hal_srng.c 54 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921
  1. /*
  2. * Copyright (c) 2016-2021 The Linux Foundation. All rights reserved.
  3. * Copyright (c) 2021-2023 Qualcomm Innovation Center, Inc. All rights reserved.
  4. *
  5. * Permission to use, copy, modify, and/or distribute this software for
  6. * any purpose with or without fee is hereby granted, provided that the
  7. * above copyright notice and this permission notice appear in all
  8. * copies.
  9. *
  10. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
  11. * WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
  12. * WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
  13. * AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
  14. * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
  15. * PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
  16. * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
  17. * PERFORMANCE OF THIS SOFTWARE.
  18. */
  19. #include "hal_hw_headers.h"
  20. #include "hal_api.h"
  21. #include "hal_reo.h"
  22. #include "target_type.h"
  23. #include "qdf_module.h"
  24. #include "wcss_version.h"
  25. #include <qdf_tracepoint.h>
  26. #include "qdf_ssr_driver_dump.h"
  27. struct tcl_data_cmd gtcl_data_symbol __attribute__((used));
  28. #ifdef QCA_WIFI_QCA8074
  29. void hal_qca6290_attach(struct hal_soc *hal);
  30. #endif
  31. #ifdef QCA_WIFI_QCA8074
  32. void hal_qca8074_attach(struct hal_soc *hal);
  33. #endif
  34. #if defined(QCA_WIFI_QCA8074V2) || defined(QCA_WIFI_QCA6018) || \
  35. defined(QCA_WIFI_QCA9574)
  36. void hal_qca8074v2_attach(struct hal_soc *hal);
  37. #endif
  38. #ifdef QCA_WIFI_QCA6390
  39. void hal_qca6390_attach(struct hal_soc *hal);
  40. #endif
  41. #ifdef QCA_WIFI_QCA6490
  42. void hal_qca6490_attach(struct hal_soc *hal);
  43. #endif
  44. #ifdef QCA_WIFI_QCN9000
  45. void hal_qcn9000_attach(struct hal_soc *hal);
  46. #endif
  47. #ifdef QCA_WIFI_QCN9224
  48. void hal_qcn9224v2_attach(struct hal_soc *hal);
  49. #endif
  50. #if defined(QCA_WIFI_QCN6122) || defined(QCA_WIFI_QCN9160)
  51. void hal_qcn6122_attach(struct hal_soc *hal);
  52. #endif
  53. #ifdef QCA_WIFI_QCA6750
  54. void hal_qca6750_attach(struct hal_soc *hal);
  55. #endif
  56. #ifdef QCA_WIFI_QCA5018
  57. void hal_qca5018_attach(struct hal_soc *hal);
  58. #endif
  59. #ifdef QCA_WIFI_QCA5332
  60. void hal_qca5332_attach(struct hal_soc *hal);
  61. #endif
  62. #ifdef QCA_WIFI_KIWI
  63. void hal_kiwi_attach(struct hal_soc *hal);
  64. #endif
  65. #ifdef ENABLE_VERBOSE_DEBUG
  66. bool is_hal_verbose_debug_enabled;
  67. #endif
  68. #define HAL_REO_DESTINATION_RING_CTRL_IX_0_ADDR(x) ((x) + 0x4)
  69. #define HAL_REO_DESTINATION_RING_CTRL_IX_1_ADDR(x) ((x) + 0x8)
  70. #define HAL_REO_DESTINATION_RING_CTRL_IX_2_ADDR(x) ((x) + 0xc)
  71. #define HAL_REO_DESTINATION_RING_CTRL_IX_3_ADDR(x) ((x) + 0x10)
  72. #ifdef ENABLE_HAL_REG_WR_HISTORY
  73. struct hal_reg_write_fail_history hal_reg_wr_hist;
  74. void hal_reg_wr_fail_history_add(struct hal_soc *hal_soc,
  75. uint32_t offset,
  76. uint32_t wr_val, uint32_t rd_val)
  77. {
  78. struct hal_reg_write_fail_entry *record;
  79. int idx;
  80. idx = hal_history_get_next_index(&hal_soc->reg_wr_fail_hist->index,
  81. HAL_REG_WRITE_HIST_SIZE);
  82. record = &hal_soc->reg_wr_fail_hist->record[idx];
  83. record->timestamp = qdf_get_log_timestamp();
  84. record->reg_offset = offset;
  85. record->write_val = wr_val;
  86. record->read_val = rd_val;
  87. }
  88. static void hal_reg_write_fail_history_init(struct hal_soc *hal)
  89. {
  90. hal->reg_wr_fail_hist = &hal_reg_wr_hist;
  91. qdf_atomic_set(&hal->reg_wr_fail_hist->index, -1);
  92. }
  93. #else
  94. static void hal_reg_write_fail_history_init(struct hal_soc *hal)
  95. {
  96. }
  97. #endif
  98. /**
  99. * hal_get_srng_ring_id() - get the ring id of a described ring
  100. * @hal: hal_soc data structure
  101. * @ring_type: type enum describing the ring
  102. * @ring_num: which ring of the ring type
  103. * @mac_id: which mac does the ring belong to (or 0 for non-lmac rings)
  104. *
  105. * Return: the ring id or -EINVAL if the ring does not exist.
  106. */
  107. static int hal_get_srng_ring_id(struct hal_soc *hal, int ring_type,
  108. int ring_num, int mac_id)
  109. {
  110. struct hal_hw_srng_config *ring_config =
  111. HAL_SRNG_CONFIG(hal, ring_type);
  112. int ring_id;
  113. if (ring_num >= ring_config->max_rings) {
  114. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO,
  115. "%s: ring_num exceeded maximum no. of supported rings",
  116. __func__);
  117. /* TODO: This is a programming error. Assert if this happens */
  118. return -EINVAL;
  119. }
  120. /*
  121. * Some DMAC rings share a common source ring, hence don't provide them
  122. * with separate ring IDs per LMAC.
  123. */
  124. if (ring_config->lmac_ring && !ring_config->dmac_cmn_ring) {
  125. ring_id = (ring_config->start_ring_id + ring_num +
  126. (mac_id * HAL_MAX_RINGS_PER_LMAC));
  127. } else {
  128. ring_id = ring_config->start_ring_id + ring_num;
  129. }
  130. return ring_id;
  131. }
  132. static struct hal_srng *hal_get_srng(struct hal_soc *hal, int ring_id)
  133. {
  134. /* TODO: Should we allocate srng structures dynamically? */
  135. return &(hal->srng_list[ring_id]);
  136. }
  137. #ifndef SHADOW_REG_CONFIG_DISABLED
  138. #define HP_OFFSET_IN_REG_START 1
  139. #define OFFSET_FROM_HP_TO_TP 4
  140. static void hal_update_srng_hp_tp_address(struct hal_soc *hal_soc,
  141. int shadow_config_index,
  142. int ring_type,
  143. int ring_num)
  144. {
  145. struct hal_srng *srng;
  146. int ring_id;
  147. struct hal_hw_srng_config *ring_config =
  148. HAL_SRNG_CONFIG(hal_soc, ring_type);
  149. ring_id = hal_get_srng_ring_id(hal_soc, ring_type, ring_num, 0);
  150. if (ring_id < 0)
  151. return;
  152. srng = hal_get_srng(hal_soc, ring_id);
  153. if (ring_config->ring_dir == HAL_SRNG_DST_RING) {
  154. srng->u.dst_ring.tp_addr = SHADOW_REGISTER(shadow_config_index)
  155. + hal_soc->dev_base_addr;
  156. hal_debug("tp_addr=%pK dev base addr %pK index %u",
  157. srng->u.dst_ring.tp_addr, hal_soc->dev_base_addr,
  158. shadow_config_index);
  159. } else {
  160. srng->u.src_ring.hp_addr = SHADOW_REGISTER(shadow_config_index)
  161. + hal_soc->dev_base_addr;
  162. hal_debug("hp_addr=%pK dev base addr %pK index %u",
  163. srng->u.src_ring.hp_addr,
  164. hal_soc->dev_base_addr, shadow_config_index);
  165. }
  166. }
  167. #endif
  168. #ifdef GENERIC_SHADOW_REGISTER_ACCESS_ENABLE
  169. void hal_set_one_target_reg_config(struct hal_soc *hal,
  170. uint32_t target_reg_offset,
  171. int list_index)
  172. {
  173. int i = list_index;
  174. qdf_assert_always(i < MAX_GENERIC_SHADOW_REG);
  175. hal->list_shadow_reg_config[i].target_register =
  176. target_reg_offset;
  177. hal->num_generic_shadow_regs_configured++;
  178. }
  179. qdf_export_symbol(hal_set_one_target_reg_config);
  180. #define REO_R0_DESTINATION_RING_CTRL_ADDR_OFFSET 0x4
  181. #define MAX_REO_REMAP_SHADOW_REGS 4
  182. QDF_STATUS hal_set_shadow_regs(void *hal_soc)
  183. {
  184. uint32_t target_reg_offset;
  185. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  186. int i;
  187. struct hal_hw_srng_config *srng_config =
  188. &hal->hw_srng_table[WBM2SW_RELEASE];
  189. uint32_t reo_reg_base;
  190. reo_reg_base = hal_get_reo_reg_base_offset(hal_soc);
  191. target_reg_offset =
  192. HAL_REO_DESTINATION_RING_CTRL_IX_0_ADDR(reo_reg_base);
  193. for (i = 0; i < MAX_REO_REMAP_SHADOW_REGS; i++) {
  194. hal_set_one_target_reg_config(hal, target_reg_offset, i);
  195. target_reg_offset += REO_R0_DESTINATION_RING_CTRL_ADDR_OFFSET;
  196. }
  197. target_reg_offset = srng_config->reg_start[HP_OFFSET_IN_REG_START];
  198. target_reg_offset += (srng_config->reg_size[HP_OFFSET_IN_REG_START]
  199. * HAL_IPA_TX_COMP_RING_IDX);
  200. hal_set_one_target_reg_config(hal, target_reg_offset, i);
  201. return QDF_STATUS_SUCCESS;
  202. }
  203. qdf_export_symbol(hal_set_shadow_regs);
  204. QDF_STATUS hal_construct_shadow_regs(void *hal_soc)
  205. {
  206. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  207. int shadow_config_index = hal->num_shadow_registers_configured;
  208. int i;
  209. int num_regs = hal->num_generic_shadow_regs_configured;
  210. for (i = 0; i < num_regs; i++) {
  211. qdf_assert_always(shadow_config_index < MAX_SHADOW_REGISTERS);
  212. hal->shadow_config[shadow_config_index].addr =
  213. hal->list_shadow_reg_config[i].target_register;
  214. hal->list_shadow_reg_config[i].shadow_config_index =
  215. shadow_config_index;
  216. hal->list_shadow_reg_config[i].va =
  217. SHADOW_REGISTER(shadow_config_index) +
  218. (uintptr_t)hal->dev_base_addr;
  219. hal_debug("target_reg %x, shadow register 0x%x shadow_index 0x%x",
  220. hal->shadow_config[shadow_config_index].addr,
  221. SHADOW_REGISTER(shadow_config_index),
  222. shadow_config_index);
  223. shadow_config_index++;
  224. hal->num_shadow_registers_configured++;
  225. }
  226. return QDF_STATUS_SUCCESS;
  227. }
  228. qdf_export_symbol(hal_construct_shadow_regs);
  229. #endif
  230. #ifndef SHADOW_REG_CONFIG_DISABLED
  231. QDF_STATUS hal_set_one_shadow_config(void *hal_soc,
  232. int ring_type,
  233. int ring_num)
  234. {
  235. uint32_t target_register;
  236. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  237. struct hal_hw_srng_config *srng_config = &hal->hw_srng_table[ring_type];
  238. int shadow_config_index = hal->num_shadow_registers_configured;
  239. if (shadow_config_index >= MAX_SHADOW_REGISTERS) {
  240. QDF_ASSERT(0);
  241. return QDF_STATUS_E_RESOURCES;
  242. }
  243. hal->num_shadow_registers_configured++;
  244. target_register = srng_config->reg_start[HP_OFFSET_IN_REG_START];
  245. target_register += (srng_config->reg_size[HP_OFFSET_IN_REG_START]
  246. *ring_num);
  247. /* if the ring is a dst ring, we need to shadow the tail pointer */
  248. if (srng_config->ring_dir == HAL_SRNG_DST_RING)
  249. target_register += OFFSET_FROM_HP_TO_TP;
  250. hal->shadow_config[shadow_config_index].addr = target_register;
  251. /* update hp/tp addr in the hal_soc structure*/
  252. hal_update_srng_hp_tp_address(hal_soc, shadow_config_index, ring_type,
  253. ring_num);
  254. hal_debug("target_reg %x, shadow register 0x%x shadow_index 0x%x, ring_type %d, ring num %d",
  255. target_register,
  256. SHADOW_REGISTER(shadow_config_index),
  257. shadow_config_index,
  258. ring_type, ring_num);
  259. return QDF_STATUS_SUCCESS;
  260. }
  261. qdf_export_symbol(hal_set_one_shadow_config);
  262. QDF_STATUS hal_construct_srng_shadow_regs(void *hal_soc)
  263. {
  264. int ring_type, ring_num;
  265. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  266. for (ring_type = 0; ring_type < MAX_RING_TYPES; ring_type++) {
  267. struct hal_hw_srng_config *srng_config =
  268. &hal->hw_srng_table[ring_type];
  269. if (ring_type == CE_SRC ||
  270. ring_type == CE_DST ||
  271. ring_type == CE_DST_STATUS)
  272. continue;
  273. if (srng_config->lmac_ring)
  274. continue;
  275. for (ring_num = 0; ring_num < srng_config->max_rings;
  276. ring_num++)
  277. hal_set_one_shadow_config(hal_soc, ring_type, ring_num);
  278. }
  279. return QDF_STATUS_SUCCESS;
  280. }
  281. qdf_export_symbol(hal_construct_srng_shadow_regs);
  282. #else
  283. QDF_STATUS hal_construct_srng_shadow_regs(void *hal_soc)
  284. {
  285. return QDF_STATUS_SUCCESS;
  286. }
  287. qdf_export_symbol(hal_construct_srng_shadow_regs);
  288. QDF_STATUS hal_set_one_shadow_config(void *hal_soc, int ring_type,
  289. int ring_num)
  290. {
  291. return QDF_STATUS_SUCCESS;
  292. }
  293. qdf_export_symbol(hal_set_one_shadow_config);
  294. #endif
  295. void hal_get_shadow_config(void *hal_soc,
  296. struct pld_shadow_reg_v2_cfg **shadow_config,
  297. int *num_shadow_registers_configured)
  298. {
  299. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  300. *shadow_config = &hal->shadow_config[0].v2;
  301. *num_shadow_registers_configured =
  302. hal->num_shadow_registers_configured;
  303. }
  304. qdf_export_symbol(hal_get_shadow_config);
  305. #ifdef CONFIG_SHADOW_V3
  306. void hal_get_shadow_v3_config(void *hal_soc,
  307. struct pld_shadow_reg_v3_cfg **shadow_config,
  308. int *num_shadow_registers_configured)
  309. {
  310. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  311. *shadow_config = &hal->shadow_config[0].v3;
  312. *num_shadow_registers_configured =
  313. hal->num_shadow_registers_configured;
  314. }
  315. qdf_export_symbol(hal_get_shadow_v3_config);
  316. #endif
  317. static bool hal_validate_shadow_register(struct hal_soc *hal,
  318. uint32_t *destination,
  319. uint32_t *shadow_address)
  320. {
  321. unsigned int index;
  322. uint32_t *shadow_0_offset = SHADOW_REGISTER(0) + hal->dev_base_addr;
  323. int destination_ba_offset =
  324. ((char *)destination) - (char *)hal->dev_base_addr;
  325. index = shadow_address - shadow_0_offset;
  326. if (index >= MAX_SHADOW_REGISTERS) {
  327. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  328. "%s: index %x out of bounds", __func__, index);
  329. goto error;
  330. } else if (hal->shadow_config[index].addr != destination_ba_offset) {
  331. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  332. "%s: sanity check failure, expected %x, found %x",
  333. __func__, destination_ba_offset,
  334. hal->shadow_config[index].addr);
  335. goto error;
  336. }
  337. return true;
  338. error:
  339. qdf_print("baddr %pK, destination %pK, shadow_address %pK s0offset %pK index %x",
  340. hal->dev_base_addr, destination, shadow_address,
  341. shadow_0_offset, index);
  342. QDF_BUG(0);
  343. return false;
  344. }
  345. static void hal_target_based_configure(struct hal_soc *hal)
  346. {
  347. /*
  348. * Indicate Initialization of srngs to avoid force wake
  349. * as umac power collapse is not enabled yet
  350. */
  351. hal->init_phase = true;
  352. switch (hal->target_type) {
  353. #ifdef QCA_WIFI_QCA6290
  354. case TARGET_TYPE_QCA6290:
  355. hal->use_register_windowing = true;
  356. hal_qca6290_attach(hal);
  357. break;
  358. #endif
  359. #ifdef QCA_WIFI_QCA6390
  360. case TARGET_TYPE_QCA6390:
  361. hal->use_register_windowing = true;
  362. hal_qca6390_attach(hal);
  363. break;
  364. #endif
  365. #ifdef QCA_WIFI_QCA6490
  366. case TARGET_TYPE_QCA6490:
  367. hal->use_register_windowing = true;
  368. hal_qca6490_attach(hal);
  369. break;
  370. #endif
  371. #ifdef QCA_WIFI_QCA6750
  372. case TARGET_TYPE_QCA6750:
  373. hal->use_register_windowing = true;
  374. hal->static_window_map = true;
  375. hal_qca6750_attach(hal);
  376. break;
  377. #endif
  378. #ifdef QCA_WIFI_KIWI
  379. case TARGET_TYPE_KIWI:
  380. case TARGET_TYPE_MANGO:
  381. case TARGET_TYPE_PEACH:
  382. hal->use_register_windowing = true;
  383. hal_kiwi_attach(hal);
  384. break;
  385. #endif
  386. #if defined(QCA_WIFI_QCA8074) && defined(WIFI_TARGET_TYPE_3_0)
  387. case TARGET_TYPE_QCA8074:
  388. hal_qca8074_attach(hal);
  389. break;
  390. #endif
  391. #if defined(QCA_WIFI_QCA8074V2)
  392. case TARGET_TYPE_QCA8074V2:
  393. hal_qca8074v2_attach(hal);
  394. break;
  395. #endif
  396. #if defined(QCA_WIFI_QCA6018)
  397. case TARGET_TYPE_QCA6018:
  398. hal_qca8074v2_attach(hal);
  399. break;
  400. #endif
  401. #if defined(QCA_WIFI_QCA9574)
  402. case TARGET_TYPE_QCA9574:
  403. hal_qca8074v2_attach(hal);
  404. break;
  405. #endif
  406. #if defined(QCA_WIFI_QCN6122)
  407. case TARGET_TYPE_QCN6122:
  408. hal->use_register_windowing = true;
  409. /*
  410. * Static window map is enabled for qcn9000 to use 2mb bar
  411. * size and use multiple windows to write into registers.
  412. */
  413. hal->static_window_map = true;
  414. hal_qcn6122_attach(hal);
  415. break;
  416. #endif
  417. #if defined(QCA_WIFI_QCN9160)
  418. case TARGET_TYPE_QCN9160:
  419. hal->use_register_windowing = true;
  420. /*
  421. * Static window map is enabled for qcn9160 to use 2mb bar
  422. * size and use multiple windows to write into registers.
  423. */
  424. hal->static_window_map = true;
  425. hal_qcn6122_attach(hal);
  426. break;
  427. #endif
  428. #ifdef QCA_WIFI_QCN9000
  429. case TARGET_TYPE_QCN9000:
  430. hal->use_register_windowing = true;
  431. /*
  432. * Static window map is enabled for qcn9000 to use 2mb bar
  433. * size and use multiple windows to write into registers.
  434. */
  435. hal->static_window_map = true;
  436. hal_qcn9000_attach(hal);
  437. break;
  438. #endif
  439. #ifdef QCA_WIFI_QCA5018
  440. case TARGET_TYPE_QCA5018:
  441. hal->use_register_windowing = true;
  442. hal->static_window_map = true;
  443. hal_qca5018_attach(hal);
  444. break;
  445. #endif
  446. #ifdef QCA_WIFI_QCN9224
  447. case TARGET_TYPE_QCN9224:
  448. hal->use_register_windowing = true;
  449. hal->static_window_map = true;
  450. if (hal->version == 1)
  451. qdf_assert_always(0);
  452. else
  453. hal_qcn9224v2_attach(hal);
  454. break;
  455. #endif
  456. #ifdef QCA_WIFI_QCA5332
  457. case TARGET_TYPE_QCA5332:
  458. hal->use_register_windowing = true;
  459. hal->static_window_map = true;
  460. hal_qca5332_attach(hal);
  461. break;
  462. #endif
  463. #ifdef QCA_WIFI_WCN6450
  464. case TARGET_TYPE_WCN6450:
  465. hal->use_register_windowing = true;
  466. hal->static_window_map = true;
  467. hal_wcn6450_attach(hal);
  468. break;
  469. #endif
  470. default:
  471. break;
  472. }
  473. }
  474. uint32_t hal_get_target_type(hal_soc_handle_t hal_soc_hdl)
  475. {
  476. struct hal_soc *hal_soc = (struct hal_soc *)hal_soc_hdl;
  477. struct hif_target_info *tgt_info =
  478. hif_get_target_info_handle(hal_soc->hif_handle);
  479. return tgt_info->target_type;
  480. }
  481. qdf_export_symbol(hal_get_target_type);
  482. #if defined(FEATURE_HAL_DELAYED_REG_WRITE)
  483. /**
  484. * hal_is_reg_write_tput_level_high() - throughput level for delayed reg writes
  485. * @hal: hal_soc pointer
  486. *
  487. * Return: true if throughput is high, else false.
  488. */
  489. static inline bool hal_is_reg_write_tput_level_high(struct hal_soc *hal)
  490. {
  491. int bw_level = hif_get_bandwidth_level(hal->hif_handle);
  492. return (bw_level >= PLD_BUS_WIDTH_MEDIUM) ? true : false;
  493. }
  494. static inline
  495. char *hal_fill_reg_write_srng_stats(struct hal_srng *srng,
  496. char *buf, qdf_size_t size)
  497. {
  498. qdf_scnprintf(buf, size, "enq %u deq %u coal %u direct %u",
  499. srng->wstats.enqueues, srng->wstats.dequeues,
  500. srng->wstats.coalesces, srng->wstats.direct);
  501. return buf;
  502. }
  503. /* bytes for local buffer */
  504. #define HAL_REG_WRITE_SRNG_STATS_LEN 100
  505. #ifndef WLAN_SOFTUMAC_SUPPORT
  506. void hal_dump_reg_write_srng_stats(hal_soc_handle_t hal_soc_hdl)
  507. {
  508. struct hal_srng *srng;
  509. char buf[HAL_REG_WRITE_SRNG_STATS_LEN];
  510. struct hal_soc *hal = (struct hal_soc *)hal_soc_hdl;
  511. srng = hal_get_srng(hal, HAL_SRNG_SW2TCL1);
  512. hal_debug("SW2TCL1: %s",
  513. hal_fill_reg_write_srng_stats(srng, buf, sizeof(buf)));
  514. srng = hal_get_srng(hal, HAL_SRNG_WBM2SW0_RELEASE);
  515. hal_debug("WBM2SW0: %s",
  516. hal_fill_reg_write_srng_stats(srng, buf, sizeof(buf)));
  517. srng = hal_get_srng(hal, HAL_SRNG_REO2SW1);
  518. hal_debug("REO2SW1: %s",
  519. hal_fill_reg_write_srng_stats(srng, buf, sizeof(buf)));
  520. srng = hal_get_srng(hal, HAL_SRNG_REO2SW2);
  521. hal_debug("REO2SW2: %s",
  522. hal_fill_reg_write_srng_stats(srng, buf, sizeof(buf)));
  523. srng = hal_get_srng(hal, HAL_SRNG_REO2SW3);
  524. hal_debug("REO2SW3: %s",
  525. hal_fill_reg_write_srng_stats(srng, buf, sizeof(buf)));
  526. }
  527. #else
  528. void hal_dump_reg_write_srng_stats(hal_soc_handle_t hal_soc_hdl)
  529. {
  530. }
  531. #endif
  532. void hal_dump_reg_write_stats(hal_soc_handle_t hal_soc_hdl)
  533. {
  534. uint32_t *hist;
  535. struct hal_soc *hal = (struct hal_soc *)hal_soc_hdl;
  536. hist = hal->stats.wstats.sched_delay;
  537. hal_debug("wstats: enq %u deq %u coal %u direct %u q_depth %u max_q %u sched-delay hist %u %u %u %u",
  538. qdf_atomic_read(&hal->stats.wstats.enqueues),
  539. hal->stats.wstats.dequeues,
  540. qdf_atomic_read(&hal->stats.wstats.coalesces),
  541. qdf_atomic_read(&hal->stats.wstats.direct),
  542. qdf_atomic_read(&hal->stats.wstats.q_depth),
  543. hal->stats.wstats.max_q_depth,
  544. hist[REG_WRITE_SCHED_DELAY_SUB_100us],
  545. hist[REG_WRITE_SCHED_DELAY_SUB_1000us],
  546. hist[REG_WRITE_SCHED_DELAY_SUB_5000us],
  547. hist[REG_WRITE_SCHED_DELAY_GT_5000us]);
  548. }
  549. int hal_get_reg_write_pending_work(void *hal_soc)
  550. {
  551. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  552. return qdf_atomic_read(&hal->active_work_cnt);
  553. }
  554. #endif
  555. #ifdef FEATURE_HAL_DELAYED_REG_WRITE
  556. #ifdef MEMORY_DEBUG
  557. /*
  558. * Length of the queue(array) used to hold delayed register writes.
  559. * Must be a multiple of 2.
  560. */
  561. #define HAL_REG_WRITE_QUEUE_LEN 128
  562. #else
  563. #define HAL_REG_WRITE_QUEUE_LEN 32
  564. #endif
  565. /**
  566. * hal_process_reg_write_q_elem() - process a register write queue element
  567. * @hal: hal_soc pointer
  568. * @q_elem: pointer to hal register write queue element
  569. *
  570. * Return: The value which was written to the address
  571. */
  572. static uint32_t
  573. hal_process_reg_write_q_elem(struct hal_soc *hal,
  574. struct hal_reg_write_q_elem *q_elem)
  575. {
  576. struct hal_srng *srng = q_elem->srng;
  577. uint32_t write_val;
  578. SRNG_LOCK(&srng->lock);
  579. srng->reg_write_in_progress = false;
  580. srng->wstats.dequeues++;
  581. if (srng->ring_dir == HAL_SRNG_SRC_RING) {
  582. q_elem->dequeue_val = srng->u.src_ring.hp;
  583. hal_write_address_32_mb(hal,
  584. srng->u.src_ring.hp_addr,
  585. srng->u.src_ring.hp, false);
  586. write_val = srng->u.src_ring.hp;
  587. } else {
  588. q_elem->dequeue_val = srng->u.dst_ring.tp;
  589. hal_write_address_32_mb(hal,
  590. srng->u.dst_ring.tp_addr,
  591. srng->u.dst_ring.tp, false);
  592. write_val = srng->u.dst_ring.tp;
  593. }
  594. hal_srng_reg_his_add(srng, write_val);
  595. q_elem->valid = 0;
  596. srng->last_dequeue_time = q_elem->dequeue_time;
  597. SRNG_UNLOCK(&srng->lock);
  598. return write_val;
  599. }
  600. /**
  601. * hal_reg_write_fill_sched_delay_hist() - fill reg write delay histogram in hal
  602. * @hal: hal_soc pointer
  603. * @delay_us: delay in us
  604. *
  605. * Return: None
  606. */
  607. static inline void hal_reg_write_fill_sched_delay_hist(struct hal_soc *hal,
  608. uint64_t delay_us)
  609. {
  610. uint32_t *hist;
  611. hist = hal->stats.wstats.sched_delay;
  612. if (delay_us < 100)
  613. hist[REG_WRITE_SCHED_DELAY_SUB_100us]++;
  614. else if (delay_us < 1000)
  615. hist[REG_WRITE_SCHED_DELAY_SUB_1000us]++;
  616. else if (delay_us < 5000)
  617. hist[REG_WRITE_SCHED_DELAY_SUB_5000us]++;
  618. else
  619. hist[REG_WRITE_SCHED_DELAY_GT_5000us]++;
  620. }
  621. #ifdef SHADOW_WRITE_DELAY
  622. #define SHADOW_WRITE_MIN_DELTA_US 5
  623. #define SHADOW_WRITE_DELAY_US 50
  624. /*
  625. * Never add those srngs which are performance relate.
  626. * The delay itself will hit performance heavily.
  627. */
  628. #define IS_SRNG_MATCH(s) ((s)->ring_id == HAL_SRNG_CE_1_DST_STATUS || \
  629. (s)->ring_id == HAL_SRNG_CE_1_DST)
  630. static inline bool hal_reg_write_need_delay(struct hal_reg_write_q_elem *elem)
  631. {
  632. struct hal_srng *srng = elem->srng;
  633. struct hal_soc *hal;
  634. qdf_time_t now;
  635. qdf_iomem_t real_addr;
  636. if (qdf_unlikely(!srng))
  637. return false;
  638. hal = srng->hal_soc;
  639. if (qdf_unlikely(!hal))
  640. return false;
  641. /* Check if it is target srng, and valid shadow reg */
  642. if (qdf_likely(!IS_SRNG_MATCH(srng)))
  643. return false;
  644. if (srng->ring_dir == HAL_SRNG_SRC_RING)
  645. real_addr = SRNG_SRC_ADDR(srng, HP);
  646. else
  647. real_addr = SRNG_DST_ADDR(srng, TP);
  648. if (!hal_validate_shadow_register(hal, real_addr, elem->addr))
  649. return false;
  650. /* Check the time delta from last write of same srng */
  651. now = qdf_get_log_timestamp();
  652. if (qdf_log_timestamp_to_usecs(now - srng->last_dequeue_time) >
  653. SHADOW_WRITE_MIN_DELTA_US)
  654. return false;
  655. /* Delay dequeue, and record */
  656. qdf_udelay(SHADOW_WRITE_DELAY_US);
  657. srng->wstats.dequeue_delay++;
  658. hal->stats.wstats.dequeue_delay++;
  659. return true;
  660. }
  661. #else
  662. static inline bool hal_reg_write_need_delay(struct hal_reg_write_q_elem *elem)
  663. {
  664. return false;
  665. }
  666. #endif
  667. /**
  668. * hal_reg_write_work() - Worker to process delayed writes
  669. * @arg: hal_soc pointer
  670. *
  671. * Return: None
  672. */
  673. static void hal_reg_write_work(void *arg)
  674. {
  675. int32_t q_depth, write_val;
  676. struct hal_soc *hal = arg;
  677. struct hal_reg_write_q_elem *q_elem;
  678. uint64_t delta_us;
  679. uint8_t ring_id;
  680. uint32_t *addr;
  681. uint32_t num_processed = 0;
  682. q_elem = &hal->reg_write_queue[(hal->read_idx)];
  683. q_elem->work_scheduled_time = qdf_get_log_timestamp();
  684. q_elem->cpu_id = qdf_get_cpu();
  685. /* Make sure q_elem consistent in the memory for multi-cores */
  686. qdf_rmb();
  687. if (!q_elem->valid)
  688. return;
  689. q_depth = qdf_atomic_read(&hal->stats.wstats.q_depth);
  690. if (q_depth > hal->stats.wstats.max_q_depth)
  691. hal->stats.wstats.max_q_depth = q_depth;
  692. if (hif_prevent_link_low_power_states(hal->hif_handle)) {
  693. hal->stats.wstats.prevent_l1_fails++;
  694. return;
  695. }
  696. while (true) {
  697. qdf_rmb();
  698. if (!q_elem->valid)
  699. break;
  700. q_elem->dequeue_time = qdf_get_log_timestamp();
  701. ring_id = q_elem->srng->ring_id;
  702. addr = q_elem->addr;
  703. delta_us = qdf_log_timestamp_to_usecs(q_elem->dequeue_time -
  704. q_elem->enqueue_time);
  705. hal_reg_write_fill_sched_delay_hist(hal, delta_us);
  706. hal->stats.wstats.dequeues++;
  707. qdf_atomic_dec(&hal->stats.wstats.q_depth);
  708. if (hal_reg_write_need_delay(q_elem))
  709. hal_verbose_debug("Delay reg writer for srng 0x%x, addr 0x%pK",
  710. q_elem->srng->ring_id, q_elem->addr);
  711. write_val = hal_process_reg_write_q_elem(hal, q_elem);
  712. hal_verbose_debug("read_idx %u srng 0x%x, addr 0x%pK dequeue_val %u sched delay %llu us",
  713. hal->read_idx, ring_id, addr, write_val, delta_us);
  714. qdf_trace_dp_del_reg_write(ring_id, q_elem->enqueue_val,
  715. q_elem->dequeue_val,
  716. q_elem->enqueue_time,
  717. q_elem->dequeue_time);
  718. num_processed++;
  719. hal->read_idx = (hal->read_idx + 1) &
  720. (HAL_REG_WRITE_QUEUE_LEN - 1);
  721. q_elem = &hal->reg_write_queue[(hal->read_idx)];
  722. }
  723. hif_allow_link_low_power_states(hal->hif_handle);
  724. /*
  725. * Decrement active_work_cnt by the number of elements dequeued after
  726. * hif_allow_link_low_power_states.
  727. * This makes sure that hif_try_complete_tasks will wait till we make
  728. * the bus access in hif_allow_link_low_power_states. This will avoid
  729. * race condition between delayed register worker and bus suspend
  730. * (system suspend or runtime suspend).
  731. *
  732. * The following decrement should be done at the end!
  733. */
  734. qdf_atomic_sub(num_processed, &hal->active_work_cnt);
  735. }
  736. static void __hal_flush_reg_write_work(struct hal_soc *hal)
  737. {
  738. qdf_flush_work(&hal->reg_write_work);
  739. qdf_disable_work(&hal->reg_write_work);
  740. }
  741. void hal_flush_reg_write_work(hal_soc_handle_t hal_handle)
  742. { __hal_flush_reg_write_work((struct hal_soc *)hal_handle);
  743. }
  744. /**
  745. * hal_reg_write_enqueue() - enqueue register writes into kworker
  746. * @hal_soc: hal_soc pointer
  747. * @srng: srng pointer
  748. * @addr: iomem address of register
  749. * @value: value to be written to iomem address
  750. *
  751. * This function executes from within the SRNG LOCK
  752. *
  753. * Return: None
  754. */
  755. static void hal_reg_write_enqueue(struct hal_soc *hal_soc,
  756. struct hal_srng *srng,
  757. void __iomem *addr,
  758. uint32_t value)
  759. {
  760. struct hal_reg_write_q_elem *q_elem;
  761. uint32_t write_idx;
  762. if (srng->reg_write_in_progress) {
  763. hal_verbose_debug("Already in progress srng ring id 0x%x addr 0x%pK val %u",
  764. srng->ring_id, addr, value);
  765. qdf_atomic_inc(&hal_soc->stats.wstats.coalesces);
  766. srng->wstats.coalesces++;
  767. return;
  768. }
  769. write_idx = qdf_atomic_inc_return(&hal_soc->write_idx);
  770. write_idx = write_idx & (HAL_REG_WRITE_QUEUE_LEN - 1);
  771. q_elem = &hal_soc->reg_write_queue[write_idx];
  772. if (q_elem->valid) {
  773. hal_err("queue full");
  774. QDF_BUG(0);
  775. return;
  776. }
  777. qdf_atomic_inc(&hal_soc->stats.wstats.enqueues);
  778. srng->wstats.enqueues++;
  779. qdf_atomic_inc(&hal_soc->stats.wstats.q_depth);
  780. q_elem->srng = srng;
  781. q_elem->addr = addr;
  782. q_elem->enqueue_val = value;
  783. q_elem->enqueue_time = qdf_get_log_timestamp();
  784. /*
  785. * Before the valid flag is set to true, all the other
  786. * fields in the q_elem needs to be updated in memory.
  787. * Else there is a chance that the dequeuing worker thread
  788. * might read stale entries and process incorrect srng.
  789. */
  790. qdf_wmb();
  791. q_elem->valid = true;
  792. /*
  793. * After all other fields in the q_elem has been updated
  794. * in memory successfully, the valid flag needs to be updated
  795. * in memory in time too.
  796. * Else there is a chance that the dequeuing worker thread
  797. * might read stale valid flag and the work will be bypassed
  798. * for this round. And if there is no other work scheduled
  799. * later, this hal register writing won't be updated any more.
  800. */
  801. qdf_wmb();
  802. srng->reg_write_in_progress = true;
  803. qdf_atomic_inc(&hal_soc->active_work_cnt);
  804. hal_verbose_debug("write_idx %u srng ring id 0x%x addr 0x%pK val %u",
  805. write_idx, srng->ring_id, addr, value);
  806. qdf_queue_work(hal_soc->qdf_dev, hal_soc->reg_write_wq,
  807. &hal_soc->reg_write_work);
  808. }
  809. /**
  810. * hal_delayed_reg_write_init() - Initialization function for delayed reg writes
  811. * @hal: hal_soc pointer
  812. *
  813. * Initialize main data structures to process register writes in a delayed
  814. * workqueue.
  815. *
  816. * Return: QDF_STATUS_SUCCESS on success else a QDF error.
  817. */
  818. static QDF_STATUS hal_delayed_reg_write_init(struct hal_soc *hal)
  819. {
  820. hal->reg_write_wq =
  821. qdf_alloc_high_prior_ordered_workqueue("hal_register_write_wq");
  822. qdf_create_work(0, &hal->reg_write_work, hal_reg_write_work, hal);
  823. hal->reg_write_queue = qdf_mem_malloc(HAL_REG_WRITE_QUEUE_LEN *
  824. sizeof(*hal->reg_write_queue));
  825. if (!hal->reg_write_queue) {
  826. hal_err("unable to allocate memory");
  827. QDF_BUG(0);
  828. return QDF_STATUS_E_NOMEM;
  829. }
  830. /* Initial value of indices */
  831. hal->read_idx = 0;
  832. qdf_atomic_set(&hal->write_idx, -1);
  833. return QDF_STATUS_SUCCESS;
  834. }
  835. /**
  836. * hal_delayed_reg_write_deinit() - De-Initialize delayed reg write processing
  837. * @hal: hal_soc pointer
  838. *
  839. * De-initialize main data structures to process register writes in a delayed
  840. * workqueue.
  841. *
  842. * Return: None
  843. */
  844. static void hal_delayed_reg_write_deinit(struct hal_soc *hal)
  845. {
  846. __hal_flush_reg_write_work(hal);
  847. qdf_flush_workqueue(0, hal->reg_write_wq);
  848. qdf_destroy_workqueue(0, hal->reg_write_wq);
  849. qdf_mem_free(hal->reg_write_queue);
  850. }
  851. #else
  852. static inline QDF_STATUS hal_delayed_reg_write_init(struct hal_soc *hal)
  853. {
  854. return QDF_STATUS_SUCCESS;
  855. }
  856. static inline void hal_delayed_reg_write_deinit(struct hal_soc *hal)
  857. {
  858. }
  859. #endif
  860. #ifdef FEATURE_HAL_DELAYED_REG_WRITE
  861. #ifdef HAL_RECORD_SUSPEND_WRITE
  862. static struct hal_suspend_write_history
  863. g_hal_suspend_write_history[HAL_SUSPEND_WRITE_HISTORY_MAX];
  864. static
  865. void hal_event_suspend_record(uint8_t ring_id, uint32_t value, uint32_t count)
  866. {
  867. uint32_t index = qdf_atomic_read(g_hal_suspend_write_history.index) &
  868. (HAL_SUSPEND_WRITE_HISTORY_MAX - 1);
  869. struct hal_suspend_write_record *cur_event =
  870. &hal_suspend_write_event.record[index];
  871. cur_event->ts = qdf_get_log_timestamp();
  872. cur_event->ring_id = ring_id;
  873. cur_event->value = value;
  874. cur_event->direct_wcount = count;
  875. qdf_atomic_inc(g_hal_suspend_write_history.index);
  876. }
  877. static inline
  878. void hal_record_suspend_write(uint8_t ring_id, uint32_t value, uint32_t count)
  879. {
  880. if (hif_rtpm_get_state() >= HIF_RTPM_STATE_SUSPENDING)
  881. hal_event_suspend_record(ring_id, value, count);
  882. }
  883. #else
  884. static inline
  885. void hal_record_suspend_write(uint8_t ring_id, uint32_t value, uint32_t count)
  886. {
  887. }
  888. #endif
  889. #ifdef QCA_WIFI_QCA6750
  890. void hal_delayed_reg_write(struct hal_soc *hal_soc,
  891. struct hal_srng *srng,
  892. void __iomem *addr,
  893. uint32_t value)
  894. {
  895. uint8_t vote_access;
  896. switch (srng->ring_type) {
  897. case CE_SRC:
  898. case CE_DST:
  899. case CE_DST_STATUS:
  900. vote_access = hif_get_ep_vote_access(hal_soc->hif_handle,
  901. HIF_EP_VOTE_NONDP_ACCESS);
  902. if ((vote_access == HIF_EP_VOTE_ACCESS_DISABLE) ||
  903. (vote_access == HIF_EP_VOTE_INTERMEDIATE_ACCESS &&
  904. PLD_MHI_STATE_L0 ==
  905. pld_get_mhi_state(hal_soc->qdf_dev->dev))) {
  906. hal_write_address_32_mb(hal_soc, addr, value, false);
  907. hal_srng_reg_his_add(srng, value);
  908. qdf_atomic_inc(&hal_soc->stats.wstats.direct);
  909. srng->wstats.direct++;
  910. } else {
  911. hal_reg_write_enqueue(hal_soc, srng, addr, value);
  912. }
  913. break;
  914. default:
  915. if (hif_get_ep_vote_access(hal_soc->hif_handle,
  916. HIF_EP_VOTE_DP_ACCESS) ==
  917. HIF_EP_VOTE_ACCESS_DISABLE ||
  918. hal_is_reg_write_tput_level_high(hal_soc) ||
  919. PLD_MHI_STATE_L0 ==
  920. pld_get_mhi_state(hal_soc->qdf_dev->dev)) {
  921. hal_write_address_32_mb(hal_soc, addr, value, false);
  922. hal_srng_reg_his_add(srng, value);
  923. qdf_atomic_inc(&hal_soc->stats.wstats.direct);
  924. srng->wstats.direct++;
  925. } else {
  926. hal_reg_write_enqueue(hal_soc, srng, addr, value);
  927. }
  928. break;
  929. }
  930. }
  931. #else
  932. void hal_delayed_reg_write(struct hal_soc *hal_soc,
  933. struct hal_srng *srng,
  934. void __iomem *addr,
  935. uint32_t value)
  936. {
  937. if (hal_is_reg_write_tput_level_high(hal_soc) ||
  938. pld_is_device_awake(hal_soc->qdf_dev->dev)) {
  939. qdf_atomic_inc(&hal_soc->stats.wstats.direct);
  940. srng->wstats.direct++;
  941. hal_write_address_32_mb(hal_soc, addr, value, false);
  942. hal_srng_reg_his_add(srng, value);
  943. } else {
  944. hal_reg_write_enqueue(hal_soc, srng, addr, value);
  945. }
  946. hal_record_suspend_write(srng->ring_id, value, srng->wstats.direct);
  947. }
  948. #endif
  949. #endif
  950. void *hal_attach(struct hif_opaque_softc *hif_handle, qdf_device_t qdf_dev)
  951. {
  952. struct hal_soc *hal;
  953. int i;
  954. hal = qdf_mem_common_alloc(sizeof(*hal));
  955. if (!hal) {
  956. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  957. "%s: hal_soc allocation failed", __func__);
  958. goto fail0;
  959. }
  960. hal->hif_handle = hif_handle;
  961. hal->dev_base_addr = hif_get_dev_ba(hif_handle); /* UMAC */
  962. hal->dev_base_addr_ce = hif_get_dev_ba_ce(hif_handle); /* CE */
  963. hal->dev_base_addr_cmem = hif_get_dev_ba_cmem(hif_handle); /* CMEM */
  964. hal->dev_base_addr_pmm = hif_get_dev_ba_pmm(hif_handle); /* PMM */
  965. hal->qdf_dev = qdf_dev;
  966. hal->shadow_rdptr_mem_vaddr = (uint32_t *)qdf_mem_alloc_consistent(
  967. qdf_dev, qdf_dev->dev, sizeof(*(hal->shadow_rdptr_mem_vaddr)) *
  968. HAL_SRNG_ID_MAX, &(hal->shadow_rdptr_mem_paddr));
  969. if (!hal->shadow_rdptr_mem_paddr) {
  970. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  971. "%s: hal->shadow_rdptr_mem_paddr allocation failed",
  972. __func__);
  973. goto fail1;
  974. }
  975. qdf_mem_zero(hal->shadow_rdptr_mem_vaddr,
  976. sizeof(*(hal->shadow_rdptr_mem_vaddr)) * HAL_SRNG_ID_MAX);
  977. hal->shadow_wrptr_mem_vaddr =
  978. (uint32_t *)qdf_mem_alloc_consistent(qdf_dev, qdf_dev->dev,
  979. sizeof(*(hal->shadow_wrptr_mem_vaddr)) * HAL_MAX_LMAC_RINGS,
  980. &(hal->shadow_wrptr_mem_paddr));
  981. if (!hal->shadow_wrptr_mem_vaddr) {
  982. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  983. "%s: hal->shadow_wrptr_mem_vaddr allocation failed",
  984. __func__);
  985. goto fail2;
  986. }
  987. qdf_mem_zero(hal->shadow_wrptr_mem_vaddr,
  988. sizeof(*(hal->shadow_wrptr_mem_vaddr)) * HAL_MAX_LMAC_RINGS);
  989. for (i = 0; i < HAL_SRNG_ID_MAX; i++) {
  990. hal->srng_list[i].initialized = 0;
  991. hal->srng_list[i].ring_id = i;
  992. }
  993. qdf_spinlock_create(&hal->register_access_lock);
  994. hal->register_window = 0;
  995. hal->target_type = hal_get_target_type(hal_soc_to_hal_soc_handle(hal));
  996. hal->version = hif_get_soc_version(hif_handle);
  997. hal->ops = qdf_mem_malloc(sizeof(*hal->ops));
  998. if (!hal->ops) {
  999. hal_err("unable to allocable memory for HAL ops");
  1000. goto fail3;
  1001. }
  1002. hal_target_based_configure(hal);
  1003. hal_reg_write_fail_history_init(hal);
  1004. qdf_minidump_log(hal, sizeof(*hal), "hal_soc");
  1005. qdf_ssr_driver_dump_register_region("hal_soc", hal, sizeof(*hal));
  1006. qdf_atomic_init(&hal->active_work_cnt);
  1007. if (hal_delayed_reg_write_init(hal) != QDF_STATUS_SUCCESS) {
  1008. hal_err("unable to initialize delayed reg write");
  1009. goto fail4;
  1010. }
  1011. hif_rtpm_register(HIF_RTPM_ID_HAL_REO_CMD, NULL);
  1012. return (void *)hal;
  1013. fail4:
  1014. qdf_ssr_driver_dump_unregister_region("hal_soc");
  1015. qdf_minidump_remove(hal, sizeof(*hal), "hal_soc");
  1016. qdf_mem_free(hal->ops);
  1017. fail3:
  1018. qdf_mem_free_consistent(qdf_dev, qdf_dev->dev,
  1019. sizeof(*hal->shadow_wrptr_mem_vaddr) *
  1020. HAL_MAX_LMAC_RINGS,
  1021. hal->shadow_wrptr_mem_vaddr,
  1022. hal->shadow_wrptr_mem_paddr, 0);
  1023. fail2:
  1024. qdf_mem_free_consistent(qdf_dev, qdf_dev->dev,
  1025. sizeof(*(hal->shadow_rdptr_mem_vaddr)) * HAL_SRNG_ID_MAX,
  1026. hal->shadow_rdptr_mem_vaddr, hal->shadow_rdptr_mem_paddr, 0);
  1027. fail1:
  1028. qdf_mem_common_free(hal);
  1029. fail0:
  1030. return NULL;
  1031. }
  1032. qdf_export_symbol(hal_attach);
  1033. void hal_get_meminfo(hal_soc_handle_t hal_soc_hdl, struct hal_mem_info *mem)
  1034. {
  1035. struct hal_soc *hal = (struct hal_soc *)hal_soc_hdl;
  1036. mem->dev_base_addr = (void *)hal->dev_base_addr;
  1037. mem->shadow_rdptr_mem_vaddr = (void *)hal->shadow_rdptr_mem_vaddr;
  1038. mem->shadow_wrptr_mem_vaddr = (void *)hal->shadow_wrptr_mem_vaddr;
  1039. mem->shadow_rdptr_mem_paddr = (void *)hal->shadow_rdptr_mem_paddr;
  1040. mem->shadow_wrptr_mem_paddr = (void *)hal->shadow_wrptr_mem_paddr;
  1041. hif_read_phy_mem_base((void *)hal->hif_handle,
  1042. (qdf_dma_addr_t *)&mem->dev_base_paddr);
  1043. mem->lmac_srng_start_id = HAL_SRNG_LMAC1_ID_START;
  1044. return;
  1045. }
  1046. qdf_export_symbol(hal_get_meminfo);
  1047. void hal_detach(void *hal_soc)
  1048. {
  1049. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  1050. hif_rtpm_deregister(HIF_RTPM_ID_HAL_REO_CMD);
  1051. hal_delayed_reg_write_deinit(hal);
  1052. hal_reo_shared_qaddr_detach((hal_soc_handle_t)hal);
  1053. qdf_ssr_driver_dump_unregister_region("hal_soc");
  1054. qdf_minidump_remove(hal, sizeof(*hal), "hal_soc");
  1055. qdf_mem_free(hal->ops);
  1056. qdf_mem_free_consistent(hal->qdf_dev, hal->qdf_dev->dev,
  1057. sizeof(*(hal->shadow_rdptr_mem_vaddr)) * HAL_SRNG_ID_MAX,
  1058. hal->shadow_rdptr_mem_vaddr, hal->shadow_rdptr_mem_paddr, 0);
  1059. qdf_mem_free_consistent(hal->qdf_dev, hal->qdf_dev->dev,
  1060. sizeof(*(hal->shadow_wrptr_mem_vaddr)) * HAL_MAX_LMAC_RINGS,
  1061. hal->shadow_wrptr_mem_vaddr, hal->shadow_wrptr_mem_paddr, 0);
  1062. qdf_mem_common_free(hal);
  1063. return;
  1064. }
  1065. qdf_export_symbol(hal_detach);
  1066. #define HAL_CE_CHANNEL_DST_DEST_CTRL_ADDR(x) ((x) + 0x000000b0)
  1067. #define HAL_CE_CHANNEL_DST_DEST_CTRL_DEST_MAX_LENGTH_BMSK 0x0000ffff
  1068. #define HAL_CE_CHANNEL_DST_DEST_RING_CONSUMER_PREFETCH_TIMER_ADDR(x) ((x) + 0x00000040)
  1069. #define HAL_CE_CHANNEL_DST_DEST_RING_CONSUMER_PREFETCH_TIMER_RMSK 0x00000007
  1070. /**
  1071. * hal_ce_dst_setup() - Initialize CE destination ring registers
  1072. * @hal: HAL SOC handle
  1073. * @srng: SRNG ring pointer
  1074. * @ring_num: ring number
  1075. */
  1076. static inline void hal_ce_dst_setup(struct hal_soc *hal, struct hal_srng *srng,
  1077. int ring_num)
  1078. {
  1079. uint32_t reg_val = 0;
  1080. uint32_t reg_addr;
  1081. struct hal_hw_srng_config *ring_config =
  1082. HAL_SRNG_CONFIG(hal, CE_DST);
  1083. /* set DEST_MAX_LENGTH according to ce assignment */
  1084. reg_addr = HAL_CE_CHANNEL_DST_DEST_CTRL_ADDR(
  1085. ring_config->reg_start[R0_INDEX] +
  1086. (ring_num * ring_config->reg_size[R0_INDEX]));
  1087. reg_val = HAL_REG_READ(hal, reg_addr);
  1088. reg_val &= ~HAL_CE_CHANNEL_DST_DEST_CTRL_DEST_MAX_LENGTH_BMSK;
  1089. reg_val |= srng->u.dst_ring.max_buffer_length &
  1090. HAL_CE_CHANNEL_DST_DEST_CTRL_DEST_MAX_LENGTH_BMSK;
  1091. HAL_REG_WRITE(hal, reg_addr, reg_val);
  1092. if (srng->prefetch_timer) {
  1093. reg_addr = HAL_CE_CHANNEL_DST_DEST_RING_CONSUMER_PREFETCH_TIMER_ADDR(
  1094. ring_config->reg_start[R0_INDEX] +
  1095. (ring_num * ring_config->reg_size[R0_INDEX]));
  1096. reg_val = HAL_REG_READ(hal, reg_addr);
  1097. reg_val &= ~HAL_CE_CHANNEL_DST_DEST_RING_CONSUMER_PREFETCH_TIMER_RMSK;
  1098. reg_val |= srng->prefetch_timer;
  1099. HAL_REG_WRITE(hal, reg_addr, reg_val);
  1100. reg_val = HAL_REG_READ(hal, reg_addr);
  1101. }
  1102. }
  1103. void hal_reo_read_write_ctrl_ix(hal_soc_handle_t hal_soc_hdl, bool read,
  1104. uint32_t *ix0, uint32_t *ix1,
  1105. uint32_t *ix2, uint32_t *ix3)
  1106. {
  1107. uint32_t reg_offset;
  1108. struct hal_soc *hal = (struct hal_soc *)hal_soc_hdl;
  1109. uint32_t reo_reg_base;
  1110. reo_reg_base = hal_get_reo_reg_base_offset(hal_soc_hdl);
  1111. if (read) {
  1112. if (ix0) {
  1113. reg_offset =
  1114. HAL_REO_DESTINATION_RING_CTRL_IX_0_ADDR(
  1115. reo_reg_base);
  1116. *ix0 = HAL_REG_READ(hal, reg_offset);
  1117. }
  1118. if (ix1) {
  1119. reg_offset =
  1120. HAL_REO_DESTINATION_RING_CTRL_IX_1_ADDR(
  1121. reo_reg_base);
  1122. *ix1 = HAL_REG_READ(hal, reg_offset);
  1123. }
  1124. if (ix2) {
  1125. reg_offset =
  1126. HAL_REO_DESTINATION_RING_CTRL_IX_2_ADDR(
  1127. reo_reg_base);
  1128. *ix2 = HAL_REG_READ(hal, reg_offset);
  1129. }
  1130. if (ix3) {
  1131. reg_offset =
  1132. HAL_REO_DESTINATION_RING_CTRL_IX_3_ADDR(
  1133. reo_reg_base);
  1134. *ix3 = HAL_REG_READ(hal, reg_offset);
  1135. }
  1136. } else {
  1137. if (ix0) {
  1138. reg_offset =
  1139. HAL_REO_DESTINATION_RING_CTRL_IX_0_ADDR(
  1140. reo_reg_base);
  1141. HAL_REG_WRITE_CONFIRM_RETRY(hal, reg_offset,
  1142. *ix0, true);
  1143. }
  1144. if (ix1) {
  1145. reg_offset =
  1146. HAL_REO_DESTINATION_RING_CTRL_IX_1_ADDR(
  1147. reo_reg_base);
  1148. HAL_REG_WRITE_CONFIRM_RETRY(hal, reg_offset,
  1149. *ix1, true);
  1150. }
  1151. if (ix2) {
  1152. reg_offset =
  1153. HAL_REO_DESTINATION_RING_CTRL_IX_2_ADDR(
  1154. reo_reg_base);
  1155. HAL_REG_WRITE_CONFIRM_RETRY(hal, reg_offset,
  1156. *ix2, true);
  1157. }
  1158. if (ix3) {
  1159. reg_offset =
  1160. HAL_REO_DESTINATION_RING_CTRL_IX_3_ADDR(
  1161. reo_reg_base);
  1162. HAL_REG_WRITE_CONFIRM_RETRY(hal, reg_offset,
  1163. *ix3, true);
  1164. }
  1165. }
  1166. }
  1167. qdf_export_symbol(hal_reo_read_write_ctrl_ix);
  1168. void hal_srng_dst_set_hp_paddr_confirm(struct hal_srng *srng, uint64_t paddr)
  1169. {
  1170. SRNG_DST_REG_WRITE_CONFIRM(srng, HP_ADDR_LSB, paddr & 0xffffffff);
  1171. SRNG_DST_REG_WRITE_CONFIRM(srng, HP_ADDR_MSB, paddr >> 32);
  1172. }
  1173. qdf_export_symbol(hal_srng_dst_set_hp_paddr_confirm);
  1174. void hal_srng_dst_init_hp(struct hal_soc_handle *hal_soc,
  1175. struct hal_srng *srng,
  1176. uint32_t *vaddr)
  1177. {
  1178. uint32_t reg_offset;
  1179. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  1180. if (!srng)
  1181. return;
  1182. srng->u.dst_ring.hp_addr = vaddr;
  1183. reg_offset = SRNG_DST_ADDR(srng, HP) - hal->dev_base_addr;
  1184. HAL_REG_WRITE_CONFIRM_RETRY(
  1185. hal, reg_offset, srng->u.dst_ring.cached_hp, true);
  1186. if (vaddr) {
  1187. *srng->u.dst_ring.hp_addr = srng->u.dst_ring.cached_hp;
  1188. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1189. "hp_addr=%pK, cached_hp=%d",
  1190. (void *)srng->u.dst_ring.hp_addr,
  1191. srng->u.dst_ring.cached_hp);
  1192. }
  1193. }
  1194. qdf_export_symbol(hal_srng_dst_init_hp);
  1195. /**
  1196. * hal_srng_hw_init - Private function to initialize SRNG HW
  1197. * @hal: HAL SOC handle
  1198. * @srng: SRNG ring pointer
  1199. * @idle_check: Check if ring is idle
  1200. * @idx: ring index
  1201. */
  1202. static inline void hal_srng_hw_init(struct hal_soc *hal,
  1203. struct hal_srng *srng, bool idle_check, uint32_t idx)
  1204. {
  1205. if (srng->ring_dir == HAL_SRNG_SRC_RING)
  1206. hal_srng_src_hw_init(hal, srng, idle_check, idx);
  1207. else
  1208. hal_srng_dst_hw_init(hal, srng, idle_check, idx);
  1209. }
  1210. #ifdef WLAN_FEATURE_NEAR_FULL_IRQ
  1211. bool hal_srng_is_near_full_irq_supported(hal_soc_handle_t hal_soc,
  1212. int ring_type, int ring_num)
  1213. {
  1214. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  1215. struct hal_hw_srng_config *ring_config =
  1216. HAL_SRNG_CONFIG(hal, ring_type);
  1217. return ring_config->nf_irq_support;
  1218. }
  1219. /**
  1220. * hal_srng_set_msi2_params() - Set MSI2 params to SRNG data structure from
  1221. * ring params
  1222. * @srng: SRNG handle
  1223. * @ring_params: ring params for this SRNG
  1224. *
  1225. * Return: None
  1226. */
  1227. static inline void
  1228. hal_srng_set_msi2_params(struct hal_srng *srng,
  1229. struct hal_srng_params *ring_params)
  1230. {
  1231. srng->msi2_addr = ring_params->msi2_addr;
  1232. srng->msi2_data = ring_params->msi2_data;
  1233. }
  1234. /**
  1235. * hal_srng_get_nf_params() - Get the near full MSI2 params from srng
  1236. * @srng: SRNG handle
  1237. * @ring_params: ring params for this SRNG
  1238. *
  1239. * Return: None
  1240. */
  1241. static inline void
  1242. hal_srng_get_nf_params(struct hal_srng *srng,
  1243. struct hal_srng_params *ring_params)
  1244. {
  1245. ring_params->msi2_addr = srng->msi2_addr;
  1246. ring_params->msi2_data = srng->msi2_data;
  1247. }
  1248. /**
  1249. * hal_srng_set_nf_thresholds() - Set the near full thresholds in SRNG
  1250. * @srng: SRNG handle where the params are to be set
  1251. * @ring_params: ring params, from where threshold is to be fetched
  1252. *
  1253. * Return: None
  1254. */
  1255. static inline void
  1256. hal_srng_set_nf_thresholds(struct hal_srng *srng,
  1257. struct hal_srng_params *ring_params)
  1258. {
  1259. srng->u.dst_ring.nf_irq_support = ring_params->nf_irq_support;
  1260. srng->u.dst_ring.high_thresh = ring_params->high_thresh;
  1261. }
  1262. #else
  1263. static inline void
  1264. hal_srng_set_msi2_params(struct hal_srng *srng,
  1265. struct hal_srng_params *ring_params)
  1266. {
  1267. }
  1268. static inline void
  1269. hal_srng_get_nf_params(struct hal_srng *srng,
  1270. struct hal_srng_params *ring_params)
  1271. {
  1272. }
  1273. static inline void
  1274. hal_srng_set_nf_thresholds(struct hal_srng *srng,
  1275. struct hal_srng_params *ring_params)
  1276. {
  1277. }
  1278. #endif
  1279. #if defined(CLEAR_SW2TCL_CONSUMED_DESC)
  1280. /**
  1281. * hal_srng_last_desc_cleared_init - Initialize SRNG last_desc_cleared ptr
  1282. * @srng: Source ring pointer
  1283. *
  1284. * Return: None
  1285. */
  1286. static inline
  1287. void hal_srng_last_desc_cleared_init(struct hal_srng *srng)
  1288. {
  1289. srng->last_desc_cleared = srng->ring_size - srng->entry_size;
  1290. }
  1291. #else
  1292. static inline
  1293. void hal_srng_last_desc_cleared_init(struct hal_srng *srng)
  1294. {
  1295. }
  1296. #endif /* CLEAR_SW2TCL_CONSUMED_DESC */
  1297. #ifdef WLAN_DP_SRNG_USAGE_WM_TRACKING
  1298. static inline void hal_srng_update_high_wm_thresholds(struct hal_srng *srng)
  1299. {
  1300. srng->high_wm.bin_thresh[HAL_SRNG_HIGH_WM_BIN_90_to_100] =
  1301. ((srng->num_entries * 90) / 100);
  1302. srng->high_wm.bin_thresh[HAL_SRNG_HIGH_WM_BIN_80_to_90] =
  1303. ((srng->num_entries * 80) / 100);
  1304. srng->high_wm.bin_thresh[HAL_SRNG_HIGH_WM_BIN_70_to_80] =
  1305. ((srng->num_entries * 70) / 100);
  1306. srng->high_wm.bin_thresh[HAL_SRNG_HIGH_WM_BIN_60_to_70] =
  1307. ((srng->num_entries * 60) / 100);
  1308. srng->high_wm.bin_thresh[HAL_SRNG_HIGH_WM_BIN_50_to_60] =
  1309. ((srng->num_entries * 50) / 100);
  1310. /* Below 50% threshold is not needed */
  1311. srng->high_wm.bin_thresh[HAL_SRNG_HIGH_WM_BIN_BELOW_50_PERCENT] = 0;
  1312. hal_info("ring_id: %u, wm_thresh- <50:%u, 50-60:%u, 60-70:%u, 70-80:%u, 80-90:%u, 90-100:%u",
  1313. srng->ring_id,
  1314. srng->high_wm.bin_thresh[HAL_SRNG_HIGH_WM_BIN_BELOW_50_PERCENT],
  1315. srng->high_wm.bin_thresh[HAL_SRNG_HIGH_WM_BIN_50_to_60],
  1316. srng->high_wm.bin_thresh[HAL_SRNG_HIGH_WM_BIN_60_to_70],
  1317. srng->high_wm.bin_thresh[HAL_SRNG_HIGH_WM_BIN_70_to_80],
  1318. srng->high_wm.bin_thresh[HAL_SRNG_HIGH_WM_BIN_80_to_90],
  1319. srng->high_wm.bin_thresh[HAL_SRNG_HIGH_WM_BIN_90_to_100]);
  1320. }
  1321. #else
  1322. static inline void hal_srng_update_high_wm_thresholds(struct hal_srng *srng)
  1323. {
  1324. }
  1325. #endif
  1326. void *hal_srng_setup_idx(void *hal_soc, int ring_type, int ring_num, int mac_id,
  1327. struct hal_srng_params *ring_params, bool idle_check,
  1328. uint32_t idx)
  1329. {
  1330. int ring_id;
  1331. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  1332. hal_soc_handle_t hal_hdl = (hal_soc_handle_t)hal;
  1333. struct hal_srng *srng;
  1334. struct hal_hw_srng_config *ring_config =
  1335. HAL_SRNG_CONFIG(hal, ring_type);
  1336. void *dev_base_addr;
  1337. int i;
  1338. ring_id = hal_get_srng_ring_id(hal_soc, ring_type, ring_num, mac_id);
  1339. if (ring_id < 0)
  1340. return NULL;
  1341. hal_verbose_debug("mac_id %d ring_id %d", mac_id, ring_id);
  1342. srng = hal_get_srng(hal_soc, ring_id);
  1343. if (srng->initialized) {
  1344. hal_verbose_debug("Ring (ring_type, ring_num) already initialized");
  1345. return NULL;
  1346. }
  1347. hal_srng_reg_his_init(srng);
  1348. dev_base_addr = hal->dev_base_addr;
  1349. srng->ring_id = ring_id;
  1350. srng->ring_type = ring_type;
  1351. srng->ring_dir = ring_config->ring_dir;
  1352. srng->ring_base_paddr = ring_params->ring_base_paddr;
  1353. srng->ring_base_vaddr = ring_params->ring_base_vaddr;
  1354. srng->entry_size = ring_config->entry_size;
  1355. srng->num_entries = ring_params->num_entries;
  1356. srng->ring_size = srng->num_entries * srng->entry_size;
  1357. srng->ring_size_mask = srng->ring_size - 1;
  1358. srng->ring_vaddr_end = srng->ring_base_vaddr + srng->ring_size;
  1359. srng->msi_addr = ring_params->msi_addr;
  1360. srng->msi_data = ring_params->msi_data;
  1361. srng->intr_timer_thres_us = ring_params->intr_timer_thres_us;
  1362. srng->intr_batch_cntr_thres_entries =
  1363. ring_params->intr_batch_cntr_thres_entries;
  1364. srng->pointer_timer_threshold =
  1365. ring_params->pointer_timer_threshold;
  1366. srng->pointer_num_threshold =
  1367. ring_params->pointer_num_threshold;
  1368. if (!idle_check)
  1369. srng->prefetch_timer = ring_params->prefetch_timer;
  1370. srng->hal_soc = hal_soc;
  1371. hal_srng_set_msi2_params(srng, ring_params);
  1372. hal_srng_update_high_wm_thresholds(srng);
  1373. for (i = 0 ; i < MAX_SRNG_REG_GROUPS; i++) {
  1374. srng->hwreg_base[i] = dev_base_addr + ring_config->reg_start[i]
  1375. + (ring_num * ring_config->reg_size[i]);
  1376. }
  1377. /* Zero out the entire ring memory */
  1378. qdf_mem_zero(srng->ring_base_vaddr, (srng->entry_size *
  1379. srng->num_entries) << 2);
  1380. srng->flags = ring_params->flags;
  1381. /* For cached descriptors flush and invalidate the memory*/
  1382. if (srng->flags & HAL_SRNG_CACHED_DESC) {
  1383. qdf_nbuf_dma_clean_range(
  1384. srng->ring_base_vaddr,
  1385. srng->ring_base_vaddr +
  1386. ((srng->entry_size * srng->num_entries)));
  1387. qdf_nbuf_dma_inv_range(
  1388. srng->ring_base_vaddr,
  1389. srng->ring_base_vaddr +
  1390. ((srng->entry_size * srng->num_entries)));
  1391. }
  1392. #ifdef BIG_ENDIAN_HOST
  1393. /* TODO: See if we should we get these flags from caller */
  1394. srng->flags |= HAL_SRNG_DATA_TLV_SWAP;
  1395. srng->flags |= HAL_SRNG_MSI_SWAP;
  1396. srng->flags |= HAL_SRNG_RING_PTR_SWAP;
  1397. #endif
  1398. hal_srng_last_desc_cleared_init(srng);
  1399. if (srng->ring_dir == HAL_SRNG_SRC_RING) {
  1400. srng->u.src_ring.hp = 0;
  1401. srng->u.src_ring.reap_hp = srng->ring_size -
  1402. srng->entry_size;
  1403. srng->u.src_ring.tp_addr =
  1404. &(hal->shadow_rdptr_mem_vaddr[ring_id]);
  1405. srng->u.src_ring.low_threshold =
  1406. ring_params->low_threshold * srng->entry_size;
  1407. if (srng->u.src_ring.tp_addr)
  1408. qdf_mem_zero(srng->u.src_ring.tp_addr,
  1409. sizeof(*hal->shadow_rdptr_mem_vaddr));
  1410. if (ring_config->lmac_ring) {
  1411. /* For LMAC rings, head pointer updates will be done
  1412. * through FW by writing to a shared memory location
  1413. */
  1414. srng->u.src_ring.hp_addr =
  1415. &(hal->shadow_wrptr_mem_vaddr[ring_id -
  1416. HAL_SRNG_LMAC1_ID_START]);
  1417. srng->flags |= HAL_SRNG_LMAC_RING;
  1418. if (srng->u.src_ring.hp_addr)
  1419. qdf_mem_zero(srng->u.src_ring.hp_addr,
  1420. sizeof(*hal->shadow_wrptr_mem_vaddr));
  1421. } else if (ignore_shadow || (srng->u.src_ring.hp_addr == 0)) {
  1422. srng->u.src_ring.hp_addr =
  1423. hal_get_window_address(hal,
  1424. SRNG_SRC_ADDR(srng, HP));
  1425. if (CHECK_SHADOW_REGISTERS) {
  1426. QDF_TRACE(QDF_MODULE_ID_TXRX,
  1427. QDF_TRACE_LEVEL_ERROR,
  1428. "%s: Ring (%d, %d) missing shadow config",
  1429. __func__, ring_type, ring_num);
  1430. }
  1431. } else {
  1432. hal_validate_shadow_register(hal,
  1433. SRNG_SRC_ADDR(srng, HP),
  1434. srng->u.src_ring.hp_addr);
  1435. }
  1436. } else {
  1437. /* During initialization loop count in all the descriptors
  1438. * will be set to zero, and HW will set it to 1 on completing
  1439. * descriptor update in first loop, and increments it by 1 on
  1440. * subsequent loops (loop count wraps around after reaching
  1441. * 0xffff). The 'loop_cnt' in SW ring state is the expected
  1442. * loop count in descriptors updated by HW (to be processed
  1443. * by SW).
  1444. */
  1445. hal_srng_set_nf_thresholds(srng, ring_params);
  1446. srng->u.dst_ring.loop_cnt = 1;
  1447. srng->u.dst_ring.tp = 0;
  1448. srng->u.dst_ring.hp_addr =
  1449. &(hal->shadow_rdptr_mem_vaddr[ring_id]);
  1450. if (srng->u.dst_ring.hp_addr)
  1451. qdf_mem_zero(srng->u.dst_ring.hp_addr,
  1452. sizeof(*hal->shadow_rdptr_mem_vaddr));
  1453. if (ring_config->lmac_ring) {
  1454. /* For LMAC rings, tail pointer updates will be done
  1455. * through FW by writing to a shared memory location
  1456. */
  1457. srng->u.dst_ring.tp_addr =
  1458. &(hal->shadow_wrptr_mem_vaddr[ring_id -
  1459. HAL_SRNG_LMAC1_ID_START]);
  1460. srng->flags |= HAL_SRNG_LMAC_RING;
  1461. if (srng->u.dst_ring.tp_addr)
  1462. qdf_mem_zero(srng->u.dst_ring.tp_addr,
  1463. sizeof(*hal->shadow_wrptr_mem_vaddr));
  1464. } else if (ignore_shadow || srng->u.dst_ring.tp_addr == 0) {
  1465. srng->u.dst_ring.tp_addr =
  1466. hal_get_window_address(hal,
  1467. SRNG_DST_ADDR(srng, TP));
  1468. if (CHECK_SHADOW_REGISTERS) {
  1469. QDF_TRACE(QDF_MODULE_ID_TXRX,
  1470. QDF_TRACE_LEVEL_ERROR,
  1471. "%s: Ring (%d, %d) missing shadow config",
  1472. __func__, ring_type, ring_num);
  1473. }
  1474. } else {
  1475. hal_validate_shadow_register(hal,
  1476. SRNG_DST_ADDR(srng, TP),
  1477. srng->u.dst_ring.tp_addr);
  1478. }
  1479. }
  1480. if (!(ring_config->lmac_ring)) {
  1481. /*
  1482. * UMAC reset has idle check enabled.
  1483. * During UMAC reset Tx ring halt is set
  1484. * by Wi-Fi FW during pre-reset stage,
  1485. * avoid Tx ring halt again.
  1486. */
  1487. if (idle_check && idx) {
  1488. if (!hal->ops->hal_tx_ring_halt_get(hal_hdl)) {
  1489. qdf_print("\nTx ring halt not set:Ring(%d, %d)",
  1490. ring_type, ring_num);
  1491. qdf_assert_always(0);
  1492. }
  1493. hal_srng_hw_init(hal, srng, idle_check, idx);
  1494. goto ce_setup;
  1495. }
  1496. if (idx) {
  1497. hal->ops->hal_tx_ring_halt_set(hal_hdl);
  1498. do {
  1499. hal_info("Waiting for ring reset\n");
  1500. } while (!(hal->ops->hal_tx_ring_halt_poll(hal_hdl)));
  1501. }
  1502. hal_srng_hw_init(hal, srng, idle_check, idx);
  1503. if (idx) {
  1504. hal->ops->hal_tx_ring_halt_reset(hal_hdl);
  1505. }
  1506. ce_setup:
  1507. if (ring_type == CE_DST) {
  1508. srng->u.dst_ring.max_buffer_length = ring_params->max_buffer_length;
  1509. hal_ce_dst_setup(hal, srng, ring_num);
  1510. }
  1511. }
  1512. SRNG_LOCK_INIT(&srng->lock);
  1513. srng->srng_event = 0;
  1514. srng->initialized = true;
  1515. return (void *)srng;
  1516. }
  1517. qdf_export_symbol(hal_srng_setup_idx);
  1518. /**
  1519. * hal_srng_setup - Initialize HW SRNG ring.
  1520. * @hal_soc: Opaque HAL SOC handle
  1521. * @ring_type: one of the types from hal_ring_type
  1522. * @ring_num: Ring number if there are multiple rings of same type (staring
  1523. * from 0)
  1524. * @mac_id: valid MAC Id should be passed if ring type is one of lmac rings
  1525. * @ring_params: SRNG ring params in hal_srng_params structure.
  1526. * @idle_check: Check if ring is idle
  1527. *
  1528. * Callers are expected to allocate contiguous ring memory of size
  1529. * 'num_entries * entry_size' bytes and pass the physical and virtual base
  1530. * addresses through 'ring_base_paddr' and 'ring_base_vaddr' in
  1531. * hal_srng_params structure. Ring base address should be 8 byte aligned
  1532. * and size of each ring entry should be queried using the API
  1533. * hal_srng_get_entrysize
  1534. *
  1535. * Return: Opaque pointer to ring on success
  1536. * NULL on failure (if given ring is not available)
  1537. */
  1538. void *hal_srng_setup(void *hal_soc, int ring_type, int ring_num,
  1539. int mac_id, struct hal_srng_params *ring_params,
  1540. bool idle_check)
  1541. {
  1542. return hal_srng_setup_idx(hal_soc, ring_type, ring_num, mac_id,
  1543. ring_params, idle_check, 0);
  1544. }
  1545. qdf_export_symbol(hal_srng_setup);
  1546. void hal_srng_cleanup(void *hal_soc, hal_ring_handle_t hal_ring_hdl,
  1547. bool umac_reset_inprogress)
  1548. {
  1549. struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
  1550. SRNG_LOCK_DESTROY(&srng->lock);
  1551. srng->initialized = 0;
  1552. if (umac_reset_inprogress)
  1553. hal_srng_hw_disable(hal_soc, srng);
  1554. }
  1555. qdf_export_symbol(hal_srng_cleanup);
  1556. uint32_t hal_srng_get_entrysize(void *hal_soc, int ring_type)
  1557. {
  1558. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  1559. struct hal_hw_srng_config *ring_config =
  1560. HAL_SRNG_CONFIG(hal, ring_type);
  1561. return ring_config->entry_size << 2;
  1562. }
  1563. qdf_export_symbol(hal_srng_get_entrysize);
  1564. uint32_t hal_srng_max_entries(void *hal_soc, int ring_type)
  1565. {
  1566. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  1567. struct hal_hw_srng_config *ring_config =
  1568. HAL_SRNG_CONFIG(hal, ring_type);
  1569. return ring_config->max_size / ring_config->entry_size;
  1570. }
  1571. qdf_export_symbol(hal_srng_max_entries);
  1572. enum hal_srng_dir hal_srng_get_dir(void *hal_soc, int ring_type)
  1573. {
  1574. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  1575. struct hal_hw_srng_config *ring_config =
  1576. HAL_SRNG_CONFIG(hal, ring_type);
  1577. return ring_config->ring_dir;
  1578. }
  1579. void hal_srng_dump(struct hal_srng *srng)
  1580. {
  1581. if (srng->ring_dir == HAL_SRNG_SRC_RING) {
  1582. hal_debug("=== SRC RING %d ===", srng->ring_id);
  1583. hal_debug("hp %u, reap_hp %u, tp %u, cached tp %u",
  1584. srng->u.src_ring.hp,
  1585. srng->u.src_ring.reap_hp,
  1586. *srng->u.src_ring.tp_addr,
  1587. srng->u.src_ring.cached_tp);
  1588. } else {
  1589. hal_debug("=== DST RING %d ===", srng->ring_id);
  1590. hal_debug("tp %u, hp %u, cached tp %u, loop_cnt %u",
  1591. srng->u.dst_ring.tp,
  1592. *srng->u.dst_ring.hp_addr,
  1593. srng->u.dst_ring.cached_hp,
  1594. srng->u.dst_ring.loop_cnt);
  1595. }
  1596. }
  1597. void hal_get_srng_params(hal_soc_handle_t hal_soc_hdl,
  1598. hal_ring_handle_t hal_ring_hdl,
  1599. struct hal_srng_params *ring_params)
  1600. {
  1601. struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
  1602. int i =0;
  1603. ring_params->ring_id = srng->ring_id;
  1604. ring_params->ring_dir = srng->ring_dir;
  1605. ring_params->entry_size = srng->entry_size;
  1606. ring_params->ring_base_paddr = srng->ring_base_paddr;
  1607. ring_params->ring_base_vaddr = srng->ring_base_vaddr;
  1608. ring_params->num_entries = srng->num_entries;
  1609. ring_params->msi_addr = srng->msi_addr;
  1610. ring_params->msi_data = srng->msi_data;
  1611. ring_params->intr_timer_thres_us = srng->intr_timer_thres_us;
  1612. ring_params->intr_batch_cntr_thres_entries =
  1613. srng->intr_batch_cntr_thres_entries;
  1614. ring_params->low_threshold = srng->u.src_ring.low_threshold;
  1615. ring_params->flags = srng->flags;
  1616. ring_params->ring_id = srng->ring_id;
  1617. for (i = 0 ; i < MAX_SRNG_REG_GROUPS; i++)
  1618. ring_params->hwreg_base[i] = srng->hwreg_base[i];
  1619. hal_srng_get_nf_params(srng, ring_params);
  1620. }
  1621. qdf_export_symbol(hal_get_srng_params);
  1622. void hal_set_low_threshold(hal_ring_handle_t hal_ring_hdl,
  1623. uint32_t low_threshold)
  1624. {
  1625. struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
  1626. srng->u.src_ring.low_threshold = low_threshold * srng->entry_size;
  1627. }
  1628. qdf_export_symbol(hal_set_low_threshold);
  1629. #ifdef FEATURE_RUNTIME_PM
  1630. void
  1631. hal_srng_rtpm_access_end(hal_soc_handle_t hal_soc_hdl,
  1632. hal_ring_handle_t hal_ring_hdl,
  1633. uint32_t rtpm_id)
  1634. {
  1635. struct hal_soc *hal_soc = (struct hal_soc *)hal_soc_hdl;
  1636. if (qdf_unlikely(!hal_ring_hdl)) {
  1637. qdf_print("Error: Invalid hal_ring\n");
  1638. return;
  1639. }
  1640. if (hif_rtpm_get(HIF_RTPM_GET_ASYNC, rtpm_id) == 0) {
  1641. if (hif_system_pm_state_check(hal_soc->hif_handle)) {
  1642. hal_srng_access_end_reap(hal_soc_hdl, hal_ring_hdl);
  1643. hal_srng_set_event(hal_ring_hdl, HAL_SRNG_FLUSH_EVENT);
  1644. hal_srng_inc_flush_cnt(hal_ring_hdl);
  1645. } else {
  1646. hal_srng_access_end(hal_soc_hdl, hal_ring_hdl);
  1647. }
  1648. hif_rtpm_put(HIF_RTPM_PUT_ASYNC, rtpm_id);
  1649. } else {
  1650. hal_srng_access_end_reap(hal_soc_hdl, hal_ring_hdl);
  1651. hal_srng_set_event(hal_ring_hdl, HAL_SRNG_FLUSH_EVENT);
  1652. hal_srng_inc_flush_cnt(hal_ring_hdl);
  1653. }
  1654. }
  1655. qdf_export_symbol(hal_srng_rtpm_access_end);
  1656. #endif /* FEATURE_RUNTIME_PM */
  1657. #ifdef FORCE_WAKE
  1658. void hal_set_init_phase(hal_soc_handle_t soc, bool init_phase)
  1659. {
  1660. struct hal_soc *hal_soc = (struct hal_soc *)soc;
  1661. hal_soc->init_phase = init_phase;
  1662. }
  1663. #endif /* FORCE_WAKE */