dp_rx.c 75 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732
  1. /*
  2. * Copyright (c) 2016-2020 The Linux Foundation. All rights reserved.
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for
  5. * any purpose with or without fee is hereby granted, provided that the
  6. * above copyright notice and this permission notice appear in all
  7. * copies.
  8. *
  9. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
  10. * WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
  11. * WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
  12. * AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
  13. * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
  14. * PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
  15. * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
  16. * PERFORMANCE OF THIS SOFTWARE.
  17. */
  18. #include "hal_hw_headers.h"
  19. #include "dp_types.h"
  20. #include "dp_rx.h"
  21. #include "dp_peer.h"
  22. #include "hal_rx.h"
  23. #include "hal_api.h"
  24. #include "qdf_nbuf.h"
  25. #ifdef MESH_MODE_SUPPORT
  26. #include "if_meta_hdr.h"
  27. #endif
  28. #include "dp_internal.h"
  29. #include "dp_rx_mon.h"
  30. #include "dp_ipa.h"
  31. #ifdef FEATURE_WDS
  32. #include "dp_txrx_wds.h"
  33. #endif
  34. #ifdef ATH_RX_PRI_SAVE
  35. #define DP_RX_TID_SAVE(_nbuf, _tid) \
  36. (qdf_nbuf_set_priority(_nbuf, _tid))
  37. #else
  38. #define DP_RX_TID_SAVE(_nbuf, _tid)
  39. #endif
  40. #ifdef DP_RX_DISABLE_NDI_MDNS_FORWARDING
  41. static inline
  42. bool dp_rx_check_ndi_mdns_fwding(struct dp_peer *ta_peer, qdf_nbuf_t nbuf)
  43. {
  44. if (ta_peer->vdev->opmode == wlan_op_mode_ndi &&
  45. qdf_nbuf_is_ipv6_mdns_pkt(nbuf)) {
  46. DP_STATS_INC(ta_peer, rx.intra_bss.mdns_no_fwd, 1);
  47. return false;
  48. }
  49. return true;
  50. }
  51. #else
  52. static inline
  53. bool dp_rx_check_ndi_mdns_fwding(struct dp_peer *ta_peer, qdf_nbuf_t nbuf)
  54. {
  55. return true;
  56. }
  57. #endif
  58. static inline bool dp_rx_check_ap_bridge(struct dp_vdev *vdev)
  59. {
  60. return vdev->ap_bridge_enabled;
  61. }
  62. #ifdef DUP_RX_DESC_WAR
  63. void dp_rx_dump_info_and_assert(struct dp_soc *soc,
  64. hal_ring_handle_t hal_ring,
  65. hal_ring_desc_t ring_desc,
  66. struct dp_rx_desc *rx_desc)
  67. {
  68. void *hal_soc = soc->hal_soc;
  69. hal_srng_dump_ring_desc(hal_soc, hal_ring, ring_desc);
  70. dp_rx_desc_dump(rx_desc);
  71. }
  72. #else
  73. void dp_rx_dump_info_and_assert(struct dp_soc *soc,
  74. hal_ring_handle_t hal_ring_hdl,
  75. hal_ring_desc_t ring_desc,
  76. struct dp_rx_desc *rx_desc)
  77. {
  78. hal_soc_handle_t hal_soc = soc->hal_soc;
  79. dp_rx_desc_dump(rx_desc);
  80. hal_srng_dump_ring_desc(hal_soc, hal_ring_hdl, ring_desc);
  81. hal_srng_dump_ring(hal_soc, hal_ring_hdl);
  82. qdf_assert_always(0);
  83. }
  84. #endif
  85. /*
  86. * dp_rx_buffers_replenish() - replenish rxdma ring with rx nbufs
  87. * called during dp rx initialization
  88. * and at the end of dp_rx_process.
  89. *
  90. * @soc: core txrx main context
  91. * @mac_id: mac_id which is one of 3 mac_ids
  92. * @dp_rxdma_srng: dp rxdma circular ring
  93. * @rx_desc_pool: Pointer to free Rx descriptor pool
  94. * @num_req_buffers: number of buffer to be replenished
  95. * @desc_list: list of descs if called from dp_rx_process
  96. * or NULL during dp rx initialization or out of buffer
  97. * interrupt.
  98. * @tail: tail of descs list
  99. * Return: return success or failure
  100. */
  101. QDF_STATUS dp_rx_buffers_replenish(struct dp_soc *dp_soc, uint32_t mac_id,
  102. struct dp_srng *dp_rxdma_srng,
  103. struct rx_desc_pool *rx_desc_pool,
  104. uint32_t num_req_buffers,
  105. union dp_rx_desc_list_elem_t **desc_list,
  106. union dp_rx_desc_list_elem_t **tail)
  107. {
  108. uint32_t num_alloc_desc;
  109. uint16_t num_desc_to_free = 0;
  110. struct dp_pdev *dp_pdev = dp_get_pdev_for_lmac_id(dp_soc, mac_id);
  111. uint32_t num_entries_avail;
  112. uint32_t count;
  113. int sync_hw_ptr = 1;
  114. qdf_dma_addr_t paddr;
  115. qdf_nbuf_t rx_netbuf;
  116. void *rxdma_ring_entry;
  117. union dp_rx_desc_list_elem_t *next;
  118. QDF_STATUS ret;
  119. uint16_t buf_size = rx_desc_pool->buf_size;
  120. uint8_t buf_alignment = rx_desc_pool->buf_alignment;
  121. void *rxdma_srng;
  122. rxdma_srng = dp_rxdma_srng->hal_srng;
  123. if (!rxdma_srng) {
  124. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  125. "rxdma srng not initialized");
  126. DP_STATS_INC(dp_pdev, replenish.rxdma_err, num_req_buffers);
  127. return QDF_STATUS_E_FAILURE;
  128. }
  129. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  130. "requested %d buffers for replenish", num_req_buffers);
  131. hal_srng_access_start(dp_soc->hal_soc, rxdma_srng);
  132. num_entries_avail = hal_srng_src_num_avail(dp_soc->hal_soc,
  133. rxdma_srng,
  134. sync_hw_ptr);
  135. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  136. "no of available entries in rxdma ring: %d",
  137. num_entries_avail);
  138. if (!(*desc_list) && (num_entries_avail >
  139. ((dp_rxdma_srng->num_entries * 3) / 4))) {
  140. num_req_buffers = num_entries_avail;
  141. } else if (num_entries_avail < num_req_buffers) {
  142. num_desc_to_free = num_req_buffers - num_entries_avail;
  143. num_req_buffers = num_entries_avail;
  144. }
  145. if (qdf_unlikely(!num_req_buffers)) {
  146. num_desc_to_free = num_req_buffers;
  147. hal_srng_access_end(dp_soc->hal_soc, rxdma_srng);
  148. goto free_descs;
  149. }
  150. /*
  151. * if desc_list is NULL, allocate the descs from freelist
  152. */
  153. if (!(*desc_list)) {
  154. num_alloc_desc = dp_rx_get_free_desc_list(dp_soc, mac_id,
  155. rx_desc_pool,
  156. num_req_buffers,
  157. desc_list,
  158. tail);
  159. if (!num_alloc_desc) {
  160. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  161. "no free rx_descs in freelist");
  162. DP_STATS_INC(dp_pdev, err.desc_alloc_fail,
  163. num_req_buffers);
  164. hal_srng_access_end(dp_soc->hal_soc, rxdma_srng);
  165. return QDF_STATUS_E_NOMEM;
  166. }
  167. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  168. "%d rx desc allocated", num_alloc_desc);
  169. num_req_buffers = num_alloc_desc;
  170. }
  171. count = 0;
  172. while (count < num_req_buffers) {
  173. rx_netbuf = qdf_nbuf_alloc(dp_soc->osdev,
  174. buf_size,
  175. RX_BUFFER_RESERVATION,
  176. buf_alignment,
  177. FALSE);
  178. if (qdf_unlikely(!rx_netbuf)) {
  179. DP_STATS_INC(dp_pdev, replenish.nbuf_alloc_fail, 1);
  180. break;
  181. }
  182. ret = qdf_nbuf_map_single(dp_soc->osdev, rx_netbuf,
  183. QDF_DMA_FROM_DEVICE);
  184. if (qdf_unlikely(QDF_IS_STATUS_ERROR(ret))) {
  185. qdf_nbuf_free(rx_netbuf);
  186. DP_STATS_INC(dp_pdev, replenish.map_err, 1);
  187. continue;
  188. }
  189. paddr = qdf_nbuf_get_frag_paddr(rx_netbuf, 0);
  190. dp_ipa_handle_rx_buf_smmu_mapping(dp_soc, rx_netbuf, true);
  191. /*
  192. * check if the physical address of nbuf->data is
  193. * less then 0x50000000 then free the nbuf and try
  194. * allocating new nbuf. We can try for 100 times.
  195. * this is a temp WAR till we fix it properly.
  196. */
  197. ret = check_x86_paddr(dp_soc, &rx_netbuf, &paddr, rx_desc_pool);
  198. if (ret == QDF_STATUS_E_FAILURE) {
  199. DP_STATS_INC(dp_pdev, replenish.x86_fail, 1);
  200. break;
  201. }
  202. count++;
  203. rxdma_ring_entry = hal_srng_src_get_next(dp_soc->hal_soc,
  204. rxdma_srng);
  205. qdf_assert_always(rxdma_ring_entry);
  206. next = (*desc_list)->next;
  207. dp_rx_desc_prep(&((*desc_list)->rx_desc), rx_netbuf);
  208. /* rx_desc.in_use should be zero at this time*/
  209. qdf_assert_always((*desc_list)->rx_desc.in_use == 0);
  210. (*desc_list)->rx_desc.in_use = 1;
  211. dp_verbose_debug("rx_netbuf=%pK, buf=%pK, paddr=0x%llx, cookie=%d",
  212. rx_netbuf, qdf_nbuf_data(rx_netbuf),
  213. (unsigned long long)paddr,
  214. (*desc_list)->rx_desc.cookie);
  215. hal_rxdma_buff_addr_info_set(rxdma_ring_entry, paddr,
  216. (*desc_list)->rx_desc.cookie,
  217. rx_desc_pool->owner);
  218. *desc_list = next;
  219. }
  220. hal_srng_access_end(dp_soc->hal_soc, rxdma_srng);
  221. dp_verbose_debug("replenished buffers %d, rx desc added back to free list %u",
  222. count, num_desc_to_free);
  223. /* No need to count the number of bytes received during replenish.
  224. * Therefore set replenish.pkts.bytes as 0.
  225. */
  226. DP_STATS_INC_PKT(dp_pdev, replenish.pkts, count, 0);
  227. free_descs:
  228. DP_STATS_INC(dp_pdev, buf_freelist, num_desc_to_free);
  229. /*
  230. * add any available free desc back to the free list
  231. */
  232. if (*desc_list)
  233. dp_rx_add_desc_list_to_free_list(dp_soc, desc_list, tail,
  234. mac_id, rx_desc_pool);
  235. return QDF_STATUS_SUCCESS;
  236. }
  237. /*
  238. * dp_rx_deliver_raw() - process RAW mode pkts and hand over the
  239. * pkts to RAW mode simulation to
  240. * decapsulate the pkt.
  241. *
  242. * @vdev: vdev on which RAW mode is enabled
  243. * @nbuf_list: list of RAW pkts to process
  244. * @peer: peer object from which the pkt is rx
  245. *
  246. * Return: void
  247. */
  248. void
  249. dp_rx_deliver_raw(struct dp_vdev *vdev, qdf_nbuf_t nbuf_list,
  250. struct dp_peer *peer)
  251. {
  252. qdf_nbuf_t deliver_list_head = NULL;
  253. qdf_nbuf_t deliver_list_tail = NULL;
  254. qdf_nbuf_t nbuf;
  255. nbuf = nbuf_list;
  256. while (nbuf) {
  257. qdf_nbuf_t next = qdf_nbuf_next(nbuf);
  258. DP_RX_LIST_APPEND(deliver_list_head, deliver_list_tail, nbuf);
  259. DP_STATS_INC(vdev->pdev, rx_raw_pkts, 1);
  260. DP_STATS_INC_PKT(peer, rx.raw, 1, qdf_nbuf_len(nbuf));
  261. /*
  262. * reset the chfrag_start and chfrag_end bits in nbuf cb
  263. * as this is a non-amsdu pkt and RAW mode simulation expects
  264. * these bit s to be 0 for non-amsdu pkt.
  265. */
  266. if (qdf_nbuf_is_rx_chfrag_start(nbuf) &&
  267. qdf_nbuf_is_rx_chfrag_end(nbuf)) {
  268. qdf_nbuf_set_rx_chfrag_start(nbuf, 0);
  269. qdf_nbuf_set_rx_chfrag_end(nbuf, 0);
  270. }
  271. nbuf = next;
  272. }
  273. vdev->osif_rsim_rx_decap(vdev->osif_vdev, &deliver_list_head,
  274. &deliver_list_tail, peer->mac_addr.raw);
  275. vdev->osif_rx(vdev->osif_vdev, deliver_list_head);
  276. }
  277. #ifdef DP_LFR
  278. /*
  279. * In case of LFR, data of a new peer might be sent up
  280. * even before peer is added.
  281. */
  282. static inline struct dp_vdev *
  283. dp_get_vdev_from_peer(struct dp_soc *soc,
  284. uint16_t peer_id,
  285. struct dp_peer *peer,
  286. struct hal_rx_mpdu_desc_info mpdu_desc_info)
  287. {
  288. struct dp_vdev *vdev;
  289. uint8_t vdev_id;
  290. if (unlikely(!peer)) {
  291. if (peer_id != HTT_INVALID_PEER) {
  292. vdev_id = DP_PEER_METADATA_VDEV_ID_GET(
  293. mpdu_desc_info.peer_meta_data);
  294. QDF_TRACE(QDF_MODULE_ID_DP,
  295. QDF_TRACE_LEVEL_DEBUG,
  296. FL("PeerID %d not found use vdevID %d"),
  297. peer_id, vdev_id);
  298. vdev = dp_get_vdev_from_soc_vdev_id_wifi3(soc,
  299. vdev_id);
  300. } else {
  301. QDF_TRACE(QDF_MODULE_ID_DP,
  302. QDF_TRACE_LEVEL_DEBUG,
  303. FL("Invalid PeerID %d"),
  304. peer_id);
  305. return NULL;
  306. }
  307. } else {
  308. vdev = peer->vdev;
  309. }
  310. return vdev;
  311. }
  312. #else
  313. static inline struct dp_vdev *
  314. dp_get_vdev_from_peer(struct dp_soc *soc,
  315. uint16_t peer_id,
  316. struct dp_peer *peer,
  317. struct hal_rx_mpdu_desc_info mpdu_desc_info)
  318. {
  319. if (unlikely(!peer)) {
  320. QDF_TRACE(QDF_MODULE_ID_DP,
  321. QDF_TRACE_LEVEL_DEBUG,
  322. FL("Peer not found for peerID %d"),
  323. peer_id);
  324. return NULL;
  325. } else {
  326. return peer->vdev;
  327. }
  328. }
  329. #endif
  330. #ifndef FEATURE_WDS
  331. static void
  332. dp_rx_da_learn(struct dp_soc *soc,
  333. uint8_t *rx_tlv_hdr,
  334. struct dp_peer *ta_peer,
  335. qdf_nbuf_t nbuf)
  336. {
  337. }
  338. #endif
  339. /*
  340. * dp_rx_intrabss_fwd() - Implements the Intra-BSS forwarding logic
  341. *
  342. * @soc: core txrx main context
  343. * @ta_peer : source peer entry
  344. * @rx_tlv_hdr : start address of rx tlvs
  345. * @nbuf : nbuf that has to be intrabss forwarded
  346. *
  347. * Return: bool: true if it is forwarded else false
  348. */
  349. static bool
  350. dp_rx_intrabss_fwd(struct dp_soc *soc,
  351. struct dp_peer *ta_peer,
  352. uint8_t *rx_tlv_hdr,
  353. qdf_nbuf_t nbuf,
  354. struct hal_rx_msdu_metadata msdu_metadata)
  355. {
  356. uint16_t len;
  357. uint8_t is_frag;
  358. struct dp_peer *da_peer;
  359. struct dp_ast_entry *ast_entry;
  360. qdf_nbuf_t nbuf_copy;
  361. uint8_t tid = qdf_nbuf_get_tid_val(nbuf);
  362. uint8_t ring_id = QDF_NBUF_CB_RX_CTX_ID(nbuf);
  363. struct cdp_tid_rx_stats *tid_stats = &ta_peer->vdev->pdev->stats.
  364. tid_stats.tid_rx_stats[ring_id][tid];
  365. /* check if the destination peer is available in peer table
  366. * and also check if the source peer and destination peer
  367. * belong to the same vap and destination peer is not bss peer.
  368. */
  369. if ((qdf_nbuf_is_da_valid(nbuf) && !qdf_nbuf_is_da_mcbc(nbuf))) {
  370. ast_entry = soc->ast_table[msdu_metadata.da_idx];
  371. if (!ast_entry)
  372. return false;
  373. if (ast_entry->type == CDP_TXRX_AST_TYPE_DA) {
  374. ast_entry->is_active = TRUE;
  375. return false;
  376. }
  377. da_peer = ast_entry->peer;
  378. if (!da_peer)
  379. return false;
  380. /* TA peer cannot be same as peer(DA) on which AST is present
  381. * this indicates a change in topology and that AST entries
  382. * are yet to be updated.
  383. */
  384. if (da_peer == ta_peer)
  385. return false;
  386. if (da_peer->vdev == ta_peer->vdev && !da_peer->bss_peer) {
  387. len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
  388. is_frag = qdf_nbuf_is_frag(nbuf);
  389. memset(nbuf->cb, 0x0, sizeof(nbuf->cb));
  390. /* linearize the nbuf just before we send to
  391. * dp_tx_send()
  392. */
  393. if (qdf_unlikely(is_frag)) {
  394. if (qdf_nbuf_linearize(nbuf) == -ENOMEM)
  395. return false;
  396. nbuf = qdf_nbuf_unshare(nbuf);
  397. if (!nbuf) {
  398. DP_STATS_INC_PKT(ta_peer,
  399. rx.intra_bss.fail,
  400. 1,
  401. len);
  402. /* return true even though the pkt is
  403. * not forwarded. Basically skb_unshare
  404. * failed and we want to continue with
  405. * next nbuf.
  406. */
  407. tid_stats->fail_cnt[INTRABSS_DROP]++;
  408. return true;
  409. }
  410. }
  411. if (!dp_tx_send((struct cdp_soc_t *)soc,
  412. ta_peer->vdev->vdev_id, nbuf)) {
  413. DP_STATS_INC_PKT(ta_peer, rx.intra_bss.pkts, 1,
  414. len);
  415. return true;
  416. } else {
  417. DP_STATS_INC_PKT(ta_peer, rx.intra_bss.fail, 1,
  418. len);
  419. tid_stats->fail_cnt[INTRABSS_DROP]++;
  420. return false;
  421. }
  422. }
  423. }
  424. /* if it is a broadcast pkt (eg: ARP) and it is not its own
  425. * source, then clone the pkt and send the cloned pkt for
  426. * intra BSS forwarding and original pkt up the network stack
  427. * Note: how do we handle multicast pkts. do we forward
  428. * all multicast pkts as is or let a higher layer module
  429. * like igmpsnoop decide whether to forward or not with
  430. * Mcast enhancement.
  431. */
  432. else if (qdf_unlikely((qdf_nbuf_is_da_mcbc(nbuf) &&
  433. !ta_peer->bss_peer))) {
  434. if (!dp_rx_check_ndi_mdns_fwding(ta_peer, nbuf))
  435. goto end;
  436. nbuf_copy = qdf_nbuf_copy(nbuf);
  437. if (!nbuf_copy)
  438. goto end;
  439. len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
  440. memset(nbuf_copy->cb, 0x0, sizeof(nbuf_copy->cb));
  441. /* Set cb->ftype to intrabss FWD */
  442. qdf_nbuf_set_tx_ftype(nbuf_copy, CB_FTYPE_INTRABSS_FWD);
  443. if (dp_tx_send((struct cdp_soc_t *)soc,
  444. ta_peer->vdev->vdev_id, nbuf_copy)) {
  445. DP_STATS_INC_PKT(ta_peer, rx.intra_bss.fail, 1, len);
  446. tid_stats->fail_cnt[INTRABSS_DROP]++;
  447. qdf_nbuf_free(nbuf_copy);
  448. } else {
  449. DP_STATS_INC_PKT(ta_peer, rx.intra_bss.pkts, 1, len);
  450. tid_stats->intrabss_cnt++;
  451. }
  452. }
  453. end:
  454. /* return false as we have to still send the original pkt
  455. * up the stack
  456. */
  457. return false;
  458. }
  459. #ifdef MESH_MODE_SUPPORT
  460. /**
  461. * dp_rx_fill_mesh_stats() - Fills the mesh per packet receive stats
  462. *
  463. * @vdev: DP Virtual device handle
  464. * @nbuf: Buffer pointer
  465. * @rx_tlv_hdr: start of rx tlv header
  466. * @peer: pointer to peer
  467. *
  468. * This function allocated memory for mesh receive stats and fill the
  469. * required stats. Stores the memory address in skb cb.
  470. *
  471. * Return: void
  472. */
  473. void dp_rx_fill_mesh_stats(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
  474. uint8_t *rx_tlv_hdr, struct dp_peer *peer)
  475. {
  476. struct mesh_recv_hdr_s *rx_info = NULL;
  477. uint32_t pkt_type;
  478. uint32_t nss;
  479. uint32_t rate_mcs;
  480. uint32_t bw;
  481. /* fill recv mesh stats */
  482. rx_info = qdf_mem_malloc(sizeof(struct mesh_recv_hdr_s));
  483. /* upper layers are resposible to free this memory */
  484. if (!rx_info) {
  485. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  486. "Memory allocation failed for mesh rx stats");
  487. DP_STATS_INC(vdev->pdev, mesh_mem_alloc, 1);
  488. return;
  489. }
  490. rx_info->rs_flags = MESH_RXHDR_VER1;
  491. if (qdf_nbuf_is_rx_chfrag_start(nbuf))
  492. rx_info->rs_flags |= MESH_RX_FIRST_MSDU;
  493. if (qdf_nbuf_is_rx_chfrag_end(nbuf))
  494. rx_info->rs_flags |= MESH_RX_LAST_MSDU;
  495. if (hal_rx_attn_msdu_get_is_decrypted(rx_tlv_hdr)) {
  496. rx_info->rs_flags |= MESH_RX_DECRYPTED;
  497. rx_info->rs_keyix = hal_rx_msdu_get_keyid(rx_tlv_hdr);
  498. if (vdev->osif_get_key)
  499. vdev->osif_get_key(vdev->osif_vdev,
  500. &rx_info->rs_decryptkey[0],
  501. &peer->mac_addr.raw[0],
  502. rx_info->rs_keyix);
  503. }
  504. rx_info->rs_rssi = hal_rx_msdu_start_get_rssi(rx_tlv_hdr);
  505. rx_info->rs_channel = hal_rx_msdu_start_get_freq(rx_tlv_hdr);
  506. pkt_type = hal_rx_msdu_start_get_pkt_type(rx_tlv_hdr);
  507. rate_mcs = hal_rx_msdu_start_rate_mcs_get(rx_tlv_hdr);
  508. bw = hal_rx_msdu_start_bw_get(rx_tlv_hdr);
  509. nss = hal_rx_msdu_start_nss_get(vdev->pdev->soc->hal_soc, rx_tlv_hdr);
  510. rx_info->rs_ratephy1 = rate_mcs | (nss << 0x8) | (pkt_type << 16) |
  511. (bw << 24);
  512. qdf_nbuf_set_rx_fctx_type(nbuf, (void *)rx_info, CB_FTYPE_MESH_RX_INFO);
  513. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO_MED,
  514. FL("Mesh rx stats: flags %x, rssi %x, chn %x, rate %x, kix %x"),
  515. rx_info->rs_flags,
  516. rx_info->rs_rssi,
  517. rx_info->rs_channel,
  518. rx_info->rs_ratephy1,
  519. rx_info->rs_keyix);
  520. }
  521. /**
  522. * dp_rx_filter_mesh_packets() - Filters mesh unwanted packets
  523. *
  524. * @vdev: DP Virtual device handle
  525. * @nbuf: Buffer pointer
  526. * @rx_tlv_hdr: start of rx tlv header
  527. *
  528. * This checks if the received packet is matching any filter out
  529. * catogery and and drop the packet if it matches.
  530. *
  531. * Return: status(0 indicates drop, 1 indicate to no drop)
  532. */
  533. QDF_STATUS dp_rx_filter_mesh_packets(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
  534. uint8_t *rx_tlv_hdr)
  535. {
  536. union dp_align_mac_addr mac_addr;
  537. struct dp_soc *soc = vdev->pdev->soc;
  538. if (qdf_unlikely(vdev->mesh_rx_filter)) {
  539. if (vdev->mesh_rx_filter & MESH_FILTER_OUT_FROMDS)
  540. if (hal_rx_mpdu_get_fr_ds(soc->hal_soc,
  541. rx_tlv_hdr))
  542. return QDF_STATUS_SUCCESS;
  543. if (vdev->mesh_rx_filter & MESH_FILTER_OUT_TODS)
  544. if (hal_rx_mpdu_get_to_ds(soc->hal_soc,
  545. rx_tlv_hdr))
  546. return QDF_STATUS_SUCCESS;
  547. if (vdev->mesh_rx_filter & MESH_FILTER_OUT_NODS)
  548. if (!hal_rx_mpdu_get_fr_ds(soc->hal_soc,
  549. rx_tlv_hdr) &&
  550. !hal_rx_mpdu_get_to_ds(soc->hal_soc,
  551. rx_tlv_hdr))
  552. return QDF_STATUS_SUCCESS;
  553. if (vdev->mesh_rx_filter & MESH_FILTER_OUT_RA) {
  554. if (hal_rx_mpdu_get_addr1(soc->hal_soc,
  555. rx_tlv_hdr,
  556. &mac_addr.raw[0]))
  557. return QDF_STATUS_E_FAILURE;
  558. if (!qdf_mem_cmp(&mac_addr.raw[0],
  559. &vdev->mac_addr.raw[0],
  560. QDF_MAC_ADDR_SIZE))
  561. return QDF_STATUS_SUCCESS;
  562. }
  563. if (vdev->mesh_rx_filter & MESH_FILTER_OUT_TA) {
  564. if (hal_rx_mpdu_get_addr2(soc->hal_soc,
  565. rx_tlv_hdr,
  566. &mac_addr.raw[0]))
  567. return QDF_STATUS_E_FAILURE;
  568. if (!qdf_mem_cmp(&mac_addr.raw[0],
  569. &vdev->mac_addr.raw[0],
  570. QDF_MAC_ADDR_SIZE))
  571. return QDF_STATUS_SUCCESS;
  572. }
  573. }
  574. return QDF_STATUS_E_FAILURE;
  575. }
  576. #else
  577. void dp_rx_fill_mesh_stats(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
  578. uint8_t *rx_tlv_hdr, struct dp_peer *peer)
  579. {
  580. }
  581. QDF_STATUS dp_rx_filter_mesh_packets(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
  582. uint8_t *rx_tlv_hdr)
  583. {
  584. return QDF_STATUS_E_FAILURE;
  585. }
  586. #endif
  587. #ifdef FEATURE_NAC_RSSI
  588. /**
  589. * dp_rx_nac_filter(): Function to perform filtering of non-associated
  590. * clients
  591. * @pdev: DP pdev handle
  592. * @rx_pkt_hdr: Rx packet Header
  593. *
  594. * return: dp_vdev*
  595. */
  596. static
  597. struct dp_vdev *dp_rx_nac_filter(struct dp_pdev *pdev,
  598. uint8_t *rx_pkt_hdr)
  599. {
  600. struct ieee80211_frame *wh;
  601. struct dp_neighbour_peer *peer = NULL;
  602. wh = (struct ieee80211_frame *)rx_pkt_hdr;
  603. if ((wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) != IEEE80211_FC1_DIR_TODS)
  604. return NULL;
  605. qdf_spin_lock_bh(&pdev->neighbour_peer_mutex);
  606. TAILQ_FOREACH(peer, &pdev->neighbour_peers_list,
  607. neighbour_peer_list_elem) {
  608. if (qdf_mem_cmp(&peer->neighbour_peers_macaddr.raw[0],
  609. wh->i_addr2, QDF_MAC_ADDR_SIZE) == 0) {
  610. QDF_TRACE(
  611. QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  612. FL("NAC configuration matched for mac-%2x:%2x:%2x:%2x:%2x:%2x"),
  613. peer->neighbour_peers_macaddr.raw[0],
  614. peer->neighbour_peers_macaddr.raw[1],
  615. peer->neighbour_peers_macaddr.raw[2],
  616. peer->neighbour_peers_macaddr.raw[3],
  617. peer->neighbour_peers_macaddr.raw[4],
  618. peer->neighbour_peers_macaddr.raw[5]);
  619. qdf_spin_unlock_bh(&pdev->neighbour_peer_mutex);
  620. return pdev->monitor_vdev;
  621. }
  622. }
  623. qdf_spin_unlock_bh(&pdev->neighbour_peer_mutex);
  624. return NULL;
  625. }
  626. /**
  627. * dp_rx_process_invalid_peer(): Function to pass invalid peer list to umac
  628. * @soc: DP SOC handle
  629. * @mpdu: mpdu for which peer is invalid
  630. * @mac_id: mac_id which is one of 3 mac_ids(Assuming mac_id and
  631. * pool_id has same mapping)
  632. *
  633. * return: integer type
  634. */
  635. uint8_t dp_rx_process_invalid_peer(struct dp_soc *soc, qdf_nbuf_t mpdu,
  636. uint8_t mac_id)
  637. {
  638. struct dp_invalid_peer_msg msg;
  639. struct dp_vdev *vdev = NULL;
  640. struct dp_pdev *pdev = NULL;
  641. struct ieee80211_frame *wh;
  642. qdf_nbuf_t curr_nbuf, next_nbuf;
  643. uint8_t *rx_tlv_hdr = qdf_nbuf_data(mpdu);
  644. uint8_t *rx_pkt_hdr = hal_rx_pkt_hdr_get(rx_tlv_hdr);
  645. rx_pkt_hdr = hal_rx_pkt_hdr_get(rx_tlv_hdr);
  646. if (!HAL_IS_DECAP_FORMAT_RAW(soc->hal_soc, rx_tlv_hdr)) {
  647. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  648. "Drop decapped frames");
  649. goto free;
  650. }
  651. wh = (struct ieee80211_frame *)rx_pkt_hdr;
  652. if (!DP_FRAME_IS_DATA(wh)) {
  653. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  654. "NAWDS valid only for data frames");
  655. goto free;
  656. }
  657. if (qdf_nbuf_len(mpdu) < sizeof(struct ieee80211_frame)) {
  658. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  659. "Invalid nbuf length");
  660. goto free;
  661. }
  662. pdev = dp_get_pdev_for_lmac_id(soc, mac_id);
  663. if (!pdev || qdf_unlikely(pdev->is_pdev_down)) {
  664. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  665. "PDEV %s", !pdev ? "not found" : "down");
  666. goto free;
  667. }
  668. if (pdev->filter_neighbour_peers) {
  669. /* Next Hop scenario not yet handle */
  670. vdev = dp_rx_nac_filter(pdev, rx_pkt_hdr);
  671. if (vdev) {
  672. dp_rx_mon_deliver(soc, pdev->pdev_id,
  673. pdev->invalid_peer_head_msdu,
  674. pdev->invalid_peer_tail_msdu);
  675. pdev->invalid_peer_head_msdu = NULL;
  676. pdev->invalid_peer_tail_msdu = NULL;
  677. return 0;
  678. }
  679. }
  680. TAILQ_FOREACH(vdev, &pdev->vdev_list, vdev_list_elem) {
  681. if (qdf_mem_cmp(wh->i_addr1, vdev->mac_addr.raw,
  682. QDF_MAC_ADDR_SIZE) == 0) {
  683. goto out;
  684. }
  685. }
  686. if (!vdev) {
  687. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  688. "VDEV not found");
  689. goto free;
  690. }
  691. out:
  692. msg.wh = wh;
  693. qdf_nbuf_pull_head(mpdu, RX_PKT_TLVS_LEN);
  694. msg.nbuf = mpdu;
  695. msg.vdev_id = vdev->vdev_id;
  696. if (pdev->soc->cdp_soc.ol_ops->rx_invalid_peer)
  697. pdev->soc->cdp_soc.ol_ops->rx_invalid_peer(
  698. (struct cdp_ctrl_objmgr_psoc *)soc->ctrl_psoc,
  699. pdev->pdev_id, &msg);
  700. free:
  701. /* Drop and free packet */
  702. curr_nbuf = mpdu;
  703. while (curr_nbuf) {
  704. next_nbuf = qdf_nbuf_next(curr_nbuf);
  705. qdf_nbuf_free(curr_nbuf);
  706. curr_nbuf = next_nbuf;
  707. }
  708. return 0;
  709. }
  710. /**
  711. * dp_rx_process_invalid_peer_wrapper(): Function to wrap invalid peer handler
  712. * @soc: DP SOC handle
  713. * @mpdu: mpdu for which peer is invalid
  714. * @mpdu_done: if an mpdu is completed
  715. * @mac_id: mac_id which is one of 3 mac_ids(Assuming mac_id and
  716. * pool_id has same mapping)
  717. *
  718. * return: integer type
  719. */
  720. void dp_rx_process_invalid_peer_wrapper(struct dp_soc *soc,
  721. qdf_nbuf_t mpdu, bool mpdu_done,
  722. uint8_t mac_id)
  723. {
  724. /* Only trigger the process when mpdu is completed */
  725. if (mpdu_done)
  726. dp_rx_process_invalid_peer(soc, mpdu, mac_id);
  727. }
  728. #else
  729. uint8_t dp_rx_process_invalid_peer(struct dp_soc *soc, qdf_nbuf_t mpdu,
  730. uint8_t mac_id)
  731. {
  732. qdf_nbuf_t curr_nbuf, next_nbuf;
  733. struct dp_pdev *pdev;
  734. struct dp_vdev *vdev = NULL;
  735. struct ieee80211_frame *wh;
  736. uint8_t *rx_tlv_hdr = qdf_nbuf_data(mpdu);
  737. uint8_t *rx_pkt_hdr = hal_rx_pkt_hdr_get(rx_tlv_hdr);
  738. wh = (struct ieee80211_frame *)rx_pkt_hdr;
  739. if (!DP_FRAME_IS_DATA(wh)) {
  740. QDF_TRACE_ERROR_RL(QDF_MODULE_ID_DP,
  741. "only for data frames");
  742. goto free;
  743. }
  744. if (qdf_nbuf_len(mpdu) < sizeof(struct ieee80211_frame)) {
  745. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  746. "Invalid nbuf length");
  747. goto free;
  748. }
  749. pdev = dp_get_pdev_for_lmac_id(soc, mac_id);
  750. if (!pdev) {
  751. QDF_TRACE(QDF_MODULE_ID_DP,
  752. QDF_TRACE_LEVEL_ERROR,
  753. "PDEV not found");
  754. goto free;
  755. }
  756. qdf_spin_lock_bh(&pdev->vdev_list_lock);
  757. DP_PDEV_ITERATE_VDEV_LIST(pdev, vdev) {
  758. if (qdf_mem_cmp(wh->i_addr1, vdev->mac_addr.raw,
  759. QDF_MAC_ADDR_SIZE) == 0) {
  760. qdf_spin_unlock_bh(&pdev->vdev_list_lock);
  761. goto out;
  762. }
  763. }
  764. qdf_spin_unlock_bh(&pdev->vdev_list_lock);
  765. if (!vdev) {
  766. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  767. "VDEV not found");
  768. goto free;
  769. }
  770. out:
  771. if (soc->cdp_soc.ol_ops->rx_invalid_peer)
  772. soc->cdp_soc.ol_ops->rx_invalid_peer(vdev->vdev_id, wh);
  773. free:
  774. /* reset the head and tail pointers */
  775. pdev = dp_get_pdev_for_lmac_id(soc, mac_id);
  776. if (pdev) {
  777. pdev->invalid_peer_head_msdu = NULL;
  778. pdev->invalid_peer_tail_msdu = NULL;
  779. }
  780. /* Drop and free packet */
  781. curr_nbuf = mpdu;
  782. while (curr_nbuf) {
  783. next_nbuf = qdf_nbuf_next(curr_nbuf);
  784. qdf_nbuf_free(curr_nbuf);
  785. curr_nbuf = next_nbuf;
  786. }
  787. /* Reset the head and tail pointers */
  788. pdev = dp_get_pdev_for_mac_id(soc, mac_id);
  789. if (pdev) {
  790. pdev->invalid_peer_head_msdu = NULL;
  791. pdev->invalid_peer_tail_msdu = NULL;
  792. }
  793. return 0;
  794. }
  795. void dp_rx_process_invalid_peer_wrapper(struct dp_soc *soc,
  796. qdf_nbuf_t mpdu, bool mpdu_done,
  797. uint8_t mac_id)
  798. {
  799. /* Process the nbuf */
  800. dp_rx_process_invalid_peer(soc, mpdu, mac_id);
  801. }
  802. #endif
  803. #ifdef RECEIVE_OFFLOAD
  804. /**
  805. * dp_rx_print_offload_info() - Print offload info from RX TLV
  806. * @soc: dp soc handle
  807. * @rx_tlv: RX TLV for which offload information is to be printed
  808. *
  809. * Return: None
  810. */
  811. static void dp_rx_print_offload_info(struct dp_soc *soc, uint8_t *rx_tlv)
  812. {
  813. dp_verbose_debug("----------------------RX DESC LRO/GRO----------------------");
  814. dp_verbose_debug("lro_eligible 0x%x", HAL_RX_TLV_GET_LRO_ELIGIBLE(rx_tlv));
  815. dp_verbose_debug("pure_ack 0x%x", HAL_RX_TLV_GET_TCP_PURE_ACK(rx_tlv));
  816. dp_verbose_debug("chksum 0x%x", hal_rx_tlv_get_tcp_chksum(soc->hal_soc,
  817. rx_tlv));
  818. dp_verbose_debug("TCP seq num 0x%x", HAL_RX_TLV_GET_TCP_SEQ(rx_tlv));
  819. dp_verbose_debug("TCP ack num 0x%x", HAL_RX_TLV_GET_TCP_ACK(rx_tlv));
  820. dp_verbose_debug("TCP window 0x%x", HAL_RX_TLV_GET_TCP_WIN(rx_tlv));
  821. dp_verbose_debug("TCP protocol 0x%x", HAL_RX_TLV_GET_TCP_PROTO(rx_tlv));
  822. dp_verbose_debug("TCP offset 0x%x", HAL_RX_TLV_GET_TCP_OFFSET(rx_tlv));
  823. dp_verbose_debug("toeplitz 0x%x", HAL_RX_TLV_GET_FLOW_ID_TOEPLITZ(rx_tlv));
  824. dp_verbose_debug("---------------------------------------------------------");
  825. }
  826. /**
  827. * dp_rx_fill_gro_info() - Fill GRO info from RX TLV into skb->cb
  828. * @soc: DP SOC handle
  829. * @rx_tlv: RX TLV received for the msdu
  830. * @msdu: msdu for which GRO info needs to be filled
  831. * @rx_ol_pkt_cnt: counter to be incremented for GRO eligible packets
  832. *
  833. * Return: None
  834. */
  835. static
  836. void dp_rx_fill_gro_info(struct dp_soc *soc, uint8_t *rx_tlv,
  837. qdf_nbuf_t msdu, uint32_t *rx_ol_pkt_cnt)
  838. {
  839. if (!wlan_cfg_is_gro_enabled(soc->wlan_cfg_ctx))
  840. return;
  841. /* Filling up RX offload info only for TCP packets */
  842. if (!HAL_RX_TLV_GET_TCP_PROTO(rx_tlv))
  843. return;
  844. *rx_ol_pkt_cnt = *rx_ol_pkt_cnt + 1;
  845. QDF_NBUF_CB_RX_LRO_ELIGIBLE(msdu) =
  846. HAL_RX_TLV_GET_LRO_ELIGIBLE(rx_tlv);
  847. QDF_NBUF_CB_RX_TCP_PURE_ACK(msdu) =
  848. HAL_RX_TLV_GET_TCP_PURE_ACK(rx_tlv);
  849. QDF_NBUF_CB_RX_TCP_CHKSUM(msdu) =
  850. hal_rx_tlv_get_tcp_chksum(soc->hal_soc,
  851. rx_tlv);
  852. QDF_NBUF_CB_RX_TCP_SEQ_NUM(msdu) =
  853. HAL_RX_TLV_GET_TCP_SEQ(rx_tlv);
  854. QDF_NBUF_CB_RX_TCP_ACK_NUM(msdu) =
  855. HAL_RX_TLV_GET_TCP_ACK(rx_tlv);
  856. QDF_NBUF_CB_RX_TCP_WIN(msdu) =
  857. HAL_RX_TLV_GET_TCP_WIN(rx_tlv);
  858. QDF_NBUF_CB_RX_TCP_PROTO(msdu) =
  859. HAL_RX_TLV_GET_TCP_PROTO(rx_tlv);
  860. QDF_NBUF_CB_RX_IPV6_PROTO(msdu) =
  861. HAL_RX_TLV_GET_IPV6(rx_tlv);
  862. QDF_NBUF_CB_RX_TCP_OFFSET(msdu) =
  863. HAL_RX_TLV_GET_TCP_OFFSET(rx_tlv);
  864. QDF_NBUF_CB_RX_FLOW_ID(msdu) =
  865. HAL_RX_TLV_GET_FLOW_ID_TOEPLITZ(rx_tlv);
  866. dp_rx_print_offload_info(soc, rx_tlv);
  867. }
  868. #else
  869. static void dp_rx_fill_gro_info(struct dp_soc *soc, uint8_t *rx_tlv,
  870. qdf_nbuf_t msdu, uint32_t *rx_ol_pkt_cnt)
  871. {
  872. }
  873. #endif /* RECEIVE_OFFLOAD */
  874. /**
  875. * dp_rx_adjust_nbuf_len() - set appropriate msdu length in nbuf.
  876. *
  877. * @nbuf: pointer to msdu.
  878. * @mpdu_len: mpdu length
  879. *
  880. * Return: returns true if nbuf is last msdu of mpdu else retuns false.
  881. */
  882. static inline bool dp_rx_adjust_nbuf_len(qdf_nbuf_t nbuf, uint16_t *mpdu_len)
  883. {
  884. bool last_nbuf;
  885. if (*mpdu_len > (RX_DATA_BUFFER_SIZE - RX_PKT_TLVS_LEN)) {
  886. qdf_nbuf_set_pktlen(nbuf, RX_DATA_BUFFER_SIZE);
  887. last_nbuf = false;
  888. } else {
  889. qdf_nbuf_set_pktlen(nbuf, (*mpdu_len + RX_PKT_TLVS_LEN));
  890. last_nbuf = true;
  891. }
  892. *mpdu_len -= (RX_DATA_BUFFER_SIZE - RX_PKT_TLVS_LEN);
  893. return last_nbuf;
  894. }
  895. /**
  896. * dp_rx_sg_create() - create a frag_list for MSDUs which are spread across
  897. * multiple nbufs.
  898. * @nbuf: pointer to the first msdu of an amsdu.
  899. *
  900. * This function implements the creation of RX frag_list for cases
  901. * where an MSDU is spread across multiple nbufs.
  902. *
  903. * Return: returns the head nbuf which contains complete frag_list.
  904. */
  905. qdf_nbuf_t dp_rx_sg_create(qdf_nbuf_t nbuf)
  906. {
  907. qdf_nbuf_t parent, frag_list, next = NULL;
  908. uint16_t frag_list_len = 0;
  909. uint16_t mpdu_len;
  910. bool last_nbuf;
  911. /*
  912. * Use msdu len got from REO entry descriptor instead since
  913. * there is case the RX PKT TLV is corrupted while msdu_len
  914. * from REO descriptor is right for non-raw RX scatter msdu.
  915. */
  916. mpdu_len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
  917. /*
  918. * this is a case where the complete msdu fits in one single nbuf.
  919. * in this case HW sets both start and end bit and we only need to
  920. * reset these bits for RAW mode simulator to decap the pkt
  921. */
  922. if (qdf_nbuf_is_rx_chfrag_start(nbuf) &&
  923. qdf_nbuf_is_rx_chfrag_end(nbuf)) {
  924. qdf_nbuf_set_pktlen(nbuf, mpdu_len + RX_PKT_TLVS_LEN);
  925. qdf_nbuf_pull_head(nbuf, RX_PKT_TLVS_LEN);
  926. return nbuf;
  927. }
  928. /*
  929. * This is a case where we have multiple msdus (A-MSDU) spread across
  930. * multiple nbufs. here we create a fraglist out of these nbufs.
  931. *
  932. * the moment we encounter a nbuf with continuation bit set we
  933. * know for sure we have an MSDU which is spread across multiple
  934. * nbufs. We loop through and reap nbufs till we reach last nbuf.
  935. */
  936. parent = nbuf;
  937. frag_list = nbuf->next;
  938. nbuf = nbuf->next;
  939. /*
  940. * set the start bit in the first nbuf we encounter with continuation
  941. * bit set. This has the proper mpdu length set as it is the first
  942. * msdu of the mpdu. this becomes the parent nbuf and the subsequent
  943. * nbufs will form the frag_list of the parent nbuf.
  944. */
  945. qdf_nbuf_set_rx_chfrag_start(parent, 1);
  946. last_nbuf = dp_rx_adjust_nbuf_len(parent, &mpdu_len);
  947. /*
  948. * this is where we set the length of the fragments which are
  949. * associated to the parent nbuf. We iterate through the frag_list
  950. * till we hit the last_nbuf of the list.
  951. */
  952. do {
  953. last_nbuf = dp_rx_adjust_nbuf_len(nbuf, &mpdu_len);
  954. qdf_nbuf_pull_head(nbuf, RX_PKT_TLVS_LEN);
  955. frag_list_len += qdf_nbuf_len(nbuf);
  956. if (last_nbuf) {
  957. next = nbuf->next;
  958. nbuf->next = NULL;
  959. break;
  960. }
  961. nbuf = nbuf->next;
  962. } while (!last_nbuf);
  963. qdf_nbuf_set_rx_chfrag_start(nbuf, 0);
  964. qdf_nbuf_append_ext_list(parent, frag_list, frag_list_len);
  965. parent->next = next;
  966. qdf_nbuf_pull_head(parent, RX_PKT_TLVS_LEN);
  967. return parent;
  968. }
  969. /**
  970. * dp_rx_compute_delay() - Compute and fill in all timestamps
  971. * to pass in correct fields
  972. *
  973. * @vdev: pdev handle
  974. * @tx_desc: tx descriptor
  975. * @tid: tid value
  976. * Return: none
  977. */
  978. void dp_rx_compute_delay(struct dp_vdev *vdev, qdf_nbuf_t nbuf)
  979. {
  980. uint8_t ring_id = QDF_NBUF_CB_RX_CTX_ID(nbuf);
  981. int64_t current_ts = qdf_ktime_to_ms(qdf_ktime_get());
  982. uint32_t to_stack = qdf_nbuf_get_timedelta_ms(nbuf);
  983. uint8_t tid = qdf_nbuf_get_tid_val(nbuf);
  984. uint32_t interframe_delay =
  985. (uint32_t)(current_ts - vdev->prev_rx_deliver_tstamp);
  986. dp_update_delay_stats(vdev->pdev, to_stack, tid,
  987. CDP_DELAY_STATS_REAP_STACK, ring_id);
  988. /*
  989. * Update interframe delay stats calculated at deliver_data_ol point.
  990. * Value of vdev->prev_rx_deliver_tstamp will be 0 for 1st frame, so
  991. * interframe delay will not be calculate correctly for 1st frame.
  992. * On the other side, this will help in avoiding extra per packet check
  993. * of vdev->prev_rx_deliver_tstamp.
  994. */
  995. dp_update_delay_stats(vdev->pdev, interframe_delay, tid,
  996. CDP_DELAY_STATS_RX_INTERFRAME, ring_id);
  997. vdev->prev_rx_deliver_tstamp = current_ts;
  998. }
  999. /**
  1000. * dp_rx_drop_nbuf_list() - drop an nbuf list
  1001. * @pdev: dp pdev reference
  1002. * @buf_list: buffer list to be dropepd
  1003. *
  1004. * Return: int (number of bufs dropped)
  1005. */
  1006. static inline int dp_rx_drop_nbuf_list(struct dp_pdev *pdev,
  1007. qdf_nbuf_t buf_list)
  1008. {
  1009. struct cdp_tid_rx_stats *stats = NULL;
  1010. uint8_t tid = 0, ring_id = 0;
  1011. int num_dropped = 0;
  1012. qdf_nbuf_t buf, next_buf;
  1013. buf = buf_list;
  1014. while (buf) {
  1015. ring_id = QDF_NBUF_CB_RX_CTX_ID(buf);
  1016. next_buf = qdf_nbuf_queue_next(buf);
  1017. tid = qdf_nbuf_get_tid_val(buf);
  1018. if (qdf_likely(pdev)) {
  1019. stats = &pdev->stats.tid_stats.tid_rx_stats[ring_id][tid];
  1020. stats->fail_cnt[INVALID_PEER_VDEV]++;
  1021. stats->delivered_to_stack--;
  1022. }
  1023. qdf_nbuf_free(buf);
  1024. buf = next_buf;
  1025. num_dropped++;
  1026. }
  1027. return num_dropped;
  1028. }
  1029. #ifdef PEER_CACHE_RX_PKTS
  1030. /**
  1031. * dp_rx_flush_rx_cached() - flush cached rx frames
  1032. * @peer: peer
  1033. * @drop: flag to drop frames or forward to net stack
  1034. *
  1035. * Return: None
  1036. */
  1037. void dp_rx_flush_rx_cached(struct dp_peer *peer, bool drop)
  1038. {
  1039. struct dp_peer_cached_bufq *bufqi;
  1040. struct dp_rx_cached_buf *cache_buf = NULL;
  1041. ol_txrx_rx_fp data_rx = NULL;
  1042. int num_buff_elem;
  1043. QDF_STATUS status;
  1044. if (qdf_atomic_inc_return(&peer->flush_in_progress) > 1) {
  1045. qdf_atomic_dec(&peer->flush_in_progress);
  1046. return;
  1047. }
  1048. qdf_spin_lock_bh(&peer->peer_info_lock);
  1049. if (peer->state >= OL_TXRX_PEER_STATE_CONN && peer->vdev->osif_rx)
  1050. data_rx = peer->vdev->osif_rx;
  1051. else
  1052. drop = true;
  1053. qdf_spin_unlock_bh(&peer->peer_info_lock);
  1054. bufqi = &peer->bufq_info;
  1055. qdf_spin_lock_bh(&bufqi->bufq_lock);
  1056. qdf_list_remove_front(&bufqi->cached_bufq,
  1057. (qdf_list_node_t **)&cache_buf);
  1058. while (cache_buf) {
  1059. num_buff_elem = QDF_NBUF_CB_RX_NUM_ELEMENTS_IN_LIST(
  1060. cache_buf->buf);
  1061. bufqi->entries -= num_buff_elem;
  1062. qdf_spin_unlock_bh(&bufqi->bufq_lock);
  1063. if (drop) {
  1064. bufqi->dropped = dp_rx_drop_nbuf_list(peer->vdev->pdev,
  1065. cache_buf->buf);
  1066. } else {
  1067. /* Flush the cached frames to OSIF DEV */
  1068. status = data_rx(peer->vdev->osif_vdev, cache_buf->buf);
  1069. if (status != QDF_STATUS_SUCCESS)
  1070. bufqi->dropped = dp_rx_drop_nbuf_list(
  1071. peer->vdev->pdev,
  1072. cache_buf->buf);
  1073. }
  1074. qdf_mem_free(cache_buf);
  1075. cache_buf = NULL;
  1076. qdf_spin_lock_bh(&bufqi->bufq_lock);
  1077. qdf_list_remove_front(&bufqi->cached_bufq,
  1078. (qdf_list_node_t **)&cache_buf);
  1079. }
  1080. qdf_spin_unlock_bh(&bufqi->bufq_lock);
  1081. qdf_atomic_dec(&peer->flush_in_progress);
  1082. }
  1083. /**
  1084. * dp_rx_enqueue_rx() - cache rx frames
  1085. * @peer: peer
  1086. * @rx_buf_list: cache buffer list
  1087. *
  1088. * Return: None
  1089. */
  1090. static QDF_STATUS
  1091. dp_rx_enqueue_rx(struct dp_peer *peer, qdf_nbuf_t rx_buf_list)
  1092. {
  1093. struct dp_rx_cached_buf *cache_buf;
  1094. struct dp_peer_cached_bufq *bufqi = &peer->bufq_info;
  1095. int num_buff_elem;
  1096. dp_debug_rl("bufq->curr %d bufq->drops %d", bufqi->entries,
  1097. bufqi->dropped);
  1098. if (!peer->valid) {
  1099. bufqi->dropped = dp_rx_drop_nbuf_list(peer->vdev->pdev,
  1100. rx_buf_list);
  1101. return QDF_STATUS_E_INVAL;
  1102. }
  1103. qdf_spin_lock_bh(&bufqi->bufq_lock);
  1104. if (bufqi->entries >= bufqi->thresh) {
  1105. bufqi->dropped = dp_rx_drop_nbuf_list(peer->vdev->pdev,
  1106. rx_buf_list);
  1107. qdf_spin_unlock_bh(&bufqi->bufq_lock);
  1108. return QDF_STATUS_E_RESOURCES;
  1109. }
  1110. qdf_spin_unlock_bh(&bufqi->bufq_lock);
  1111. num_buff_elem = QDF_NBUF_CB_RX_NUM_ELEMENTS_IN_LIST(rx_buf_list);
  1112. cache_buf = qdf_mem_malloc_atomic(sizeof(*cache_buf));
  1113. if (!cache_buf) {
  1114. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1115. "Failed to allocate buf to cache rx frames");
  1116. bufqi->dropped = dp_rx_drop_nbuf_list(peer->vdev->pdev,
  1117. rx_buf_list);
  1118. return QDF_STATUS_E_NOMEM;
  1119. }
  1120. cache_buf->buf = rx_buf_list;
  1121. qdf_spin_lock_bh(&bufqi->bufq_lock);
  1122. qdf_list_insert_back(&bufqi->cached_bufq,
  1123. &cache_buf->node);
  1124. bufqi->entries += num_buff_elem;
  1125. qdf_spin_unlock_bh(&bufqi->bufq_lock);
  1126. return QDF_STATUS_SUCCESS;
  1127. }
  1128. static inline
  1129. bool dp_rx_is_peer_cache_bufq_supported(void)
  1130. {
  1131. return true;
  1132. }
  1133. #else
  1134. static inline
  1135. bool dp_rx_is_peer_cache_bufq_supported(void)
  1136. {
  1137. return false;
  1138. }
  1139. static inline QDF_STATUS
  1140. dp_rx_enqueue_rx(struct dp_peer *peer, qdf_nbuf_t rx_buf_list)
  1141. {
  1142. return QDF_STATUS_SUCCESS;
  1143. }
  1144. #endif
  1145. void dp_rx_deliver_to_stack(struct dp_soc *soc,
  1146. struct dp_vdev *vdev,
  1147. struct dp_peer *peer,
  1148. qdf_nbuf_t nbuf_head,
  1149. qdf_nbuf_t nbuf_tail)
  1150. {
  1151. int num_nbuf = 0;
  1152. if (qdf_unlikely(!vdev || vdev->delete.pending)) {
  1153. num_nbuf = dp_rx_drop_nbuf_list(NULL, nbuf_head);
  1154. /*
  1155. * This is a special case where vdev is invalid,
  1156. * so we cannot know the pdev to which this packet
  1157. * belonged. Hence we update the soc rx error stats.
  1158. */
  1159. DP_STATS_INC(soc, rx.err.invalid_vdev, num_nbuf);
  1160. return;
  1161. }
  1162. /*
  1163. * highly unlikely to have a vdev without a registered rx
  1164. * callback function. if so let us free the nbuf_list.
  1165. */
  1166. if (qdf_unlikely(!vdev->osif_rx)) {
  1167. if (peer && dp_rx_is_peer_cache_bufq_supported()) {
  1168. dp_rx_enqueue_rx(peer, nbuf_head);
  1169. } else {
  1170. num_nbuf = dp_rx_drop_nbuf_list(vdev->pdev,
  1171. nbuf_head);
  1172. DP_STATS_DEC(peer, rx.to_stack.num, num_nbuf);
  1173. }
  1174. return;
  1175. }
  1176. if (qdf_unlikely(vdev->rx_decap_type == htt_cmn_pkt_type_raw) ||
  1177. (vdev->rx_decap_type == htt_cmn_pkt_type_native_wifi)) {
  1178. vdev->osif_rsim_rx_decap(vdev->osif_vdev, &nbuf_head,
  1179. &nbuf_tail, peer->mac_addr.raw);
  1180. }
  1181. /* Function pointer initialized only when FISA is enabled */
  1182. if (vdev->osif_fisa_rx)
  1183. /* on failure send it via regular path */
  1184. vdev->osif_fisa_rx(soc, vdev, nbuf_head);
  1185. else
  1186. vdev->osif_rx(vdev->osif_vdev, nbuf_head);
  1187. }
  1188. /**
  1189. * dp_rx_cksum_offload() - set the nbuf checksum as defined by hardware.
  1190. * @nbuf: pointer to the first msdu of an amsdu.
  1191. * @rx_tlv_hdr: pointer to the start of RX TLV headers.
  1192. *
  1193. * The ipsumed field of the skb is set based on whether HW validated the
  1194. * IP/TCP/UDP checksum.
  1195. *
  1196. * Return: void
  1197. */
  1198. static inline void dp_rx_cksum_offload(struct dp_pdev *pdev,
  1199. qdf_nbuf_t nbuf,
  1200. uint8_t *rx_tlv_hdr)
  1201. {
  1202. qdf_nbuf_rx_cksum_t cksum = {0};
  1203. bool ip_csum_err = hal_rx_attn_ip_cksum_fail_get(rx_tlv_hdr);
  1204. bool tcp_udp_csum_er = hal_rx_attn_tcp_udp_cksum_fail_get(rx_tlv_hdr);
  1205. if (qdf_likely(!ip_csum_err && !tcp_udp_csum_er)) {
  1206. cksum.l4_result = QDF_NBUF_RX_CKSUM_TCP_UDP_UNNECESSARY;
  1207. qdf_nbuf_set_rx_cksum(nbuf, &cksum);
  1208. } else {
  1209. DP_STATS_INCC(pdev, err.ip_csum_err, 1, ip_csum_err);
  1210. DP_STATS_INCC(pdev, err.tcp_udp_csum_err, 1, tcp_udp_csum_er);
  1211. }
  1212. }
  1213. #ifdef VDEV_PEER_PROTOCOL_COUNT
  1214. #define dp_rx_msdu_stats_update_prot_cnts(vdev_hdl, nbuf, peer) \
  1215. { \
  1216. qdf_nbuf_t nbuf_local; \
  1217. struct dp_peer *peer_local; \
  1218. struct dp_vdev *vdev_local = vdev_hdl; \
  1219. do { \
  1220. if (qdf_likely(!((vdev_local)->peer_protocol_count_track))) \
  1221. break; \
  1222. nbuf_local = nbuf; \
  1223. peer_local = peer; \
  1224. if (qdf_unlikely(qdf_nbuf_is_frag((nbuf_local)))) \
  1225. break; \
  1226. else if (qdf_unlikely(qdf_nbuf_is_raw_frame((nbuf_local)))) \
  1227. break; \
  1228. dp_vdev_peer_stats_update_protocol_cnt((vdev_local), \
  1229. (nbuf_local), \
  1230. (peer_local), 0, 1); \
  1231. } while (0); \
  1232. }
  1233. #else
  1234. #define dp_rx_msdu_stats_update_prot_cnts(vdev_hdl, nbuf, peer)
  1235. #endif
  1236. /**
  1237. * dp_rx_msdu_stats_update() - update per msdu stats.
  1238. * @soc: core txrx main context
  1239. * @nbuf: pointer to the first msdu of an amsdu.
  1240. * @rx_tlv_hdr: pointer to the start of RX TLV headers.
  1241. * @peer: pointer to the peer object.
  1242. * @ring_id: reo dest ring number on which pkt is reaped.
  1243. * @tid_stats: per tid rx stats.
  1244. *
  1245. * update all the per msdu stats for that nbuf.
  1246. * Return: void
  1247. */
  1248. static void dp_rx_msdu_stats_update(struct dp_soc *soc,
  1249. qdf_nbuf_t nbuf,
  1250. uint8_t *rx_tlv_hdr,
  1251. struct dp_peer *peer,
  1252. uint8_t ring_id,
  1253. struct cdp_tid_rx_stats *tid_stats)
  1254. {
  1255. bool is_ampdu, is_not_amsdu;
  1256. uint32_t sgi, mcs, tid, nss, bw, reception_type, pkt_type;
  1257. struct dp_vdev *vdev = peer->vdev;
  1258. qdf_ether_header_t *eh;
  1259. uint16_t msdu_len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
  1260. dp_rx_msdu_stats_update_prot_cnts(vdev, nbuf, peer);
  1261. is_not_amsdu = qdf_nbuf_is_rx_chfrag_start(nbuf) &
  1262. qdf_nbuf_is_rx_chfrag_end(nbuf);
  1263. DP_STATS_INC_PKT(peer, rx.rcvd_reo[ring_id], 1, msdu_len);
  1264. DP_STATS_INCC(peer, rx.non_amsdu_cnt, 1, is_not_amsdu);
  1265. DP_STATS_INCC(peer, rx.amsdu_cnt, 1, !is_not_amsdu);
  1266. DP_STATS_INCC(peer, rx.rx_retries, 1, qdf_nbuf_is_rx_retry_flag(nbuf));
  1267. tid_stats->msdu_cnt++;
  1268. if (qdf_unlikely(qdf_nbuf_is_da_mcbc(nbuf) &&
  1269. (vdev->rx_decap_type == htt_cmn_pkt_type_ethernet))) {
  1270. eh = (qdf_ether_header_t *)qdf_nbuf_data(nbuf);
  1271. DP_STATS_INC_PKT(peer, rx.multicast, 1, msdu_len);
  1272. tid_stats->mcast_msdu_cnt++;
  1273. if (QDF_IS_ADDR_BROADCAST(eh->ether_dhost)) {
  1274. DP_STATS_INC_PKT(peer, rx.bcast, 1, msdu_len);
  1275. tid_stats->bcast_msdu_cnt++;
  1276. }
  1277. }
  1278. /*
  1279. * currently we can return from here as we have similar stats
  1280. * updated at per ppdu level instead of msdu level
  1281. */
  1282. if (!soc->process_rx_status)
  1283. return;
  1284. is_ampdu = hal_rx_mpdu_info_ampdu_flag_get(rx_tlv_hdr);
  1285. DP_STATS_INCC(peer, rx.ampdu_cnt, 1, is_ampdu);
  1286. DP_STATS_INCC(peer, rx.non_ampdu_cnt, 1, !(is_ampdu));
  1287. sgi = hal_rx_msdu_start_sgi_get(rx_tlv_hdr);
  1288. mcs = hal_rx_msdu_start_rate_mcs_get(rx_tlv_hdr);
  1289. tid = qdf_nbuf_get_tid_val(nbuf);
  1290. bw = hal_rx_msdu_start_bw_get(rx_tlv_hdr);
  1291. reception_type = hal_rx_msdu_start_reception_type_get(soc->hal_soc,
  1292. rx_tlv_hdr);
  1293. nss = hal_rx_msdu_start_nss_get(soc->hal_soc, rx_tlv_hdr);
  1294. pkt_type = hal_rx_msdu_start_get_pkt_type(rx_tlv_hdr);
  1295. DP_STATS_INC(peer, rx.bw[bw], 1);
  1296. /*
  1297. * only if nss > 0 and pkt_type is 11N/AC/AX,
  1298. * then increase index [nss - 1] in array counter.
  1299. */
  1300. if (nss > 0 && (pkt_type == DOT11_N ||
  1301. pkt_type == DOT11_AC ||
  1302. pkt_type == DOT11_AX))
  1303. DP_STATS_INC(peer, rx.nss[nss - 1], 1);
  1304. DP_STATS_INC(peer, rx.sgi_count[sgi], 1);
  1305. DP_STATS_INCC(peer, rx.err.mic_err, 1,
  1306. hal_rx_mpdu_end_mic_err_get(rx_tlv_hdr));
  1307. DP_STATS_INCC(peer, rx.err.decrypt_err, 1,
  1308. hal_rx_mpdu_end_decrypt_err_get(rx_tlv_hdr));
  1309. DP_STATS_INC(peer, rx.wme_ac_type[TID_TO_WME_AC(tid)], 1);
  1310. DP_STATS_INC(peer, rx.reception_type[reception_type], 1);
  1311. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[MAX_MCS - 1], 1,
  1312. ((mcs >= MAX_MCS_11A) && (pkt_type == DOT11_A)));
  1313. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[mcs], 1,
  1314. ((mcs <= MAX_MCS_11A) && (pkt_type == DOT11_A)));
  1315. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[MAX_MCS - 1], 1,
  1316. ((mcs >= MAX_MCS_11B) && (pkt_type == DOT11_B)));
  1317. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[mcs], 1,
  1318. ((mcs <= MAX_MCS_11B) && (pkt_type == DOT11_B)));
  1319. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[MAX_MCS - 1], 1,
  1320. ((mcs >= MAX_MCS_11A) && (pkt_type == DOT11_N)));
  1321. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[mcs], 1,
  1322. ((mcs <= MAX_MCS_11A) && (pkt_type == DOT11_N)));
  1323. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[MAX_MCS - 1], 1,
  1324. ((mcs >= MAX_MCS_11AC) && (pkt_type == DOT11_AC)));
  1325. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[mcs], 1,
  1326. ((mcs <= MAX_MCS_11AC) && (pkt_type == DOT11_AC)));
  1327. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[MAX_MCS - 1], 1,
  1328. ((mcs >= MAX_MCS) && (pkt_type == DOT11_AX)));
  1329. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[mcs], 1,
  1330. ((mcs < MAX_MCS) && (pkt_type == DOT11_AX)));
  1331. if ((soc->process_rx_status) &&
  1332. hal_rx_attn_first_mpdu_get(rx_tlv_hdr)) {
  1333. #if defined(FEATURE_PERPKT_INFO) && WDI_EVENT_ENABLE
  1334. if (!vdev->pdev)
  1335. return;
  1336. dp_wdi_event_handler(WDI_EVENT_UPDATE_DP_STATS, vdev->pdev->soc,
  1337. &peer->stats, peer->peer_ids[0],
  1338. UPDATE_PEER_STATS,
  1339. vdev->pdev->pdev_id);
  1340. #endif
  1341. }
  1342. }
  1343. static inline bool is_sa_da_idx_valid(struct dp_soc *soc,
  1344. uint8_t *rx_tlv_hdr,
  1345. qdf_nbuf_t nbuf,
  1346. struct hal_rx_msdu_metadata msdu_info)
  1347. {
  1348. if ((qdf_nbuf_is_sa_valid(nbuf) &&
  1349. (msdu_info.sa_idx > wlan_cfg_get_max_ast_idx(soc->wlan_cfg_ctx))) ||
  1350. (!qdf_nbuf_is_da_mcbc(nbuf) &&
  1351. qdf_nbuf_is_da_valid(nbuf) &&
  1352. (msdu_info.da_idx > wlan_cfg_get_max_ast_idx(soc->wlan_cfg_ctx))))
  1353. return false;
  1354. return true;
  1355. }
  1356. #ifndef WDS_VENDOR_EXTENSION
  1357. int dp_wds_rx_policy_check(uint8_t *rx_tlv_hdr,
  1358. struct dp_vdev *vdev,
  1359. struct dp_peer *peer)
  1360. {
  1361. return 1;
  1362. }
  1363. #endif
  1364. #ifdef RX_DESC_DEBUG_CHECK
  1365. /**
  1366. * dp_rx_desc_nbuf_sanity_check - Add sanity check to catch REO rx_desc paddr
  1367. * corruption
  1368. *
  1369. * @ring_desc: REO ring descriptor
  1370. * @rx_desc: Rx descriptor
  1371. *
  1372. * Return: NONE
  1373. */
  1374. static inline
  1375. void dp_rx_desc_nbuf_sanity_check(hal_ring_desc_t ring_desc,
  1376. struct dp_rx_desc *rx_desc)
  1377. {
  1378. struct hal_buf_info hbi;
  1379. hal_rx_reo_buf_paddr_get(ring_desc, &hbi);
  1380. /* Sanity check for possible buffer paddr corruption */
  1381. qdf_assert_always((&hbi)->paddr ==
  1382. qdf_nbuf_get_frag_paddr(rx_desc->nbuf, 0));
  1383. }
  1384. #else
  1385. static inline
  1386. void dp_rx_desc_nbuf_sanity_check(hal_ring_desc_t ring_desc,
  1387. struct dp_rx_desc *rx_desc)
  1388. {
  1389. }
  1390. #endif
  1391. #ifdef WLAN_FEATURE_RX_SOFTIRQ_TIME_LIMIT
  1392. static inline
  1393. bool dp_rx_reap_loop_pkt_limit_hit(struct dp_soc *soc, int num_reaped)
  1394. {
  1395. bool limit_hit = false;
  1396. struct wlan_cfg_dp_soc_ctxt *cfg = soc->wlan_cfg_ctx;
  1397. limit_hit =
  1398. (num_reaped >= cfg->rx_reap_loop_pkt_limit) ? true : false;
  1399. if (limit_hit)
  1400. DP_STATS_INC(soc, rx.reap_loop_pkt_limit_hit, 1)
  1401. return limit_hit;
  1402. }
  1403. static inline bool dp_rx_enable_eol_data_check(struct dp_soc *soc)
  1404. {
  1405. return soc->wlan_cfg_ctx->rx_enable_eol_data_check;
  1406. }
  1407. #else
  1408. static inline
  1409. bool dp_rx_reap_loop_pkt_limit_hit(struct dp_soc *soc, int num_reaped)
  1410. {
  1411. return false;
  1412. }
  1413. static inline bool dp_rx_enable_eol_data_check(struct dp_soc *soc)
  1414. {
  1415. return false;
  1416. }
  1417. #endif /* WLAN_FEATURE_RX_SOFTIRQ_TIME_LIMIT */
  1418. /**
  1419. * dp_is_special_data() - check is the pkt special like eapol, dhcp, etc
  1420. *
  1421. * @nbuf: pkt skb pointer
  1422. *
  1423. * Return: true if matched, false if not
  1424. */
  1425. static inline
  1426. bool dp_is_special_data(qdf_nbuf_t nbuf)
  1427. {
  1428. if (qdf_nbuf_is_ipv4_arp_pkt(nbuf) ||
  1429. qdf_nbuf_is_ipv4_dhcp_pkt(nbuf) ||
  1430. qdf_nbuf_is_ipv4_eapol_pkt(nbuf) ||
  1431. qdf_nbuf_is_ipv6_dhcp_pkt(nbuf))
  1432. return true;
  1433. else
  1434. return false;
  1435. }
  1436. #ifdef DP_RX_PKT_NO_PEER_DELIVER
  1437. /**
  1438. * dp_rx_deliver_to_stack_no_peer() - try deliver rx data even if
  1439. * no corresbonding peer found
  1440. * @soc: core txrx main context
  1441. * @nbuf: pkt skb pointer
  1442. *
  1443. * This function will try to deliver some RX special frames to stack
  1444. * even there is no peer matched found. for instance, LFR case, some
  1445. * eapol data will be sent to host before peer_map done.
  1446. *
  1447. * Return: None
  1448. */
  1449. static inline
  1450. void dp_rx_deliver_to_stack_no_peer(struct dp_soc *soc, qdf_nbuf_t nbuf)
  1451. {
  1452. uint16_t peer_id;
  1453. uint8_t vdev_id;
  1454. struct dp_vdev *vdev;
  1455. uint32_t l2_hdr_offset = 0;
  1456. uint16_t msdu_len = 0;
  1457. uint32_t pkt_len = 0;
  1458. uint8_t *rx_tlv_hdr;
  1459. peer_id = QDF_NBUF_CB_RX_PEER_ID(nbuf);
  1460. if (peer_id > soc->max_peers)
  1461. goto deliver_fail;
  1462. vdev_id = QDF_NBUF_CB_RX_VDEV_ID(nbuf);
  1463. vdev = dp_get_vdev_from_soc_vdev_id_wifi3(soc, vdev_id);
  1464. if (!vdev || vdev->delete.pending || !vdev->osif_rx)
  1465. goto deliver_fail;
  1466. rx_tlv_hdr = qdf_nbuf_data(nbuf);
  1467. l2_hdr_offset =
  1468. hal_rx_msdu_end_l3_hdr_padding_get(soc->hal_soc, rx_tlv_hdr);
  1469. msdu_len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
  1470. pkt_len = msdu_len + l2_hdr_offset + RX_PKT_TLVS_LEN;
  1471. if (qdf_unlikely(qdf_nbuf_is_frag(nbuf))) {
  1472. qdf_nbuf_pull_head(nbuf, RX_PKT_TLVS_LEN);
  1473. } else {
  1474. qdf_nbuf_set_pktlen(nbuf, pkt_len);
  1475. qdf_nbuf_pull_head(nbuf,
  1476. RX_PKT_TLVS_LEN +
  1477. l2_hdr_offset);
  1478. }
  1479. /* only allow special frames */
  1480. if (!dp_is_special_data(nbuf))
  1481. goto deliver_fail;
  1482. vdev->osif_rx(vdev->osif_vdev, nbuf);
  1483. DP_STATS_INC(soc, rx.err.pkt_delivered_no_peer, 1);
  1484. return;
  1485. deliver_fail:
  1486. DP_STATS_INC_PKT(soc, rx.err.rx_invalid_peer, 1,
  1487. QDF_NBUF_CB_RX_PKT_LEN(nbuf));
  1488. qdf_nbuf_free(nbuf);
  1489. }
  1490. #else
  1491. static inline
  1492. void dp_rx_deliver_to_stack_no_peer(struct dp_soc *soc, qdf_nbuf_t nbuf)
  1493. {
  1494. DP_STATS_INC_PKT(soc, rx.err.rx_invalid_peer, 1,
  1495. QDF_NBUF_CB_RX_PKT_LEN(nbuf));
  1496. qdf_nbuf_free(nbuf);
  1497. }
  1498. #endif
  1499. /**
  1500. * dp_rx_srng_get_num_pending() - get number of pending entries
  1501. * @hal_soc: hal soc opaque pointer
  1502. * @hal_ring: opaque pointer to the HAL Rx Ring
  1503. * @num_entries: number of entries in the hal_ring.
  1504. * @near_full: pointer to a boolean. This is set if ring is near full.
  1505. *
  1506. * The function returns the number of entries in a destination ring which are
  1507. * yet to be reaped. The function also checks if the ring is near full.
  1508. * If more than half of the ring needs to be reaped, the ring is considered
  1509. * approaching full.
  1510. * The function useses hal_srng_dst_num_valid_locked to get the number of valid
  1511. * entries. It should not be called within a SRNG lock. HW pointer value is
  1512. * synced into cached_hp.
  1513. *
  1514. * Return: Number of pending entries if any
  1515. */
  1516. static
  1517. uint32_t dp_rx_srng_get_num_pending(hal_soc_handle_t hal_soc,
  1518. hal_ring_handle_t hal_ring_hdl,
  1519. uint32_t num_entries,
  1520. bool *near_full)
  1521. {
  1522. uint32_t num_pending = 0;
  1523. num_pending = hal_srng_dst_num_valid_locked(hal_soc,
  1524. hal_ring_hdl,
  1525. true);
  1526. if (num_entries && (num_pending >= num_entries >> 1))
  1527. *near_full = true;
  1528. else
  1529. *near_full = false;
  1530. return num_pending;
  1531. }
  1532. #ifdef WLAN_SUPPORT_RX_FISA
  1533. /*
  1534. * dp_rx_skip_tlvs() - Skip TLVs only if FISA is not enabled
  1535. * @vdev: DP vdev context
  1536. * @nbuf: nbuf whose data pointer is adjusted
  1537. * @size: size to be adjusted
  1538. *
  1539. * Return: None
  1540. */
  1541. static void dp_rx_skip_tlvs(struct dp_vdev *vdev, qdf_nbuf_t nbuf, int size)
  1542. {
  1543. /* TLVs include FISA info do not skip them yet */
  1544. if (!vdev->osif_fisa_rx)
  1545. qdf_nbuf_pull_head(nbuf, size);
  1546. }
  1547. #else /* !WLAN_SUPPORT_RX_FISA */
  1548. static void dp_rx_skip_tlvs(struct dp_vdev *vdev, qdf_nbuf_t nbuf, int size)
  1549. {
  1550. qdf_nbuf_pull_head(nbuf, size);
  1551. }
  1552. #endif /* !WLAN_SUPPORT_RX_FISA */
  1553. /**
  1554. * dp_rx_process() - Brain of the Rx processing functionality
  1555. * Called from the bottom half (tasklet/NET_RX_SOFTIRQ)
  1556. * @int_ctx: per interrupt context
  1557. * @hal_ring: opaque pointer to the HAL Rx Ring, which will be serviced
  1558. * @reo_ring_num: ring number (0, 1, 2 or 3) of the reo ring.
  1559. * @quota: No. of units (packets) that can be serviced in one shot.
  1560. *
  1561. * This function implements the core of Rx functionality. This is
  1562. * expected to handle only non-error frames.
  1563. *
  1564. * Return: uint32_t: No. of elements processed
  1565. */
  1566. uint32_t dp_rx_process(struct dp_intr *int_ctx, hal_ring_handle_t hal_ring_hdl,
  1567. uint8_t reo_ring_num, uint32_t quota)
  1568. {
  1569. hal_ring_desc_t ring_desc;
  1570. hal_soc_handle_t hal_soc;
  1571. struct dp_rx_desc *rx_desc = NULL;
  1572. qdf_nbuf_t nbuf, next;
  1573. bool near_full;
  1574. union dp_rx_desc_list_elem_t *head[MAX_PDEV_CNT];
  1575. union dp_rx_desc_list_elem_t *tail[MAX_PDEV_CNT];
  1576. uint32_t num_pending;
  1577. uint32_t rx_bufs_used = 0, rx_buf_cookie;
  1578. uint16_t msdu_len = 0;
  1579. uint16_t peer_id;
  1580. uint8_t vdev_id;
  1581. struct dp_peer *peer;
  1582. struct dp_vdev *vdev;
  1583. uint32_t pkt_len = 0;
  1584. struct hal_rx_mpdu_desc_info mpdu_desc_info;
  1585. struct hal_rx_msdu_desc_info msdu_desc_info;
  1586. enum hal_reo_error_status error;
  1587. uint32_t peer_mdata;
  1588. uint8_t *rx_tlv_hdr;
  1589. uint32_t rx_bufs_reaped[MAX_PDEV_CNT];
  1590. uint8_t mac_id = 0;
  1591. struct dp_pdev *rx_pdev;
  1592. struct dp_srng *dp_rxdma_srng;
  1593. struct rx_desc_pool *rx_desc_pool;
  1594. struct dp_soc *soc = int_ctx->soc;
  1595. uint8_t ring_id = 0;
  1596. uint8_t core_id = 0;
  1597. struct cdp_tid_rx_stats *tid_stats;
  1598. qdf_nbuf_t nbuf_head;
  1599. qdf_nbuf_t nbuf_tail;
  1600. qdf_nbuf_t deliver_list_head;
  1601. qdf_nbuf_t deliver_list_tail;
  1602. uint32_t num_rx_bufs_reaped = 0;
  1603. uint32_t intr_id;
  1604. struct hif_opaque_softc *scn;
  1605. int32_t tid = 0;
  1606. bool is_prev_msdu_last = true;
  1607. uint32_t num_entries_avail = 0;
  1608. uint32_t rx_ol_pkt_cnt = 0;
  1609. uint32_t num_entries = 0;
  1610. struct hal_rx_msdu_metadata msdu_metadata;
  1611. DP_HIST_INIT();
  1612. qdf_assert_always(soc && hal_ring_hdl);
  1613. hal_soc = soc->hal_soc;
  1614. qdf_assert_always(hal_soc);
  1615. scn = soc->hif_handle;
  1616. hif_pm_runtime_mark_dp_rx_busy(scn);
  1617. intr_id = int_ctx->dp_intr_id;
  1618. num_entries = hal_srng_get_num_entries(hal_soc, hal_ring_hdl);
  1619. more_data:
  1620. /* reset local variables here to be re-used in the function */
  1621. nbuf_head = NULL;
  1622. nbuf_tail = NULL;
  1623. deliver_list_head = NULL;
  1624. deliver_list_tail = NULL;
  1625. peer = NULL;
  1626. vdev = NULL;
  1627. num_rx_bufs_reaped = 0;
  1628. qdf_mem_zero(rx_bufs_reaped, sizeof(rx_bufs_reaped));
  1629. qdf_mem_zero(&mpdu_desc_info, sizeof(mpdu_desc_info));
  1630. qdf_mem_zero(&msdu_desc_info, sizeof(msdu_desc_info));
  1631. qdf_mem_zero(head, sizeof(head));
  1632. qdf_mem_zero(tail, sizeof(tail));
  1633. if (qdf_unlikely(dp_srng_access_start(int_ctx, soc, hal_ring_hdl))) {
  1634. /*
  1635. * Need API to convert from hal_ring pointer to
  1636. * Ring Type / Ring Id combo
  1637. */
  1638. DP_STATS_INC(soc, rx.err.hal_ring_access_fail, 1);
  1639. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1640. FL("HAL RING Access Failed -- %pK"), hal_ring_hdl);
  1641. goto done;
  1642. }
  1643. /*
  1644. * start reaping the buffers from reo ring and queue
  1645. * them in per vdev queue.
  1646. * Process the received pkts in a different per vdev loop.
  1647. */
  1648. while (qdf_likely(quota &&
  1649. (ring_desc = hal_srng_dst_peek(hal_soc,
  1650. hal_ring_hdl)))) {
  1651. error = HAL_RX_ERROR_STATUS_GET(ring_desc);
  1652. ring_id = hal_srng_ring_id_get(hal_ring_hdl);
  1653. if (qdf_unlikely(error == HAL_REO_ERROR_DETECTED)) {
  1654. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1655. FL("HAL RING 0x%pK:error %d"), hal_ring_hdl, error);
  1656. DP_STATS_INC(soc, rx.err.hal_reo_error[ring_id], 1);
  1657. /* Don't know how to deal with this -- assert */
  1658. qdf_assert(0);
  1659. }
  1660. rx_buf_cookie = HAL_RX_REO_BUF_COOKIE_GET(ring_desc);
  1661. rx_desc = dp_rx_cookie_2_va_rxdma_buf(soc, rx_buf_cookie);
  1662. qdf_assert(rx_desc);
  1663. /*
  1664. * this is a unlikely scenario where the host is reaping
  1665. * a descriptor which it already reaped just a while ago
  1666. * but is yet to replenish it back to HW.
  1667. * In this case host will dump the last 128 descriptors
  1668. * including the software descriptor rx_desc and assert.
  1669. */
  1670. if (qdf_unlikely(!rx_desc->in_use)) {
  1671. DP_STATS_INC(soc, rx.err.hal_reo_dest_dup, 1);
  1672. dp_info_rl("Reaping rx_desc not in use!");
  1673. dp_rx_dump_info_and_assert(soc, hal_ring_hdl,
  1674. ring_desc, rx_desc);
  1675. /* ignore duplicate RX desc and continue to process */
  1676. /* Pop out the descriptor */
  1677. hal_srng_dst_get_next(hal_soc, hal_ring_hdl);
  1678. continue;
  1679. }
  1680. if (qdf_unlikely(!dp_rx_desc_check_magic(rx_desc))) {
  1681. dp_err("Invalid rx_desc cookie=%d", rx_buf_cookie);
  1682. DP_STATS_INC(soc, rx.err.rx_desc_invalid_magic, 1);
  1683. dp_rx_dump_info_and_assert(soc, hal_ring_hdl,
  1684. ring_desc, rx_desc);
  1685. }
  1686. dp_rx_desc_nbuf_sanity_check(ring_desc, rx_desc);
  1687. /* TODO */
  1688. /*
  1689. * Need a separate API for unmapping based on
  1690. * phyiscal address
  1691. */
  1692. qdf_nbuf_unmap_single(soc->osdev, rx_desc->nbuf,
  1693. QDF_DMA_FROM_DEVICE);
  1694. rx_desc->unmapped = 1;
  1695. core_id = smp_processor_id();
  1696. DP_STATS_INC(soc, rx.ring_packets[core_id][ring_id], 1);
  1697. /* Get MPDU DESC info */
  1698. hal_rx_mpdu_desc_info_get(ring_desc, &mpdu_desc_info);
  1699. /* Get MSDU DESC info */
  1700. hal_rx_msdu_desc_info_get(ring_desc, &msdu_desc_info);
  1701. if (mpdu_desc_info.mpdu_flags & HAL_MPDU_F_RETRY_BIT)
  1702. qdf_nbuf_set_rx_retry_flag(rx_desc->nbuf, 1);
  1703. if (qdf_unlikely(msdu_desc_info.msdu_flags &
  1704. HAL_MSDU_F_MSDU_CONTINUATION)) {
  1705. /* previous msdu has end bit set, so current one is
  1706. * the new MPDU
  1707. */
  1708. if (is_prev_msdu_last) {
  1709. /* Get number of entries available in HW ring */
  1710. num_entries_avail =
  1711. hal_srng_dst_num_valid(hal_soc,
  1712. hal_ring_hdl, 1);
  1713. /* For new MPDU check if we can read complete
  1714. * MPDU by comparing the number of buffers
  1715. * available and number of buffers needed to
  1716. * reap this MPDU
  1717. */
  1718. if (((msdu_desc_info.msdu_len /
  1719. (RX_DATA_BUFFER_SIZE - RX_PKT_TLVS_LEN) +
  1720. 1)) > num_entries_avail) {
  1721. DP_STATS_INC(
  1722. soc,
  1723. rx.msdu_scatter_wait_break,
  1724. 1);
  1725. break;
  1726. }
  1727. is_prev_msdu_last = false;
  1728. }
  1729. }
  1730. if (qdf_unlikely(mpdu_desc_info.mpdu_flags &
  1731. HAL_MPDU_F_RAW_AMPDU))
  1732. qdf_nbuf_set_raw_frame(rx_desc->nbuf, 1);
  1733. if (!is_prev_msdu_last &&
  1734. msdu_desc_info.msdu_flags & HAL_MSDU_F_LAST_MSDU_IN_MPDU)
  1735. is_prev_msdu_last = true;
  1736. /* Pop out the descriptor*/
  1737. hal_srng_dst_get_next(hal_soc, hal_ring_hdl);
  1738. rx_bufs_reaped[rx_desc->pool_id]++;
  1739. peer_mdata = mpdu_desc_info.peer_meta_data;
  1740. QDF_NBUF_CB_RX_PEER_ID(rx_desc->nbuf) =
  1741. DP_PEER_METADATA_PEER_ID_GET(peer_mdata);
  1742. QDF_NBUF_CB_RX_VDEV_ID(rx_desc->nbuf) =
  1743. DP_PEER_METADATA_VDEV_ID_GET(peer_mdata);
  1744. /*
  1745. * save msdu flags first, last and continuation msdu in
  1746. * nbuf->cb, also save mcbc, is_da_valid, is_sa_valid and
  1747. * length to nbuf->cb. This ensures the info required for
  1748. * per pkt processing is always in the same cache line.
  1749. * This helps in improving throughput for smaller pkt
  1750. * sizes.
  1751. */
  1752. if (msdu_desc_info.msdu_flags & HAL_MSDU_F_FIRST_MSDU_IN_MPDU)
  1753. qdf_nbuf_set_rx_chfrag_start(rx_desc->nbuf, 1);
  1754. if (msdu_desc_info.msdu_flags & HAL_MSDU_F_MSDU_CONTINUATION)
  1755. qdf_nbuf_set_rx_chfrag_cont(rx_desc->nbuf, 1);
  1756. if (msdu_desc_info.msdu_flags & HAL_MSDU_F_LAST_MSDU_IN_MPDU)
  1757. qdf_nbuf_set_rx_chfrag_end(rx_desc->nbuf, 1);
  1758. if (msdu_desc_info.msdu_flags & HAL_MSDU_F_DA_IS_MCBC)
  1759. qdf_nbuf_set_da_mcbc(rx_desc->nbuf, 1);
  1760. if (msdu_desc_info.msdu_flags & HAL_MSDU_F_DA_IS_VALID)
  1761. qdf_nbuf_set_da_valid(rx_desc->nbuf, 1);
  1762. if (msdu_desc_info.msdu_flags & HAL_MSDU_F_SA_IS_VALID)
  1763. qdf_nbuf_set_sa_valid(rx_desc->nbuf, 1);
  1764. qdf_nbuf_set_tid_val(rx_desc->nbuf,
  1765. HAL_RX_REO_QUEUE_NUMBER_GET(ring_desc));
  1766. QDF_NBUF_CB_RX_PKT_LEN(rx_desc->nbuf) = msdu_desc_info.msdu_len;
  1767. QDF_NBUF_CB_RX_CTX_ID(rx_desc->nbuf) = reo_ring_num;
  1768. DP_RX_LIST_APPEND(nbuf_head, nbuf_tail, rx_desc->nbuf);
  1769. /*
  1770. * if continuation bit is set then we have MSDU spread
  1771. * across multiple buffers, let us not decrement quota
  1772. * till we reap all buffers of that MSDU.
  1773. */
  1774. if (qdf_likely(!qdf_nbuf_is_rx_chfrag_cont(rx_desc->nbuf)))
  1775. quota -= 1;
  1776. dp_rx_add_to_free_desc_list(&head[rx_desc->pool_id],
  1777. &tail[rx_desc->pool_id],
  1778. rx_desc);
  1779. num_rx_bufs_reaped++;
  1780. if (dp_rx_reap_loop_pkt_limit_hit(soc, num_rx_bufs_reaped))
  1781. break;
  1782. }
  1783. done:
  1784. dp_srng_access_end(int_ctx, soc, hal_ring_hdl);
  1785. for (mac_id = 0; mac_id < MAX_PDEV_CNT; mac_id++) {
  1786. /*
  1787. * continue with next mac_id if no pkts were reaped
  1788. * from that pool
  1789. */
  1790. if (!rx_bufs_reaped[mac_id])
  1791. continue;
  1792. dp_rxdma_srng = &soc->rx_refill_buf_ring[mac_id];
  1793. rx_desc_pool = &soc->rx_desc_buf[mac_id];
  1794. dp_rx_buffers_replenish(soc, mac_id, dp_rxdma_srng,
  1795. rx_desc_pool, rx_bufs_reaped[mac_id],
  1796. &head[mac_id], &tail[mac_id]);
  1797. }
  1798. dp_verbose_debug("replenished %u\n", rx_bufs_reaped[0]);
  1799. /* Peer can be NULL is case of LFR */
  1800. if (qdf_likely(peer))
  1801. vdev = NULL;
  1802. /*
  1803. * BIG loop where each nbuf is dequeued from global queue,
  1804. * processed and queued back on a per vdev basis. These nbufs
  1805. * are sent to stack as and when we run out of nbufs
  1806. * or a new nbuf dequeued from global queue has a different
  1807. * vdev when compared to previous nbuf.
  1808. */
  1809. nbuf = nbuf_head;
  1810. while (nbuf) {
  1811. next = nbuf->next;
  1812. rx_tlv_hdr = qdf_nbuf_data(nbuf);
  1813. vdev_id = QDF_NBUF_CB_RX_VDEV_ID(nbuf);
  1814. if (deliver_list_head && vdev && (vdev->vdev_id != vdev_id)) {
  1815. dp_rx_deliver_to_stack(soc, vdev, peer,
  1816. deliver_list_head,
  1817. deliver_list_tail);
  1818. deliver_list_head = NULL;
  1819. deliver_list_tail = NULL;
  1820. }
  1821. /* Get TID from struct cb->tid_val, save to tid */
  1822. if (qdf_nbuf_is_rx_chfrag_start(nbuf))
  1823. tid = qdf_nbuf_get_tid_val(nbuf);
  1824. peer_id = QDF_NBUF_CB_RX_PEER_ID(nbuf);
  1825. peer = dp_peer_find_by_id(soc, peer_id);
  1826. if (peer) {
  1827. QDF_NBUF_CB_DP_TRACE_PRINT(nbuf) = false;
  1828. qdf_dp_trace_set_track(nbuf, QDF_RX);
  1829. QDF_NBUF_CB_RX_DP_TRACE(nbuf) = 1;
  1830. QDF_NBUF_CB_RX_PACKET_TRACK(nbuf) =
  1831. QDF_NBUF_RX_PKT_DATA_TRACK;
  1832. }
  1833. rx_bufs_used++;
  1834. if (qdf_likely(peer)) {
  1835. vdev = peer->vdev;
  1836. } else {
  1837. nbuf->next = NULL;
  1838. dp_rx_deliver_to_stack_no_peer(soc, nbuf);
  1839. nbuf = next;
  1840. continue;
  1841. }
  1842. if (qdf_unlikely(!vdev)) {
  1843. qdf_nbuf_free(nbuf);
  1844. nbuf = next;
  1845. DP_STATS_INC(soc, rx.err.invalid_vdev, 1);
  1846. dp_peer_unref_del_find_by_id(peer);
  1847. continue;
  1848. }
  1849. rx_pdev = vdev->pdev;
  1850. DP_RX_TID_SAVE(nbuf, tid);
  1851. if (qdf_unlikely(rx_pdev->delay_stats_flag))
  1852. qdf_nbuf_set_timestamp(nbuf);
  1853. ring_id = QDF_NBUF_CB_RX_CTX_ID(nbuf);
  1854. tid_stats =
  1855. &rx_pdev->stats.tid_stats.tid_rx_stats[ring_id][tid];
  1856. /*
  1857. * Check if DMA completed -- msdu_done is the last bit
  1858. * to be written
  1859. */
  1860. if (qdf_unlikely(!qdf_nbuf_is_rx_chfrag_cont(nbuf) &&
  1861. !hal_rx_attn_msdu_done_get(rx_tlv_hdr))) {
  1862. dp_err("MSDU DONE failure");
  1863. DP_STATS_INC(soc, rx.err.msdu_done_fail, 1);
  1864. hal_rx_dump_pkt_tlvs(hal_soc, rx_tlv_hdr,
  1865. QDF_TRACE_LEVEL_INFO);
  1866. tid_stats->fail_cnt[MSDU_DONE_FAILURE]++;
  1867. qdf_nbuf_free(nbuf);
  1868. qdf_assert(0);
  1869. nbuf = next;
  1870. continue;
  1871. }
  1872. DP_HIST_PACKET_COUNT_INC(vdev->pdev->pdev_id);
  1873. /*
  1874. * First IF condition:
  1875. * 802.11 Fragmented pkts are reinjected to REO
  1876. * HW block as SG pkts and for these pkts we only
  1877. * need to pull the RX TLVS header length.
  1878. * Second IF condition:
  1879. * The below condition happens when an MSDU is spread
  1880. * across multiple buffers. This can happen in two cases
  1881. * 1. The nbuf size is smaller then the received msdu.
  1882. * ex: we have set the nbuf size to 2048 during
  1883. * nbuf_alloc. but we received an msdu which is
  1884. * 2304 bytes in size then this msdu is spread
  1885. * across 2 nbufs.
  1886. *
  1887. * 2. AMSDUs when RAW mode is enabled.
  1888. * ex: 1st MSDU is in 1st nbuf and 2nd MSDU is spread
  1889. * across 1st nbuf and 2nd nbuf and last MSDU is
  1890. * spread across 2nd nbuf and 3rd nbuf.
  1891. *
  1892. * for these scenarios let us create a skb frag_list and
  1893. * append these buffers till the last MSDU of the AMSDU
  1894. * Third condition:
  1895. * This is the most likely case, we receive 802.3 pkts
  1896. * decapsulated by HW, here we need to set the pkt length.
  1897. */
  1898. hal_rx_msdu_metadata_get(hal_soc, rx_tlv_hdr, &msdu_metadata);
  1899. if (qdf_unlikely(qdf_nbuf_is_frag(nbuf))) {
  1900. bool is_mcbc, is_sa_vld, is_da_vld;
  1901. is_mcbc = hal_rx_msdu_end_da_is_mcbc_get(soc->hal_soc,
  1902. rx_tlv_hdr);
  1903. is_sa_vld =
  1904. hal_rx_msdu_end_sa_is_valid_get(soc->hal_soc,
  1905. rx_tlv_hdr);
  1906. is_da_vld =
  1907. hal_rx_msdu_end_da_is_valid_get(soc->hal_soc,
  1908. rx_tlv_hdr);
  1909. qdf_nbuf_set_da_mcbc(nbuf, is_mcbc);
  1910. qdf_nbuf_set_da_valid(nbuf, is_da_vld);
  1911. qdf_nbuf_set_sa_valid(nbuf, is_sa_vld);
  1912. qdf_nbuf_pull_head(nbuf, RX_PKT_TLVS_LEN);
  1913. } else if (qdf_nbuf_is_rx_chfrag_cont(nbuf)) {
  1914. msdu_len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
  1915. nbuf = dp_rx_sg_create(nbuf);
  1916. next = nbuf->next;
  1917. if (qdf_nbuf_is_raw_frame(nbuf)) {
  1918. DP_STATS_INC(vdev->pdev, rx_raw_pkts, 1);
  1919. DP_STATS_INC_PKT(peer, rx.raw, 1, msdu_len);
  1920. } else {
  1921. qdf_nbuf_free(nbuf);
  1922. DP_STATS_INC(soc, rx.err.scatter_msdu, 1);
  1923. dp_info_rl("scatter msdu len %d, dropped",
  1924. msdu_len);
  1925. nbuf = next;
  1926. dp_peer_unref_del_find_by_id(peer);
  1927. continue;
  1928. }
  1929. } else {
  1930. msdu_len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
  1931. pkt_len = msdu_len +
  1932. msdu_metadata.l3_hdr_pad +
  1933. RX_PKT_TLVS_LEN;
  1934. qdf_nbuf_set_pktlen(nbuf, pkt_len);
  1935. dp_rx_skip_tlvs(vdev, nbuf, RX_PKT_TLVS_LEN +
  1936. msdu_metadata.l3_hdr_pad);
  1937. }
  1938. /*
  1939. * process frame for mulitpass phrase processing
  1940. */
  1941. if (qdf_unlikely(vdev->multipass_en)) {
  1942. if (dp_rx_multipass_process(peer, nbuf, tid) == false) {
  1943. DP_STATS_INC(peer, rx.multipass_rx_pkt_drop, 1);
  1944. qdf_nbuf_free(nbuf);
  1945. nbuf = next;
  1946. dp_peer_unref_del_find_by_id(peer);
  1947. continue;
  1948. }
  1949. }
  1950. if (!dp_wds_rx_policy_check(rx_tlv_hdr, vdev, peer)) {
  1951. QDF_TRACE(QDF_MODULE_ID_DP,
  1952. QDF_TRACE_LEVEL_ERROR,
  1953. FL("Policy Check Drop pkt"));
  1954. tid_stats->fail_cnt[POLICY_CHECK_DROP]++;
  1955. /* Drop & free packet */
  1956. qdf_nbuf_free(nbuf);
  1957. /* Statistics */
  1958. nbuf = next;
  1959. dp_peer_unref_del_find_by_id(peer);
  1960. continue;
  1961. }
  1962. if (qdf_unlikely(peer && (peer->nawds_enabled) &&
  1963. (qdf_nbuf_is_da_mcbc(nbuf)) &&
  1964. (hal_rx_get_mpdu_mac_ad4_valid(soc->hal_soc,
  1965. rx_tlv_hdr) ==
  1966. false))) {
  1967. tid_stats->fail_cnt[NAWDS_MCAST_DROP]++;
  1968. DP_STATS_INC(peer, rx.nawds_mcast_drop, 1);
  1969. qdf_nbuf_free(nbuf);
  1970. nbuf = next;
  1971. dp_peer_unref_del_find_by_id(peer);
  1972. continue;
  1973. }
  1974. if (soc->process_rx_status)
  1975. dp_rx_cksum_offload(vdev->pdev, nbuf, rx_tlv_hdr);
  1976. /* Update the protocol tag in SKB based on CCE metadata */
  1977. dp_rx_update_protocol_tag(soc, vdev, nbuf, rx_tlv_hdr,
  1978. reo_ring_num, false, true);
  1979. /* Update the flow tag in SKB based on FSE metadata */
  1980. dp_rx_update_flow_tag(soc, vdev, nbuf, rx_tlv_hdr, true);
  1981. dp_rx_msdu_stats_update(soc, nbuf, rx_tlv_hdr, peer,
  1982. ring_id, tid_stats);
  1983. if (qdf_unlikely(vdev->mesh_vdev)) {
  1984. if (dp_rx_filter_mesh_packets(vdev, nbuf, rx_tlv_hdr)
  1985. == QDF_STATUS_SUCCESS) {
  1986. QDF_TRACE(QDF_MODULE_ID_DP,
  1987. QDF_TRACE_LEVEL_INFO_MED,
  1988. FL("mesh pkt filtered"));
  1989. tid_stats->fail_cnt[MESH_FILTER_DROP]++;
  1990. DP_STATS_INC(vdev->pdev, dropped.mesh_filter,
  1991. 1);
  1992. qdf_nbuf_free(nbuf);
  1993. nbuf = next;
  1994. dp_peer_unref_del_find_by_id(peer);
  1995. continue;
  1996. }
  1997. dp_rx_fill_mesh_stats(vdev, nbuf, rx_tlv_hdr, peer);
  1998. }
  1999. if (qdf_likely(vdev->rx_decap_type ==
  2000. htt_cmn_pkt_type_ethernet) &&
  2001. qdf_likely(!vdev->mesh_vdev)) {
  2002. /* WDS Destination Address Learning */
  2003. dp_rx_da_learn(soc, rx_tlv_hdr, peer, nbuf);
  2004. /* Due to HW issue, sometimes we see that the sa_idx
  2005. * and da_idx are invalid with sa_valid and da_valid
  2006. * bits set
  2007. *
  2008. * in this case we also see that value of
  2009. * sa_sw_peer_id is set as 0
  2010. *
  2011. * Drop the packet if sa_idx and da_idx OOB or
  2012. * sa_sw_peerid is 0
  2013. */
  2014. if (!is_sa_da_idx_valid(soc, rx_tlv_hdr, nbuf,
  2015. msdu_metadata)) {
  2016. qdf_nbuf_free(nbuf);
  2017. nbuf = next;
  2018. DP_STATS_INC(soc, rx.err.invalid_sa_da_idx, 1);
  2019. dp_peer_unref_del_find_by_id(peer);
  2020. continue;
  2021. }
  2022. /* WDS Source Port Learning */
  2023. if (qdf_likely(vdev->wds_enabled))
  2024. dp_rx_wds_srcport_learn(soc,
  2025. rx_tlv_hdr,
  2026. peer,
  2027. nbuf,
  2028. msdu_metadata);
  2029. /* Intrabss-fwd */
  2030. if (dp_rx_check_ap_bridge(vdev))
  2031. if (dp_rx_intrabss_fwd(soc,
  2032. peer,
  2033. rx_tlv_hdr,
  2034. nbuf,
  2035. msdu_metadata)) {
  2036. nbuf = next;
  2037. dp_peer_unref_del_find_by_id(peer);
  2038. tid_stats->intrabss_cnt++;
  2039. continue; /* Get next desc */
  2040. }
  2041. }
  2042. dp_rx_fill_gro_info(soc, rx_tlv_hdr, nbuf, &rx_ol_pkt_cnt);
  2043. DP_RX_LIST_APPEND(deliver_list_head,
  2044. deliver_list_tail,
  2045. nbuf);
  2046. DP_STATS_INC_PKT(peer, rx.to_stack, 1,
  2047. QDF_NBUF_CB_RX_PKT_LEN(nbuf));
  2048. tid_stats->delivered_to_stack++;
  2049. nbuf = next;
  2050. dp_peer_unref_del_find_by_id(peer);
  2051. }
  2052. if (qdf_likely(deliver_list_head)) {
  2053. if (qdf_likely(peer))
  2054. dp_rx_deliver_to_stack(soc, vdev, peer,
  2055. deliver_list_head,
  2056. deliver_list_tail);
  2057. else {
  2058. nbuf = deliver_list_head;
  2059. while (nbuf) {
  2060. next = nbuf->next;
  2061. nbuf->next = NULL;
  2062. dp_rx_deliver_to_stack_no_peer(soc, nbuf);
  2063. nbuf = next;
  2064. }
  2065. }
  2066. }
  2067. if (dp_rx_enable_eol_data_check(soc) && rx_bufs_used) {
  2068. if (quota) {
  2069. num_pending =
  2070. dp_rx_srng_get_num_pending(hal_soc,
  2071. hal_ring_hdl,
  2072. num_entries,
  2073. &near_full);
  2074. if (num_pending) {
  2075. DP_STATS_INC(soc, rx.hp_oos2, 1);
  2076. if (!hif_exec_should_yield(scn, intr_id))
  2077. goto more_data;
  2078. if (qdf_unlikely(near_full)) {
  2079. DP_STATS_INC(soc, rx.near_full, 1);
  2080. goto more_data;
  2081. }
  2082. }
  2083. }
  2084. if (vdev->osif_fisa_flush)
  2085. vdev->osif_fisa_flush(soc, reo_ring_num);
  2086. if (vdev && vdev->osif_gro_flush && rx_ol_pkt_cnt) {
  2087. vdev->osif_gro_flush(vdev->osif_vdev,
  2088. reo_ring_num);
  2089. }
  2090. }
  2091. /* Update histogram statistics by looping through pdev's */
  2092. DP_RX_HIST_STATS_PER_PDEV();
  2093. return rx_bufs_used; /* Assume no scale factor for now */
  2094. }
  2095. QDF_STATUS dp_rx_vdev_detach(struct dp_vdev *vdev)
  2096. {
  2097. QDF_STATUS ret;
  2098. if (vdev->osif_rx_flush) {
  2099. ret = vdev->osif_rx_flush(vdev->osif_vdev, vdev->vdev_id);
  2100. if (!ret) {
  2101. dp_err("Failed to flush rx pkts for vdev %d\n",
  2102. vdev->vdev_id);
  2103. return ret;
  2104. }
  2105. }
  2106. return QDF_STATUS_SUCCESS;
  2107. }
  2108. /**
  2109. * dp_rx_pdev_detach() - detach dp rx
  2110. * @pdev: core txrx pdev context
  2111. *
  2112. * This function will detach DP RX into main device context
  2113. * will free DP Rx resources.
  2114. *
  2115. * Return: void
  2116. */
  2117. void
  2118. dp_rx_pdev_detach(struct dp_pdev *pdev)
  2119. {
  2120. uint8_t mac_for_pdev = pdev->lmac_id;
  2121. struct dp_soc *soc = pdev->soc;
  2122. struct rx_desc_pool *rx_desc_pool;
  2123. rx_desc_pool = &soc->rx_desc_buf[mac_for_pdev];
  2124. if (rx_desc_pool->pool_size != 0) {
  2125. if (!dp_is_soc_reinit(soc))
  2126. dp_rx_desc_nbuf_and_pool_free(soc, mac_for_pdev,
  2127. rx_desc_pool);
  2128. else
  2129. dp_rx_desc_nbuf_free(soc, rx_desc_pool);
  2130. }
  2131. return;
  2132. }
  2133. static QDF_STATUS
  2134. dp_pdev_nbuf_alloc_and_map(struct dp_soc *dp_soc, qdf_nbuf_t *nbuf,
  2135. struct dp_pdev *dp_pdev,
  2136. struct rx_desc_pool *rx_desc_pool)
  2137. {
  2138. qdf_dma_addr_t paddr;
  2139. QDF_STATUS ret = QDF_STATUS_E_FAILURE;
  2140. *nbuf = qdf_nbuf_alloc(dp_soc->osdev, rx_desc_pool->buf_size,
  2141. RX_BUFFER_RESERVATION,
  2142. rx_desc_pool->buf_alignment, FALSE);
  2143. if (!(*nbuf)) {
  2144. dp_err("nbuf alloc failed");
  2145. DP_STATS_INC(dp_pdev, replenish.nbuf_alloc_fail, 1);
  2146. return ret;
  2147. }
  2148. ret = qdf_nbuf_map_single(dp_soc->osdev, *nbuf,
  2149. QDF_DMA_FROM_DEVICE);
  2150. if (qdf_unlikely(QDF_IS_STATUS_ERROR(ret))) {
  2151. qdf_nbuf_free(*nbuf);
  2152. dp_err("nbuf map failed");
  2153. DP_STATS_INC(dp_pdev, replenish.map_err, 1);
  2154. return ret;
  2155. }
  2156. paddr = qdf_nbuf_get_frag_paddr(*nbuf, 0);
  2157. ret = check_x86_paddr(dp_soc, nbuf, &paddr, rx_desc_pool);
  2158. if (ret == QDF_STATUS_E_FAILURE) {
  2159. qdf_nbuf_unmap_single(dp_soc->osdev, *nbuf,
  2160. QDF_DMA_FROM_DEVICE);
  2161. qdf_nbuf_free(*nbuf);
  2162. dp_err("nbuf check x86 failed");
  2163. DP_STATS_INC(dp_pdev, replenish.x86_fail, 1);
  2164. return ret;
  2165. }
  2166. return QDF_STATUS_SUCCESS;
  2167. }
  2168. QDF_STATUS
  2169. dp_pdev_rx_buffers_attach(struct dp_soc *dp_soc, uint32_t mac_id,
  2170. struct dp_srng *dp_rxdma_srng,
  2171. struct rx_desc_pool *rx_desc_pool,
  2172. uint32_t num_req_buffers)
  2173. {
  2174. struct dp_pdev *dp_pdev = dp_get_pdev_for_lmac_id(dp_soc, mac_id);
  2175. hal_ring_handle_t rxdma_srng = dp_rxdma_srng->hal_srng;
  2176. union dp_rx_desc_list_elem_t *next;
  2177. void *rxdma_ring_entry;
  2178. qdf_dma_addr_t paddr;
  2179. qdf_nbuf_t *rx_nbuf_arr;
  2180. uint32_t nr_descs, nr_nbuf = 0, nr_nbuf_total = 0;
  2181. uint32_t buffer_index, nbuf_ptrs_per_page;
  2182. qdf_nbuf_t nbuf;
  2183. QDF_STATUS ret;
  2184. int page_idx, total_pages;
  2185. union dp_rx_desc_list_elem_t *desc_list = NULL;
  2186. union dp_rx_desc_list_elem_t *tail = NULL;
  2187. if (qdf_unlikely(!rxdma_srng)) {
  2188. DP_STATS_INC(dp_pdev, replenish.rxdma_err, num_req_buffers);
  2189. return QDF_STATUS_E_FAILURE;
  2190. }
  2191. dp_debug("requested %u RX buffers for driver attach", num_req_buffers);
  2192. nr_descs = dp_rx_get_free_desc_list(dp_soc, mac_id, rx_desc_pool,
  2193. num_req_buffers, &desc_list, &tail);
  2194. if (!nr_descs) {
  2195. dp_err("no free rx_descs in freelist");
  2196. DP_STATS_INC(dp_pdev, err.desc_alloc_fail, num_req_buffers);
  2197. return QDF_STATUS_E_NOMEM;
  2198. }
  2199. dp_debug("got %u RX descs for driver attach", nr_descs);
  2200. /*
  2201. * Try to allocate pointers to the nbuf one page at a time.
  2202. * Take pointers that can fit in one page of memory and
  2203. * iterate through the total descriptors that need to be
  2204. * allocated in order of pages. Reuse the pointers that
  2205. * have been allocated to fit in one page across each
  2206. * iteration to index into the nbuf.
  2207. */
  2208. total_pages = (nr_descs * sizeof(*rx_nbuf_arr)) / PAGE_SIZE;
  2209. /*
  2210. * Add an extra page to store the remainder if any
  2211. */
  2212. if ((nr_descs * sizeof(*rx_nbuf_arr)) % PAGE_SIZE)
  2213. total_pages++;
  2214. rx_nbuf_arr = qdf_mem_malloc(PAGE_SIZE);
  2215. if (!rx_nbuf_arr) {
  2216. dp_err("failed to allocate nbuf array");
  2217. DP_STATS_INC(dp_pdev, replenish.rxdma_err, num_req_buffers);
  2218. QDF_BUG(0);
  2219. return QDF_STATUS_E_NOMEM;
  2220. }
  2221. nbuf_ptrs_per_page = PAGE_SIZE / sizeof(*rx_nbuf_arr);
  2222. for (page_idx = 0; page_idx < total_pages; page_idx++) {
  2223. qdf_mem_zero(rx_nbuf_arr, PAGE_SIZE);
  2224. for (nr_nbuf = 0; nr_nbuf < nbuf_ptrs_per_page; nr_nbuf++) {
  2225. /*
  2226. * The last page of buffer pointers may not be required
  2227. * completely based on the number of descriptors. Below
  2228. * check will ensure we are allocating only the
  2229. * required number of descriptors.
  2230. */
  2231. if (nr_nbuf_total >= nr_descs)
  2232. break;
  2233. ret = dp_pdev_nbuf_alloc_and_map(dp_soc,
  2234. &rx_nbuf_arr[nr_nbuf],
  2235. dp_pdev, rx_desc_pool);
  2236. if (QDF_IS_STATUS_ERROR(ret))
  2237. break;
  2238. nr_nbuf_total++;
  2239. }
  2240. hal_srng_access_start(dp_soc->hal_soc, rxdma_srng);
  2241. for (buffer_index = 0; buffer_index < nr_nbuf; buffer_index++) {
  2242. rxdma_ring_entry =
  2243. hal_srng_src_get_next(dp_soc->hal_soc,
  2244. rxdma_srng);
  2245. qdf_assert_always(rxdma_ring_entry);
  2246. next = desc_list->next;
  2247. nbuf = rx_nbuf_arr[buffer_index];
  2248. paddr = qdf_nbuf_get_frag_paddr(nbuf, 0);
  2249. dp_rx_desc_prep(&desc_list->rx_desc, nbuf);
  2250. desc_list->rx_desc.in_use = 1;
  2251. hal_rxdma_buff_addr_info_set(rxdma_ring_entry, paddr,
  2252. desc_list->rx_desc.cookie,
  2253. rx_desc_pool->owner);
  2254. dp_ipa_handle_rx_buf_smmu_mapping(dp_soc, nbuf, true);
  2255. desc_list = next;
  2256. }
  2257. hal_srng_access_end(dp_soc->hal_soc, rxdma_srng);
  2258. }
  2259. dp_info("filled %u RX buffers for driver attach", nr_nbuf_total);
  2260. qdf_mem_free(rx_nbuf_arr);
  2261. if (!nr_nbuf_total) {
  2262. dp_err("No nbuf's allocated");
  2263. QDF_BUG(0);
  2264. return QDF_STATUS_E_RESOURCES;
  2265. }
  2266. /* No need to count the number of bytes received during replenish.
  2267. * Therefore set replenish.pkts.bytes as 0.
  2268. */
  2269. DP_STATS_INC_PKT(dp_pdev, replenish.pkts, nr_nbuf, 0);
  2270. return QDF_STATUS_SUCCESS;
  2271. }
  2272. /**
  2273. * dp_rx_attach() - attach DP RX
  2274. * @pdev: core txrx pdev context
  2275. *
  2276. * This function will attach a DP RX instance into the main
  2277. * device (SOC) context. Will allocate dp rx resource and
  2278. * initialize resources.
  2279. *
  2280. * Return: QDF_STATUS_SUCCESS: success
  2281. * QDF_STATUS_E_RESOURCES: Error return
  2282. */
  2283. QDF_STATUS
  2284. dp_rx_pdev_attach(struct dp_pdev *pdev)
  2285. {
  2286. uint8_t pdev_id = pdev->pdev_id;
  2287. struct dp_soc *soc = pdev->soc;
  2288. uint32_t rxdma_entries;
  2289. uint32_t rx_sw_desc_weight;
  2290. struct dp_srng *dp_rxdma_srng;
  2291. struct rx_desc_pool *rx_desc_pool;
  2292. QDF_STATUS ret_val;
  2293. int mac_for_pdev;
  2294. if (wlan_cfg_get_dp_pdev_nss_enabled(pdev->wlan_cfg_ctx)) {
  2295. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
  2296. "nss-wifi<4> skip Rx refil %d", pdev_id);
  2297. return QDF_STATUS_SUCCESS;
  2298. }
  2299. pdev = soc->pdev_list[pdev_id];
  2300. mac_for_pdev = pdev->lmac_id;
  2301. dp_rxdma_srng = &soc->rx_refill_buf_ring[mac_for_pdev];
  2302. rxdma_entries = dp_rxdma_srng->num_entries;
  2303. soc->process_rx_status = CONFIG_PROCESS_RX_STATUS;
  2304. rx_desc_pool = &soc->rx_desc_buf[mac_for_pdev];
  2305. rx_sw_desc_weight = wlan_cfg_get_dp_soc_rx_sw_desc_weight(soc->wlan_cfg_ctx);
  2306. dp_rx_desc_pool_alloc(soc, mac_for_pdev,
  2307. rx_sw_desc_weight * rxdma_entries,
  2308. rx_desc_pool);
  2309. rx_desc_pool->owner = DP_WBM2SW_RBM;
  2310. rx_desc_pool->buf_size = RX_DATA_BUFFER_SIZE;
  2311. rx_desc_pool->buf_alignment = RX_DATA_BUFFER_ALIGNMENT;
  2312. /* For Rx buffers, WBM release ring is SW RING 3,for all pdev's */
  2313. ret_val = dp_rx_fst_attach(soc, pdev);
  2314. if ((ret_val != QDF_STATUS_SUCCESS) &&
  2315. (ret_val != QDF_STATUS_E_NOSUPPORT)) {
  2316. QDF_TRACE(QDF_MODULE_ID_ANY, QDF_TRACE_LEVEL_ERROR,
  2317. "RX Flow Search Table attach failed: pdev %d err %d",
  2318. pdev_id, ret_val);
  2319. return ret_val;
  2320. }
  2321. return dp_pdev_rx_buffers_attach(soc, mac_for_pdev, dp_rxdma_srng,
  2322. rx_desc_pool, rxdma_entries - 1);
  2323. }
  2324. /*
  2325. * dp_rx_nbuf_prepare() - prepare RX nbuf
  2326. * @soc: core txrx main context
  2327. * @pdev: core txrx pdev context
  2328. *
  2329. * This function alloc & map nbuf for RX dma usage, retry it if failed
  2330. * until retry times reaches max threshold or succeeded.
  2331. *
  2332. * Return: qdf_nbuf_t pointer if succeeded, NULL if failed.
  2333. */
  2334. qdf_nbuf_t
  2335. dp_rx_nbuf_prepare(struct dp_soc *soc, struct dp_pdev *pdev)
  2336. {
  2337. uint8_t *buf;
  2338. int32_t nbuf_retry_count;
  2339. QDF_STATUS ret;
  2340. qdf_nbuf_t nbuf = NULL;
  2341. for (nbuf_retry_count = 0; nbuf_retry_count <
  2342. QDF_NBUF_ALLOC_MAP_RETRY_THRESHOLD;
  2343. nbuf_retry_count++) {
  2344. /* Allocate a new skb */
  2345. nbuf = qdf_nbuf_alloc(soc->osdev,
  2346. RX_DATA_BUFFER_SIZE,
  2347. RX_BUFFER_RESERVATION,
  2348. RX_DATA_BUFFER_ALIGNMENT,
  2349. FALSE);
  2350. if (!nbuf) {
  2351. DP_STATS_INC(pdev,
  2352. replenish.nbuf_alloc_fail, 1);
  2353. continue;
  2354. }
  2355. buf = qdf_nbuf_data(nbuf);
  2356. memset(buf, 0, RX_DATA_BUFFER_SIZE);
  2357. ret = qdf_nbuf_map_single(soc->osdev, nbuf,
  2358. QDF_DMA_FROM_DEVICE);
  2359. /* nbuf map failed */
  2360. if (qdf_unlikely(QDF_IS_STATUS_ERROR(ret))) {
  2361. qdf_nbuf_free(nbuf);
  2362. DP_STATS_INC(pdev, replenish.map_err, 1);
  2363. continue;
  2364. }
  2365. /* qdf_nbuf alloc and map succeeded */
  2366. break;
  2367. }
  2368. /* qdf_nbuf still alloc or map failed */
  2369. if (qdf_unlikely(nbuf_retry_count >=
  2370. QDF_NBUF_ALLOC_MAP_RETRY_THRESHOLD))
  2371. return NULL;
  2372. return nbuf;
  2373. }