power.c 30 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283
  1. // SPDX-License-Identifier: GPL-2.0-only
  2. /* Copyright (c) 2016-2021, The Linux Foundation. All rights reserved. */
  3. #include <linux/clk.h>
  4. #include <linux/delay.h>
  5. #if IS_ENABLED(CONFIG_MSM_QMP)
  6. #include <linux/mailbox/qmp.h>
  7. #endif
  8. #include <linux/of.h>
  9. #include <linux/of_gpio.h>
  10. #include <linux/pinctrl/consumer.h>
  11. #include <linux/regulator/consumer.h>
  12. #if IS_ENABLED(CONFIG_QCOM_COMMAND_DB)
  13. #include <soc/qcom/cmd-db.h>
  14. #endif
  15. #include "main.h"
  16. #include "debug.h"
  17. #include "bus.h"
  18. #if IS_ENABLED(CONFIG_ARCH_QCOM)
  19. static struct cnss_vreg_cfg cnss_vreg_list[] = {
  20. {"vdd-wlan-core", 1300000, 1300000, 0, 0, 0},
  21. {"vdd-wlan-io", 1800000, 1800000, 0, 0, 0},
  22. {"vdd-wlan-xtal-aon", 0, 0, 0, 0, 0},
  23. {"vdd-wlan-xtal", 1800000, 1800000, 0, 2, 0},
  24. {"vdd-wlan", 0, 0, 0, 0, 0},
  25. {"vdd-wlan-ctrl1", 0, 0, 0, 0, 0},
  26. {"vdd-wlan-ctrl2", 0, 0, 0, 0, 0},
  27. {"vdd-wlan-sp2t", 2700000, 2700000, 0, 0, 0},
  28. {"wlan-ant-switch", 1800000, 1800000, 0, 0, 0},
  29. {"wlan-soc-swreg", 1200000, 1200000, 0, 0, 0},
  30. {"vdd-wlan-aon", 950000, 950000, 0, 0, 0},
  31. {"vdd-wlan-dig", 950000, 952000, 0, 0, 0},
  32. {"vdd-wlan-rfa1", 1900000, 1900000, 0, 0, 0},
  33. {"vdd-wlan-rfa2", 1350000, 1350000, 0, 0, 0},
  34. {"vdd-wlan-en", 0, 0, 0, 10, 0},
  35. };
  36. static struct cnss_clk_cfg cnss_clk_list[] = {
  37. {"rf_clk", 0, 0},
  38. };
  39. #else
  40. static struct cnss_vreg_cfg cnss_vreg_list[] = {
  41. };
  42. static struct cnss_clk_cfg cnss_clk_list[] = {
  43. };
  44. #endif
  45. #define CNSS_VREG_INFO_SIZE ARRAY_SIZE(cnss_vreg_list)
  46. #define CNSS_CLK_INFO_SIZE ARRAY_SIZE(cnss_clk_list)
  47. #define MAX_PROP_SIZE 32
  48. #define BOOTSTRAP_GPIO "qcom,enable-bootstrap-gpio"
  49. #define BOOTSTRAP_ACTIVE "bootstrap_active"
  50. #define WLAN_EN_GPIO "wlan-en-gpio"
  51. #define BT_EN_GPIO "qcom,bt-en-gpio"
  52. #define XO_CLK_GPIO "qcom,xo-clk-gpio"
  53. #define WLAN_EN_ACTIVE "wlan_en_active"
  54. #define WLAN_EN_SLEEP "wlan_en_sleep"
  55. #define BOOTSTRAP_DELAY 1000
  56. #define WLAN_ENABLE_DELAY 1000
  57. #define TCS_CMD_DATA_ADDR_OFFSET 0x4
  58. #define TCS_OFFSET 0xC8
  59. #define TCS_CMD_OFFSET 0x10
  60. #define MAX_TCS_NUM 8
  61. #define MAX_TCS_CMD_NUM 5
  62. #define BT_CXMX_VOLTAGE_MV 950
  63. #define CNSS_MBOX_MSG_MAX_LEN 64
  64. #define CNSS_MBOX_TIMEOUT_MS 1000
  65. /**
  66. * enum cnss_vreg_param: Voltage regulator TCS param
  67. * @CNSS_VREG_VOLTAGE: Provides voltage level to be configured in TCS
  68. * @CNSS_VREG_MODE: Regulator mode
  69. * @CNSS_VREG_TCS_ENABLE: Set Voltage regulator enable config in TCS
  70. */
  71. enum cnss_vreg_param {
  72. CNSS_VREG_VOLTAGE,
  73. CNSS_VREG_MODE,
  74. CNSS_VREG_ENABLE,
  75. };
  76. /**
  77. * enum cnss_tcs_seq: TCS sequence ID for trigger
  78. * CNSS_TCS_UP_SEQ: TCS Sequence based on up trigger / Wake TCS
  79. * CNSS_TCS_DOWN_SEQ: TCS Sequence based on down trigger / Sleep TCS
  80. * CNSS_TCS_ALL_SEQ: Update for both up and down triggers
  81. */
  82. enum cnss_tcs_seq {
  83. CNSS_TCS_UP_SEQ,
  84. CNSS_TCS_DOWN_SEQ,
  85. CNSS_TCS_ALL_SEQ,
  86. };
  87. static int cnss_get_vreg_single(struct cnss_plat_data *plat_priv,
  88. struct cnss_vreg_info *vreg)
  89. {
  90. int ret = 0;
  91. struct device *dev;
  92. struct regulator *reg;
  93. const __be32 *prop;
  94. char prop_name[MAX_PROP_SIZE] = {0};
  95. int len;
  96. dev = &plat_priv->plat_dev->dev;
  97. reg = devm_regulator_get_optional(dev, vreg->cfg.name);
  98. if (IS_ERR(reg)) {
  99. ret = PTR_ERR(reg);
  100. if (ret == -ENODEV)
  101. return ret;
  102. else if (ret == -EPROBE_DEFER)
  103. cnss_pr_info("EPROBE_DEFER for regulator: %s\n",
  104. vreg->cfg.name);
  105. else
  106. cnss_pr_err("Failed to get regulator %s, err = %d\n",
  107. vreg->cfg.name, ret);
  108. return ret;
  109. }
  110. vreg->reg = reg;
  111. snprintf(prop_name, MAX_PROP_SIZE, "qcom,%s-config",
  112. vreg->cfg.name);
  113. prop = of_get_property(dev->of_node, prop_name, &len);
  114. if (!prop || len != (5 * sizeof(__be32))) {
  115. cnss_pr_dbg("Property %s %s, use default\n", prop_name,
  116. prop ? "invalid format" : "doesn't exist");
  117. } else {
  118. vreg->cfg.min_uv = be32_to_cpup(&prop[0]);
  119. vreg->cfg.max_uv = be32_to_cpup(&prop[1]);
  120. vreg->cfg.load_ua = be32_to_cpup(&prop[2]);
  121. vreg->cfg.delay_us = be32_to_cpup(&prop[3]);
  122. vreg->cfg.need_unvote = be32_to_cpup(&prop[4]);
  123. }
  124. cnss_pr_dbg("Got regulator: %s, min_uv: %u, max_uv: %u, load_ua: %u, delay_us: %u, need_unvote: %u\n",
  125. vreg->cfg.name, vreg->cfg.min_uv,
  126. vreg->cfg.max_uv, vreg->cfg.load_ua,
  127. vreg->cfg.delay_us, vreg->cfg.need_unvote);
  128. return 0;
  129. }
  130. static void cnss_put_vreg_single(struct cnss_plat_data *plat_priv,
  131. struct cnss_vreg_info *vreg)
  132. {
  133. struct device *dev = &plat_priv->plat_dev->dev;
  134. cnss_pr_dbg("Put regulator: %s\n", vreg->cfg.name);
  135. devm_regulator_put(vreg->reg);
  136. devm_kfree(dev, vreg);
  137. }
  138. static int cnss_vreg_on_single(struct cnss_vreg_info *vreg)
  139. {
  140. int ret = 0;
  141. if (vreg->enabled) {
  142. cnss_pr_dbg("Regulator %s is already enabled\n",
  143. vreg->cfg.name);
  144. return 0;
  145. }
  146. cnss_pr_dbg("Regulator %s is being enabled\n", vreg->cfg.name);
  147. if (vreg->cfg.min_uv != 0 && vreg->cfg.max_uv != 0) {
  148. ret = regulator_set_voltage(vreg->reg,
  149. vreg->cfg.min_uv,
  150. vreg->cfg.max_uv);
  151. if (ret) {
  152. cnss_pr_err("Failed to set voltage for regulator %s, min_uv: %u, max_uv: %u, err = %d\n",
  153. vreg->cfg.name, vreg->cfg.min_uv,
  154. vreg->cfg.max_uv, ret);
  155. goto out;
  156. }
  157. }
  158. if (vreg->cfg.load_ua) {
  159. ret = regulator_set_load(vreg->reg,
  160. vreg->cfg.load_ua);
  161. if (ret < 0) {
  162. cnss_pr_err("Failed to set load for regulator %s, load: %u, err = %d\n",
  163. vreg->cfg.name, vreg->cfg.load_ua,
  164. ret);
  165. goto out;
  166. }
  167. }
  168. if (vreg->cfg.delay_us)
  169. udelay(vreg->cfg.delay_us);
  170. ret = regulator_enable(vreg->reg);
  171. if (ret) {
  172. cnss_pr_err("Failed to enable regulator %s, err = %d\n",
  173. vreg->cfg.name, ret);
  174. goto out;
  175. }
  176. vreg->enabled = true;
  177. out:
  178. return ret;
  179. }
  180. static int cnss_vreg_unvote_single(struct cnss_vreg_info *vreg)
  181. {
  182. int ret = 0;
  183. if (!vreg->enabled) {
  184. cnss_pr_dbg("Regulator %s is already disabled\n",
  185. vreg->cfg.name);
  186. return 0;
  187. }
  188. cnss_pr_dbg("Removing vote for Regulator %s\n", vreg->cfg.name);
  189. if (vreg->cfg.load_ua) {
  190. ret = regulator_set_load(vreg->reg, 0);
  191. if (ret < 0)
  192. cnss_pr_err("Failed to set load for regulator %s, err = %d\n",
  193. vreg->cfg.name, ret);
  194. }
  195. if (vreg->cfg.min_uv != 0 && vreg->cfg.max_uv != 0) {
  196. ret = regulator_set_voltage(vreg->reg, 0,
  197. vreg->cfg.max_uv);
  198. if (ret)
  199. cnss_pr_err("Failed to set voltage for regulator %s, err = %d\n",
  200. vreg->cfg.name, ret);
  201. }
  202. return ret;
  203. }
  204. static int cnss_vreg_off_single(struct cnss_vreg_info *vreg)
  205. {
  206. int ret = 0;
  207. if (!vreg->enabled) {
  208. cnss_pr_dbg("Regulator %s is already disabled\n",
  209. vreg->cfg.name);
  210. return 0;
  211. }
  212. cnss_pr_dbg("Regulator %s is being disabled\n",
  213. vreg->cfg.name);
  214. ret = regulator_disable(vreg->reg);
  215. if (ret)
  216. cnss_pr_err("Failed to disable regulator %s, err = %d\n",
  217. vreg->cfg.name, ret);
  218. if (vreg->cfg.load_ua) {
  219. ret = regulator_set_load(vreg->reg, 0);
  220. if (ret < 0)
  221. cnss_pr_err("Failed to set load for regulator %s, err = %d\n",
  222. vreg->cfg.name, ret);
  223. }
  224. if (vreg->cfg.min_uv != 0 && vreg->cfg.max_uv != 0) {
  225. ret = regulator_set_voltage(vreg->reg, 0,
  226. vreg->cfg.max_uv);
  227. if (ret)
  228. cnss_pr_err("Failed to set voltage for regulator %s, err = %d\n",
  229. vreg->cfg.name, ret);
  230. }
  231. vreg->enabled = false;
  232. return ret;
  233. }
  234. static struct cnss_vreg_cfg *get_vreg_list(u32 *vreg_list_size,
  235. enum cnss_vreg_type type)
  236. {
  237. switch (type) {
  238. case CNSS_VREG_PRIM:
  239. *vreg_list_size = CNSS_VREG_INFO_SIZE;
  240. return cnss_vreg_list;
  241. default:
  242. cnss_pr_err("Unsupported vreg type 0x%x\n", type);
  243. *vreg_list_size = 0;
  244. return NULL;
  245. }
  246. }
  247. static int cnss_get_vreg(struct cnss_plat_data *plat_priv,
  248. struct list_head *vreg_list,
  249. struct cnss_vreg_cfg *vreg_cfg,
  250. u32 vreg_list_size)
  251. {
  252. int ret = 0;
  253. int i;
  254. struct cnss_vreg_info *vreg;
  255. struct device *dev = &plat_priv->plat_dev->dev;
  256. if (!list_empty(vreg_list)) {
  257. cnss_pr_dbg("Vregs have already been updated\n");
  258. return 0;
  259. }
  260. for (i = 0; i < vreg_list_size; i++) {
  261. vreg = devm_kzalloc(dev, sizeof(*vreg), GFP_KERNEL);
  262. if (!vreg)
  263. return -ENOMEM;
  264. memcpy(&vreg->cfg, &vreg_cfg[i], sizeof(vreg->cfg));
  265. ret = cnss_get_vreg_single(plat_priv, vreg);
  266. if (ret != 0) {
  267. if (ret == -ENODEV) {
  268. devm_kfree(dev, vreg);
  269. continue;
  270. } else {
  271. devm_kfree(dev, vreg);
  272. return ret;
  273. }
  274. }
  275. list_add_tail(&vreg->list, vreg_list);
  276. }
  277. return 0;
  278. }
  279. static void cnss_put_vreg(struct cnss_plat_data *plat_priv,
  280. struct list_head *vreg_list)
  281. {
  282. struct cnss_vreg_info *vreg;
  283. while (!list_empty(vreg_list)) {
  284. vreg = list_first_entry(vreg_list,
  285. struct cnss_vreg_info, list);
  286. list_del(&vreg->list);
  287. if (IS_ERR_OR_NULL(vreg->reg))
  288. continue;
  289. cnss_put_vreg_single(plat_priv, vreg);
  290. }
  291. }
  292. static int cnss_vreg_on(struct cnss_plat_data *plat_priv,
  293. struct list_head *vreg_list)
  294. {
  295. struct cnss_vreg_info *vreg;
  296. int ret = 0;
  297. list_for_each_entry(vreg, vreg_list, list) {
  298. if (IS_ERR_OR_NULL(vreg->reg))
  299. continue;
  300. ret = cnss_vreg_on_single(vreg);
  301. if (ret)
  302. break;
  303. }
  304. if (!ret)
  305. return 0;
  306. list_for_each_entry_continue_reverse(vreg, vreg_list, list) {
  307. if (IS_ERR_OR_NULL(vreg->reg) || !vreg->enabled)
  308. continue;
  309. cnss_vreg_off_single(vreg);
  310. }
  311. return ret;
  312. }
  313. static int cnss_vreg_off(struct cnss_plat_data *plat_priv,
  314. struct list_head *vreg_list)
  315. {
  316. struct cnss_vreg_info *vreg;
  317. list_for_each_entry_reverse(vreg, vreg_list, list) {
  318. if (IS_ERR_OR_NULL(vreg->reg))
  319. continue;
  320. cnss_vreg_off_single(vreg);
  321. }
  322. return 0;
  323. }
  324. static int cnss_vreg_unvote(struct cnss_plat_data *plat_priv,
  325. struct list_head *vreg_list)
  326. {
  327. struct cnss_vreg_info *vreg;
  328. list_for_each_entry_reverse(vreg, vreg_list, list) {
  329. if (IS_ERR_OR_NULL(vreg->reg))
  330. continue;
  331. if (vreg->cfg.need_unvote)
  332. cnss_vreg_unvote_single(vreg);
  333. }
  334. return 0;
  335. }
  336. int cnss_get_vreg_type(struct cnss_plat_data *plat_priv,
  337. enum cnss_vreg_type type)
  338. {
  339. struct cnss_vreg_cfg *vreg_cfg;
  340. u32 vreg_list_size = 0;
  341. int ret = 0;
  342. vreg_cfg = get_vreg_list(&vreg_list_size, type);
  343. if (!vreg_cfg)
  344. return -EINVAL;
  345. switch (type) {
  346. case CNSS_VREG_PRIM:
  347. ret = cnss_get_vreg(plat_priv, &plat_priv->vreg_list,
  348. vreg_cfg, vreg_list_size);
  349. break;
  350. default:
  351. cnss_pr_err("Unsupported vreg type 0x%x\n", type);
  352. return -EINVAL;
  353. }
  354. return ret;
  355. }
  356. void cnss_put_vreg_type(struct cnss_plat_data *plat_priv,
  357. enum cnss_vreg_type type)
  358. {
  359. switch (type) {
  360. case CNSS_VREG_PRIM:
  361. cnss_put_vreg(plat_priv, &plat_priv->vreg_list);
  362. break;
  363. default:
  364. return;
  365. }
  366. }
  367. int cnss_vreg_on_type(struct cnss_plat_data *plat_priv,
  368. enum cnss_vreg_type type)
  369. {
  370. int ret = 0;
  371. switch (type) {
  372. case CNSS_VREG_PRIM:
  373. ret = cnss_vreg_on(plat_priv, &plat_priv->vreg_list);
  374. break;
  375. default:
  376. cnss_pr_err("Unsupported vreg type 0x%x\n", type);
  377. return -EINVAL;
  378. }
  379. return ret;
  380. }
  381. int cnss_vreg_off_type(struct cnss_plat_data *plat_priv,
  382. enum cnss_vreg_type type)
  383. {
  384. int ret = 0;
  385. switch (type) {
  386. case CNSS_VREG_PRIM:
  387. ret = cnss_vreg_off(plat_priv, &plat_priv->vreg_list);
  388. break;
  389. default:
  390. cnss_pr_err("Unsupported vreg type 0x%x\n", type);
  391. return -EINVAL;
  392. }
  393. return ret;
  394. }
  395. int cnss_vreg_unvote_type(struct cnss_plat_data *plat_priv,
  396. enum cnss_vreg_type type)
  397. {
  398. int ret = 0;
  399. switch (type) {
  400. case CNSS_VREG_PRIM:
  401. ret = cnss_vreg_unvote(plat_priv, &plat_priv->vreg_list);
  402. break;
  403. default:
  404. cnss_pr_err("Unsupported vreg type 0x%x\n", type);
  405. return -EINVAL;
  406. }
  407. return ret;
  408. }
  409. static int cnss_get_clk_single(struct cnss_plat_data *plat_priv,
  410. struct cnss_clk_info *clk_info)
  411. {
  412. struct device *dev = &plat_priv->plat_dev->dev;
  413. struct clk *clk;
  414. int ret;
  415. clk = devm_clk_get(dev, clk_info->cfg.name);
  416. if (IS_ERR(clk)) {
  417. ret = PTR_ERR(clk);
  418. if (clk_info->cfg.required)
  419. cnss_pr_err("Failed to get clock %s, err = %d\n",
  420. clk_info->cfg.name, ret);
  421. else
  422. cnss_pr_dbg("Failed to get optional clock %s, err = %d\n",
  423. clk_info->cfg.name, ret);
  424. return ret;
  425. }
  426. clk_info->clk = clk;
  427. cnss_pr_dbg("Got clock: %s, freq: %u\n",
  428. clk_info->cfg.name, clk_info->cfg.freq);
  429. return 0;
  430. }
  431. static void cnss_put_clk_single(struct cnss_plat_data *plat_priv,
  432. struct cnss_clk_info *clk_info)
  433. {
  434. struct device *dev = &plat_priv->plat_dev->dev;
  435. cnss_pr_dbg("Put clock: %s\n", clk_info->cfg.name);
  436. devm_clk_put(dev, clk_info->clk);
  437. }
  438. static int cnss_clk_on_single(struct cnss_clk_info *clk_info)
  439. {
  440. int ret;
  441. if (clk_info->enabled) {
  442. cnss_pr_dbg("Clock %s is already enabled\n",
  443. clk_info->cfg.name);
  444. return 0;
  445. }
  446. cnss_pr_dbg("Clock %s is being enabled\n", clk_info->cfg.name);
  447. if (clk_info->cfg.freq) {
  448. ret = clk_set_rate(clk_info->clk, clk_info->cfg.freq);
  449. if (ret) {
  450. cnss_pr_err("Failed to set frequency %u for clock %s, err = %d\n",
  451. clk_info->cfg.freq, clk_info->cfg.name,
  452. ret);
  453. return ret;
  454. }
  455. }
  456. ret = clk_prepare_enable(clk_info->clk);
  457. if (ret) {
  458. cnss_pr_err("Failed to enable clock %s, err = %d\n",
  459. clk_info->cfg.name, ret);
  460. return ret;
  461. }
  462. clk_info->enabled = true;
  463. return 0;
  464. }
  465. static int cnss_clk_off_single(struct cnss_clk_info *clk_info)
  466. {
  467. if (!clk_info->enabled) {
  468. cnss_pr_dbg("Clock %s is already disabled\n",
  469. clk_info->cfg.name);
  470. return 0;
  471. }
  472. cnss_pr_dbg("Clock %s is being disabled\n", clk_info->cfg.name);
  473. clk_disable_unprepare(clk_info->clk);
  474. clk_info->enabled = false;
  475. return 0;
  476. }
  477. int cnss_get_clk(struct cnss_plat_data *plat_priv)
  478. {
  479. struct device *dev;
  480. struct list_head *clk_list;
  481. struct cnss_clk_info *clk_info;
  482. int ret, i;
  483. if (!plat_priv)
  484. return -ENODEV;
  485. dev = &plat_priv->plat_dev->dev;
  486. clk_list = &plat_priv->clk_list;
  487. if (!list_empty(clk_list)) {
  488. cnss_pr_dbg("Clocks have already been updated\n");
  489. return 0;
  490. }
  491. for (i = 0; i < CNSS_CLK_INFO_SIZE; i++) {
  492. clk_info = devm_kzalloc(dev, sizeof(*clk_info), GFP_KERNEL);
  493. if (!clk_info) {
  494. ret = -ENOMEM;
  495. goto cleanup;
  496. }
  497. memcpy(&clk_info->cfg, &cnss_clk_list[i],
  498. sizeof(clk_info->cfg));
  499. ret = cnss_get_clk_single(plat_priv, clk_info);
  500. if (ret != 0) {
  501. if (clk_info->cfg.required) {
  502. devm_kfree(dev, clk_info);
  503. goto cleanup;
  504. } else {
  505. devm_kfree(dev, clk_info);
  506. continue;
  507. }
  508. }
  509. list_add_tail(&clk_info->list, clk_list);
  510. }
  511. return 0;
  512. cleanup:
  513. while (!list_empty(clk_list)) {
  514. clk_info = list_first_entry(clk_list, struct cnss_clk_info,
  515. list);
  516. list_del(&clk_info->list);
  517. if (IS_ERR_OR_NULL(clk_info->clk))
  518. continue;
  519. cnss_put_clk_single(plat_priv, clk_info);
  520. devm_kfree(dev, clk_info);
  521. }
  522. return ret;
  523. }
  524. void cnss_put_clk(struct cnss_plat_data *plat_priv)
  525. {
  526. struct device *dev;
  527. struct list_head *clk_list;
  528. struct cnss_clk_info *clk_info;
  529. if (!plat_priv)
  530. return;
  531. dev = &plat_priv->plat_dev->dev;
  532. clk_list = &plat_priv->clk_list;
  533. while (!list_empty(clk_list)) {
  534. clk_info = list_first_entry(clk_list, struct cnss_clk_info,
  535. list);
  536. list_del(&clk_info->list);
  537. if (IS_ERR_OR_NULL(clk_info->clk))
  538. continue;
  539. cnss_put_clk_single(plat_priv, clk_info);
  540. devm_kfree(dev, clk_info);
  541. }
  542. }
  543. static int cnss_clk_on(struct cnss_plat_data *plat_priv,
  544. struct list_head *clk_list)
  545. {
  546. struct cnss_clk_info *clk_info;
  547. int ret = 0;
  548. list_for_each_entry(clk_info, clk_list, list) {
  549. if (IS_ERR_OR_NULL(clk_info->clk))
  550. continue;
  551. ret = cnss_clk_on_single(clk_info);
  552. if (ret)
  553. break;
  554. }
  555. if (!ret)
  556. return 0;
  557. list_for_each_entry_continue_reverse(clk_info, clk_list, list) {
  558. if (IS_ERR_OR_NULL(clk_info->clk))
  559. continue;
  560. cnss_clk_off_single(clk_info);
  561. }
  562. return ret;
  563. }
  564. static int cnss_clk_off(struct cnss_plat_data *plat_priv,
  565. struct list_head *clk_list)
  566. {
  567. struct cnss_clk_info *clk_info;
  568. list_for_each_entry_reverse(clk_info, clk_list, list) {
  569. if (IS_ERR_OR_NULL(clk_info->clk))
  570. continue;
  571. cnss_clk_off_single(clk_info);
  572. }
  573. return 0;
  574. }
  575. int cnss_get_pinctrl(struct cnss_plat_data *plat_priv)
  576. {
  577. int ret = 0;
  578. struct device *dev;
  579. struct cnss_pinctrl_info *pinctrl_info;
  580. dev = &plat_priv->plat_dev->dev;
  581. pinctrl_info = &plat_priv->pinctrl_info;
  582. pinctrl_info->pinctrl = devm_pinctrl_get(dev);
  583. if (IS_ERR_OR_NULL(pinctrl_info->pinctrl)) {
  584. ret = PTR_ERR(pinctrl_info->pinctrl);
  585. cnss_pr_err("Failed to get pinctrl, err = %d\n", ret);
  586. goto out;
  587. }
  588. if (of_find_property(dev->of_node, BOOTSTRAP_GPIO, NULL)) {
  589. pinctrl_info->bootstrap_active =
  590. pinctrl_lookup_state(pinctrl_info->pinctrl,
  591. BOOTSTRAP_ACTIVE);
  592. if (IS_ERR_OR_NULL(pinctrl_info->bootstrap_active)) {
  593. ret = PTR_ERR(pinctrl_info->bootstrap_active);
  594. cnss_pr_err("Failed to get bootstrap active state, err = %d\n",
  595. ret);
  596. goto out;
  597. }
  598. }
  599. if (of_find_property(dev->of_node, WLAN_EN_GPIO, NULL)) {
  600. pinctrl_info->wlan_en_active =
  601. pinctrl_lookup_state(pinctrl_info->pinctrl,
  602. WLAN_EN_ACTIVE);
  603. if (IS_ERR_OR_NULL(pinctrl_info->wlan_en_active)) {
  604. ret = PTR_ERR(pinctrl_info->wlan_en_active);
  605. cnss_pr_err("Failed to get wlan_en active state, err = %d\n",
  606. ret);
  607. goto out;
  608. }
  609. pinctrl_info->wlan_en_sleep =
  610. pinctrl_lookup_state(pinctrl_info->pinctrl,
  611. WLAN_EN_SLEEP);
  612. if (IS_ERR_OR_NULL(pinctrl_info->wlan_en_sleep)) {
  613. ret = PTR_ERR(pinctrl_info->wlan_en_sleep);
  614. cnss_pr_err("Failed to get wlan_en sleep state, err = %d\n",
  615. ret);
  616. goto out;
  617. }
  618. }
  619. /* Added for QCA6490 PMU delayed WLAN_EN_GPIO */
  620. if (of_find_property(dev->of_node, BT_EN_GPIO, NULL)) {
  621. pinctrl_info->bt_en_gpio = of_get_named_gpio(dev->of_node,
  622. BT_EN_GPIO, 0);
  623. cnss_pr_dbg("BT GPIO: %d\n", pinctrl_info->bt_en_gpio);
  624. } else {
  625. pinctrl_info->bt_en_gpio = -EINVAL;
  626. }
  627. /* Added for QCA6490 to minimize XO CLK selection leakage prevention */
  628. if (of_find_property(dev->of_node, XO_CLK_GPIO, NULL)) {
  629. pinctrl_info->xo_clk_gpio = of_get_named_gpio(dev->of_node,
  630. XO_CLK_GPIO, 0);
  631. cnss_pr_dbg("QCA6490 XO_CLK GPIO: %d\n",
  632. pinctrl_info->xo_clk_gpio);
  633. cnss_set_feature_list(plat_priv, BOOTSTRAP_CLOCK_SELECT_V01);
  634. } else {
  635. pinctrl_info->xo_clk_gpio = -EINVAL;
  636. }
  637. return 0;
  638. out:
  639. return ret;
  640. }
  641. #define CNSS_XO_CLK_RETRY_COUNT_MAX 5
  642. static void cnss_set_xo_clk_gpio_state(struct cnss_plat_data *plat_priv,
  643. bool enable)
  644. {
  645. int xo_clk_gpio = plat_priv->pinctrl_info.xo_clk_gpio, retry = 0, ret;
  646. if (xo_clk_gpio < 0 || plat_priv->device_id != QCA6490_DEVICE_ID)
  647. return;
  648. retry_gpio_req:
  649. ret = gpio_request(xo_clk_gpio, "XO_CLK_GPIO");
  650. if (ret) {
  651. if (retry++ < CNSS_XO_CLK_RETRY_COUNT_MAX) {
  652. /* wait for ~(10 - 20) ms */
  653. usleep_range(10000, 20000);
  654. goto retry_gpio_req;
  655. }
  656. }
  657. if (ret) {
  658. cnss_pr_err("QCA6490 XO CLK Gpio request failed\n");
  659. return;
  660. }
  661. if (enable) {
  662. gpio_direction_output(xo_clk_gpio, 1);
  663. /*XO CLK must be asserted for some time before WLAN_EN */
  664. usleep_range(100, 200);
  665. } else {
  666. /* Assert XO CLK ~(2-5)ms before off for valid latch in HW */
  667. usleep_range(2000, 5000);
  668. gpio_direction_output(xo_clk_gpio, 0);
  669. }
  670. gpio_free(xo_clk_gpio);
  671. }
  672. static int cnss_select_pinctrl_state(struct cnss_plat_data *plat_priv,
  673. bool state)
  674. {
  675. int ret = 0;
  676. struct cnss_pinctrl_info *pinctrl_info;
  677. if (!plat_priv) {
  678. cnss_pr_err("plat_priv is NULL!\n");
  679. ret = -ENODEV;
  680. goto out;
  681. }
  682. pinctrl_info = &plat_priv->pinctrl_info;
  683. if (state) {
  684. if (!IS_ERR_OR_NULL(pinctrl_info->bootstrap_active)) {
  685. ret = pinctrl_select_state
  686. (pinctrl_info->pinctrl,
  687. pinctrl_info->bootstrap_active);
  688. if (ret) {
  689. cnss_pr_err("Failed to select bootstrap active state, err = %d\n",
  690. ret);
  691. goto out;
  692. }
  693. udelay(BOOTSTRAP_DELAY);
  694. }
  695. cnss_set_xo_clk_gpio_state(plat_priv, true);
  696. if (!IS_ERR_OR_NULL(pinctrl_info->wlan_en_active)) {
  697. ret = pinctrl_select_state
  698. (pinctrl_info->pinctrl,
  699. pinctrl_info->wlan_en_active);
  700. if (ret) {
  701. cnss_pr_err("Failed to select wlan_en active state, err = %d\n",
  702. ret);
  703. goto out;
  704. }
  705. udelay(WLAN_ENABLE_DELAY);
  706. }
  707. cnss_set_xo_clk_gpio_state(plat_priv, false);
  708. } else {
  709. if (!IS_ERR_OR_NULL(pinctrl_info->wlan_en_sleep)) {
  710. ret = pinctrl_select_state(pinctrl_info->pinctrl,
  711. pinctrl_info->wlan_en_sleep);
  712. if (ret) {
  713. cnss_pr_err("Failed to select wlan_en sleep state, err = %d\n",
  714. ret);
  715. goto out;
  716. }
  717. }
  718. }
  719. cnss_pr_dbg("%s WLAN_EN GPIO successfully\n",
  720. state ? "Assert" : "De-assert");
  721. return 0;
  722. out:
  723. return ret;
  724. }
  725. /**
  726. * cnss_select_pinctrl_enable - select WLAN_GPIO for Active pinctrl status
  727. * @plat_priv: Platform private data structure pointer
  728. *
  729. * For QCA6490, PMU requires minimum 100ms delay between BT_EN_GPIO off and
  730. * WLAN_EN_GPIO on. This is done to avoid power up issues.
  731. *
  732. * Return: Status of pinctrl select operation. 0 - Success.
  733. */
  734. static int cnss_select_pinctrl_enable(struct cnss_plat_data *plat_priv)
  735. {
  736. int ret = 0, bt_en_gpio = plat_priv->pinctrl_info.bt_en_gpio;
  737. u8 wlan_en_state = 0;
  738. if (bt_en_gpio < 0 || plat_priv->device_id != QCA6490_DEVICE_ID)
  739. goto set_wlan_en;
  740. if (gpio_get_value(bt_en_gpio)) {
  741. cnss_pr_dbg("BT_EN_GPIO State: On\n");
  742. ret = cnss_select_pinctrl_state(plat_priv, true);
  743. if (!ret)
  744. return ret;
  745. wlan_en_state = 1;
  746. }
  747. if (!gpio_get_value(bt_en_gpio)) {
  748. cnss_pr_dbg("BT_EN_GPIO State: Off. Delay WLAN_GPIO enable\n");
  749. /* check for BT_EN_GPIO down race during above operation */
  750. if (wlan_en_state) {
  751. cnss_pr_dbg("Reset WLAN_EN as BT got turned off during enable\n");
  752. cnss_select_pinctrl_state(plat_priv, false);
  753. wlan_en_state = 0;
  754. }
  755. /* 100 ms delay for BT_EN and WLAN_EN QCA6490 PMU sequencing */
  756. msleep(100);
  757. }
  758. set_wlan_en:
  759. if (!wlan_en_state)
  760. ret = cnss_select_pinctrl_state(plat_priv, true);
  761. return ret;
  762. }
  763. int cnss_power_on_device(struct cnss_plat_data *plat_priv)
  764. {
  765. int ret = 0;
  766. if (plat_priv->powered_on) {
  767. cnss_pr_dbg("Already powered up");
  768. return 0;
  769. }
  770. ret = cnss_vreg_on_type(plat_priv, CNSS_VREG_PRIM);
  771. if (ret) {
  772. cnss_pr_err("Failed to turn on vreg, err = %d\n", ret);
  773. goto out;
  774. }
  775. ret = cnss_clk_on(plat_priv, &plat_priv->clk_list);
  776. if (ret) {
  777. cnss_pr_err("Failed to turn on clocks, err = %d\n", ret);
  778. goto vreg_off;
  779. }
  780. ret = cnss_select_pinctrl_enable(plat_priv);
  781. if (ret) {
  782. cnss_pr_err("Failed to select pinctrl state, err = %d\n", ret);
  783. goto clk_off;
  784. }
  785. plat_priv->powered_on = true;
  786. return 0;
  787. clk_off:
  788. cnss_clk_off(plat_priv, &plat_priv->clk_list);
  789. vreg_off:
  790. cnss_vreg_off_type(plat_priv, CNSS_VREG_PRIM);
  791. out:
  792. return ret;
  793. }
  794. void cnss_power_off_device(struct cnss_plat_data *plat_priv)
  795. {
  796. if (!plat_priv->powered_on) {
  797. cnss_pr_dbg("Already powered down");
  798. return;
  799. }
  800. cnss_select_pinctrl_state(plat_priv, false);
  801. cnss_clk_off(plat_priv, &plat_priv->clk_list);
  802. cnss_vreg_off_type(plat_priv, CNSS_VREG_PRIM);
  803. plat_priv->powered_on = false;
  804. }
  805. bool cnss_is_device_powered_on(struct cnss_plat_data *plat_priv)
  806. {
  807. return plat_priv->powered_on;
  808. }
  809. void cnss_set_pin_connect_status(struct cnss_plat_data *plat_priv)
  810. {
  811. unsigned long pin_status = 0;
  812. set_bit(CNSS_WLAN_EN, &pin_status);
  813. set_bit(CNSS_PCIE_TXN, &pin_status);
  814. set_bit(CNSS_PCIE_TXP, &pin_status);
  815. set_bit(CNSS_PCIE_RXN, &pin_status);
  816. set_bit(CNSS_PCIE_RXP, &pin_status);
  817. set_bit(CNSS_PCIE_REFCLKN, &pin_status);
  818. set_bit(CNSS_PCIE_REFCLKP, &pin_status);
  819. set_bit(CNSS_PCIE_RST, &pin_status);
  820. plat_priv->pin_result.host_pin_result = pin_status;
  821. }
  822. #if IS_ENABLED(CONFIG_QCOM_COMMAND_DB)
  823. static int cnss_cmd_db_ready(struct cnss_plat_data *plat_priv)
  824. {
  825. return cmd_db_ready();
  826. }
  827. static u32 cnss_cmd_db_read_addr(struct cnss_plat_data *plat_priv,
  828. const char *res_id)
  829. {
  830. return cmd_db_read_addr(res_id);
  831. }
  832. #else
  833. static int cnss_cmd_db_ready(struct cnss_plat_data *plat_priv)
  834. {
  835. return -EOPNOTSUPP;
  836. }
  837. static u32 cnss_cmd_db_read_addr(struct cnss_plat_data *plat_priv,
  838. const char *res_id)
  839. {
  840. return 0;
  841. }
  842. #endif
  843. int cnss_get_tcs_info(struct cnss_plat_data *plat_priv)
  844. {
  845. struct platform_device *plat_dev = plat_priv->plat_dev;
  846. struct resource *res;
  847. resource_size_t addr_len;
  848. void __iomem *tcs_cmd_base_addr;
  849. int ret = 0;
  850. res = platform_get_resource_byname(plat_dev, IORESOURCE_MEM, "tcs_cmd");
  851. if (!res) {
  852. cnss_pr_dbg("TCS CMD address is not present for CPR\n");
  853. goto out;
  854. }
  855. plat_priv->tcs_info.cmd_base_addr = res->start;
  856. addr_len = resource_size(res);
  857. cnss_pr_dbg("TCS CMD base address is %pa with length %pa\n",
  858. &plat_priv->tcs_info.cmd_base_addr, &addr_len);
  859. tcs_cmd_base_addr = devm_ioremap(&plat_dev->dev, res->start, addr_len);
  860. if (!tcs_cmd_base_addr) {
  861. ret = -EINVAL;
  862. cnss_pr_err("Failed to map TCS CMD address, err = %d\n",
  863. ret);
  864. goto out;
  865. }
  866. plat_priv->tcs_info.cmd_base_addr_io = tcs_cmd_base_addr;
  867. return 0;
  868. out:
  869. return ret;
  870. }
  871. int cnss_get_cpr_info(struct cnss_plat_data *plat_priv)
  872. {
  873. struct platform_device *plat_dev = plat_priv->plat_dev;
  874. struct cnss_cpr_info *cpr_info = &plat_priv->cpr_info;
  875. const char *cmd_db_name;
  876. u32 cpr_pmic_addr = 0;
  877. int ret = 0;
  878. if (plat_priv->tcs_info.cmd_base_addr == 0) {
  879. cnss_pr_dbg("TCS CMD not configured\n");
  880. return 0;
  881. }
  882. ret = of_property_read_string(plat_dev->dev.of_node,
  883. "qcom,cmd_db_name", &cmd_db_name);
  884. if (ret) {
  885. cnss_pr_dbg("CommandDB name is not present for CPR\n");
  886. goto out;
  887. }
  888. ret = cnss_cmd_db_ready(plat_priv);
  889. if (ret) {
  890. cnss_pr_err("CommandDB is not ready, err = %d\n", ret);
  891. goto out;
  892. }
  893. cpr_pmic_addr = cnss_cmd_db_read_addr(plat_priv, cmd_db_name);
  894. if (cpr_pmic_addr > 0) {
  895. cpr_info->cpr_pmic_addr = cpr_pmic_addr;
  896. cnss_pr_dbg("Get CPR PMIC address 0x%x from %s\n",
  897. cpr_info->cpr_pmic_addr, cmd_db_name);
  898. } else {
  899. cnss_pr_err("CPR PMIC address is not available for %s\n",
  900. cmd_db_name);
  901. ret = -EINVAL;
  902. goto out;
  903. }
  904. return 0;
  905. out:
  906. return ret;
  907. }
  908. int cnss_aop_mbox_init(struct cnss_plat_data *plat_priv)
  909. {
  910. struct mbox_client *mbox = &plat_priv->mbox_client_data;
  911. struct mbox_chan *chan;
  912. int ret = 0;
  913. mbox->dev = &plat_priv->plat_dev->dev;
  914. mbox->tx_block = true;
  915. mbox->tx_tout = CNSS_MBOX_TIMEOUT_MS;
  916. mbox->knows_txdone = false;
  917. plat_priv->mbox_chan = NULL;
  918. chan = mbox_request_channel(mbox, 0);
  919. if (IS_ERR(chan)) {
  920. cnss_pr_err("Failed to get mbox channel\n");
  921. return PTR_ERR(chan);
  922. }
  923. plat_priv->mbox_chan = chan;
  924. ret = of_property_read_string(plat_priv->plat_dev->dev.of_node,
  925. "qcom,vreg_ol_cpr",
  926. &plat_priv->vreg_ol_cpr);
  927. if (ret)
  928. cnss_pr_dbg("Vreg for OL CPR not configured\n");
  929. ret = of_property_read_string(plat_priv->plat_dev->dev.of_node,
  930. "qcom,vreg_ipa",
  931. &plat_priv->vreg_ipa);
  932. if (ret)
  933. cnss_pr_dbg("Volt regulator for Int Power Amp not configured\n");
  934. cnss_pr_dbg("Mbox channel initialized\n");
  935. return 0;
  936. }
  937. #if IS_ENABLED(CONFIG_MSM_QMP)
  938. static int cnss_aop_set_vreg_param(struct cnss_plat_data *plat_priv,
  939. const char *vreg_name,
  940. enum cnss_vreg_param param,
  941. enum cnss_tcs_seq seq, int val)
  942. {
  943. struct qmp_pkt pkt;
  944. char mbox_msg[CNSS_MBOX_MSG_MAX_LEN];
  945. static const char * const vreg_param_str[] = {"v", "m", "e"};
  946. static const char *const tcs_seq_str[] = {"upval", "dwnval", "enable"};
  947. int ret = 0;
  948. if (param > CNSS_VREG_ENABLE || seq > CNSS_TCS_ALL_SEQ || !vreg_name)
  949. return -EINVAL;
  950. snprintf(mbox_msg, CNSS_MBOX_MSG_MAX_LEN,
  951. "{class: wlan_pdc, res: %s.%s, %s: %d}", vreg_name,
  952. vreg_param_str[param], tcs_seq_str[seq], val);
  953. cnss_pr_dbg("Sending AOP Mbox msg: %s\n", mbox_msg);
  954. pkt.size = CNSS_MBOX_MSG_MAX_LEN;
  955. pkt.data = mbox_msg;
  956. ret = mbox_send_message(plat_priv->mbox_chan, &pkt);
  957. if (ret < 0)
  958. cnss_pr_err("Failed to send AOP mbox msg: %s\n", mbox_msg);
  959. else
  960. ret = 0;
  961. return ret;
  962. }
  963. #else
  964. static int cnss_aop_set_vreg_param(struct cnss_plat_data *plat_priv,
  965. const char *vreg_name,
  966. enum cnss_vreg_param param,
  967. enum cnss_tcs_seq seq, int val)
  968. {
  969. return 0;
  970. }
  971. #endif
  972. int cnss_update_cpr_info(struct cnss_plat_data *plat_priv)
  973. {
  974. struct cnss_cpr_info *cpr_info = &plat_priv->cpr_info;
  975. u32 pmic_addr, voltage = 0, voltage_tmp, offset;
  976. void __iomem *tcs_cmd_addr, *tcs_cmd_data_addr;
  977. int i, j;
  978. if (cpr_info->voltage == 0) {
  979. cnss_pr_err("OL CPR Voltage %dm is not valid\n",
  980. cpr_info->voltage);
  981. return -EINVAL;
  982. }
  983. if (!plat_priv->vreg_ol_cpr || !plat_priv->mbox_chan) {
  984. cnss_pr_dbg("Mbox channel / OL CPR Vreg not configured\n");
  985. } else {
  986. return cnss_aop_set_vreg_param(plat_priv,
  987. plat_priv->vreg_ol_cpr,
  988. CNSS_VREG_VOLTAGE,
  989. CNSS_TCS_UP_SEQ,
  990. cpr_info->voltage);
  991. }
  992. if (plat_priv->tcs_info.cmd_base_addr == 0) {
  993. cnss_pr_dbg("TCS CMD not configured for OL CPR update\n");
  994. return 0;
  995. }
  996. if (cpr_info->cpr_pmic_addr == 0) {
  997. cnss_pr_err("PMIC address 0x%x is not valid\n",
  998. cpr_info->cpr_pmic_addr);
  999. return -EINVAL;
  1000. }
  1001. if (cpr_info->tcs_cmd_data_addr_io)
  1002. goto update_cpr;
  1003. for (i = 0; i < MAX_TCS_NUM; i++) {
  1004. for (j = 0; j < MAX_TCS_CMD_NUM; j++) {
  1005. offset = i * TCS_OFFSET + j * TCS_CMD_OFFSET;
  1006. tcs_cmd_addr = plat_priv->tcs_info.cmd_base_addr_io +
  1007. offset;
  1008. pmic_addr = readl_relaxed(tcs_cmd_addr);
  1009. if (pmic_addr == cpr_info->cpr_pmic_addr) {
  1010. tcs_cmd_data_addr = tcs_cmd_addr +
  1011. TCS_CMD_DATA_ADDR_OFFSET;
  1012. voltage_tmp = readl_relaxed(tcs_cmd_data_addr);
  1013. cnss_pr_dbg("Got voltage %dmV from i: %d, j: %d\n",
  1014. voltage_tmp, i, j);
  1015. if (voltage_tmp > voltage) {
  1016. voltage = voltage_tmp;
  1017. cpr_info->tcs_cmd_data_addr =
  1018. plat_priv->tcs_info.cmd_base_addr +
  1019. offset + TCS_CMD_DATA_ADDR_OFFSET;
  1020. cpr_info->tcs_cmd_data_addr_io =
  1021. tcs_cmd_data_addr;
  1022. }
  1023. }
  1024. }
  1025. }
  1026. if (!cpr_info->tcs_cmd_data_addr_io) {
  1027. cnss_pr_err("Failed to find proper TCS CMD data address\n");
  1028. return -EINVAL;
  1029. }
  1030. update_cpr:
  1031. cpr_info->voltage = cpr_info->voltage > BT_CXMX_VOLTAGE_MV ?
  1032. cpr_info->voltage : BT_CXMX_VOLTAGE_MV;
  1033. cnss_pr_dbg("Update TCS CMD data address %pa with voltage %dmV\n",
  1034. &cpr_info->tcs_cmd_data_addr, cpr_info->voltage);
  1035. writel_relaxed(cpr_info->voltage, cpr_info->tcs_cmd_data_addr_io);
  1036. return 0;
  1037. }
  1038. int cnss_enable_int_pow_amp_vreg(struct cnss_plat_data *plat_priv)
  1039. {
  1040. struct platform_device *plat_dev = plat_priv->plat_dev;
  1041. u32 offset, addr_val, data_val;
  1042. void __iomem *tcs_cmd;
  1043. int ret;
  1044. static bool config_done;
  1045. if (plat_priv->device_id != QCA6490_DEVICE_ID)
  1046. return -EINVAL;
  1047. if (config_done) {
  1048. cnss_pr_dbg("IPA Vreg already configured\n");
  1049. return 0;
  1050. }
  1051. if (!plat_priv->vreg_ipa || !plat_priv->mbox_chan) {
  1052. cnss_pr_dbg("Mbox channel / IPA Vreg not configured\n");
  1053. } else {
  1054. ret = cnss_aop_set_vreg_param(plat_priv,
  1055. plat_priv->vreg_ipa,
  1056. CNSS_VREG_ENABLE,
  1057. CNSS_TCS_UP_SEQ, 1);
  1058. if (ret == 0)
  1059. config_done = true;
  1060. return ret;
  1061. }
  1062. if (!plat_priv->tcs_info.cmd_base_addr_io) {
  1063. cnss_pr_err("TCS CMD not configured for IPA Vreg enable\n");
  1064. return -EINVAL;
  1065. }
  1066. ret = of_property_read_u32(plat_dev->dev.of_node,
  1067. "qcom,tcs_offset_int_pow_amp_vreg",
  1068. &offset);
  1069. if (ret) {
  1070. cnss_pr_dbg("Internal Power Amp Vreg not configured\n");
  1071. return -EINVAL;
  1072. }
  1073. tcs_cmd = plat_priv->tcs_info.cmd_base_addr_io + offset;
  1074. addr_val = readl_relaxed(tcs_cmd);
  1075. tcs_cmd += TCS_CMD_DATA_ADDR_OFFSET;
  1076. /* 1 = enable Vreg */
  1077. writel_relaxed(1, tcs_cmd);
  1078. data_val = readl_relaxed(tcs_cmd);
  1079. cnss_pr_dbg("Setup S3E TCS Addr: %x Data: %d\n", addr_val, data_val);
  1080. config_done = true;
  1081. return 0;
  1082. }