sde_hw_ctl.c 34 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450
  1. // SPDX-License-Identifier: GPL-2.0-only
  2. /*
  3. * Copyright (c) 2015-2020, The Linux Foundation. All rights reserved.
  4. */
  5. #include <linux/delay.h>
  6. #include "sde_hwio.h"
  7. #include "sde_hw_ctl.h"
  8. #include "sde_dbg.h"
  9. #include "sde_kms.h"
  10. #include "sde_reg_dma.h"
  11. #define CTL_LAYER(lm) \
  12. (((lm) == LM_5) ? (0x024) : (((lm) - LM_0) * 0x004))
  13. #define CTL_LAYER_EXT(lm) \
  14. (0x40 + (((lm) - LM_0) * 0x004))
  15. #define CTL_LAYER_EXT2(lm) \
  16. (0x70 + (((lm) - LM_0) * 0x004))
  17. #define CTL_LAYER_EXT3(lm) \
  18. (0xA0 + (((lm) - LM_0) * 0x004))
  19. #define CTL_TOP 0x014
  20. #define CTL_FLUSH 0x018
  21. #define CTL_START 0x01C
  22. #define CTL_PREPARE 0x0d0
  23. #define CTL_SW_RESET 0x030
  24. #define CTL_SW_RESET_OVERRIDE 0x060
  25. #define CTL_STATUS 0x064
  26. #define CTL_LAYER_EXTN_OFFSET 0x40
  27. #define CTL_ROT_TOP 0x0C0
  28. #define CTL_ROT_FLUSH 0x0C4
  29. #define CTL_ROT_START 0x0CC
  30. #define CTL_MERGE_3D_ACTIVE 0x0E4
  31. #define CTL_DSC_ACTIVE 0x0E8
  32. #define CTL_WB_ACTIVE 0x0EC
  33. #define CTL_CWB_ACTIVE 0x0F0
  34. #define CTL_INTF_ACTIVE 0x0F4
  35. #define CTL_CDM_ACTIVE 0x0F8
  36. #define CTL_FETCH_PIPE_ACTIVE 0x0FC
  37. #define CTL_MERGE_3D_FLUSH 0x100
  38. #define CTL_DSC_FLUSH 0x104
  39. #define CTL_WB_FLUSH 0x108
  40. #define CTL_CWB_FLUSH 0x10C
  41. #define CTL_INTF_FLUSH 0x110
  42. #define CTL_CDM_FLUSH 0x114
  43. #define CTL_PERIPH_FLUSH 0x128
  44. #define CTL_DSPP_0_FLUSH 0x13c
  45. #define CTL_INTF_MASTER 0x134
  46. #define CTL_UIDLE_ACTIVE 0x138
  47. #define CTL_MIXER_BORDER_OUT BIT(24)
  48. #define CTL_FLUSH_MASK_ROT BIT(27)
  49. #define CTL_FLUSH_MASK_CTL BIT(17)
  50. #define CTL_NUM_EXT 4
  51. #define CTL_SSPP_MAX_RECTS 2
  52. #define SDE_REG_RESET_TIMEOUT_US 2000
  53. #define SDE_REG_WAIT_RESET_TIMEOUT_US 100000
  54. #define UPDATE_MASK(m, idx, en) \
  55. ((m) = (en) ? ((m) | BIT((idx))) : ((m) & ~BIT((idx))))
  56. #define CTL_INVALID_BIT 0xffff
  57. #define VDC_IDX(i) ((i) + 16)
  58. #define UPDATE_ACTIVE(r, idx, en) UPDATE_MASK((r), (idx), (en))
  59. /**
  60. * List of SSPP bits in CTL_FLUSH
  61. */
  62. static const u32 sspp_tbl[SSPP_MAX] = { SDE_NONE, 0, 1, 2, 18, 3, 4, 5,
  63. 19, 11, 12, 24, 25, SDE_NONE, SDE_NONE};
  64. /**
  65. * List of layer mixer bits in CTL_FLUSH
  66. */
  67. static const u32 mixer_tbl[LM_MAX] = {SDE_NONE, 6, 7, 8, 9, 10, 20,
  68. SDE_NONE};
  69. /**
  70. * List of DSPP bits in CTL_FLUSH
  71. */
  72. static const u32 dspp_tbl[DSPP_MAX] = {SDE_NONE, 13, 14, 15, 21};
  73. /**
  74. * List of DSPP PA LUT bits in CTL_FLUSH
  75. */
  76. static const u32 dspp_pav_tbl[DSPP_MAX] = {SDE_NONE, 3, 4, 5, 19};
  77. /**
  78. * List of CDM LUT bits in CTL_FLUSH
  79. */
  80. static const u32 cdm_tbl[CDM_MAX] = {SDE_NONE, 26};
  81. /**
  82. * List of WB bits in CTL_FLUSH
  83. */
  84. static const u32 wb_tbl[WB_MAX] = {SDE_NONE, SDE_NONE, SDE_NONE, 16};
  85. /**
  86. * List of ROT bits in CTL_FLUSH
  87. */
  88. static const u32 rot_tbl[ROT_MAX] = {SDE_NONE, 27};
  89. /**
  90. * List of INTF bits in CTL_FLUSH
  91. */
  92. static const u32 intf_tbl[INTF_MAX] = {SDE_NONE, 31, 30, 29, 28};
  93. /**
  94. * Below definitions are for CTL supporting SDE_CTL_ACTIVE_CFG,
  95. * certain blocks have the individual flush control as well,
  96. * for such blocks flush is done by flushing individual control and
  97. * top level control.
  98. */
  99. /**
  100. * List of SSPP bits in CTL_FETCH_PIPE_ACTIVE
  101. */
  102. static const u32 fetch_tbl[SSPP_MAX] = {CTL_INVALID_BIT, 16, 17, 18, 19,
  103. CTL_INVALID_BIT, CTL_INVALID_BIT, CTL_INVALID_BIT, CTL_INVALID_BIT, 0,
  104. 1, 2, 3, CTL_INVALID_BIT, CTL_INVALID_BIT};
  105. /**
  106. * list of WB bits in CTL_WB_FLUSH
  107. */
  108. static const u32 wb_flush_tbl[WB_MAX] = {SDE_NONE, SDE_NONE, SDE_NONE, 2};
  109. /**
  110. * list of INTF bits in CTL_INTF_FLUSH
  111. */
  112. static const u32 intf_flush_tbl[INTF_MAX] = {SDE_NONE, 0, 1, 2, 3, 4, 5};
  113. /**
  114. * list of DSC bits in CTL_DSC_FLUSH
  115. */
  116. static const u32 dsc_flush_tbl[DSC_MAX] = {SDE_NONE, 0, 1, 2, 3, 4, 5};
  117. /**
  118. * list of VDC bits in CTL_DSC_FLUSH
  119. */
  120. static const u32 vdc_flush_tbl[DSC_MAX] = {SDE_NONE, 16, 17};
  121. /**
  122. * list of MERGE_3D bits in CTL_MERGE_3D_FLUSH
  123. */
  124. static const u32 merge_3d_tbl[MERGE_3D_MAX] = {SDE_NONE, 0, 1, 2};
  125. /**
  126. * list of CDM bits in CTL_CDM_FLUSH
  127. */
  128. static const u32 cdm_flush_tbl[CDM_MAX] = {SDE_NONE, 0};
  129. /**
  130. * list of CWB bits in CTL_CWB_FLUSH
  131. */
  132. static const u32 cwb_flush_tbl[CWB_MAX] = {SDE_NONE, SDE_NONE, 1, 2, 3,
  133. 4, 5};
  134. /**
  135. * list of DSPP sub-blk flush bits in CTL_DSPP_x_FLUSH
  136. */
  137. static const u32 dspp_sub_blk_flush_tbl[SDE_DSPP_MAX] = {
  138. [SDE_DSPP_IGC] = 2,
  139. [SDE_DSPP_PCC] = 4,
  140. [SDE_DSPP_GC] = 5,
  141. [SDE_DSPP_HSIC] = 0,
  142. [SDE_DSPP_MEMCOLOR] = 0,
  143. [SDE_DSPP_SIXZONE] = 0,
  144. [SDE_DSPP_GAMUT] = 3,
  145. [SDE_DSPP_DITHER] = 0,
  146. [SDE_DSPP_HIST] = 0,
  147. [SDE_DSPP_VLUT] = 1,
  148. [SDE_DSPP_AD] = 0,
  149. [SDE_DSPP_LTM] = 7,
  150. [SDE_DSPP_SPR] = 8,
  151. [SDE_DSPP_DEMURA] = 9,
  152. [SDE_DSPP_RC] = 10,
  153. [SDE_DSPP_SB] = 31,
  154. };
  155. /**
  156. * struct ctl_sspp_stage_reg_map: Describes bit layout for a sspp stage cfg
  157. * @ext: Index to indicate LAYER_x_EXT id for given sspp
  158. * @start: Start position of blend stage bits for given sspp
  159. * @bits: Number of bits from @start assigned for given sspp
  160. * @sec_bit_mask: Bitmask to add to LAYER_x_EXT1 for missing bit of sspp
  161. */
  162. struct ctl_sspp_stage_reg_map {
  163. u32 ext;
  164. u32 start;
  165. u32 bits;
  166. u32 sec_bit_mask;
  167. };
  168. /* list of ctl_sspp_stage_reg_map for all the sppp */
  169. static const struct ctl_sspp_stage_reg_map
  170. sspp_reg_cfg_tbl[SSPP_MAX][CTL_SSPP_MAX_RECTS] = {
  171. /* SSPP_NONE */{ {0, 0, 0, 0}, {0, 0, 0, 0} },
  172. /* SSPP_VIG0 */{ {0, 0, 3, BIT(0)}, {3, 0, 4, 0} },
  173. /* SSPP_VIG1 */{ {0, 3, 3, BIT(2)}, {3, 4, 4, 0} },
  174. /* SSPP_VIG2 */{ {0, 6, 3, BIT(4)}, {3, 8, 4, 0} },
  175. /* SSPP_VIG3 */{ {0, 26, 3, BIT(6)}, {3, 12, 4, 0} },
  176. /* SSPP_RGB0 */{ {0, 9, 3, BIT(8)}, {0, 0, 0, 0} },
  177. /* SSPP_RGB1 */{ {0, 12, 3, BIT(10)}, {0, 0, 0, 0} },
  178. /* SSPP_RGB2 */{ {0, 15, 3, BIT(12)}, {0, 0, 0, 0} },
  179. /* SSPP_RGB3 */{ {0, 29, 3, BIT(14)}, {0, 0, 0, 0} },
  180. /* SSPP_DMA0 */{ {0, 18, 3, BIT(16)}, {2, 8, 4, 0} },
  181. /* SSPP_DMA1 */{ {0, 21, 3, BIT(18)}, {2, 12, 4, 0} },
  182. /* SSPP_DMA2 */{ {2, 0, 4, 0}, {2, 16, 4, 0} },
  183. /* SSPP_DMA3 */{ {2, 4, 4, 0}, {2, 20, 4, 0} },
  184. /* SSPP_CURSOR0 */{ {1, 20, 4, 0}, {0, 0, 0, 0} },
  185. /* SSPP_CURSOR1 */{ {0, 26, 4, 0}, {0, 0, 0, 0} }
  186. };
  187. /**
  188. * Individual flush bit in CTL_FLUSH
  189. */
  190. #define WB_IDX 16
  191. #define DSC_IDX 22
  192. #define MERGE_3D_IDX 23
  193. #define CDM_IDX 26
  194. #define CWB_IDX 28
  195. #define DSPP_IDX 29
  196. #define PERIPH_IDX 30
  197. #define INTF_IDX 31
  198. /* struct ctl_hw_flush_cfg: Defines the active ctl hw flush config,
  199. * See enum ctl_hw_flush_type for types
  200. * @blk_max: Maximum hw idx
  201. * @flush_reg: Register with corresponding active ctl hw
  202. * @flush_idx: Corresponding index in ctl flush
  203. * @flush_mask_idx: Index of hw flush mask to use
  204. * @flush_tbl: Pointer to flush table
  205. */
  206. struct ctl_hw_flush_cfg {
  207. u32 blk_max;
  208. u32 flush_reg;
  209. u32 flush_idx;
  210. u32 flush_mask_idx;
  211. const u32 *flush_tbl;
  212. };
  213. static const struct ctl_hw_flush_cfg
  214. ctl_hw_flush_cfg_tbl_v1[SDE_HW_FLUSH_MAX] = {
  215. {WB_MAX, CTL_WB_FLUSH, WB_IDX, SDE_HW_FLUSH_WB,
  216. wb_flush_tbl}, /* SDE_HW_FLUSH_WB */
  217. {DSC_MAX, CTL_DSC_FLUSH, DSC_IDX, SDE_HW_FLUSH_DSC,
  218. dsc_flush_tbl}, /* SDE_HW_FLUSH_DSC */
  219. /* VDC is flushed to dsc, flush_reg = 0 so flush is done only once */
  220. {VDC_MAX, 0, DSC_IDX, SDE_HW_FLUSH_DSC,
  221. vdc_flush_tbl}, /* SDE_HW_FLUSH_VDC */
  222. {MERGE_3D_MAX, CTL_MERGE_3D_FLUSH, MERGE_3D_IDX, SDE_HW_FLUSH_MERGE_3D,
  223. merge_3d_tbl}, /* SDE_HW_FLUSH_MERGE_3D */
  224. {CDM_MAX, CTL_CDM_FLUSH, CDM_IDX, SDE_HW_FLUSH_CDM,
  225. cdm_flush_tbl}, /* SDE_HW_FLUSH_CDM */
  226. {CWB_MAX, CTL_CWB_FLUSH, CWB_IDX, SDE_HW_FLUSH_CWB,
  227. cwb_flush_tbl}, /* SDE_HW_FLUSH_CWB */
  228. {INTF_MAX, CTL_PERIPH_FLUSH, PERIPH_IDX, SDE_HW_FLUSH_PERIPH,
  229. intf_flush_tbl }, /* SDE_HW_FLUSH_PERIPH */
  230. {INTF_MAX, CTL_INTF_FLUSH, INTF_IDX, SDE_HW_FLUSH_INTF,
  231. intf_flush_tbl } /* SDE_HW_FLUSH_INTF */
  232. };
  233. struct sde_ctl_mixer_cfg {
  234. u32 cfg;
  235. u32 ext;
  236. u32 ext2;
  237. u32 ext3;
  238. };
  239. static struct sde_ctl_cfg *_ctl_offset(enum sde_ctl ctl,
  240. struct sde_mdss_cfg *m,
  241. void __iomem *addr,
  242. struct sde_hw_blk_reg_map *b)
  243. {
  244. int i;
  245. for (i = 0; i < m->ctl_count; i++) {
  246. if (ctl == m->ctl[i].id) {
  247. b->base_off = addr;
  248. b->blk_off = m->ctl[i].base;
  249. b->length = m->ctl[i].len;
  250. b->hwversion = m->hwversion;
  251. b->log_mask = SDE_DBG_MASK_CTL;
  252. return &m->ctl[i];
  253. }
  254. }
  255. return ERR_PTR(-ENOMEM);
  256. }
  257. static int _mixer_stages(const struct sde_lm_cfg *mixer, int count,
  258. enum sde_lm lm)
  259. {
  260. int i;
  261. int stages = -EINVAL;
  262. for (i = 0; i < count; i++) {
  263. if (lm == mixer[i].id) {
  264. stages = mixer[i].sblk->maxblendstages;
  265. break;
  266. }
  267. }
  268. return stages;
  269. }
  270. static inline bool _is_dspp_flush_pending(struct sde_hw_ctl *ctx)
  271. {
  272. int i;
  273. for (i = 0; i < CTL_MAX_DSPP_COUNT; i++) {
  274. if (ctx->flush.pending_dspp_flush_masks[i])
  275. return true;
  276. }
  277. return false;
  278. }
  279. static inline int sde_hw_ctl_trigger_start(struct sde_hw_ctl *ctx)
  280. {
  281. if (!ctx)
  282. return -EINVAL;
  283. SDE_REG_WRITE(&ctx->hw, CTL_START, 0x1);
  284. return 0;
  285. }
  286. static inline int sde_hw_ctl_get_start_state(struct sde_hw_ctl *ctx)
  287. {
  288. if (!ctx)
  289. return -EINVAL;
  290. return SDE_REG_READ(&ctx->hw, CTL_START);
  291. }
  292. static inline int sde_hw_ctl_trigger_pending(struct sde_hw_ctl *ctx)
  293. {
  294. if (!ctx)
  295. return -EINVAL;
  296. SDE_REG_WRITE(&ctx->hw, CTL_PREPARE, 0x1);
  297. return 0;
  298. }
  299. static inline int sde_hw_ctl_clear_pending_flush(struct sde_hw_ctl *ctx)
  300. {
  301. if (!ctx)
  302. return -EINVAL;
  303. memset(&ctx->flush, 0, sizeof(ctx->flush));
  304. return 0;
  305. }
  306. static inline int sde_hw_ctl_update_pending_flush(struct sde_hw_ctl *ctx,
  307. struct sde_ctl_flush_cfg *cfg)
  308. {
  309. if (!ctx || !cfg)
  310. return -EINVAL;
  311. ctx->flush.pending_flush_mask |= cfg->pending_flush_mask;
  312. return 0;
  313. }
  314. static int sde_hw_ctl_get_pending_flush(struct sde_hw_ctl *ctx,
  315. struct sde_ctl_flush_cfg *cfg)
  316. {
  317. if (!ctx || !cfg)
  318. return -EINVAL;
  319. memcpy(cfg, &ctx->flush, sizeof(*cfg));
  320. return 0;
  321. }
  322. static inline int sde_hw_ctl_trigger_flush(struct sde_hw_ctl *ctx)
  323. {
  324. if (!ctx)
  325. return -EINVAL;
  326. SDE_REG_WRITE(&ctx->hw, CTL_FLUSH, ctx->flush.pending_flush_mask);
  327. return 0;
  328. }
  329. static inline u32 sde_hw_ctl_get_flush_register(struct sde_hw_ctl *ctx)
  330. {
  331. struct sde_hw_blk_reg_map *c;
  332. u32 rot_op_mode;
  333. if (!ctx)
  334. return 0;
  335. c = &ctx->hw;
  336. rot_op_mode = SDE_REG_READ(c, CTL_ROT_TOP) & 0x3;
  337. /* rotate flush bit is undefined if offline mode, so ignore it */
  338. if (rot_op_mode == SDE_CTL_ROT_OP_MODE_OFFLINE)
  339. return SDE_REG_READ(c, CTL_FLUSH) & ~CTL_FLUSH_MASK_ROT;
  340. return SDE_REG_READ(c, CTL_FLUSH);
  341. }
  342. static inline void sde_hw_ctl_uidle_enable(struct sde_hw_ctl *ctx, bool enable)
  343. {
  344. u32 val;
  345. if (!ctx)
  346. return;
  347. val = SDE_REG_READ(&ctx->hw, CTL_UIDLE_ACTIVE);
  348. val = (val & ~BIT(0)) | (enable ? BIT(0) : 0);
  349. SDE_REG_WRITE(&ctx->hw, CTL_UIDLE_ACTIVE, val);
  350. }
  351. static inline int sde_hw_ctl_update_bitmask_sspp(struct sde_hw_ctl *ctx,
  352. enum sde_sspp sspp,
  353. bool enable)
  354. {
  355. if (!ctx)
  356. return -EINVAL;
  357. if (!(sspp > SSPP_NONE) || !(sspp < SSPP_MAX)) {
  358. SDE_ERROR("Unsupported pipe %d\n", sspp);
  359. return -EINVAL;
  360. }
  361. UPDATE_MASK(ctx->flush.pending_flush_mask, sspp_tbl[sspp], enable);
  362. return 0;
  363. }
  364. static inline int sde_hw_ctl_update_bitmask_mixer(struct sde_hw_ctl *ctx,
  365. enum sde_lm lm,
  366. bool enable)
  367. {
  368. if (!ctx)
  369. return -EINVAL;
  370. if (!(lm > SDE_NONE) || !(lm < LM_MAX)) {
  371. SDE_ERROR("Unsupported mixer %d\n", lm);
  372. return -EINVAL;
  373. }
  374. UPDATE_MASK(ctx->flush.pending_flush_mask, mixer_tbl[lm], enable);
  375. ctx->flush.pending_flush_mask |= CTL_FLUSH_MASK_CTL;
  376. return 0;
  377. }
  378. static inline int sde_hw_ctl_update_bitmask_dspp(struct sde_hw_ctl *ctx,
  379. enum sde_dspp dspp,
  380. bool enable)
  381. {
  382. if (!ctx)
  383. return -EINVAL;
  384. if (!(dspp > SDE_NONE) || !(dspp < DSPP_MAX)) {
  385. SDE_ERROR("Unsupported dspp %d\n", dspp);
  386. return -EINVAL;
  387. }
  388. UPDATE_MASK(ctx->flush.pending_flush_mask, dspp_tbl[dspp], enable);
  389. return 0;
  390. }
  391. static inline int sde_hw_ctl_update_bitmask_dspp_pavlut(struct sde_hw_ctl *ctx,
  392. enum sde_dspp dspp, bool enable)
  393. {
  394. if (!ctx)
  395. return -EINVAL;
  396. if (!(dspp > SDE_NONE) || !(dspp < DSPP_MAX)) {
  397. SDE_ERROR("Unsupported dspp %d\n", dspp);
  398. return -EINVAL;
  399. }
  400. UPDATE_MASK(ctx->flush.pending_flush_mask, dspp_pav_tbl[dspp], enable);
  401. return 0;
  402. }
  403. static inline int sde_hw_ctl_update_bitmask_cdm(struct sde_hw_ctl *ctx,
  404. enum sde_cdm cdm,
  405. bool enable)
  406. {
  407. if (!ctx)
  408. return -EINVAL;
  409. if (!(cdm > SDE_NONE) || !(cdm < CDM_MAX) || (cdm == CDM_1)) {
  410. SDE_ERROR("Unsupported cdm %d\n", cdm);
  411. return -EINVAL;
  412. }
  413. UPDATE_MASK(ctx->flush.pending_flush_mask, cdm_tbl[cdm], enable);
  414. return 0;
  415. }
  416. static inline int sde_hw_ctl_update_bitmask_wb(struct sde_hw_ctl *ctx,
  417. enum sde_wb wb, bool enable)
  418. {
  419. if (!ctx)
  420. return -EINVAL;
  421. if (!(wb > SDE_NONE) || !(wb < WB_MAX) ||
  422. (wb == WB_0) || (wb == WB_1)) {
  423. SDE_ERROR("Unsupported wb %d\n", wb);
  424. return -EINVAL;
  425. }
  426. UPDATE_MASK(ctx->flush.pending_flush_mask, wb_tbl[wb], enable);
  427. return 0;
  428. }
  429. static inline int sde_hw_ctl_update_bitmask_intf(struct sde_hw_ctl *ctx,
  430. enum sde_intf intf, bool enable)
  431. {
  432. if (!ctx)
  433. return -EINVAL;
  434. if (!(intf > SDE_NONE) || !(intf < INTF_MAX) || (intf > INTF_4)) {
  435. SDE_ERROR("Unsupported intf %d\n", intf);
  436. return -EINVAL;
  437. }
  438. UPDATE_MASK(ctx->flush.pending_flush_mask, intf_tbl[intf], enable);
  439. return 0;
  440. }
  441. static inline int sde_hw_ctl_update_bitmask(struct sde_hw_ctl *ctx,
  442. enum ctl_hw_flush_type type, u32 blk_idx, bool enable)
  443. {
  444. int ret = 0;
  445. if (!ctx)
  446. return -EINVAL;
  447. switch (type) {
  448. case SDE_HW_FLUSH_CDM:
  449. ret = sde_hw_ctl_update_bitmask_cdm(ctx, blk_idx, enable);
  450. break;
  451. case SDE_HW_FLUSH_WB:
  452. ret = sde_hw_ctl_update_bitmask_wb(ctx, blk_idx, enable);
  453. break;
  454. case SDE_HW_FLUSH_INTF:
  455. ret = sde_hw_ctl_update_bitmask_intf(ctx, blk_idx, enable);
  456. break;
  457. default:
  458. break;
  459. }
  460. return ret;
  461. }
  462. static inline int sde_hw_ctl_update_bitmask_v1(struct sde_hw_ctl *ctx,
  463. enum ctl_hw_flush_type type, u32 blk_idx, bool enable)
  464. {
  465. const struct ctl_hw_flush_cfg *cfg;
  466. if (!ctx || !(type < SDE_HW_FLUSH_MAX))
  467. return -EINVAL;
  468. cfg = &ctl_hw_flush_cfg_tbl_v1[type];
  469. if ((blk_idx <= SDE_NONE) || (blk_idx >= cfg->blk_max)) {
  470. SDE_ERROR("Unsupported hw idx, type:%d, blk_idx:%d, blk_max:%d",
  471. type, blk_idx, cfg->blk_max);
  472. return -EINVAL;
  473. }
  474. UPDATE_MASK(ctx->flush.pending_hw_flush_mask[cfg->flush_mask_idx],
  475. cfg->flush_tbl[blk_idx], enable);
  476. if (ctx->flush.pending_hw_flush_mask[cfg->flush_mask_idx])
  477. UPDATE_MASK(ctx->flush.pending_flush_mask, cfg->flush_idx, 1);
  478. else
  479. UPDATE_MASK(ctx->flush.pending_flush_mask, cfg->flush_idx, 0);
  480. return 0;
  481. }
  482. static inline int sde_hw_ctl_update_pending_flush_v1(
  483. struct sde_hw_ctl *ctx,
  484. struct sde_ctl_flush_cfg *cfg)
  485. {
  486. int i = 0;
  487. if (!ctx || !cfg)
  488. return -EINVAL;
  489. for (i = 0; i < SDE_HW_FLUSH_MAX; i++)
  490. ctx->flush.pending_hw_flush_mask[i] |=
  491. cfg->pending_hw_flush_mask[i];
  492. for (i = 0; i < CTL_MAX_DSPP_COUNT; i++)
  493. ctx->flush.pending_dspp_flush_masks[i] |=
  494. cfg->pending_dspp_flush_masks[i];
  495. ctx->flush.pending_flush_mask |= cfg->pending_flush_mask;
  496. return 0;
  497. }
  498. static inline int sde_hw_ctl_update_bitmask_dspp_subblk(struct sde_hw_ctl *ctx,
  499. enum sde_dspp dspp, u32 sub_blk, bool enable)
  500. {
  501. if (!ctx || dspp < DSPP_0 || dspp >= DSPP_MAX ||
  502. sub_blk < SDE_DSPP_IGC || sub_blk >= SDE_DSPP_MAX) {
  503. SDE_ERROR("invalid args - ctx %s, dspp %d sub_block %d\n",
  504. ctx ? "valid" : "invalid", dspp, sub_blk);
  505. return -EINVAL;
  506. }
  507. UPDATE_MASK(ctx->flush.pending_dspp_flush_masks[dspp - DSPP_0],
  508. dspp_sub_blk_flush_tbl[sub_blk], enable);
  509. if (_is_dspp_flush_pending(ctx))
  510. UPDATE_MASK(ctx->flush.pending_flush_mask, DSPP_IDX, 1);
  511. else
  512. UPDATE_MASK(ctx->flush.pending_flush_mask, DSPP_IDX, 0);
  513. return 0;
  514. }
  515. static void sde_hw_ctl_set_fetch_pipe_active(struct sde_hw_ctl *ctx,
  516. unsigned long *fetch_active)
  517. {
  518. int i;
  519. u32 val = 0;
  520. if (fetch_active) {
  521. for (i = 0; i < SSPP_MAX; i++) {
  522. if (test_bit(i, fetch_active) &&
  523. fetch_tbl[i] != CTL_INVALID_BIT)
  524. val |= BIT(fetch_tbl[i]);
  525. }
  526. }
  527. SDE_REG_WRITE(&ctx->hw, CTL_FETCH_PIPE_ACTIVE, val);
  528. }
  529. static inline void _sde_hw_ctl_write_dspp_flushes(struct sde_hw_ctl *ctx) {
  530. int i;
  531. bool has_dspp_flushes = ctx->caps->features &
  532. BIT(SDE_CTL_UNIFIED_DSPP_FLUSH);
  533. if (!has_dspp_flushes)
  534. return;
  535. for (i = 0; i < CTL_MAX_DSPP_COUNT; i++) {
  536. u32 pending = ctx->flush.pending_dspp_flush_masks[i];
  537. if (pending)
  538. SDE_REG_WRITE(&ctx->hw, CTL_DSPP_0_FLUSH + (i * 4),
  539. pending);
  540. }
  541. }
  542. static inline int sde_hw_ctl_trigger_flush_v1(struct sde_hw_ctl *ctx)
  543. {
  544. int i = 0;
  545. const struct ctl_hw_flush_cfg *cfg = &ctl_hw_flush_cfg_tbl_v1[0];
  546. if (!ctx)
  547. return -EINVAL;
  548. if (ctx->flush.pending_flush_mask & BIT(DSPP_IDX))
  549. _sde_hw_ctl_write_dspp_flushes(ctx);
  550. for (i = 0; i < SDE_HW_FLUSH_MAX; i++)
  551. if (cfg[i].flush_reg &&
  552. ctx->flush.pending_flush_mask &
  553. BIT(cfg[i].flush_idx))
  554. SDE_REG_WRITE(&ctx->hw,
  555. cfg[i].flush_reg,
  556. ctx->flush.pending_hw_flush_mask[i]);
  557. SDE_REG_WRITE(&ctx->hw, CTL_FLUSH, ctx->flush.pending_flush_mask);
  558. return 0;
  559. }
  560. static inline u32 sde_hw_ctl_get_intf_v1(struct sde_hw_ctl *ctx)
  561. {
  562. struct sde_hw_blk_reg_map *c;
  563. u32 intf_active;
  564. if (!ctx) {
  565. pr_err("Invalid input argument\n");
  566. return 0;
  567. }
  568. c = &ctx->hw;
  569. intf_active = SDE_REG_READ(c, CTL_INTF_ACTIVE);
  570. return intf_active;
  571. }
  572. static inline u32 sde_hw_ctl_get_intf(struct sde_hw_ctl *ctx)
  573. {
  574. struct sde_hw_blk_reg_map *c;
  575. u32 ctl_top;
  576. u32 intf_active = 0;
  577. if (!ctx) {
  578. pr_err("Invalid input argument\n");
  579. return 0;
  580. }
  581. c = &ctx->hw;
  582. ctl_top = SDE_REG_READ(c, CTL_TOP);
  583. intf_active = (ctl_top > 0) ?
  584. BIT(ctl_top - 1) : 0;
  585. return intf_active;
  586. }
  587. static u32 sde_hw_ctl_poll_reset_status(struct sde_hw_ctl *ctx, u32 timeout_us)
  588. {
  589. struct sde_hw_blk_reg_map *c;
  590. ktime_t timeout;
  591. u32 status;
  592. if (!ctx)
  593. return 0;
  594. c = &ctx->hw;
  595. timeout = ktime_add_us(ktime_get(), timeout_us);
  596. /*
  597. * it takes around 30us to have mdp finish resetting its ctl path
  598. * poll every 50us so that reset should be completed at 1st poll
  599. */
  600. do {
  601. status = SDE_REG_READ(c, CTL_SW_RESET);
  602. status &= 0x1;
  603. if (status)
  604. usleep_range(20, 50);
  605. } while (status && ktime_compare_safe(ktime_get(), timeout) < 0);
  606. return status;
  607. }
  608. static u32 sde_hw_ctl_get_reset_status(struct sde_hw_ctl *ctx)
  609. {
  610. if (!ctx)
  611. return 0;
  612. return (u32)SDE_REG_READ(&ctx->hw, CTL_SW_RESET);
  613. }
  614. static u32 sde_hw_ctl_get_scheduler_status(struct sde_hw_ctl *ctx)
  615. {
  616. if (!ctx)
  617. return INVALID_CTL_STATUS;
  618. return (u32)SDE_REG_READ(&ctx->hw, CTL_STATUS);
  619. }
  620. static int sde_hw_ctl_reset_control(struct sde_hw_ctl *ctx)
  621. {
  622. struct sde_hw_blk_reg_map *c;
  623. if (!ctx)
  624. return 0;
  625. c = &ctx->hw;
  626. pr_debug("issuing hw ctl reset for ctl:%d\n", ctx->idx);
  627. SDE_REG_WRITE(c, CTL_SW_RESET, 0x1);
  628. if (sde_hw_ctl_poll_reset_status(ctx, SDE_REG_RESET_TIMEOUT_US))
  629. return -EINVAL;
  630. return 0;
  631. }
  632. static void sde_hw_ctl_hard_reset(struct sde_hw_ctl *ctx, bool enable)
  633. {
  634. struct sde_hw_blk_reg_map *c;
  635. if (!ctx)
  636. return;
  637. c = &ctx->hw;
  638. pr_debug("hw ctl hard reset for ctl:%d, %d\n",
  639. ctx->idx - CTL_0, enable);
  640. SDE_REG_WRITE(c, CTL_SW_RESET_OVERRIDE, enable);
  641. }
  642. static int sde_hw_ctl_wait_reset_status(struct sde_hw_ctl *ctx)
  643. {
  644. struct sde_hw_blk_reg_map *c;
  645. u32 status;
  646. if (!ctx)
  647. return 0;
  648. c = &ctx->hw;
  649. status = SDE_REG_READ(c, CTL_SW_RESET);
  650. status &= 0x01;
  651. if (!status)
  652. return 0;
  653. pr_debug("hw ctl reset is set for ctl:%d\n", ctx->idx);
  654. if (sde_hw_ctl_poll_reset_status(ctx, SDE_REG_WAIT_RESET_TIMEOUT_US)) {
  655. pr_err("hw recovery is not complete for ctl:%d\n", ctx->idx);
  656. return -EINVAL;
  657. }
  658. return 0;
  659. }
  660. static void sde_hw_ctl_clear_all_blendstages(struct sde_hw_ctl *ctx)
  661. {
  662. struct sde_hw_blk_reg_map *c;
  663. int i;
  664. if (!ctx)
  665. return;
  666. c = &ctx->hw;
  667. for (i = 0; i < ctx->mixer_count; i++) {
  668. int mixer_id = ctx->mixer_hw_caps[i].id;
  669. SDE_REG_WRITE(c, CTL_LAYER(mixer_id), 0);
  670. SDE_REG_WRITE(c, CTL_LAYER_EXT(mixer_id), 0);
  671. SDE_REG_WRITE(c, CTL_LAYER_EXT2(mixer_id), 0);
  672. SDE_REG_WRITE(c, CTL_LAYER_EXT3(mixer_id), 0);
  673. }
  674. SDE_REG_WRITE(c, CTL_FETCH_PIPE_ACTIVE, 0);
  675. }
  676. static void _sde_hw_ctl_get_mixer_cfg(struct sde_hw_ctl *ctx,
  677. struct sde_hw_stage_cfg *stage_cfg, int stages,
  678. struct sde_ctl_mixer_cfg *cfg)
  679. {
  680. int i, j, pipes_per_stage;
  681. u32 mix, ext;
  682. if (test_bit(SDE_MIXER_SOURCESPLIT, &ctx->mixer_hw_caps->features))
  683. pipes_per_stage = PIPES_PER_STAGE;
  684. else
  685. pipes_per_stage = 1;
  686. for (i = 0; i <= stages; i++) {
  687. /* overflow to ext register if 'i + 1 > 7' */
  688. mix = (i + 1) & 0x7;
  689. ext = i >= 7;
  690. for (j = 0 ; j < pipes_per_stage; j++) {
  691. enum sde_sspp pipe = stage_cfg->stage[i][j];
  692. enum sde_sspp_multirect_index rect_index =
  693. stage_cfg->multirect_index[i][j];
  694. switch (pipe) {
  695. case SSPP_VIG0:
  696. if (rect_index == SDE_SSPP_RECT_1) {
  697. cfg->ext3 |= ((i + 1) & 0xF) << 0;
  698. } else {
  699. cfg->cfg |= mix << 0;
  700. cfg->ext |= ext << 0;
  701. }
  702. break;
  703. case SSPP_VIG1:
  704. if (rect_index == SDE_SSPP_RECT_1) {
  705. cfg->ext3 |= ((i + 1) & 0xF) << 4;
  706. } else {
  707. cfg->cfg |= mix << 3;
  708. cfg->ext |= ext << 2;
  709. }
  710. break;
  711. case SSPP_VIG2:
  712. if (rect_index == SDE_SSPP_RECT_1) {
  713. cfg->ext3 |= ((i + 1) & 0xF) << 8;
  714. } else {
  715. cfg->cfg |= mix << 6;
  716. cfg->ext |= ext << 4;
  717. }
  718. break;
  719. case SSPP_VIG3:
  720. if (rect_index == SDE_SSPP_RECT_1) {
  721. cfg->ext3 |= ((i + 1) & 0xF) << 12;
  722. } else {
  723. cfg->cfg |= mix << 26;
  724. cfg->ext |= ext << 6;
  725. }
  726. break;
  727. case SSPP_RGB0:
  728. cfg->cfg |= mix << 9;
  729. cfg->ext |= ext << 8;
  730. break;
  731. case SSPP_RGB1:
  732. cfg->cfg |= mix << 12;
  733. cfg->ext |= ext << 10;
  734. break;
  735. case SSPP_RGB2:
  736. cfg->cfg |= mix << 15;
  737. cfg->ext |= ext << 12;
  738. break;
  739. case SSPP_RGB3:
  740. cfg->cfg |= mix << 29;
  741. cfg->ext |= ext << 14;
  742. break;
  743. case SSPP_DMA0:
  744. if (rect_index == SDE_SSPP_RECT_1) {
  745. cfg->ext2 |= ((i + 1) & 0xF) << 8;
  746. } else {
  747. cfg->cfg |= mix << 18;
  748. cfg->ext |= ext << 16;
  749. }
  750. break;
  751. case SSPP_DMA1:
  752. if (rect_index == SDE_SSPP_RECT_1) {
  753. cfg->ext2 |= ((i + 1) & 0xF) << 12;
  754. } else {
  755. cfg->cfg |= mix << 21;
  756. cfg->ext |= ext << 18;
  757. }
  758. break;
  759. case SSPP_DMA2:
  760. if (rect_index == SDE_SSPP_RECT_1) {
  761. cfg->ext2 |= ((i + 1) & 0xF) << 16;
  762. } else {
  763. mix |= (i + 1) & 0xF;
  764. cfg->ext2 |= mix << 0;
  765. }
  766. break;
  767. case SSPP_DMA3:
  768. if (rect_index == SDE_SSPP_RECT_1) {
  769. cfg->ext2 |= ((i + 1) & 0xF) << 20;
  770. } else {
  771. mix |= (i + 1) & 0xF;
  772. cfg->ext2 |= mix << 4;
  773. }
  774. break;
  775. case SSPP_CURSOR0:
  776. cfg->ext |= ((i + 1) & 0xF) << 20;
  777. break;
  778. case SSPP_CURSOR1:
  779. cfg->ext |= ((i + 1) & 0xF) << 26;
  780. break;
  781. default:
  782. break;
  783. }
  784. }
  785. }
  786. }
  787. static void sde_hw_ctl_setup_blendstage(struct sde_hw_ctl *ctx,
  788. enum sde_lm lm, struct sde_hw_stage_cfg *stage_cfg)
  789. {
  790. struct sde_hw_blk_reg_map *c;
  791. struct sde_ctl_mixer_cfg cfg = { 0 };
  792. int stages;
  793. if (!ctx)
  794. return;
  795. stages = _mixer_stages(ctx->mixer_hw_caps, ctx->mixer_count, lm);
  796. if (stages < 0)
  797. return;
  798. c = &ctx->hw;
  799. if (stage_cfg)
  800. _sde_hw_ctl_get_mixer_cfg(ctx, stage_cfg, stages, &cfg);
  801. if ((!cfg.cfg && !cfg.ext && !cfg.ext2 && !cfg.ext3) ||
  802. (stage_cfg && !stage_cfg->stage[0][0]))
  803. cfg.cfg |= CTL_MIXER_BORDER_OUT;
  804. SDE_REG_WRITE(c, CTL_LAYER(lm), cfg.cfg);
  805. SDE_REG_WRITE(c, CTL_LAYER_EXT(lm), cfg.ext);
  806. SDE_REG_WRITE(c, CTL_LAYER_EXT2(lm), cfg.ext2);
  807. SDE_REG_WRITE(c, CTL_LAYER_EXT3(lm), cfg.ext3);
  808. }
  809. static u32 sde_hw_ctl_get_staged_sspp(struct sde_hw_ctl *ctx, enum sde_lm lm,
  810. struct sde_sspp_index_info *info, u32 info_max_cnt)
  811. {
  812. int i, j;
  813. u32 count = 0;
  814. u32 mask = 0;
  815. bool staged;
  816. u32 mixercfg[CTL_NUM_EXT];
  817. struct sde_hw_blk_reg_map *c;
  818. const struct ctl_sspp_stage_reg_map *sspp_cfg;
  819. if (!ctx || (lm >= LM_MAX) || !info)
  820. return count;
  821. c = &ctx->hw;
  822. mixercfg[0] = SDE_REG_READ(c, CTL_LAYER(lm));
  823. mixercfg[1] = SDE_REG_READ(c, CTL_LAYER_EXT(lm));
  824. mixercfg[2] = SDE_REG_READ(c, CTL_LAYER_EXT2(lm));
  825. mixercfg[3] = SDE_REG_READ(c, CTL_LAYER_EXT3(lm));
  826. for (i = SSPP_VIG0; i < SSPP_MAX; i++) {
  827. for (j = 0; j < CTL_SSPP_MAX_RECTS; j++) {
  828. if (count >= info_max_cnt)
  829. goto end;
  830. sspp_cfg = &sspp_reg_cfg_tbl[i][j];
  831. if (!sspp_cfg->bits || sspp_cfg->ext >= CTL_NUM_EXT)
  832. continue;
  833. mask = ((0x1 << sspp_cfg->bits) - 1) << sspp_cfg->start;
  834. staged = mixercfg[sspp_cfg->ext] & mask;
  835. if (!staged)
  836. staged = mixercfg[1] & sspp_cfg->sec_bit_mask;
  837. if (staged) {
  838. info[count].sspp = i;
  839. info[count].is_virtual = j;
  840. count++;
  841. }
  842. }
  843. }
  844. end:
  845. return count;
  846. }
  847. static int sde_hw_ctl_intf_cfg_v1(struct sde_hw_ctl *ctx,
  848. struct sde_hw_intf_cfg_v1 *cfg)
  849. {
  850. struct sde_hw_blk_reg_map *c;
  851. u32 intf_active = 0;
  852. u32 wb_active = 0;
  853. u32 merge_3d_active = 0;
  854. u32 cwb_active = 0;
  855. u32 mode_sel = 0xf0000000;
  856. u32 cdm_active = 0;
  857. u32 intf_master = 0;
  858. u32 i;
  859. if (!ctx)
  860. return -EINVAL;
  861. c = &ctx->hw;
  862. for (i = 0; i < cfg->intf_count; i++) {
  863. if (cfg->intf[i])
  864. intf_active |= BIT(cfg->intf[i] - INTF_0);
  865. }
  866. if (cfg->intf_count > 1)
  867. intf_master = BIT(cfg->intf_master - INTF_0);
  868. for (i = 0; i < cfg->wb_count; i++) {
  869. if (cfg->wb[i])
  870. wb_active |= BIT(cfg->wb[i] - WB_0);
  871. }
  872. for (i = 0; i < cfg->merge_3d_count; i++) {
  873. if (cfg->merge_3d[i])
  874. merge_3d_active |= BIT(cfg->merge_3d[i] - MERGE_3D_0);
  875. }
  876. for (i = 0; i < cfg->cwb_count; i++) {
  877. if (cfg->cwb[i])
  878. cwb_active |= BIT(cfg->cwb[i] - CWB_0);
  879. }
  880. for (i = 0; i < cfg->cdm_count; i++) {
  881. if (cfg->cdm[i])
  882. cdm_active |= BIT(cfg->cdm[i] - CDM_0);
  883. }
  884. if (cfg->intf_mode_sel == SDE_CTL_MODE_SEL_CMD)
  885. mode_sel |= BIT(17);
  886. SDE_REG_WRITE(c, CTL_TOP, mode_sel);
  887. SDE_REG_WRITE(c, CTL_WB_ACTIVE, wb_active);
  888. SDE_REG_WRITE(c, CTL_CWB_ACTIVE, cwb_active);
  889. SDE_REG_WRITE(c, CTL_INTF_ACTIVE, intf_active);
  890. SDE_REG_WRITE(c, CTL_CDM_ACTIVE, cdm_active);
  891. SDE_REG_WRITE(c, CTL_MERGE_3D_ACTIVE, merge_3d_active);
  892. SDE_REG_WRITE(c, CTL_INTF_MASTER, intf_master);
  893. return 0;
  894. }
  895. static int sde_hw_ctl_reset_post_disable(struct sde_hw_ctl *ctx,
  896. struct sde_hw_intf_cfg_v1 *cfg, u32 merge_3d_idx)
  897. {
  898. struct sde_hw_blk_reg_map *c;
  899. u32 intf_active = 0, wb_active = 0, merge_3d_active = 0;
  900. u32 intf_flush = 0, wb_flush = 0;
  901. u32 i;
  902. if (!ctx || !cfg) {
  903. SDE_ERROR("invalid hw_ctl or hw_intf blk\n");
  904. return -EINVAL;
  905. }
  906. c = &ctx->hw;
  907. for (i = 0; i < cfg->intf_count; i++) {
  908. if (cfg->intf[i]) {
  909. intf_active &= ~BIT(cfg->intf[i] - INTF_0);
  910. intf_flush |= BIT(cfg->intf[i] - INTF_0);
  911. }
  912. }
  913. for (i = 0; i < cfg->wb_count; i++) {
  914. if (cfg->wb[i]) {
  915. wb_active &= ~BIT(cfg->wb[i] - WB_0);
  916. wb_flush |= BIT(cfg->wb[i] - WB_0);
  917. }
  918. }
  919. if (merge_3d_idx) {
  920. /* disable and flush merge3d_blk */
  921. merge_3d_active &= ~BIT(merge_3d_idx - MERGE_3D_0);
  922. ctx->flush.pending_hw_flush_mask[SDE_HW_FLUSH_MERGE_3D] =
  923. BIT(merge_3d_idx - MERGE_3D_0);
  924. UPDATE_MASK(ctx->flush.pending_flush_mask, MERGE_3D_IDX, 1);
  925. SDE_REG_WRITE(c, CTL_MERGE_3D_ACTIVE, merge_3d_active);
  926. }
  927. sde_hw_ctl_clear_all_blendstages(ctx);
  928. if (cfg->intf_count) {
  929. ctx->flush.pending_hw_flush_mask[SDE_HW_FLUSH_INTF] =
  930. intf_flush;
  931. UPDATE_MASK(ctx->flush.pending_flush_mask, INTF_IDX, 1);
  932. SDE_REG_WRITE(c, CTL_INTF_ACTIVE, intf_active);
  933. }
  934. if (cfg->wb_count) {
  935. ctx->flush.pending_hw_flush_mask[SDE_HW_FLUSH_WB] = wb_flush;
  936. UPDATE_MASK(ctx->flush.pending_flush_mask, WB_IDX, 1);
  937. SDE_REG_WRITE(c, CTL_WB_ACTIVE, wb_active);
  938. }
  939. return 0;
  940. }
  941. static int sde_hw_ctl_update_intf_cfg(struct sde_hw_ctl *ctx,
  942. struct sde_hw_intf_cfg_v1 *cfg, bool enable)
  943. {
  944. int i;
  945. u32 cwb_active = 0;
  946. u32 merge_3d_active = 0;
  947. u32 wb_active = 0;
  948. u32 dsc_active = 0;
  949. u32 vdc_active = 0;
  950. struct sde_hw_blk_reg_map *c;
  951. if (!ctx)
  952. return -EINVAL;
  953. c = &ctx->hw;
  954. if (cfg->cwb_count) {
  955. cwb_active = SDE_REG_READ(c, CTL_CWB_ACTIVE);
  956. for (i = 0; i < cfg->cwb_count; i++) {
  957. if (cfg->cwb[i])
  958. UPDATE_ACTIVE(cwb_active,
  959. (cfg->cwb[i] - CWB_0),
  960. enable);
  961. }
  962. wb_active = enable ? BIT(2) : 0;
  963. SDE_REG_WRITE(c, CTL_CWB_ACTIVE, cwb_active);
  964. SDE_REG_WRITE(c, CTL_WB_ACTIVE, wb_active);
  965. }
  966. if (cfg->merge_3d_count) {
  967. merge_3d_active = SDE_REG_READ(c, CTL_MERGE_3D_ACTIVE);
  968. for (i = 0; i < cfg->merge_3d_count; i++) {
  969. if (cfg->merge_3d[i])
  970. UPDATE_ACTIVE(merge_3d_active,
  971. (cfg->merge_3d[i] - MERGE_3D_0),
  972. enable);
  973. }
  974. SDE_REG_WRITE(c, CTL_MERGE_3D_ACTIVE, merge_3d_active);
  975. }
  976. if (cfg->dsc_count) {
  977. dsc_active = SDE_REG_READ(c, CTL_DSC_ACTIVE);
  978. for (i = 0; i < cfg->dsc_count; i++) {
  979. if (cfg->dsc[i])
  980. UPDATE_ACTIVE(dsc_active,
  981. (cfg->dsc[i] - DSC_0), enable);
  982. }
  983. SDE_REG_WRITE(c, CTL_DSC_ACTIVE, dsc_active);
  984. }
  985. if (cfg->vdc_count) {
  986. vdc_active = SDE_REG_READ(c, CTL_DSC_ACTIVE);
  987. for (i = 0; i < cfg->vdc_count; i++) {
  988. if (cfg->vdc[i])
  989. UPDATE_ACTIVE(vdc_active,
  990. VDC_IDX(cfg->vdc[i] - VDC_0), enable);
  991. }
  992. SDE_REG_WRITE(c, CTL_DSC_ACTIVE, vdc_active);
  993. }
  994. return 0;
  995. }
  996. static int sde_hw_ctl_intf_cfg(struct sde_hw_ctl *ctx,
  997. struct sde_hw_intf_cfg *cfg)
  998. {
  999. struct sde_hw_blk_reg_map *c;
  1000. u32 intf_cfg = 0;
  1001. if (!ctx)
  1002. return -EINVAL;
  1003. c = &ctx->hw;
  1004. intf_cfg |= (cfg->intf & 0xF) << 4;
  1005. if (cfg->wb)
  1006. intf_cfg |= (cfg->wb & 0x3) + 2;
  1007. if (cfg->mode_3d) {
  1008. intf_cfg |= BIT(19);
  1009. intf_cfg |= (cfg->mode_3d - 0x1) << 20;
  1010. }
  1011. switch (cfg->intf_mode_sel) {
  1012. case SDE_CTL_MODE_SEL_VID:
  1013. intf_cfg &= ~BIT(17);
  1014. intf_cfg &= ~(0x3 << 15);
  1015. break;
  1016. case SDE_CTL_MODE_SEL_CMD:
  1017. intf_cfg |= BIT(17);
  1018. intf_cfg |= ((cfg->stream_sel & 0x3) << 15);
  1019. break;
  1020. default:
  1021. pr_err("unknown interface type %d\n", cfg->intf_mode_sel);
  1022. return -EINVAL;
  1023. }
  1024. SDE_REG_WRITE(c, CTL_TOP, intf_cfg);
  1025. return 0;
  1026. }
  1027. static void sde_hw_ctl_update_wb_cfg(struct sde_hw_ctl *ctx,
  1028. struct sde_hw_intf_cfg *cfg, bool enable)
  1029. {
  1030. struct sde_hw_blk_reg_map *c = &ctx->hw;
  1031. u32 intf_cfg = 0;
  1032. if (!cfg->wb)
  1033. return;
  1034. intf_cfg = SDE_REG_READ(c, CTL_TOP);
  1035. if (enable)
  1036. intf_cfg |= (cfg->wb & 0x3) + 2;
  1037. else
  1038. intf_cfg &= ~((cfg->wb & 0x3) + 2);
  1039. SDE_REG_WRITE(c, CTL_TOP, intf_cfg);
  1040. }
  1041. static inline u32 sde_hw_ctl_read_ctl_top(struct sde_hw_ctl *ctx)
  1042. {
  1043. struct sde_hw_blk_reg_map *c;
  1044. u32 ctl_top;
  1045. if (!ctx) {
  1046. pr_err("Invalid input argument\n");
  1047. return 0;
  1048. }
  1049. c = &ctx->hw;
  1050. ctl_top = SDE_REG_READ(c, CTL_TOP);
  1051. return ctl_top;
  1052. }
  1053. static inline u32 sde_hw_ctl_read_ctl_layers(struct sde_hw_ctl *ctx, int index)
  1054. {
  1055. struct sde_hw_blk_reg_map *c;
  1056. u32 ctl_top;
  1057. if (!ctx) {
  1058. pr_err("Invalid input argument\n");
  1059. return 0;
  1060. }
  1061. c = &ctx->hw;
  1062. ctl_top = SDE_REG_READ(c, CTL_LAYER(index));
  1063. pr_debug("Ctl_layer value = 0x%x\n", ctl_top);
  1064. return ctl_top;
  1065. }
  1066. static inline bool sde_hw_ctl_read_active_status(struct sde_hw_ctl *ctx,
  1067. enum sde_hw_blk_type blk, int index)
  1068. {
  1069. struct sde_hw_blk_reg_map *c;
  1070. if (!ctx) {
  1071. pr_err("Invalid input argument\n");
  1072. return 0;
  1073. }
  1074. c = &ctx->hw;
  1075. switch (blk) {
  1076. case SDE_HW_BLK_MERGE_3D:
  1077. return (SDE_REG_READ(c, CTL_MERGE_3D_ACTIVE) &
  1078. BIT(index - MERGE_3D_0)) ? true : false;
  1079. case SDE_HW_BLK_DSC:
  1080. return (SDE_REG_READ(c, CTL_DSC_ACTIVE) &
  1081. BIT(index - DSC_0)) ? true : false;
  1082. case SDE_HW_BLK_WB:
  1083. return (SDE_REG_READ(c, CTL_WB_ACTIVE) &
  1084. BIT(index - WB_0)) ? true : false;
  1085. case SDE_HW_BLK_CDM:
  1086. return (SDE_REG_READ(c, CTL_CDM_ACTIVE) &
  1087. BIT(index - CDM_0)) ? true : false;
  1088. case SDE_HW_BLK_INTF:
  1089. return (SDE_REG_READ(c, CTL_INTF_ACTIVE) &
  1090. BIT(index - INTF_0)) ? true : false;
  1091. default:
  1092. pr_err("unsupported blk %d\n", blk);
  1093. return false;
  1094. };
  1095. return false;
  1096. }
  1097. static int sde_hw_reg_dma_flush(struct sde_hw_ctl *ctx, bool blocking)
  1098. {
  1099. struct sde_hw_reg_dma_ops *ops = sde_reg_dma_get_ops();
  1100. if (!ctx)
  1101. return -EINVAL;
  1102. if (ops && ops->last_command)
  1103. return ops->last_command(ctx, DMA_CTL_QUEUE0,
  1104. (blocking ? REG_DMA_WAIT4_COMP : REG_DMA_NOWAIT));
  1105. return 0;
  1106. }
  1107. static void _setup_ctl_ops(struct sde_hw_ctl_ops *ops,
  1108. unsigned long cap)
  1109. {
  1110. if (cap & BIT(SDE_CTL_ACTIVE_CFG)) {
  1111. ops->update_pending_flush =
  1112. sde_hw_ctl_update_pending_flush_v1;
  1113. ops->trigger_flush = sde_hw_ctl_trigger_flush_v1;
  1114. ops->setup_intf_cfg_v1 = sde_hw_ctl_intf_cfg_v1;
  1115. ops->update_intf_cfg = sde_hw_ctl_update_intf_cfg;
  1116. ops->update_bitmask = sde_hw_ctl_update_bitmask_v1;
  1117. ops->get_ctl_intf = sde_hw_ctl_get_intf_v1;
  1118. ops->reset_post_disable = sde_hw_ctl_reset_post_disable;
  1119. ops->get_scheduler_status = sde_hw_ctl_get_scheduler_status;
  1120. ops->read_active_status = sde_hw_ctl_read_active_status;
  1121. ops->set_active_pipes = sde_hw_ctl_set_fetch_pipe_active;
  1122. } else {
  1123. ops->update_pending_flush = sde_hw_ctl_update_pending_flush;
  1124. ops->trigger_flush = sde_hw_ctl_trigger_flush;
  1125. ops->setup_intf_cfg = sde_hw_ctl_intf_cfg;
  1126. ops->update_bitmask = sde_hw_ctl_update_bitmask;
  1127. ops->get_ctl_intf = sde_hw_ctl_get_intf;
  1128. }
  1129. ops->clear_pending_flush = sde_hw_ctl_clear_pending_flush;
  1130. ops->get_pending_flush = sde_hw_ctl_get_pending_flush;
  1131. ops->get_flush_register = sde_hw_ctl_get_flush_register;
  1132. ops->trigger_start = sde_hw_ctl_trigger_start;
  1133. ops->trigger_pending = sde_hw_ctl_trigger_pending;
  1134. ops->read_ctl_top = sde_hw_ctl_read_ctl_top;
  1135. ops->read_ctl_layers = sde_hw_ctl_read_ctl_layers;
  1136. ops->update_wb_cfg = sde_hw_ctl_update_wb_cfg;
  1137. ops->reset = sde_hw_ctl_reset_control;
  1138. ops->get_reset = sde_hw_ctl_get_reset_status;
  1139. ops->hard_reset = sde_hw_ctl_hard_reset;
  1140. ops->wait_reset_status = sde_hw_ctl_wait_reset_status;
  1141. ops->clear_all_blendstages = sde_hw_ctl_clear_all_blendstages;
  1142. ops->setup_blendstage = sde_hw_ctl_setup_blendstage;
  1143. ops->get_staged_sspp = sde_hw_ctl_get_staged_sspp;
  1144. ops->update_bitmask_sspp = sde_hw_ctl_update_bitmask_sspp;
  1145. ops->update_bitmask_mixer = sde_hw_ctl_update_bitmask_mixer;
  1146. ops->reg_dma_flush = sde_hw_reg_dma_flush;
  1147. ops->get_start_state = sde_hw_ctl_get_start_state;
  1148. if (cap & BIT(SDE_CTL_UNIFIED_DSPP_FLUSH)) {
  1149. ops->update_bitmask_dspp_subblk =
  1150. sde_hw_ctl_update_bitmask_dspp_subblk;
  1151. } else {
  1152. ops->update_bitmask_dspp = sde_hw_ctl_update_bitmask_dspp;
  1153. ops->update_bitmask_dspp_pavlut =
  1154. sde_hw_ctl_update_bitmask_dspp_pavlut;
  1155. }
  1156. if (cap & BIT(SDE_CTL_UIDLE))
  1157. ops->uidle_enable = sde_hw_ctl_uidle_enable;
  1158. };
  1159. static struct sde_hw_blk_ops sde_hw_ops = {
  1160. .start = NULL,
  1161. .stop = NULL,
  1162. };
  1163. struct sde_hw_ctl *sde_hw_ctl_init(enum sde_ctl idx,
  1164. void __iomem *addr,
  1165. struct sde_mdss_cfg *m)
  1166. {
  1167. struct sde_hw_ctl *c;
  1168. struct sde_ctl_cfg *cfg;
  1169. int rc;
  1170. c = kzalloc(sizeof(*c), GFP_KERNEL);
  1171. if (!c)
  1172. return ERR_PTR(-ENOMEM);
  1173. cfg = _ctl_offset(idx, m, addr, &c->hw);
  1174. if (IS_ERR_OR_NULL(cfg)) {
  1175. kfree(c);
  1176. pr_err("failed to create sde_hw_ctl %d\n", idx);
  1177. return ERR_PTR(-EINVAL);
  1178. }
  1179. c->caps = cfg;
  1180. _setup_ctl_ops(&c->ops, c->caps->features);
  1181. c->idx = idx;
  1182. c->mixer_count = m->mixer_count;
  1183. c->mixer_hw_caps = m->mixer;
  1184. rc = sde_hw_blk_init(&c->base, SDE_HW_BLK_CTL, idx, &sde_hw_ops);
  1185. if (rc) {
  1186. SDE_ERROR("failed to init hw blk %d\n", rc);
  1187. goto blk_init_error;
  1188. }
  1189. sde_dbg_reg_register_dump_range(SDE_DBG_NAME, cfg->name, c->hw.blk_off,
  1190. c->hw.blk_off + c->hw.length, c->hw.xin_id);
  1191. return c;
  1192. blk_init_error:
  1193. kzfree(c);
  1194. return ERR_PTR(rc);
  1195. }
  1196. void sde_hw_ctl_destroy(struct sde_hw_ctl *ctx)
  1197. {
  1198. if (ctx)
  1199. sde_hw_blk_destroy(&ctx->base);
  1200. kfree(ctx);
  1201. }