dsi_phy_hw_v5_0.c 31 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940
  1. // SPDX-License-Identifier: GPL-2.0-only
  2. /*
  3. * Copyright (c) 2016-2021, The Linux Foundation. All rights reserved.
  4. * Copyright (c) 2021-2023, Qualcomm Innovation Center, Inc. All rights reserved.
  5. */
  6. #include <linux/math64.h>
  7. #include <linux/delay.h>
  8. #include <linux/iopoll.h>
  9. #include "dsi_hw.h"
  10. #include "dsi_defs.h"
  11. #include "dsi_phy_hw.h"
  12. #include "dsi_catalog.h"
  13. #define DSIPHY_CMN_REVISION_ID0 0x000
  14. #define DSIPHY_CMN_REVISION_ID1 0x004
  15. #define DSIPHY_CMN_REVISION_ID2 0x008
  16. #define DSIPHY_CMN_REVISION_ID3 0x00C
  17. #define DSIPHY_CMN_CLK_CFG0 0x010
  18. #define DSIPHY_CMN_CLK_CFG1 0x014
  19. #define DSIPHY_CMN_GLBL_CTRL 0x018
  20. #define DSIPHY_CMN_RBUF_CTRL 0x01C
  21. #define DSIPHY_CMN_VREG_CTRL_0 0x020
  22. #define DSIPHY_CMN_CTRL_0 0x024
  23. #define DSIPHY_CMN_CTRL_1 0x028
  24. #define DSIPHY_CMN_CTRL_2 0x02C
  25. #define DSIPHY_CMN_CTRL_3 0x030
  26. #define DSIPHY_CMN_LANE_CFG0 0x034
  27. #define DSIPHY_CMN_LANE_CFG1 0x038
  28. #define DSIPHY_CMN_PLL_CNTRL 0x03C
  29. #define DSIPHY_CMN_DPHY_SOT 0x040
  30. #define DSIPHY_CMN_LANE_CTRL0 0x0A0
  31. #define DSIPHY_CMN_LANE_CTRL1 0x0A4
  32. #define DSIPHY_CMN_LANE_CTRL2 0x0A8
  33. #define DSIPHY_CMN_LANE_CTRL3 0x0AC
  34. #define DSIPHY_CMN_LANE_CTRL4 0x0B0
  35. #define DSIPHY_CMN_TIMING_CTRL_0 0x0B4
  36. #define DSIPHY_CMN_TIMING_CTRL_1 0x0B8
  37. #define DSIPHY_CMN_TIMING_CTRL_2 0x0Bc
  38. #define DSIPHY_CMN_TIMING_CTRL_3 0x0C0
  39. #define DSIPHY_CMN_TIMING_CTRL_4 0x0C4
  40. #define DSIPHY_CMN_TIMING_CTRL_5 0x0C8
  41. #define DSIPHY_CMN_TIMING_CTRL_6 0x0CC
  42. #define DSIPHY_CMN_TIMING_CTRL_7 0x0D0
  43. #define DSIPHY_CMN_TIMING_CTRL_8 0x0D4
  44. #define DSIPHY_CMN_TIMING_CTRL_9 0x0D8
  45. #define DSIPHY_CMN_TIMING_CTRL_10 0x0DC
  46. #define DSIPHY_CMN_TIMING_CTRL_11 0x0E0
  47. #define DSIPHY_CMN_TIMING_CTRL_12 0x0E4
  48. #define DSIPHY_CMN_TIMING_CTRL_13 0x0E8
  49. #define DSIPHY_CMN_GLBL_HSTX_STR_CTRL_0 0x0EC
  50. #define DSIPHY_CMN_GLBL_HSTX_STR_CTRL_1 0x0F0
  51. #define DSIPHY_CMN_GLBL_RESCODE_OFFSET_TOP_CTRL 0x0F4
  52. #define DSIPHY_CMN_GLBL_RESCODE_OFFSET_BOT_CTRL 0x0F8
  53. #define DSIPHY_CMN_GLBL_RESCODE_OFFSET_MID_CTRL 0x0FC
  54. #define DSIPHY_CMN_GLBL_LPTX_STR_CTRL 0x100
  55. #define DSIPHY_CMN_GLBL_PEMPH_CTRL_0 0x104
  56. #define DSIPHY_CMN_GLBL_PEMPH_CTRL_1 0x108
  57. #define DSIPHY_CMN_GLBL_STR_SWI_CAL_SEL_CTRL 0x10C
  58. #define DSIPHY_CMN_VREG_CTRL_1 0x110
  59. #define DSIPHY_CMN_CTRL_4 0x114
  60. #define DSIPHY_CMN_PHY_STATUS 0x140
  61. #define DSIPHY_CMN_LANE_STATUS0 0x148
  62. #define DSIPHY_CMN_LANE_STATUS1 0x14C
  63. #define DSIPHY_CMN_GLBL_DIGTOP_SPARE10 0x1AC
  64. #define DSIPHY_CMN_SL_DSI_LANE_CTRL1 0x1B4
  65. /* n = 0..3 for data lanes and n = 4 for clock lane */
  66. #define DSIPHY_LNX_CFG0(n) (0x200 + (0x80 * (n)))
  67. #define DSIPHY_LNX_CFG1(n) (0x204 + (0x80 * (n)))
  68. #define DSIPHY_LNX_CFG2(n) (0x208 + (0x80 * (n)))
  69. #define DSIPHY_LNX_TEST_DATAPATH(n) (0x20C + (0x80 * (n)))
  70. #define DSIPHY_LNX_PIN_SWAP(n) (0x210 + (0x80 * (n)))
  71. #define DSIPHY_LNX_LPRX_CTRL(n) (0x214 + (0x80 * (n)))
  72. #define DSIPHY_LNX_TX_DCTRL(n) (0x218 + (0x80 * (n)))
  73. /* dynamic refresh control registers */
  74. #define DSI_DYN_REFRESH_CTRL (0x000)
  75. #define DSI_DYN_REFRESH_PIPE_DELAY (0x004)
  76. #define DSI_DYN_REFRESH_PIPE_DELAY2 (0x008)
  77. #define DSI_DYN_REFRESH_PLL_DELAY (0x00C)
  78. #define DSI_DYN_REFRESH_STATUS (0x010)
  79. #define DSI_DYN_REFRESH_PLL_CTRL0 (0x014)
  80. #define DSI_DYN_REFRESH_PLL_CTRL1 (0x018)
  81. #define DSI_DYN_REFRESH_PLL_CTRL2 (0x01C)
  82. #define DSI_DYN_REFRESH_PLL_CTRL3 (0x020)
  83. #define DSI_DYN_REFRESH_PLL_CTRL4 (0x024)
  84. #define DSI_DYN_REFRESH_PLL_CTRL5 (0x028)
  85. #define DSI_DYN_REFRESH_PLL_CTRL6 (0x02C)
  86. #define DSI_DYN_REFRESH_PLL_CTRL7 (0x030)
  87. #define DSI_DYN_REFRESH_PLL_CTRL8 (0x034)
  88. #define DSI_DYN_REFRESH_PLL_CTRL9 (0x038)
  89. #define DSI_DYN_REFRESH_PLL_CTRL10 (0x03C)
  90. #define DSI_DYN_REFRESH_PLL_CTRL11 (0x040)
  91. #define DSI_DYN_REFRESH_PLL_CTRL12 (0x044)
  92. #define DSI_DYN_REFRESH_PLL_CTRL13 (0x048)
  93. #define DSI_DYN_REFRESH_PLL_CTRL14 (0x04C)
  94. #define DSI_DYN_REFRESH_PLL_CTRL15 (0x050)
  95. #define DSI_DYN_REFRESH_PLL_CTRL16 (0x054)
  96. #define DSI_DYN_REFRESH_PLL_CTRL17 (0x058)
  97. #define DSI_DYN_REFRESH_PLL_CTRL18 (0x05C)
  98. #define DSI_DYN_REFRESH_PLL_CTRL19 (0x060)
  99. #define DSI_DYN_REFRESH_PLL_CTRL20 (0x064)
  100. #define DSI_DYN_REFRESH_PLL_CTRL21 (0x068)
  101. #define DSI_DYN_REFRESH_PLL_CTRL22 (0x06C)
  102. #define DSI_DYN_REFRESH_PLL_CTRL23 (0x070)
  103. #define DSI_DYN_REFRESH_PLL_CTRL24 (0x074)
  104. #define DSI_DYN_REFRESH_PLL_CTRL25 (0x078)
  105. #define DSI_DYN_REFRESH_PLL_CTRL26 (0x07C)
  106. #define DSI_DYN_REFRESH_PLL_CTRL27 (0x080)
  107. #define DSI_DYN_REFRESH_PLL_CTRL28 (0x084)
  108. #define DSI_DYN_REFRESH_PLL_CTRL29 (0x088)
  109. #define DSI_DYN_REFRESH_PLL_CTRL30 (0x08C)
  110. #define DSI_DYN_REFRESH_PLL_CTRL31 (0x090)
  111. #define DSI_DYN_REFRESH_PLL_UPPER_ADDR (0x094)
  112. #define DSI_DYN_REFRESH_PLL_UPPER_ADDR2 (0x098)
  113. static int dsi_phy_hw_v5_0_is_pll_on(struct dsi_phy_hw *phy)
  114. {
  115. u32 data = 0;
  116. if (phy->phy_pll_bypass)
  117. return 0;
  118. data = DSI_R32(phy, DSIPHY_CMN_PLL_CNTRL);
  119. mb(); /*make sure read happened */
  120. return (data & BIT(0));
  121. }
  122. static bool dsi_phy_hw_v5_0_is_split_link_enabled(struct dsi_phy_hw *phy)
  123. {
  124. u32 reg = 0;
  125. reg = DSI_R32(phy, DSIPHY_CMN_GLBL_CTRL);
  126. mb(); /*make sure read happened */
  127. return (reg & BIT(5));
  128. }
  129. static void dsi_phy_hw_v5_0_config_lpcdrx(struct dsi_phy_hw *phy,
  130. struct dsi_phy_cfg *cfg, bool enable)
  131. {
  132. int phy_lane_0 = dsi_phy_conv_logical_to_phy_lane(&cfg->lane_map, DSI_LOGICAL_LANE_0);
  133. /*
  134. * LPRX and CDRX need to enabled only for physical data lane
  135. * corresponding to the logical data lane 0
  136. */
  137. if (enable)
  138. DSI_W32(phy, DSIPHY_LNX_LPRX_CTRL(phy_lane_0), cfg->strength.lane[phy_lane_0][1]);
  139. else
  140. DSI_W32(phy, DSIPHY_LNX_LPRX_CTRL(phy_lane_0), 0);
  141. }
  142. static void dsi_phy_hw_v5_0_lane_swap_config(struct dsi_phy_hw *phy,
  143. struct dsi_lane_map *lane_map)
  144. {
  145. DSI_W32(phy, DSIPHY_CMN_LANE_CFG0,
  146. (lane_map->lane_map_v2[DSI_LOGICAL_LANE_0] |
  147. (lane_map->lane_map_v2[DSI_LOGICAL_LANE_1] << 4)));
  148. DSI_W32(phy, DSIPHY_CMN_LANE_CFG1,
  149. (lane_map->lane_map_v2[DSI_LOGICAL_LANE_2] |
  150. (lane_map->lane_map_v2[DSI_LOGICAL_LANE_3] << 4)));
  151. }
  152. static void dsi_phy_hw_v5_0_lane_settings(struct dsi_phy_hw *phy,
  153. struct dsi_phy_cfg *cfg)
  154. {
  155. int i;
  156. u8 tx_dctrl[] = {0x40, 0x40, 0x40, 0x46, 0x41};
  157. bool split_link_enabled;
  158. u32 lanes_per_sublink;
  159. split_link_enabled = cfg->split_link.enabled;
  160. lanes_per_sublink = cfg->split_link.lanes_per_sublink;
  161. /* Strength ctrl settings */
  162. for (i = DSI_LOGICAL_LANE_0; i < DSI_LANE_MAX; i++) {
  163. /*
  164. * Disable LPRX and CDRX for all lanes. And later on, it will
  165. * be only enabled for the physical data lane corresponding
  166. * to the logical data lane 0
  167. */
  168. DSI_W32(phy, DSIPHY_LNX_LPRX_CTRL(i), 0);
  169. DSI_W32(phy, DSIPHY_LNX_PIN_SWAP(i), 0x0);
  170. }
  171. dsi_phy_hw_v5_0_config_lpcdrx(phy, cfg, true);
  172. /* other settings */
  173. for (i = DSI_LOGICAL_LANE_0; i < DSI_LANE_MAX; i++) {
  174. DSI_W32(phy, DSIPHY_LNX_CFG0(i), cfg->lanecfg.lane[i][0]);
  175. DSI_W32(phy, DSIPHY_LNX_CFG1(i), cfg->lanecfg.lane[i][1]);
  176. DSI_W32(phy, DSIPHY_LNX_CFG2(i), cfg->lanecfg.lane[i][2]);
  177. DSI_W32(phy, DSIPHY_LNX_TX_DCTRL(i), tx_dctrl[i]);
  178. }
  179. /* remove below check if cphy splitlink is enabled */
  180. if (split_link_enabled && (cfg->phy_type == DSI_PHY_TYPE_CPHY))
  181. return;
  182. /* Configure the splitlink clock lane with clk lane settings */
  183. if (split_link_enabled) {
  184. DSI_W32(phy, DSIPHY_LNX_LPRX_CTRL(5), 0x0);
  185. DSI_W32(phy, DSIPHY_LNX_PIN_SWAP(5), 0x0);
  186. DSI_W32(phy, DSIPHY_LNX_CFG0(5), cfg->lanecfg.lane[4][0]);
  187. DSI_W32(phy, DSIPHY_LNX_CFG1(5), cfg->lanecfg.lane[4][1]);
  188. DSI_W32(phy, DSIPHY_LNX_CFG2(5), cfg->lanecfg.lane[4][2]);
  189. DSI_W32(phy, DSIPHY_LNX_TX_DCTRL(5), tx_dctrl[4]);
  190. }
  191. }
  192. void dsi_phy_hw_v5_0_commit_phy_timing(struct dsi_phy_hw *phy,
  193. struct dsi_phy_per_lane_cfgs *timing)
  194. {
  195. /* Commit DSI PHY timings */
  196. DSI_W32(phy, DSIPHY_CMN_TIMING_CTRL_0, timing->lane_v4[0]);
  197. DSI_W32(phy, DSIPHY_CMN_TIMING_CTRL_1, timing->lane_v4[1]);
  198. DSI_W32(phy, DSIPHY_CMN_TIMING_CTRL_2, timing->lane_v4[2]);
  199. DSI_W32(phy, DSIPHY_CMN_TIMING_CTRL_3, timing->lane_v4[3]);
  200. DSI_W32(phy, DSIPHY_CMN_TIMING_CTRL_4, timing->lane_v4[4]);
  201. DSI_W32(phy, DSIPHY_CMN_TIMING_CTRL_5, timing->lane_v4[5]);
  202. DSI_W32(phy, DSIPHY_CMN_TIMING_CTRL_6, timing->lane_v4[6]);
  203. DSI_W32(phy, DSIPHY_CMN_TIMING_CTRL_7, timing->lane_v4[7]);
  204. DSI_W32(phy, DSIPHY_CMN_TIMING_CTRL_8, timing->lane_v4[8]);
  205. DSI_W32(phy, DSIPHY_CMN_TIMING_CTRL_9, timing->lane_v4[9]);
  206. DSI_W32(phy, DSIPHY_CMN_TIMING_CTRL_10, timing->lane_v4[10]);
  207. DSI_W32(phy, DSIPHY_CMN_TIMING_CTRL_11, timing->lane_v4[11]);
  208. DSI_W32(phy, DSIPHY_CMN_TIMING_CTRL_12, timing->lane_v4[12]);
  209. DSI_W32(phy, DSIPHY_CMN_TIMING_CTRL_13, timing->lane_v4[13]);
  210. }
  211. /**
  212. * calc_cmn_lane_ctrl0() - Calculate the value to be set for
  213. * DSIPHY_CMN_LANE_CTRL0 register.
  214. * @cfg: Per lane configurations for timing, strength and lane
  215. * configurations.
  216. */
  217. static inline u32 dsi_phy_hw_calc_cmn_lane_ctrl0(struct dsi_phy_cfg *cfg)
  218. {
  219. u32 cmn_lane_ctrl0 = 0;
  220. /* Only enable lanes that are required */
  221. cmn_lane_ctrl0 |= ((cfg->data_lanes & DSI_DATA_LANE_0) ? BIT(0) : 0);
  222. cmn_lane_ctrl0 |= ((cfg->data_lanes & DSI_DATA_LANE_1) ? BIT(1) : 0);
  223. cmn_lane_ctrl0 |= ((cfg->data_lanes & DSI_DATA_LANE_2) ? BIT(2) : 0);
  224. cmn_lane_ctrl0 |= ((cfg->data_lanes & DSI_DATA_LANE_3) ? BIT(3) : 0);
  225. cmn_lane_ctrl0 |= BIT(4);
  226. return cmn_lane_ctrl0;
  227. }
  228. /**
  229. * cphy_enable() - Enable CPHY hardware
  230. * @phy: Pointer to DSI PHY hardware object.
  231. * @cfg: Per lane configurations for timing, strength and lane
  232. * configurations.
  233. */
  234. static void dsi_phy_hw_cphy_enable(struct dsi_phy_hw *phy, struct dsi_phy_cfg *cfg)
  235. {
  236. struct dsi_phy_per_lane_cfgs *timing = &cfg->timing;
  237. u32 data;
  238. /* For C-PHY, no low power settings for lower clk rate */
  239. u32 glbl_str_swi_cal_sel_ctrl = 0;
  240. u32 glbl_hstx_str_ctrl_0 = 0;
  241. u32 cmn_lane_ctrl0 = 0;
  242. /* de-assert digital and pll power down */
  243. data = BIT(6) | BIT(5);
  244. DSI_W32(phy, DSIPHY_CMN_CTRL_0, data);
  245. /* Assert PLL core reset */
  246. DSI_W32(phy, DSIPHY_CMN_PLL_CNTRL, 0x00);
  247. /* turn off resync FIFO */
  248. DSI_W32(phy, DSIPHY_CMN_RBUF_CTRL, 0x00);
  249. /* program CMN_CTRL_4 for minor_ver greater than 2 chipsets*/
  250. DSI_W32(phy, DSIPHY_CMN_CTRL_4, 0x04);
  251. /* Configure PHY lane swap */
  252. dsi_phy_hw_v5_0_lane_swap_config(phy, &cfg->lane_map);
  253. DSI_W32(phy, DSIPHY_CMN_GLBL_CTRL, BIT(6));
  254. /* Enable LDO */
  255. DSI_W32(phy, DSIPHY_CMN_VREG_CTRL_0, 0x45);
  256. DSI_W32(phy, DSIPHY_CMN_VREG_CTRL_1, 0x41);
  257. DSI_W32(phy, DSIPHY_CMN_GLBL_STR_SWI_CAL_SEL_CTRL, glbl_str_swi_cal_sel_ctrl);
  258. DSI_W32(phy, DSIPHY_CMN_GLBL_HSTX_STR_CTRL_0, glbl_hstx_str_ctrl_0);
  259. DSI_W32(phy, DSIPHY_CMN_GLBL_PEMPH_CTRL_0, 0x11);
  260. DSI_W32(phy, DSIPHY_CMN_GLBL_PEMPH_CTRL_1, 0x01);
  261. DSI_W32(phy, DSIPHY_CMN_GLBL_RESCODE_OFFSET_TOP_CTRL, 0x00);
  262. DSI_W32(phy, DSIPHY_CMN_GLBL_RESCODE_OFFSET_BOT_CTRL, 0x00);
  263. DSI_W32(phy, DSIPHY_CMN_GLBL_LPTX_STR_CTRL, 0x55);
  264. /* Remove power down from all blocks */
  265. DSI_W32(phy, DSIPHY_CMN_CTRL_0, 0x7f);
  266. cmn_lane_ctrl0 = dsi_phy_hw_calc_cmn_lane_ctrl0(cfg);
  267. DSI_W32(phy, DSIPHY_CMN_LANE_CTRL0, cmn_lane_ctrl0);
  268. switch (cfg->pll_source) {
  269. case DSI_PLL_SOURCE_STANDALONE:
  270. case DSI_PLL_SOURCE_NATIVE:
  271. data = 0x0; /* internal PLL */
  272. break;
  273. case DSI_PLL_SOURCE_NON_NATIVE:
  274. data = 0x1; /* external PLL */
  275. break;
  276. default:
  277. break;
  278. }
  279. DSI_W32(phy, DSIPHY_CMN_CLK_CFG1, (data << 2)); /* set PLL src */
  280. /* DSI PHY timings */
  281. DSI_W32(phy, DSIPHY_CMN_TIMING_CTRL_0, timing->lane_v4[0]);
  282. DSI_W32(phy, DSIPHY_CMN_TIMING_CTRL_4, timing->lane_v4[4]);
  283. DSI_W32(phy, DSIPHY_CMN_TIMING_CTRL_5, timing->lane_v4[5]);
  284. DSI_W32(phy, DSIPHY_CMN_TIMING_CTRL_6, timing->lane_v4[6]);
  285. DSI_W32(phy, DSIPHY_CMN_TIMING_CTRL_7, timing->lane_v4[7]);
  286. DSI_W32(phy, DSIPHY_CMN_TIMING_CTRL_8, timing->lane_v4[8]);
  287. DSI_W32(phy, DSIPHY_CMN_TIMING_CTRL_9, timing->lane_v4[9]);
  288. DSI_W32(phy, DSIPHY_CMN_TIMING_CTRL_10, timing->lane_v4[10]);
  289. DSI_W32(phy, DSIPHY_CMN_TIMING_CTRL_11, timing->lane_v4[11]);
  290. /* DSI lane settings */
  291. dsi_phy_hw_v5_0_lane_settings(phy, cfg);
  292. DSI_PHY_DBG(phy, "C-Phy enabled\n");
  293. }
  294. /**
  295. * dphy_enable() - Enable DPHY hardware
  296. * @phy: Pointer to DSI PHY hardware object.
  297. * @cfg: Per lane configurations for timing, strength and lane
  298. * configurations.
  299. */
  300. static void dsi_phy_hw_dphy_enable(struct dsi_phy_hw *phy, struct dsi_phy_cfg *cfg)
  301. {
  302. struct dsi_phy_per_lane_cfgs *timing = &cfg->timing;
  303. u32 data;
  304. bool less_than_1500_mhz = false;
  305. u32 vreg_ctrl_0 = 0;
  306. u32 glbl_str_swi_cal_sel_ctrl = 0;
  307. u32 glbl_hstx_str_ctrl_0 = 0;
  308. u32 glbl_rescode_top_ctrl = 0;
  309. u32 glbl_rescode_bot_ctrl = 0;
  310. bool split_link_enabled;
  311. u32 lanes_per_sublink;
  312. u32 cmn_lane_ctrl0 = 0;
  313. /* Alter PHY configurations if data rate less than 1.5GHZ*/
  314. if (cfg->bit_clk_rate_hz <= 1500000000)
  315. less_than_1500_mhz = true;
  316. vreg_ctrl_0 = 0x44;
  317. glbl_rescode_top_ctrl = less_than_1500_mhz ? 0x3c : 0x03;
  318. glbl_rescode_bot_ctrl = less_than_1500_mhz ? 0x38 : 0x3c;
  319. glbl_str_swi_cal_sel_ctrl = 0x00;
  320. glbl_hstx_str_ctrl_0 = 0x88;
  321. split_link_enabled = cfg->split_link.enabled;
  322. lanes_per_sublink = cfg->split_link.lanes_per_sublink;
  323. /* de-assert digital and pll power down */
  324. data = BIT(6) | BIT(5);
  325. DSI_W32(phy, DSIPHY_CMN_CTRL_0, data);
  326. if (split_link_enabled) {
  327. data = DSI_R32(phy, DSIPHY_CMN_GLBL_CTRL);
  328. /* set SPLIT_LINK_ENABLE in global control */
  329. DSI_W32(phy, DSIPHY_CMN_GLBL_CTRL, (data | BIT(5)));
  330. }
  331. /* Assert PLL core reset */
  332. DSI_W32(phy, DSIPHY_CMN_PLL_CNTRL, 0x00);
  333. /* turn off resync FIFO */
  334. DSI_W32(phy, DSIPHY_CMN_RBUF_CTRL, 0x00);
  335. /* program CMN_CTRL_4 for minor_ver greater than 2 chipsets*/
  336. DSI_W32(phy, DSIPHY_CMN_CTRL_4, 0x04);
  337. /* Configure PHY lane swap */
  338. dsi_phy_hw_v5_0_lane_swap_config(phy, &cfg->lane_map);
  339. /* Enable LDO */
  340. DSI_W32(phy, DSIPHY_CMN_VREG_CTRL_0, vreg_ctrl_0);
  341. DSI_W32(phy, DSIPHY_CMN_VREG_CTRL_1, 0x19);
  342. DSI_W32(phy, DSIPHY_CMN_CTRL_3, 0x00);
  343. DSI_W32(phy, DSIPHY_CMN_GLBL_STR_SWI_CAL_SEL_CTRL,
  344. glbl_str_swi_cal_sel_ctrl);
  345. DSI_W32(phy, DSIPHY_CMN_GLBL_HSTX_STR_CTRL_0, glbl_hstx_str_ctrl_0);
  346. DSI_W32(phy, DSIPHY_CMN_GLBL_PEMPH_CTRL_0, 0x00);
  347. DSI_W32(phy, DSIPHY_CMN_GLBL_RESCODE_OFFSET_TOP_CTRL,
  348. glbl_rescode_top_ctrl);
  349. DSI_W32(phy, DSIPHY_CMN_GLBL_RESCODE_OFFSET_BOT_CTRL,
  350. glbl_rescode_bot_ctrl);
  351. DSI_W32(phy, DSIPHY_CMN_GLBL_LPTX_STR_CTRL, 0x55);
  352. if (split_link_enabled) {
  353. if (lanes_per_sublink == 1) {
  354. /* remove Lane1 and Lane3 configs */
  355. DSI_W32(phy, DSIPHY_CMN_CTRL_0, 0xed);
  356. DSI_W32(phy, DSIPHY_CMN_LANE_CTRL0, 0x35);
  357. } else {
  358. /* enable all together with sublink clock */
  359. DSI_W32(phy, DSIPHY_CMN_CTRL_0, 0xff);
  360. DSI_W32(phy, DSIPHY_CMN_LANE_CTRL0, 0x3F);
  361. }
  362. DSI_W32(phy, DSIPHY_CMN_SL_DSI_LANE_CTRL1, 0x03);
  363. } else {
  364. /* Remove power down from all blocks */
  365. DSI_W32(phy, DSIPHY_CMN_CTRL_0, 0x7f);
  366. cmn_lane_ctrl0 = dsi_phy_hw_calc_cmn_lane_ctrl0(cfg);
  367. DSI_W32(phy, DSIPHY_CMN_LANE_CTRL0, cmn_lane_ctrl0);
  368. }
  369. /* Select full-rate mode */
  370. DSI_W32(phy, DSIPHY_CMN_CTRL_2, 0x40);
  371. switch (cfg->pll_source) {
  372. case DSI_PLL_SOURCE_STANDALONE:
  373. case DSI_PLL_SOURCE_NATIVE:
  374. data = 0x0; /* internal PLL */
  375. break;
  376. case DSI_PLL_SOURCE_NON_NATIVE:
  377. data = 0x1; /* external PLL */
  378. break;
  379. default:
  380. break;
  381. }
  382. DSI_W32(phy, DSIPHY_CMN_CLK_CFG1, (data << 2)); /* set PLL src */
  383. /* DSI PHY timings */
  384. dsi_phy_hw_v5_0_commit_phy_timing(phy, timing);
  385. /* DSI lane settings */
  386. dsi_phy_hw_v5_0_lane_settings(phy, cfg);
  387. DSI_PHY_DBG(phy, "D-Phy enabled\n");
  388. }
  389. /**
  390. * enable() - Enable PHY hardware
  391. * @phy: Pointer to DSI PHY hardware object.
  392. * @cfg: Per lane configurations for timing, strength and lane
  393. * configurations.
  394. */
  395. void dsi_phy_hw_v5_0_enable(struct dsi_phy_hw *phy,
  396. struct dsi_phy_cfg *cfg)
  397. {
  398. int rc = 0;
  399. u32 status;
  400. u32 const delay_us = 5;
  401. u32 const timeout_us = 1000;
  402. if (dsi_phy_hw_v5_0_is_pll_on(phy))
  403. DSI_PHY_WARN(phy, "PLL turned on before configuring PHY\n");
  404. /* Request for REFGEN ready */
  405. DSI_W32(phy, DSIPHY_CMN_GLBL_DIGTOP_SPARE10, 0x1);
  406. udelay(500);
  407. if (!phy->phy_pll_bypass) {
  408. /* wait for REFGEN READY */
  409. rc = DSI_READ_POLL_TIMEOUT_ATOMIC(phy, DSIPHY_CMN_PHY_STATUS,
  410. status, (status & BIT(0)), delay_us, timeout_us);
  411. if (rc) {
  412. DSI_PHY_ERR(phy, "Ref gen not ready. Aborting\n");
  413. return;
  414. }
  415. }
  416. if (cfg->phy_type == DSI_PHY_TYPE_CPHY)
  417. dsi_phy_hw_cphy_enable(phy, cfg);
  418. else /* Default PHY type is DPHY */
  419. dsi_phy_hw_dphy_enable(phy, cfg);
  420. }
  421. /**
  422. * disable() - Disable PHY hardware
  423. * @phy: Pointer to DSI PHY hardware object.
  424. */
  425. void dsi_phy_hw_v5_0_disable(struct dsi_phy_hw *phy,
  426. struct dsi_phy_cfg *cfg)
  427. {
  428. u32 data = 0;
  429. if (phy->phy_pll_bypass)
  430. return;
  431. if (dsi_phy_hw_v5_0_is_pll_on(phy))
  432. DSI_PHY_WARN(phy, "Turning OFF PHY while PLL is on\n");
  433. dsi_phy_hw_v5_0_config_lpcdrx(phy, cfg, false);
  434. /* Turn off REFGEN Vote */
  435. DSI_W32(phy, DSIPHY_CMN_GLBL_DIGTOP_SPARE10, 0x0);
  436. wmb();
  437. /* Delay to ensure HW removes vote before PHY shut down */
  438. udelay(2);
  439. data = DSI_R32(phy, DSIPHY_CMN_CTRL_0);
  440. /* disable all lanes and splitlink clk lane*/
  441. data &= ~0x9F;
  442. DSI_W32(phy, DSIPHY_CMN_CTRL_0, data);
  443. DSI_W32(phy, DSIPHY_CMN_LANE_CTRL0, 0);
  444. /* Turn off all PHY blocks */
  445. DSI_W32(phy, DSIPHY_CMN_CTRL_0, 0x00);
  446. /* make sure phy is turned off */
  447. wmb();
  448. DSI_PHY_DBG(phy, "Phy disabled\n");
  449. }
  450. void dsi_phy_hw_v5_0_toggle_resync_fifo(struct dsi_phy_hw *phy)
  451. {
  452. DSI_W32(phy, DSIPHY_CMN_RBUF_CTRL, 0x00);
  453. /* ensure that the FIFO is off */
  454. wmb();
  455. DSI_W32(phy, DSIPHY_CMN_RBUF_CTRL, 0x1);
  456. /* ensure that the FIFO is toggled back on */
  457. wmb();
  458. }
  459. void dsi_phy_hw_v5_0_reset_clk_en_sel(struct dsi_phy_hw *phy)
  460. {
  461. u32 data = 0;
  462. if (phy->phy_pll_bypass)
  463. return;
  464. /*Turning off CLK_EN_SEL after retime buffer sync */
  465. data = DSI_R32(phy, DSIPHY_CMN_CLK_CFG1);
  466. data &= ~BIT(4);
  467. DSI_W32(phy, DSIPHY_CMN_CLK_CFG1, data);
  468. /* ensure that clk_en_sel bit is turned off */
  469. wmb();
  470. }
  471. int dsi_phy_hw_v5_0_wait_for_lane_idle(
  472. struct dsi_phy_hw *phy, u32 lanes)
  473. {
  474. int rc = 0, val = 0;
  475. u32 stop_state_mask = 0;
  476. u32 const sleep_us = 10;
  477. u32 const timeout_us = 100;
  478. bool split_link_enabled = dsi_phy_hw_v5_0_is_split_link_enabled(phy);
  479. if (phy->phy_pll_bypass)
  480. return 0;
  481. stop_state_mask = BIT(4); /* clock lane */
  482. if (split_link_enabled)
  483. stop_state_mask |= BIT(5);
  484. if (lanes & DSI_DATA_LANE_0)
  485. stop_state_mask |= BIT(0);
  486. if (lanes & DSI_DATA_LANE_1)
  487. stop_state_mask |= BIT(1);
  488. if (lanes & DSI_DATA_LANE_2)
  489. stop_state_mask |= BIT(2);
  490. if (lanes & DSI_DATA_LANE_3)
  491. stop_state_mask |= BIT(3);
  492. DSI_PHY_DBG(phy, "polling for lanes to be in stop state, mask=0x%08x\n", stop_state_mask);
  493. rc = DSI_READ_POLL_TIMEOUT(phy, DSIPHY_CMN_LANE_STATUS1, val,
  494. ((val & stop_state_mask) == stop_state_mask),
  495. sleep_us, timeout_us);
  496. if (rc) {
  497. DSI_PHY_ERR(phy, "lanes not in stop state, LANE_STATUS=0x%08x\n", val);
  498. return rc;
  499. }
  500. return 0;
  501. }
  502. void dsi_phy_hw_v5_0_ulps_request(struct dsi_phy_hw *phy, struct dsi_phy_cfg *cfg, u32 lanes)
  503. {
  504. u32 reg = 0, sl_lane_ctrl1 = 0;
  505. if (lanes & DSI_CLOCK_LANE)
  506. reg = BIT(4);
  507. if (lanes & DSI_DATA_LANE_0)
  508. reg |= BIT(0);
  509. if (lanes & DSI_DATA_LANE_1)
  510. reg |= BIT(1);
  511. if (lanes & DSI_DATA_LANE_2)
  512. reg |= BIT(2);
  513. if (lanes & DSI_DATA_LANE_3)
  514. reg |= BIT(3);
  515. if (cfg->split_link.enabled)
  516. reg |= BIT(7);
  517. if (cfg->force_clk_lane_hs) {
  518. reg |= BIT(5) | BIT(6);
  519. if (cfg->split_link.enabled) {
  520. sl_lane_ctrl1 = DSI_R32(phy, DSIPHY_CMN_SL_DSI_LANE_CTRL1);
  521. sl_lane_ctrl1 |= BIT(2);
  522. DSI_W32(phy, DSIPHY_CMN_SL_DSI_LANE_CTRL1, sl_lane_ctrl1);
  523. }
  524. }
  525. /*
  526. * ULPS entry request. Wait for short time to make sure
  527. * that the lanes enter ULPS. Recommended as per HPG.
  528. */
  529. DSI_W32(phy, DSIPHY_CMN_LANE_CTRL1, reg);
  530. usleep_range(100, 110);
  531. /* disable LPRX and CDRX */
  532. dsi_phy_hw_v5_0_config_lpcdrx(phy, cfg, false);
  533. DSI_PHY_DBG(phy, "ULPS requested for lanes 0x%x\n", lanes);
  534. }
  535. int dsi_phy_hw_v5_0_lane_reset(struct dsi_phy_hw *phy)
  536. {
  537. int ret = 0, loop = 10, u_dly = 200;
  538. u32 ln_status = 0;
  539. while ((ln_status != 0x1f) && loop) {
  540. DSI_W32(phy, DSIPHY_CMN_LANE_CTRL3, 0x1f);
  541. wmb(); /* ensure register is committed */
  542. loop--;
  543. udelay(u_dly);
  544. ln_status = DSI_R32(phy, DSIPHY_CMN_LANE_STATUS1);
  545. DSI_PHY_DBG(phy, "trial no: %d\n", loop);
  546. }
  547. if (!loop)
  548. DSI_PHY_DBG(phy, "could not reset phy lanes\n");
  549. DSI_W32(phy, DSIPHY_CMN_LANE_CTRL3, 0x0);
  550. wmb(); /* ensure register is committed */
  551. return ret;
  552. }
  553. void dsi_phy_hw_v5_0_ulps_exit(struct dsi_phy_hw *phy,
  554. struct dsi_phy_cfg *cfg, u32 lanes)
  555. {
  556. u32 reg = 0, sl_lane_ctrl1 = 0;
  557. if (lanes & DSI_CLOCK_LANE)
  558. reg = BIT(4);
  559. if (lanes & DSI_DATA_LANE_0)
  560. reg |= BIT(0);
  561. if (lanes & DSI_DATA_LANE_1)
  562. reg |= BIT(1);
  563. if (lanes & DSI_DATA_LANE_2)
  564. reg |= BIT(2);
  565. if (lanes & DSI_DATA_LANE_3)
  566. reg |= BIT(3);
  567. if (cfg->split_link.enabled)
  568. reg |= BIT(5);
  569. /* enable LPRX and CDRX */
  570. dsi_phy_hw_v5_0_config_lpcdrx(phy, cfg, true);
  571. /* ULPS exit request */
  572. DSI_W32(phy, DSIPHY_CMN_LANE_CTRL2, reg);
  573. usleep_range(1000, 1010);
  574. /* Clear ULPS request flags on all lanes */
  575. DSI_W32(phy, DSIPHY_CMN_LANE_CTRL1, 0);
  576. /* Clear ULPS exit flags on all lanes */
  577. DSI_W32(phy, DSIPHY_CMN_LANE_CTRL2, 0);
  578. /*
  579. * Sometimes when exiting ULPS, it is possible that some DSI
  580. * lanes are not in the stop state which could lead to DSI
  581. * commands not going through. To avoid this, force the lanes
  582. * to be in stop state.
  583. */
  584. DSI_W32(phy, DSIPHY_CMN_LANE_CTRL3, reg);
  585. DSI_W32(phy, DSIPHY_CMN_LANE_CTRL3, 0);
  586. usleep_range(100, 110);
  587. if (cfg->force_clk_lane_hs) {
  588. reg = BIT(5) | BIT(6);
  589. DSI_W32(phy, DSIPHY_CMN_LANE_CTRL1, reg);
  590. if (cfg->split_link.enabled) {
  591. sl_lane_ctrl1 = DSI_R32(phy, DSIPHY_CMN_SL_DSI_LANE_CTRL1);
  592. sl_lane_ctrl1 |= BIT(2);
  593. DSI_W32(phy, DSIPHY_CMN_SL_DSI_LANE_CTRL1, sl_lane_ctrl1);
  594. }
  595. }
  596. }
  597. u32 dsi_phy_hw_v5_0_get_lanes_in_ulps(struct dsi_phy_hw *phy)
  598. {
  599. u32 lanes = 0;
  600. lanes = DSI_R32(phy, DSIPHY_CMN_LANE_STATUS0);
  601. DSI_PHY_DBG(phy, "lanes in ulps = 0x%x\n", lanes);
  602. return lanes;
  603. }
  604. bool dsi_phy_hw_v5_0_is_lanes_in_ulps(u32 lanes, u32 ulps_lanes)
  605. {
  606. if (lanes & ulps_lanes)
  607. return false;
  608. return true;
  609. }
  610. int dsi_phy_hw_timing_val_v5_0(struct dsi_phy_per_lane_cfgs *timing_cfg,
  611. u32 *timing_val, u32 size)
  612. {
  613. int i = 0;
  614. if (size != DSI_PHY_TIMING_V4_SIZE) {
  615. DSI_ERR("Unexpected timing array size %d\n", size);
  616. return -EINVAL;
  617. }
  618. for (i = 0; i < size; i++)
  619. timing_cfg->lane_v4[i] = timing_val[i];
  620. return 0;
  621. }
  622. void dsi_phy_hw_v5_0_dyn_refresh_config(struct dsi_phy_hw *phy,
  623. struct dsi_phy_cfg *cfg, bool is_master)
  624. {
  625. u32 reg;
  626. u32 cmn_lane_ctrl0 = dsi_phy_hw_calc_cmn_lane_ctrl0(cfg);
  627. if (is_master) {
  628. DSI_DYN_REF_REG_W(phy->dyn_pll_base, DSI_DYN_REFRESH_PLL_CTRL19,
  629. DSIPHY_CMN_TIMING_CTRL_0, DSIPHY_CMN_TIMING_CTRL_1,
  630. cfg->timing.lane_v4[0], cfg->timing.lane_v4[1]);
  631. DSI_DYN_REF_REG_W(phy->dyn_pll_base, DSI_DYN_REFRESH_PLL_CTRL20,
  632. DSIPHY_CMN_TIMING_CTRL_2, DSIPHY_CMN_TIMING_CTRL_3,
  633. cfg->timing.lane_v4[2], cfg->timing.lane_v4[3]);
  634. DSI_DYN_REF_REG_W(phy->dyn_pll_base, DSI_DYN_REFRESH_PLL_CTRL21,
  635. DSIPHY_CMN_TIMING_CTRL_4, DSIPHY_CMN_TIMING_CTRL_5,
  636. cfg->timing.lane_v4[4], cfg->timing.lane_v4[5]);
  637. DSI_DYN_REF_REG_W(phy->dyn_pll_base, DSI_DYN_REFRESH_PLL_CTRL22,
  638. DSIPHY_CMN_TIMING_CTRL_6, DSIPHY_CMN_TIMING_CTRL_7,
  639. cfg->timing.lane_v4[6], cfg->timing.lane_v4[7]);
  640. DSI_DYN_REF_REG_W(phy->dyn_pll_base, DSI_DYN_REFRESH_PLL_CTRL23,
  641. DSIPHY_CMN_TIMING_CTRL_8, DSIPHY_CMN_TIMING_CTRL_9,
  642. cfg->timing.lane_v4[8], cfg->timing.lane_v4[9]);
  643. DSI_DYN_REF_REG_W(phy->dyn_pll_base, DSI_DYN_REFRESH_PLL_CTRL24,
  644. DSIPHY_CMN_TIMING_CTRL_10, DSIPHY_CMN_TIMING_CTRL_11,
  645. cfg->timing.lane_v4[10], cfg->timing.lane_v4[11]);
  646. DSI_DYN_REF_REG_W(phy->dyn_pll_base, DSI_DYN_REFRESH_PLL_CTRL25,
  647. DSIPHY_CMN_TIMING_CTRL_12, DSIPHY_CMN_TIMING_CTRL_13,
  648. cfg->timing.lane_v4[12], cfg->timing.lane_v4[13]);
  649. DSI_DYN_REF_REG_W(phy->dyn_pll_base, DSI_DYN_REFRESH_PLL_CTRL26,
  650. DSIPHY_CMN_CTRL_0, DSIPHY_CMN_LANE_CTRL0, 0x7f,
  651. cmn_lane_ctrl0);
  652. } else {
  653. reg = DSI_R32(phy, DSIPHY_CMN_CLK_CFG1);
  654. reg &= ~BIT(5);
  655. DSI_DYN_REF_REG_W(phy->dyn_pll_base, DSI_DYN_REFRESH_PLL_CTRL0,
  656. DSIPHY_CMN_CLK_CFG1, DSIPHY_CMN_PLL_CNTRL, reg, 0x0);
  657. DSI_DYN_REF_REG_W(phy->dyn_pll_base, DSI_DYN_REFRESH_PLL_CTRL1,
  658. DSIPHY_CMN_RBUF_CTRL, DSIPHY_CMN_TIMING_CTRL_0, 0x0,
  659. cfg->timing.lane_v4[0]);
  660. DSI_DYN_REF_REG_W(phy->dyn_pll_base, DSI_DYN_REFRESH_PLL_CTRL2,
  661. DSIPHY_CMN_TIMING_CTRL_1, DSIPHY_CMN_TIMING_CTRL_2,
  662. cfg->timing.lane_v4[1], cfg->timing.lane_v4[2]);
  663. DSI_DYN_REF_REG_W(phy->dyn_pll_base, DSI_DYN_REFRESH_PLL_CTRL3,
  664. DSIPHY_CMN_TIMING_CTRL_3, DSIPHY_CMN_TIMING_CTRL_4,
  665. cfg->timing.lane_v4[3], cfg->timing.lane_v4[4]);
  666. DSI_DYN_REF_REG_W(phy->dyn_pll_base, DSI_DYN_REFRESH_PLL_CTRL4,
  667. DSIPHY_CMN_TIMING_CTRL_5, DSIPHY_CMN_TIMING_CTRL_6,
  668. cfg->timing.lane_v4[5], cfg->timing.lane_v4[6]);
  669. DSI_DYN_REF_REG_W(phy->dyn_pll_base, DSI_DYN_REFRESH_PLL_CTRL5,
  670. DSIPHY_CMN_TIMING_CTRL_7, DSIPHY_CMN_TIMING_CTRL_8,
  671. cfg->timing.lane_v4[7], cfg->timing.lane_v4[8]);
  672. DSI_DYN_REF_REG_W(phy->dyn_pll_base, DSI_DYN_REFRESH_PLL_CTRL6,
  673. DSIPHY_CMN_TIMING_CTRL_9, DSIPHY_CMN_TIMING_CTRL_10,
  674. cfg->timing.lane_v4[9], cfg->timing.lane_v4[10]);
  675. DSI_DYN_REF_REG_W(phy->dyn_pll_base, DSI_DYN_REFRESH_PLL_CTRL7,
  676. DSIPHY_CMN_TIMING_CTRL_11, DSIPHY_CMN_TIMING_CTRL_12,
  677. cfg->timing.lane_v4[11], cfg->timing.lane_v4[12]);
  678. DSI_DYN_REF_REG_W(phy->dyn_pll_base, DSI_DYN_REFRESH_PLL_CTRL8,
  679. DSIPHY_CMN_TIMING_CTRL_13, DSIPHY_CMN_CTRL_0,
  680. cfg->timing.lane_v4[13], 0x7f);
  681. DSI_DYN_REF_REG_W(phy->dyn_pll_base, DSI_DYN_REFRESH_PLL_CTRL9,
  682. DSIPHY_CMN_LANE_CTRL0, DSIPHY_CMN_CTRL_2,
  683. cmn_lane_ctrl0, 0x40);
  684. /*
  685. * fill with dummy register writes since controller will blindly
  686. * send these values to DSI PHY.
  687. */
  688. reg = DSI_DYN_REFRESH_PLL_CTRL11;
  689. while (reg <= DSI_DYN_REFRESH_PLL_CTRL29) {
  690. DSI_DYN_REF_REG_W(phy->dyn_pll_base, reg, DSIPHY_CMN_LANE_CTRL0,
  691. DSIPHY_CMN_CTRL_0, cmn_lane_ctrl0, 0x7f);
  692. reg += 0x4;
  693. }
  694. DSI_GEN_W32(phy->dyn_pll_base, DSI_DYN_REFRESH_PLL_UPPER_ADDR, 0);
  695. DSI_GEN_W32(phy->dyn_pll_base, DSI_DYN_REFRESH_PLL_UPPER_ADDR2, 0);
  696. }
  697. wmb(); /* make sure all registers are updated */
  698. }
  699. void dsi_phy_hw_v5_0_dyn_refresh_pipe_delay(struct dsi_phy_hw *phy, struct dsi_dyn_clk_delay *delay)
  700. {
  701. if (!delay)
  702. return;
  703. DSI_GEN_W32(phy->dyn_pll_base, DSI_DYN_REFRESH_PIPE_DELAY, delay->pipe_delay);
  704. DSI_GEN_W32(phy->dyn_pll_base, DSI_DYN_REFRESH_PIPE_DELAY2, delay->pipe_delay2);
  705. DSI_GEN_W32(phy->dyn_pll_base, DSI_DYN_REFRESH_PLL_DELAY, delay->pll_delay);
  706. }
  707. void dsi_phy_hw_v5_0_dyn_refresh_trigger_sel(struct dsi_phy_hw *phy, bool is_master)
  708. {
  709. u32 reg;
  710. /*
  711. * Dynamic refresh will take effect at next mdp flush event.
  712. * This makes sure that any update to frame timings together
  713. * with dfps will take effect in one vsync at next mdp flush.
  714. */
  715. if (is_master) {
  716. reg = DSI_GEN_R32(phy->dyn_pll_base, DSI_DYN_REFRESH_CTRL);
  717. reg |= BIT(17);
  718. DSI_GEN_W32(phy->dyn_pll_base, DSI_DYN_REFRESH_CTRL, reg);
  719. }
  720. }
  721. void dsi_phy_hw_v5_0_dyn_refresh_helper(struct dsi_phy_hw *phy, u32 offset)
  722. {
  723. u32 reg;
  724. /*
  725. * if no offset is mentioned then this means we want to clear
  726. * the dynamic refresh ctrl register which is the last step
  727. * of dynamic refresh sequence.
  728. */
  729. if (!offset) {
  730. reg = DSI_GEN_R32(phy->dyn_pll_base, DSI_DYN_REFRESH_CTRL);
  731. reg &= ~(BIT(0) | BIT(8) | BIT(13) | BIT(16) | BIT(17));
  732. DSI_GEN_W32(phy->dyn_pll_base, DSI_DYN_REFRESH_CTRL, reg);
  733. wmb(); /* ensure dynamic fps is cleared */
  734. return;
  735. }
  736. if (offset & BIT(DYN_REFRESH_INTF_SEL)) {
  737. reg = DSI_GEN_R32(phy->dyn_pll_base, DSI_DYN_REFRESH_CTRL);
  738. reg |= BIT(13);
  739. DSI_GEN_W32(phy->dyn_pll_base, DSI_DYN_REFRESH_CTRL, reg);
  740. }
  741. if (offset & BIT(DYN_REFRESH_SYNC_MODE)) {
  742. reg = DSI_GEN_R32(phy->dyn_pll_base, DSI_DYN_REFRESH_CTRL);
  743. reg |= BIT(16);
  744. DSI_GEN_W32(phy->dyn_pll_base, DSI_DYN_REFRESH_CTRL, reg);
  745. }
  746. if (offset & BIT(DYN_REFRESH_SWI_CTRL)) {
  747. reg = DSI_GEN_R32(phy->dyn_pll_base, DSI_DYN_REFRESH_CTRL);
  748. reg |= BIT(0);
  749. DSI_GEN_W32(phy->dyn_pll_base, DSI_DYN_REFRESH_CTRL, reg);
  750. }
  751. if (offset & BIT(DYN_REFRESH_SW_TRIGGER)) {
  752. reg = DSI_GEN_R32(phy->dyn_pll_base, DSI_DYN_REFRESH_CTRL);
  753. reg |= BIT(8);
  754. DSI_GEN_W32(phy->dyn_pll_base, DSI_DYN_REFRESH_CTRL, reg);
  755. wmb(); /* ensure dynamic fps is triggered */
  756. }
  757. }
  758. int dsi_phy_hw_v5_0_cache_phy_timings(struct dsi_phy_per_lane_cfgs *timings,
  759. u32 *dst, u32 size)
  760. {
  761. int i;
  762. if (!timings || !dst || !size)
  763. return -EINVAL;
  764. if (size != DSI_PHY_TIMING_V4_SIZE) {
  765. DSI_ERR("size mis-match\n");
  766. return -EINVAL;
  767. }
  768. for (i = 0; i < size; i++)
  769. dst[i] = timings->lane_v4[i];
  770. return 0;
  771. }
  772. void dsi_phy_hw_v5_0_set_continuous_clk(struct dsi_phy_hw *phy, bool enable)
  773. {
  774. u32 reg = 0, sl_lane_ctrl1 = 0;
  775. bool is_split_link_enabled = dsi_phy_hw_v5_0_is_split_link_enabled(phy);
  776. reg = DSI_R32(phy, DSIPHY_CMN_LANE_CTRL1);
  777. if (enable)
  778. reg |= BIT(5) | BIT(6);
  779. else
  780. reg &= ~(BIT(5) | BIT(6));
  781. DSI_W32(phy, DSIPHY_CMN_LANE_CTRL1, reg);
  782. if (is_split_link_enabled) {
  783. sl_lane_ctrl1 = DSI_R32(phy, DSIPHY_CMN_SL_DSI_LANE_CTRL1);
  784. if (enable)
  785. sl_lane_ctrl1 |= BIT(2);
  786. else
  787. sl_lane_ctrl1 &= ~BIT(2);
  788. DSI_W32(phy, DSIPHY_CMN_SL_DSI_LANE_CTRL1, sl_lane_ctrl1);
  789. }
  790. wmb(); /* make sure request is set */
  791. }
  792. void dsi_phy_hw_v5_0_phy_idle_off(struct dsi_phy_hw *phy,
  793. struct dsi_phy_cfg *cfg)
  794. {
  795. if (dsi_phy_hw_v5_0_is_pll_on(phy))
  796. DSI_PHY_WARN(phy, "Turning OFF PHY while PLL is on\n");
  797. /* enable clamping of PADS */
  798. DSI_W32(phy, DSIPHY_CMN_CTRL_4, 0x1);
  799. DSI_W32(phy, DSIPHY_CMN_CTRL_3, 0x0);
  800. wmb();
  801. dsi_phy_hw_v5_0_config_lpcdrx(phy, cfg, false);
  802. /* Turn off REFGEN Vote */
  803. DSI_W32(phy, DSIPHY_CMN_GLBL_DIGTOP_SPARE10, 0x0);
  804. /* make sure request is set */
  805. wmb();
  806. /* Delay to ensure HW removes vote*/
  807. udelay(2);
  808. }