wcd-spi.c 39 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572
  1. // SPDX-License-Identifier: GPL-2.0-only
  2. /*
  3. * Copyright (c) 2016-2019, The Linux Foundation. All rights reserved.
  4. */
  5. #include <linux/init.h>
  6. #include <linux/module.h>
  7. #include <linux/of.h>
  8. #include <linux/debugfs.h>
  9. #include <linux/delay.h>
  10. #include <linux/dma-mapping.h>
  11. #include <linux/bitops.h>
  12. #include <linux/spi/spi.h>
  13. #include <linux/regmap.h>
  14. #include <linux/component.h>
  15. #include <linux/ratelimit.h>
  16. #include <sound/wcd-dsp-mgr.h>
  17. #include <sound/wcd-spi.h>
  18. #include "wcd-spi-registers.h"
  19. /* Byte manipulations */
  20. #define SHIFT_1_BYTES (8)
  21. #define SHIFT_2_BYTES (16)
  22. #define SHIFT_3_BYTES (24)
  23. /* Command opcodes */
  24. #define WCD_SPI_CMD_NOP (0x00)
  25. #define WCD_SPI_CMD_WREN (0x06)
  26. #define WCD_SPI_CMD_CLKREQ (0xDA)
  27. #define WCD_SPI_CMD_RDSR (0x05)
  28. #define WCD_SPI_CMD_IRR (0x81)
  29. #define WCD_SPI_CMD_IRW (0x82)
  30. #define WCD_SPI_CMD_MIOR (0x83)
  31. #define WCD_SPI_CMD_FREAD (0x0B)
  32. #define WCD_SPI_CMD_MIOW (0x02)
  33. #define WCD_SPI_WRITE_FRAME_OPCODE \
  34. (WCD_SPI_CMD_MIOW << SHIFT_3_BYTES)
  35. #define WCD_SPI_READ_FRAME_OPCODE \
  36. (WCD_SPI_CMD_MIOR << SHIFT_3_BYTES)
  37. #define WCD_SPI_FREAD_FRAME_OPCODE \
  38. (WCD_SPI_CMD_FREAD << SHIFT_3_BYTES)
  39. /* Command lengths */
  40. #define WCD_SPI_OPCODE_LEN (0x01)
  41. #define WCD_SPI_CMD_NOP_LEN (0x01)
  42. #define WCD_SPI_CMD_WREN_LEN (0x01)
  43. #define WCD_SPI_CMD_CLKREQ_LEN (0x04)
  44. #define WCD_SPI_CMD_IRR_LEN (0x04)
  45. #define WCD_SPI_CMD_IRW_LEN (0x06)
  46. #define WCD_SPI_WRITE_SINGLE_LEN (0x08)
  47. #define WCD_SPI_READ_SINGLE_LEN (0x13)
  48. #define WCD_SPI_CMD_FREAD_LEN (0x13)
  49. /* Command delays */
  50. #define WCD_SPI_CLKREQ_DELAY_USECS (500)
  51. #define WCD_SPI_CLK_OFF_TIMER_MS (500)
  52. #define WCD_SPI_RESUME_TIMEOUT_MS 100
  53. /* Command masks */
  54. #define WCD_CMD_ADDR_MASK \
  55. (0xFF | \
  56. (0xFF << SHIFT_1_BYTES) | \
  57. (0xFF << SHIFT_2_BYTES))
  58. /* Clock ctrl request related */
  59. #define WCD_SPI_CLK_ENABLE true
  60. #define WCD_SPI_CLK_DISABLE false
  61. #define WCD_SPI_CLK_FLAG_DELAYED (1 << 0)
  62. #define WCD_SPI_CLK_FLAG_IMMEDIATE (1 << 1)
  63. /* Internal addresses */
  64. #define WCD_SPI_ADDR_IPC_CTL_HOST (0x012014)
  65. /* Word sizes and min/max lengths */
  66. #define WCD_SPI_WORD_BYTE_CNT (4)
  67. #define WCD_SPI_RW_MULTI_MIN_LEN (16)
  68. /* Max size is 32 bytes less than 64Kbytes */
  69. #define WCD_SPI_RW_MULTI_MAX_LEN ((64 * 1024) - 32)
  70. /*
  71. * Max size for the pre-allocated buffers is the max
  72. * possible read/write length + 32 bytes for the SPI
  73. * read/write command header itself.
  74. */
  75. #define WCD_SPI_RW_MAX_BUF_SIZE (WCD_SPI_RW_MULTI_MAX_LEN + 32)
  76. /* Alignment requirements */
  77. #define WCD_SPI_RW_MIN_ALIGN WCD_SPI_WORD_BYTE_CNT
  78. #define WCD_SPI_RW_MULTI_ALIGN (16)
  79. /* Status mask bits */
  80. #define WCD_SPI_CLK_STATE_ENABLED BIT(0)
  81. #define WCD_SPI_IS_SUSPENDED BIT(1)
  82. /* Locking related */
  83. #define WCD_SPI_MUTEX_LOCK(spi, lock) \
  84. { \
  85. dev_vdbg(&spi->dev, "%s: mutex_lock(%s)\n", \
  86. __func__, __stringify_1(lock)); \
  87. mutex_lock(&lock); \
  88. }
  89. #define WCD_SPI_MUTEX_UNLOCK(spi, lock) \
  90. { \
  91. dev_vdbg(&spi->dev, "%s: mutex_unlock(%s)\n", \
  92. __func__, __stringify_1(lock)); \
  93. mutex_unlock(&lock); \
  94. }
  95. struct wcd_spi_debug_data {
  96. struct dentry *dir;
  97. u32 addr;
  98. u32 size;
  99. };
  100. struct wcd_spi_priv {
  101. struct spi_device *spi;
  102. u32 mem_base_addr;
  103. struct regmap *regmap;
  104. /* Message for single transfer */
  105. struct spi_message msg1;
  106. struct spi_transfer xfer1;
  107. /* Message for two transfers */
  108. struct spi_message msg2;
  109. struct spi_transfer xfer2[2];
  110. /* Register access related */
  111. u32 reg_bytes;
  112. u32 val_bytes;
  113. /* Clock requests related */
  114. struct mutex clk_mutex;
  115. int clk_users;
  116. unsigned long status_mask;
  117. struct delayed_work clk_dwork;
  118. /* Transaction related */
  119. struct mutex xfer_mutex;
  120. struct device *m_dev;
  121. struct wdsp_mgr_ops *m_ops;
  122. /* Debugfs related information */
  123. struct wcd_spi_debug_data debug_data;
  124. /* Completion object to indicate system resume completion */
  125. struct completion resume_comp;
  126. /* Buffers to hold memory used for transfers */
  127. void *tx_buf;
  128. void *rx_buf;
  129. /* DMA handles for transfer buffers */
  130. dma_addr_t tx_dma;
  131. dma_addr_t rx_dma;
  132. };
  133. enum xfer_request {
  134. WCD_SPI_XFER_WRITE,
  135. WCD_SPI_XFER_READ,
  136. };
  137. static char *wcd_spi_xfer_req_str(enum xfer_request req)
  138. {
  139. if (req == WCD_SPI_XFER_WRITE)
  140. return "xfer_write";
  141. else if (req == WCD_SPI_XFER_READ)
  142. return "xfer_read";
  143. else
  144. return "xfer_invalid";
  145. }
  146. static void wcd_spi_reinit_xfer(struct spi_transfer *xfer)
  147. {
  148. xfer->tx_buf = NULL;
  149. xfer->rx_buf = NULL;
  150. xfer->delay_usecs = 0;
  151. xfer->len = 0;
  152. }
  153. static bool wcd_spi_is_suspended(struct wcd_spi_priv *wcd_spi)
  154. {
  155. return test_bit(WCD_SPI_IS_SUSPENDED, &wcd_spi->status_mask);
  156. }
  157. static bool wcd_spi_can_suspend(struct wcd_spi_priv *wcd_spi)
  158. {
  159. struct spi_device *spi = wcd_spi->spi;
  160. if (wcd_spi->clk_users > 0 ||
  161. test_bit(WCD_SPI_CLK_STATE_ENABLED, &wcd_spi->status_mask)) {
  162. dev_err(&spi->dev, "%s: cannot suspend, clk_users = %d\n",
  163. __func__, wcd_spi->clk_users);
  164. return false;
  165. }
  166. return true;
  167. }
  168. static int wcd_spi_wait_for_resume(struct wcd_spi_priv *wcd_spi)
  169. {
  170. struct spi_device *spi = wcd_spi->spi;
  171. int rc = 0;
  172. WCD_SPI_MUTEX_LOCK(spi, wcd_spi->clk_mutex);
  173. /* If the system is already in resumed state, return right away */
  174. if (!wcd_spi_is_suspended(wcd_spi))
  175. goto done;
  176. /* If suspended then wait for resume to happen */
  177. reinit_completion(&wcd_spi->resume_comp);
  178. WCD_SPI_MUTEX_UNLOCK(spi, wcd_spi->clk_mutex);
  179. rc = wait_for_completion_timeout(&wcd_spi->resume_comp,
  180. msecs_to_jiffies(WCD_SPI_RESUME_TIMEOUT_MS));
  181. WCD_SPI_MUTEX_LOCK(spi, wcd_spi->clk_mutex);
  182. if (rc == 0) {
  183. dev_err(&spi->dev, "%s: failed to resume in %u msec\n",
  184. __func__, WCD_SPI_RESUME_TIMEOUT_MS);
  185. rc = -EIO;
  186. goto done;
  187. }
  188. dev_dbg(&spi->dev, "%s: resume successful\n", __func__);
  189. rc = 0;
  190. done:
  191. WCD_SPI_MUTEX_UNLOCK(spi, wcd_spi->clk_mutex);
  192. return rc;
  193. }
  194. static int wcd_spi_read_single(struct spi_device *spi,
  195. u32 remote_addr, u32 *val)
  196. {
  197. struct wcd_spi_priv *wcd_spi = spi_get_drvdata(spi);
  198. struct spi_transfer *tx_xfer = &wcd_spi->xfer2[0];
  199. struct spi_transfer *rx_xfer = &wcd_spi->xfer2[1];
  200. u8 *tx_buf = wcd_spi->tx_buf;
  201. u8 *rx_buf = wcd_spi->rx_buf;
  202. u32 frame = 0;
  203. int ret;
  204. dev_dbg(&spi->dev, "%s: remote_addr = 0x%x\n",
  205. __func__, remote_addr);
  206. if (!tx_buf) {
  207. dev_err(&spi->dev, "%s: tx_buf not allocated\n",
  208. __func__);
  209. return -ENOMEM;
  210. }
  211. frame |= WCD_SPI_READ_FRAME_OPCODE;
  212. frame |= remote_addr & WCD_CMD_ADDR_MASK;
  213. wcd_spi_reinit_xfer(tx_xfer);
  214. frame = cpu_to_be32(frame);
  215. memcpy(tx_buf, &frame, sizeof(frame));
  216. tx_xfer->tx_buf = tx_buf;
  217. tx_xfer->len = WCD_SPI_READ_SINGLE_LEN;
  218. wcd_spi_reinit_xfer(rx_xfer);
  219. rx_xfer->rx_buf = rx_buf;
  220. rx_xfer->len = sizeof(*val);
  221. ret = spi_sync(spi, &wcd_spi->msg2);
  222. if (ret)
  223. dev_err(&spi->dev, "%s: spi_sync failed, err %d\n",
  224. __func__, ret);
  225. else
  226. memcpy((u8*) val, rx_buf, sizeof(*val));
  227. return ret;
  228. }
  229. static int wcd_spi_read_multi(struct spi_device *spi,
  230. u32 remote_addr, u8 *data,
  231. size_t len)
  232. {
  233. struct wcd_spi_priv *wcd_spi = spi_get_drvdata(spi);
  234. struct spi_transfer *xfer = &wcd_spi->xfer1;
  235. u8 *tx_buf = wcd_spi->tx_buf;
  236. u8 *rx_buf = wcd_spi->rx_buf;
  237. u32 frame = 0;
  238. int ret;
  239. dev_dbg(&spi->dev, "%s: addr 0x%x, len = %zd\n",
  240. __func__, remote_addr, len);
  241. frame |= WCD_SPI_FREAD_FRAME_OPCODE;
  242. frame |= remote_addr & WCD_CMD_ADDR_MASK;
  243. if (!tx_buf || !rx_buf) {
  244. dev_err(&spi->dev, "%s: %s not allocated\n", __func__,
  245. (!tx_buf) ? "tx_buf" : "rx_buf");
  246. return -ENOMEM;
  247. }
  248. wcd_spi_reinit_xfer(xfer);
  249. frame = cpu_to_be32(frame);
  250. memcpy(tx_buf, &frame, sizeof(frame));
  251. xfer->tx_buf = tx_buf;
  252. xfer->rx_buf = rx_buf;
  253. xfer->len = WCD_SPI_CMD_FREAD_LEN + len;
  254. ret = spi_sync(spi, &wcd_spi->msg1);
  255. if (ret) {
  256. dev_err(&spi->dev, "%s: failed, err = %d\n",
  257. __func__, ret);
  258. goto done;
  259. }
  260. memcpy(data, rx_buf + WCD_SPI_CMD_FREAD_LEN, len);
  261. done:
  262. return ret;
  263. }
  264. static int wcd_spi_write_single(struct spi_device *spi,
  265. u32 remote_addr, u32 val)
  266. {
  267. struct wcd_spi_priv *wcd_spi = spi_get_drvdata(spi);
  268. struct spi_transfer *xfer = &wcd_spi->xfer1;
  269. u8 *tx_buf = wcd_spi->tx_buf;
  270. u32 frame = 0;
  271. dev_dbg(&spi->dev, "%s: remote_addr = 0x%x, val = 0x%x\n",
  272. __func__, remote_addr, val);
  273. memset(tx_buf, 0, WCD_SPI_WRITE_SINGLE_LEN);
  274. frame |= WCD_SPI_WRITE_FRAME_OPCODE;
  275. frame |= (remote_addr & WCD_CMD_ADDR_MASK);
  276. frame = cpu_to_be32(frame);
  277. memcpy(tx_buf, &frame, sizeof(frame));
  278. memcpy(tx_buf + sizeof(frame), &val, sizeof(val));
  279. wcd_spi_reinit_xfer(xfer);
  280. xfer->tx_buf = tx_buf;
  281. xfer->len = WCD_SPI_WRITE_SINGLE_LEN;
  282. return spi_sync(spi, &wcd_spi->msg1);
  283. }
  284. static int wcd_spi_write_multi(struct spi_device *spi,
  285. u32 remote_addr, u8 *data,
  286. size_t len)
  287. {
  288. struct wcd_spi_priv *wcd_spi = spi_get_drvdata(spi);
  289. struct spi_transfer *xfer = &wcd_spi->xfer1;
  290. u32 frame = 0;
  291. u8 *tx_buf = wcd_spi->tx_buf;
  292. int xfer_len, ret;
  293. dev_dbg(&spi->dev, "%s: addr = 0x%x len = %zd\n",
  294. __func__, remote_addr, len);
  295. frame |= WCD_SPI_WRITE_FRAME_OPCODE;
  296. frame |= (remote_addr & WCD_CMD_ADDR_MASK);
  297. frame = cpu_to_be32(frame);
  298. xfer_len = len + sizeof(frame);
  299. if (!tx_buf) {
  300. dev_err(&spi->dev, "%s: tx_buf not allocated\n",
  301. __func__);
  302. return -ENOMEM;
  303. }
  304. memcpy(tx_buf, &frame, sizeof(frame));
  305. memcpy(tx_buf + sizeof(frame), data, len);
  306. wcd_spi_reinit_xfer(xfer);
  307. xfer->tx_buf = tx_buf;
  308. xfer->len = xfer_len;
  309. ret = spi_sync(spi, &wcd_spi->msg1);
  310. if (ret < 0)
  311. dev_err(&spi->dev,
  312. "%s: Failed, addr = 0x%x, len = %zd\n",
  313. __func__, remote_addr, len);
  314. return ret;
  315. }
  316. static int wcd_spi_transfer_split(struct spi_device *spi,
  317. struct wcd_spi_msg *data_msg,
  318. enum xfer_request xfer_req)
  319. {
  320. u32 addr = data_msg->remote_addr;
  321. u8 *data = data_msg->data;
  322. int remain_size = data_msg->len;
  323. int to_xfer, loop_cnt, ret = 0;
  324. /* Perform single writes until multi word alignment is met */
  325. loop_cnt = 1;
  326. while (remain_size &&
  327. !IS_ALIGNED(addr, WCD_SPI_RW_MULTI_ALIGN)) {
  328. if (xfer_req == WCD_SPI_XFER_WRITE)
  329. ret = wcd_spi_write_single(spi, addr,
  330. (*(u32 *)data));
  331. else
  332. ret = wcd_spi_read_single(spi, addr,
  333. (u32 *)data);
  334. if (ret < 0) {
  335. dev_err(&spi->dev,
  336. "%s: %s fail iter(%d) start-word addr (0x%x)\n",
  337. __func__, wcd_spi_xfer_req_str(xfer_req),
  338. loop_cnt, addr);
  339. goto done;
  340. }
  341. addr += WCD_SPI_WORD_BYTE_CNT;
  342. data += WCD_SPI_WORD_BYTE_CNT;
  343. remain_size -= WCD_SPI_WORD_BYTE_CNT;
  344. loop_cnt++;
  345. }
  346. /* Perform multi writes for max allowed multi writes */
  347. loop_cnt = 1;
  348. while (remain_size >= WCD_SPI_RW_MULTI_MAX_LEN) {
  349. if (xfer_req == WCD_SPI_XFER_WRITE)
  350. ret = wcd_spi_write_multi(spi, addr, data,
  351. WCD_SPI_RW_MULTI_MAX_LEN);
  352. else
  353. ret = wcd_spi_read_multi(spi, addr, data,
  354. WCD_SPI_RW_MULTI_MAX_LEN);
  355. if (ret < 0) {
  356. dev_err(&spi->dev,
  357. "%s: %s fail iter(%d) max-write addr (0x%x)\n",
  358. __func__, wcd_spi_xfer_req_str(xfer_req),
  359. loop_cnt, addr);
  360. goto done;
  361. }
  362. addr += WCD_SPI_RW_MULTI_MAX_LEN;
  363. data += WCD_SPI_RW_MULTI_MAX_LEN;
  364. remain_size -= WCD_SPI_RW_MULTI_MAX_LEN;
  365. loop_cnt++;
  366. }
  367. /*
  368. * Perform write for max possible data that is multiple
  369. * of the minimum size for multi-write commands.
  370. */
  371. to_xfer = remain_size - (remain_size % WCD_SPI_RW_MULTI_MIN_LEN);
  372. if (remain_size >= WCD_SPI_RW_MULTI_MIN_LEN &&
  373. to_xfer > 0) {
  374. if (xfer_req == WCD_SPI_XFER_WRITE)
  375. ret = wcd_spi_write_multi(spi, addr, data, to_xfer);
  376. else
  377. ret = wcd_spi_read_multi(spi, addr, data, to_xfer);
  378. if (ret < 0) {
  379. dev_err(&spi->dev,
  380. "%s: %s fail write addr (0x%x), size (0x%x)\n",
  381. __func__, wcd_spi_xfer_req_str(xfer_req),
  382. addr, to_xfer);
  383. goto done;
  384. }
  385. addr += to_xfer;
  386. data += to_xfer;
  387. remain_size -= to_xfer;
  388. }
  389. /* Perform single writes for the last remaining data */
  390. loop_cnt = 1;
  391. while (remain_size > 0) {
  392. if (xfer_req == WCD_SPI_XFER_WRITE)
  393. ret = wcd_spi_write_single(spi, addr, (*((u32 *)data)));
  394. else
  395. ret = wcd_spi_read_single(spi, addr, (u32 *) data);
  396. if (ret < 0) {
  397. dev_err(&spi->dev,
  398. "%s: %s fail iter(%d) end-write addr (0x%x)\n",
  399. __func__, wcd_spi_xfer_req_str(xfer_req),
  400. loop_cnt, addr);
  401. goto done;
  402. }
  403. addr += WCD_SPI_WORD_BYTE_CNT;
  404. data += WCD_SPI_WORD_BYTE_CNT;
  405. remain_size -= WCD_SPI_WORD_BYTE_CNT;
  406. loop_cnt++;
  407. }
  408. done:
  409. return ret;
  410. }
  411. static int wcd_spi_cmd_nop(struct spi_device *spi)
  412. {
  413. struct wcd_spi_priv *wcd_spi = spi_get_drvdata(spi);
  414. u8 *tx_buf = wcd_spi->tx_buf;
  415. tx_buf[0] = WCD_SPI_CMD_NOP;
  416. return spi_write(spi, tx_buf, WCD_SPI_CMD_NOP_LEN);
  417. }
  418. static int wcd_spi_cmd_clkreq(struct spi_device *spi)
  419. {
  420. struct wcd_spi_priv *wcd_spi = spi_get_drvdata(spi);
  421. struct spi_transfer *xfer = &wcd_spi->xfer1;
  422. u8 *tx_buf = wcd_spi->tx_buf;
  423. u8 cmd[WCD_SPI_CMD_CLKREQ_LEN] = {
  424. WCD_SPI_CMD_CLKREQ,
  425. 0xBA, 0x80, 0x00};
  426. memcpy(tx_buf, cmd, WCD_SPI_CMD_CLKREQ_LEN);
  427. wcd_spi_reinit_xfer(xfer);
  428. xfer->tx_buf = tx_buf;
  429. xfer->len = WCD_SPI_CMD_CLKREQ_LEN;
  430. xfer->delay_usecs = WCD_SPI_CLKREQ_DELAY_USECS;
  431. return spi_sync(spi, &wcd_spi->msg1);
  432. }
  433. static int wcd_spi_cmd_wr_en(struct spi_device *spi)
  434. {
  435. struct wcd_spi_priv *wcd_spi = spi_get_drvdata(spi);
  436. u8 *tx_buf = wcd_spi->tx_buf;
  437. tx_buf[0] = WCD_SPI_CMD_WREN;
  438. return spi_write(spi, tx_buf, WCD_SPI_CMD_WREN_LEN);
  439. }
  440. static int wcd_spi_cmd_rdsr(struct spi_device *spi,
  441. u32 *rdsr_status)
  442. {
  443. struct wcd_spi_priv *wcd_spi = spi_get_drvdata(spi);
  444. struct spi_transfer *tx_xfer = &wcd_spi->xfer2[0];
  445. struct spi_transfer *rx_xfer = &wcd_spi->xfer2[1];
  446. u8 *tx_buf = wcd_spi->tx_buf;
  447. u8 *rx_buf = wcd_spi->rx_buf;
  448. int ret;
  449. tx_buf[0] = WCD_SPI_CMD_RDSR;
  450. wcd_spi_reinit_xfer(tx_xfer);
  451. tx_xfer->tx_buf = tx_buf;
  452. tx_xfer->len = WCD_SPI_OPCODE_LEN;
  453. memset(rx_buf, 0, sizeof(*rdsr_status));
  454. wcd_spi_reinit_xfer(rx_xfer);
  455. rx_xfer->rx_buf = rx_buf;
  456. rx_xfer->len = sizeof(*rdsr_status);
  457. ret = spi_sync(spi, &wcd_spi->msg2);
  458. if (ret < 0) {
  459. dev_err(&spi->dev, "%s: RDSR failed, err = %d\n",
  460. __func__, ret);
  461. goto done;
  462. }
  463. *rdsr_status = be32_to_cpu(*((u32*)rx_buf));
  464. dev_dbg(&spi->dev, "%s: RDSR success, value = 0x%x\n",
  465. __func__, *rdsr_status);
  466. done:
  467. return ret;
  468. }
  469. static int wcd_spi_clk_enable(struct spi_device *spi)
  470. {
  471. struct wcd_spi_priv *wcd_spi = spi_get_drvdata(spi);
  472. int ret;
  473. u32 rd_status = 0;
  474. ret = wcd_spi_cmd_nop(spi);
  475. if (ret < 0) {
  476. dev_err(&spi->dev, "%s: NOP1 failed, err = %d\n",
  477. __func__, ret);
  478. goto done;
  479. }
  480. ret = wcd_spi_cmd_clkreq(spi);
  481. if (ret < 0) {
  482. dev_err(&spi->dev, "%s: CLK_REQ failed, err = %d\n",
  483. __func__, ret);
  484. goto done;
  485. }
  486. ret = wcd_spi_cmd_nop(spi);
  487. if (ret < 0) {
  488. dev_err(&spi->dev, "%s: NOP2 failed, err = %d\n",
  489. __func__, ret);
  490. goto done;
  491. }
  492. wcd_spi_cmd_rdsr(spi, &rd_status);
  493. /*
  494. * Read status zero means reads are not
  495. * happenning on the bus, possibly because
  496. * clock request failed.
  497. */
  498. if (rd_status) {
  499. set_bit(WCD_SPI_CLK_STATE_ENABLED,
  500. &wcd_spi->status_mask);
  501. } else {
  502. dev_err(&spi->dev, "%s: RDSR status is zero\n",
  503. __func__);
  504. ret = -EIO;
  505. }
  506. done:
  507. return ret;
  508. }
  509. static int wcd_spi_clk_disable(struct spi_device *spi)
  510. {
  511. struct wcd_spi_priv *wcd_spi = spi_get_drvdata(spi);
  512. int ret;
  513. ret = wcd_spi_write_single(spi, WCD_SPI_ADDR_IPC_CTL_HOST, 0x01);
  514. if (ret < 0)
  515. dev_err(&spi->dev, "%s: Failed, err = %d\n",
  516. __func__, ret);
  517. /*
  518. * clear this bit even if clock disable failed
  519. * as the source clocks might get turned off.
  520. */
  521. clear_bit(WCD_SPI_CLK_STATE_ENABLED, &wcd_spi->status_mask);
  522. return ret;
  523. }
  524. static int wcd_spi_clk_ctrl(struct spi_device *spi,
  525. bool request, u32 flags)
  526. {
  527. struct wcd_spi_priv *wcd_spi = spi_get_drvdata(spi);
  528. int ret = 0;
  529. const char *delay_str;
  530. delay_str = (flags == WCD_SPI_CLK_FLAG_DELAYED) ?
  531. "delayed" : "immediate";
  532. WCD_SPI_MUTEX_LOCK(spi, wcd_spi->clk_mutex);
  533. /* Reject any unbalanced disable request */
  534. if (wcd_spi->clk_users < 0 ||
  535. (!request && wcd_spi->clk_users == 0)) {
  536. dev_err(&spi->dev, "%s: Unbalanced clk_users %d for %s\n",
  537. __func__, wcd_spi->clk_users,
  538. request ? "enable" : "disable");
  539. ret = -EINVAL;
  540. /* Reset the clk_users to 0 */
  541. wcd_spi->clk_users = 0;
  542. goto done;
  543. }
  544. if (request == WCD_SPI_CLK_ENABLE) {
  545. /*
  546. * If the SPI bus is suspended, then return error
  547. * as the transaction cannot be completed.
  548. */
  549. if (wcd_spi_is_suspended(wcd_spi)) {
  550. dev_err(&spi->dev,
  551. "%s: SPI suspended, cannot enable clk\n",
  552. __func__);
  553. ret = -EIO;
  554. goto done;
  555. }
  556. /* Cancel the disable clk work */
  557. WCD_SPI_MUTEX_UNLOCK(spi, wcd_spi->clk_mutex);
  558. cancel_delayed_work_sync(&wcd_spi->clk_dwork);
  559. WCD_SPI_MUTEX_LOCK(spi, wcd_spi->clk_mutex);
  560. wcd_spi->clk_users++;
  561. /*
  562. * If clk state is already set,
  563. * then clk wasnt really disabled
  564. */
  565. if (test_bit(WCD_SPI_CLK_STATE_ENABLED, &wcd_spi->status_mask))
  566. goto done;
  567. else if (wcd_spi->clk_users == 1)
  568. ret = wcd_spi_clk_enable(spi);
  569. } else {
  570. wcd_spi->clk_users--;
  571. /* Clock is still voted for */
  572. if (wcd_spi->clk_users > 0)
  573. goto done;
  574. /*
  575. * If we are here, clk_users must be 0 and needs
  576. * to be disabled. Call the disable based on the
  577. * flags.
  578. */
  579. if (flags == WCD_SPI_CLK_FLAG_DELAYED) {
  580. schedule_delayed_work(&wcd_spi->clk_dwork,
  581. msecs_to_jiffies(WCD_SPI_CLK_OFF_TIMER_MS));
  582. } else {
  583. ret = wcd_spi_clk_disable(spi);
  584. if (ret < 0)
  585. dev_err(&spi->dev,
  586. "%s: Failed to disable clk err = %d\n",
  587. __func__, ret);
  588. }
  589. }
  590. done:
  591. dev_dbg(&spi->dev, "%s: updated clk_users = %d, request_%s %s\n",
  592. __func__, wcd_spi->clk_users, request ? "enable" : "disable",
  593. request ? "" : delay_str);
  594. WCD_SPI_MUTEX_UNLOCK(spi, wcd_spi->clk_mutex);
  595. return ret;
  596. }
  597. static int wcd_spi_init(struct spi_device *spi)
  598. {
  599. struct wcd_spi_priv *wcd_spi = spi_get_drvdata(spi);
  600. int ret;
  601. ret = wcd_spi_clk_ctrl(spi, WCD_SPI_CLK_ENABLE,
  602. WCD_SPI_CLK_FLAG_IMMEDIATE);
  603. if (ret < 0)
  604. goto done;
  605. ret = wcd_spi_cmd_wr_en(spi);
  606. if (ret < 0)
  607. goto err_wr_en;
  608. /*
  609. * In case spi_init is called after component deinit,
  610. * it is possible hardware register state is also reset.
  611. * Sync the regcache here so hardware state is updated
  612. * to reflect the cache.
  613. */
  614. regcache_sync(wcd_spi->regmap);
  615. regmap_write(wcd_spi->regmap, WCD_SPI_SLAVE_CONFIG,
  616. 0x0F3D0800);
  617. /* Write the MTU to max allowed size */
  618. regmap_update_bits(wcd_spi->regmap,
  619. WCD_SPI_SLAVE_TRNS_LEN,
  620. 0xFFFF0000, 0xFFFF0000);
  621. err_wr_en:
  622. wcd_spi_clk_ctrl(spi, WCD_SPI_CLK_DISABLE,
  623. WCD_SPI_CLK_FLAG_IMMEDIATE);
  624. done:
  625. return ret;
  626. }
  627. static void wcd_spi_clk_work(struct work_struct *work)
  628. {
  629. struct delayed_work *dwork;
  630. struct wcd_spi_priv *wcd_spi;
  631. struct spi_device *spi;
  632. int ret;
  633. dwork = to_delayed_work(work);
  634. wcd_spi = container_of(dwork, struct wcd_spi_priv, clk_dwork);
  635. spi = wcd_spi->spi;
  636. WCD_SPI_MUTEX_LOCK(spi, wcd_spi->clk_mutex);
  637. ret = wcd_spi_clk_disable(spi);
  638. if (ret < 0)
  639. dev_err(&spi->dev,
  640. "%s: Failed to disable clk, err = %d\n",
  641. __func__, ret);
  642. WCD_SPI_MUTEX_UNLOCK(spi, wcd_spi->clk_mutex);
  643. }
  644. static int __wcd_spi_data_xfer(struct spi_device *spi,
  645. struct wcd_spi_msg *msg,
  646. enum xfer_request xfer_req)
  647. {
  648. struct wcd_spi_priv *wcd_spi = spi_get_drvdata(spi);
  649. int ret;
  650. /* Check for minimum alignment requirements */
  651. if (!IS_ALIGNED(msg->remote_addr, WCD_SPI_RW_MIN_ALIGN)) {
  652. dev_err(&spi->dev,
  653. "%s addr 0x%x is not aligned to 0x%x\n",
  654. __func__, msg->remote_addr, WCD_SPI_RW_MIN_ALIGN);
  655. return -EINVAL;
  656. } else if (msg->len % WCD_SPI_WORD_BYTE_CNT) {
  657. dev_err(&spi->dev,
  658. "%s len 0x%zx is not multiple of %d\n",
  659. __func__, msg->len, WCD_SPI_WORD_BYTE_CNT);
  660. return -EINVAL;
  661. }
  662. WCD_SPI_MUTEX_LOCK(spi, wcd_spi->xfer_mutex);
  663. if (msg->len == WCD_SPI_WORD_BYTE_CNT) {
  664. if (xfer_req == WCD_SPI_XFER_WRITE)
  665. ret = wcd_spi_write_single(spi, msg->remote_addr,
  666. (*((u32 *)msg->data)));
  667. else
  668. ret = wcd_spi_read_single(spi, msg->remote_addr,
  669. (u32 *) msg->data);
  670. } else {
  671. ret = wcd_spi_transfer_split(spi, msg, xfer_req);
  672. }
  673. WCD_SPI_MUTEX_UNLOCK(spi, wcd_spi->xfer_mutex);
  674. return ret;
  675. }
  676. static int wcd_spi_data_xfer(struct spi_device *spi,
  677. struct wcd_spi_msg *msg,
  678. enum xfer_request req)
  679. {
  680. int ret, ret1;
  681. if (msg->len <= 0) {
  682. dev_err(&spi->dev, "%s: Invalid size %zd\n",
  683. __func__, msg->len);
  684. return -EINVAL;
  685. }
  686. /* Request for clock */
  687. ret = wcd_spi_clk_ctrl(spi, WCD_SPI_CLK_ENABLE,
  688. WCD_SPI_CLK_FLAG_IMMEDIATE);
  689. if (ret < 0) {
  690. dev_err(&spi->dev, "%s: clk enable failed %d\n",
  691. __func__, ret);
  692. goto done;
  693. }
  694. /* Perform the transaction */
  695. ret = __wcd_spi_data_xfer(spi, msg, req);
  696. if (ret < 0)
  697. dev_err(&spi->dev,
  698. "%s: Failed %s, addr = 0x%x, size = 0x%zx, err = %d\n",
  699. __func__, wcd_spi_xfer_req_str(req),
  700. msg->remote_addr, msg->len, ret);
  701. /* Release the clock even if xfer failed */
  702. ret1 = wcd_spi_clk_ctrl(spi, WCD_SPI_CLK_DISABLE,
  703. WCD_SPI_CLK_FLAG_DELAYED);
  704. if (ret1 < 0)
  705. dev_err(&spi->dev, "%s: clk disable failed %d\n",
  706. __func__, ret1);
  707. done:
  708. return ret;
  709. }
  710. /*
  711. * wcd_spi_data_write: Write data to WCD SPI
  712. * @spi: spi_device struct
  713. * @msg: msg that needs to be written to WCD
  714. *
  715. * This API writes length of data to address specified. These details
  716. * about the write are encapsulated in @msg. Write size should be multiple
  717. * of 4 bytes and write address should be 4-byte aligned.
  718. */
  719. static int wcd_spi_data_write(struct spi_device *spi,
  720. struct wcd_spi_msg *msg)
  721. {
  722. if (!spi || !msg) {
  723. pr_err("%s: Invalid %s\n", __func__,
  724. (!spi) ? "spi device" : "msg");
  725. return -EINVAL;
  726. }
  727. dev_dbg_ratelimited(&spi->dev, "%s: addr = 0x%x, len = %zu\n",
  728. __func__, msg->remote_addr, msg->len);
  729. return wcd_spi_data_xfer(spi, msg, WCD_SPI_XFER_WRITE);
  730. }
  731. /*
  732. * wcd_spi_data_read: Read data from WCD SPI
  733. * @spi: spi_device struct
  734. * @msg: msg that needs to be read from WCD
  735. *
  736. * This API reads length of data from address specified. These details
  737. * about the read are encapsulated in @msg. Read size should be multiple
  738. * of 4 bytes and read address should be 4-byte aligned.
  739. */
  740. static int wcd_spi_data_read(struct spi_device *spi,
  741. struct wcd_spi_msg *msg)
  742. {
  743. if (!spi || !msg) {
  744. pr_err("%s: Invalid %s\n", __func__,
  745. (!spi) ? "spi device" : "msg");
  746. return -EINVAL;
  747. }
  748. dev_dbg_ratelimited(&spi->dev, "%s: addr = 0x%x,len = %zu\n",
  749. __func__, msg->remote_addr, msg->len);
  750. return wcd_spi_data_xfer(spi, msg, WCD_SPI_XFER_READ);
  751. }
  752. static int wdsp_spi_dload_section(struct spi_device *spi,
  753. void *data)
  754. {
  755. struct wcd_spi_priv *wcd_spi = spi_get_drvdata(spi);
  756. struct wdsp_img_section *sec = data;
  757. struct wcd_spi_msg msg;
  758. int ret;
  759. dev_dbg(&spi->dev, "%s: addr = 0x%x, size = 0x%zx\n",
  760. __func__, sec->addr, sec->size);
  761. msg.remote_addr = sec->addr + wcd_spi->mem_base_addr;
  762. msg.data = sec->data;
  763. msg.len = sec->size;
  764. ret = __wcd_spi_data_xfer(spi, &msg, WCD_SPI_XFER_WRITE);
  765. if (ret < 0)
  766. dev_err(&spi->dev, "%s: fail addr (0x%x) size (0x%zx)\n",
  767. __func__, msg.remote_addr, msg.len);
  768. return ret;
  769. }
  770. static int wdsp_spi_read_section(struct spi_device *spi, void *data)
  771. {
  772. struct wcd_spi_priv *wcd_spi = spi_get_drvdata(spi);
  773. struct wdsp_img_section *sec = data;
  774. struct wcd_spi_msg msg;
  775. int ret;
  776. msg.remote_addr = sec->addr + wcd_spi->mem_base_addr;
  777. msg.data = sec->data;
  778. msg.len = sec->size;
  779. dev_dbg(&spi->dev, "%s: addr = 0x%x, size = 0x%zx\n",
  780. __func__, msg.remote_addr, msg.len);
  781. ret = wcd_spi_data_xfer(spi, &msg, WCD_SPI_XFER_READ);
  782. if (ret < 0)
  783. dev_err(&spi->dev, "%s: fail addr (0x%x) size (0x%zx)\n",
  784. __func__, msg.remote_addr, msg.len);
  785. return ret;
  786. }
  787. static int wdsp_spi_event_handler(struct device *dev, void *priv_data,
  788. enum wdsp_event_type event,
  789. void *data)
  790. {
  791. struct spi_device *spi = to_spi_device(dev);
  792. struct wcd_spi_priv *wcd_spi = spi_get_drvdata(spi);
  793. struct wcd_spi_ops *spi_ops;
  794. int ret = 0;
  795. dev_dbg(&spi->dev, "%s: event type %d\n",
  796. __func__, event);
  797. switch (event) {
  798. case WDSP_EVENT_POST_SHUTDOWN:
  799. cancel_delayed_work_sync(&wcd_spi->clk_dwork);
  800. WCD_SPI_MUTEX_LOCK(spi, wcd_spi->clk_mutex);
  801. if (test_bit(WCD_SPI_CLK_STATE_ENABLED, &wcd_spi->status_mask))
  802. wcd_spi_clk_disable(spi);
  803. wcd_spi->clk_users = 0;
  804. WCD_SPI_MUTEX_UNLOCK(spi, wcd_spi->clk_mutex);
  805. break;
  806. case WDSP_EVENT_PRE_DLOAD_CODE:
  807. case WDSP_EVENT_PRE_DLOAD_DATA:
  808. ret = wcd_spi_clk_ctrl(spi, WCD_SPI_CLK_ENABLE,
  809. WCD_SPI_CLK_FLAG_IMMEDIATE);
  810. if (ret < 0)
  811. dev_err(&spi->dev, "%s: clk_req failed %d\n",
  812. __func__, ret);
  813. break;
  814. case WDSP_EVENT_POST_DLOAD_CODE:
  815. case WDSP_EVENT_POST_DLOAD_DATA:
  816. case WDSP_EVENT_DLOAD_FAILED:
  817. ret = wcd_spi_clk_ctrl(spi, WCD_SPI_CLK_DISABLE,
  818. WCD_SPI_CLK_FLAG_IMMEDIATE);
  819. if (ret < 0)
  820. dev_err(&spi->dev, "%s: clk unvote failed %d\n",
  821. __func__, ret);
  822. break;
  823. case WDSP_EVENT_DLOAD_SECTION:
  824. ret = wdsp_spi_dload_section(spi, data);
  825. break;
  826. case WDSP_EVENT_READ_SECTION:
  827. ret = wdsp_spi_read_section(spi, data);
  828. break;
  829. case WDSP_EVENT_SUSPEND:
  830. WCD_SPI_MUTEX_LOCK(spi, wcd_spi->clk_mutex);
  831. if (!wcd_spi_can_suspend(wcd_spi))
  832. ret = -EBUSY;
  833. WCD_SPI_MUTEX_UNLOCK(spi, wcd_spi->clk_mutex);
  834. break;
  835. case WDSP_EVENT_RESUME:
  836. ret = wcd_spi_wait_for_resume(wcd_spi);
  837. break;
  838. case WDSP_EVENT_GET_DEVOPS:
  839. if (!data) {
  840. dev_err(&spi->dev, "%s: invalid data\n",
  841. __func__);
  842. ret = -EINVAL;
  843. break;
  844. }
  845. spi_ops = (struct wcd_spi_ops *) data;
  846. spi_ops->spi_dev = spi;
  847. spi_ops->read_dev = wcd_spi_data_read;
  848. spi_ops->write_dev = wcd_spi_data_write;
  849. break;
  850. default:
  851. dev_dbg(&spi->dev, "%s: Unhandled event %d\n",
  852. __func__, event);
  853. break;
  854. }
  855. return ret;
  856. }
  857. static int wcd_spi_bus_gwrite(void *context, const void *reg,
  858. size_t reg_len, const void *val,
  859. size_t val_len)
  860. {
  861. struct device *dev = context;
  862. struct spi_device *spi = to_spi_device(dev);
  863. struct wcd_spi_priv *wcd_spi = spi_get_drvdata(spi);
  864. u8 *tx_buf = wcd_spi->tx_buf;
  865. if (!reg || !val || reg_len != wcd_spi->reg_bytes ||
  866. val_len != wcd_spi->val_bytes) {
  867. dev_err(&spi->dev,
  868. "%s: Invalid input, reg_len = %zd, val_len = %zd",
  869. __func__, reg_len, val_len);
  870. return -EINVAL;
  871. }
  872. memset(tx_buf, 0, WCD_SPI_CMD_IRW_LEN);
  873. tx_buf[0] = WCD_SPI_CMD_IRW;
  874. tx_buf[1] = *((u8 *)reg);
  875. memcpy(tx_buf + WCD_SPI_OPCODE_LEN + reg_len,
  876. val, val_len);
  877. return spi_write(spi, tx_buf, WCD_SPI_CMD_IRW_LEN);
  878. }
  879. static int wcd_spi_bus_write(void *context, const void *data,
  880. size_t count)
  881. {
  882. struct device *dev = context;
  883. struct spi_device *spi = to_spi_device(dev);
  884. struct wcd_spi_priv *wcd_spi = spi_get_drvdata(spi);
  885. if (count < (wcd_spi->reg_bytes + wcd_spi->val_bytes)) {
  886. dev_err(&spi->dev, "%s: Invalid size %zd\n",
  887. __func__, count);
  888. WARN_ON(1);
  889. return -EINVAL;
  890. }
  891. return wcd_spi_bus_gwrite(context, data, wcd_spi->reg_bytes,
  892. data + wcd_spi->reg_bytes,
  893. count - wcd_spi->reg_bytes);
  894. }
  895. static int wcd_spi_bus_read(void *context, const void *reg,
  896. size_t reg_len, void *val,
  897. size_t val_len)
  898. {
  899. struct device *dev = context;
  900. struct spi_device *spi = to_spi_device(dev);
  901. struct wcd_spi_priv *wcd_spi = spi_get_drvdata(spi);
  902. struct spi_transfer *tx_xfer = &wcd_spi->xfer2[0];
  903. struct spi_transfer *rx_xfer = &wcd_spi->xfer2[1];
  904. u8 *tx_buf = wcd_spi->tx_buf;
  905. u8 *rx_buf = wcd_spi->rx_buf;
  906. int ret = 0;
  907. if (!reg || !val || reg_len != wcd_spi->reg_bytes ||
  908. val_len != wcd_spi->val_bytes) {
  909. dev_err(&spi->dev,
  910. "%s: Invalid input, reg_len = %zd, val_len = %zd",
  911. __func__, reg_len, val_len);
  912. return -EINVAL;
  913. }
  914. memset(tx_buf, 0, WCD_SPI_CMD_IRR_LEN);
  915. tx_buf[0] = WCD_SPI_CMD_IRR;
  916. tx_buf[1] = *((u8 *)reg);
  917. wcd_spi_reinit_xfer(tx_xfer);
  918. tx_xfer->tx_buf = tx_buf;
  919. tx_xfer->rx_buf = NULL;
  920. tx_xfer->len = WCD_SPI_CMD_IRR_LEN;
  921. wcd_spi_reinit_xfer(rx_xfer);
  922. rx_xfer->tx_buf = NULL;
  923. rx_xfer->rx_buf = rx_buf;
  924. rx_xfer->len = val_len;
  925. ret = spi_sync(spi, &wcd_spi->msg2);
  926. if (ret) {
  927. dev_err(&spi->dev, "%s: spi_sync failed, err %d\n",
  928. __func__, ret);
  929. goto done;
  930. }
  931. memcpy(val, rx_buf, val_len);
  932. done:
  933. return ret;
  934. }
  935. static struct regmap_bus wcd_spi_regmap_bus = {
  936. .write = wcd_spi_bus_write,
  937. .gather_write = wcd_spi_bus_gwrite,
  938. .read = wcd_spi_bus_read,
  939. .reg_format_endian_default = REGMAP_ENDIAN_NATIVE,
  940. .val_format_endian_default = REGMAP_ENDIAN_BIG,
  941. };
  942. static int wcd_spi_state_show(struct seq_file *f, void *ptr)
  943. {
  944. struct spi_device *spi = f->private;
  945. struct wcd_spi_priv *wcd_spi = spi_get_drvdata(spi);
  946. const char *clk_state, *clk_mutex, *xfer_mutex;
  947. if (test_bit(WCD_SPI_CLK_STATE_ENABLED, &wcd_spi->status_mask))
  948. clk_state = "enabled";
  949. else
  950. clk_state = "disabled";
  951. clk_mutex = mutex_is_locked(&wcd_spi->clk_mutex) ?
  952. "locked" : "unlocked";
  953. xfer_mutex = mutex_is_locked(&wcd_spi->xfer_mutex) ?
  954. "locked" : "unlocked";
  955. seq_printf(f, "clk_state = %s\nclk_users = %d\n"
  956. "clk_mutex = %s\nxfer_mutex = %s\n",
  957. clk_state, wcd_spi->clk_users, clk_mutex,
  958. xfer_mutex);
  959. return 0;
  960. }
  961. static int wcd_spi_state_open(struct inode *inode, struct file *file)
  962. {
  963. return single_open(file, wcd_spi_state_show, inode->i_private);
  964. }
  965. static const struct file_operations state_fops = {
  966. .open = wcd_spi_state_open,
  967. .read = seq_read,
  968. .llseek = seq_lseek,
  969. .release = single_release,
  970. };
  971. static ssize_t wcd_spi_debugfs_mem_read(struct file *file, char __user *ubuf,
  972. size_t count, loff_t *ppos)
  973. {
  974. struct spi_device *spi = file->private_data;
  975. struct wcd_spi_priv *wcd_spi = spi_get_drvdata(spi);
  976. struct wcd_spi_debug_data *dbg_data = &wcd_spi->debug_data;
  977. struct wcd_spi_msg msg;
  978. ssize_t buf_size, read_count = 0;
  979. char *buf;
  980. int ret;
  981. if (*ppos < 0 || !count)
  982. return -EINVAL;
  983. if (dbg_data->size == 0 || dbg_data->addr == 0) {
  984. dev_err(&spi->dev,
  985. "%s: Invalid request, size = %u, addr = 0x%x\n",
  986. __func__, dbg_data->size, dbg_data->addr);
  987. return 0;
  988. }
  989. buf_size = count < dbg_data->size ? count : dbg_data->size;
  990. buf = kzalloc(buf_size, GFP_KERNEL);
  991. if (!buf)
  992. return -ENOMEM;
  993. msg.data = buf;
  994. msg.remote_addr = dbg_data->addr;
  995. msg.len = buf_size;
  996. msg.flags = 0;
  997. ret = wcd_spi_data_read(spi, &msg);
  998. if (ret < 0) {
  999. dev_err(&spi->dev,
  1000. "%s: Failed to read %zu bytes from addr 0x%x\n",
  1001. __func__, buf_size, msg.remote_addr);
  1002. goto done;
  1003. }
  1004. read_count = simple_read_from_buffer(ubuf, count, ppos, buf, buf_size);
  1005. done:
  1006. kfree(buf);
  1007. if (ret < 0)
  1008. return ret;
  1009. else
  1010. return read_count;
  1011. }
  1012. static const struct file_operations mem_read_fops = {
  1013. .open = simple_open,
  1014. .read = wcd_spi_debugfs_mem_read,
  1015. };
  1016. static int wcd_spi_debugfs_init(struct spi_device *spi)
  1017. {
  1018. struct wcd_spi_priv *wcd_spi = spi_get_drvdata(spi);
  1019. struct wcd_spi_debug_data *dbg_data = &wcd_spi->debug_data;
  1020. int rc = 0;
  1021. dbg_data->dir = debugfs_create_dir("wcd_spi", NULL);
  1022. if (IS_ERR_OR_NULL(dbg_data->dir)) {
  1023. dbg_data->dir = NULL;
  1024. rc = -ENODEV;
  1025. goto done;
  1026. }
  1027. debugfs_create_file("state", 0444, dbg_data->dir, spi, &state_fops);
  1028. debugfs_create_u32("addr", 0644, dbg_data->dir,
  1029. &dbg_data->addr);
  1030. debugfs_create_u32("size", 0644, dbg_data->dir,
  1031. &dbg_data->size);
  1032. debugfs_create_file("mem_read", 0444, dbg_data->dir,
  1033. spi, &mem_read_fops);
  1034. done:
  1035. return rc;
  1036. }
  1037. static const struct reg_default wcd_spi_defaults[] = {
  1038. {WCD_SPI_SLAVE_SANITY, 0xDEADBEEF},
  1039. {WCD_SPI_SLAVE_DEVICE_ID, 0x00500000},
  1040. {WCD_SPI_SLAVE_STATUS, 0x80100000},
  1041. {WCD_SPI_SLAVE_CONFIG, 0x0F200808},
  1042. {WCD_SPI_SLAVE_SW_RESET, 0x00000000},
  1043. {WCD_SPI_SLAVE_IRQ_STATUS, 0x00000000},
  1044. {WCD_SPI_SLAVE_IRQ_EN, 0x00000000},
  1045. {WCD_SPI_SLAVE_IRQ_CLR, 0x00000000},
  1046. {WCD_SPI_SLAVE_IRQ_FORCE, 0x00000000},
  1047. {WCD_SPI_SLAVE_TX, 0x00000000},
  1048. {WCD_SPI_SLAVE_TEST_BUS_DATA, 0x00000000},
  1049. {WCD_SPI_SLAVE_TEST_BUS_CTRL, 0x00000000},
  1050. {WCD_SPI_SLAVE_SW_RST_IRQ, 0x00000000},
  1051. {WCD_SPI_SLAVE_CHAR_CFG, 0x00000000},
  1052. {WCD_SPI_SLAVE_CHAR_DATA_MOSI, 0x00000000},
  1053. {WCD_SPI_SLAVE_CHAR_DATA_CS_N, 0x00000000},
  1054. {WCD_SPI_SLAVE_CHAR_DATA_MISO, 0x00000000},
  1055. {WCD_SPI_SLAVE_TRNS_BYTE_CNT, 0x00000000},
  1056. {WCD_SPI_SLAVE_TRNS_LEN, 0x00000000},
  1057. {WCD_SPI_SLAVE_FIFO_LEVEL, 0x00000000},
  1058. {WCD_SPI_SLAVE_GENERICS, 0x80000000},
  1059. {WCD_SPI_SLAVE_EXT_BASE_ADDR, 0x00000000},
  1060. };
  1061. static bool wcd_spi_is_volatile_reg(struct device *dev,
  1062. unsigned int reg)
  1063. {
  1064. switch (reg) {
  1065. case WCD_SPI_SLAVE_SANITY:
  1066. case WCD_SPI_SLAVE_STATUS:
  1067. case WCD_SPI_SLAVE_IRQ_STATUS:
  1068. case WCD_SPI_SLAVE_TX:
  1069. case WCD_SPI_SLAVE_SW_RST_IRQ:
  1070. case WCD_SPI_SLAVE_TRNS_BYTE_CNT:
  1071. case WCD_SPI_SLAVE_FIFO_LEVEL:
  1072. case WCD_SPI_SLAVE_GENERICS:
  1073. return true;
  1074. }
  1075. return false;
  1076. }
  1077. static bool wcd_spi_is_readable_reg(struct device *dev,
  1078. unsigned int reg)
  1079. {
  1080. switch (reg) {
  1081. case WCD_SPI_SLAVE_SW_RESET:
  1082. case WCD_SPI_SLAVE_IRQ_CLR:
  1083. case WCD_SPI_SLAVE_IRQ_FORCE:
  1084. return false;
  1085. }
  1086. return true;
  1087. }
  1088. static struct regmap_config wcd_spi_regmap_cfg = {
  1089. .reg_bits = 8,
  1090. .val_bits = 32,
  1091. .cache_type = REGCACHE_RBTREE,
  1092. .reg_defaults = wcd_spi_defaults,
  1093. .num_reg_defaults = ARRAY_SIZE(wcd_spi_defaults),
  1094. .max_register = WCD_SPI_MAX_REGISTER,
  1095. .volatile_reg = wcd_spi_is_volatile_reg,
  1096. .readable_reg = wcd_spi_is_readable_reg,
  1097. };
  1098. static int wdsp_spi_init(struct device *dev, void *priv_data)
  1099. {
  1100. struct spi_device *spi = to_spi_device(dev);
  1101. int ret;
  1102. ret = wcd_spi_init(spi);
  1103. if (ret < 0)
  1104. dev_err(&spi->dev, "%s: Init failed, err = %d\n",
  1105. __func__, ret);
  1106. return ret;
  1107. }
  1108. static int wdsp_spi_deinit(struct device *dev, void *priv_data)
  1109. {
  1110. struct spi_device *spi = to_spi_device(dev);
  1111. struct wcd_spi_priv *wcd_spi = spi_get_drvdata(spi);
  1112. /*
  1113. * Deinit means the hardware is reset. Mark the cache
  1114. * as dirty here, so init will sync the cache
  1115. */
  1116. regcache_mark_dirty(wcd_spi->regmap);
  1117. return 0;
  1118. }
  1119. static struct wdsp_cmpnt_ops wdsp_spi_ops = {
  1120. .init = wdsp_spi_init,
  1121. .deinit = wdsp_spi_deinit,
  1122. .event_handler = wdsp_spi_event_handler,
  1123. };
  1124. static int wcd_spi_component_bind(struct device *dev,
  1125. struct device *master,
  1126. void *data)
  1127. {
  1128. struct spi_device *spi = to_spi_device(dev);
  1129. struct wcd_spi_priv *wcd_spi = spi_get_drvdata(spi);
  1130. int ret = 0;
  1131. wcd_spi->m_dev = master;
  1132. wcd_spi->m_ops = data;
  1133. if (wcd_spi->m_ops &&
  1134. wcd_spi->m_ops->register_cmpnt_ops)
  1135. ret = wcd_spi->m_ops->register_cmpnt_ops(master, dev,
  1136. wcd_spi,
  1137. &wdsp_spi_ops);
  1138. if (ret) {
  1139. dev_err(dev, "%s: register_cmpnt_ops failed, err = %d\n",
  1140. __func__, ret);
  1141. goto done;
  1142. }
  1143. wcd_spi->reg_bytes = DIV_ROUND_UP(wcd_spi_regmap_cfg.reg_bits, 8);
  1144. wcd_spi->val_bytes = DIV_ROUND_UP(wcd_spi_regmap_cfg.val_bits, 8);
  1145. wcd_spi->regmap = devm_regmap_init(&spi->dev, &wcd_spi_regmap_bus,
  1146. &spi->dev, &wcd_spi_regmap_cfg);
  1147. if (IS_ERR(wcd_spi->regmap)) {
  1148. ret = PTR_ERR(wcd_spi->regmap);
  1149. dev_err(&spi->dev, "%s: Failed to allocate regmap, err = %d\n",
  1150. __func__, ret);
  1151. goto done;
  1152. }
  1153. if (wcd_spi_debugfs_init(spi))
  1154. dev_err(&spi->dev, "%s: Failed debugfs init\n", __func__);
  1155. spi_message_init(&wcd_spi->msg1);
  1156. spi_message_add_tail(&wcd_spi->xfer1, &wcd_spi->msg1);
  1157. spi_message_init(&wcd_spi->msg2);
  1158. spi_message_add_tail(&wcd_spi->xfer2[0], &wcd_spi->msg2);
  1159. spi_message_add_tail(&wcd_spi->xfer2[1], &wcd_spi->msg2);
  1160. /* Pre-allocate the buffers */
  1161. wcd_spi->tx_buf = dma_zalloc_coherent(&spi->dev,
  1162. WCD_SPI_RW_MAX_BUF_SIZE,
  1163. &wcd_spi->tx_dma, GFP_KERNEL);
  1164. if (!wcd_spi->tx_buf) {
  1165. ret = -ENOMEM;
  1166. goto done;
  1167. }
  1168. wcd_spi->rx_buf = dma_zalloc_coherent(&spi->dev,
  1169. WCD_SPI_RW_MAX_BUF_SIZE,
  1170. &wcd_spi->rx_dma, GFP_KERNEL);
  1171. if (!wcd_spi->rx_buf) {
  1172. dma_free_coherent(&spi->dev, WCD_SPI_RW_MAX_BUF_SIZE,
  1173. wcd_spi->tx_buf, wcd_spi->tx_dma);
  1174. wcd_spi->tx_buf = NULL;
  1175. ret = -ENOMEM;
  1176. goto done;
  1177. }
  1178. done:
  1179. return ret;
  1180. }
  1181. static void wcd_spi_component_unbind(struct device *dev,
  1182. struct device *master,
  1183. void *data)
  1184. {
  1185. struct spi_device *spi = to_spi_device(dev);
  1186. struct wcd_spi_priv *wcd_spi = spi_get_drvdata(spi);
  1187. struct wcd_spi_debug_data *dbg_data = &wcd_spi->debug_data;
  1188. debugfs_remove_recursive(dbg_data->dir);
  1189. dbg_data->dir = NULL;
  1190. wcd_spi->m_dev = NULL;
  1191. wcd_spi->m_ops = NULL;
  1192. spi_transfer_del(&wcd_spi->xfer1);
  1193. spi_transfer_del(&wcd_spi->xfer2[0]);
  1194. spi_transfer_del(&wcd_spi->xfer2[1]);
  1195. dma_free_coherent(&spi->dev, WCD_SPI_RW_MAX_BUF_SIZE,
  1196. wcd_spi->tx_buf, wcd_spi->tx_dma);
  1197. dma_free_coherent(&spi->dev, WCD_SPI_RW_MAX_BUF_SIZE,
  1198. wcd_spi->rx_buf, wcd_spi->rx_dma);
  1199. wcd_spi->tx_buf = NULL;
  1200. wcd_spi->rx_buf = NULL;
  1201. }
  1202. static const struct component_ops wcd_spi_component_ops = {
  1203. .bind = wcd_spi_component_bind,
  1204. .unbind = wcd_spi_component_unbind,
  1205. };
  1206. static int wcd_spi_probe(struct spi_device *spi)
  1207. {
  1208. struct wcd_spi_priv *wcd_spi;
  1209. int ret = 0;
  1210. wcd_spi = devm_kzalloc(&spi->dev, sizeof(*wcd_spi),
  1211. GFP_KERNEL);
  1212. if (!wcd_spi)
  1213. return -ENOMEM;
  1214. ret = of_property_read_u32(spi->dev.of_node,
  1215. "qcom,mem-base-addr",
  1216. &wcd_spi->mem_base_addr);
  1217. if (ret < 0) {
  1218. dev_err(&spi->dev, "%s: Missing %s DT entry",
  1219. __func__, "qcom,mem-base-addr");
  1220. goto err_ret;
  1221. }
  1222. dev_dbg(&spi->dev,
  1223. "%s: mem_base_addr 0x%x\n", __func__, wcd_spi->mem_base_addr);
  1224. mutex_init(&wcd_spi->clk_mutex);
  1225. mutex_init(&wcd_spi->xfer_mutex);
  1226. INIT_DELAYED_WORK(&wcd_spi->clk_dwork, wcd_spi_clk_work);
  1227. init_completion(&wcd_spi->resume_comp);
  1228. arch_setup_dma_ops(&spi->dev, 0, 0, NULL, true);
  1229. wcd_spi->spi = spi;
  1230. spi_set_drvdata(spi, wcd_spi);
  1231. ret = component_add(&spi->dev, &wcd_spi_component_ops);
  1232. if (ret) {
  1233. dev_err(&spi->dev, "%s: component_add failed err = %d\n",
  1234. __func__, ret);
  1235. goto err_component_add;
  1236. }
  1237. return ret;
  1238. err_component_add:
  1239. mutex_destroy(&wcd_spi->clk_mutex);
  1240. mutex_destroy(&wcd_spi->xfer_mutex);
  1241. err_ret:
  1242. devm_kfree(&spi->dev, wcd_spi);
  1243. spi_set_drvdata(spi, NULL);
  1244. return ret;
  1245. }
  1246. static int wcd_spi_remove(struct spi_device *spi)
  1247. {
  1248. struct wcd_spi_priv *wcd_spi = spi_get_drvdata(spi);
  1249. component_del(&spi->dev, &wcd_spi_component_ops);
  1250. mutex_destroy(&wcd_spi->clk_mutex);
  1251. mutex_destroy(&wcd_spi->xfer_mutex);
  1252. devm_kfree(&spi->dev, wcd_spi);
  1253. spi_set_drvdata(spi, NULL);
  1254. return 0;
  1255. }
  1256. #ifdef CONFIG_PM
  1257. static int wcd_spi_suspend(struct device *dev)
  1258. {
  1259. struct spi_device *spi = to_spi_device(dev);
  1260. struct wcd_spi_priv *wcd_spi = spi_get_drvdata(spi);
  1261. int rc = 0;
  1262. WCD_SPI_MUTEX_LOCK(spi, wcd_spi->clk_mutex);
  1263. if (!wcd_spi_can_suspend(wcd_spi)) {
  1264. rc = -EBUSY;
  1265. goto done;
  1266. }
  1267. /*
  1268. * If we are here, it is okay to let the suspend go
  1269. * through for this driver. But, still need to notify
  1270. * the master to make sure all other components can suspend
  1271. * as well.
  1272. */
  1273. if (wcd_spi->m_dev && wcd_spi->m_ops &&
  1274. wcd_spi->m_ops->suspend) {
  1275. WCD_SPI_MUTEX_UNLOCK(spi, wcd_spi->clk_mutex);
  1276. rc = wcd_spi->m_ops->suspend(wcd_spi->m_dev);
  1277. WCD_SPI_MUTEX_LOCK(spi, wcd_spi->clk_mutex);
  1278. }
  1279. if (rc == 0)
  1280. set_bit(WCD_SPI_IS_SUSPENDED, &wcd_spi->status_mask);
  1281. else
  1282. dev_dbg(&spi->dev, "%s: cannot suspend, err = %d\n",
  1283. __func__, rc);
  1284. done:
  1285. WCD_SPI_MUTEX_UNLOCK(spi, wcd_spi->clk_mutex);
  1286. return rc;
  1287. }
  1288. static int wcd_spi_resume(struct device *dev)
  1289. {
  1290. struct spi_device *spi = to_spi_device(dev);
  1291. struct wcd_spi_priv *wcd_spi = spi_get_drvdata(spi);
  1292. WCD_SPI_MUTEX_LOCK(spi, wcd_spi->clk_mutex);
  1293. clear_bit(WCD_SPI_IS_SUSPENDED, &wcd_spi->status_mask);
  1294. complete(&wcd_spi->resume_comp);
  1295. WCD_SPI_MUTEX_UNLOCK(spi, wcd_spi->clk_mutex);
  1296. return 0;
  1297. }
  1298. static const struct dev_pm_ops wcd_spi_pm_ops = {
  1299. .suspend = wcd_spi_suspend,
  1300. .resume = wcd_spi_resume,
  1301. };
  1302. #endif
  1303. static const struct of_device_id wcd_spi_of_match[] = {
  1304. { .compatible = "qcom,wcd-spi-v2", },
  1305. { }
  1306. };
  1307. MODULE_DEVICE_TABLE(of, wcd_spi_of_match);
  1308. static struct spi_driver wcd_spi_driver = {
  1309. .driver = {
  1310. .name = "wcd-spi-v2",
  1311. .of_match_table = wcd_spi_of_match,
  1312. #ifdef CONFIG_PM
  1313. .pm = &wcd_spi_pm_ops,
  1314. #endif
  1315. },
  1316. .probe = wcd_spi_probe,
  1317. .remove = wcd_spi_remove,
  1318. };
  1319. module_spi_driver(wcd_spi_driver);
  1320. MODULE_DESCRIPTION("WCD SPI driver");
  1321. MODULE_LICENSE("GPL v2");