power.c 43 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756
  1. // SPDX-License-Identifier: GPL-2.0-only
  2. /*
  3. * Copyright (c) 2016-2021, The Linux Foundation. All rights reserved.
  4. * Copyright (c) 2021-2022 Qualcomm Innovation Center, Inc. All rights reserved.
  5. */
  6. #include <linux/clk.h>
  7. #include <linux/delay.h>
  8. #if IS_ENABLED(CONFIG_MSM_QMP)
  9. #include <linux/mailbox/qmp.h>
  10. #endif
  11. #include <linux/of.h>
  12. #include <linux/of_gpio.h>
  13. #include <linux/pinctrl/consumer.h>
  14. #include <linux/regulator/consumer.h>
  15. #if IS_ENABLED(CONFIG_QCOM_COMMAND_DB)
  16. #include <soc/qcom/cmd-db.h>
  17. #endif
  18. #include "main.h"
  19. #include "debug.h"
  20. #include "bus.h"
  21. #if IS_ENABLED(CONFIG_ARCH_QCOM)
  22. static struct cnss_vreg_cfg cnss_vreg_list[] = {
  23. {"vdd-wlan-core", 1300000, 1300000, 0, 0, 0},
  24. {"vdd-wlan-io", 1800000, 1800000, 0, 0, 0},
  25. {"vdd-wlan-xtal-aon", 0, 0, 0, 0, 0},
  26. {"vdd-wlan-xtal", 1800000, 1800000, 0, 2, 0},
  27. {"vdd-wlan", 0, 0, 0, 0, 0},
  28. {"vdd-wlan-ctrl1", 0, 0, 0, 0, 0},
  29. {"vdd-wlan-ctrl2", 0, 0, 0, 0, 0},
  30. {"vdd-wlan-sp2t", 2700000, 2700000, 0, 0, 0},
  31. {"wlan-ant-switch", 1800000, 1800000, 0, 0, 0},
  32. {"wlan-soc-swreg", 1200000, 1200000, 0, 0, 0},
  33. {"vdd-wlan-aon", 950000, 950000, 0, 0, 0},
  34. {"vdd-wlan-dig", 950000, 952000, 0, 0, 0},
  35. {"vdd-wlan-rfa1", 1900000, 1900000, 0, 0, 0},
  36. {"vdd-wlan-rfa2", 1350000, 1350000, 0, 0, 0},
  37. {"vdd-wlan-rfa3", 1900000, 1900000, 450000, 0, 0},
  38. {"alt-sleep-clk", 0, 0, 0, 0, 0},
  39. {"vdd-wlan-en", 0, 0, 0, 10, 0},
  40. };
  41. static struct cnss_clk_cfg cnss_clk_list[] = {
  42. {"rf_clk", 0, 0},
  43. };
  44. #else
  45. static struct cnss_vreg_cfg cnss_vreg_list[] = {
  46. };
  47. static struct cnss_clk_cfg cnss_clk_list[] = {
  48. };
  49. #endif
  50. #define CNSS_VREG_INFO_SIZE ARRAY_SIZE(cnss_vreg_list)
  51. #define CNSS_CLK_INFO_SIZE ARRAY_SIZE(cnss_clk_list)
  52. #define MAX_PROP_SIZE 32
  53. #define BOOTSTRAP_GPIO "qcom,enable-bootstrap-gpio"
  54. #define BOOTSTRAP_ACTIVE "bootstrap_active"
  55. #define HOST_SOL_GPIO "wlan-host-sol-gpio"
  56. #define DEV_SOL_GPIO "wlan-dev-sol-gpio"
  57. #define SOL_DEFAULT "sol_default"
  58. #define WLAN_EN_GPIO "wlan-en-gpio"
  59. #define BT_EN_GPIO "qcom,bt-en-gpio"
  60. #define XO_CLK_GPIO "qcom,xo-clk-gpio"
  61. #define SW_CTRL_GPIO "qcom,sw-ctrl-gpio"
  62. #define WLAN_SW_CTRL_GPIO "qcom,wlan-sw-ctrl-gpio"
  63. #define WLAN_EN_ACTIVE "wlan_en_active"
  64. #define WLAN_EN_SLEEP "wlan_en_sleep"
  65. #define WLAN_VREGS_PROP "wlan_vregs"
  66. #define BOOTSTRAP_DELAY 1000
  67. #define WLAN_ENABLE_DELAY 1000
  68. #define TCS_CMD_DATA_ADDR_OFFSET 0x4
  69. #define TCS_OFFSET 0xC8
  70. #define TCS_CMD_OFFSET 0x10
  71. #define MAX_TCS_NUM 8
  72. #define MAX_TCS_CMD_NUM 5
  73. #define BT_CXMX_VOLTAGE_MV 950
  74. #define CNSS_MBOX_MSG_MAX_LEN 64
  75. #define CNSS_MBOX_TIMEOUT_MS 1000
  76. /* Platform HW config */
  77. #define CNSS_PMIC_VOLTAGE_STEP 4
  78. #define CNSS_PMIC_AUTO_HEADROOM 16
  79. #define CNSS_IR_DROP_WAKE 30
  80. #define CNSS_IR_DROP_SLEEP 10
  81. /**
  82. * enum cnss_aop_vreg_param: Voltage regulator TCS param
  83. * @CNSS_VREG_VOLTAGE: Provides voltage level in mV to be configured in TCS
  84. * @CNSS_VREG_MODE: Regulator mode
  85. * @CNSS_VREG_TCS_ENABLE: Set bool Voltage regulator enable config in TCS.
  86. */
  87. enum cnss_aop_vreg_param {
  88. CNSS_VREG_VOLTAGE,
  89. CNSS_VREG_MODE,
  90. CNSS_VREG_ENABLE,
  91. CNSS_VREG_PARAM_MAX
  92. };
  93. /** enum cnss_aop_vreg_param_mode: Voltage modes supported by AOP*/
  94. enum cnss_aop_vreg_param_mode {
  95. CNSS_VREG_RET_MODE = 3,
  96. CNSS_VREG_LPM_MODE = 4,
  97. CNSS_VREG_AUTO_MODE = 6,
  98. CNSS_VREG_NPM_MODE = 7,
  99. CNSS_VREG_MODE_MAX
  100. };
  101. /**
  102. * enum cnss_aop_tcs_seq: TCS sequence ID for trigger
  103. * @CNSS_TCS_UP_SEQ: TCS Sequence based on up trigger / Wake TCS
  104. * @CNSS_TCS_DOWN_SEQ: TCS Sequence based on down trigger / Sleep TCS
  105. * @CNSS_TCS_ENABLE_SEQ: Enable this TCS seq entry
  106. */
  107. enum cnss_aop_tcs_seq_param {
  108. CNSS_TCS_UP_SEQ,
  109. CNSS_TCS_DOWN_SEQ,
  110. CNSS_TCS_ENABLE_SEQ,
  111. CNSS_TCS_SEQ_MAX
  112. };
  113. static int cnss_get_vreg_single(struct cnss_plat_data *plat_priv,
  114. struct cnss_vreg_info *vreg)
  115. {
  116. int ret = 0;
  117. struct device *dev;
  118. struct regulator *reg;
  119. const __be32 *prop;
  120. char prop_name[MAX_PROP_SIZE] = {0};
  121. int len;
  122. struct device_node *dt_node;
  123. dev = &plat_priv->plat_dev->dev;
  124. dt_node = (plat_priv->dev_node ? plat_priv->dev_node : dev->of_node);
  125. reg = devm_regulator_get_optional(dev, vreg->cfg.name);
  126. if (IS_ERR(reg)) {
  127. ret = PTR_ERR(reg);
  128. if (ret == -ENODEV)
  129. return ret;
  130. else if (ret == -EPROBE_DEFER)
  131. cnss_pr_info("EPROBE_DEFER for regulator: %s\n",
  132. vreg->cfg.name);
  133. else
  134. cnss_pr_err("Failed to get regulator %s, err = %d\n",
  135. vreg->cfg.name, ret);
  136. return ret;
  137. }
  138. vreg->reg = reg;
  139. snprintf(prop_name, MAX_PROP_SIZE, "qcom,%s-config",
  140. vreg->cfg.name);
  141. prop = of_get_property(dt_node, prop_name, &len);
  142. if (!prop || len != (5 * sizeof(__be32))) {
  143. cnss_pr_dbg("Property %s %s, use default\n", prop_name,
  144. prop ? "invalid format" : "doesn't exist");
  145. } else {
  146. vreg->cfg.min_uv = be32_to_cpup(&prop[0]);
  147. vreg->cfg.max_uv = be32_to_cpup(&prop[1]);
  148. vreg->cfg.load_ua = be32_to_cpup(&prop[2]);
  149. vreg->cfg.delay_us = be32_to_cpup(&prop[3]);
  150. vreg->cfg.need_unvote = be32_to_cpup(&prop[4]);
  151. }
  152. cnss_pr_dbg("Got regulator: %s, min_uv: %u, max_uv: %u, load_ua: %u, delay_us: %u, need_unvote: %u\n",
  153. vreg->cfg.name, vreg->cfg.min_uv,
  154. vreg->cfg.max_uv, vreg->cfg.load_ua,
  155. vreg->cfg.delay_us, vreg->cfg.need_unvote);
  156. return 0;
  157. }
  158. static void cnss_put_vreg_single(struct cnss_plat_data *plat_priv,
  159. struct cnss_vreg_info *vreg)
  160. {
  161. struct device *dev = &plat_priv->plat_dev->dev;
  162. cnss_pr_dbg("Put regulator: %s\n", vreg->cfg.name);
  163. devm_regulator_put(vreg->reg);
  164. devm_kfree(dev, vreg);
  165. }
  166. static int cnss_vreg_on_single(struct cnss_vreg_info *vreg)
  167. {
  168. int ret = 0;
  169. if (vreg->enabled) {
  170. cnss_pr_dbg("Regulator %s is already enabled\n",
  171. vreg->cfg.name);
  172. return 0;
  173. }
  174. cnss_pr_dbg("Regulator %s is being enabled\n", vreg->cfg.name);
  175. if (vreg->cfg.min_uv != 0 && vreg->cfg.max_uv != 0) {
  176. ret = regulator_set_voltage(vreg->reg,
  177. vreg->cfg.min_uv,
  178. vreg->cfg.max_uv);
  179. if (ret) {
  180. cnss_pr_err("Failed to set voltage for regulator %s, min_uv: %u, max_uv: %u, err = %d\n",
  181. vreg->cfg.name, vreg->cfg.min_uv,
  182. vreg->cfg.max_uv, ret);
  183. goto out;
  184. }
  185. }
  186. if (vreg->cfg.load_ua) {
  187. ret = regulator_set_load(vreg->reg,
  188. vreg->cfg.load_ua);
  189. if (ret < 0) {
  190. cnss_pr_err("Failed to set load for regulator %s, load: %u, err = %d\n",
  191. vreg->cfg.name, vreg->cfg.load_ua,
  192. ret);
  193. goto out;
  194. }
  195. }
  196. if (vreg->cfg.delay_us)
  197. udelay(vreg->cfg.delay_us);
  198. ret = regulator_enable(vreg->reg);
  199. if (ret) {
  200. cnss_pr_err("Failed to enable regulator %s, err = %d\n",
  201. vreg->cfg.name, ret);
  202. goto out;
  203. }
  204. vreg->enabled = true;
  205. out:
  206. return ret;
  207. }
  208. static int cnss_vreg_unvote_single(struct cnss_vreg_info *vreg)
  209. {
  210. int ret = 0;
  211. if (!vreg->enabled) {
  212. cnss_pr_dbg("Regulator %s is already disabled\n",
  213. vreg->cfg.name);
  214. return 0;
  215. }
  216. cnss_pr_dbg("Removing vote for Regulator %s\n", vreg->cfg.name);
  217. if (vreg->cfg.load_ua) {
  218. ret = regulator_set_load(vreg->reg, 0);
  219. if (ret < 0)
  220. cnss_pr_err("Failed to set load for regulator %s, err = %d\n",
  221. vreg->cfg.name, ret);
  222. }
  223. if (vreg->cfg.min_uv != 0 && vreg->cfg.max_uv != 0) {
  224. ret = regulator_set_voltage(vreg->reg, 0,
  225. vreg->cfg.max_uv);
  226. if (ret)
  227. cnss_pr_err("Failed to set voltage for regulator %s, err = %d\n",
  228. vreg->cfg.name, ret);
  229. }
  230. return ret;
  231. }
  232. static int cnss_vreg_off_single(struct cnss_vreg_info *vreg)
  233. {
  234. int ret = 0;
  235. if (!vreg->enabled) {
  236. cnss_pr_dbg("Regulator %s is already disabled\n",
  237. vreg->cfg.name);
  238. return 0;
  239. }
  240. cnss_pr_dbg("Regulator %s is being disabled\n",
  241. vreg->cfg.name);
  242. ret = regulator_disable(vreg->reg);
  243. if (ret)
  244. cnss_pr_err("Failed to disable regulator %s, err = %d\n",
  245. vreg->cfg.name, ret);
  246. if (vreg->cfg.load_ua) {
  247. ret = regulator_set_load(vreg->reg, 0);
  248. if (ret < 0)
  249. cnss_pr_err("Failed to set load for regulator %s, err = %d\n",
  250. vreg->cfg.name, ret);
  251. }
  252. if (vreg->cfg.min_uv != 0 && vreg->cfg.max_uv != 0) {
  253. ret = regulator_set_voltage(vreg->reg, 0,
  254. vreg->cfg.max_uv);
  255. if (ret)
  256. cnss_pr_err("Failed to set voltage for regulator %s, err = %d\n",
  257. vreg->cfg.name, ret);
  258. }
  259. vreg->enabled = false;
  260. return ret;
  261. }
  262. static struct cnss_vreg_cfg *get_vreg_list(u32 *vreg_list_size,
  263. enum cnss_vreg_type type)
  264. {
  265. switch (type) {
  266. case CNSS_VREG_PRIM:
  267. *vreg_list_size = CNSS_VREG_INFO_SIZE;
  268. return cnss_vreg_list;
  269. default:
  270. cnss_pr_err("Unsupported vreg type 0x%x\n", type);
  271. *vreg_list_size = 0;
  272. return NULL;
  273. }
  274. }
  275. /*
  276. * For multi-exchg dt node, get the required vregs' names from property
  277. * 'wlan_vregs', which is string array;
  278. *
  279. * if the property is present but no value is set, then no additional wlan
  280. * verg is required.
  281. *
  282. * For non-multi-exchg dt, go through all vregs in the static array
  283. * 'cnss_vreg_list'.
  284. */
  285. static int cnss_get_vreg(struct cnss_plat_data *plat_priv,
  286. struct list_head *vreg_list,
  287. struct cnss_vreg_cfg *vreg_cfg,
  288. u32 vreg_list_size)
  289. {
  290. int ret = 0;
  291. int i;
  292. struct cnss_vreg_info *vreg;
  293. struct device *dev = &plat_priv->plat_dev->dev;
  294. int id_n;
  295. struct device_node *dt_node;
  296. if (!list_empty(vreg_list) &&
  297. (plat_priv->dt_type != CNSS_DTT_MULTIEXCHG)) {
  298. cnss_pr_dbg("Vregs have already been updated\n");
  299. return 0;
  300. }
  301. dt_node = (plat_priv->dev_node ? plat_priv->dev_node : dev->of_node);
  302. if (plat_priv->dt_type == CNSS_DTT_MULTIEXCHG) {
  303. id_n = of_property_count_strings(dt_node,
  304. WLAN_VREGS_PROP);
  305. if (id_n <= 0) {
  306. if (id_n == -ENODATA) {
  307. cnss_pr_dbg("No additional vregs for: %s:%lx\n",
  308. dt_node->name,
  309. plat_priv->device_id);
  310. return 0;
  311. }
  312. cnss_pr_err("property %s is invalid or missed: %s:%lx\n",
  313. WLAN_VREGS_PROP, dt_node->name,
  314. plat_priv->device_id);
  315. return -EINVAL;
  316. }
  317. } else {
  318. id_n = vreg_list_size;
  319. }
  320. for (i = 0; i < id_n; i++) {
  321. vreg = devm_kzalloc(dev, sizeof(*vreg), GFP_KERNEL);
  322. if (!vreg)
  323. return -ENOMEM;
  324. if (plat_priv->dt_type == CNSS_DTT_MULTIEXCHG) {
  325. ret = of_property_read_string_index(dt_node,
  326. WLAN_VREGS_PROP, i,
  327. &vreg->cfg.name);
  328. if (ret) {
  329. cnss_pr_err("Failed to read vreg ids\n");
  330. return ret;
  331. }
  332. } else {
  333. memcpy(&vreg->cfg, &vreg_cfg[i], sizeof(vreg->cfg));
  334. }
  335. ret = cnss_get_vreg_single(plat_priv, vreg);
  336. if (ret != 0) {
  337. if (ret == -ENODEV) {
  338. devm_kfree(dev, vreg);
  339. continue;
  340. } else {
  341. devm_kfree(dev, vreg);
  342. return ret;
  343. }
  344. }
  345. list_add_tail(&vreg->list, vreg_list);
  346. }
  347. return 0;
  348. }
  349. static void cnss_put_vreg(struct cnss_plat_data *plat_priv,
  350. struct list_head *vreg_list)
  351. {
  352. struct cnss_vreg_info *vreg;
  353. while (!list_empty(vreg_list)) {
  354. vreg = list_first_entry(vreg_list,
  355. struct cnss_vreg_info, list);
  356. list_del(&vreg->list);
  357. if (IS_ERR_OR_NULL(vreg->reg))
  358. continue;
  359. cnss_put_vreg_single(plat_priv, vreg);
  360. }
  361. }
  362. static int cnss_vreg_on(struct cnss_plat_data *plat_priv,
  363. struct list_head *vreg_list)
  364. {
  365. struct cnss_vreg_info *vreg;
  366. int ret = 0;
  367. list_for_each_entry(vreg, vreg_list, list) {
  368. if (IS_ERR_OR_NULL(vreg->reg))
  369. continue;
  370. ret = cnss_vreg_on_single(vreg);
  371. if (ret)
  372. break;
  373. }
  374. if (!ret)
  375. return 0;
  376. list_for_each_entry_continue_reverse(vreg, vreg_list, list) {
  377. if (IS_ERR_OR_NULL(vreg->reg) || !vreg->enabled)
  378. continue;
  379. cnss_vreg_off_single(vreg);
  380. }
  381. return ret;
  382. }
  383. static int cnss_vreg_off(struct cnss_plat_data *plat_priv,
  384. struct list_head *vreg_list)
  385. {
  386. struct cnss_vreg_info *vreg;
  387. list_for_each_entry_reverse(vreg, vreg_list, list) {
  388. if (IS_ERR_OR_NULL(vreg->reg))
  389. continue;
  390. cnss_vreg_off_single(vreg);
  391. }
  392. return 0;
  393. }
  394. static int cnss_vreg_unvote(struct cnss_plat_data *plat_priv,
  395. struct list_head *vreg_list)
  396. {
  397. struct cnss_vreg_info *vreg;
  398. list_for_each_entry_reverse(vreg, vreg_list, list) {
  399. if (IS_ERR_OR_NULL(vreg->reg))
  400. continue;
  401. if (vreg->cfg.need_unvote)
  402. cnss_vreg_unvote_single(vreg);
  403. }
  404. return 0;
  405. }
  406. int cnss_get_vreg_type(struct cnss_plat_data *plat_priv,
  407. enum cnss_vreg_type type)
  408. {
  409. struct cnss_vreg_cfg *vreg_cfg;
  410. u32 vreg_list_size = 0;
  411. int ret = 0;
  412. vreg_cfg = get_vreg_list(&vreg_list_size, type);
  413. if (!vreg_cfg)
  414. return -EINVAL;
  415. switch (type) {
  416. case CNSS_VREG_PRIM:
  417. ret = cnss_get_vreg(plat_priv, &plat_priv->vreg_list,
  418. vreg_cfg, vreg_list_size);
  419. break;
  420. default:
  421. cnss_pr_err("Unsupported vreg type 0x%x\n", type);
  422. return -EINVAL;
  423. }
  424. return ret;
  425. }
  426. void cnss_put_vreg_type(struct cnss_plat_data *plat_priv,
  427. enum cnss_vreg_type type)
  428. {
  429. switch (type) {
  430. case CNSS_VREG_PRIM:
  431. cnss_put_vreg(plat_priv, &plat_priv->vreg_list);
  432. break;
  433. default:
  434. return;
  435. }
  436. }
  437. int cnss_vreg_on_type(struct cnss_plat_data *plat_priv,
  438. enum cnss_vreg_type type)
  439. {
  440. int ret = 0;
  441. switch (type) {
  442. case CNSS_VREG_PRIM:
  443. ret = cnss_vreg_on(plat_priv, &plat_priv->vreg_list);
  444. break;
  445. default:
  446. cnss_pr_err("Unsupported vreg type 0x%x\n", type);
  447. return -EINVAL;
  448. }
  449. return ret;
  450. }
  451. int cnss_vreg_off_type(struct cnss_plat_data *plat_priv,
  452. enum cnss_vreg_type type)
  453. {
  454. int ret = 0;
  455. switch (type) {
  456. case CNSS_VREG_PRIM:
  457. ret = cnss_vreg_off(plat_priv, &plat_priv->vreg_list);
  458. break;
  459. default:
  460. cnss_pr_err("Unsupported vreg type 0x%x\n", type);
  461. return -EINVAL;
  462. }
  463. return ret;
  464. }
  465. int cnss_vreg_unvote_type(struct cnss_plat_data *plat_priv,
  466. enum cnss_vreg_type type)
  467. {
  468. int ret = 0;
  469. switch (type) {
  470. case CNSS_VREG_PRIM:
  471. ret = cnss_vreg_unvote(plat_priv, &plat_priv->vreg_list);
  472. break;
  473. default:
  474. cnss_pr_err("Unsupported vreg type 0x%x\n", type);
  475. return -EINVAL;
  476. }
  477. return ret;
  478. }
  479. static int cnss_get_clk_single(struct cnss_plat_data *plat_priv,
  480. struct cnss_clk_info *clk_info)
  481. {
  482. struct device *dev = &plat_priv->plat_dev->dev;
  483. struct clk *clk;
  484. int ret;
  485. clk = devm_clk_get(dev, clk_info->cfg.name);
  486. if (IS_ERR(clk)) {
  487. ret = PTR_ERR(clk);
  488. if (clk_info->cfg.required)
  489. cnss_pr_err("Failed to get clock %s, err = %d\n",
  490. clk_info->cfg.name, ret);
  491. else
  492. cnss_pr_dbg("Failed to get optional clock %s, err = %d\n",
  493. clk_info->cfg.name, ret);
  494. return ret;
  495. }
  496. clk_info->clk = clk;
  497. cnss_pr_dbg("Got clock: %s, freq: %u\n",
  498. clk_info->cfg.name, clk_info->cfg.freq);
  499. return 0;
  500. }
  501. static void cnss_put_clk_single(struct cnss_plat_data *plat_priv,
  502. struct cnss_clk_info *clk_info)
  503. {
  504. struct device *dev = &plat_priv->plat_dev->dev;
  505. cnss_pr_dbg("Put clock: %s\n", clk_info->cfg.name);
  506. devm_clk_put(dev, clk_info->clk);
  507. }
  508. static int cnss_clk_on_single(struct cnss_clk_info *clk_info)
  509. {
  510. int ret;
  511. if (clk_info->enabled) {
  512. cnss_pr_dbg("Clock %s is already enabled\n",
  513. clk_info->cfg.name);
  514. return 0;
  515. }
  516. cnss_pr_dbg("Clock %s is being enabled\n", clk_info->cfg.name);
  517. if (clk_info->cfg.freq) {
  518. ret = clk_set_rate(clk_info->clk, clk_info->cfg.freq);
  519. if (ret) {
  520. cnss_pr_err("Failed to set frequency %u for clock %s, err = %d\n",
  521. clk_info->cfg.freq, clk_info->cfg.name,
  522. ret);
  523. return ret;
  524. }
  525. }
  526. ret = clk_prepare_enable(clk_info->clk);
  527. if (ret) {
  528. cnss_pr_err("Failed to enable clock %s, err = %d\n",
  529. clk_info->cfg.name, ret);
  530. return ret;
  531. }
  532. clk_info->enabled = true;
  533. return 0;
  534. }
  535. static int cnss_clk_off_single(struct cnss_clk_info *clk_info)
  536. {
  537. if (!clk_info->enabled) {
  538. cnss_pr_dbg("Clock %s is already disabled\n",
  539. clk_info->cfg.name);
  540. return 0;
  541. }
  542. cnss_pr_dbg("Clock %s is being disabled\n", clk_info->cfg.name);
  543. clk_disable_unprepare(clk_info->clk);
  544. clk_info->enabled = false;
  545. return 0;
  546. }
  547. int cnss_get_clk(struct cnss_plat_data *plat_priv)
  548. {
  549. struct device *dev;
  550. struct list_head *clk_list;
  551. struct cnss_clk_info *clk_info;
  552. int ret, i;
  553. if (!plat_priv)
  554. return -ENODEV;
  555. dev = &plat_priv->plat_dev->dev;
  556. clk_list = &plat_priv->clk_list;
  557. if (!list_empty(clk_list)) {
  558. cnss_pr_dbg("Clocks have already been updated\n");
  559. return 0;
  560. }
  561. for (i = 0; i < CNSS_CLK_INFO_SIZE; i++) {
  562. clk_info = devm_kzalloc(dev, sizeof(*clk_info), GFP_KERNEL);
  563. if (!clk_info) {
  564. ret = -ENOMEM;
  565. goto cleanup;
  566. }
  567. memcpy(&clk_info->cfg, &cnss_clk_list[i],
  568. sizeof(clk_info->cfg));
  569. ret = cnss_get_clk_single(plat_priv, clk_info);
  570. if (ret != 0) {
  571. if (clk_info->cfg.required) {
  572. devm_kfree(dev, clk_info);
  573. goto cleanup;
  574. } else {
  575. devm_kfree(dev, clk_info);
  576. continue;
  577. }
  578. }
  579. list_add_tail(&clk_info->list, clk_list);
  580. }
  581. return 0;
  582. cleanup:
  583. while (!list_empty(clk_list)) {
  584. clk_info = list_first_entry(clk_list, struct cnss_clk_info,
  585. list);
  586. list_del(&clk_info->list);
  587. if (IS_ERR_OR_NULL(clk_info->clk))
  588. continue;
  589. cnss_put_clk_single(plat_priv, clk_info);
  590. devm_kfree(dev, clk_info);
  591. }
  592. return ret;
  593. }
  594. void cnss_put_clk(struct cnss_plat_data *plat_priv)
  595. {
  596. struct device *dev;
  597. struct list_head *clk_list;
  598. struct cnss_clk_info *clk_info;
  599. if (!plat_priv)
  600. return;
  601. dev = &plat_priv->plat_dev->dev;
  602. clk_list = &plat_priv->clk_list;
  603. while (!list_empty(clk_list)) {
  604. clk_info = list_first_entry(clk_list, struct cnss_clk_info,
  605. list);
  606. list_del(&clk_info->list);
  607. if (IS_ERR_OR_NULL(clk_info->clk))
  608. continue;
  609. cnss_put_clk_single(plat_priv, clk_info);
  610. devm_kfree(dev, clk_info);
  611. }
  612. }
  613. static int cnss_clk_on(struct cnss_plat_data *plat_priv,
  614. struct list_head *clk_list)
  615. {
  616. struct cnss_clk_info *clk_info;
  617. int ret = 0;
  618. list_for_each_entry(clk_info, clk_list, list) {
  619. if (IS_ERR_OR_NULL(clk_info->clk))
  620. continue;
  621. ret = cnss_clk_on_single(clk_info);
  622. if (ret)
  623. break;
  624. }
  625. if (!ret)
  626. return 0;
  627. list_for_each_entry_continue_reverse(clk_info, clk_list, list) {
  628. if (IS_ERR_OR_NULL(clk_info->clk))
  629. continue;
  630. cnss_clk_off_single(clk_info);
  631. }
  632. return ret;
  633. }
  634. static int cnss_clk_off(struct cnss_plat_data *plat_priv,
  635. struct list_head *clk_list)
  636. {
  637. struct cnss_clk_info *clk_info;
  638. list_for_each_entry_reverse(clk_info, clk_list, list) {
  639. if (IS_ERR_OR_NULL(clk_info->clk))
  640. continue;
  641. cnss_clk_off_single(clk_info);
  642. }
  643. return 0;
  644. }
  645. int cnss_get_pinctrl(struct cnss_plat_data *plat_priv)
  646. {
  647. int ret = 0;
  648. struct device *dev;
  649. struct cnss_pinctrl_info *pinctrl_info;
  650. dev = &plat_priv->plat_dev->dev;
  651. pinctrl_info = &plat_priv->pinctrl_info;
  652. pinctrl_info->pinctrl = devm_pinctrl_get(dev);
  653. if (IS_ERR_OR_NULL(pinctrl_info->pinctrl)) {
  654. ret = PTR_ERR(pinctrl_info->pinctrl);
  655. cnss_pr_err("Failed to get pinctrl, err = %d\n", ret);
  656. goto out;
  657. }
  658. if (of_find_property(dev->of_node, BOOTSTRAP_GPIO, NULL)) {
  659. pinctrl_info->bootstrap_active =
  660. pinctrl_lookup_state(pinctrl_info->pinctrl,
  661. BOOTSTRAP_ACTIVE);
  662. if (IS_ERR_OR_NULL(pinctrl_info->bootstrap_active)) {
  663. ret = PTR_ERR(pinctrl_info->bootstrap_active);
  664. cnss_pr_err("Failed to get bootstrap active state, err = %d\n",
  665. ret);
  666. goto out;
  667. }
  668. }
  669. if (of_find_property(dev->of_node, HOST_SOL_GPIO, NULL) &&
  670. of_find_property(dev->of_node, DEV_SOL_GPIO, NULL)) {
  671. pinctrl_info->sol_default =
  672. pinctrl_lookup_state(pinctrl_info->pinctrl,
  673. SOL_DEFAULT);
  674. if (IS_ERR_OR_NULL(pinctrl_info->sol_default)) {
  675. ret = PTR_ERR(pinctrl_info->sol_default);
  676. cnss_pr_err("Failed to get sol default state, err = %d\n",
  677. ret);
  678. goto out;
  679. }
  680. cnss_pr_dbg("Got sol default state\n");
  681. }
  682. if (of_find_property(dev->of_node, WLAN_EN_GPIO, NULL)) {
  683. pinctrl_info->wlan_en_gpio = of_get_named_gpio(dev->of_node,
  684. WLAN_EN_GPIO, 0);
  685. cnss_pr_dbg("WLAN_EN GPIO: %d\n", pinctrl_info->wlan_en_gpio);
  686. pinctrl_info->wlan_en_active =
  687. pinctrl_lookup_state(pinctrl_info->pinctrl,
  688. WLAN_EN_ACTIVE);
  689. if (IS_ERR_OR_NULL(pinctrl_info->wlan_en_active)) {
  690. ret = PTR_ERR(pinctrl_info->wlan_en_active);
  691. cnss_pr_err("Failed to get wlan_en active state, err = %d\n",
  692. ret);
  693. goto out;
  694. }
  695. pinctrl_info->wlan_en_sleep =
  696. pinctrl_lookup_state(pinctrl_info->pinctrl,
  697. WLAN_EN_SLEEP);
  698. if (IS_ERR_OR_NULL(pinctrl_info->wlan_en_sleep)) {
  699. ret = PTR_ERR(pinctrl_info->wlan_en_sleep);
  700. cnss_pr_err("Failed to get wlan_en sleep state, err = %d\n",
  701. ret);
  702. goto out;
  703. }
  704. } else {
  705. pinctrl_info->wlan_en_gpio = -EINVAL;
  706. }
  707. /* Added for QCA6490 PMU delayed WLAN_EN_GPIO */
  708. if (of_find_property(dev->of_node, BT_EN_GPIO, NULL)) {
  709. pinctrl_info->bt_en_gpio = of_get_named_gpio(dev->of_node,
  710. BT_EN_GPIO, 0);
  711. cnss_pr_dbg("BT GPIO: %d\n", pinctrl_info->bt_en_gpio);
  712. } else {
  713. pinctrl_info->bt_en_gpio = -EINVAL;
  714. }
  715. /* Added for QCA6490 to minimize XO CLK selection leakage prevention */
  716. if (of_find_property(dev->of_node, XO_CLK_GPIO, NULL)) {
  717. pinctrl_info->xo_clk_gpio = of_get_named_gpio(dev->of_node,
  718. XO_CLK_GPIO, 0);
  719. cnss_pr_dbg("QCA6490 XO_CLK GPIO: %d\n",
  720. pinctrl_info->xo_clk_gpio);
  721. cnss_set_feature_list(plat_priv, BOOTSTRAP_CLOCK_SELECT_V01);
  722. } else {
  723. pinctrl_info->xo_clk_gpio = -EINVAL;
  724. }
  725. if (of_find_property(dev->of_node, SW_CTRL_GPIO, NULL)) {
  726. pinctrl_info->sw_ctrl_gpio = of_get_named_gpio(dev->of_node,
  727. SW_CTRL_GPIO,
  728. 0);
  729. cnss_pr_dbg("Switch control GPIO: %d\n",
  730. pinctrl_info->sw_ctrl_gpio);
  731. } else {
  732. pinctrl_info->sw_ctrl_gpio = -EINVAL;
  733. }
  734. return 0;
  735. out:
  736. return ret;
  737. }
  738. int cnss_get_wlan_sw_ctrl(struct cnss_plat_data *plat_priv)
  739. {
  740. struct device *dev;
  741. struct cnss_pinctrl_info *pinctrl_info;
  742. dev = &plat_priv->plat_dev->dev;
  743. pinctrl_info = &plat_priv->pinctrl_info;
  744. if (of_find_property(dev->of_node, WLAN_SW_CTRL_GPIO, NULL)) {
  745. pinctrl_info->wlan_sw_ctrl_gpio = of_get_named_gpio(dev->of_node,
  746. WLAN_SW_CTRL_GPIO,
  747. 0);
  748. cnss_pr_dbg("WLAN Switch control GPIO: %d\n",
  749. pinctrl_info->wlan_sw_ctrl_gpio);
  750. } else {
  751. pinctrl_info->wlan_sw_ctrl_gpio = -EINVAL;
  752. }
  753. return 0;
  754. }
  755. #define CNSS_XO_CLK_RETRY_COUNT_MAX 5
  756. static void cnss_set_xo_clk_gpio_state(struct cnss_plat_data *plat_priv,
  757. bool enable)
  758. {
  759. int xo_clk_gpio = plat_priv->pinctrl_info.xo_clk_gpio, retry = 0, ret;
  760. if (xo_clk_gpio < 0 || plat_priv->device_id != QCA6490_DEVICE_ID)
  761. return;
  762. retry_gpio_req:
  763. ret = gpio_request(xo_clk_gpio, "XO_CLK_GPIO");
  764. if (ret) {
  765. if (retry++ < CNSS_XO_CLK_RETRY_COUNT_MAX) {
  766. /* wait for ~(10 - 20) ms */
  767. usleep_range(10000, 20000);
  768. goto retry_gpio_req;
  769. }
  770. }
  771. if (ret) {
  772. cnss_pr_err("QCA6490 XO CLK Gpio request failed\n");
  773. return;
  774. }
  775. if (enable) {
  776. gpio_direction_output(xo_clk_gpio, 1);
  777. /*XO CLK must be asserted for some time before WLAN_EN */
  778. usleep_range(100, 200);
  779. } else {
  780. /* Assert XO CLK ~(2-5)ms before off for valid latch in HW */
  781. usleep_range(2000, 5000);
  782. gpio_direction_output(xo_clk_gpio, 0);
  783. }
  784. gpio_free(xo_clk_gpio);
  785. }
  786. static int cnss_select_pinctrl_state(struct cnss_plat_data *plat_priv,
  787. bool state)
  788. {
  789. int ret = 0;
  790. struct cnss_pinctrl_info *pinctrl_info;
  791. if (!plat_priv) {
  792. cnss_pr_err("plat_priv is NULL!\n");
  793. ret = -ENODEV;
  794. goto out;
  795. }
  796. pinctrl_info = &plat_priv->pinctrl_info;
  797. if (state) {
  798. if (!IS_ERR_OR_NULL(pinctrl_info->bootstrap_active)) {
  799. ret = pinctrl_select_state
  800. (pinctrl_info->pinctrl,
  801. pinctrl_info->bootstrap_active);
  802. if (ret) {
  803. cnss_pr_err("Failed to select bootstrap active state, err = %d\n",
  804. ret);
  805. goto out;
  806. }
  807. udelay(BOOTSTRAP_DELAY);
  808. }
  809. if (!IS_ERR_OR_NULL(pinctrl_info->sol_default)) {
  810. ret = pinctrl_select_state
  811. (pinctrl_info->pinctrl,
  812. pinctrl_info->sol_default);
  813. if (ret) {
  814. cnss_pr_err("Failed to select sol default state, err = %d\n",
  815. ret);
  816. goto out;
  817. }
  818. cnss_pr_dbg("Selected sol default state\n");
  819. }
  820. cnss_set_xo_clk_gpio_state(plat_priv, true);
  821. if (!IS_ERR_OR_NULL(pinctrl_info->wlan_en_active)) {
  822. ret = pinctrl_select_state
  823. (pinctrl_info->pinctrl,
  824. pinctrl_info->wlan_en_active);
  825. if (ret) {
  826. cnss_pr_err("Failed to select wlan_en active state, err = %d\n",
  827. ret);
  828. goto out;
  829. }
  830. udelay(WLAN_ENABLE_DELAY);
  831. cnss_set_xo_clk_gpio_state(plat_priv, false);
  832. } else {
  833. cnss_set_xo_clk_gpio_state(plat_priv, false);
  834. goto out;
  835. }
  836. } else {
  837. if (!IS_ERR_OR_NULL(pinctrl_info->wlan_en_sleep)) {
  838. cnss_wlan_hw_disable_check(plat_priv);
  839. if (test_bit(CNSS_WLAN_HW_DISABLED, &plat_priv->driver_state)) {
  840. cnss_pr_dbg("Avoid WLAN_EN low. WLAN HW Disbaled");
  841. goto out;
  842. }
  843. ret = pinctrl_select_state(pinctrl_info->pinctrl,
  844. pinctrl_info->wlan_en_sleep);
  845. if (ret) {
  846. cnss_pr_err("Failed to select wlan_en sleep state, err = %d\n",
  847. ret);
  848. goto out;
  849. }
  850. } else {
  851. goto out;
  852. }
  853. }
  854. cnss_pr_dbg("WLAN_EN Value: %d\n", gpio_get_value(pinctrl_info->wlan_en_gpio));
  855. cnss_pr_dbg("%s WLAN_EN GPIO successfully\n",
  856. state ? "Assert" : "De-assert");
  857. return 0;
  858. out:
  859. return ret;
  860. }
  861. /**
  862. * cnss_select_pinctrl_enable - select WLAN_GPIO for Active pinctrl status
  863. * @plat_priv: Platform private data structure pointer
  864. *
  865. * For QCA6490, PMU requires minimum 100ms delay between BT_EN_GPIO off and
  866. * WLAN_EN_GPIO on. This is done to avoid power up issues.
  867. *
  868. * Return: Status of pinctrl select operation. 0 - Success.
  869. */
  870. static int cnss_select_pinctrl_enable(struct cnss_plat_data *plat_priv)
  871. {
  872. int ret = 0, bt_en_gpio = plat_priv->pinctrl_info.bt_en_gpio;
  873. u8 wlan_en_state = 0;
  874. if (bt_en_gpio < 0 || plat_priv->device_id != QCA6490_DEVICE_ID)
  875. goto set_wlan_en;
  876. if (gpio_get_value(bt_en_gpio)) {
  877. cnss_pr_dbg("BT_EN_GPIO State: On\n");
  878. ret = cnss_select_pinctrl_state(plat_priv, true);
  879. if (!ret)
  880. return ret;
  881. wlan_en_state = 1;
  882. }
  883. if (!gpio_get_value(bt_en_gpio)) {
  884. cnss_pr_dbg("BT_EN_GPIO State: Off. Delay WLAN_GPIO enable\n");
  885. /* check for BT_EN_GPIO down race during above operation */
  886. if (wlan_en_state) {
  887. cnss_pr_dbg("Reset WLAN_EN as BT got turned off during enable\n");
  888. cnss_select_pinctrl_state(plat_priv, false);
  889. wlan_en_state = 0;
  890. }
  891. /* 100 ms delay for BT_EN and WLAN_EN QCA6490 PMU sequencing */
  892. msleep(100);
  893. }
  894. set_wlan_en:
  895. if (!wlan_en_state)
  896. ret = cnss_select_pinctrl_state(plat_priv, true);
  897. return ret;
  898. }
  899. int cnss_get_input_gpio_value(struct cnss_plat_data *plat_priv, int gpio_num)
  900. {
  901. int ret;
  902. if (gpio_num < 0)
  903. return -EINVAL;
  904. ret = gpio_direction_input(gpio_num);
  905. if (ret) {
  906. cnss_pr_err("Failed to set direction of GPIO(%d), err = %d",
  907. gpio_num, ret);
  908. return -EINVAL;
  909. }
  910. return gpio_get_value(gpio_num);
  911. }
  912. int cnss_power_on_device(struct cnss_plat_data *plat_priv)
  913. {
  914. int ret = 0;
  915. if (plat_priv->powered_on) {
  916. cnss_pr_dbg("Already powered up");
  917. return 0;
  918. }
  919. cnss_wlan_hw_disable_check(plat_priv);
  920. if (test_bit(CNSS_WLAN_HW_DISABLED, &plat_priv->driver_state)) {
  921. cnss_pr_dbg("Avoid WLAN Power On. WLAN HW Disbaled");
  922. return -EINVAL;
  923. }
  924. ret = cnss_vreg_on_type(plat_priv, CNSS_VREG_PRIM);
  925. if (ret) {
  926. cnss_pr_err("Failed to turn on vreg, err = %d\n", ret);
  927. goto out;
  928. }
  929. ret = cnss_clk_on(plat_priv, &plat_priv->clk_list);
  930. if (ret) {
  931. cnss_pr_err("Failed to turn on clocks, err = %d\n", ret);
  932. goto vreg_off;
  933. }
  934. ret = cnss_select_pinctrl_enable(plat_priv);
  935. if (ret) {
  936. cnss_pr_err("Failed to select pinctrl state, err = %d\n", ret);
  937. goto clk_off;
  938. }
  939. plat_priv->powered_on = true;
  940. cnss_enable_dev_sol_irq(plat_priv);
  941. cnss_set_host_sol_value(plat_priv, 0);
  942. return 0;
  943. clk_off:
  944. cnss_clk_off(plat_priv, &plat_priv->clk_list);
  945. vreg_off:
  946. cnss_vreg_off_type(plat_priv, CNSS_VREG_PRIM);
  947. out:
  948. return ret;
  949. }
  950. void cnss_power_off_device(struct cnss_plat_data *plat_priv)
  951. {
  952. if (!plat_priv->powered_on) {
  953. cnss_pr_dbg("Already powered down");
  954. return;
  955. }
  956. cnss_disable_dev_sol_irq(plat_priv);
  957. cnss_select_pinctrl_state(plat_priv, false);
  958. cnss_clk_off(plat_priv, &plat_priv->clk_list);
  959. cnss_vreg_off_type(plat_priv, CNSS_VREG_PRIM);
  960. plat_priv->powered_on = false;
  961. }
  962. bool cnss_is_device_powered_on(struct cnss_plat_data *plat_priv)
  963. {
  964. return plat_priv->powered_on;
  965. }
  966. void cnss_set_pin_connect_status(struct cnss_plat_data *plat_priv)
  967. {
  968. unsigned long pin_status = 0;
  969. set_bit(CNSS_WLAN_EN, &pin_status);
  970. set_bit(CNSS_PCIE_TXN, &pin_status);
  971. set_bit(CNSS_PCIE_TXP, &pin_status);
  972. set_bit(CNSS_PCIE_RXN, &pin_status);
  973. set_bit(CNSS_PCIE_RXP, &pin_status);
  974. set_bit(CNSS_PCIE_REFCLKN, &pin_status);
  975. set_bit(CNSS_PCIE_REFCLKP, &pin_status);
  976. set_bit(CNSS_PCIE_RST, &pin_status);
  977. plat_priv->pin_result.host_pin_result = pin_status;
  978. }
  979. #if IS_ENABLED(CONFIG_QCOM_COMMAND_DB)
  980. static int cnss_cmd_db_ready(struct cnss_plat_data *plat_priv)
  981. {
  982. return cmd_db_ready();
  983. }
  984. static u32 cnss_cmd_db_read_addr(struct cnss_plat_data *plat_priv,
  985. const char *res_id)
  986. {
  987. return cmd_db_read_addr(res_id);
  988. }
  989. #else
  990. static int cnss_cmd_db_ready(struct cnss_plat_data *plat_priv)
  991. {
  992. return -EOPNOTSUPP;
  993. }
  994. static u32 cnss_cmd_db_read_addr(struct cnss_plat_data *plat_priv,
  995. const char *res_id)
  996. {
  997. return 0;
  998. }
  999. #endif
  1000. int cnss_get_tcs_info(struct cnss_plat_data *plat_priv)
  1001. {
  1002. struct platform_device *plat_dev = plat_priv->plat_dev;
  1003. struct resource *res;
  1004. resource_size_t addr_len;
  1005. void __iomem *tcs_cmd_base_addr;
  1006. int ret = 0;
  1007. res = platform_get_resource_byname(plat_dev, IORESOURCE_MEM, "tcs_cmd");
  1008. if (!res) {
  1009. cnss_pr_dbg("TCS CMD address is not present for CPR\n");
  1010. goto out;
  1011. }
  1012. plat_priv->tcs_info.cmd_base_addr = res->start;
  1013. addr_len = resource_size(res);
  1014. cnss_pr_dbg("TCS CMD base address is %pa with length %pa\n",
  1015. &plat_priv->tcs_info.cmd_base_addr, &addr_len);
  1016. tcs_cmd_base_addr = devm_ioremap(&plat_dev->dev, res->start, addr_len);
  1017. if (!tcs_cmd_base_addr) {
  1018. ret = -EINVAL;
  1019. cnss_pr_err("Failed to map TCS CMD address, err = %d\n",
  1020. ret);
  1021. goto out;
  1022. }
  1023. plat_priv->tcs_info.cmd_base_addr_io = tcs_cmd_base_addr;
  1024. return 0;
  1025. out:
  1026. return ret;
  1027. }
  1028. int cnss_get_cpr_info(struct cnss_plat_data *plat_priv)
  1029. {
  1030. struct platform_device *plat_dev = plat_priv->plat_dev;
  1031. struct cnss_cpr_info *cpr_info = &plat_priv->cpr_info;
  1032. const char *cmd_db_name;
  1033. u32 cpr_pmic_addr = 0;
  1034. int ret = 0;
  1035. if (plat_priv->tcs_info.cmd_base_addr == 0) {
  1036. cnss_pr_dbg("TCS CMD not configured\n");
  1037. return 0;
  1038. }
  1039. ret = of_property_read_string(plat_dev->dev.of_node,
  1040. "qcom,cmd_db_name", &cmd_db_name);
  1041. if (ret) {
  1042. cnss_pr_dbg("CommandDB name is not present for CPR\n");
  1043. goto out;
  1044. }
  1045. ret = cnss_cmd_db_ready(plat_priv);
  1046. if (ret) {
  1047. cnss_pr_err("CommandDB is not ready, err = %d\n", ret);
  1048. goto out;
  1049. }
  1050. cpr_pmic_addr = cnss_cmd_db_read_addr(plat_priv, cmd_db_name);
  1051. if (cpr_pmic_addr > 0) {
  1052. cpr_info->cpr_pmic_addr = cpr_pmic_addr;
  1053. cnss_pr_dbg("Get CPR PMIC address 0x%x from %s\n",
  1054. cpr_info->cpr_pmic_addr, cmd_db_name);
  1055. } else {
  1056. cnss_pr_err("CPR PMIC address is not available for %s\n",
  1057. cmd_db_name);
  1058. ret = -EINVAL;
  1059. goto out;
  1060. }
  1061. return 0;
  1062. out:
  1063. return ret;
  1064. }
  1065. #if IS_ENABLED(CONFIG_MSM_QMP)
  1066. int cnss_aop_mbox_init(struct cnss_plat_data *plat_priv)
  1067. {
  1068. struct mbox_client *mbox = &plat_priv->mbox_client_data;
  1069. struct mbox_chan *chan;
  1070. int ret;
  1071. plat_priv->mbox_chan = NULL;
  1072. mbox->dev = &plat_priv->plat_dev->dev;
  1073. mbox->tx_block = true;
  1074. mbox->tx_tout = CNSS_MBOX_TIMEOUT_MS;
  1075. mbox->knows_txdone = false;
  1076. chan = mbox_request_channel(mbox, 0);
  1077. if (IS_ERR(chan)) {
  1078. cnss_pr_err("Failed to get mbox channel\n");
  1079. return PTR_ERR(chan);
  1080. }
  1081. plat_priv->mbox_chan = chan;
  1082. cnss_pr_dbg("Mbox channel initialized\n");
  1083. ret = cnss_aop_pdc_reconfig(plat_priv);
  1084. if (ret)
  1085. cnss_pr_err("Failed to reconfig WLAN PDC, err = %d\n", ret);
  1086. return 0;
  1087. }
  1088. /**
  1089. * cnss_aop_send_msg: Sends json message to AOP using QMP
  1090. * @plat_priv: Pointer to cnss platform data
  1091. * @msg: String in json format
  1092. *
  1093. * AOP accepts JSON message to configure WLAN resources. Format as follows:
  1094. * To send VReg config: {class: wlan_pdc, ss: <pdc_name>,
  1095. * res: <VReg_name>.<param>, <seq_param>: <value>}
  1096. * To send PDC Config: {class: wlan_pdc, ss: <pdc_name>, res: pdc,
  1097. * enable: <Value>}
  1098. * QMP returns timeout error if format not correct or AOP operation fails.
  1099. *
  1100. * Return: 0 for success
  1101. */
  1102. int cnss_aop_send_msg(struct cnss_plat_data *plat_priv, char *mbox_msg)
  1103. {
  1104. struct qmp_pkt pkt;
  1105. int ret = 0;
  1106. cnss_pr_dbg("Sending AOP Mbox msg: %s\n", mbox_msg);
  1107. pkt.size = CNSS_MBOX_MSG_MAX_LEN;
  1108. pkt.data = mbox_msg;
  1109. ret = mbox_send_message(plat_priv->mbox_chan, &pkt);
  1110. if (ret < 0)
  1111. cnss_pr_err("Failed to send AOP mbox msg: %s\n", mbox_msg);
  1112. else
  1113. ret = 0;
  1114. return ret;
  1115. }
  1116. /* cnss_pdc_reconfig: Send PDC init table as configured in DT for wlan device */
  1117. int cnss_aop_pdc_reconfig(struct cnss_plat_data *plat_priv)
  1118. {
  1119. u32 i;
  1120. int ret;
  1121. if (plat_priv->pdc_init_table_len <= 0 || !plat_priv->pdc_init_table)
  1122. return 0;
  1123. cnss_pr_dbg("Setting PDC defaults for device ID: %d\n",
  1124. plat_priv->device_id);
  1125. for (i = 0; i < plat_priv->pdc_init_table_len; i++) {
  1126. ret = cnss_aop_send_msg(plat_priv,
  1127. (char *)plat_priv->pdc_init_table[i]);
  1128. if (ret < 0)
  1129. break;
  1130. }
  1131. return ret;
  1132. }
  1133. /* cnss_aop_pdc_name_str: Get PDC name corresponding to VReg from DT Mapiping */
  1134. static const char *cnss_aop_pdc_name_str(struct cnss_plat_data *plat_priv,
  1135. const char *vreg_name)
  1136. {
  1137. u32 i;
  1138. static const char * const aop_pdc_ss_str[] = {"rf", "bb"};
  1139. const char *pdc = aop_pdc_ss_str[0], *vreg_map_name;
  1140. if (plat_priv->vreg_pdc_map_len <= 0 || !plat_priv->vreg_pdc_map)
  1141. goto end;
  1142. for (i = 0; i < plat_priv->vreg_pdc_map_len; i++) {
  1143. vreg_map_name = plat_priv->vreg_pdc_map[i];
  1144. if (strnstr(vreg_map_name, vreg_name, strlen(vreg_map_name))) {
  1145. pdc = plat_priv->vreg_pdc_map[i + 1];
  1146. break;
  1147. }
  1148. }
  1149. end:
  1150. cnss_pr_dbg("%s mapped to %s\n", vreg_name, pdc);
  1151. return pdc;
  1152. }
  1153. static int cnss_aop_set_vreg_param(struct cnss_plat_data *plat_priv,
  1154. const char *vreg_name,
  1155. enum cnss_aop_vreg_param param,
  1156. enum cnss_aop_tcs_seq_param seq_param,
  1157. int val)
  1158. {
  1159. char msg[CNSS_MBOX_MSG_MAX_LEN];
  1160. static const char * const aop_vreg_param_str[] = {
  1161. [CNSS_VREG_VOLTAGE] = "v", [CNSS_VREG_MODE] = "m",
  1162. [CNSS_VREG_ENABLE] = "e",};
  1163. static const char * const aop_tcs_seq_str[] = {
  1164. [CNSS_TCS_UP_SEQ] = "upval", [CNSS_TCS_DOWN_SEQ] = "dwnval",
  1165. [CNSS_TCS_ENABLE_SEQ] = "enable",};
  1166. if (param >= CNSS_VREG_PARAM_MAX || seq_param >= CNSS_TCS_SEQ_MAX ||
  1167. !vreg_name)
  1168. return -EINVAL;
  1169. snprintf(msg, CNSS_MBOX_MSG_MAX_LEN,
  1170. "{class: wlan_pdc, ss: %s, res: %s.%s, %s: %d}",
  1171. cnss_aop_pdc_name_str(plat_priv, vreg_name),
  1172. vreg_name, aop_vreg_param_str[param],
  1173. aop_tcs_seq_str[seq_param], val);
  1174. return cnss_aop_send_msg(plat_priv, msg);
  1175. }
  1176. int cnss_aop_ol_cpr_cfg_setup(struct cnss_plat_data *plat_priv,
  1177. struct wlfw_pmu_cfg_v01 *fw_pmu_cfg)
  1178. {
  1179. const char *pmu_pin, *vreg;
  1180. struct wlfw_pmu_param_v01 *fw_pmu_param;
  1181. u32 fw_pmu_param_len, i, j, plat_vreg_param_len = 0;
  1182. int ret = 0;
  1183. struct platform_vreg_param {
  1184. char vreg[MAX_PROP_SIZE];
  1185. u32 wake_volt;
  1186. u32 sleep_volt;
  1187. } plat_vreg_param[QMI_WLFW_PMU_PARAMS_MAX_V01] = {0};
  1188. static bool config_done;
  1189. if (config_done)
  1190. return 0;
  1191. if (plat_priv->pmu_vreg_map_len <= 0 || !plat_priv->mbox_chan ||
  1192. !plat_priv->pmu_vreg_map) {
  1193. cnss_pr_dbg("Mbox channel / PMU VReg Map not configured\n");
  1194. goto end;
  1195. }
  1196. if (!fw_pmu_cfg)
  1197. return -EINVAL;
  1198. fw_pmu_param = fw_pmu_cfg->pmu_param;
  1199. fw_pmu_param_len = fw_pmu_cfg->pmu_param_len;
  1200. /* Get PMU Pin name to Platfom Vreg Mapping */
  1201. for (i = 0; i < fw_pmu_param_len; i++) {
  1202. cnss_pr_dbg("FW_PMU Data: %s %d %d %d %d\n",
  1203. fw_pmu_param[i].pin_name,
  1204. fw_pmu_param[i].wake_volt_valid,
  1205. fw_pmu_param[i].wake_volt,
  1206. fw_pmu_param[i].sleep_volt_valid,
  1207. fw_pmu_param[i].sleep_volt);
  1208. if (!fw_pmu_param[i].wake_volt_valid &&
  1209. !fw_pmu_param[i].sleep_volt_valid)
  1210. continue;
  1211. vreg = NULL;
  1212. for (j = 0; j < plat_priv->pmu_vreg_map_len; j += 2) {
  1213. pmu_pin = plat_priv->pmu_vreg_map[j];
  1214. if (strnstr(pmu_pin, fw_pmu_param[i].pin_name,
  1215. strlen(pmu_pin))) {
  1216. vreg = plat_priv->pmu_vreg_map[j + 1];
  1217. break;
  1218. }
  1219. }
  1220. if (!vreg) {
  1221. cnss_pr_err("No VREG mapping for %s\n",
  1222. fw_pmu_param[i].pin_name);
  1223. continue;
  1224. } else {
  1225. cnss_pr_dbg("%s mapped to %s\n",
  1226. fw_pmu_param[i].pin_name, vreg);
  1227. }
  1228. for (j = 0; j < QMI_WLFW_PMU_PARAMS_MAX_V01; j++) {
  1229. u32 wake_volt = 0, sleep_volt = 0;
  1230. if (plat_vreg_param[j].vreg[0] == '\0')
  1231. strlcpy(plat_vreg_param[j].vreg, vreg,
  1232. sizeof(plat_vreg_param[j].vreg));
  1233. else if (!strnstr(plat_vreg_param[j].vreg, vreg,
  1234. strlen(plat_vreg_param[j].vreg)))
  1235. continue;
  1236. if (fw_pmu_param[i].wake_volt_valid)
  1237. wake_volt = roundup(fw_pmu_param[i].wake_volt,
  1238. CNSS_PMIC_VOLTAGE_STEP) -
  1239. CNSS_PMIC_AUTO_HEADROOM +
  1240. CNSS_IR_DROP_WAKE;
  1241. if (fw_pmu_param[i].sleep_volt_valid)
  1242. sleep_volt = roundup(fw_pmu_param[i].sleep_volt,
  1243. CNSS_PMIC_VOLTAGE_STEP) -
  1244. CNSS_PMIC_AUTO_HEADROOM +
  1245. CNSS_IR_DROP_SLEEP;
  1246. plat_vreg_param[j].wake_volt =
  1247. (wake_volt > plat_vreg_param[j].wake_volt ?
  1248. wake_volt : plat_vreg_param[j].wake_volt);
  1249. plat_vreg_param[j].sleep_volt =
  1250. (sleep_volt > plat_vreg_param[j].sleep_volt ?
  1251. sleep_volt : plat_vreg_param[j].sleep_volt);
  1252. plat_vreg_param_len = (plat_vreg_param_len > j ?
  1253. plat_vreg_param_len : j);
  1254. cnss_pr_dbg("Plat VReg Data: %s %d %d\n",
  1255. plat_vreg_param[j].vreg,
  1256. plat_vreg_param[j].wake_volt,
  1257. plat_vreg_param[j].sleep_volt);
  1258. break;
  1259. }
  1260. }
  1261. for (i = 0; i <= plat_vreg_param_len; i++) {
  1262. if (plat_vreg_param[i].wake_volt > 0) {
  1263. ret =
  1264. cnss_aop_set_vreg_param(plat_priv,
  1265. plat_vreg_param[i].vreg,
  1266. CNSS_VREG_VOLTAGE,
  1267. CNSS_TCS_UP_SEQ,
  1268. plat_vreg_param[i].wake_volt);
  1269. }
  1270. if (plat_vreg_param[i].sleep_volt > 0) {
  1271. ret =
  1272. cnss_aop_set_vreg_param(plat_priv,
  1273. plat_vreg_param[i].vreg,
  1274. CNSS_VREG_VOLTAGE,
  1275. CNSS_TCS_DOWN_SEQ,
  1276. plat_vreg_param[i].sleep_volt);
  1277. }
  1278. if (ret < 0)
  1279. break;
  1280. }
  1281. end:
  1282. config_done = true;
  1283. return ret;
  1284. }
  1285. #else
  1286. int cnss_aop_mbox_init(struct cnss_plat_data *plat_priv)
  1287. {
  1288. return 0;
  1289. }
  1290. int cnss_aop_send_msg(struct cnss_plat_data *plat_priv, char *msg)
  1291. {
  1292. return 0;
  1293. }
  1294. int cnss_aop_pdc_reconfig(struct cnss_plat_data *plat_priv)
  1295. {
  1296. return 0;
  1297. }
  1298. static int cnss_aop_set_vreg_param(struct cnss_plat_data *plat_priv,
  1299. const char *vreg_name,
  1300. enum cnss_aop_vreg_param param,
  1301. enum cnss_aop_tcs_seq_pram seq_param,
  1302. int val)
  1303. {
  1304. return 0;
  1305. }
  1306. int cnss_aop_ol_cpr_cfg_setup(struct cnss_plat_data *plat_priv,
  1307. struct wlfw_pmu_cfg_v01 *fw_pmu_cfg)
  1308. {
  1309. return 0;
  1310. }
  1311. #endif
  1312. void cnss_power_misc_params_init(struct cnss_plat_data *plat_priv)
  1313. {
  1314. struct device *dev = &plat_priv->plat_dev->dev;
  1315. int ret;
  1316. /* common DT Entries */
  1317. plat_priv->pdc_init_table_len =
  1318. of_property_count_strings(dev->of_node,
  1319. "qcom,pdc_init_table");
  1320. if (plat_priv->pdc_init_table_len > 0) {
  1321. plat_priv->pdc_init_table =
  1322. kcalloc(plat_priv->pdc_init_table_len,
  1323. sizeof(char *), GFP_KERNEL);
  1324. ret =
  1325. of_property_read_string_array(dev->of_node,
  1326. "qcom,pdc_init_table",
  1327. plat_priv->pdc_init_table,
  1328. plat_priv->pdc_init_table_len);
  1329. if (ret < 0)
  1330. cnss_pr_err("Failed to get PDC Init Table\n");
  1331. } else {
  1332. cnss_pr_dbg("PDC Init Table not configured\n");
  1333. }
  1334. plat_priv->vreg_pdc_map_len =
  1335. of_property_count_strings(dev->of_node,
  1336. "qcom,vreg_pdc_map");
  1337. if (plat_priv->vreg_pdc_map_len > 0) {
  1338. plat_priv->vreg_pdc_map =
  1339. kcalloc(plat_priv->vreg_pdc_map_len,
  1340. sizeof(char *), GFP_KERNEL);
  1341. ret =
  1342. of_property_read_string_array(dev->of_node,
  1343. "qcom,vreg_pdc_map",
  1344. plat_priv->vreg_pdc_map,
  1345. plat_priv->vreg_pdc_map_len);
  1346. if (ret < 0)
  1347. cnss_pr_err("Failed to get VReg PDC Mapping\n");
  1348. } else {
  1349. cnss_pr_dbg("VReg PDC Mapping not configured\n");
  1350. }
  1351. plat_priv->pmu_vreg_map_len =
  1352. of_property_count_strings(dev->of_node,
  1353. "qcom,pmu_vreg_map");
  1354. if (plat_priv->pmu_vreg_map_len > 0) {
  1355. plat_priv->pmu_vreg_map = kcalloc(plat_priv->pmu_vreg_map_len,
  1356. sizeof(char *), GFP_KERNEL);
  1357. ret =
  1358. of_property_read_string_array(dev->of_node, "qcom,pmu_vreg_map",
  1359. plat_priv->pmu_vreg_map,
  1360. plat_priv->pmu_vreg_map_len);
  1361. if (ret < 0)
  1362. cnss_pr_err("Fail to get PMU VReg Mapping\n");
  1363. } else {
  1364. cnss_pr_dbg("PMU VReg Mapping not configured\n");
  1365. }
  1366. /* Device DT Specific */
  1367. if (plat_priv->device_id == QCA6390_DEVICE_ID ||
  1368. plat_priv->device_id == QCA6490_DEVICE_ID) {
  1369. ret = of_property_read_string(dev->of_node,
  1370. "qcom,vreg_ol_cpr",
  1371. &plat_priv->vreg_ol_cpr);
  1372. if (ret)
  1373. cnss_pr_dbg("VReg for QCA6490 OL CPR not configured\n");
  1374. ret = of_property_read_string(dev->of_node,
  1375. "qcom,vreg_ipa",
  1376. &plat_priv->vreg_ipa);
  1377. if (ret)
  1378. cnss_pr_dbg("VReg for QCA6490 Int Power Amp not configured\n");
  1379. }
  1380. }
  1381. int cnss_update_cpr_info(struct cnss_plat_data *plat_priv)
  1382. {
  1383. struct cnss_cpr_info *cpr_info = &plat_priv->cpr_info;
  1384. u32 pmic_addr, voltage = 0, voltage_tmp, offset;
  1385. void __iomem *tcs_cmd_addr, *tcs_cmd_data_addr;
  1386. int i, j;
  1387. if (cpr_info->voltage == 0) {
  1388. cnss_pr_err("OL CPR Voltage %dm is not valid\n",
  1389. cpr_info->voltage);
  1390. return -EINVAL;
  1391. }
  1392. if (plat_priv->device_id != QCA6490_DEVICE_ID)
  1393. return -EINVAL;
  1394. if (!plat_priv->vreg_ol_cpr || !plat_priv->mbox_chan) {
  1395. cnss_pr_dbg("Mbox channel / OL CPR Vreg not configured\n");
  1396. } else {
  1397. return cnss_aop_set_vreg_param(plat_priv,
  1398. plat_priv->vreg_ol_cpr,
  1399. CNSS_VREG_VOLTAGE,
  1400. CNSS_TCS_UP_SEQ,
  1401. cpr_info->voltage);
  1402. }
  1403. if (plat_priv->tcs_info.cmd_base_addr == 0) {
  1404. cnss_pr_dbg("TCS CMD not configured for OL CPR update\n");
  1405. return 0;
  1406. }
  1407. if (cpr_info->cpr_pmic_addr == 0) {
  1408. cnss_pr_err("PMIC address 0x%x is not valid\n",
  1409. cpr_info->cpr_pmic_addr);
  1410. return -EINVAL;
  1411. }
  1412. if (cpr_info->tcs_cmd_data_addr_io)
  1413. goto update_cpr;
  1414. for (i = 0; i < MAX_TCS_NUM; i++) {
  1415. for (j = 0; j < MAX_TCS_CMD_NUM; j++) {
  1416. offset = i * TCS_OFFSET + j * TCS_CMD_OFFSET;
  1417. tcs_cmd_addr = plat_priv->tcs_info.cmd_base_addr_io +
  1418. offset;
  1419. pmic_addr = readl_relaxed(tcs_cmd_addr);
  1420. if (pmic_addr == cpr_info->cpr_pmic_addr) {
  1421. tcs_cmd_data_addr = tcs_cmd_addr +
  1422. TCS_CMD_DATA_ADDR_OFFSET;
  1423. voltage_tmp = readl_relaxed(tcs_cmd_data_addr);
  1424. cnss_pr_dbg("Got voltage %dmV from i: %d, j: %d\n",
  1425. voltage_tmp, i, j);
  1426. if (voltage_tmp > voltage) {
  1427. voltage = voltage_tmp;
  1428. cpr_info->tcs_cmd_data_addr =
  1429. plat_priv->tcs_info.cmd_base_addr +
  1430. offset + TCS_CMD_DATA_ADDR_OFFSET;
  1431. cpr_info->tcs_cmd_data_addr_io =
  1432. tcs_cmd_data_addr;
  1433. }
  1434. }
  1435. }
  1436. }
  1437. if (!cpr_info->tcs_cmd_data_addr_io) {
  1438. cnss_pr_err("Failed to find proper TCS CMD data address\n");
  1439. return -EINVAL;
  1440. }
  1441. update_cpr:
  1442. cpr_info->voltage = cpr_info->voltage > BT_CXMX_VOLTAGE_MV ?
  1443. cpr_info->voltage : BT_CXMX_VOLTAGE_MV;
  1444. cnss_pr_dbg("Update TCS CMD data address %pa with voltage %dmV\n",
  1445. &cpr_info->tcs_cmd_data_addr, cpr_info->voltage);
  1446. writel_relaxed(cpr_info->voltage, cpr_info->tcs_cmd_data_addr_io);
  1447. return 0;
  1448. }
  1449. int cnss_enable_int_pow_amp_vreg(struct cnss_plat_data *plat_priv)
  1450. {
  1451. struct platform_device *plat_dev = plat_priv->plat_dev;
  1452. u32 offset, addr_val, data_val;
  1453. void __iomem *tcs_cmd;
  1454. int ret;
  1455. static bool config_done;
  1456. if (plat_priv->device_id != QCA6490_DEVICE_ID)
  1457. return -EINVAL;
  1458. if (config_done) {
  1459. cnss_pr_dbg("IPA Vreg already configured\n");
  1460. return 0;
  1461. }
  1462. if (!plat_priv->vreg_ipa || !plat_priv->mbox_chan) {
  1463. cnss_pr_dbg("Mbox channel / IPA Vreg not configured\n");
  1464. } else {
  1465. ret = cnss_aop_set_vreg_param(plat_priv,
  1466. plat_priv->vreg_ipa,
  1467. CNSS_VREG_ENABLE,
  1468. CNSS_TCS_UP_SEQ, 1);
  1469. if (ret == 0)
  1470. config_done = true;
  1471. return ret;
  1472. }
  1473. if (!plat_priv->tcs_info.cmd_base_addr_io) {
  1474. cnss_pr_err("TCS CMD not configured for IPA Vreg enable\n");
  1475. return -EINVAL;
  1476. }
  1477. ret = of_property_read_u32(plat_dev->dev.of_node,
  1478. "qcom,tcs_offset_int_pow_amp_vreg",
  1479. &offset);
  1480. if (ret) {
  1481. cnss_pr_dbg("Internal Power Amp Vreg not configured\n");
  1482. return -EINVAL;
  1483. }
  1484. tcs_cmd = plat_priv->tcs_info.cmd_base_addr_io + offset;
  1485. addr_val = readl_relaxed(tcs_cmd);
  1486. tcs_cmd += TCS_CMD_DATA_ADDR_OFFSET;
  1487. /* 1 = enable Vreg */
  1488. writel_relaxed(1, tcs_cmd);
  1489. data_val = readl_relaxed(tcs_cmd);
  1490. cnss_pr_dbg("Setup S3E TCS Addr: %x Data: %d\n", addr_val, data_val);
  1491. config_done = true;
  1492. return 0;
  1493. }
  1494. int cnss_dev_specific_power_on(struct cnss_plat_data *plat_priv)
  1495. {
  1496. int ret;
  1497. if (plat_priv->dt_type != CNSS_DTT_MULTIEXCHG)
  1498. return 0;
  1499. ret = cnss_get_vreg_type(plat_priv, CNSS_VREG_PRIM);
  1500. if (ret)
  1501. return ret;
  1502. plat_priv->powered_on = false;
  1503. return cnss_power_on_device(plat_priv);
  1504. }