Files
android_kernel_samsung_sm86…/cnss2/power.c
Rajesh Chauhan 90e0212ecc cnss2: Add support for direct QMP to communicate with AOP
Add support for direct QMP to communicate with AOP. There
are two ways to communicate with AOP: mailbox, and direct
QMP. Based on property set in the device tree use either
direct QMP or mailbox to send messages to AOP.

Change-Id: I9fc24f8a483abb3084cda4d85acf2d53e43d9ad8
CRs-Fixed: 3488507
2023-05-11 18:02:05 -07:00

1917 righe
48 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (c) 2016-2021, The Linux Foundation. All rights reserved.
* Copyright (c) 2021-2023 Qualcomm Innovation Center, Inc. All rights reserved.
*/
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/of.h>
#include <linux/of_gpio.h>
#include <linux/pinctrl/consumer.h>
#include <linux/pinctrl/qcom-pinctrl.h>
#include <linux/regulator/consumer.h>
#if IS_ENABLED(CONFIG_QCOM_COMMAND_DB)
#include <soc/qcom/cmd-db.h>
#endif
#include "main.h"
#include "debug.h"
#include "bus.h"
#if IS_ENABLED(CONFIG_ARCH_QCOM)
static struct cnss_vreg_cfg cnss_vreg_list[] = {
{"vdd-wlan-core", 1300000, 1300000, 0, 0, 0},
{"vdd-wlan-io", 1800000, 1800000, 0, 0, 0},
{"vdd-wlan-io12", 1200000, 1200000, 0, 0, 0},
{"vdd-wlan-ant-share", 1800000, 1800000, 0, 0, 0},
{"vdd-wlan-xtal-aon", 0, 0, 0, 0, 0},
{"vdd-wlan-xtal", 1800000, 1800000, 0, 2, 0},
{"vdd-wlan", 0, 0, 0, 0, 0},
{"vdd-wlan-ctrl1", 0, 0, 0, 0, 0},
{"vdd-wlan-ctrl2", 0, 0, 0, 0, 0},
{"vdd-wlan-sp2t", 2700000, 2700000, 0, 0, 0},
{"wlan-ant-switch", 1800000, 1800000, 0, 0, 0},
{"wlan-soc-swreg", 1200000, 1200000, 0, 0, 0},
{"vdd-wlan-aon", 950000, 950000, 0, 0, 0},
{"vdd-wlan-dig", 950000, 952000, 0, 0, 0},
{"vdd-wlan-rfa1", 1900000, 1900000, 0, 0, 0},
{"vdd-wlan-rfa2", 1350000, 1350000, 0, 0, 0},
{"vdd-wlan-rfa3", 1900000, 1900000, 450000, 0, 0},
{"alt-sleep-clk", 0, 0, 0, 0, 0},
{"vdd-wlan-en", 0, 0, 0, 10, 0},
};
static struct cnss_clk_cfg cnss_clk_list[] = {
{"rf_clk", 0, 0},
};
#else
static struct cnss_vreg_cfg cnss_vreg_list[] = {
};
static struct cnss_clk_cfg cnss_clk_list[] = {
};
#endif
#define CNSS_VREG_INFO_SIZE ARRAY_SIZE(cnss_vreg_list)
#define CNSS_CLK_INFO_SIZE ARRAY_SIZE(cnss_clk_list)
#define MAX_PROP_SIZE 32
#define BOOTSTRAP_GPIO "qcom,enable-bootstrap-gpio"
#define BOOTSTRAP_ACTIVE "bootstrap_active"
#define HOST_SOL_GPIO "wlan-host-sol-gpio"
#define DEV_SOL_GPIO "wlan-dev-sol-gpio"
#define SOL_DEFAULT "sol_default"
#define WLAN_EN_GPIO "wlan-en-gpio"
#define BT_EN_GPIO "qcom,bt-en-gpio"
#define XO_CLK_GPIO "qcom,xo-clk-gpio"
#define SW_CTRL_GPIO "qcom,sw-ctrl-gpio"
#define WLAN_SW_CTRL_GPIO "qcom,wlan-sw-ctrl-gpio"
#define WLAN_EN_ACTIVE "wlan_en_active"
#define WLAN_EN_SLEEP "wlan_en_sleep"
#define WLAN_VREGS_PROP "wlan_vregs"
/* unit us */
#define BOOTSTRAP_DELAY 1000
#define WLAN_ENABLE_DELAY 1000
/* unit ms */
#define WLAN_ENABLE_DELAY_ROME 10
#define TCS_CMD_DATA_ADDR_OFFSET 0x4
#define TCS_OFFSET 0xC8
#define TCS_CMD_OFFSET 0x10
#define MAX_TCS_NUM 8
#define MAX_TCS_CMD_NUM 5
#define BT_CXMX_VOLTAGE_MV 950
#define CNSS_MBOX_MSG_MAX_LEN 64
#define CNSS_MBOX_TIMEOUT_MS 1000
/* Platform HW config */
#define CNSS_PMIC_VOLTAGE_STEP 4
#define CNSS_PMIC_AUTO_HEADROOM 16
#define CNSS_IR_DROP_WAKE 30
#define CNSS_IR_DROP_SLEEP 10
#define VREG_NOTFOUND 1
/**
* enum cnss_aop_vreg_param: Voltage regulator TCS param
* @CNSS_VREG_VOLTAGE: Provides voltage level in mV to be configured in TCS
* @CNSS_VREG_MODE: Regulator mode
* @CNSS_VREG_TCS_ENABLE: Set bool Voltage regulator enable config in TCS.
*/
enum cnss_aop_vreg_param {
CNSS_VREG_VOLTAGE,
CNSS_VREG_MODE,
CNSS_VREG_ENABLE,
CNSS_VREG_PARAM_MAX
};
/** enum cnss_aop_vreg_param_mode: Voltage modes supported by AOP*/
enum cnss_aop_vreg_param_mode {
CNSS_VREG_RET_MODE = 3,
CNSS_VREG_LPM_MODE = 4,
CNSS_VREG_AUTO_MODE = 6,
CNSS_VREG_NPM_MODE = 7,
CNSS_VREG_MODE_MAX
};
/**
* enum cnss_aop_tcs_seq: TCS sequence ID for trigger
* @CNSS_TCS_UP_SEQ: TCS Sequence based on up trigger / Wake TCS
* @CNSS_TCS_DOWN_SEQ: TCS Sequence based on down trigger / Sleep TCS
* @CNSS_TCS_ENABLE_SEQ: Enable this TCS seq entry
*/
enum cnss_aop_tcs_seq_param {
CNSS_TCS_UP_SEQ,
CNSS_TCS_DOWN_SEQ,
CNSS_TCS_ENABLE_SEQ,
CNSS_TCS_SEQ_MAX
};
static int cnss_get_vreg_single(struct cnss_plat_data *plat_priv,
struct cnss_vreg_info *vreg)
{
int ret = 0;
struct device *dev;
struct regulator *reg;
const __be32 *prop;
char prop_name[MAX_PROP_SIZE] = {0};
int len;
struct device_node *dt_node;
dev = &plat_priv->plat_dev->dev;
dt_node = (plat_priv->dev_node ? plat_priv->dev_node : dev->of_node);
reg = devm_regulator_get_optional(dev, vreg->cfg.name);
if (IS_ERR(reg)) {
ret = PTR_ERR(reg);
if (ret == -ENODEV)
return ret;
else if (ret == -EPROBE_DEFER)
cnss_pr_info("EPROBE_DEFER for regulator: %s\n",
vreg->cfg.name);
else
cnss_pr_err("Failed to get regulator %s, err = %d\n",
vreg->cfg.name, ret);
return ret;
}
vreg->reg = reg;
snprintf(prop_name, MAX_PROP_SIZE, "qcom,%s-config",
vreg->cfg.name);
prop = of_get_property(dt_node, prop_name, &len);
if (!prop || len != (5 * sizeof(__be32))) {
cnss_pr_dbg("Property %s %s, use default\n", prop_name,
prop ? "invalid format" : "doesn't exist");
} else {
vreg->cfg.min_uv = be32_to_cpup(&prop[0]);
vreg->cfg.max_uv = be32_to_cpup(&prop[1]);
vreg->cfg.load_ua = be32_to_cpup(&prop[2]);
vreg->cfg.delay_us = be32_to_cpup(&prop[3]);
vreg->cfg.need_unvote = be32_to_cpup(&prop[4]);
}
cnss_pr_dbg("Got regulator: %s, min_uv: %u, max_uv: %u, load_ua: %u, delay_us: %u, need_unvote: %u\n",
vreg->cfg.name, vreg->cfg.min_uv,
vreg->cfg.max_uv, vreg->cfg.load_ua,
vreg->cfg.delay_us, vreg->cfg.need_unvote);
return 0;
}
static void cnss_put_vreg_single(struct cnss_plat_data *plat_priv,
struct cnss_vreg_info *vreg)
{
struct device *dev = &plat_priv->plat_dev->dev;
cnss_pr_dbg("Put regulator: %s\n", vreg->cfg.name);
devm_regulator_put(vreg->reg);
devm_kfree(dev, vreg);
}
static int cnss_vreg_on_single(struct cnss_vreg_info *vreg)
{
int ret = 0;
if (vreg->enabled) {
cnss_pr_dbg("Regulator %s is already enabled\n",
vreg->cfg.name);
return 0;
}
cnss_pr_dbg("Regulator %s is being enabled\n", vreg->cfg.name);
if (vreg->cfg.min_uv != 0 && vreg->cfg.max_uv != 0) {
ret = regulator_set_voltage(vreg->reg,
vreg->cfg.min_uv,
vreg->cfg.max_uv);
if (ret) {
cnss_pr_err("Failed to set voltage for regulator %s, min_uv: %u, max_uv: %u, err = %d\n",
vreg->cfg.name, vreg->cfg.min_uv,
vreg->cfg.max_uv, ret);
goto out;
}
}
if (vreg->cfg.load_ua) {
ret = regulator_set_load(vreg->reg,
vreg->cfg.load_ua);
if (ret < 0) {
cnss_pr_err("Failed to set load for regulator %s, load: %u, err = %d\n",
vreg->cfg.name, vreg->cfg.load_ua,
ret);
goto out;
}
}
if (vreg->cfg.delay_us)
udelay(vreg->cfg.delay_us);
ret = regulator_enable(vreg->reg);
if (ret) {
cnss_pr_err("Failed to enable regulator %s, err = %d\n",
vreg->cfg.name, ret);
goto out;
}
vreg->enabled = true;
out:
return ret;
}
static int cnss_vreg_unvote_single(struct cnss_vreg_info *vreg)
{
int ret = 0;
if (!vreg->enabled) {
cnss_pr_dbg("Regulator %s is already disabled\n",
vreg->cfg.name);
return 0;
}
cnss_pr_dbg("Removing vote for Regulator %s\n", vreg->cfg.name);
if (vreg->cfg.load_ua) {
ret = regulator_set_load(vreg->reg, 0);
if (ret < 0)
cnss_pr_err("Failed to set load for regulator %s, err = %d\n",
vreg->cfg.name, ret);
}
if (vreg->cfg.min_uv != 0 && vreg->cfg.max_uv != 0) {
ret = regulator_set_voltage(vreg->reg, 0,
vreg->cfg.max_uv);
if (ret)
cnss_pr_err("Failed to set voltage for regulator %s, err = %d\n",
vreg->cfg.name, ret);
}
return ret;
}
static int cnss_vreg_off_single(struct cnss_vreg_info *vreg)
{
int ret = 0;
if (!vreg->enabled) {
cnss_pr_dbg("Regulator %s is already disabled\n",
vreg->cfg.name);
return 0;
}
cnss_pr_dbg("Regulator %s is being disabled\n",
vreg->cfg.name);
ret = regulator_disable(vreg->reg);
if (ret)
cnss_pr_err("Failed to disable regulator %s, err = %d\n",
vreg->cfg.name, ret);
if (vreg->cfg.load_ua) {
ret = regulator_set_load(vreg->reg, 0);
if (ret < 0)
cnss_pr_err("Failed to set load for regulator %s, err = %d\n",
vreg->cfg.name, ret);
}
if (vreg->cfg.min_uv != 0 && vreg->cfg.max_uv != 0) {
ret = regulator_set_voltage(vreg->reg, 0,
vreg->cfg.max_uv);
if (ret)
cnss_pr_err("Failed to set voltage for regulator %s, err = %d\n",
vreg->cfg.name, ret);
}
vreg->enabled = false;
return ret;
}
static struct cnss_vreg_cfg *get_vreg_list(u32 *vreg_list_size,
enum cnss_vreg_type type)
{
switch (type) {
case CNSS_VREG_PRIM:
*vreg_list_size = CNSS_VREG_INFO_SIZE;
return cnss_vreg_list;
default:
cnss_pr_err("Unsupported vreg type 0x%x\n", type);
*vreg_list_size = 0;
return NULL;
}
}
/*
* For multi-exchg dt node, get the required vregs' names from property
* 'wlan_vregs', which is string array;
*
* If the property is not present or present but no value is set, then no
* additional wlan verg is required, function return VREG_NOTFOUND.
* If property is present with valid value, function return 0.
* Other cases a negative value is returned.
*
* For non-multi-exchg dt, go through all vregs in the static array
* 'cnss_vreg_list'.
*/
static int cnss_get_vreg(struct cnss_plat_data *plat_priv,
struct list_head *vreg_list,
struct cnss_vreg_cfg *vreg_cfg,
u32 vreg_list_size)
{
int ret = 0;
int i;
struct cnss_vreg_info *vreg;
struct device *dev = &plat_priv->plat_dev->dev;
int id_n;
struct device_node *dt_node;
if (!list_empty(vreg_list) &&
(plat_priv->dt_type != CNSS_DTT_MULTIEXCHG)) {
cnss_pr_dbg("Vregs have already been updated\n");
return 0;
}
dt_node = (plat_priv->dev_node ? plat_priv->dev_node : dev->of_node);
if (plat_priv->dt_type == CNSS_DTT_MULTIEXCHG) {
id_n = of_property_count_strings(dt_node,
WLAN_VREGS_PROP);
if (id_n <= 0) {
if (id_n == -ENODATA || id_n == -EINVAL) {
cnss_pr_dbg("No additional vregs for: %s:%lx\n",
dt_node->name,
plat_priv->device_id);
/* By returning a positive value, give the caller a
* chance to know no additional regulator is needed
* by this device, and shall not treat this case as
* an error.
*/
return VREG_NOTFOUND;
}
cnss_pr_err("property %s is invalid: %s:%lx\n",
WLAN_VREGS_PROP, dt_node->name,
plat_priv->device_id);
return -EINVAL;
}
} else {
id_n = vreg_list_size;
}
for (i = 0; i < id_n; i++) {
vreg = devm_kzalloc(dev, sizeof(*vreg), GFP_KERNEL);
if (!vreg)
return -ENOMEM;
if (plat_priv->dt_type == CNSS_DTT_MULTIEXCHG) {
ret = of_property_read_string_index(dt_node,
WLAN_VREGS_PROP, i,
&vreg->cfg.name);
if (ret) {
cnss_pr_err("Failed to read vreg ids\n");
return ret;
}
} else {
memcpy(&vreg->cfg, &vreg_cfg[i], sizeof(vreg->cfg));
}
ret = cnss_get_vreg_single(plat_priv, vreg);
if (ret != 0) {
if (ret == -ENODEV) {
devm_kfree(dev, vreg);
continue;
} else {
devm_kfree(dev, vreg);
return ret;
}
}
list_add_tail(&vreg->list, vreg_list);
}
return 0;
}
static void cnss_put_vreg(struct cnss_plat_data *plat_priv,
struct list_head *vreg_list)
{
struct cnss_vreg_info *vreg;
while (!list_empty(vreg_list)) {
vreg = list_first_entry(vreg_list,
struct cnss_vreg_info, list);
list_del(&vreg->list);
if (IS_ERR_OR_NULL(vreg->reg))
continue;
cnss_put_vreg_single(plat_priv, vreg);
}
}
static int cnss_vreg_on(struct cnss_plat_data *plat_priv,
struct list_head *vreg_list)
{
struct cnss_vreg_info *vreg;
int ret = 0;
list_for_each_entry(vreg, vreg_list, list) {
if (IS_ERR_OR_NULL(vreg->reg))
continue;
ret = cnss_vreg_on_single(vreg);
if (ret)
break;
}
if (!ret)
return 0;
list_for_each_entry_continue_reverse(vreg, vreg_list, list) {
if (IS_ERR_OR_NULL(vreg->reg) || !vreg->enabled)
continue;
cnss_vreg_off_single(vreg);
}
return ret;
}
static int cnss_vreg_off(struct cnss_plat_data *plat_priv,
struct list_head *vreg_list)
{
struct cnss_vreg_info *vreg;
list_for_each_entry_reverse(vreg, vreg_list, list) {
if (IS_ERR_OR_NULL(vreg->reg))
continue;
cnss_vreg_off_single(vreg);
}
return 0;
}
static int cnss_vreg_unvote(struct cnss_plat_data *plat_priv,
struct list_head *vreg_list)
{
struct cnss_vreg_info *vreg;
list_for_each_entry_reverse(vreg, vreg_list, list) {
if (IS_ERR_OR_NULL(vreg->reg))
continue;
if (vreg->cfg.need_unvote)
cnss_vreg_unvote_single(vreg);
}
return 0;
}
int cnss_get_vreg_type(struct cnss_plat_data *plat_priv,
enum cnss_vreg_type type)
{
struct cnss_vreg_cfg *vreg_cfg;
u32 vreg_list_size = 0;
int ret = 0;
vreg_cfg = get_vreg_list(&vreg_list_size, type);
if (!vreg_cfg)
return -EINVAL;
switch (type) {
case CNSS_VREG_PRIM:
ret = cnss_get_vreg(plat_priv, &plat_priv->vreg_list,
vreg_cfg, vreg_list_size);
break;
default:
cnss_pr_err("Unsupported vreg type 0x%x\n", type);
return -EINVAL;
}
return ret;
}
void cnss_put_vreg_type(struct cnss_plat_data *plat_priv,
enum cnss_vreg_type type)
{
switch (type) {
case CNSS_VREG_PRIM:
cnss_put_vreg(plat_priv, &plat_priv->vreg_list);
break;
default:
return;
}
}
int cnss_vreg_on_type(struct cnss_plat_data *plat_priv,
enum cnss_vreg_type type)
{
int ret = 0;
switch (type) {
case CNSS_VREG_PRIM:
ret = cnss_vreg_on(plat_priv, &plat_priv->vreg_list);
break;
default:
cnss_pr_err("Unsupported vreg type 0x%x\n", type);
return -EINVAL;
}
return ret;
}
int cnss_vreg_off_type(struct cnss_plat_data *plat_priv,
enum cnss_vreg_type type)
{
int ret = 0;
switch (type) {
case CNSS_VREG_PRIM:
ret = cnss_vreg_off(plat_priv, &plat_priv->vreg_list);
break;
default:
cnss_pr_err("Unsupported vreg type 0x%x\n", type);
return -EINVAL;
}
return ret;
}
int cnss_vreg_unvote_type(struct cnss_plat_data *plat_priv,
enum cnss_vreg_type type)
{
int ret = 0;
switch (type) {
case CNSS_VREG_PRIM:
ret = cnss_vreg_unvote(plat_priv, &plat_priv->vreg_list);
break;
default:
cnss_pr_err("Unsupported vreg type 0x%x\n", type);
return -EINVAL;
}
return ret;
}
static int cnss_get_clk_single(struct cnss_plat_data *plat_priv,
struct cnss_clk_info *clk_info)
{
struct device *dev = &plat_priv->plat_dev->dev;
struct clk *clk;
int ret;
clk = devm_clk_get(dev, clk_info->cfg.name);
if (IS_ERR(clk)) {
ret = PTR_ERR(clk);
if (clk_info->cfg.required)
cnss_pr_err("Failed to get clock %s, err = %d\n",
clk_info->cfg.name, ret);
else
cnss_pr_dbg("Failed to get optional clock %s, err = %d\n",
clk_info->cfg.name, ret);
return ret;
}
clk_info->clk = clk;
cnss_pr_dbg("Got clock: %s, freq: %u\n",
clk_info->cfg.name, clk_info->cfg.freq);
return 0;
}
static void cnss_put_clk_single(struct cnss_plat_data *plat_priv,
struct cnss_clk_info *clk_info)
{
struct device *dev = &plat_priv->plat_dev->dev;
cnss_pr_dbg("Put clock: %s\n", clk_info->cfg.name);
devm_clk_put(dev, clk_info->clk);
}
static int cnss_clk_on_single(struct cnss_clk_info *clk_info)
{
int ret;
if (clk_info->enabled) {
cnss_pr_dbg("Clock %s is already enabled\n",
clk_info->cfg.name);
return 0;
}
cnss_pr_dbg("Clock %s is being enabled\n", clk_info->cfg.name);
if (clk_info->cfg.freq) {
ret = clk_set_rate(clk_info->clk, clk_info->cfg.freq);
if (ret) {
cnss_pr_err("Failed to set frequency %u for clock %s, err = %d\n",
clk_info->cfg.freq, clk_info->cfg.name,
ret);
return ret;
}
}
ret = clk_prepare_enable(clk_info->clk);
if (ret) {
cnss_pr_err("Failed to enable clock %s, err = %d\n",
clk_info->cfg.name, ret);
return ret;
}
clk_info->enabled = true;
return 0;
}
static int cnss_clk_off_single(struct cnss_clk_info *clk_info)
{
if (!clk_info->enabled) {
cnss_pr_dbg("Clock %s is already disabled\n",
clk_info->cfg.name);
return 0;
}
cnss_pr_dbg("Clock %s is being disabled\n", clk_info->cfg.name);
clk_disable_unprepare(clk_info->clk);
clk_info->enabled = false;
return 0;
}
int cnss_get_clk(struct cnss_plat_data *plat_priv)
{
struct device *dev;
struct list_head *clk_list;
struct cnss_clk_info *clk_info;
int ret, i;
if (!plat_priv)
return -ENODEV;
dev = &plat_priv->plat_dev->dev;
clk_list = &plat_priv->clk_list;
if (!list_empty(clk_list)) {
cnss_pr_dbg("Clocks have already been updated\n");
return 0;
}
for (i = 0; i < CNSS_CLK_INFO_SIZE; i++) {
clk_info = devm_kzalloc(dev, sizeof(*clk_info), GFP_KERNEL);
if (!clk_info) {
ret = -ENOMEM;
goto cleanup;
}
memcpy(&clk_info->cfg, &cnss_clk_list[i],
sizeof(clk_info->cfg));
ret = cnss_get_clk_single(plat_priv, clk_info);
if (ret != 0) {
if (clk_info->cfg.required) {
devm_kfree(dev, clk_info);
goto cleanup;
} else {
devm_kfree(dev, clk_info);
continue;
}
}
list_add_tail(&clk_info->list, clk_list);
}
return 0;
cleanup:
while (!list_empty(clk_list)) {
clk_info = list_first_entry(clk_list, struct cnss_clk_info,
list);
list_del(&clk_info->list);
if (IS_ERR_OR_NULL(clk_info->clk))
continue;
cnss_put_clk_single(plat_priv, clk_info);
devm_kfree(dev, clk_info);
}
return ret;
}
void cnss_put_clk(struct cnss_plat_data *plat_priv)
{
struct device *dev;
struct list_head *clk_list;
struct cnss_clk_info *clk_info;
if (!plat_priv)
return;
dev = &plat_priv->plat_dev->dev;
clk_list = &plat_priv->clk_list;
while (!list_empty(clk_list)) {
clk_info = list_first_entry(clk_list, struct cnss_clk_info,
list);
list_del(&clk_info->list);
if (IS_ERR_OR_NULL(clk_info->clk))
continue;
cnss_put_clk_single(plat_priv, clk_info);
devm_kfree(dev, clk_info);
}
}
static int cnss_clk_on(struct cnss_plat_data *plat_priv,
struct list_head *clk_list)
{
struct cnss_clk_info *clk_info;
int ret = 0;
list_for_each_entry(clk_info, clk_list, list) {
if (IS_ERR_OR_NULL(clk_info->clk))
continue;
ret = cnss_clk_on_single(clk_info);
if (ret)
break;
}
if (!ret)
return 0;
list_for_each_entry_continue_reverse(clk_info, clk_list, list) {
if (IS_ERR_OR_NULL(clk_info->clk))
continue;
cnss_clk_off_single(clk_info);
}
return ret;
}
static int cnss_clk_off(struct cnss_plat_data *plat_priv,
struct list_head *clk_list)
{
struct cnss_clk_info *clk_info;
list_for_each_entry_reverse(clk_info, clk_list, list) {
if (IS_ERR_OR_NULL(clk_info->clk))
continue;
cnss_clk_off_single(clk_info);
}
return 0;
}
int cnss_get_pinctrl(struct cnss_plat_data *plat_priv)
{
int ret = 0;
struct device *dev;
struct cnss_pinctrl_info *pinctrl_info;
u32 gpio_id, i;
int gpio_id_n;
dev = &plat_priv->plat_dev->dev;
pinctrl_info = &plat_priv->pinctrl_info;
pinctrl_info->pinctrl = devm_pinctrl_get(dev);
if (IS_ERR_OR_NULL(pinctrl_info->pinctrl)) {
ret = PTR_ERR(pinctrl_info->pinctrl);
cnss_pr_err("Failed to get pinctrl, err = %d\n", ret);
goto out;
}
if (of_find_property(dev->of_node, BOOTSTRAP_GPIO, NULL)) {
pinctrl_info->bootstrap_active =
pinctrl_lookup_state(pinctrl_info->pinctrl,
BOOTSTRAP_ACTIVE);
if (IS_ERR_OR_NULL(pinctrl_info->bootstrap_active)) {
ret = PTR_ERR(pinctrl_info->bootstrap_active);
cnss_pr_err("Failed to get bootstrap active state, err = %d\n",
ret);
goto out;
}
}
if (of_find_property(dev->of_node, HOST_SOL_GPIO, NULL) &&
of_find_property(dev->of_node, DEV_SOL_GPIO, NULL)) {
pinctrl_info->sol_default =
pinctrl_lookup_state(pinctrl_info->pinctrl,
SOL_DEFAULT);
if (IS_ERR_OR_NULL(pinctrl_info->sol_default)) {
ret = PTR_ERR(pinctrl_info->sol_default);
cnss_pr_err("Failed to get sol default state, err = %d\n",
ret);
goto out;
}
cnss_pr_dbg("Got sol default state\n");
}
if (of_find_property(dev->of_node, WLAN_EN_GPIO, NULL)) {
pinctrl_info->wlan_en_gpio = of_get_named_gpio(dev->of_node,
WLAN_EN_GPIO, 0);
cnss_pr_dbg("WLAN_EN GPIO: %d\n", pinctrl_info->wlan_en_gpio);
pinctrl_info->wlan_en_active =
pinctrl_lookup_state(pinctrl_info->pinctrl,
WLAN_EN_ACTIVE);
if (IS_ERR_OR_NULL(pinctrl_info->wlan_en_active)) {
ret = PTR_ERR(pinctrl_info->wlan_en_active);
cnss_pr_err("Failed to get wlan_en active state, err = %d\n",
ret);
goto out;
}
pinctrl_info->wlan_en_sleep =
pinctrl_lookup_state(pinctrl_info->pinctrl,
WLAN_EN_SLEEP);
if (IS_ERR_OR_NULL(pinctrl_info->wlan_en_sleep)) {
ret = PTR_ERR(pinctrl_info->wlan_en_sleep);
cnss_pr_err("Failed to get wlan_en sleep state, err = %d\n",
ret);
goto out;
}
cnss_set_feature_list(plat_priv, CNSS_WLAN_EN_SUPPORT_V01);
} else {
pinctrl_info->wlan_en_gpio = -EINVAL;
}
/* Added for QCA6490 PMU delayed WLAN_EN_GPIO */
if (of_find_property(dev->of_node, BT_EN_GPIO, NULL)) {
pinctrl_info->bt_en_gpio = of_get_named_gpio(dev->of_node,
BT_EN_GPIO, 0);
cnss_pr_dbg("BT GPIO: %d\n", pinctrl_info->bt_en_gpio);
} else {
pinctrl_info->bt_en_gpio = -EINVAL;
}
/* Added for QCA6490 to minimize XO CLK selection leakage prevention */
if (of_find_property(dev->of_node, XO_CLK_GPIO, NULL)) {
pinctrl_info->xo_clk_gpio = of_get_named_gpio(dev->of_node,
XO_CLK_GPIO, 0);
cnss_pr_dbg("QCA6490 XO_CLK GPIO: %d\n",
pinctrl_info->xo_clk_gpio);
cnss_set_feature_list(plat_priv, BOOTSTRAP_CLOCK_SELECT_V01);
} else {
pinctrl_info->xo_clk_gpio = -EINVAL;
}
if (of_find_property(dev->of_node, SW_CTRL_GPIO, NULL)) {
pinctrl_info->sw_ctrl_gpio = of_get_named_gpio(dev->of_node,
SW_CTRL_GPIO,
0);
cnss_pr_dbg("Switch control GPIO: %d\n",
pinctrl_info->sw_ctrl_gpio);
} else {
pinctrl_info->sw_ctrl_gpio = -EINVAL;
}
/* Find out and configure all those GPIOs which need to be setup
* for interrupt wakeup capable
*/
gpio_id_n = of_property_count_u32_elems(dev->of_node, "mpm_wake_set_gpios");
if (gpio_id_n > 0) {
cnss_pr_dbg("Num of GPIOs to be setup for interrupt wakeup capable: %d\n",
gpio_id_n);
for (i = 0; i < gpio_id_n; i++) {
ret = of_property_read_u32_index(dev->of_node,
"mpm_wake_set_gpios",
i, &gpio_id);
if (ret) {
cnss_pr_err("Failed to read gpio_id at index: %d\n", i);
continue;
}
ret = msm_gpio_mpm_wake_set(gpio_id, 1);
if (ret < 0) {
cnss_pr_err("Failed to setup gpio_id: %d as interrupt wakeup capable, ret: %d\n",
ret);
} else {
cnss_pr_dbg("gpio_id: %d successfully setup for interrupt wakeup capable\n",
gpio_id);
}
}
} else {
cnss_pr_dbg("No GPIOs to be setup for interrupt wakeup capable\n");
}
return 0;
out:
return ret;
}
int cnss_get_wlan_sw_ctrl(struct cnss_plat_data *plat_priv)
{
struct device *dev;
struct cnss_pinctrl_info *pinctrl_info;
dev = &plat_priv->plat_dev->dev;
pinctrl_info = &plat_priv->pinctrl_info;
if (of_find_property(dev->of_node, WLAN_SW_CTRL_GPIO, NULL)) {
pinctrl_info->wlan_sw_ctrl_gpio = of_get_named_gpio(dev->of_node,
WLAN_SW_CTRL_GPIO,
0);
cnss_pr_dbg("WLAN Switch control GPIO: %d\n",
pinctrl_info->wlan_sw_ctrl_gpio);
} else {
pinctrl_info->wlan_sw_ctrl_gpio = -EINVAL;
}
return 0;
}
#define CNSS_XO_CLK_RETRY_COUNT_MAX 5
static void cnss_set_xo_clk_gpio_state(struct cnss_plat_data *plat_priv,
bool enable)
{
int xo_clk_gpio = plat_priv->pinctrl_info.xo_clk_gpio, retry = 0, ret;
if (xo_clk_gpio < 0 || plat_priv->device_id != QCA6490_DEVICE_ID)
return;
retry_gpio_req:
ret = gpio_request(xo_clk_gpio, "XO_CLK_GPIO");
if (ret) {
if (retry++ < CNSS_XO_CLK_RETRY_COUNT_MAX) {
/* wait for ~(10 - 20) ms */
usleep_range(10000, 20000);
goto retry_gpio_req;
}
}
if (ret) {
cnss_pr_err("QCA6490 XO CLK Gpio request failed\n");
return;
}
if (enable) {
gpio_direction_output(xo_clk_gpio, 1);
/*XO CLK must be asserted for some time before WLAN_EN */
usleep_range(100, 200);
} else {
/* Assert XO CLK ~(2-5)ms before off for valid latch in HW */
usleep_range(2000, 5000);
gpio_direction_output(xo_clk_gpio, 0);
}
gpio_free(xo_clk_gpio);
}
static int cnss_select_pinctrl_state(struct cnss_plat_data *plat_priv,
bool state)
{
int ret = 0;
struct cnss_pinctrl_info *pinctrl_info;
if (!plat_priv) {
cnss_pr_err("plat_priv is NULL!\n");
ret = -ENODEV;
goto out;
}
pinctrl_info = &plat_priv->pinctrl_info;
if (state) {
if (!IS_ERR_OR_NULL(pinctrl_info->bootstrap_active)) {
ret = pinctrl_select_state
(pinctrl_info->pinctrl,
pinctrl_info->bootstrap_active);
if (ret) {
cnss_pr_err("Failed to select bootstrap active state, err = %d\n",
ret);
goto out;
}
udelay(BOOTSTRAP_DELAY);
}
if (!IS_ERR_OR_NULL(pinctrl_info->sol_default)) {
ret = pinctrl_select_state
(pinctrl_info->pinctrl,
pinctrl_info->sol_default);
if (ret) {
cnss_pr_err("Failed to select sol default state, err = %d\n",
ret);
goto out;
}
cnss_pr_dbg("Selected sol default state\n");
}
cnss_set_xo_clk_gpio_state(plat_priv, true);
if (!IS_ERR_OR_NULL(pinctrl_info->wlan_en_active)) {
ret = pinctrl_select_state
(pinctrl_info->pinctrl,
pinctrl_info->wlan_en_active);
if (ret) {
cnss_pr_err("Failed to select wlan_en active state, err = %d\n",
ret);
goto out;
}
if (plat_priv->device_id == QCA6174_DEVICE_ID ||
plat_priv->device_id == 0)
mdelay(WLAN_ENABLE_DELAY_ROME);
else
udelay(WLAN_ENABLE_DELAY);
cnss_set_xo_clk_gpio_state(plat_priv, false);
} else {
cnss_set_xo_clk_gpio_state(plat_priv, false);
goto out;
}
} else {
if (!IS_ERR_OR_NULL(pinctrl_info->wlan_en_sleep)) {
cnss_wlan_hw_disable_check(plat_priv);
if (test_bit(CNSS_WLAN_HW_DISABLED, &plat_priv->driver_state)) {
cnss_pr_dbg("Avoid WLAN_EN low. WLAN HW Disbaled");
goto out;
}
ret = pinctrl_select_state(pinctrl_info->pinctrl,
pinctrl_info->wlan_en_sleep);
if (ret) {
cnss_pr_err("Failed to select wlan_en sleep state, err = %d\n",
ret);
goto out;
}
} else {
goto out;
}
}
cnss_pr_dbg("WLAN_EN Value: %d\n", gpio_get_value(pinctrl_info->wlan_en_gpio));
cnss_pr_dbg("%s WLAN_EN GPIO successfully\n",
state ? "Assert" : "De-assert");
return 0;
out:
return ret;
}
/**
* cnss_select_pinctrl_enable - select WLAN_GPIO for Active pinctrl status
* @plat_priv: Platform private data structure pointer
*
* For QCA6490, PMU requires minimum 100ms delay between BT_EN_GPIO off and
* WLAN_EN_GPIO on. This is done to avoid power up issues.
*
* Return: Status of pinctrl select operation. 0 - Success.
*/
static int cnss_select_pinctrl_enable(struct cnss_plat_data *plat_priv)
{
int ret = 0, bt_en_gpio = plat_priv->pinctrl_info.bt_en_gpio;
u8 wlan_en_state = 0;
if (bt_en_gpio < 0 || plat_priv->device_id != QCA6490_DEVICE_ID)
goto set_wlan_en;
if (gpio_get_value(bt_en_gpio)) {
cnss_pr_dbg("BT_EN_GPIO State: On\n");
ret = cnss_select_pinctrl_state(plat_priv, true);
if (!ret)
return ret;
wlan_en_state = 1;
}
if (!gpio_get_value(bt_en_gpio)) {
cnss_pr_dbg("BT_EN_GPIO State: Off. Delay WLAN_GPIO enable\n");
/* check for BT_EN_GPIO down race during above operation */
if (wlan_en_state) {
cnss_pr_dbg("Reset WLAN_EN as BT got turned off during enable\n");
cnss_select_pinctrl_state(plat_priv, false);
wlan_en_state = 0;
}
/* 100 ms delay for BT_EN and WLAN_EN QCA6490 PMU sequencing */
msleep(100);
}
set_wlan_en:
if (!wlan_en_state)
ret = cnss_select_pinctrl_state(plat_priv, true);
return ret;
}
int cnss_get_input_gpio_value(struct cnss_plat_data *plat_priv, int gpio_num)
{
int ret;
if (gpio_num < 0)
return -EINVAL;
ret = gpio_direction_input(gpio_num);
if (ret) {
cnss_pr_err("Failed to set direction of GPIO(%d), err = %d",
gpio_num, ret);
return -EINVAL;
}
return gpio_get_value(gpio_num);
}
int cnss_power_on_device(struct cnss_plat_data *plat_priv, bool reset)
{
int ret = 0;
if (plat_priv->powered_on) {
cnss_pr_dbg("Already powered up");
return 0;
}
cnss_wlan_hw_disable_check(plat_priv);
if (test_bit(CNSS_WLAN_HW_DISABLED, &plat_priv->driver_state)) {
cnss_pr_dbg("Avoid WLAN Power On. WLAN HW Disbaled");
return -EINVAL;
}
ret = cnss_vreg_on_type(plat_priv, CNSS_VREG_PRIM);
if (ret) {
cnss_pr_err("Failed to turn on vreg, err = %d\n", ret);
goto out;
}
ret = cnss_clk_on(plat_priv, &plat_priv->clk_list);
if (ret) {
cnss_pr_err("Failed to turn on clocks, err = %d\n", ret);
goto vreg_off;
}
#ifdef CONFIG_PULLDOWN_WLANEN
if (reset) {
/* The default state of wlan_en maybe not low,
* according to datasheet, we should put wlan_en
* to low first, and trigger high.
* And the default delay for qca6390 is at least 4ms,
* for qcn7605/qca6174, it is 10us. For safe, set 5ms delay
* here.
*/
ret = cnss_select_pinctrl_state(plat_priv, false);
if (ret) {
cnss_pr_err("Failed to select pinctrl state, err = %d\n",
ret);
goto clk_off;
}
usleep_range(4000, 5000);
}
#endif
ret = cnss_select_pinctrl_enable(plat_priv);
if (ret) {
cnss_pr_err("Failed to select pinctrl state, err = %d\n", ret);
goto clk_off;
}
plat_priv->powered_on = true;
cnss_enable_dev_sol_irq(plat_priv);
cnss_set_host_sol_value(plat_priv, 0);
return 0;
clk_off:
cnss_clk_off(plat_priv, &plat_priv->clk_list);
vreg_off:
cnss_vreg_off_type(plat_priv, CNSS_VREG_PRIM);
out:
return ret;
}
void cnss_power_off_device(struct cnss_plat_data *plat_priv)
{
if (!plat_priv->powered_on) {
cnss_pr_dbg("Already powered down");
return;
}
cnss_disable_dev_sol_irq(plat_priv);
cnss_select_pinctrl_state(plat_priv, false);
cnss_clk_off(plat_priv, &plat_priv->clk_list);
cnss_vreg_off_type(plat_priv, CNSS_VREG_PRIM);
plat_priv->powered_on = false;
}
bool cnss_is_device_powered_on(struct cnss_plat_data *plat_priv)
{
return plat_priv->powered_on;
}
void cnss_set_pin_connect_status(struct cnss_plat_data *plat_priv)
{
unsigned long pin_status = 0;
set_bit(CNSS_WLAN_EN, &pin_status);
set_bit(CNSS_PCIE_TXN, &pin_status);
set_bit(CNSS_PCIE_TXP, &pin_status);
set_bit(CNSS_PCIE_RXN, &pin_status);
set_bit(CNSS_PCIE_RXP, &pin_status);
set_bit(CNSS_PCIE_REFCLKN, &pin_status);
set_bit(CNSS_PCIE_REFCLKP, &pin_status);
set_bit(CNSS_PCIE_RST, &pin_status);
plat_priv->pin_result.host_pin_result = pin_status;
}
#if IS_ENABLED(CONFIG_QCOM_COMMAND_DB)
static int cnss_cmd_db_ready(struct cnss_plat_data *plat_priv)
{
return cmd_db_ready();
}
static u32 cnss_cmd_db_read_addr(struct cnss_plat_data *plat_priv,
const char *res_id)
{
return cmd_db_read_addr(res_id);
}
#else
static int cnss_cmd_db_ready(struct cnss_plat_data *plat_priv)
{
return -EOPNOTSUPP;
}
static u32 cnss_cmd_db_read_addr(struct cnss_plat_data *plat_priv,
const char *res_id)
{
return 0;
}
#endif
int cnss_get_tcs_info(struct cnss_plat_data *plat_priv)
{
struct platform_device *plat_dev = plat_priv->plat_dev;
struct resource *res;
resource_size_t addr_len;
void __iomem *tcs_cmd_base_addr;
int ret = 0;
res = platform_get_resource_byname(plat_dev, IORESOURCE_MEM, "tcs_cmd");
if (!res) {
cnss_pr_dbg("TCS CMD address is not present for CPR\n");
goto out;
}
plat_priv->tcs_info.cmd_base_addr = res->start;
addr_len = resource_size(res);
cnss_pr_dbg("TCS CMD base address is %pa with length %pa\n",
&plat_priv->tcs_info.cmd_base_addr, &addr_len);
tcs_cmd_base_addr = devm_ioremap(&plat_dev->dev, res->start, addr_len);
if (!tcs_cmd_base_addr) {
ret = -EINVAL;
cnss_pr_err("Failed to map TCS CMD address, err = %d\n",
ret);
goto out;
}
plat_priv->tcs_info.cmd_base_addr_io = tcs_cmd_base_addr;
return 0;
out:
return ret;
}
int cnss_get_cpr_info(struct cnss_plat_data *plat_priv)
{
struct platform_device *plat_dev = plat_priv->plat_dev;
struct cnss_cpr_info *cpr_info = &plat_priv->cpr_info;
const char *cmd_db_name;
u32 cpr_pmic_addr = 0;
int ret = 0;
if (plat_priv->tcs_info.cmd_base_addr == 0) {
cnss_pr_dbg("TCS CMD not configured\n");
return 0;
}
ret = of_property_read_string(plat_dev->dev.of_node,
"qcom,cmd_db_name", &cmd_db_name);
if (ret) {
cnss_pr_dbg("CommandDB name is not present for CPR\n");
goto out;
}
ret = cnss_cmd_db_ready(plat_priv);
if (ret) {
cnss_pr_err("CommandDB is not ready, err = %d\n", ret);
goto out;
}
cpr_pmic_addr = cnss_cmd_db_read_addr(plat_priv, cmd_db_name);
if (cpr_pmic_addr > 0) {
cpr_info->cpr_pmic_addr = cpr_pmic_addr;
cnss_pr_dbg("Get CPR PMIC address 0x%x from %s\n",
cpr_info->cpr_pmic_addr, cmd_db_name);
} else {
cnss_pr_err("CPR PMIC address is not available for %s\n",
cmd_db_name);
ret = -EINVAL;
goto out;
}
return 0;
out:
return ret;
}
#if IS_ENABLED(CONFIG_MSM_QMP)
/**
* cnss_aop_interface_init: Initialize AOP interface: either mbox channel or direct QMP
* @plat_priv: Pointer to cnss platform data
*
* Device tree file should have either mbox or qmp configured, but not both.
* Based on device tree configuration setup mbox channel or QMP
*
* Return: 0 for success, otherwise error code
*/
int cnss_aop_interface_init(struct cnss_plat_data *plat_priv)
{
struct mbox_client *mbox = &plat_priv->mbox_client_data;
struct mbox_chan *chan;
int ret;
plat_priv->mbox_chan = NULL;
plat_priv->qmp = NULL;
plat_priv->use_direct_qmp = false;
mbox->dev = &plat_priv->plat_dev->dev;
mbox->tx_block = true;
mbox->tx_tout = CNSS_MBOX_TIMEOUT_MS;
mbox->knows_txdone = false;
/* First try to get mbox channel, if it fails then try qmp_get
* In device tree file there should be either mboxes or qmp,
* cannot have both properties at the same time.
*/
chan = mbox_request_channel(mbox, 0);
if (IS_ERR(chan)) {
cnss_pr_dbg("Failed to get mbox channel, try qmp get\n");
plat_priv->qmp = qmp_get(&plat_priv->plat_dev->dev);
if (IS_ERR(plat_priv->qmp)) {
cnss_pr_err("Failed to get qmp\n");
return PTR_ERR(plat_priv->qmp);
} else {
plat_priv->use_direct_qmp = true;
cnss_pr_dbg("QMP initialized\n");
}
} else {
plat_priv->mbox_chan = chan;
cnss_pr_dbg("Mbox channel initialized\n");
}
ret = cnss_aop_pdc_reconfig(plat_priv);
if (ret)
cnss_pr_err("Failed to reconfig WLAN PDC, err = %d\n", ret);
return ret;
}
/**
* cnss_aop_interface_deinit: Cleanup AOP interface
* @plat_priv: Pointer to cnss platform data
*
* Cleanup mbox channel or QMP whichever was configured during initialization.
*
* Return: None
*/
void cnss_aop_interface_deinit(struct cnss_plat_data *plat_priv)
{
if (!IS_ERR_OR_NULL(plat_priv->mbox_chan))
mbox_free_channel(plat_priv->mbox_chan);
if (!IS_ERR_OR_NULL(plat_priv->qmp)) {
qmp_put(plat_priv->qmp);
plat_priv->use_direct_qmp = false;
}
}
/**
* cnss_aop_send_msg: Sends json message to AOP using either mbox channel or direct QMP
* @plat_priv: Pointer to cnss platform data
* @msg: String in json format
*
* AOP accepts JSON message to configure WLAN resources. Format as follows:
* To send VReg config: {class: wlan_pdc, ss: <pdc_name>,
* res: <VReg_name>.<param>, <seq_param>: <value>}
* To send PDC Config: {class: wlan_pdc, ss: <pdc_name>, res: pdc,
* enable: <Value>}
* QMP returns timeout error if format not correct or AOP operation fails.
*
* Return: 0 for success
*/
int cnss_aop_send_msg(struct cnss_plat_data *plat_priv, char *mbox_msg)
{
struct qmp_pkt pkt;
int ret = 0;
if (plat_priv->use_direct_qmp) {
cnss_pr_dbg("Sending AOP QMP msg: %s\n", mbox_msg);
ret = qmp_send(plat_priv->qmp, mbox_msg, CNSS_MBOX_MSG_MAX_LEN);
if (ret < 0)
cnss_pr_err("Failed to send AOP QMP msg: %s\n", mbox_msg);
else
ret = 0;
} else {
cnss_pr_dbg("Sending AOP Mbox msg: %s\n", mbox_msg);
pkt.size = CNSS_MBOX_MSG_MAX_LEN;
pkt.data = mbox_msg;
ret = mbox_send_message(plat_priv->mbox_chan, &pkt);
if (ret < 0)
cnss_pr_err("Failed to send AOP mbox msg: %s\n", mbox_msg);
else
ret = 0;
}
return ret;
}
/* cnss_pdc_reconfig: Send PDC init table as configured in DT for wlan device */
int cnss_aop_pdc_reconfig(struct cnss_plat_data *plat_priv)
{
u32 i;
int ret;
if (plat_priv->pdc_init_table_len <= 0 || !plat_priv->pdc_init_table)
return 0;
cnss_pr_dbg("Setting PDC defaults for device ID: %d\n",
plat_priv->device_id);
for (i = 0; i < plat_priv->pdc_init_table_len; i++) {
ret = cnss_aop_send_msg(plat_priv,
(char *)plat_priv->pdc_init_table[i]);
if (ret < 0)
break;
}
return ret;
}
/* cnss_aop_pdc_name_str: Get PDC name corresponding to VReg from DT Mapiping */
static const char *cnss_aop_pdc_name_str(struct cnss_plat_data *plat_priv,
const char *vreg_name)
{
u32 i;
static const char * const aop_pdc_ss_str[] = {"rf", "bb"};
const char *pdc = aop_pdc_ss_str[0], *vreg_map_name;
if (plat_priv->vreg_pdc_map_len <= 0 || !plat_priv->vreg_pdc_map)
goto end;
for (i = 0; i < plat_priv->vreg_pdc_map_len; i++) {
vreg_map_name = plat_priv->vreg_pdc_map[i];
if (strnstr(vreg_map_name, vreg_name, strlen(vreg_map_name))) {
pdc = plat_priv->vreg_pdc_map[i + 1];
break;
}
}
end:
cnss_pr_dbg("%s mapped to %s\n", vreg_name, pdc);
return pdc;
}
static int cnss_aop_set_vreg_param(struct cnss_plat_data *plat_priv,
const char *vreg_name,
enum cnss_aop_vreg_param param,
enum cnss_aop_tcs_seq_param seq_param,
int val)
{
char msg[CNSS_MBOX_MSG_MAX_LEN];
static const char * const aop_vreg_param_str[] = {
[CNSS_VREG_VOLTAGE] = "v", [CNSS_VREG_MODE] = "m",
[CNSS_VREG_ENABLE] = "e",};
static const char * const aop_tcs_seq_str[] = {
[CNSS_TCS_UP_SEQ] = "upval", [CNSS_TCS_DOWN_SEQ] = "dwnval",
[CNSS_TCS_ENABLE_SEQ] = "enable",};
if (param >= CNSS_VREG_PARAM_MAX || seq_param >= CNSS_TCS_SEQ_MAX ||
!vreg_name)
return -EINVAL;
snprintf(msg, CNSS_MBOX_MSG_MAX_LEN,
"{class: wlan_pdc, ss: %s, res: %s.%s, %s: %d}",
cnss_aop_pdc_name_str(plat_priv, vreg_name),
vreg_name, aop_vreg_param_str[param],
aop_tcs_seq_str[seq_param], val);
return cnss_aop_send_msg(plat_priv, msg);
}
int cnss_aop_ol_cpr_cfg_setup(struct cnss_plat_data *plat_priv,
struct wlfw_pmu_cfg_v01 *fw_pmu_cfg)
{
const char *pmu_pin, *vreg;
struct wlfw_pmu_param_v01 *fw_pmu_param;
u32 fw_pmu_param_len, i, j, plat_vreg_param_len = 0;
int ret = 0;
struct platform_vreg_param {
char vreg[MAX_PROP_SIZE];
u32 wake_volt;
u32 sleep_volt;
} plat_vreg_param[QMI_WLFW_PMU_PARAMS_MAX_V01] = {0};
static bool config_done;
if (config_done)
return 0;
if (plat_priv->pmu_vreg_map_len <= 0 ||
!plat_priv->pmu_vreg_map ||
(!plat_priv->mbox_chan && !plat_priv->qmp)) {
cnss_pr_dbg("Mbox channel / QMP / PMU VReg Map not configured\n");
goto end;
}
if (!fw_pmu_cfg)
return -EINVAL;
fw_pmu_param = fw_pmu_cfg->pmu_param;
fw_pmu_param_len = fw_pmu_cfg->pmu_param_len;
/* Get PMU Pin name to Platfom Vreg Mapping */
for (i = 0; i < fw_pmu_param_len; i++) {
cnss_pr_dbg("FW_PMU Data: %s %d %d %d %d\n",
fw_pmu_param[i].pin_name,
fw_pmu_param[i].wake_volt_valid,
fw_pmu_param[i].wake_volt,
fw_pmu_param[i].sleep_volt_valid,
fw_pmu_param[i].sleep_volt);
if (!fw_pmu_param[i].wake_volt_valid &&
!fw_pmu_param[i].sleep_volt_valid)
continue;
vreg = NULL;
for (j = 0; j < plat_priv->pmu_vreg_map_len; j += 2) {
pmu_pin = plat_priv->pmu_vreg_map[j];
if (strnstr(pmu_pin, fw_pmu_param[i].pin_name,
strlen(pmu_pin))) {
vreg = plat_priv->pmu_vreg_map[j + 1];
break;
}
}
if (!vreg) {
cnss_pr_err("No VREG mapping for %s\n",
fw_pmu_param[i].pin_name);
continue;
} else {
cnss_pr_dbg("%s mapped to %s\n",
fw_pmu_param[i].pin_name, vreg);
}
for (j = 0; j < QMI_WLFW_PMU_PARAMS_MAX_V01; j++) {
u32 wake_volt = 0, sleep_volt = 0;
if (plat_vreg_param[j].vreg[0] == '\0')
strlcpy(plat_vreg_param[j].vreg, vreg,
sizeof(plat_vreg_param[j].vreg));
else if (!strnstr(plat_vreg_param[j].vreg, vreg,
strlen(plat_vreg_param[j].vreg)))
continue;
if (fw_pmu_param[i].wake_volt_valid)
wake_volt = roundup(fw_pmu_param[i].wake_volt,
CNSS_PMIC_VOLTAGE_STEP) -
CNSS_PMIC_AUTO_HEADROOM +
CNSS_IR_DROP_WAKE;
if (fw_pmu_param[i].sleep_volt_valid)
sleep_volt = roundup(fw_pmu_param[i].sleep_volt,
CNSS_PMIC_VOLTAGE_STEP) -
CNSS_PMIC_AUTO_HEADROOM +
CNSS_IR_DROP_SLEEP;
plat_vreg_param[j].wake_volt =
(wake_volt > plat_vreg_param[j].wake_volt ?
wake_volt : plat_vreg_param[j].wake_volt);
plat_vreg_param[j].sleep_volt =
(sleep_volt > plat_vreg_param[j].sleep_volt ?
sleep_volt : plat_vreg_param[j].sleep_volt);
plat_vreg_param_len = (plat_vreg_param_len > j ?
plat_vreg_param_len : j);
cnss_pr_dbg("Plat VReg Data: %s %d %d\n",
plat_vreg_param[j].vreg,
plat_vreg_param[j].wake_volt,
plat_vreg_param[j].sleep_volt);
break;
}
}
for (i = 0; i <= plat_vreg_param_len; i++) {
if (plat_vreg_param[i].wake_volt > 0) {
ret =
cnss_aop_set_vreg_param(plat_priv,
plat_vreg_param[i].vreg,
CNSS_VREG_VOLTAGE,
CNSS_TCS_UP_SEQ,
plat_vreg_param[i].wake_volt);
}
if (plat_vreg_param[i].sleep_volt > 0) {
ret =
cnss_aop_set_vreg_param(plat_priv,
plat_vreg_param[i].vreg,
CNSS_VREG_VOLTAGE,
CNSS_TCS_DOWN_SEQ,
plat_vreg_param[i].sleep_volt);
}
if (ret < 0)
break;
}
end:
config_done = true;
return ret;
}
#else
int cnss_aop_interface_init(struct cnss_plat_data *plat_priv)
{
return 0;
}
void cnss_aop_interface_deinit(struct cnss_plat_data *plat_priv)
{
}
int cnss_aop_send_msg(struct cnss_plat_data *plat_priv, char *msg)
{
return 0;
}
int cnss_aop_pdc_reconfig(struct cnss_plat_data *plat_priv)
{
return 0;
}
static int cnss_aop_set_vreg_param(struct cnss_plat_data *plat_priv,
const char *vreg_name,
enum cnss_aop_vreg_param param,
enum cnss_aop_tcs_seq_param seq_param,
int val)
{
return 0;
}
int cnss_aop_ol_cpr_cfg_setup(struct cnss_plat_data *plat_priv,
struct wlfw_pmu_cfg_v01 *fw_pmu_cfg)
{
return 0;
}
#endif
void cnss_power_misc_params_init(struct cnss_plat_data *plat_priv)
{
struct device *dev = &plat_priv->plat_dev->dev;
int ret;
u32 cfg_arr_size = 0, *cfg_arr = NULL;
/* common DT Entries */
plat_priv->pdc_init_table_len =
of_property_count_strings(dev->of_node,
"qcom,pdc_init_table");
if (plat_priv->pdc_init_table_len > 0) {
plat_priv->pdc_init_table =
kcalloc(plat_priv->pdc_init_table_len,
sizeof(char *), GFP_KERNEL);
if (plat_priv->pdc_init_table) {
ret = of_property_read_string_array(dev->of_node,
"qcom,pdc_init_table",
plat_priv->pdc_init_table,
plat_priv->pdc_init_table_len);
if (ret < 0)
cnss_pr_err("Failed to get PDC Init Table\n");
} else {
cnss_pr_err("Failed to alloc PDC Init Table mem\n");
}
} else {
cnss_pr_dbg("PDC Init Table not configured\n");
}
plat_priv->vreg_pdc_map_len =
of_property_count_strings(dev->of_node,
"qcom,vreg_pdc_map");
if (plat_priv->vreg_pdc_map_len > 0) {
plat_priv->vreg_pdc_map =
kcalloc(plat_priv->vreg_pdc_map_len,
sizeof(char *), GFP_KERNEL);
if (plat_priv->vreg_pdc_map) {
ret = of_property_read_string_array(dev->of_node,
"qcom,vreg_pdc_map",
plat_priv->vreg_pdc_map,
plat_priv->vreg_pdc_map_len);
if (ret < 0)
cnss_pr_err("Failed to get VReg PDC Mapping\n");
} else {
cnss_pr_err("Failed to alloc VReg PDC mem\n");
}
} else {
cnss_pr_dbg("VReg PDC Mapping not configured\n");
}
plat_priv->pmu_vreg_map_len =
of_property_count_strings(dev->of_node,
"qcom,pmu_vreg_map");
if (plat_priv->pmu_vreg_map_len > 0) {
plat_priv->pmu_vreg_map = kcalloc(plat_priv->pmu_vreg_map_len,
sizeof(char *), GFP_KERNEL);
if (plat_priv->pmu_vreg_map) {
ret = of_property_read_string_array(dev->of_node,
"qcom,pmu_vreg_map",
plat_priv->pmu_vreg_map,
plat_priv->pmu_vreg_map_len);
if (ret < 0)
cnss_pr_err("Fail to get PMU VReg Mapping\n");
} else {
cnss_pr_err("Failed to alloc PMU VReg mem\n");
}
} else {
cnss_pr_dbg("PMU VReg Mapping not configured\n");
}
/* Device DT Specific */
if (plat_priv->device_id == QCA6390_DEVICE_ID ||
plat_priv->device_id == QCA6490_DEVICE_ID) {
ret = of_property_read_string(dev->of_node,
"qcom,vreg_ol_cpr",
&plat_priv->vreg_ol_cpr);
if (ret)
cnss_pr_dbg("VReg for QCA6490 OL CPR not configured\n");
ret = of_property_read_string(dev->of_node,
"qcom,vreg_ipa",
&plat_priv->vreg_ipa);
if (ret)
cnss_pr_dbg("VReg for QCA6490 Int Power Amp not configured\n");
}
ret = of_property_count_u32_elems(plat_priv->plat_dev->dev.of_node,
"qcom,on-chip-pmic-support");
if (ret > 0) {
cfg_arr_size = ret;
cfg_arr = kcalloc(cfg_arr_size, sizeof(*cfg_arr), GFP_KERNEL);
if (cfg_arr) {
ret = of_property_read_u32_array(plat_priv->plat_dev->dev.of_node,
"qcom,on-chip-pmic-support",
cfg_arr, cfg_arr_size);
if (!ret) {
plat_priv->on_chip_pmic_devices_count = cfg_arr_size;
plat_priv->on_chip_pmic_board_ids = cfg_arr;
}
} else {
cnss_pr_err("Failed to alloc cfg table mem\n");
}
} else {
cnss_pr_dbg("On chip PMIC device ids not configured\n");
}
}
int cnss_update_cpr_info(struct cnss_plat_data *plat_priv)
{
struct cnss_cpr_info *cpr_info = &plat_priv->cpr_info;
u32 pmic_addr, voltage = 0, voltage_tmp, offset;
void __iomem *tcs_cmd_addr, *tcs_cmd_data_addr;
int i, j;
if (cpr_info->voltage == 0) {
cnss_pr_err("OL CPR Voltage %dm is not valid\n",
cpr_info->voltage);
return -EINVAL;
}
if (plat_priv->device_id != QCA6490_DEVICE_ID)
return -EINVAL;
if (!plat_priv->vreg_ol_cpr ||
(!plat_priv->mbox_chan && !plat_priv->qmp)) {
cnss_pr_dbg("Mbox channel / QMP / OL CPR Vreg not configured\n");
} else {
return cnss_aop_set_vreg_param(plat_priv,
plat_priv->vreg_ol_cpr,
CNSS_VREG_VOLTAGE,
CNSS_TCS_DOWN_SEQ,
cpr_info->voltage);
}
if (plat_priv->tcs_info.cmd_base_addr == 0) {
cnss_pr_dbg("TCS CMD not configured for OL CPR update\n");
return 0;
}
if (cpr_info->cpr_pmic_addr == 0) {
cnss_pr_err("PMIC address 0x%x is not valid\n",
cpr_info->cpr_pmic_addr);
return -EINVAL;
}
if (cpr_info->tcs_cmd_data_addr_io)
goto update_cpr;
for (i = 0; i < MAX_TCS_NUM; i++) {
for (j = 0; j < MAX_TCS_CMD_NUM; j++) {
offset = i * TCS_OFFSET + j * TCS_CMD_OFFSET;
tcs_cmd_addr = plat_priv->tcs_info.cmd_base_addr_io +
offset;
pmic_addr = readl_relaxed(tcs_cmd_addr);
if (pmic_addr == cpr_info->cpr_pmic_addr) {
tcs_cmd_data_addr = tcs_cmd_addr +
TCS_CMD_DATA_ADDR_OFFSET;
voltage_tmp = readl_relaxed(tcs_cmd_data_addr);
cnss_pr_dbg("Got voltage %dmV from i: %d, j: %d\n",
voltage_tmp, i, j);
if (voltage_tmp > voltage) {
voltage = voltage_tmp;
cpr_info->tcs_cmd_data_addr =
plat_priv->tcs_info.cmd_base_addr +
offset + TCS_CMD_DATA_ADDR_OFFSET;
cpr_info->tcs_cmd_data_addr_io =
tcs_cmd_data_addr;
}
}
}
}
if (!cpr_info->tcs_cmd_data_addr_io) {
cnss_pr_err("Failed to find proper TCS CMD data address\n");
return -EINVAL;
}
update_cpr:
cpr_info->voltage = cpr_info->voltage > BT_CXMX_VOLTAGE_MV ?
cpr_info->voltage : BT_CXMX_VOLTAGE_MV;
cnss_pr_dbg("Update TCS CMD data address %pa with voltage %dmV\n",
&cpr_info->tcs_cmd_data_addr, cpr_info->voltage);
writel_relaxed(cpr_info->voltage, cpr_info->tcs_cmd_data_addr_io);
return 0;
}
int cnss_enable_int_pow_amp_vreg(struct cnss_plat_data *plat_priv)
{
struct platform_device *plat_dev = plat_priv->plat_dev;
u32 offset, addr_val, data_val;
void __iomem *tcs_cmd;
int ret;
static bool config_done;
if (plat_priv->device_id != QCA6490_DEVICE_ID)
return -EINVAL;
if (config_done) {
cnss_pr_dbg("IPA Vreg already configured\n");
return 0;
}
if (!plat_priv->vreg_ipa ||
(!plat_priv->mbox_chan && !plat_priv->qmp)) {
cnss_pr_dbg("Mbox channel / QMP / IPA Vreg not configured\n");
} else {
ret = cnss_aop_set_vreg_param(plat_priv,
plat_priv->vreg_ipa,
CNSS_VREG_ENABLE,
CNSS_TCS_UP_SEQ, 1);
if (ret == 0)
config_done = true;
return ret;
}
if (!plat_priv->tcs_info.cmd_base_addr_io) {
cnss_pr_err("TCS CMD not configured for IPA Vreg enable\n");
return -EINVAL;
}
ret = of_property_read_u32(plat_dev->dev.of_node,
"qcom,tcs_offset_int_pow_amp_vreg",
&offset);
if (ret) {
cnss_pr_dbg("Internal Power Amp Vreg not configured\n");
return -EINVAL;
}
tcs_cmd = plat_priv->tcs_info.cmd_base_addr_io + offset;
addr_val = readl_relaxed(tcs_cmd);
tcs_cmd += TCS_CMD_DATA_ADDR_OFFSET;
/* 1 = enable Vreg */
writel_relaxed(1, tcs_cmd);
data_val = readl_relaxed(tcs_cmd);
cnss_pr_dbg("Setup S3E TCS Addr: %x Data: %d\n", addr_val, data_val);
config_done = true;
return 0;
}
int cnss_dev_specific_power_on(struct cnss_plat_data *plat_priv)
{
int ret;
if (plat_priv->dt_type != CNSS_DTT_MULTIEXCHG)
return 0;
ret = cnss_get_vreg_type(plat_priv, CNSS_VREG_PRIM);
if (ret)
return ret;
plat_priv->powered_on = false;
return cnss_power_on_device(plat_priv, false);
}