIR0 INP2 MUX", "DEC1", "RX_TX DEC1_INP"},
  3255. {"IIR0 INP2 MUX", "DEC2", "RX_TX DEC2_INP"},
  3256. {"IIR0 INP2 MUX", "DEC3", "RX_TX DEC3_INP"},
  3257. {"IIR0 INP2 MUX", "RX0", "RX_RX0"},
  3258. {"IIR0 INP2 MUX", "RX1", "RX_RX1"},
  3259. {"IIR0 INP2 MUX", "RX2", "RX_RX2"},
  3260. {"IIR0 INP2 MUX", "RX3", "RX_RX3"},
  3261. {"IIR0 INP2 MUX", "RX4", "RX_RX4"},
  3262. {"IIR0 INP2 MUX", "RX5", "RX_RX5"},
  3263. {"IIR0", NULL, "IIR0 INP3 MUX"},
  3264. {"IIR0 INP3 MUX", "DEC0", "RX_TX DEC0_INP"},
  3265. {"IIR0 INP3 MUX", "DEC1", "RX_TX DEC1_INP"},
  3266. {"IIR0 INP3 MUX", "DEC2", "RX_TX DEC2_INP"},
  3267. {"IIR0 INP3 MUX", "DEC3", "RX_TX DEC3_INP"},
  3268. {"IIR0 INP3 MUX", "RX0", "RX_RX0"},
  3269. {"IIR0 INP3 MUX", "RX1", "RX_RX1"},
  3270. {"IIR0 INP3 MUX", "RX2", "RX_RX2"},
  3271. {"IIR0 INP3 MUX", "RX3", "RX_RX3"},
  3272. {"IIR0 INP3 MUX", "RX4", "RX_RX4"},
  3273. {"IIR0 INP3 MUX", "RX5", "RX_RX5"},
  3274. {"IIR1", NULL, "RX_MCLK"},
  3275. {"IIR1", NULL, "IIR1 INP0 MUX"},
  3276. {"IIR1 INP0 MUX", "DEC0", "RX_TX DEC0_INP"},
  3277. {"IIR1 INP0 MUX", "DEC1", "RX_TX DEC1_INP"},
  3278. {"IIR1 INP0 MUX", "DEC2", "RX_TX DEC2_INP"},
  3279. {"IIR1 INP0 MUX", "DEC3", "RX_TX DEC3_INP"},
  3280. {"IIR1 INP0 MUX", "RX0", "RX_RX0"},
  3281. {"IIR1 INP0 MUX", "RX1", "RX_RX1"},
  3282. {"IIR1 INP0 MUX", "RX2", "RX_RX2"},
  3283. {"IIR1 INP0 MUX", "RX3", "RX_RX3"},
  3284. {"IIR1 INP0 MUX", "RX4", "RX_RX4"},
  3285. {"IIR1 INP0 MUX", "RX5", "RX_RX5"},
  3286. {"IIR1", NULL, "IIR1 INP1 MUX"},
  3287. {"IIR1 INP1 MUX", "DEC0", "RX_TX DEC0_INP"},
  3288. {"IIR1 INP1 MUX", "DEC1", "RX_TX DEC1_INP"},
  3289. {"IIR1 INP1 MUX", "DEC2", "RX_TX DEC2_INP"},
  3290. {"IIR1 INP1 MUX", "DEC3", "RX_TX DEC3_INP"},
  3291. {"IIR1 INP1 MUX", "RX0", "RX_RX0"},
  3292. {"IIR1 INP1 MUX", "RX1", "RX_RX1"},
  3293. {"IIR1 INP1 MUX", "RX2", "RX_RX2"},
  3294. {"IIR1 INP1 MUX", "RX3", "RX_RX3"},
  3295. {"IIR1 INP1 MUX", "RX4", "RX_RX4"},
  3296. {"IIR1 INP1 MUX", "RX5", "RX_RX5"},
  3297. {"IIR1", NULL, "IIR1 INP2 MUX"},
  3298. {"IIR1 INP2 MUX", "DEC0", "RX_TX DEC0_INP"},
  3299. {"IIR1 INP2 MUX", "DEC1", "RX_TX DEC1_INP"},
  3300. {"IIR1 INP2 MUX", "DEC2", "RX_TX DEC2_INP"},
  3301. {"IIR1 INP2 MUX", "DEC3", "RX_TX DEC3_INP"},
  3302. {"IIR1 INP2 MUX", "RX0", "RX_RX0"},
  3303. {"IIR1 INP2 MUX", "RX1", "RX_RX1"},
  3304. {"IIR1 INP2 MUX", "RX2", "RX_RX2"},
  3305. {"IIR1 INP2 MUX", "RX3", "RX_RX3"},
  3306. {"IIR1 INP2 MUX", "RX4", "RX_RX4"},
  3307. {"IIR1 INP2 MUX", "RX5", "RX_RX5"},
  3308. {"IIR1", NULL, "IIR1 INP3 MUX"},
  3309. {"IIR1 INP3 MUX", "DEC0", "RX_TX DEC0_INP"},
  3310. {"IIR1 INP3 MUX", "DEC1", "RX_TX DEC1_INP"},
  3311. {"IIR1 INP3 MUX", "DEC2", "RX_TX DEC2_INP"},
  3312. {"IIR1 INP3 MUX", "DEC3", "RX_TX DEC3_INP"},
  3313. {"IIR1 INP3 MUX", "RX0", "RX_RX0"},
  3314. {"IIR1 INP3 MUX", "RX1", "RX_RX1"},
  3315. {"IIR1 INP3 MUX", "RX2", "RX_RX2"},
  3316. {"IIR1 INP3 MUX", "RX3", "RX_RX3"},
  3317. {"IIR1 INP3 MUX", "RX4", "RX_RX4"},
  3318. {"IIR1 INP3 MUX", "RX5", "RX_RX5"},
  3319. {"SRC0", NULL, "IIR0"},
  3320. {"SRC1", NULL, "IIR1"},
  3321. {"RX INT0 MIX2 INP", "SRC0", "SRC0"},
  3322. {"RX INT0 MIX2 INP", "SRC1", "SRC1"},
  3323. {"RX INT1 MIX2 INP", "SRC0", "SRC0"},
  3324. {"RX INT1 MIX2 INP", "SRC1", "SRC1"},
  3325. {"RX INT2 MIX2 INP", "SRC0", "SRC0"},
  3326. {"RX INT2 MIX2 INP", "SRC1", "SRC1"},
  3327. };
  3328. static int lpass_cdc_rx_macro_core_vote(void *handle, bool enable)
  3329. {
  3330. struct lpass_cdc_rx_macro_priv *rx_priv = (struct lpass_cdc_rx_macro_priv *) handle;
  3331. if (rx_priv == NULL) {
  3332. pr_err("%s: rx priv data is NULL\n", __func__);
  3333. return -EINVAL;
  3334. }
  3335. if (enable) {
  3336. pm_runtime_get_sync(rx_priv->dev);
  3337. pm_runtime_put_autosuspend(rx_priv->dev);
  3338. pm_runtime_mark_last_busy(rx_priv->dev);
  3339. }
  3340. if (lpass_cdc_check_core_votes(rx_priv->dev))
  3341. return 0;
  3342. else
  3343. return -EINVAL;
  3344. }
  3345. static int rx_swrm_clock(void *handle, bool enable)
  3346. {
  3347. struct lpass_cdc_rx_macro_priv *rx_priv = (struct lpass_cdc_rx_macro_priv *) handle;
  3348. struct regmap *regmap = dev_get_regmap(rx_priv->dev->parent, NULL);
  3349. int ret = 0;
  3350. if (regmap == NULL) {
  3351. dev_err(rx_priv->dev, "%s: regmap is NULL\n", __func__);
  3352. return -EINVAL;
  3353. }
  3354. mutex_lock(&rx_priv->swr_clk_lock);
  3355. trace_printk("%s: swrm clock %s\n",
  3356. __func__, (enable ? "enable" : "disable"));
  3357. dev_dbg(rx_priv->dev, "%s: swrm clock %s\n",
  3358. __func__, (enable ? "enable" : "disable"));
  3359. if (enable) {
  3360. pm_runtime_get_sync(rx_priv->dev);
  3361. if (rx_priv->swr_clk_users == 0) {
  3362. ret = msm_cdc_pinctrl_select_active_state(
  3363. rx_priv->rx_swr_gpio_p);
  3364. if (ret < 0) {
  3365. dev_err(rx_priv->dev,
  3366. "%s: rx swr pinctrl enable failed\n",
  3367. __func__);
  3368. pm_runtime_mark_last_busy(rx_priv->dev);
  3369. pm_runtime_put_autosuspend(rx_priv->dev);
  3370. goto exit;
  3371. }
  3372. ret = lpass_cdc_rx_macro_mclk_enable(rx_priv, 1, true);
  3373. if (ret < 0) {
  3374. msm_cdc_pinctrl_select_sleep_state(
  3375. rx_priv->rx_swr_gpio_p);
  3376. dev_err(rx_priv->dev,
  3377. "%s: rx request clock enable failed\n",
  3378. __func__);
  3379. pm_runtime_mark_last_busy(rx_priv->dev);
  3380. pm_runtime_put_autosuspend(rx_priv->dev);
  3381. goto exit;
  3382. }
  3383. if (rx_priv->reset_swr)
  3384. regmap_update_bits(regmap,
  3385. LPASS_CDC_RX_CLK_RST_CTRL_SWR_CONTROL,
  3386. 0x02, 0x02);
  3387. regmap_update_bits(regmap,
  3388. LPASS_CDC_RX_CLK_RST_CTRL_SWR_CONTROL,
  3389. 0x01, 0x01);
  3390. if (rx_priv->reset_swr)
  3391. regmap_update_bits(regmap,
  3392. LPASS_CDC_RX_CLK_RST_CTRL_SWR_CONTROL,
  3393. 0x02, 0x00);
  3394. rx_priv->reset_swr = false;
  3395. }
  3396. pm_runtime_mark_last_busy(rx_priv->dev);
  3397. pm_runtime_put_autosuspend(rx_priv->dev);
  3398. rx_priv->swr_clk_users++;
  3399. } else {
  3400. if (rx_priv->swr_clk_users <= 0) {
  3401. dev_err(rx_priv->dev,
  3402. "%s: rx swrm clock users already reset\n",
  3403. __func__);
  3404. rx_priv->swr_clk_users = 0;
  3405. goto exit;
  3406. }
  3407. rx_priv->swr_clk_users--;
  3408. if (rx_priv->swr_clk_users == 0) {
  3409. regmap_update_bits(regmap,
  3410. LPASS_CDC_RX_CLK_RST_CTRL_SWR_CONTROL,
  3411. 0x01, 0x00);
  3412. lpass_cdc_rx_macro_mclk_enable(rx_priv, 0, true);
  3413. ret = msm_cdc_pinctrl_select_sleep_state(
  3414. rx_priv->rx_swr_gpio_p);
  3415. if (ret < 0) {
  3416. dev_err(rx_priv->dev,
  3417. "%s: rx swr pinctrl disable failed\n",
  3418. __func__);
  3419. goto exit;
  3420. }
  3421. }
  3422. }
  3423. trace_printk("%s: swrm clock users %d\n",
  3424. __func__, rx_priv->swr_clk_users);
  3425. dev_dbg(rx_priv->dev, "%s: swrm clock users %d\n",
  3426. __func__, rx_priv->swr_clk_users);
  3427. exit:
  3428. mutex_unlock(&rx_priv->swr_clk_lock);
  3429. return ret;
  3430. }
  3431. static const struct lpass_cdc_rx_macro_reg_mask_val
  3432. lpass_cdc_rx_macro_reg_init[] = {
  3433. {LPASS_CDC_RX_RX0_RX_PATH_SEC7, 0x07, 0x02},
  3434. {LPASS_CDC_RX_RX1_RX_PATH_SEC7, 0x07, 0x02},
  3435. {LPASS_CDC_RX_RX2_RX_PATH_SEC7, 0x07, 0x02},
  3436. {LPASS_CDC_RX_RX0_RX_PATH_CFG3, 0x03, 0x02},
  3437. {LPASS_CDC_RX_RX1_RX_PATH_CFG3, 0x03, 0x02},
  3438. {LPASS_CDC_RX_RX2_RX_PATH_CFG3, 0x03, 0x02},
  3439. };
  3440. static int lpass_cdc_rx_macro_init(struct snd_soc_component *component)
  3441. {
  3442. struct snd_soc_dapm_context *dapm =
  3443. snd_soc_component_get_dapm(component);
  3444. int ret = 0;
  3445. struct device *rx_dev = NULL;
  3446. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  3447. int i;
  3448. rx_dev = lpass_cdc_get_device_ptr(component->dev, RX_MACRO);
  3449. if (!rx_dev) {
  3450. dev_err(component->dev,
  3451. "%s: null device for macro!\n", __func__);
  3452. return -EINVAL;
  3453. }
  3454. rx_priv = dev_get_drvdata(rx_dev);
  3455. if (!rx_priv) {
  3456. dev_err(component->dev,
  3457. "%s: priv is null for macro!\n", __func__);
  3458. return -EINVAL;
  3459. }
  3460. ret = snd_soc_dapm_new_controls(dapm, lpass_cdc_rx_macro_dapm_widgets,
  3461. ARRAY_SIZE(lpass_cdc_rx_macro_dapm_widgets));
  3462. if (ret < 0) {
  3463. dev_err(rx_dev, "%s: failed to add controls\n", __func__);
  3464. return ret;
  3465. }
  3466. ret = snd_soc_dapm_add_routes(dapm, rx_audio_map,
  3467. ARRAY_SIZE(rx_audio_map));
  3468. if (ret < 0) {
  3469. dev_err(rx_dev, "%s: failed to add routes\n", __func__);
  3470. return ret;
  3471. }
  3472. ret = snd_soc_dapm_new_widgets(dapm->card);
  3473. if (ret < 0) {
  3474. dev_err(rx_dev, "%s: failed to add widgets\n", __func__);
  3475. return ret;
  3476. }
  3477. ret = snd_soc_add_component_controls(component, lpass_cdc_rx_macro_snd_controls,
  3478. ARRAY_SIZE(lpass_cdc_rx_macro_snd_controls));
  3479. if (ret < 0) {
  3480. dev_err(rx_dev, "%s: failed to add snd_ctls\n", __func__);
  3481. return ret;
  3482. }
  3483. rx_priv->dev_up = true;
  3484. rx_priv->rx0_gain_val = 0;
  3485. rx_priv->rx1_gain_val = 0;
  3486. snd_soc_dapm_ignore_suspend(dapm, "RX_MACRO_AIF1 Playback");
  3487. snd_soc_dapm_ignore_suspend(dapm, "RX_MACRO_AIF2 Playback");
  3488. snd_soc_dapm_ignore_suspend(dapm, "RX_MACRO_AIF3 Playback");
  3489. snd_soc_dapm_ignore_suspend(dapm, "RX_MACRO_AIF4 Playback");
  3490. snd_soc_dapm_ignore_suspend(dapm, "RX_MACRO_AIF5 Playback");
  3491. snd_soc_dapm_ignore_suspend(dapm, "RX_MACRO_AIF6 Playback");
  3492. snd_soc_dapm_ignore_suspend(dapm, "HPHL_OUT");
  3493. snd_soc_dapm_ignore_suspend(dapm, "HPHR_OUT");
  3494. snd_soc_dapm_ignore_suspend(dapm, "AUX_OUT");
  3495. snd_soc_dapm_ignore_suspend(dapm, "PCM_OUT");
  3496. snd_soc_dapm_ignore_suspend(dapm, "RX_TX DEC0_INP");
  3497. snd_soc_dapm_ignore_suspend(dapm, "RX_TX DEC1_INP");
  3498. snd_soc_dapm_ignore_suspend(dapm, "RX_TX DEC2_INP");
  3499. snd_soc_dapm_ignore_suspend(dapm, "RX_TX DEC3_INP");
  3500. snd_soc_dapm_sync(dapm);
  3501. for (i = 0; i < ARRAY_SIZE(lpass_cdc_rx_macro_reg_init); i++)
  3502. snd_soc_component_update_bits(component,
  3503. lpass_cdc_rx_macro_reg_init[i].reg,
  3504. lpass_cdc_rx_macro_reg_init[i].mask,
  3505. lpass_cdc_rx_macro_reg_init[i].val);
  3506. rx_priv->component = component;
  3507. return 0;
  3508. }
  3509. static int lpass_cdc_rx_macro_deinit(struct snd_soc_component *component)
  3510. {
  3511. struct device *rx_dev = NULL;
  3512. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  3513. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  3514. return -EINVAL;
  3515. rx_priv->component = NULL;
  3516. return 0;
  3517. }
  3518. static void lpass_cdc_rx_macro_add_child_devices(struct work_struct *work)
  3519. {
  3520. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  3521. struct platform_device *pdev = NULL;
  3522. struct device_node *node = NULL;
  3523. struct rx_swr_ctrl_data *swr_ctrl_data = NULL, *temp = NULL;
  3524. int ret = 0;
  3525. u16 count = 0, ctrl_num = 0;
  3526. struct rx_swr_ctrl_platform_data *platdata = NULL;
  3527. char plat_dev_name[RX_SWR_STRING_LEN] = "";
  3528. bool rx_swr_master_node = false;
  3529. rx_priv = container_of(work, struct lpass_cdc_rx_macro_priv,
  3530. lpass_cdc_rx_macro_add_child_devices_work);
  3531. if (!rx_priv) {
  3532. pr_err("%s: Memory for rx_priv does not exist\n",
  3533. __func__);
  3534. return;
  3535. }
  3536. if (!rx_priv->dev) {
  3537. pr_err("%s: RX device does not exist\n", __func__);
  3538. return;
  3539. }
  3540. if(!rx_priv->dev->of_node) {
  3541. dev_err(rx_priv->dev,
  3542. "%s: DT node for RX dev does not exist\n", __func__);
  3543. return;
  3544. }
  3545. platdata = &rx_priv->swr_plat_data;
  3546. rx_priv->child_count = 0;
  3547. for_each_available_child_of_node(rx_priv->dev->of_node, node) {
  3548. rx_swr_master_node = false;
  3549. if (strnstr(node->name, "rx_swr_master",
  3550. strlen("rx_swr_master")) != NULL)
  3551. rx_swr_master_node = true;
  3552. if(rx_swr_master_node)
  3553. strlcpy(plat_dev_name, "rx_swr_ctrl",
  3554. (RX_SWR_STRING_LEN - 1));
  3555. else
  3556. strlcpy(plat_dev_name, node->name,
  3557. (RX_SWR_STRING_LEN - 1));
  3558. pdev = platform_device_alloc(plat_dev_name, -1);
  3559. if (!pdev) {
  3560. dev_err(rx_priv->dev, "%s: pdev memory alloc failed\n",
  3561. __func__);
  3562. ret = -ENOMEM;
  3563. goto err;
  3564. }
  3565. pdev->dev.parent = rx_priv->dev;
  3566. pdev->dev.of_node = node;
  3567. if (rx_swr_master_node) {
  3568. ret = platform_device_add_data(pdev, platdata,
  3569. sizeof(*platdata));
  3570. if (ret) {
  3571. dev_err(&pdev->dev,
  3572. "%s: cannot add plat data ctrl:%d\n",
  3573. __func__, ctrl_num);
  3574. goto fail_pdev_add;
  3575. }
  3576. }
  3577. ret = platform_device_add(pdev);
  3578. if (ret) {
  3579. dev_err(&pdev->dev,
  3580. "%s: Cannot add platform device\n",
  3581. __func__);
  3582. goto fail_pdev_add;
  3583. }
  3584. if (rx_swr_master_node) {
  3585. temp = krealloc(swr_ctrl_data,
  3586. (ctrl_num + 1) * sizeof(
  3587. struct rx_swr_ctrl_data),
  3588. GFP_KERNEL);
  3589. if (!temp) {
  3590. ret = -ENOMEM;
  3591. goto fail_pdev_add;
  3592. }
  3593. swr_ctrl_data = temp;
  3594. swr_ctrl_data[ctrl_num].rx_swr_pdev = pdev;
  3595. ctrl_num++;
  3596. dev_dbg(&pdev->dev,
  3597. "%s: Added soundwire ctrl device(s)\n",
  3598. __func__);
  3599. rx_priv->swr_ctrl_data = swr_ctrl_data;
  3600. }
  3601. if (rx_priv->child_count < LPASS_CDC_RX_MACRO_CHILD_DEVICES_MAX)
  3602. rx_priv->pdev_child_devices[
  3603. rx_priv->child_count++] = pdev;
  3604. else
  3605. goto err;
  3606. }
  3607. return;
  3608. fail_pdev_add:
  3609. for (count = 0; count < rx_priv->child_count; count++)
  3610. platform_device_put(rx_priv->pdev_child_devices[count]);
  3611. err:
  3612. return;
  3613. }
  3614. static void lpass_cdc_rx_macro_init_ops(struct macro_ops *ops, char __iomem *rx_io_base)
  3615. {
  3616. memset(ops, 0, sizeof(struct macro_ops));
  3617. ops->init = lpass_cdc_rx_macro_init;
  3618. ops->exit = lpass_cdc_rx_macro_deinit;
  3619. ops->io_base = rx_io_base;
  3620. ops->dai_ptr = lpass_cdc_rx_macro_dai;
  3621. ops->num_dais = ARRAY_SIZE(lpass_cdc_rx_macro_dai);
  3622. ops->event_handler = lpass_cdc_rx_macro_event_handler;
  3623. ops->set_port_map = lpass_cdc_rx_macro_set_port_map;
  3624. }
  3625. static int lpass_cdc_rx_macro_probe(struct platform_device *pdev)
  3626. {
  3627. struct macro_ops ops = {0};
  3628. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  3629. u32 rx_base_addr = 0, muxsel = 0;
  3630. char __iomem *rx_io_base = NULL, *muxsel_io = NULL;
  3631. int ret = 0;
  3632. u32 default_clk_id = 0;
  3633. u32 is_used_rx_swr_gpio = 1;
  3634. const char *is_used_rx_swr_gpio_dt = "qcom,is-used-swr-gpio";
  3635. if (!lpass_cdc_is_va_macro_registered(&pdev->dev)) {
  3636. dev_err(&pdev->dev,
  3637. "%s: va-macro not registered yet, defer\n", __func__);
  3638. return -EPROBE_DEFER;
  3639. }
  3640. rx_priv = devm_kzalloc(&pdev->dev, sizeof(struct lpass_cdc_rx_macro_priv),
  3641. GFP_KERNEL);
  3642. if (!rx_priv)
  3643. return -ENOMEM;
  3644. rx_priv->dev = &pdev->dev;
  3645. ret = of_property_read_u32(pdev->dev.of_node, "reg",
  3646. &rx_base_addr);
  3647. if (ret) {
  3648. dev_err(&pdev->dev, "%s: could not find %s entry in dt\n",
  3649. __func__, "reg");
  3650. return ret;
  3651. }
  3652. ret = of_property_read_u32(pdev->dev.of_node, "qcom,rx_mclk_mode_muxsel",
  3653. &muxsel);
  3654. if (ret) {
  3655. dev_err(&pdev->dev, "%s: could not find %s entry in dt\n",
  3656. __func__, "reg");
  3657. return ret;
  3658. }
  3659. ret = of_property_read_u32(pdev->dev.of_node, "qcom,default-clk-id",
  3660. &default_clk_id);
  3661. if (ret) {
  3662. dev_err(&pdev->dev, "%s: could not find %s entry in dt\n",
  3663. __func__, "qcom,default-clk-id");
  3664. default_clk_id = RX_CORE_CLK;
  3665. }
  3666. if (of_find_property(pdev->dev.of_node, is_used_rx_swr_gpio_dt,
  3667. NULL)) {
  3668. ret = of_property_read_u32(pdev->dev.of_node,
  3669. is_used_rx_swr_gpio_dt,
  3670. &is_used_rx_swr_gpio);
  3671. if (ret) {
  3672. dev_err(&pdev->dev, "%s: error reading %s in dt\n",
  3673. __func__, is_used_rx_swr_gpio_dt);
  3674. is_used_rx_swr_gpio = 1;
  3675. }
  3676. }
  3677. rx_priv->rx_swr_gpio_p = of_parse_phandle(pdev->dev.of_node,
  3678. "qcom,rx-swr-gpios", 0);
  3679. if (!rx_priv->rx_swr_gpio_p && is_used_rx_swr_gpio) {
  3680. dev_err(&pdev->dev, "%s: swr_gpios handle not provided!\n",
  3681. __func__);
  3682. return -EINVAL;
  3683. }
  3684. if (msm_cdc_pinctrl_get_state(rx_priv->rx_swr_gpio_p) < 0 &&
  3685. is_used_rx_swr_gpio) {
  3686. dev_err(&pdev->dev, "%s: failed to get swr pin state\n",
  3687. __func__);
  3688. return -EPROBE_DEFER;
  3689. }
  3690. msm_cdc_pinctrl_set_wakeup_capable(
  3691. rx_priv->rx_swr_gpio_p, false);
  3692. rx_io_base = devm_ioremap(&pdev->dev, rx_base_addr,
  3693. LPASS_CDC_RX_MACRO_MAX_OFFSET);
  3694. if (!rx_io_base) {
  3695. dev_err(&pdev->dev, "%s: ioremap failed\n", __func__);
  3696. return -ENOMEM;
  3697. }
  3698. rx_priv->rx_io_base = rx_io_base;
  3699. muxsel_io = devm_ioremap(&pdev->dev, muxsel, 0x4);
  3700. if (!muxsel_io) {
  3701. dev_err(&pdev->dev, "%s: ioremap failed for muxsel\n",
  3702. __func__);
  3703. return -ENOMEM;
  3704. }
  3705. rx_priv->rx_mclk_mode_muxsel = muxsel_io;
  3706. rx_priv->reset_swr = true;
  3707. INIT_WORK(&rx_priv->lpass_cdc_rx_macro_add_child_devices_work,
  3708. lpass_cdc_rx_macro_add_child_devices);
  3709. rx_priv->swr_plat_data.handle = (void *) rx_priv;
  3710. rx_priv->swr_plat_data.read = NULL;
  3711. rx_priv->swr_plat_data.write = NULL;
  3712. rx_priv->swr_plat_data.bulk_write = NULL;
  3713. rx_priv->swr_plat_data.clk = rx_swrm_clock;
  3714. rx_priv->swr_plat_data.core_vote = lpass_cdc_rx_macro_core_vote;
  3715. rx_priv->swr_plat_data.handle_irq = NULL;
  3716. rx_priv->clk_id = default_clk_id;
  3717. rx_priv->default_clk_id = default_clk_id;
  3718. ops.clk_id_req = rx_priv->clk_id;
  3719. ops.default_clk_id = default_clk_id;
  3720. rx_priv->is_aux_hpf_on = 1;
  3721. dev_set_drvdata(&pdev->dev, rx_priv);
  3722. mutex_init(&rx_priv->mclk_lock);
  3723. mutex_init(&rx_priv->swr_clk_lock);
  3724. lpass_cdc_rx_macro_init_ops(&ops, rx_io_base);
  3725. ret = lpass_cdc_register_macro(&pdev->dev, RX_MACRO, &ops);
  3726. if (ret) {
  3727. dev_err(&pdev->dev,
  3728. "%s: register macro failed\n", __func__);
  3729. goto err_reg_macro;
  3730. }
  3731. schedule_work(&rx_priv->lpass_cdc_rx_macro_add_child_devices_work);
  3732. pm_runtime_set_autosuspend_delay(&pdev->dev, AUTO_SUSPEND_DELAY);
  3733. pm_runtime_use_autosuspend(&pdev->dev);
  3734. pm_runtime_set_suspended(&pdev->dev);
  3735. pm_suspend_ignore_children(&pdev->dev, true);
  3736. pm_runtime_enable(&pdev->dev);
  3737. return 0;
  3738. err_reg_macro:
  3739. mutex_destroy(&rx_priv->mclk_lock);
  3740. mutex_destroy(&rx_priv->swr_clk_lock);
  3741. return ret;
  3742. }
  3743. static int lpass_cdc_rx_macro_remove(struct platform_device *pdev)
  3744. {
  3745. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  3746. u16 count = 0;
  3747. rx_priv = dev_get_drvdata(&pdev->dev);
  3748. if (!rx_priv)
  3749. return -EINVAL;
  3750. for (count = 0; count < rx_priv->child_count &&
  3751. count < LPASS_CDC_RX_MACRO_CHILD_DEVICES_MAX; count++)
  3752. platform_device_unregister(rx_priv->pdev_child_devices[count]);
  3753. pm_runtime_disable(&pdev->dev);
  3754. pm_runtime_set_suspended(&pdev->dev);
  3755. lpass_cdc_unregister_macro(&pdev->dev, RX_MACRO);
  3756. mutex_destroy(&rx_priv->mclk_lock);
  3757. mutex_destroy(&rx_priv->swr_clk_lock);
  3758. kfree(rx_priv->swr_ctrl_data);
  3759. return 0;
  3760. }
  3761. static const struct of_device_id lpass_cdc_rx_macro_dt_match[] = {
  3762. {.compatible = "qcom,lpass-cdc-rx-macro"},
  3763. {}
  3764. };
  3765. static const struct dev_pm_ops lpass_cdc_dev_pm_ops = {
  3766. SET_SYSTEM_SLEEP_PM_OPS(
  3767. pm_runtime_force_suspend,
  3768. pm_runtime_force_resume
  3769. )
  3770. SET_RUNTIME_PM_OPS(
  3771. lpass_cdc_runtime_suspend,
  3772. lpass_cdc_runtime_resume,
  3773. NULL
  3774. )
  3775. };
  3776. static struct platform_driver lpass_cdc_rx_macro_driver = {
  3777. .driver = {
  3778. .name = "lpass_cdc_rx_macro",
  3779. .owner = THIS_MODULE,
  3780. .pm = &lpass_cdc_dev_pm_ops,
  3781. .of_match_table = lpass_cdc_rx_macro_dt_match,
  3782. .suppress_bind_attrs = true,
  3783. },
  3784. .probe = lpass_cdc_rx_macro_probe,
  3785. .remove = lpass_cdc_rx_macro_remove,
  3786. };
  3787. module_platform_driver(lpass_cdc_rx_macro_driver);
  3788. MODULE_DESCRIPTION("RX macro driver");
  3789. MODULE_LICENSE("GPL v2");