dp_rx.c 95 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452
  1. /*
  2. * Copyright (c) 2016-2021 The Linux Foundation. All rights reserved.
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for
  5. * any purpose with or without fee is hereby granted, provided that the
  6. * above copyright notice and this permission notice appear in all
  7. * copies.
  8. *
  9. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
  10. * WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
  11. * WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
  12. * AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
  13. * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
  14. * PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
  15. * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
  16. * PERFORMANCE OF THIS SOFTWARE.
  17. */
  18. #include "hal_hw_headers.h"
  19. #include "dp_types.h"
  20. #include "dp_rx.h"
  21. #include "dp_peer.h"
  22. #include "hal_rx.h"
  23. #include "hal_api.h"
  24. #include "qdf_nbuf.h"
  25. #ifdef MESH_MODE_SUPPORT
  26. #include "if_meta_hdr.h"
  27. #endif
  28. #include "dp_internal.h"
  29. #include "dp_rx_mon.h"
  30. #include "dp_ipa.h"
  31. #ifdef FEATURE_WDS
  32. #include "dp_txrx_wds.h"
  33. #endif
  34. #include "dp_hist.h"
  35. #include "dp_rx_buffer_pool.h"
  36. #ifndef QCA_HOST_MODE_WIFI_DISABLED
  37. #ifdef ATH_RX_PRI_SAVE
  38. #define DP_RX_TID_SAVE(_nbuf, _tid) \
  39. (qdf_nbuf_set_priority(_nbuf, _tid))
  40. #else
  41. #define DP_RX_TID_SAVE(_nbuf, _tid)
  42. #endif
  43. #ifdef DP_RX_DISABLE_NDI_MDNS_FORWARDING
  44. static inline
  45. bool dp_rx_check_ndi_mdns_fwding(struct dp_peer *ta_peer, qdf_nbuf_t nbuf)
  46. {
  47. if (ta_peer->vdev->opmode == wlan_op_mode_ndi &&
  48. qdf_nbuf_is_ipv6_mdns_pkt(nbuf)) {
  49. DP_STATS_INC(ta_peer, rx.intra_bss.mdns_no_fwd, 1);
  50. return false;
  51. }
  52. return true;
  53. }
  54. #else
  55. static inline
  56. bool dp_rx_check_ndi_mdns_fwding(struct dp_peer *ta_peer, qdf_nbuf_t nbuf)
  57. {
  58. return true;
  59. }
  60. #endif
  61. static inline bool dp_rx_check_ap_bridge(struct dp_vdev *vdev)
  62. {
  63. return vdev->ap_bridge_enabled;
  64. }
  65. #endif /* QCA_HOST_MODE_WIFI_DISABLED */
  66. #ifdef DUP_RX_DESC_WAR
  67. void dp_rx_dump_info_and_assert(struct dp_soc *soc,
  68. hal_ring_handle_t hal_ring,
  69. hal_ring_desc_t ring_desc,
  70. struct dp_rx_desc *rx_desc)
  71. {
  72. void *hal_soc = soc->hal_soc;
  73. hal_srng_dump_ring_desc(hal_soc, hal_ring, ring_desc);
  74. dp_rx_desc_dump(rx_desc);
  75. }
  76. #else
  77. void dp_rx_dump_info_and_assert(struct dp_soc *soc,
  78. hal_ring_handle_t hal_ring_hdl,
  79. hal_ring_desc_t ring_desc,
  80. struct dp_rx_desc *rx_desc)
  81. {
  82. hal_soc_handle_t hal_soc = soc->hal_soc;
  83. dp_rx_desc_dump(rx_desc);
  84. hal_srng_dump_ring_desc(hal_soc, hal_ring_hdl, ring_desc);
  85. hal_srng_dump_ring(hal_soc, hal_ring_hdl);
  86. qdf_assert_always(0);
  87. }
  88. #endif
  89. #ifndef QCA_HOST_MODE_WIFI_DISABLED
  90. #ifdef RX_DESC_SANITY_WAR
  91. static inline
  92. QDF_STATUS dp_rx_desc_sanity(struct dp_soc *soc, hal_soc_handle_t hal_soc,
  93. hal_ring_handle_t hal_ring_hdl,
  94. hal_ring_desc_t ring_desc,
  95. struct dp_rx_desc *rx_desc)
  96. {
  97. uint8_t return_buffer_manager;
  98. if (qdf_unlikely(!rx_desc)) {
  99. /*
  100. * This is an unlikely case where the cookie obtained
  101. * from the ring_desc is invalid and hence we are not
  102. * able to find the corresponding rx_desc
  103. */
  104. goto fail;
  105. }
  106. return_buffer_manager = hal_rx_ret_buf_manager_get(ring_desc);
  107. if (qdf_unlikely(!(return_buffer_manager == HAL_RX_BUF_RBM_SW1_BM ||
  108. return_buffer_manager == HAL_RX_BUF_RBM_SW3_BM))) {
  109. goto fail;
  110. }
  111. return QDF_STATUS_SUCCESS;
  112. fail:
  113. DP_STATS_INC(soc, rx.err.invalid_cookie, 1);
  114. dp_err("Ring Desc:");
  115. hal_srng_dump_ring_desc(hal_soc, hal_ring_hdl,
  116. ring_desc);
  117. return QDF_STATUS_E_NULL_VALUE;
  118. }
  119. #else
  120. static inline
  121. QDF_STATUS dp_rx_desc_sanity(struct dp_soc *soc, hal_soc_handle_t hal_soc,
  122. hal_ring_handle_t hal_ring_hdl,
  123. hal_ring_desc_t ring_desc,
  124. struct dp_rx_desc *rx_desc)
  125. {
  126. return QDF_STATUS_SUCCESS;
  127. }
  128. #endif
  129. #endif /* QCA_HOST_MODE_WIFI_DISABLED */
  130. /**
  131. * dp_pdev_frag_alloc_and_map() - Allocate frag for desc buffer and map
  132. *
  133. * @dp_soc: struct dp_soc *
  134. * @nbuf_frag_info_t: nbuf frag info
  135. * @dp_pdev: struct dp_pdev *
  136. * @rx_desc_pool: Rx desc pool
  137. *
  138. * Return: QDF_STATUS
  139. */
  140. #ifdef DP_RX_MON_MEM_FRAG
  141. static inline QDF_STATUS
  142. dp_pdev_frag_alloc_and_map(struct dp_soc *dp_soc,
  143. struct dp_rx_nbuf_frag_info *nbuf_frag_info_t,
  144. struct dp_pdev *dp_pdev,
  145. struct rx_desc_pool *rx_desc_pool)
  146. {
  147. QDF_STATUS ret = QDF_STATUS_E_FAILURE;
  148. (nbuf_frag_info_t->virt_addr).vaddr =
  149. qdf_frag_alloc(rx_desc_pool->buf_size);
  150. if (!((nbuf_frag_info_t->virt_addr).vaddr)) {
  151. dp_err("Frag alloc failed");
  152. DP_STATS_INC(dp_pdev, replenish.frag_alloc_fail, 1);
  153. return QDF_STATUS_E_NOMEM;
  154. }
  155. ret = qdf_mem_map_page(dp_soc->osdev,
  156. (nbuf_frag_info_t->virt_addr).vaddr,
  157. QDF_DMA_FROM_DEVICE,
  158. rx_desc_pool->buf_size,
  159. &nbuf_frag_info_t->paddr);
  160. if (qdf_unlikely(QDF_IS_STATUS_ERROR(ret))) {
  161. qdf_frag_free((nbuf_frag_info_t->virt_addr).vaddr);
  162. dp_err("Frag map failed");
  163. DP_STATS_INC(dp_pdev, replenish.map_err, 1);
  164. return QDF_STATUS_E_FAULT;
  165. }
  166. return QDF_STATUS_SUCCESS;
  167. }
  168. #else
  169. static inline QDF_STATUS
  170. dp_pdev_frag_alloc_and_map(struct dp_soc *dp_soc,
  171. struct dp_rx_nbuf_frag_info *nbuf_frag_info_t,
  172. struct dp_pdev *dp_pdev,
  173. struct rx_desc_pool *rx_desc_pool)
  174. {
  175. return QDF_STATUS_SUCCESS;
  176. }
  177. #endif /* DP_RX_MON_MEM_FRAG */
  178. /**
  179. * dp_pdev_nbuf_alloc_and_map() - Allocate nbuf for desc buffer and map
  180. *
  181. * @dp_soc: struct dp_soc *
  182. * @mac_id: Mac id
  183. * @num_entries_avail: num_entries_avail
  184. * @nbuf_frag_info_t: nbuf frag info
  185. * @dp_pdev: struct dp_pdev *
  186. * @rx_desc_pool: Rx desc pool
  187. *
  188. * Return: QDF_STATUS
  189. */
  190. static inline QDF_STATUS
  191. dp_pdev_nbuf_alloc_and_map_replenish(struct dp_soc *dp_soc,
  192. uint32_t mac_id,
  193. uint32_t num_entries_avail,
  194. struct dp_rx_nbuf_frag_info *nbuf_frag_info_t,
  195. struct dp_pdev *dp_pdev,
  196. struct rx_desc_pool *rx_desc_pool)
  197. {
  198. QDF_STATUS ret = QDF_STATUS_E_FAILURE;
  199. (nbuf_frag_info_t->virt_addr).nbuf =
  200. dp_rx_buffer_pool_nbuf_alloc(dp_soc,
  201. mac_id,
  202. rx_desc_pool,
  203. num_entries_avail);
  204. if (!((nbuf_frag_info_t->virt_addr).nbuf)) {
  205. dp_err("nbuf alloc failed");
  206. DP_STATS_INC(dp_pdev, replenish.nbuf_alloc_fail, 1);
  207. return QDF_STATUS_E_NOMEM;
  208. }
  209. ret = dp_rx_buffer_pool_nbuf_map(dp_soc, rx_desc_pool,
  210. nbuf_frag_info_t);
  211. if (qdf_unlikely(QDF_IS_STATUS_ERROR(ret))) {
  212. dp_rx_buffer_pool_nbuf_free(dp_soc,
  213. (nbuf_frag_info_t->virt_addr).nbuf, mac_id);
  214. dp_err("nbuf map failed");
  215. DP_STATS_INC(dp_pdev, replenish.map_err, 1);
  216. return QDF_STATUS_E_FAULT;
  217. }
  218. nbuf_frag_info_t->paddr =
  219. qdf_nbuf_get_frag_paddr((nbuf_frag_info_t->virt_addr).nbuf, 0);
  220. ret = dp_check_paddr(dp_soc, &((nbuf_frag_info_t->virt_addr).nbuf),
  221. &nbuf_frag_info_t->paddr,
  222. rx_desc_pool);
  223. if (ret == QDF_STATUS_E_FAILURE) {
  224. DP_STATS_INC(dp_pdev, replenish.x86_fail, 1);
  225. return QDF_STATUS_E_ADDRNOTAVAIL;
  226. }
  227. return QDF_STATUS_SUCCESS;
  228. }
  229. /*
  230. * dp_rx_buffers_replenish() - replenish rxdma ring with rx nbufs
  231. * called during dp rx initialization
  232. * and at the end of dp_rx_process.
  233. *
  234. * @soc: core txrx main context
  235. * @mac_id: mac_id which is one of 3 mac_ids
  236. * @dp_rxdma_srng: dp rxdma circular ring
  237. * @rx_desc_pool: Pointer to free Rx descriptor pool
  238. * @num_req_buffers: number of buffer to be replenished
  239. * @desc_list: list of descs if called from dp_rx_process
  240. * or NULL during dp rx initialization or out of buffer
  241. * interrupt.
  242. * @tail: tail of descs list
  243. * @func_name: name of the caller function
  244. * Return: return success or failure
  245. */
  246. QDF_STATUS __dp_rx_buffers_replenish(struct dp_soc *dp_soc, uint32_t mac_id,
  247. struct dp_srng *dp_rxdma_srng,
  248. struct rx_desc_pool *rx_desc_pool,
  249. uint32_t num_req_buffers,
  250. union dp_rx_desc_list_elem_t **desc_list,
  251. union dp_rx_desc_list_elem_t **tail,
  252. const char *func_name)
  253. {
  254. uint32_t num_alloc_desc;
  255. uint16_t num_desc_to_free = 0;
  256. struct dp_pdev *dp_pdev = dp_get_pdev_for_lmac_id(dp_soc, mac_id);
  257. uint32_t num_entries_avail;
  258. uint32_t count;
  259. int sync_hw_ptr = 1;
  260. struct dp_rx_nbuf_frag_info nbuf_frag_info = {0};
  261. void *rxdma_ring_entry;
  262. union dp_rx_desc_list_elem_t *next;
  263. QDF_STATUS ret;
  264. void *rxdma_srng;
  265. rxdma_srng = dp_rxdma_srng->hal_srng;
  266. if (!rxdma_srng) {
  267. dp_rx_debug("%pK: rxdma srng not initialized", dp_soc);
  268. DP_STATS_INC(dp_pdev, replenish.rxdma_err, num_req_buffers);
  269. return QDF_STATUS_E_FAILURE;
  270. }
  271. dp_rx_debug("%pK: requested %d buffers for replenish",
  272. dp_soc, num_req_buffers);
  273. hal_srng_access_start(dp_soc->hal_soc, rxdma_srng);
  274. num_entries_avail = hal_srng_src_num_avail(dp_soc->hal_soc,
  275. rxdma_srng,
  276. sync_hw_ptr);
  277. dp_rx_debug("%pK: no of available entries in rxdma ring: %d",
  278. dp_soc, num_entries_avail);
  279. if (!(*desc_list) && (num_entries_avail >
  280. ((dp_rxdma_srng->num_entries * 3) / 4))) {
  281. num_req_buffers = num_entries_avail;
  282. } else if (num_entries_avail < num_req_buffers) {
  283. num_desc_to_free = num_req_buffers - num_entries_avail;
  284. num_req_buffers = num_entries_avail;
  285. }
  286. if (qdf_unlikely(!num_req_buffers)) {
  287. num_desc_to_free = num_req_buffers;
  288. hal_srng_access_end(dp_soc->hal_soc, rxdma_srng);
  289. goto free_descs;
  290. }
  291. /*
  292. * if desc_list is NULL, allocate the descs from freelist
  293. */
  294. if (!(*desc_list)) {
  295. num_alloc_desc = dp_rx_get_free_desc_list(dp_soc, mac_id,
  296. rx_desc_pool,
  297. num_req_buffers,
  298. desc_list,
  299. tail);
  300. if (!num_alloc_desc) {
  301. dp_rx_err("%pK: no free rx_descs in freelist", dp_soc);
  302. DP_STATS_INC(dp_pdev, err.desc_alloc_fail,
  303. num_req_buffers);
  304. hal_srng_access_end(dp_soc->hal_soc, rxdma_srng);
  305. return QDF_STATUS_E_NOMEM;
  306. }
  307. dp_rx_debug("%pK: %d rx desc allocated", dp_soc, num_alloc_desc);
  308. num_req_buffers = num_alloc_desc;
  309. }
  310. count = 0;
  311. while (count < num_req_buffers) {
  312. /* Flag is set while pdev rx_desc_pool initialization */
  313. if (qdf_unlikely(rx_desc_pool->rx_mon_dest_frag_enable))
  314. ret = dp_pdev_frag_alloc_and_map(dp_soc,
  315. &nbuf_frag_info,
  316. dp_pdev,
  317. rx_desc_pool);
  318. else
  319. ret = dp_pdev_nbuf_alloc_and_map_replenish(dp_soc,
  320. mac_id,
  321. num_entries_avail, &nbuf_frag_info,
  322. dp_pdev, rx_desc_pool);
  323. if (qdf_unlikely(QDF_IS_STATUS_ERROR(ret))) {
  324. if (qdf_unlikely(ret == QDF_STATUS_E_FAULT))
  325. continue;
  326. break;
  327. }
  328. count++;
  329. rxdma_ring_entry = hal_srng_src_get_next(dp_soc->hal_soc,
  330. rxdma_srng);
  331. qdf_assert_always(rxdma_ring_entry);
  332. next = (*desc_list)->next;
  333. /* Flag is set while pdev rx_desc_pool initialization */
  334. if (qdf_unlikely(rx_desc_pool->rx_mon_dest_frag_enable))
  335. dp_rx_desc_frag_prep(&((*desc_list)->rx_desc),
  336. &nbuf_frag_info);
  337. else
  338. dp_rx_desc_prep(&((*desc_list)->rx_desc),
  339. &nbuf_frag_info);
  340. /* rx_desc.in_use should be zero at this time*/
  341. qdf_assert_always((*desc_list)->rx_desc.in_use == 0);
  342. (*desc_list)->rx_desc.in_use = 1;
  343. (*desc_list)->rx_desc.in_err_state = 0;
  344. dp_rx_desc_update_dbg_info(&(*desc_list)->rx_desc,
  345. func_name, RX_DESC_REPLENISHED);
  346. dp_verbose_debug("rx_netbuf=%pK, paddr=0x%llx, cookie=%d",
  347. nbuf_frag_info.virt_addr.nbuf,
  348. (unsigned long long)(nbuf_frag_info.paddr),
  349. (*desc_list)->rx_desc.cookie);
  350. hal_rxdma_buff_addr_info_set(rxdma_ring_entry,
  351. nbuf_frag_info.paddr,
  352. (*desc_list)->rx_desc.cookie,
  353. rx_desc_pool->owner);
  354. *desc_list = next;
  355. }
  356. hal_srng_access_end(dp_soc->hal_soc, rxdma_srng);
  357. dp_rx_schedule_refill_thread(dp_soc);
  358. dp_verbose_debug("replenished buffers %d, rx desc added back to free list %u",
  359. count, num_desc_to_free);
  360. /* No need to count the number of bytes received during replenish.
  361. * Therefore set replenish.pkts.bytes as 0.
  362. */
  363. DP_STATS_INC_PKT(dp_pdev, replenish.pkts, count, 0);
  364. free_descs:
  365. DP_STATS_INC(dp_pdev, buf_freelist, num_desc_to_free);
  366. /*
  367. * add any available free desc back to the free list
  368. */
  369. if (*desc_list)
  370. dp_rx_add_desc_list_to_free_list(dp_soc, desc_list, tail,
  371. mac_id, rx_desc_pool);
  372. return QDF_STATUS_SUCCESS;
  373. }
  374. /*
  375. * dp_rx_deliver_raw() - process RAW mode pkts and hand over the
  376. * pkts to RAW mode simulation to
  377. * decapsulate the pkt.
  378. *
  379. * @vdev: vdev on which RAW mode is enabled
  380. * @nbuf_list: list of RAW pkts to process
  381. * @peer: peer object from which the pkt is rx
  382. *
  383. * Return: void
  384. */
  385. void
  386. dp_rx_deliver_raw(struct dp_vdev *vdev, qdf_nbuf_t nbuf_list,
  387. struct dp_peer *peer)
  388. {
  389. qdf_nbuf_t deliver_list_head = NULL;
  390. qdf_nbuf_t deliver_list_tail = NULL;
  391. qdf_nbuf_t nbuf;
  392. nbuf = nbuf_list;
  393. while (nbuf) {
  394. qdf_nbuf_t next = qdf_nbuf_next(nbuf);
  395. DP_RX_LIST_APPEND(deliver_list_head, deliver_list_tail, nbuf);
  396. DP_STATS_INC(vdev->pdev, rx_raw_pkts, 1);
  397. DP_STATS_INC_PKT(peer, rx.raw, 1, qdf_nbuf_len(nbuf));
  398. /*
  399. * reset the chfrag_start and chfrag_end bits in nbuf cb
  400. * as this is a non-amsdu pkt and RAW mode simulation expects
  401. * these bit s to be 0 for non-amsdu pkt.
  402. */
  403. if (qdf_nbuf_is_rx_chfrag_start(nbuf) &&
  404. qdf_nbuf_is_rx_chfrag_end(nbuf)) {
  405. qdf_nbuf_set_rx_chfrag_start(nbuf, 0);
  406. qdf_nbuf_set_rx_chfrag_end(nbuf, 0);
  407. }
  408. nbuf = next;
  409. }
  410. vdev->osif_rsim_rx_decap(vdev->osif_vdev, &deliver_list_head,
  411. &deliver_list_tail, peer->mac_addr.raw);
  412. vdev->osif_rx(vdev->osif_vdev, deliver_list_head);
  413. }
  414. #ifndef QCA_HOST_MODE_WIFI_DISABLED
  415. #ifndef FEATURE_WDS
  416. static void
  417. dp_rx_da_learn(struct dp_soc *soc,
  418. uint8_t *rx_tlv_hdr,
  419. struct dp_peer *ta_peer,
  420. qdf_nbuf_t nbuf)
  421. {
  422. }
  423. #endif
  424. /*
  425. * dp_rx_intrabss_fwd() - Implements the Intra-BSS forwarding logic
  426. *
  427. * @soc: core txrx main context
  428. * @ta_peer : source peer entry
  429. * @rx_tlv_hdr : start address of rx tlvs
  430. * @nbuf : nbuf that has to be intrabss forwarded
  431. *
  432. * Return: bool: true if it is forwarded else false
  433. */
  434. static bool
  435. dp_rx_intrabss_fwd(struct dp_soc *soc,
  436. struct dp_peer *ta_peer,
  437. uint8_t *rx_tlv_hdr,
  438. qdf_nbuf_t nbuf,
  439. struct hal_rx_msdu_metadata msdu_metadata)
  440. {
  441. uint16_t len;
  442. uint8_t is_frag;
  443. uint16_t da_peer_id = HTT_INVALID_PEER;
  444. struct dp_peer *da_peer = NULL;
  445. bool is_da_bss_peer = false;
  446. struct dp_ast_entry *ast_entry;
  447. qdf_nbuf_t nbuf_copy;
  448. uint8_t tid = qdf_nbuf_get_tid_val(nbuf);
  449. uint8_t ring_id = QDF_NBUF_CB_RX_CTX_ID(nbuf);
  450. struct cdp_tid_rx_stats *tid_stats = &ta_peer->vdev->pdev->stats.
  451. tid_stats.tid_rx_stats[ring_id][tid];
  452. /* check if the destination peer is available in peer table
  453. * and also check if the source peer and destination peer
  454. * belong to the same vap and destination peer is not bss peer.
  455. */
  456. if ((qdf_nbuf_is_da_valid(nbuf) && !qdf_nbuf_is_da_mcbc(nbuf))) {
  457. ast_entry = soc->ast_table[msdu_metadata.da_idx];
  458. if (!ast_entry)
  459. return false;
  460. if (ast_entry->type == CDP_TXRX_AST_TYPE_DA) {
  461. ast_entry->is_active = TRUE;
  462. return false;
  463. }
  464. da_peer_id = ast_entry->peer_id;
  465. if (da_peer_id == HTT_INVALID_PEER)
  466. return false;
  467. /* TA peer cannot be same as peer(DA) on which AST is present
  468. * this indicates a change in topology and that AST entries
  469. * are yet to be updated.
  470. */
  471. if (da_peer_id == ta_peer->peer_id)
  472. return false;
  473. if (ast_entry->vdev_id != ta_peer->vdev->vdev_id)
  474. return false;
  475. da_peer = dp_peer_get_ref_by_id(soc, da_peer_id,
  476. DP_MOD_ID_RX);
  477. if (!da_peer)
  478. return false;
  479. is_da_bss_peer = da_peer->bss_peer;
  480. dp_peer_unref_delete(da_peer, DP_MOD_ID_RX);
  481. if (!is_da_bss_peer) {
  482. len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
  483. is_frag = qdf_nbuf_is_frag(nbuf);
  484. memset(nbuf->cb, 0x0, sizeof(nbuf->cb));
  485. /* If the source or destination peer in the isolation
  486. * list then dont forward instead push to bridge stack.
  487. */
  488. if (dp_get_peer_isolation(ta_peer) ||
  489. dp_get_peer_isolation(da_peer))
  490. return false;
  491. /* linearize the nbuf just before we send to
  492. * dp_tx_send()
  493. */
  494. if (qdf_unlikely(is_frag)) {
  495. if (qdf_nbuf_linearize(nbuf) == -ENOMEM)
  496. return false;
  497. nbuf = qdf_nbuf_unshare(nbuf);
  498. if (!nbuf) {
  499. DP_STATS_INC_PKT(ta_peer,
  500. rx.intra_bss.fail,
  501. 1,
  502. len);
  503. /* return true even though the pkt is
  504. * not forwarded. Basically skb_unshare
  505. * failed and we want to continue with
  506. * next nbuf.
  507. */
  508. tid_stats->fail_cnt[INTRABSS_DROP]++;
  509. return true;
  510. }
  511. }
  512. if (!dp_tx_send((struct cdp_soc_t *)soc,
  513. ta_peer->vdev->vdev_id, nbuf)) {
  514. DP_STATS_INC_PKT(ta_peer, rx.intra_bss.pkts, 1,
  515. len);
  516. return true;
  517. } else {
  518. DP_STATS_INC_PKT(ta_peer, rx.intra_bss.fail, 1,
  519. len);
  520. tid_stats->fail_cnt[INTRABSS_DROP]++;
  521. return false;
  522. }
  523. }
  524. }
  525. /* if it is a broadcast pkt (eg: ARP) and it is not its own
  526. * source, then clone the pkt and send the cloned pkt for
  527. * intra BSS forwarding and original pkt up the network stack
  528. * Note: how do we handle multicast pkts. do we forward
  529. * all multicast pkts as is or let a higher layer module
  530. * like igmpsnoop decide whether to forward or not with
  531. * Mcast enhancement.
  532. */
  533. else if (qdf_unlikely((qdf_nbuf_is_da_mcbc(nbuf) &&
  534. !ta_peer->bss_peer))) {
  535. if (!dp_rx_check_ndi_mdns_fwding(ta_peer, nbuf))
  536. goto end;
  537. /* If the source peer in the isolation list
  538. * then dont forward instead push to bridge stack
  539. */
  540. if (dp_get_peer_isolation(ta_peer))
  541. goto end;
  542. nbuf_copy = qdf_nbuf_copy(nbuf);
  543. if (!nbuf_copy)
  544. goto end;
  545. len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
  546. memset(nbuf_copy->cb, 0x0, sizeof(nbuf_copy->cb));
  547. /* Set cb->ftype to intrabss FWD */
  548. qdf_nbuf_set_tx_ftype(nbuf_copy, CB_FTYPE_INTRABSS_FWD);
  549. if (dp_tx_send((struct cdp_soc_t *)soc,
  550. ta_peer->vdev->vdev_id, nbuf_copy)) {
  551. DP_STATS_INC_PKT(ta_peer, rx.intra_bss.fail, 1, len);
  552. tid_stats->fail_cnt[INTRABSS_DROP]++;
  553. qdf_nbuf_free(nbuf_copy);
  554. } else {
  555. DP_STATS_INC_PKT(ta_peer, rx.intra_bss.pkts, 1, len);
  556. tid_stats->intrabss_cnt++;
  557. }
  558. }
  559. end:
  560. /* return false as we have to still send the original pkt
  561. * up the stack
  562. */
  563. return false;
  564. }
  565. #endif /* QCA_HOST_MODE_WIFI_DISABLED */
  566. #ifdef MESH_MODE_SUPPORT
  567. /**
  568. * dp_rx_fill_mesh_stats() - Fills the mesh per packet receive stats
  569. *
  570. * @vdev: DP Virtual device handle
  571. * @nbuf: Buffer pointer
  572. * @rx_tlv_hdr: start of rx tlv header
  573. * @peer: pointer to peer
  574. *
  575. * This function allocated memory for mesh receive stats and fill the
  576. * required stats. Stores the memory address in skb cb.
  577. *
  578. * Return: void
  579. */
  580. void dp_rx_fill_mesh_stats(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
  581. uint8_t *rx_tlv_hdr, struct dp_peer *peer)
  582. {
  583. struct mesh_recv_hdr_s *rx_info = NULL;
  584. uint32_t pkt_type;
  585. uint32_t nss;
  586. uint32_t rate_mcs;
  587. uint32_t bw;
  588. uint8_t primary_chan_num;
  589. uint32_t center_chan_freq;
  590. struct dp_soc *soc;
  591. /* fill recv mesh stats */
  592. rx_info = qdf_mem_malloc(sizeof(struct mesh_recv_hdr_s));
  593. /* upper layers are resposible to free this memory */
  594. if (!rx_info) {
  595. dp_rx_err("%pK: Memory allocation failed for mesh rx stats",
  596. vdev->pdev->soc);
  597. DP_STATS_INC(vdev->pdev, mesh_mem_alloc, 1);
  598. return;
  599. }
  600. rx_info->rs_flags = MESH_RXHDR_VER1;
  601. if (qdf_nbuf_is_rx_chfrag_start(nbuf))
  602. rx_info->rs_flags |= MESH_RX_FIRST_MSDU;
  603. if (qdf_nbuf_is_rx_chfrag_end(nbuf))
  604. rx_info->rs_flags |= MESH_RX_LAST_MSDU;
  605. if (hal_rx_attn_msdu_get_is_decrypted(rx_tlv_hdr)) {
  606. rx_info->rs_flags |= MESH_RX_DECRYPTED;
  607. rx_info->rs_keyix = hal_rx_msdu_get_keyid(rx_tlv_hdr);
  608. if (vdev->osif_get_key)
  609. vdev->osif_get_key(vdev->osif_vdev,
  610. &rx_info->rs_decryptkey[0],
  611. &peer->mac_addr.raw[0],
  612. rx_info->rs_keyix);
  613. }
  614. rx_info->rs_snr = peer->stats.rx.snr;
  615. rx_info->rs_rssi = rx_info->rs_snr + DP_DEFAULT_NOISEFLOOR;
  616. soc = vdev->pdev->soc;
  617. primary_chan_num = hal_rx_msdu_start_get_freq(rx_tlv_hdr);
  618. center_chan_freq = hal_rx_msdu_start_get_freq(rx_tlv_hdr) >> 16;
  619. if (soc->cdp_soc.ol_ops && soc->cdp_soc.ol_ops->freq_to_band) {
  620. rx_info->rs_band = soc->cdp_soc.ol_ops->freq_to_band(
  621. soc->ctrl_psoc,
  622. vdev->pdev->pdev_id,
  623. center_chan_freq);
  624. }
  625. rx_info->rs_channel = primary_chan_num;
  626. pkt_type = hal_rx_msdu_start_get_pkt_type(rx_tlv_hdr);
  627. rate_mcs = hal_rx_msdu_start_rate_mcs_get(rx_tlv_hdr);
  628. bw = hal_rx_msdu_start_bw_get(rx_tlv_hdr);
  629. nss = hal_rx_msdu_start_nss_get(vdev->pdev->soc->hal_soc, rx_tlv_hdr);
  630. rx_info->rs_ratephy1 = rate_mcs | (nss << 0x8) | (pkt_type << 16) |
  631. (bw << 24);
  632. qdf_nbuf_set_rx_fctx_type(nbuf, (void *)rx_info, CB_FTYPE_MESH_RX_INFO);
  633. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO_MED,
  634. FL("Mesh rx stats: flags %x, rssi %x, chn %x, rate %x, kix %x, snr %x"),
  635. rx_info->rs_flags,
  636. rx_info->rs_rssi,
  637. rx_info->rs_channel,
  638. rx_info->rs_ratephy1,
  639. rx_info->rs_keyix,
  640. rx_info->rs_snr);
  641. }
  642. /**
  643. * dp_rx_filter_mesh_packets() - Filters mesh unwanted packets
  644. *
  645. * @vdev: DP Virtual device handle
  646. * @nbuf: Buffer pointer
  647. * @rx_tlv_hdr: start of rx tlv header
  648. *
  649. * This checks if the received packet is matching any filter out
  650. * catogery and and drop the packet if it matches.
  651. *
  652. * Return: status(0 indicates drop, 1 indicate to no drop)
  653. */
  654. QDF_STATUS dp_rx_filter_mesh_packets(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
  655. uint8_t *rx_tlv_hdr)
  656. {
  657. union dp_align_mac_addr mac_addr;
  658. struct dp_soc *soc = vdev->pdev->soc;
  659. if (qdf_unlikely(vdev->mesh_rx_filter)) {
  660. if (vdev->mesh_rx_filter & MESH_FILTER_OUT_FROMDS)
  661. if (hal_rx_mpdu_get_fr_ds(soc->hal_soc,
  662. rx_tlv_hdr))
  663. return QDF_STATUS_SUCCESS;
  664. if (vdev->mesh_rx_filter & MESH_FILTER_OUT_TODS)
  665. if (hal_rx_mpdu_get_to_ds(soc->hal_soc,
  666. rx_tlv_hdr))
  667. return QDF_STATUS_SUCCESS;
  668. if (vdev->mesh_rx_filter & MESH_FILTER_OUT_NODS)
  669. if (!hal_rx_mpdu_get_fr_ds(soc->hal_soc,
  670. rx_tlv_hdr) &&
  671. !hal_rx_mpdu_get_to_ds(soc->hal_soc,
  672. rx_tlv_hdr))
  673. return QDF_STATUS_SUCCESS;
  674. if (vdev->mesh_rx_filter & MESH_FILTER_OUT_RA) {
  675. if (hal_rx_mpdu_get_addr1(soc->hal_soc,
  676. rx_tlv_hdr,
  677. &mac_addr.raw[0]))
  678. return QDF_STATUS_E_FAILURE;
  679. if (!qdf_mem_cmp(&mac_addr.raw[0],
  680. &vdev->mac_addr.raw[0],
  681. QDF_MAC_ADDR_SIZE))
  682. return QDF_STATUS_SUCCESS;
  683. }
  684. if (vdev->mesh_rx_filter & MESH_FILTER_OUT_TA) {
  685. if (hal_rx_mpdu_get_addr2(soc->hal_soc,
  686. rx_tlv_hdr,
  687. &mac_addr.raw[0]))
  688. return QDF_STATUS_E_FAILURE;
  689. if (!qdf_mem_cmp(&mac_addr.raw[0],
  690. &vdev->mac_addr.raw[0],
  691. QDF_MAC_ADDR_SIZE))
  692. return QDF_STATUS_SUCCESS;
  693. }
  694. }
  695. return QDF_STATUS_E_FAILURE;
  696. }
  697. #else
  698. void dp_rx_fill_mesh_stats(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
  699. uint8_t *rx_tlv_hdr, struct dp_peer *peer)
  700. {
  701. }
  702. QDF_STATUS dp_rx_filter_mesh_packets(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
  703. uint8_t *rx_tlv_hdr)
  704. {
  705. return QDF_STATUS_E_FAILURE;
  706. }
  707. #endif
  708. #ifdef FEATURE_NAC_RSSI
  709. /**
  710. * dp_rx_nac_filter(): Function to perform filtering of non-associated
  711. * clients
  712. * @pdev: DP pdev handle
  713. * @rx_pkt_hdr: Rx packet Header
  714. *
  715. * return: dp_vdev*
  716. */
  717. static
  718. struct dp_vdev *dp_rx_nac_filter(struct dp_pdev *pdev,
  719. uint8_t *rx_pkt_hdr)
  720. {
  721. struct ieee80211_frame *wh;
  722. struct dp_neighbour_peer *peer = NULL;
  723. wh = (struct ieee80211_frame *)rx_pkt_hdr;
  724. if ((wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) != IEEE80211_FC1_DIR_TODS)
  725. return NULL;
  726. qdf_spin_lock_bh(&pdev->neighbour_peer_mutex);
  727. TAILQ_FOREACH(peer, &pdev->neighbour_peers_list,
  728. neighbour_peer_list_elem) {
  729. if (qdf_mem_cmp(&peer->neighbour_peers_macaddr.raw[0],
  730. wh->i_addr2, QDF_MAC_ADDR_SIZE) == 0) {
  731. dp_rx_debug("%pK: NAC configuration matched for mac-%2x:%2x:%2x:%2x:%2x:%2x",
  732. pdev->soc,
  733. peer->neighbour_peers_macaddr.raw[0],
  734. peer->neighbour_peers_macaddr.raw[1],
  735. peer->neighbour_peers_macaddr.raw[2],
  736. peer->neighbour_peers_macaddr.raw[3],
  737. peer->neighbour_peers_macaddr.raw[4],
  738. peer->neighbour_peers_macaddr.raw[5]);
  739. qdf_spin_unlock_bh(&pdev->neighbour_peer_mutex);
  740. return pdev->monitor_vdev;
  741. }
  742. }
  743. qdf_spin_unlock_bh(&pdev->neighbour_peer_mutex);
  744. return NULL;
  745. }
  746. /**
  747. * dp_rx_process_invalid_peer(): Function to pass invalid peer list to umac
  748. * @soc: DP SOC handle
  749. * @mpdu: mpdu for which peer is invalid
  750. * @mac_id: mac_id which is one of 3 mac_ids(Assuming mac_id and
  751. * pool_id has same mapping)
  752. *
  753. * return: integer type
  754. */
  755. uint8_t dp_rx_process_invalid_peer(struct dp_soc *soc, qdf_nbuf_t mpdu,
  756. uint8_t mac_id)
  757. {
  758. struct dp_invalid_peer_msg msg;
  759. struct dp_vdev *vdev = NULL;
  760. struct dp_pdev *pdev = NULL;
  761. struct ieee80211_frame *wh;
  762. qdf_nbuf_t curr_nbuf, next_nbuf;
  763. uint8_t *rx_tlv_hdr = qdf_nbuf_data(mpdu);
  764. uint8_t *rx_pkt_hdr = hal_rx_pkt_hdr_get(rx_tlv_hdr);
  765. rx_pkt_hdr = hal_rx_pkt_hdr_get(rx_tlv_hdr);
  766. if (!HAL_IS_DECAP_FORMAT_RAW(soc->hal_soc, rx_tlv_hdr)) {
  767. dp_rx_debug("%pK: Drop decapped frames", soc);
  768. goto free;
  769. }
  770. wh = (struct ieee80211_frame *)rx_pkt_hdr;
  771. if (!DP_FRAME_IS_DATA(wh)) {
  772. dp_rx_debug("%pK: NAWDS valid only for data frames", soc);
  773. goto free;
  774. }
  775. if (qdf_nbuf_len(mpdu) < sizeof(struct ieee80211_frame)) {
  776. dp_rx_err("%pK: Invalid nbuf length", soc);
  777. goto free;
  778. }
  779. pdev = dp_get_pdev_for_lmac_id(soc, mac_id);
  780. if (!pdev || qdf_unlikely(pdev->is_pdev_down)) {
  781. dp_rx_err("%pK: PDEV %s", soc, !pdev ? "not found" : "down");
  782. goto free;
  783. }
  784. if (pdev->filter_neighbour_peers) {
  785. /* Next Hop scenario not yet handle */
  786. vdev = dp_rx_nac_filter(pdev, rx_pkt_hdr);
  787. if (vdev) {
  788. dp_rx_mon_deliver(soc, pdev->pdev_id,
  789. pdev->invalid_peer_head_msdu,
  790. pdev->invalid_peer_tail_msdu);
  791. pdev->invalid_peer_head_msdu = NULL;
  792. pdev->invalid_peer_tail_msdu = NULL;
  793. return 0;
  794. }
  795. }
  796. TAILQ_FOREACH(vdev, &pdev->vdev_list, vdev_list_elem) {
  797. if (qdf_mem_cmp(wh->i_addr1, vdev->mac_addr.raw,
  798. QDF_MAC_ADDR_SIZE) == 0) {
  799. goto out;
  800. }
  801. }
  802. if (!vdev) {
  803. dp_rx_err("%pK: VDEV not found", soc);
  804. goto free;
  805. }
  806. out:
  807. msg.wh = wh;
  808. qdf_nbuf_pull_head(mpdu, RX_PKT_TLVS_LEN);
  809. msg.nbuf = mpdu;
  810. msg.vdev_id = vdev->vdev_id;
  811. /*
  812. * NOTE: Only valid for HKv1.
  813. * If smart monitor mode is enabled on RE, we are getting invalid
  814. * peer frames with RA as STA mac of RE and the TA not matching
  815. * with any NAC list or the the BSSID.Such frames need to dropped
  816. * in order to avoid HM_WDS false addition.
  817. */
  818. if (pdev->soc->cdp_soc.ol_ops->rx_invalid_peer) {
  819. if (!soc->hw_nac_monitor_support &&
  820. pdev->filter_neighbour_peers &&
  821. vdev->opmode == wlan_op_mode_sta) {
  822. dp_rx_warn("%pK: Drop inv peer pkts with STA RA:%pm",
  823. soc, wh->i_addr1);
  824. goto free;
  825. }
  826. pdev->soc->cdp_soc.ol_ops->rx_invalid_peer(
  827. (struct cdp_ctrl_objmgr_psoc *)soc->ctrl_psoc,
  828. pdev->pdev_id, &msg);
  829. }
  830. free:
  831. /* Drop and free packet */
  832. curr_nbuf = mpdu;
  833. while (curr_nbuf) {
  834. next_nbuf = qdf_nbuf_next(curr_nbuf);
  835. qdf_nbuf_free(curr_nbuf);
  836. curr_nbuf = next_nbuf;
  837. }
  838. return 0;
  839. }
  840. /**
  841. * dp_rx_process_invalid_peer_wrapper(): Function to wrap invalid peer handler
  842. * @soc: DP SOC handle
  843. * @mpdu: mpdu for which peer is invalid
  844. * @mpdu_done: if an mpdu is completed
  845. * @mac_id: mac_id which is one of 3 mac_ids(Assuming mac_id and
  846. * pool_id has same mapping)
  847. *
  848. * return: integer type
  849. */
  850. void dp_rx_process_invalid_peer_wrapper(struct dp_soc *soc,
  851. qdf_nbuf_t mpdu, bool mpdu_done,
  852. uint8_t mac_id)
  853. {
  854. /* Only trigger the process when mpdu is completed */
  855. if (mpdu_done)
  856. dp_rx_process_invalid_peer(soc, mpdu, mac_id);
  857. }
  858. #else
  859. uint8_t dp_rx_process_invalid_peer(struct dp_soc *soc, qdf_nbuf_t mpdu,
  860. uint8_t mac_id)
  861. {
  862. qdf_nbuf_t curr_nbuf, next_nbuf;
  863. struct dp_pdev *pdev;
  864. struct dp_vdev *vdev = NULL;
  865. struct ieee80211_frame *wh;
  866. uint8_t *rx_tlv_hdr = qdf_nbuf_data(mpdu);
  867. uint8_t *rx_pkt_hdr = hal_rx_pkt_hdr_get(rx_tlv_hdr);
  868. wh = (struct ieee80211_frame *)rx_pkt_hdr;
  869. if (!DP_FRAME_IS_DATA(wh)) {
  870. QDF_TRACE_ERROR_RL(QDF_MODULE_ID_DP,
  871. "only for data frames");
  872. goto free;
  873. }
  874. if (qdf_nbuf_len(mpdu) < sizeof(struct ieee80211_frame)) {
  875. dp_rx_err("%pK: Invalid nbuf length", soc);
  876. goto free;
  877. }
  878. pdev = dp_get_pdev_for_lmac_id(soc, mac_id);
  879. if (!pdev) {
  880. dp_rx_err("%pK: PDEV not found", soc);
  881. goto free;
  882. }
  883. qdf_spin_lock_bh(&pdev->vdev_list_lock);
  884. DP_PDEV_ITERATE_VDEV_LIST(pdev, vdev) {
  885. if (qdf_mem_cmp(wh->i_addr1, vdev->mac_addr.raw,
  886. QDF_MAC_ADDR_SIZE) == 0) {
  887. qdf_spin_unlock_bh(&pdev->vdev_list_lock);
  888. goto out;
  889. }
  890. }
  891. qdf_spin_unlock_bh(&pdev->vdev_list_lock);
  892. if (!vdev) {
  893. dp_rx_err("%pK: VDEV not found", soc);
  894. goto free;
  895. }
  896. out:
  897. if (soc->cdp_soc.ol_ops->rx_invalid_peer)
  898. soc->cdp_soc.ol_ops->rx_invalid_peer(vdev->vdev_id, wh);
  899. free:
  900. /* reset the head and tail pointers */
  901. pdev = dp_get_pdev_for_lmac_id(soc, mac_id);
  902. if (pdev) {
  903. pdev->invalid_peer_head_msdu = NULL;
  904. pdev->invalid_peer_tail_msdu = NULL;
  905. }
  906. /* Drop and free packet */
  907. curr_nbuf = mpdu;
  908. while (curr_nbuf) {
  909. next_nbuf = qdf_nbuf_next(curr_nbuf);
  910. qdf_nbuf_free(curr_nbuf);
  911. curr_nbuf = next_nbuf;
  912. }
  913. /* Reset the head and tail pointers */
  914. pdev = dp_get_pdev_for_lmac_id(soc, mac_id);
  915. if (pdev) {
  916. pdev->invalid_peer_head_msdu = NULL;
  917. pdev->invalid_peer_tail_msdu = NULL;
  918. }
  919. return 0;
  920. }
  921. void dp_rx_process_invalid_peer_wrapper(struct dp_soc *soc,
  922. qdf_nbuf_t mpdu, bool mpdu_done,
  923. uint8_t mac_id)
  924. {
  925. /* Process the nbuf */
  926. dp_rx_process_invalid_peer(soc, mpdu, mac_id);
  927. }
  928. #endif
  929. #ifndef QCA_HOST_MODE_WIFI_DISABLED
  930. #ifdef RECEIVE_OFFLOAD
  931. /**
  932. * dp_rx_print_offload_info() - Print offload info from RX TLV
  933. * @soc: dp soc handle
  934. * @rx_tlv: RX TLV for which offload information is to be printed
  935. *
  936. * Return: None
  937. */
  938. static void dp_rx_print_offload_info(struct dp_soc *soc, uint8_t *rx_tlv)
  939. {
  940. dp_verbose_debug("----------------------RX DESC LRO/GRO----------------------");
  941. dp_verbose_debug("lro_eligible 0x%x", HAL_RX_TLV_GET_LRO_ELIGIBLE(rx_tlv));
  942. dp_verbose_debug("pure_ack 0x%x", HAL_RX_TLV_GET_TCP_PURE_ACK(rx_tlv));
  943. dp_verbose_debug("chksum 0x%x", hal_rx_tlv_get_tcp_chksum(soc->hal_soc,
  944. rx_tlv));
  945. dp_verbose_debug("TCP seq num 0x%x", HAL_RX_TLV_GET_TCP_SEQ(rx_tlv));
  946. dp_verbose_debug("TCP ack num 0x%x", HAL_RX_TLV_GET_TCP_ACK(rx_tlv));
  947. dp_verbose_debug("TCP window 0x%x", HAL_RX_TLV_GET_TCP_WIN(rx_tlv));
  948. dp_verbose_debug("TCP protocol 0x%x", HAL_RX_TLV_GET_TCP_PROTO(rx_tlv));
  949. dp_verbose_debug("TCP offset 0x%x", HAL_RX_TLV_GET_TCP_OFFSET(rx_tlv));
  950. dp_verbose_debug("toeplitz 0x%x", HAL_RX_TLV_GET_FLOW_ID_TOEPLITZ(rx_tlv));
  951. dp_verbose_debug("---------------------------------------------------------");
  952. }
  953. /**
  954. * dp_rx_fill_gro_info() - Fill GRO info from RX TLV into skb->cb
  955. * @soc: DP SOC handle
  956. * @rx_tlv: RX TLV received for the msdu
  957. * @msdu: msdu for which GRO info needs to be filled
  958. * @rx_ol_pkt_cnt: counter to be incremented for GRO eligible packets
  959. *
  960. * Return: None
  961. */
  962. static
  963. void dp_rx_fill_gro_info(struct dp_soc *soc, uint8_t *rx_tlv,
  964. qdf_nbuf_t msdu, uint32_t *rx_ol_pkt_cnt)
  965. {
  966. if (!wlan_cfg_is_gro_enabled(soc->wlan_cfg_ctx))
  967. return;
  968. /* Filling up RX offload info only for TCP packets */
  969. if (!HAL_RX_TLV_GET_TCP_PROTO(rx_tlv))
  970. return;
  971. *rx_ol_pkt_cnt = *rx_ol_pkt_cnt + 1;
  972. QDF_NBUF_CB_RX_LRO_ELIGIBLE(msdu) =
  973. HAL_RX_TLV_GET_LRO_ELIGIBLE(rx_tlv);
  974. QDF_NBUF_CB_RX_TCP_PURE_ACK(msdu) =
  975. HAL_RX_TLV_GET_TCP_PURE_ACK(rx_tlv);
  976. QDF_NBUF_CB_RX_TCP_CHKSUM(msdu) =
  977. hal_rx_tlv_get_tcp_chksum(soc->hal_soc,
  978. rx_tlv);
  979. QDF_NBUF_CB_RX_TCP_SEQ_NUM(msdu) =
  980. HAL_RX_TLV_GET_TCP_SEQ(rx_tlv);
  981. QDF_NBUF_CB_RX_TCP_ACK_NUM(msdu) =
  982. HAL_RX_TLV_GET_TCP_ACK(rx_tlv);
  983. QDF_NBUF_CB_RX_TCP_WIN(msdu) =
  984. HAL_RX_TLV_GET_TCP_WIN(rx_tlv);
  985. QDF_NBUF_CB_RX_TCP_PROTO(msdu) =
  986. HAL_RX_TLV_GET_TCP_PROTO(rx_tlv);
  987. QDF_NBUF_CB_RX_IPV6_PROTO(msdu) =
  988. HAL_RX_TLV_GET_IPV6(rx_tlv);
  989. QDF_NBUF_CB_RX_TCP_OFFSET(msdu) =
  990. HAL_RX_TLV_GET_TCP_OFFSET(rx_tlv);
  991. QDF_NBUF_CB_RX_FLOW_ID(msdu) =
  992. HAL_RX_TLV_GET_FLOW_ID_TOEPLITZ(rx_tlv);
  993. dp_rx_print_offload_info(soc, rx_tlv);
  994. }
  995. #else
  996. static void dp_rx_fill_gro_info(struct dp_soc *soc, uint8_t *rx_tlv,
  997. qdf_nbuf_t msdu, uint32_t *rx_ol_pkt_cnt)
  998. {
  999. }
  1000. #endif /* RECEIVE_OFFLOAD */
  1001. /**
  1002. * dp_rx_adjust_nbuf_len() - set appropriate msdu length in nbuf.
  1003. *
  1004. * @nbuf: pointer to msdu.
  1005. * @mpdu_len: mpdu length
  1006. *
  1007. * Return: returns true if nbuf is last msdu of mpdu else retuns false.
  1008. */
  1009. static inline bool dp_rx_adjust_nbuf_len(qdf_nbuf_t nbuf, uint16_t *mpdu_len)
  1010. {
  1011. bool last_nbuf;
  1012. if (*mpdu_len > (RX_DATA_BUFFER_SIZE - RX_PKT_TLVS_LEN)) {
  1013. qdf_nbuf_set_pktlen(nbuf, RX_DATA_BUFFER_SIZE);
  1014. last_nbuf = false;
  1015. } else {
  1016. qdf_nbuf_set_pktlen(nbuf, (*mpdu_len + RX_PKT_TLVS_LEN));
  1017. last_nbuf = true;
  1018. }
  1019. *mpdu_len -= (RX_DATA_BUFFER_SIZE - RX_PKT_TLVS_LEN);
  1020. return last_nbuf;
  1021. }
  1022. /**
  1023. * dp_rx_sg_create() - create a frag_list for MSDUs which are spread across
  1024. * multiple nbufs.
  1025. * @soc: DP SOC handle
  1026. * @nbuf: pointer to the first msdu of an amsdu.
  1027. *
  1028. * This function implements the creation of RX frag_list for cases
  1029. * where an MSDU is spread across multiple nbufs.
  1030. *
  1031. * Return: returns the head nbuf which contains complete frag_list.
  1032. */
  1033. qdf_nbuf_t dp_rx_sg_create(struct dp_soc *soc, qdf_nbuf_t nbuf)
  1034. {
  1035. qdf_nbuf_t parent, frag_list, next = NULL;
  1036. uint16_t frag_list_len = 0;
  1037. uint16_t mpdu_len;
  1038. bool last_nbuf;
  1039. /*
  1040. * Use msdu len got from REO entry descriptor instead since
  1041. * there is case the RX PKT TLV is corrupted while msdu_len
  1042. * from REO descriptor is right for non-raw RX scatter msdu.
  1043. */
  1044. mpdu_len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
  1045. /*
  1046. * this is a case where the complete msdu fits in one single nbuf.
  1047. * in this case HW sets both start and end bit and we only need to
  1048. * reset these bits for RAW mode simulator to decap the pkt
  1049. */
  1050. if (qdf_nbuf_is_rx_chfrag_start(nbuf) &&
  1051. qdf_nbuf_is_rx_chfrag_end(nbuf)) {
  1052. qdf_nbuf_set_pktlen(nbuf, mpdu_len + RX_PKT_TLVS_LEN);
  1053. qdf_nbuf_pull_head(nbuf, RX_PKT_TLVS_LEN);
  1054. return nbuf;
  1055. }
  1056. /*
  1057. * This is a case where we have multiple msdus (A-MSDU) spread across
  1058. * multiple nbufs. here we create a fraglist out of these nbufs.
  1059. *
  1060. * the moment we encounter a nbuf with continuation bit set we
  1061. * know for sure we have an MSDU which is spread across multiple
  1062. * nbufs. We loop through and reap nbufs till we reach last nbuf.
  1063. */
  1064. parent = nbuf;
  1065. frag_list = nbuf->next;
  1066. nbuf = nbuf->next;
  1067. /*
  1068. * set the start bit in the first nbuf we encounter with continuation
  1069. * bit set. This has the proper mpdu length set as it is the first
  1070. * msdu of the mpdu. this becomes the parent nbuf and the subsequent
  1071. * nbufs will form the frag_list of the parent nbuf.
  1072. */
  1073. qdf_nbuf_set_rx_chfrag_start(parent, 1);
  1074. last_nbuf = dp_rx_adjust_nbuf_len(parent, &mpdu_len);
  1075. /*
  1076. * HW issue: MSDU cont bit is set but reported MPDU length can fit
  1077. * in to single buffer
  1078. *
  1079. * Increment error stats and avoid SG list creation
  1080. */
  1081. if (last_nbuf) {
  1082. DP_STATS_INC(soc, rx.err.msdu_continuation_err, 1);
  1083. qdf_nbuf_pull_head(parent, RX_PKT_TLVS_LEN);
  1084. return parent;
  1085. }
  1086. /*
  1087. * this is where we set the length of the fragments which are
  1088. * associated to the parent nbuf. We iterate through the frag_list
  1089. * till we hit the last_nbuf of the list.
  1090. */
  1091. do {
  1092. last_nbuf = dp_rx_adjust_nbuf_len(nbuf, &mpdu_len);
  1093. qdf_nbuf_pull_head(nbuf, RX_PKT_TLVS_LEN);
  1094. frag_list_len += qdf_nbuf_len(nbuf);
  1095. if (last_nbuf) {
  1096. next = nbuf->next;
  1097. nbuf->next = NULL;
  1098. break;
  1099. }
  1100. nbuf = nbuf->next;
  1101. } while (!last_nbuf);
  1102. qdf_nbuf_set_rx_chfrag_start(nbuf, 0);
  1103. qdf_nbuf_append_ext_list(parent, frag_list, frag_list_len);
  1104. parent->next = next;
  1105. qdf_nbuf_pull_head(parent, RX_PKT_TLVS_LEN);
  1106. return parent;
  1107. }
  1108. #endif /* QCA_HOST_MODE_WIFI_DISABLED */
  1109. #ifdef QCA_PEER_EXT_STATS
  1110. /*
  1111. * dp_rx_compute_tid_delay - Computer per TID delay stats
  1112. * @peer: DP soc context
  1113. * @nbuf: NBuffer
  1114. *
  1115. * Return: Void
  1116. */
  1117. void dp_rx_compute_tid_delay(struct cdp_delay_tid_stats *stats,
  1118. qdf_nbuf_t nbuf)
  1119. {
  1120. struct cdp_delay_rx_stats *rx_delay = &stats->rx_delay;
  1121. uint32_t to_stack = qdf_nbuf_get_timedelta_ms(nbuf);
  1122. dp_hist_update_stats(&rx_delay->to_stack_delay, to_stack);
  1123. }
  1124. #endif /* QCA_PEER_EXT_STATS */
  1125. /**
  1126. * dp_rx_compute_delay() - Compute and fill in all timestamps
  1127. * to pass in correct fields
  1128. *
  1129. * @vdev: pdev handle
  1130. * @tx_desc: tx descriptor
  1131. * @tid: tid value
  1132. * Return: none
  1133. */
  1134. void dp_rx_compute_delay(struct dp_vdev *vdev, qdf_nbuf_t nbuf)
  1135. {
  1136. uint8_t ring_id = QDF_NBUF_CB_RX_CTX_ID(nbuf);
  1137. int64_t current_ts = qdf_ktime_to_ms(qdf_ktime_get());
  1138. uint32_t to_stack = qdf_nbuf_get_timedelta_ms(nbuf);
  1139. uint8_t tid = qdf_nbuf_get_tid_val(nbuf);
  1140. uint32_t interframe_delay =
  1141. (uint32_t)(current_ts - vdev->prev_rx_deliver_tstamp);
  1142. dp_update_delay_stats(vdev->pdev, to_stack, tid,
  1143. CDP_DELAY_STATS_REAP_STACK, ring_id);
  1144. /*
  1145. * Update interframe delay stats calculated at deliver_data_ol point.
  1146. * Value of vdev->prev_rx_deliver_tstamp will be 0 for 1st frame, so
  1147. * interframe delay will not be calculate correctly for 1st frame.
  1148. * On the other side, this will help in avoiding extra per packet check
  1149. * of vdev->prev_rx_deliver_tstamp.
  1150. */
  1151. dp_update_delay_stats(vdev->pdev, interframe_delay, tid,
  1152. CDP_DELAY_STATS_RX_INTERFRAME, ring_id);
  1153. vdev->prev_rx_deliver_tstamp = current_ts;
  1154. }
  1155. /**
  1156. * dp_rx_drop_nbuf_list() - drop an nbuf list
  1157. * @pdev: dp pdev reference
  1158. * @buf_list: buffer list to be dropepd
  1159. *
  1160. * Return: int (number of bufs dropped)
  1161. */
  1162. static inline int dp_rx_drop_nbuf_list(struct dp_pdev *pdev,
  1163. qdf_nbuf_t buf_list)
  1164. {
  1165. struct cdp_tid_rx_stats *stats = NULL;
  1166. uint8_t tid = 0, ring_id = 0;
  1167. int num_dropped = 0;
  1168. qdf_nbuf_t buf, next_buf;
  1169. buf = buf_list;
  1170. while (buf) {
  1171. ring_id = QDF_NBUF_CB_RX_CTX_ID(buf);
  1172. next_buf = qdf_nbuf_queue_next(buf);
  1173. tid = qdf_nbuf_get_tid_val(buf);
  1174. if (qdf_likely(pdev)) {
  1175. stats = &pdev->stats.tid_stats.tid_rx_stats[ring_id][tid];
  1176. stats->fail_cnt[INVALID_PEER_VDEV]++;
  1177. stats->delivered_to_stack--;
  1178. }
  1179. qdf_nbuf_free(buf);
  1180. buf = next_buf;
  1181. num_dropped++;
  1182. }
  1183. return num_dropped;
  1184. }
  1185. #ifdef QCA_SUPPORT_WDS_EXTENDED
  1186. /**
  1187. * dp_rx_wds_ext() - Make different lists for 4-address and 3-address frames
  1188. * @nbuf_head: skb list head
  1189. * @vdev: vdev
  1190. * @peer: peer
  1191. * @peer_id: peer id of new received frame
  1192. * @vdev_id: vdev_id of new received frame
  1193. *
  1194. * Return: true if peer_ids are different.
  1195. */
  1196. static inline bool
  1197. dp_rx_is_list_ready(qdf_nbuf_t nbuf_head,
  1198. struct dp_vdev *vdev,
  1199. struct dp_peer *peer,
  1200. uint16_t peer_id,
  1201. uint8_t vdev_id)
  1202. {
  1203. if (nbuf_head && peer && (peer->peer_id != peer_id))
  1204. return true;
  1205. return false;
  1206. }
  1207. /**
  1208. * dp_rx_deliver_to_stack_ext() - Deliver to netdev per sta
  1209. * @soc: core txrx main context
  1210. * @vdev: vdev
  1211. * @peer: peer
  1212. * @nbuf_head: skb list head
  1213. *
  1214. * Return: true if packet is delivered to netdev per STA.
  1215. */
  1216. static inline bool
  1217. dp_rx_deliver_to_stack_ext(struct dp_soc *soc, struct dp_vdev *vdev,
  1218. struct dp_peer *peer, qdf_nbuf_t nbuf_head)
  1219. {
  1220. /*
  1221. * When extended WDS is disabled, frames are sent to AP netdevice.
  1222. */
  1223. if (qdf_likely(!vdev->wds_ext_enabled))
  1224. return false;
  1225. /*
  1226. * There can be 2 cases:
  1227. * 1. Send frame to parent netdev if its not for netdev per STA
  1228. * 2. If frame is meant for netdev per STA:
  1229. * a. Send frame to appropriate netdev using registered fp.
  1230. * b. If fp is NULL, drop the frames.
  1231. */
  1232. if (!peer->wds_ext.init)
  1233. return false;
  1234. if (peer->osif_rx)
  1235. peer->osif_rx(peer->wds_ext.osif_peer, nbuf_head);
  1236. else
  1237. dp_rx_drop_nbuf_list(vdev->pdev, nbuf_head);
  1238. return true;
  1239. }
  1240. #else
  1241. static inline bool
  1242. dp_rx_is_list_ready(qdf_nbuf_t nbuf_head,
  1243. struct dp_vdev *vdev,
  1244. struct dp_peer *peer,
  1245. uint16_t peer_id,
  1246. uint8_t vdev_id)
  1247. {
  1248. if (nbuf_head && vdev && (vdev->vdev_id != vdev_id))
  1249. return true;
  1250. return false;
  1251. }
  1252. static inline bool
  1253. dp_rx_deliver_to_stack_ext(struct dp_soc *soc, struct dp_vdev *vdev,
  1254. struct dp_peer *peer, qdf_nbuf_t nbuf_head)
  1255. {
  1256. return false;
  1257. }
  1258. #endif
  1259. #ifdef PEER_CACHE_RX_PKTS
  1260. /**
  1261. * dp_rx_flush_rx_cached() - flush cached rx frames
  1262. * @peer: peer
  1263. * @drop: flag to drop frames or forward to net stack
  1264. *
  1265. * Return: None
  1266. */
  1267. void dp_rx_flush_rx_cached(struct dp_peer *peer, bool drop)
  1268. {
  1269. struct dp_peer_cached_bufq *bufqi;
  1270. struct dp_rx_cached_buf *cache_buf = NULL;
  1271. ol_txrx_rx_fp data_rx = NULL;
  1272. int num_buff_elem;
  1273. QDF_STATUS status;
  1274. if (qdf_atomic_inc_return(&peer->flush_in_progress) > 1) {
  1275. qdf_atomic_dec(&peer->flush_in_progress);
  1276. return;
  1277. }
  1278. qdf_spin_lock_bh(&peer->peer_info_lock);
  1279. if (peer->state >= OL_TXRX_PEER_STATE_CONN && peer->vdev->osif_rx)
  1280. data_rx = peer->vdev->osif_rx;
  1281. else
  1282. drop = true;
  1283. qdf_spin_unlock_bh(&peer->peer_info_lock);
  1284. bufqi = &peer->bufq_info;
  1285. qdf_spin_lock_bh(&bufqi->bufq_lock);
  1286. qdf_list_remove_front(&bufqi->cached_bufq,
  1287. (qdf_list_node_t **)&cache_buf);
  1288. while (cache_buf) {
  1289. num_buff_elem = QDF_NBUF_CB_RX_NUM_ELEMENTS_IN_LIST(
  1290. cache_buf->buf);
  1291. bufqi->entries -= num_buff_elem;
  1292. qdf_spin_unlock_bh(&bufqi->bufq_lock);
  1293. if (drop) {
  1294. bufqi->dropped = dp_rx_drop_nbuf_list(peer->vdev->pdev,
  1295. cache_buf->buf);
  1296. } else {
  1297. /* Flush the cached frames to OSIF DEV */
  1298. status = data_rx(peer->vdev->osif_vdev, cache_buf->buf);
  1299. if (status != QDF_STATUS_SUCCESS)
  1300. bufqi->dropped = dp_rx_drop_nbuf_list(
  1301. peer->vdev->pdev,
  1302. cache_buf->buf);
  1303. }
  1304. qdf_mem_free(cache_buf);
  1305. cache_buf = NULL;
  1306. qdf_spin_lock_bh(&bufqi->bufq_lock);
  1307. qdf_list_remove_front(&bufqi->cached_bufq,
  1308. (qdf_list_node_t **)&cache_buf);
  1309. }
  1310. qdf_spin_unlock_bh(&bufqi->bufq_lock);
  1311. qdf_atomic_dec(&peer->flush_in_progress);
  1312. }
  1313. /**
  1314. * dp_rx_enqueue_rx() - cache rx frames
  1315. * @peer: peer
  1316. * @rx_buf_list: cache buffer list
  1317. *
  1318. * Return: None
  1319. */
  1320. static QDF_STATUS
  1321. dp_rx_enqueue_rx(struct dp_peer *peer, qdf_nbuf_t rx_buf_list)
  1322. {
  1323. struct dp_rx_cached_buf *cache_buf;
  1324. struct dp_peer_cached_bufq *bufqi = &peer->bufq_info;
  1325. int num_buff_elem;
  1326. dp_debug_rl("bufq->curr %d bufq->drops %d", bufqi->entries,
  1327. bufqi->dropped);
  1328. if (!peer->valid) {
  1329. bufqi->dropped = dp_rx_drop_nbuf_list(peer->vdev->pdev,
  1330. rx_buf_list);
  1331. return QDF_STATUS_E_INVAL;
  1332. }
  1333. qdf_spin_lock_bh(&bufqi->bufq_lock);
  1334. if (bufqi->entries >= bufqi->thresh) {
  1335. bufqi->dropped = dp_rx_drop_nbuf_list(peer->vdev->pdev,
  1336. rx_buf_list);
  1337. qdf_spin_unlock_bh(&bufqi->bufq_lock);
  1338. return QDF_STATUS_E_RESOURCES;
  1339. }
  1340. qdf_spin_unlock_bh(&bufqi->bufq_lock);
  1341. num_buff_elem = QDF_NBUF_CB_RX_NUM_ELEMENTS_IN_LIST(rx_buf_list);
  1342. cache_buf = qdf_mem_malloc_atomic(sizeof(*cache_buf));
  1343. if (!cache_buf) {
  1344. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1345. "Failed to allocate buf to cache rx frames");
  1346. bufqi->dropped = dp_rx_drop_nbuf_list(peer->vdev->pdev,
  1347. rx_buf_list);
  1348. return QDF_STATUS_E_NOMEM;
  1349. }
  1350. cache_buf->buf = rx_buf_list;
  1351. qdf_spin_lock_bh(&bufqi->bufq_lock);
  1352. qdf_list_insert_back(&bufqi->cached_bufq,
  1353. &cache_buf->node);
  1354. bufqi->entries += num_buff_elem;
  1355. qdf_spin_unlock_bh(&bufqi->bufq_lock);
  1356. return QDF_STATUS_SUCCESS;
  1357. }
  1358. static inline
  1359. bool dp_rx_is_peer_cache_bufq_supported(void)
  1360. {
  1361. return true;
  1362. }
  1363. #else
  1364. static inline
  1365. bool dp_rx_is_peer_cache_bufq_supported(void)
  1366. {
  1367. return false;
  1368. }
  1369. static inline QDF_STATUS
  1370. dp_rx_enqueue_rx(struct dp_peer *peer, qdf_nbuf_t rx_buf_list)
  1371. {
  1372. return QDF_STATUS_SUCCESS;
  1373. }
  1374. #endif
  1375. #ifndef DELIVERY_TO_STACK_STATUS_CHECK
  1376. /**
  1377. * dp_rx_check_delivery_to_stack() - Deliver pkts to network
  1378. * using the appropriate call back functions.
  1379. * @soc: soc
  1380. * @vdev: vdev
  1381. * @peer: peer
  1382. * @nbuf_head: skb list head
  1383. * @nbuf_tail: skb list tail
  1384. *
  1385. * Return: None
  1386. */
  1387. static void dp_rx_check_delivery_to_stack(struct dp_soc *soc,
  1388. struct dp_vdev *vdev,
  1389. struct dp_peer *peer,
  1390. qdf_nbuf_t nbuf_head)
  1391. {
  1392. if (qdf_unlikely(dp_rx_deliver_to_stack_ext(soc, vdev,
  1393. peer, nbuf_head)))
  1394. return;
  1395. /* Function pointer initialized only when FISA is enabled */
  1396. if (vdev->osif_fisa_rx)
  1397. /* on failure send it via regular path */
  1398. vdev->osif_fisa_rx(soc, vdev, nbuf_head);
  1399. else
  1400. vdev->osif_rx(vdev->osif_vdev, nbuf_head);
  1401. }
  1402. #else
  1403. /**
  1404. * dp_rx_check_delivery_to_stack() - Deliver pkts to network
  1405. * using the appropriate call back functions.
  1406. * @soc: soc
  1407. * @vdev: vdev
  1408. * @peer: peer
  1409. * @nbuf_head: skb list head
  1410. * @nbuf_tail: skb list tail
  1411. *
  1412. * Check the return status of the call back function and drop
  1413. * the packets if the return status indicates a failure.
  1414. *
  1415. * Return: None
  1416. */
  1417. static void dp_rx_check_delivery_to_stack(struct dp_soc *soc,
  1418. struct dp_vdev *vdev,
  1419. struct dp_peer *peer,
  1420. qdf_nbuf_t nbuf_head)
  1421. {
  1422. int num_nbuf = 0;
  1423. QDF_STATUS ret_val = QDF_STATUS_E_FAILURE;
  1424. /* Function pointer initialized only when FISA is enabled */
  1425. if (vdev->osif_fisa_rx)
  1426. /* on failure send it via regular path */
  1427. ret_val = vdev->osif_fisa_rx(soc, vdev, nbuf_head);
  1428. else if (vdev->osif_rx)
  1429. ret_val = vdev->osif_rx(vdev->osif_vdev, nbuf_head);
  1430. if (!QDF_IS_STATUS_SUCCESS(ret_val)) {
  1431. num_nbuf = dp_rx_drop_nbuf_list(vdev->pdev, nbuf_head);
  1432. DP_STATS_INC(soc, rx.err.rejected, num_nbuf);
  1433. if (peer)
  1434. DP_STATS_DEC(peer, rx.to_stack.num, num_nbuf);
  1435. }
  1436. }
  1437. #endif /* ifdef DELIVERY_TO_STACK_STATUS_CHECK */
  1438. void dp_rx_deliver_to_stack(struct dp_soc *soc,
  1439. struct dp_vdev *vdev,
  1440. struct dp_peer *peer,
  1441. qdf_nbuf_t nbuf_head,
  1442. qdf_nbuf_t nbuf_tail)
  1443. {
  1444. int num_nbuf = 0;
  1445. if (qdf_unlikely(!vdev || vdev->delete.pending)) {
  1446. num_nbuf = dp_rx_drop_nbuf_list(NULL, nbuf_head);
  1447. /*
  1448. * This is a special case where vdev is invalid,
  1449. * so we cannot know the pdev to which this packet
  1450. * belonged. Hence we update the soc rx error stats.
  1451. */
  1452. DP_STATS_INC(soc, rx.err.invalid_vdev, num_nbuf);
  1453. return;
  1454. }
  1455. /*
  1456. * highly unlikely to have a vdev without a registered rx
  1457. * callback function. if so let us free the nbuf_list.
  1458. */
  1459. if (qdf_unlikely(!vdev->osif_rx)) {
  1460. if (peer && dp_rx_is_peer_cache_bufq_supported()) {
  1461. dp_rx_enqueue_rx(peer, nbuf_head);
  1462. } else {
  1463. num_nbuf = dp_rx_drop_nbuf_list(vdev->pdev,
  1464. nbuf_head);
  1465. DP_STATS_DEC(peer, rx.to_stack.num, num_nbuf);
  1466. }
  1467. return;
  1468. }
  1469. if (qdf_unlikely(vdev->rx_decap_type == htt_cmn_pkt_type_raw) ||
  1470. (vdev->rx_decap_type == htt_cmn_pkt_type_native_wifi)) {
  1471. vdev->osif_rsim_rx_decap(vdev->osif_vdev, &nbuf_head,
  1472. &nbuf_tail, peer->mac_addr.raw);
  1473. }
  1474. dp_rx_check_delivery_to_stack(soc, vdev, peer, nbuf_head);
  1475. }
  1476. #ifndef QCA_HOST_MODE_WIFI_DISABLED
  1477. /**
  1478. * dp_rx_cksum_offload() - set the nbuf checksum as defined by hardware.
  1479. * @nbuf: pointer to the first msdu of an amsdu.
  1480. * @rx_tlv_hdr: pointer to the start of RX TLV headers.
  1481. *
  1482. * The ipsumed field of the skb is set based on whether HW validated the
  1483. * IP/TCP/UDP checksum.
  1484. *
  1485. * Return: void
  1486. */
  1487. static inline void dp_rx_cksum_offload(struct dp_pdev *pdev,
  1488. qdf_nbuf_t nbuf,
  1489. uint8_t *rx_tlv_hdr)
  1490. {
  1491. qdf_nbuf_rx_cksum_t cksum = {0};
  1492. bool ip_csum_err = hal_rx_attn_ip_cksum_fail_get(rx_tlv_hdr);
  1493. bool tcp_udp_csum_er = hal_rx_attn_tcp_udp_cksum_fail_get(rx_tlv_hdr);
  1494. if (qdf_likely(!ip_csum_err && !tcp_udp_csum_er)) {
  1495. cksum.l4_result = QDF_NBUF_RX_CKSUM_TCP_UDP_UNNECESSARY;
  1496. qdf_nbuf_set_rx_cksum(nbuf, &cksum);
  1497. } else {
  1498. DP_STATS_INCC(pdev, err.ip_csum_err, 1, ip_csum_err);
  1499. DP_STATS_INCC(pdev, err.tcp_udp_csum_err, 1, tcp_udp_csum_er);
  1500. }
  1501. }
  1502. #ifdef VDEV_PEER_PROTOCOL_COUNT
  1503. #define dp_rx_msdu_stats_update_prot_cnts(vdev_hdl, nbuf, peer) \
  1504. { \
  1505. qdf_nbuf_t nbuf_local; \
  1506. struct dp_peer *peer_local; \
  1507. struct dp_vdev *vdev_local = vdev_hdl; \
  1508. do { \
  1509. if (qdf_likely(!((vdev_local)->peer_protocol_count_track))) \
  1510. break; \
  1511. nbuf_local = nbuf; \
  1512. peer_local = peer; \
  1513. if (qdf_unlikely(qdf_nbuf_is_frag((nbuf_local)))) \
  1514. break; \
  1515. else if (qdf_unlikely(qdf_nbuf_is_raw_frame((nbuf_local)))) \
  1516. break; \
  1517. dp_vdev_peer_stats_update_protocol_cnt((vdev_local), \
  1518. (nbuf_local), \
  1519. (peer_local), 0, 1); \
  1520. } while (0); \
  1521. }
  1522. #else
  1523. #define dp_rx_msdu_stats_update_prot_cnts(vdev_hdl, nbuf, peer)
  1524. #endif
  1525. /**
  1526. * dp_rx_msdu_stats_update() - update per msdu stats.
  1527. * @soc: core txrx main context
  1528. * @nbuf: pointer to the first msdu of an amsdu.
  1529. * @rx_tlv_hdr: pointer to the start of RX TLV headers.
  1530. * @peer: pointer to the peer object.
  1531. * @ring_id: reo dest ring number on which pkt is reaped.
  1532. * @tid_stats: per tid rx stats.
  1533. *
  1534. * update all the per msdu stats for that nbuf.
  1535. * Return: void
  1536. */
  1537. static void dp_rx_msdu_stats_update(struct dp_soc *soc,
  1538. qdf_nbuf_t nbuf,
  1539. uint8_t *rx_tlv_hdr,
  1540. struct dp_peer *peer,
  1541. uint8_t ring_id,
  1542. struct cdp_tid_rx_stats *tid_stats)
  1543. {
  1544. bool is_ampdu, is_not_amsdu;
  1545. uint32_t sgi, mcs, tid, nss, bw, reception_type, pkt_type;
  1546. struct dp_vdev *vdev = peer->vdev;
  1547. qdf_ether_header_t *eh;
  1548. uint16_t msdu_len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
  1549. dp_rx_msdu_stats_update_prot_cnts(vdev, nbuf, peer);
  1550. is_not_amsdu = qdf_nbuf_is_rx_chfrag_start(nbuf) &
  1551. qdf_nbuf_is_rx_chfrag_end(nbuf);
  1552. DP_STATS_INC_PKT(peer, rx.rcvd_reo[ring_id], 1, msdu_len);
  1553. DP_STATS_INCC(peer, rx.non_amsdu_cnt, 1, is_not_amsdu);
  1554. DP_STATS_INCC(peer, rx.amsdu_cnt, 1, !is_not_amsdu);
  1555. DP_STATS_INCC(peer, rx.rx_retries, 1, qdf_nbuf_is_rx_retry_flag(nbuf));
  1556. tid_stats->msdu_cnt++;
  1557. if (qdf_unlikely(qdf_nbuf_is_da_mcbc(nbuf) &&
  1558. (vdev->rx_decap_type == htt_cmn_pkt_type_ethernet))) {
  1559. eh = (qdf_ether_header_t *)qdf_nbuf_data(nbuf);
  1560. DP_STATS_INC_PKT(peer, rx.multicast, 1, msdu_len);
  1561. tid_stats->mcast_msdu_cnt++;
  1562. if (QDF_IS_ADDR_BROADCAST(eh->ether_dhost)) {
  1563. DP_STATS_INC_PKT(peer, rx.bcast, 1, msdu_len);
  1564. tid_stats->bcast_msdu_cnt++;
  1565. }
  1566. }
  1567. /*
  1568. * currently we can return from here as we have similar stats
  1569. * updated at per ppdu level instead of msdu level
  1570. */
  1571. if (!soc->process_rx_status)
  1572. return;
  1573. is_ampdu = hal_rx_mpdu_info_ampdu_flag_get(rx_tlv_hdr);
  1574. DP_STATS_INCC(peer, rx.ampdu_cnt, 1, is_ampdu);
  1575. DP_STATS_INCC(peer, rx.non_ampdu_cnt, 1, !(is_ampdu));
  1576. sgi = hal_rx_msdu_start_sgi_get(rx_tlv_hdr);
  1577. mcs = hal_rx_msdu_start_rate_mcs_get(rx_tlv_hdr);
  1578. tid = qdf_nbuf_get_tid_val(nbuf);
  1579. bw = hal_rx_msdu_start_bw_get(rx_tlv_hdr);
  1580. reception_type = hal_rx_msdu_start_reception_type_get(soc->hal_soc,
  1581. rx_tlv_hdr);
  1582. nss = hal_rx_msdu_start_nss_get(soc->hal_soc, rx_tlv_hdr);
  1583. pkt_type = hal_rx_msdu_start_get_pkt_type(rx_tlv_hdr);
  1584. DP_STATS_INCC(peer, rx.rx_mpdu_cnt[mcs], 1,
  1585. ((mcs < MAX_MCS) && QDF_NBUF_CB_RX_CHFRAG_START(nbuf)));
  1586. DP_STATS_INCC(peer, rx.rx_mpdu_cnt[MAX_MCS - 1], 1,
  1587. ((mcs >= MAX_MCS) && QDF_NBUF_CB_RX_CHFRAG_START(nbuf)));
  1588. DP_STATS_INC(peer, rx.bw[bw], 1);
  1589. /*
  1590. * only if nss > 0 and pkt_type is 11N/AC/AX,
  1591. * then increase index [nss - 1] in array counter.
  1592. */
  1593. if (nss > 0 && (pkt_type == DOT11_N ||
  1594. pkt_type == DOT11_AC ||
  1595. pkt_type == DOT11_AX))
  1596. DP_STATS_INC(peer, rx.nss[nss - 1], 1);
  1597. DP_STATS_INC(peer, rx.sgi_count[sgi], 1);
  1598. DP_STATS_INCC(peer, rx.err.mic_err, 1,
  1599. hal_rx_mpdu_end_mic_err_get(rx_tlv_hdr));
  1600. DP_STATS_INCC(peer, rx.err.decrypt_err, 1,
  1601. hal_rx_mpdu_end_decrypt_err_get(rx_tlv_hdr));
  1602. DP_STATS_INC(peer, rx.wme_ac_type[TID_TO_WME_AC(tid)], 1);
  1603. DP_STATS_INC(peer, rx.reception_type[reception_type], 1);
  1604. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[MAX_MCS - 1], 1,
  1605. ((mcs >= MAX_MCS_11A) && (pkt_type == DOT11_A)));
  1606. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[mcs], 1,
  1607. ((mcs <= MAX_MCS_11A) && (pkt_type == DOT11_A)));
  1608. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[MAX_MCS - 1], 1,
  1609. ((mcs >= MAX_MCS_11B) && (pkt_type == DOT11_B)));
  1610. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[mcs], 1,
  1611. ((mcs <= MAX_MCS_11B) && (pkt_type == DOT11_B)));
  1612. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[MAX_MCS - 1], 1,
  1613. ((mcs >= MAX_MCS_11A) && (pkt_type == DOT11_N)));
  1614. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[mcs], 1,
  1615. ((mcs <= MAX_MCS_11A) && (pkt_type == DOT11_N)));
  1616. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[MAX_MCS - 1], 1,
  1617. ((mcs >= MAX_MCS_11AC) && (pkt_type == DOT11_AC)));
  1618. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[mcs], 1,
  1619. ((mcs <= MAX_MCS_11AC) && (pkt_type == DOT11_AC)));
  1620. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[MAX_MCS - 1], 1,
  1621. ((mcs >= MAX_MCS) && (pkt_type == DOT11_AX)));
  1622. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[mcs], 1,
  1623. ((mcs < MAX_MCS) && (pkt_type == DOT11_AX)));
  1624. if ((soc->process_rx_status) &&
  1625. hal_rx_attn_first_mpdu_get(rx_tlv_hdr)) {
  1626. #if defined(FEATURE_PERPKT_INFO) && WDI_EVENT_ENABLE
  1627. if (!vdev->pdev)
  1628. return;
  1629. dp_wdi_event_handler(WDI_EVENT_UPDATE_DP_STATS, vdev->pdev->soc,
  1630. &peer->stats, peer->peer_id,
  1631. UPDATE_PEER_STATS,
  1632. vdev->pdev->pdev_id);
  1633. #endif
  1634. }
  1635. }
  1636. static inline bool is_sa_da_idx_valid(struct dp_soc *soc,
  1637. uint8_t *rx_tlv_hdr,
  1638. qdf_nbuf_t nbuf,
  1639. struct hal_rx_msdu_metadata msdu_info)
  1640. {
  1641. if ((qdf_nbuf_is_sa_valid(nbuf) &&
  1642. (msdu_info.sa_idx > wlan_cfg_get_max_ast_idx(soc->wlan_cfg_ctx))) ||
  1643. (!qdf_nbuf_is_da_mcbc(nbuf) &&
  1644. qdf_nbuf_is_da_valid(nbuf) &&
  1645. (msdu_info.da_idx > wlan_cfg_get_max_ast_idx(soc->wlan_cfg_ctx))))
  1646. return false;
  1647. return true;
  1648. }
  1649. #ifndef WDS_VENDOR_EXTENSION
  1650. int dp_wds_rx_policy_check(uint8_t *rx_tlv_hdr,
  1651. struct dp_vdev *vdev,
  1652. struct dp_peer *peer)
  1653. {
  1654. return 1;
  1655. }
  1656. #endif
  1657. #ifdef RX_DESC_DEBUG_CHECK
  1658. /**
  1659. * dp_rx_desc_nbuf_sanity_check - Add sanity check to catch REO rx_desc paddr
  1660. * corruption
  1661. *
  1662. * @ring_desc: REO ring descriptor
  1663. * @rx_desc: Rx descriptor
  1664. *
  1665. * Return: NONE
  1666. */
  1667. static inline
  1668. QDF_STATUS dp_rx_desc_nbuf_sanity_check(hal_ring_desc_t ring_desc,
  1669. struct dp_rx_desc *rx_desc)
  1670. {
  1671. struct hal_buf_info hbi;
  1672. hal_rx_reo_buf_paddr_get(ring_desc, &hbi);
  1673. /* Sanity check for possible buffer paddr corruption */
  1674. if (dp_rx_desc_paddr_sanity_check(rx_desc, (&hbi)->paddr))
  1675. return QDF_STATUS_SUCCESS;
  1676. return QDF_STATUS_E_FAILURE;
  1677. }
  1678. #else
  1679. static inline
  1680. QDF_STATUS dp_rx_desc_nbuf_sanity_check(hal_ring_desc_t ring_desc,
  1681. struct dp_rx_desc *rx_desc)
  1682. {
  1683. return QDF_STATUS_SUCCESS;
  1684. }
  1685. #endif
  1686. #ifdef WLAN_FEATURE_RX_SOFTIRQ_TIME_LIMIT
  1687. static inline
  1688. bool dp_rx_reap_loop_pkt_limit_hit(struct dp_soc *soc, int num_reaped)
  1689. {
  1690. bool limit_hit = false;
  1691. struct wlan_cfg_dp_soc_ctxt *cfg = soc->wlan_cfg_ctx;
  1692. limit_hit =
  1693. (num_reaped >= cfg->rx_reap_loop_pkt_limit) ? true : false;
  1694. if (limit_hit)
  1695. DP_STATS_INC(soc, rx.reap_loop_pkt_limit_hit, 1)
  1696. return limit_hit;
  1697. }
  1698. static inline bool dp_rx_enable_eol_data_check(struct dp_soc *soc)
  1699. {
  1700. return soc->wlan_cfg_ctx->rx_enable_eol_data_check;
  1701. }
  1702. #else
  1703. static inline
  1704. bool dp_rx_reap_loop_pkt_limit_hit(struct dp_soc *soc, int num_reaped)
  1705. {
  1706. return false;
  1707. }
  1708. static inline bool dp_rx_enable_eol_data_check(struct dp_soc *soc)
  1709. {
  1710. return false;
  1711. }
  1712. #endif /* WLAN_FEATURE_RX_SOFTIRQ_TIME_LIMIT */
  1713. #ifdef DP_RX_PKT_NO_PEER_DELIVER
  1714. /**
  1715. * dp_rx_deliver_to_stack_no_peer() - try deliver rx data even if
  1716. * no corresbonding peer found
  1717. * @soc: core txrx main context
  1718. * @nbuf: pkt skb pointer
  1719. *
  1720. * This function will try to deliver some RX special frames to stack
  1721. * even there is no peer matched found. for instance, LFR case, some
  1722. * eapol data will be sent to host before peer_map done.
  1723. *
  1724. * Return: None
  1725. */
  1726. static
  1727. void dp_rx_deliver_to_stack_no_peer(struct dp_soc *soc, qdf_nbuf_t nbuf)
  1728. {
  1729. uint16_t peer_id;
  1730. uint8_t vdev_id;
  1731. struct dp_vdev *vdev = NULL;
  1732. uint32_t l2_hdr_offset = 0;
  1733. uint16_t msdu_len = 0;
  1734. uint32_t pkt_len = 0;
  1735. uint8_t *rx_tlv_hdr;
  1736. uint32_t frame_mask = FRAME_MASK_IPV4_ARP | FRAME_MASK_IPV4_DHCP |
  1737. FRAME_MASK_IPV4_EAPOL | FRAME_MASK_IPV6_DHCP;
  1738. peer_id = QDF_NBUF_CB_RX_PEER_ID(nbuf);
  1739. if (peer_id > soc->max_peers)
  1740. goto deliver_fail;
  1741. vdev_id = QDF_NBUF_CB_RX_VDEV_ID(nbuf);
  1742. vdev = dp_vdev_get_ref_by_id(soc, vdev_id, DP_MOD_ID_RX);
  1743. if (!vdev || vdev->delete.pending || !vdev->osif_rx)
  1744. goto deliver_fail;
  1745. if (qdf_unlikely(qdf_nbuf_is_frag(nbuf)))
  1746. goto deliver_fail;
  1747. rx_tlv_hdr = qdf_nbuf_data(nbuf);
  1748. l2_hdr_offset =
  1749. hal_rx_msdu_end_l3_hdr_padding_get(soc->hal_soc, rx_tlv_hdr);
  1750. msdu_len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
  1751. pkt_len = msdu_len + l2_hdr_offset + RX_PKT_TLVS_LEN;
  1752. QDF_NBUF_CB_RX_NUM_ELEMENTS_IN_LIST(nbuf) = 1;
  1753. qdf_nbuf_set_pktlen(nbuf, pkt_len);
  1754. qdf_nbuf_pull_head(nbuf,
  1755. RX_PKT_TLVS_LEN +
  1756. l2_hdr_offset);
  1757. if (dp_rx_is_special_frame(nbuf, frame_mask)) {
  1758. qdf_nbuf_set_exc_frame(nbuf, 1);
  1759. if (QDF_STATUS_SUCCESS !=
  1760. vdev->osif_rx(vdev->osif_vdev, nbuf))
  1761. goto deliver_fail;
  1762. DP_STATS_INC(soc, rx.err.pkt_delivered_no_peer, 1);
  1763. dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_RX);
  1764. return;
  1765. }
  1766. deliver_fail:
  1767. DP_STATS_INC_PKT(soc, rx.err.rx_invalid_peer, 1,
  1768. QDF_NBUF_CB_RX_PKT_LEN(nbuf));
  1769. qdf_nbuf_free(nbuf);
  1770. if (vdev)
  1771. dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_RX);
  1772. }
  1773. #else
  1774. static inline
  1775. void dp_rx_deliver_to_stack_no_peer(struct dp_soc *soc, qdf_nbuf_t nbuf)
  1776. {
  1777. DP_STATS_INC_PKT(soc, rx.err.rx_invalid_peer, 1,
  1778. QDF_NBUF_CB_RX_PKT_LEN(nbuf));
  1779. qdf_nbuf_free(nbuf);
  1780. }
  1781. #endif
  1782. /**
  1783. * dp_rx_srng_get_num_pending() - get number of pending entries
  1784. * @hal_soc: hal soc opaque pointer
  1785. * @hal_ring: opaque pointer to the HAL Rx Ring
  1786. * @num_entries: number of entries in the hal_ring.
  1787. * @near_full: pointer to a boolean. This is set if ring is near full.
  1788. *
  1789. * The function returns the number of entries in a destination ring which are
  1790. * yet to be reaped. The function also checks if the ring is near full.
  1791. * If more than half of the ring needs to be reaped, the ring is considered
  1792. * approaching full.
  1793. * The function useses hal_srng_dst_num_valid_locked to get the number of valid
  1794. * entries. It should not be called within a SRNG lock. HW pointer value is
  1795. * synced into cached_hp.
  1796. *
  1797. * Return: Number of pending entries if any
  1798. */
  1799. static
  1800. uint32_t dp_rx_srng_get_num_pending(hal_soc_handle_t hal_soc,
  1801. hal_ring_handle_t hal_ring_hdl,
  1802. uint32_t num_entries,
  1803. bool *near_full)
  1804. {
  1805. uint32_t num_pending = 0;
  1806. num_pending = hal_srng_dst_num_valid_locked(hal_soc,
  1807. hal_ring_hdl,
  1808. true);
  1809. if (num_entries && (num_pending >= num_entries >> 1))
  1810. *near_full = true;
  1811. else
  1812. *near_full = false;
  1813. return num_pending;
  1814. }
  1815. #endif /* QCA_HOST_MODE_WIFI_DISABLED */
  1816. #ifdef WLAN_SUPPORT_RX_FISA
  1817. void dp_rx_skip_tlvs(qdf_nbuf_t nbuf, uint32_t l3_padding)
  1818. {
  1819. QDF_NBUF_CB_RX_PACKET_L3_HDR_PAD(nbuf) = l3_padding;
  1820. qdf_nbuf_pull_head(nbuf, l3_padding + RX_PKT_TLVS_LEN);
  1821. }
  1822. /**
  1823. * dp_rx_set_hdr_pad() - set l3 padding in nbuf cb
  1824. * @nbuf: pkt skb pointer
  1825. * @l3_padding: l3 padding
  1826. *
  1827. * Return: None
  1828. */
  1829. static inline
  1830. void dp_rx_set_hdr_pad(qdf_nbuf_t nbuf, uint32_t l3_padding)
  1831. {
  1832. QDF_NBUF_CB_RX_PACKET_L3_HDR_PAD(nbuf) = l3_padding;
  1833. }
  1834. #else
  1835. void dp_rx_skip_tlvs(qdf_nbuf_t nbuf, uint32_t l3_padding)
  1836. {
  1837. qdf_nbuf_pull_head(nbuf, l3_padding + RX_PKT_TLVS_LEN);
  1838. }
  1839. static inline
  1840. void dp_rx_set_hdr_pad(qdf_nbuf_t nbuf, uint32_t l3_padding)
  1841. {
  1842. }
  1843. #endif
  1844. #ifndef QCA_HOST_MODE_WIFI_DISABLED
  1845. #ifdef DP_RX_DROP_RAW_FRM
  1846. /**
  1847. * dp_rx_is_raw_frame_dropped() - if raw frame nbuf, free and drop
  1848. * @nbuf: pkt skb pointer
  1849. *
  1850. * Return: true - raw frame, dropped
  1851. * false - not raw frame, do nothing
  1852. */
  1853. static inline
  1854. bool dp_rx_is_raw_frame_dropped(qdf_nbuf_t nbuf)
  1855. {
  1856. if (qdf_nbuf_is_raw_frame(nbuf)) {
  1857. qdf_nbuf_free(nbuf);
  1858. return true;
  1859. }
  1860. return false;
  1861. }
  1862. #else
  1863. static inline
  1864. bool dp_rx_is_raw_frame_dropped(qdf_nbuf_t nbuf)
  1865. {
  1866. return false;
  1867. }
  1868. #endif
  1869. #ifdef WLAN_FEATURE_DP_RX_RING_HISTORY
  1870. /**
  1871. * dp_rx_ring_record_entry() - Record an entry into the rx ring history.
  1872. * @soc: Datapath soc structure
  1873. * @ring_num: REO ring number
  1874. * @ring_desc: REO ring descriptor
  1875. *
  1876. * Returns: None
  1877. */
  1878. static inline void
  1879. dp_rx_ring_record_entry(struct dp_soc *soc, uint8_t ring_num,
  1880. hal_ring_desc_t ring_desc)
  1881. {
  1882. struct dp_buf_info_record *record;
  1883. uint8_t rbm;
  1884. struct hal_buf_info hbi;
  1885. uint32_t idx;
  1886. if (qdf_unlikely(!soc->rx_ring_history[ring_num]))
  1887. return;
  1888. hal_rx_reo_buf_paddr_get(ring_desc, &hbi);
  1889. rbm = hal_rx_ret_buf_manager_get(ring_desc);
  1890. idx = dp_history_get_next_index(&soc->rx_ring_history[ring_num]->index,
  1891. DP_RX_HIST_MAX);
  1892. /* No NULL check needed for record since its an array */
  1893. record = &soc->rx_ring_history[ring_num]->entry[idx];
  1894. record->timestamp = qdf_get_log_timestamp();
  1895. record->hbi.paddr = hbi.paddr;
  1896. record->hbi.sw_cookie = hbi.sw_cookie;
  1897. record->hbi.rbm = rbm;
  1898. }
  1899. #else
  1900. static inline void
  1901. dp_rx_ring_record_entry(struct dp_soc *soc, uint8_t ring_num,
  1902. hal_ring_desc_t ring_desc)
  1903. {
  1904. }
  1905. #endif
  1906. #ifdef WLAN_DP_FEATURE_SW_LATENCY_MGR
  1907. /**
  1908. * dp_rx_update_stats() - Update soc level rx packet count
  1909. * @soc: DP soc handle
  1910. * @nbuf: nbuf received
  1911. *
  1912. * Returns: none
  1913. */
  1914. static inline void dp_rx_update_stats(struct dp_soc *soc,
  1915. qdf_nbuf_t nbuf)
  1916. {
  1917. DP_STATS_INC_PKT(soc, rx.ingress, 1,
  1918. QDF_NBUF_CB_RX_PKT_LEN(nbuf));
  1919. }
  1920. #else
  1921. static inline void dp_rx_update_stats(struct dp_soc *soc,
  1922. qdf_nbuf_t nbuf)
  1923. {
  1924. }
  1925. #endif
  1926. #ifdef WLAN_FEATURE_PKT_CAPTURE_LITHIUM
  1927. /**
  1928. * dp_rx_deliver_to_pkt_capture() - deliver rx packet to packet capture
  1929. * @soc : dp_soc handle
  1930. * @pdev: dp_pdev handle
  1931. * @peer_id: peer_id of the peer for which completion came
  1932. * @ppdu_id: ppdu_id
  1933. * @netbuf: Buffer pointer
  1934. *
  1935. * This function is used to deliver rx packet to packet capture
  1936. */
  1937. void dp_rx_deliver_to_pkt_capture(struct dp_soc *soc, struct dp_pdev *pdev,
  1938. uint16_t peer_id, uint32_t is_offload,
  1939. qdf_nbuf_t netbuf)
  1940. {
  1941. dp_wdi_event_handler(WDI_EVENT_PKT_CAPTURE_RX_DATA, soc, netbuf,
  1942. peer_id, is_offload, pdev->pdev_id);
  1943. }
  1944. void dp_rx_deliver_to_pkt_capture_no_peer(struct dp_soc *soc, qdf_nbuf_t nbuf,
  1945. uint32_t is_offload)
  1946. {
  1947. uint16_t msdu_len = 0;
  1948. uint16_t peer_id, vdev_id;
  1949. uint32_t pkt_len = 0;
  1950. uint8_t *rx_tlv_hdr;
  1951. uint32_t l2_hdr_offset = 0;
  1952. struct hal_rx_msdu_metadata msdu_metadata;
  1953. peer_id = QDF_NBUF_CB_RX_PEER_ID(nbuf);
  1954. vdev_id = QDF_NBUF_CB_RX_VDEV_ID(nbuf);
  1955. rx_tlv_hdr = qdf_nbuf_data(nbuf);
  1956. hal_rx_msdu_metadata_get(soc->hal_soc, rx_tlv_hdr, &msdu_metadata);
  1957. msdu_len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
  1958. pkt_len = msdu_len + msdu_metadata.l3_hdr_pad +
  1959. RX_PKT_TLVS_LEN;
  1960. l2_hdr_offset =
  1961. hal_rx_msdu_end_l3_hdr_padding_get(soc->hal_soc, rx_tlv_hdr);
  1962. qdf_nbuf_set_pktlen(nbuf, pkt_len);
  1963. dp_rx_skip_tlvs(nbuf, msdu_metadata.l3_hdr_pad);
  1964. dp_wdi_event_handler(WDI_EVENT_PKT_CAPTURE_RX_DATA, soc, nbuf,
  1965. HTT_INVALID_VDEV, is_offload, 0);
  1966. }
  1967. #endif
  1968. /**
  1969. * dp_rx_process() - Brain of the Rx processing functionality
  1970. * Called from the bottom half (tasklet/NET_RX_SOFTIRQ)
  1971. * @int_ctx: per interrupt context
  1972. * @hal_ring: opaque pointer to the HAL Rx Ring, which will be serviced
  1973. * @reo_ring_num: ring number (0, 1, 2 or 3) of the reo ring.
  1974. * @quota: No. of units (packets) that can be serviced in one shot.
  1975. *
  1976. * This function implements the core of Rx functionality. This is
  1977. * expected to handle only non-error frames.
  1978. *
  1979. * Return: uint32_t: No. of elements processed
  1980. */
  1981. uint32_t dp_rx_process(struct dp_intr *int_ctx, hal_ring_handle_t hal_ring_hdl,
  1982. uint8_t reo_ring_num, uint32_t quota)
  1983. {
  1984. hal_ring_desc_t ring_desc;
  1985. hal_soc_handle_t hal_soc;
  1986. struct dp_rx_desc *rx_desc = NULL;
  1987. qdf_nbuf_t nbuf, next;
  1988. bool near_full;
  1989. union dp_rx_desc_list_elem_t *head[MAX_PDEV_CNT];
  1990. union dp_rx_desc_list_elem_t *tail[MAX_PDEV_CNT];
  1991. uint32_t num_pending;
  1992. uint32_t rx_bufs_used = 0, rx_buf_cookie;
  1993. uint16_t msdu_len = 0;
  1994. uint16_t peer_id;
  1995. uint8_t vdev_id;
  1996. struct dp_peer *peer;
  1997. struct dp_vdev *vdev;
  1998. uint32_t pkt_len = 0;
  1999. struct hal_rx_mpdu_desc_info mpdu_desc_info;
  2000. struct hal_rx_msdu_desc_info msdu_desc_info;
  2001. enum hal_reo_error_status error;
  2002. uint32_t peer_mdata;
  2003. uint8_t *rx_tlv_hdr;
  2004. uint32_t rx_bufs_reaped[MAX_PDEV_CNT];
  2005. uint8_t mac_id = 0;
  2006. struct dp_pdev *rx_pdev;
  2007. struct dp_srng *dp_rxdma_srng;
  2008. struct rx_desc_pool *rx_desc_pool;
  2009. struct dp_soc *soc = int_ctx->soc;
  2010. uint8_t ring_id = 0;
  2011. uint8_t core_id = 0;
  2012. struct cdp_tid_rx_stats *tid_stats;
  2013. qdf_nbuf_t nbuf_head;
  2014. qdf_nbuf_t nbuf_tail;
  2015. qdf_nbuf_t deliver_list_head;
  2016. qdf_nbuf_t deliver_list_tail;
  2017. uint32_t num_rx_bufs_reaped = 0;
  2018. uint32_t intr_id;
  2019. struct hif_opaque_softc *scn;
  2020. int32_t tid = 0;
  2021. bool is_prev_msdu_last = true;
  2022. uint32_t num_entries_avail = 0;
  2023. uint32_t rx_ol_pkt_cnt = 0;
  2024. uint32_t num_entries = 0;
  2025. struct hal_rx_msdu_metadata msdu_metadata;
  2026. QDF_STATUS status;
  2027. qdf_nbuf_t ebuf_head;
  2028. qdf_nbuf_t ebuf_tail;
  2029. uint8_t pkt_capture_offload = 0;
  2030. DP_HIST_INIT();
  2031. qdf_assert_always(soc && hal_ring_hdl);
  2032. hal_soc = soc->hal_soc;
  2033. qdf_assert_always(hal_soc);
  2034. scn = soc->hif_handle;
  2035. hif_pm_runtime_mark_dp_rx_busy(scn);
  2036. intr_id = int_ctx->dp_intr_id;
  2037. num_entries = hal_srng_get_num_entries(hal_soc, hal_ring_hdl);
  2038. more_data:
  2039. /* reset local variables here to be re-used in the function */
  2040. nbuf_head = NULL;
  2041. nbuf_tail = NULL;
  2042. deliver_list_head = NULL;
  2043. deliver_list_tail = NULL;
  2044. peer = NULL;
  2045. vdev = NULL;
  2046. num_rx_bufs_reaped = 0;
  2047. ebuf_head = NULL;
  2048. ebuf_tail = NULL;
  2049. qdf_mem_zero(rx_bufs_reaped, sizeof(rx_bufs_reaped));
  2050. qdf_mem_zero(&mpdu_desc_info, sizeof(mpdu_desc_info));
  2051. qdf_mem_zero(&msdu_desc_info, sizeof(msdu_desc_info));
  2052. qdf_mem_zero(head, sizeof(head));
  2053. qdf_mem_zero(tail, sizeof(tail));
  2054. if (qdf_unlikely(dp_rx_srng_access_start(int_ctx, soc, hal_ring_hdl))) {
  2055. /*
  2056. * Need API to convert from hal_ring pointer to
  2057. * Ring Type / Ring Id combo
  2058. */
  2059. DP_STATS_INC(soc, rx.err.hal_ring_access_fail, 1);
  2060. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  2061. FL("HAL RING Access Failed -- %pK"), hal_ring_hdl);
  2062. goto done;
  2063. }
  2064. /*
  2065. * start reaping the buffers from reo ring and queue
  2066. * them in per vdev queue.
  2067. * Process the received pkts in a different per vdev loop.
  2068. */
  2069. while (qdf_likely(quota &&
  2070. (ring_desc = hal_srng_dst_peek(hal_soc,
  2071. hal_ring_hdl)))) {
  2072. error = HAL_RX_ERROR_STATUS_GET(ring_desc);
  2073. ring_id = hal_srng_ring_id_get(hal_ring_hdl);
  2074. if (qdf_unlikely(error == HAL_REO_ERROR_DETECTED)) {
  2075. dp_rx_err("%pK: HAL RING 0x%pK:error %d",
  2076. soc, hal_ring_hdl, error);
  2077. DP_STATS_INC(soc, rx.err.hal_reo_error[ring_id], 1);
  2078. /* Don't know how to deal with this -- assert */
  2079. qdf_assert(0);
  2080. }
  2081. dp_rx_ring_record_entry(soc, reo_ring_num, ring_desc);
  2082. rx_buf_cookie = HAL_RX_REO_BUF_COOKIE_GET(ring_desc);
  2083. status = dp_rx_cookie_check_and_invalidate(ring_desc);
  2084. if (qdf_unlikely(QDF_IS_STATUS_ERROR(status))) {
  2085. DP_STATS_INC(soc, rx.err.stale_cookie, 1);
  2086. break;
  2087. }
  2088. rx_desc = dp_rx_cookie_2_va_rxdma_buf(soc, rx_buf_cookie);
  2089. status = dp_rx_desc_sanity(soc, hal_soc, hal_ring_hdl,
  2090. ring_desc, rx_desc);
  2091. if (QDF_IS_STATUS_ERROR(status)) {
  2092. if (qdf_unlikely(rx_desc && rx_desc->nbuf)) {
  2093. qdf_assert_always(rx_desc->unmapped);
  2094. dp_ipa_handle_rx_buf_smmu_mapping(
  2095. soc,
  2096. rx_desc->nbuf,
  2097. RX_DATA_BUFFER_SIZE,
  2098. false);
  2099. qdf_nbuf_unmap_nbytes_single(
  2100. soc->osdev,
  2101. rx_desc->nbuf,
  2102. QDF_DMA_FROM_DEVICE,
  2103. RX_DATA_BUFFER_SIZE);
  2104. rx_desc->unmapped = 1;
  2105. dp_rx_buffer_pool_nbuf_free(soc, rx_desc->nbuf,
  2106. rx_desc->pool_id);
  2107. dp_rx_add_to_free_desc_list(
  2108. &head[rx_desc->pool_id],
  2109. &tail[rx_desc->pool_id],
  2110. rx_desc);
  2111. }
  2112. hal_srng_dst_get_next(hal_soc, hal_ring_hdl);
  2113. continue;
  2114. }
  2115. /*
  2116. * this is a unlikely scenario where the host is reaping
  2117. * a descriptor which it already reaped just a while ago
  2118. * but is yet to replenish it back to HW.
  2119. * In this case host will dump the last 128 descriptors
  2120. * including the software descriptor rx_desc and assert.
  2121. */
  2122. if (qdf_unlikely(!rx_desc->in_use)) {
  2123. DP_STATS_INC(soc, rx.err.hal_reo_dest_dup, 1);
  2124. dp_info_rl("Reaping rx_desc not in use!");
  2125. dp_rx_dump_info_and_assert(soc, hal_ring_hdl,
  2126. ring_desc, rx_desc);
  2127. /* ignore duplicate RX desc and continue to process */
  2128. /* Pop out the descriptor */
  2129. hal_srng_dst_get_next(hal_soc, hal_ring_hdl);
  2130. continue;
  2131. }
  2132. status = dp_rx_desc_nbuf_sanity_check(ring_desc, rx_desc);
  2133. if (qdf_unlikely(QDF_IS_STATUS_ERROR(status))) {
  2134. DP_STATS_INC(soc, rx.err.nbuf_sanity_fail, 1);
  2135. dp_info_rl("Nbuf sanity check failure!");
  2136. dp_rx_dump_info_and_assert(soc, hal_ring_hdl,
  2137. ring_desc, rx_desc);
  2138. rx_desc->in_err_state = 1;
  2139. hal_srng_dst_get_next(hal_soc, hal_ring_hdl);
  2140. continue;
  2141. }
  2142. if (qdf_unlikely(!dp_rx_desc_check_magic(rx_desc))) {
  2143. dp_err("Invalid rx_desc cookie=%d", rx_buf_cookie);
  2144. DP_STATS_INC(soc, rx.err.rx_desc_invalid_magic, 1);
  2145. dp_rx_dump_info_and_assert(soc, hal_ring_hdl,
  2146. ring_desc, rx_desc);
  2147. }
  2148. /* Get MPDU DESC info */
  2149. hal_rx_mpdu_desc_info_get(ring_desc, &mpdu_desc_info);
  2150. /* Get MSDU DESC info */
  2151. hal_rx_msdu_desc_info_get(ring_desc, &msdu_desc_info);
  2152. if (qdf_unlikely(msdu_desc_info.msdu_flags &
  2153. HAL_MSDU_F_MSDU_CONTINUATION)) {
  2154. /* previous msdu has end bit set, so current one is
  2155. * the new MPDU
  2156. */
  2157. if (is_prev_msdu_last) {
  2158. /* Get number of entries available in HW ring */
  2159. num_entries_avail =
  2160. hal_srng_dst_num_valid(hal_soc,
  2161. hal_ring_hdl, 1);
  2162. /* For new MPDU check if we can read complete
  2163. * MPDU by comparing the number of buffers
  2164. * available and number of buffers needed to
  2165. * reap this MPDU
  2166. */
  2167. if (((msdu_desc_info.msdu_len /
  2168. (RX_DATA_BUFFER_SIZE - RX_PKT_TLVS_LEN) +
  2169. 1)) > num_entries_avail) {
  2170. DP_STATS_INC(
  2171. soc,
  2172. rx.msdu_scatter_wait_break,
  2173. 1);
  2174. break;
  2175. }
  2176. is_prev_msdu_last = false;
  2177. }
  2178. }
  2179. core_id = smp_processor_id();
  2180. DP_STATS_INC(soc, rx.ring_packets[core_id][ring_id], 1);
  2181. if (mpdu_desc_info.mpdu_flags & HAL_MPDU_F_RETRY_BIT)
  2182. qdf_nbuf_set_rx_retry_flag(rx_desc->nbuf, 1);
  2183. if (qdf_unlikely(mpdu_desc_info.mpdu_flags &
  2184. HAL_MPDU_F_RAW_AMPDU))
  2185. qdf_nbuf_set_raw_frame(rx_desc->nbuf, 1);
  2186. if (!is_prev_msdu_last &&
  2187. msdu_desc_info.msdu_flags & HAL_MSDU_F_LAST_MSDU_IN_MPDU)
  2188. is_prev_msdu_last = true;
  2189. /* Pop out the descriptor*/
  2190. hal_srng_dst_get_next(hal_soc, hal_ring_hdl);
  2191. rx_bufs_reaped[rx_desc->pool_id]++;
  2192. peer_mdata = mpdu_desc_info.peer_meta_data;
  2193. QDF_NBUF_CB_RX_PEER_ID(rx_desc->nbuf) =
  2194. DP_PEER_METADATA_PEER_ID_GET(peer_mdata);
  2195. QDF_NBUF_CB_RX_VDEV_ID(rx_desc->nbuf) =
  2196. DP_PEER_METADATA_VDEV_ID_GET(peer_mdata);
  2197. /* to indicate whether this msdu is rx offload */
  2198. pkt_capture_offload =
  2199. DP_PEER_METADATA_OFFLOAD_GET(peer_mdata);
  2200. /*
  2201. * save msdu flags first, last and continuation msdu in
  2202. * nbuf->cb, also save mcbc, is_da_valid, is_sa_valid and
  2203. * length to nbuf->cb. This ensures the info required for
  2204. * per pkt processing is always in the same cache line.
  2205. * This helps in improving throughput for smaller pkt
  2206. * sizes.
  2207. */
  2208. if (msdu_desc_info.msdu_flags & HAL_MSDU_F_FIRST_MSDU_IN_MPDU)
  2209. qdf_nbuf_set_rx_chfrag_start(rx_desc->nbuf, 1);
  2210. if (msdu_desc_info.msdu_flags & HAL_MSDU_F_MSDU_CONTINUATION)
  2211. qdf_nbuf_set_rx_chfrag_cont(rx_desc->nbuf, 1);
  2212. if (msdu_desc_info.msdu_flags & HAL_MSDU_F_LAST_MSDU_IN_MPDU)
  2213. qdf_nbuf_set_rx_chfrag_end(rx_desc->nbuf, 1);
  2214. if (msdu_desc_info.msdu_flags & HAL_MSDU_F_DA_IS_MCBC)
  2215. qdf_nbuf_set_da_mcbc(rx_desc->nbuf, 1);
  2216. if (msdu_desc_info.msdu_flags & HAL_MSDU_F_DA_IS_VALID)
  2217. qdf_nbuf_set_da_valid(rx_desc->nbuf, 1);
  2218. if (msdu_desc_info.msdu_flags & HAL_MSDU_F_SA_IS_VALID)
  2219. qdf_nbuf_set_sa_valid(rx_desc->nbuf, 1);
  2220. qdf_nbuf_set_tid_val(rx_desc->nbuf,
  2221. HAL_RX_REO_QUEUE_NUMBER_GET(ring_desc));
  2222. qdf_nbuf_set_rx_reo_dest_ind(
  2223. rx_desc->nbuf,
  2224. HAL_RX_REO_MSDU_REO_DST_IND_GET(ring_desc));
  2225. QDF_NBUF_CB_RX_PKT_LEN(rx_desc->nbuf) = msdu_desc_info.msdu_len;
  2226. QDF_NBUF_CB_RX_CTX_ID(rx_desc->nbuf) = reo_ring_num;
  2227. /*
  2228. * move unmap after scattered msdu waiting break logic
  2229. * in case double skb unmap happened.
  2230. */
  2231. rx_desc_pool = &soc->rx_desc_buf[rx_desc->pool_id];
  2232. dp_ipa_handle_rx_buf_smmu_mapping(soc, rx_desc->nbuf,
  2233. rx_desc_pool->buf_size,
  2234. false);
  2235. qdf_nbuf_unmap_nbytes_single(soc->osdev, rx_desc->nbuf,
  2236. QDF_DMA_FROM_DEVICE,
  2237. rx_desc_pool->buf_size);
  2238. rx_desc->unmapped = 1;
  2239. DP_RX_PROCESS_NBUF(soc, nbuf_head, nbuf_tail, ebuf_head,
  2240. ebuf_tail, rx_desc);
  2241. /*
  2242. * if continuation bit is set then we have MSDU spread
  2243. * across multiple buffers, let us not decrement quota
  2244. * till we reap all buffers of that MSDU.
  2245. */
  2246. if (qdf_likely(!qdf_nbuf_is_rx_chfrag_cont(rx_desc->nbuf)))
  2247. quota -= 1;
  2248. dp_rx_add_to_free_desc_list(&head[rx_desc->pool_id],
  2249. &tail[rx_desc->pool_id],
  2250. rx_desc);
  2251. num_rx_bufs_reaped++;
  2252. /*
  2253. * only if complete msdu is received for scatter case,
  2254. * then allow break.
  2255. */
  2256. if (is_prev_msdu_last &&
  2257. dp_rx_reap_loop_pkt_limit_hit(soc, num_rx_bufs_reaped))
  2258. break;
  2259. }
  2260. done:
  2261. dp_rx_srng_access_end(int_ctx, soc, hal_ring_hdl);
  2262. for (mac_id = 0; mac_id < MAX_PDEV_CNT; mac_id++) {
  2263. /*
  2264. * continue with next mac_id if no pkts were reaped
  2265. * from that pool
  2266. */
  2267. if (!rx_bufs_reaped[mac_id])
  2268. continue;
  2269. dp_rxdma_srng = &soc->rx_refill_buf_ring[mac_id];
  2270. rx_desc_pool = &soc->rx_desc_buf[mac_id];
  2271. dp_rx_buffers_replenish(soc, mac_id, dp_rxdma_srng,
  2272. rx_desc_pool, rx_bufs_reaped[mac_id],
  2273. &head[mac_id], &tail[mac_id]);
  2274. }
  2275. dp_verbose_debug("replenished %u\n", rx_bufs_reaped[0]);
  2276. /* Peer can be NULL is case of LFR */
  2277. if (qdf_likely(peer))
  2278. vdev = NULL;
  2279. /*
  2280. * BIG loop where each nbuf is dequeued from global queue,
  2281. * processed and queued back on a per vdev basis. These nbufs
  2282. * are sent to stack as and when we run out of nbufs
  2283. * or a new nbuf dequeued from global queue has a different
  2284. * vdev when compared to previous nbuf.
  2285. */
  2286. nbuf = nbuf_head;
  2287. while (nbuf) {
  2288. next = nbuf->next;
  2289. if (qdf_unlikely(dp_rx_is_raw_frame_dropped(nbuf))) {
  2290. nbuf = next;
  2291. DP_STATS_INC(soc, rx.err.raw_frm_drop, 1);
  2292. continue;
  2293. }
  2294. rx_tlv_hdr = qdf_nbuf_data(nbuf);
  2295. vdev_id = QDF_NBUF_CB_RX_VDEV_ID(nbuf);
  2296. peer_id = QDF_NBUF_CB_RX_PEER_ID(nbuf);
  2297. if (dp_rx_is_list_ready(deliver_list_head, vdev, peer,
  2298. peer_id, vdev_id)) {
  2299. dp_rx_deliver_to_stack(soc, vdev, peer,
  2300. deliver_list_head,
  2301. deliver_list_tail);
  2302. deliver_list_head = NULL;
  2303. deliver_list_tail = NULL;
  2304. }
  2305. /* Get TID from struct cb->tid_val, save to tid */
  2306. if (qdf_nbuf_is_rx_chfrag_start(nbuf))
  2307. tid = qdf_nbuf_get_tid_val(nbuf);
  2308. if (qdf_unlikely(!peer)) {
  2309. peer = dp_peer_get_ref_by_id(soc, peer_id,
  2310. DP_MOD_ID_RX);
  2311. } else if (peer && peer->peer_id != peer_id) {
  2312. dp_peer_unref_delete(peer, DP_MOD_ID_RX);
  2313. peer = dp_peer_get_ref_by_id(soc, peer_id,
  2314. DP_MOD_ID_RX);
  2315. }
  2316. if (peer) {
  2317. QDF_NBUF_CB_DP_TRACE_PRINT(nbuf) = false;
  2318. qdf_dp_trace_set_track(nbuf, QDF_RX);
  2319. QDF_NBUF_CB_RX_DP_TRACE(nbuf) = 1;
  2320. QDF_NBUF_CB_RX_PACKET_TRACK(nbuf) =
  2321. QDF_NBUF_RX_PKT_DATA_TRACK;
  2322. }
  2323. rx_bufs_used++;
  2324. if (qdf_likely(peer)) {
  2325. vdev = peer->vdev;
  2326. /*
  2327. * In encryption mode, all data packets except
  2328. * EAPOL frames should be dropped when peer is not
  2329. * authenticated. Thie feature is enabled for all peers
  2330. * under this vdev when peer_authorize flag is set.
  2331. */
  2332. if (qdf_unlikely(vdev->peer_authorize)) {
  2333. if (qdf_unlikely(vdev->sec_type != cdp_sec_type_none)) {
  2334. /*
  2335. * Allow only EAPOL frames
  2336. */
  2337. if (qdf_unlikely(!peer->authorize &&
  2338. !qdf_nbuf_is_ipv4_eapol_pkt(nbuf))) {
  2339. qdf_nbuf_free(nbuf);
  2340. nbuf = next;
  2341. DP_STATS_INC(soc, rx.err.peer_unauth_rx_pkt_drop, 1);
  2342. continue;
  2343. }
  2344. }
  2345. }
  2346. } else {
  2347. nbuf->next = NULL;
  2348. dp_rx_deliver_to_pkt_capture_no_peer(
  2349. soc, nbuf, pkt_capture_offload);
  2350. if (!pkt_capture_offload)
  2351. dp_rx_deliver_to_stack_no_peer(soc, nbuf);
  2352. nbuf = next;
  2353. continue;
  2354. }
  2355. if (qdf_unlikely(!vdev)) {
  2356. qdf_nbuf_free(nbuf);
  2357. nbuf = next;
  2358. DP_STATS_INC(soc, rx.err.invalid_vdev, 1);
  2359. continue;
  2360. }
  2361. /* when hlos tid override is enabled, save tid in
  2362. * skb->priority
  2363. */
  2364. if (qdf_unlikely(vdev->skip_sw_tid_classification &
  2365. DP_TXRX_HLOS_TID_OVERRIDE_ENABLED))
  2366. qdf_nbuf_set_priority(nbuf, tid);
  2367. rx_pdev = vdev->pdev;
  2368. DP_RX_TID_SAVE(nbuf, tid);
  2369. if (qdf_unlikely(rx_pdev->delay_stats_flag) ||
  2370. qdf_unlikely(wlan_cfg_is_peer_ext_stats_enabled(
  2371. soc->wlan_cfg_ctx)))
  2372. qdf_nbuf_set_timestamp(nbuf);
  2373. ring_id = QDF_NBUF_CB_RX_CTX_ID(nbuf);
  2374. tid_stats =
  2375. &rx_pdev->stats.tid_stats.tid_rx_stats[ring_id][tid];
  2376. /*
  2377. * Check if DMA completed -- msdu_done is the last bit
  2378. * to be written
  2379. */
  2380. if (qdf_unlikely(!qdf_nbuf_is_rx_chfrag_cont(nbuf) &&
  2381. !hal_rx_attn_msdu_done_get(rx_tlv_hdr))) {
  2382. dp_err("MSDU DONE failure");
  2383. DP_STATS_INC(soc, rx.err.msdu_done_fail, 1);
  2384. hal_rx_dump_pkt_tlvs(hal_soc, rx_tlv_hdr,
  2385. QDF_TRACE_LEVEL_INFO);
  2386. tid_stats->fail_cnt[MSDU_DONE_FAILURE]++;
  2387. qdf_nbuf_free(nbuf);
  2388. qdf_assert(0);
  2389. nbuf = next;
  2390. continue;
  2391. }
  2392. DP_HIST_PACKET_COUNT_INC(vdev->pdev->pdev_id);
  2393. /*
  2394. * First IF condition:
  2395. * 802.11 Fragmented pkts are reinjected to REO
  2396. * HW block as SG pkts and for these pkts we only
  2397. * need to pull the RX TLVS header length.
  2398. * Second IF condition:
  2399. * The below condition happens when an MSDU is spread
  2400. * across multiple buffers. This can happen in two cases
  2401. * 1. The nbuf size is smaller then the received msdu.
  2402. * ex: we have set the nbuf size to 2048 during
  2403. * nbuf_alloc. but we received an msdu which is
  2404. * 2304 bytes in size then this msdu is spread
  2405. * across 2 nbufs.
  2406. *
  2407. * 2. AMSDUs when RAW mode is enabled.
  2408. * ex: 1st MSDU is in 1st nbuf and 2nd MSDU is spread
  2409. * across 1st nbuf and 2nd nbuf and last MSDU is
  2410. * spread across 2nd nbuf and 3rd nbuf.
  2411. *
  2412. * for these scenarios let us create a skb frag_list and
  2413. * append these buffers till the last MSDU of the AMSDU
  2414. * Third condition:
  2415. * This is the most likely case, we receive 802.3 pkts
  2416. * decapsulated by HW, here we need to set the pkt length.
  2417. */
  2418. hal_rx_msdu_metadata_get(hal_soc, rx_tlv_hdr, &msdu_metadata);
  2419. if (qdf_unlikely(qdf_nbuf_is_frag(nbuf))) {
  2420. bool is_mcbc, is_sa_vld, is_da_vld;
  2421. is_mcbc = hal_rx_msdu_end_da_is_mcbc_get(soc->hal_soc,
  2422. rx_tlv_hdr);
  2423. is_sa_vld =
  2424. hal_rx_msdu_end_sa_is_valid_get(soc->hal_soc,
  2425. rx_tlv_hdr);
  2426. is_da_vld =
  2427. hal_rx_msdu_end_da_is_valid_get(soc->hal_soc,
  2428. rx_tlv_hdr);
  2429. qdf_nbuf_set_da_mcbc(nbuf, is_mcbc);
  2430. qdf_nbuf_set_da_valid(nbuf, is_da_vld);
  2431. qdf_nbuf_set_sa_valid(nbuf, is_sa_vld);
  2432. qdf_nbuf_pull_head(nbuf, RX_PKT_TLVS_LEN);
  2433. } else if (qdf_nbuf_is_rx_chfrag_cont(nbuf)) {
  2434. msdu_len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
  2435. nbuf = dp_rx_sg_create(soc, nbuf);
  2436. next = nbuf->next;
  2437. if (qdf_nbuf_is_raw_frame(nbuf)) {
  2438. DP_STATS_INC(vdev->pdev, rx_raw_pkts, 1);
  2439. DP_STATS_INC_PKT(peer, rx.raw, 1, msdu_len);
  2440. } else {
  2441. qdf_nbuf_free(nbuf);
  2442. DP_STATS_INC(soc, rx.err.scatter_msdu, 1);
  2443. dp_info_rl("scatter msdu len %d, dropped",
  2444. msdu_len);
  2445. nbuf = next;
  2446. continue;
  2447. }
  2448. } else {
  2449. msdu_len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
  2450. pkt_len = msdu_len +
  2451. msdu_metadata.l3_hdr_pad +
  2452. RX_PKT_TLVS_LEN;
  2453. qdf_nbuf_set_pktlen(nbuf, pkt_len);
  2454. dp_rx_skip_tlvs(nbuf, msdu_metadata.l3_hdr_pad);
  2455. }
  2456. /*
  2457. * process frame for mulitpass phrase processing
  2458. */
  2459. if (qdf_unlikely(vdev->multipass_en)) {
  2460. if (dp_rx_multipass_process(peer, nbuf, tid) == false) {
  2461. DP_STATS_INC(peer, rx.multipass_rx_pkt_drop, 1);
  2462. qdf_nbuf_free(nbuf);
  2463. nbuf = next;
  2464. continue;
  2465. }
  2466. }
  2467. if (!dp_wds_rx_policy_check(rx_tlv_hdr, vdev, peer)) {
  2468. dp_rx_err("%pK: Policy Check Drop pkt", soc);
  2469. tid_stats->fail_cnt[POLICY_CHECK_DROP]++;
  2470. /* Drop & free packet */
  2471. qdf_nbuf_free(nbuf);
  2472. /* Statistics */
  2473. nbuf = next;
  2474. continue;
  2475. }
  2476. if (qdf_unlikely(peer && (peer->nawds_enabled) &&
  2477. (qdf_nbuf_is_da_mcbc(nbuf)) &&
  2478. (hal_rx_get_mpdu_mac_ad4_valid(soc->hal_soc,
  2479. rx_tlv_hdr) ==
  2480. false))) {
  2481. tid_stats->fail_cnt[NAWDS_MCAST_DROP]++;
  2482. DP_STATS_INC(peer, rx.nawds_mcast_drop, 1);
  2483. qdf_nbuf_free(nbuf);
  2484. nbuf = next;
  2485. continue;
  2486. }
  2487. if (soc->process_rx_status)
  2488. dp_rx_cksum_offload(vdev->pdev, nbuf, rx_tlv_hdr);
  2489. /* Update the protocol tag in SKB based on CCE metadata */
  2490. dp_rx_update_protocol_tag(soc, vdev, nbuf, rx_tlv_hdr,
  2491. reo_ring_num, false, true);
  2492. /* Update the flow tag in SKB based on FSE metadata */
  2493. dp_rx_update_flow_tag(soc, vdev, nbuf, rx_tlv_hdr, true);
  2494. dp_rx_msdu_stats_update(soc, nbuf, rx_tlv_hdr, peer,
  2495. ring_id, tid_stats);
  2496. if (qdf_unlikely(vdev->mesh_vdev)) {
  2497. if (dp_rx_filter_mesh_packets(vdev, nbuf, rx_tlv_hdr)
  2498. == QDF_STATUS_SUCCESS) {
  2499. dp_rx_info("%pK: mesh pkt filtered", soc);
  2500. tid_stats->fail_cnt[MESH_FILTER_DROP]++;
  2501. DP_STATS_INC(vdev->pdev, dropped.mesh_filter,
  2502. 1);
  2503. qdf_nbuf_free(nbuf);
  2504. nbuf = next;
  2505. continue;
  2506. }
  2507. dp_rx_fill_mesh_stats(vdev, nbuf, rx_tlv_hdr, peer);
  2508. }
  2509. if (qdf_likely(vdev->rx_decap_type ==
  2510. htt_cmn_pkt_type_ethernet) &&
  2511. qdf_likely(!vdev->mesh_vdev)) {
  2512. /* WDS Destination Address Learning */
  2513. dp_rx_da_learn(soc, rx_tlv_hdr, peer, nbuf);
  2514. /* Due to HW issue, sometimes we see that the sa_idx
  2515. * and da_idx are invalid with sa_valid and da_valid
  2516. * bits set
  2517. *
  2518. * in this case we also see that value of
  2519. * sa_sw_peer_id is set as 0
  2520. *
  2521. * Drop the packet if sa_idx and da_idx OOB or
  2522. * sa_sw_peerid is 0
  2523. */
  2524. if (!is_sa_da_idx_valid(soc, rx_tlv_hdr, nbuf,
  2525. msdu_metadata)) {
  2526. qdf_nbuf_free(nbuf);
  2527. nbuf = next;
  2528. DP_STATS_INC(soc, rx.err.invalid_sa_da_idx, 1);
  2529. continue;
  2530. }
  2531. /* WDS Source Port Learning */
  2532. if (qdf_likely(vdev->wds_enabled))
  2533. dp_rx_wds_srcport_learn(soc,
  2534. rx_tlv_hdr,
  2535. peer,
  2536. nbuf,
  2537. msdu_metadata);
  2538. /* Intrabss-fwd */
  2539. if (dp_rx_check_ap_bridge(vdev))
  2540. if (dp_rx_intrabss_fwd(soc,
  2541. peer,
  2542. rx_tlv_hdr,
  2543. nbuf,
  2544. msdu_metadata)) {
  2545. nbuf = next;
  2546. tid_stats->intrabss_cnt++;
  2547. continue; /* Get next desc */
  2548. }
  2549. }
  2550. dp_rx_fill_gro_info(soc, rx_tlv_hdr, nbuf, &rx_ol_pkt_cnt);
  2551. dp_rx_update_stats(soc, nbuf);
  2552. DP_RX_LIST_APPEND(deliver_list_head,
  2553. deliver_list_tail,
  2554. nbuf);
  2555. DP_STATS_INC_PKT(peer, rx.to_stack, 1,
  2556. QDF_NBUF_CB_RX_PKT_LEN(nbuf));
  2557. if (qdf_unlikely(peer->in_twt))
  2558. DP_STATS_INC_PKT(peer, rx.to_stack_twt, 1,
  2559. QDF_NBUF_CB_RX_PKT_LEN(nbuf));
  2560. tid_stats->delivered_to_stack++;
  2561. nbuf = next;
  2562. }
  2563. if (qdf_likely(deliver_list_head)) {
  2564. if (qdf_likely(peer)) {
  2565. dp_rx_deliver_to_pkt_capture(soc, vdev->pdev, peer_id,
  2566. pkt_capture_offload,
  2567. deliver_list_head);
  2568. if (!pkt_capture_offload)
  2569. dp_rx_deliver_to_stack(soc, vdev, peer,
  2570. deliver_list_head,
  2571. deliver_list_tail);
  2572. }
  2573. else {
  2574. nbuf = deliver_list_head;
  2575. while (nbuf) {
  2576. next = nbuf->next;
  2577. nbuf->next = NULL;
  2578. dp_rx_deliver_to_stack_no_peer(soc, nbuf);
  2579. nbuf = next;
  2580. }
  2581. }
  2582. }
  2583. if (qdf_likely(peer))
  2584. dp_peer_unref_delete(peer, DP_MOD_ID_RX);
  2585. if (dp_rx_enable_eol_data_check(soc) && rx_bufs_used) {
  2586. if (quota) {
  2587. num_pending =
  2588. dp_rx_srng_get_num_pending(hal_soc,
  2589. hal_ring_hdl,
  2590. num_entries,
  2591. &near_full);
  2592. if (num_pending) {
  2593. DP_STATS_INC(soc, rx.hp_oos2, 1);
  2594. if (!hif_exec_should_yield(scn, intr_id))
  2595. goto more_data;
  2596. if (qdf_unlikely(near_full)) {
  2597. DP_STATS_INC(soc, rx.near_full, 1);
  2598. goto more_data;
  2599. }
  2600. }
  2601. }
  2602. if (vdev && vdev->osif_fisa_flush)
  2603. vdev->osif_fisa_flush(soc, reo_ring_num);
  2604. if (vdev && vdev->osif_gro_flush && rx_ol_pkt_cnt) {
  2605. vdev->osif_gro_flush(vdev->osif_vdev,
  2606. reo_ring_num);
  2607. }
  2608. }
  2609. /* Update histogram statistics by looping through pdev's */
  2610. DP_RX_HIST_STATS_PER_PDEV();
  2611. return rx_bufs_used; /* Assume no scale factor for now */
  2612. }
  2613. #endif /* QCA_HOST_MODE_WIFI_DISABLED */
  2614. QDF_STATUS dp_rx_vdev_detach(struct dp_vdev *vdev)
  2615. {
  2616. QDF_STATUS ret;
  2617. if (vdev->osif_rx_flush) {
  2618. ret = vdev->osif_rx_flush(vdev->osif_vdev, vdev->vdev_id);
  2619. if (!QDF_IS_STATUS_SUCCESS(ret)) {
  2620. dp_err("Failed to flush rx pkts for vdev %d\n",
  2621. vdev->vdev_id);
  2622. return ret;
  2623. }
  2624. }
  2625. return QDF_STATUS_SUCCESS;
  2626. }
  2627. static QDF_STATUS
  2628. dp_pdev_nbuf_alloc_and_map(struct dp_soc *dp_soc,
  2629. struct dp_rx_nbuf_frag_info *nbuf_frag_info_t,
  2630. struct dp_pdev *dp_pdev,
  2631. struct rx_desc_pool *rx_desc_pool)
  2632. {
  2633. QDF_STATUS ret = QDF_STATUS_E_FAILURE;
  2634. (nbuf_frag_info_t->virt_addr).nbuf =
  2635. qdf_nbuf_alloc(dp_soc->osdev, rx_desc_pool->buf_size,
  2636. RX_BUFFER_RESERVATION,
  2637. rx_desc_pool->buf_alignment, FALSE);
  2638. if (!((nbuf_frag_info_t->virt_addr).nbuf)) {
  2639. dp_err("nbuf alloc failed");
  2640. DP_STATS_INC(dp_pdev, replenish.nbuf_alloc_fail, 1);
  2641. return ret;
  2642. }
  2643. ret = qdf_nbuf_map_nbytes_single(dp_soc->osdev,
  2644. (nbuf_frag_info_t->virt_addr).nbuf,
  2645. QDF_DMA_FROM_DEVICE,
  2646. rx_desc_pool->buf_size);
  2647. if (qdf_unlikely(QDF_IS_STATUS_ERROR(ret))) {
  2648. qdf_nbuf_free((nbuf_frag_info_t->virt_addr).nbuf);
  2649. dp_err("nbuf map failed");
  2650. DP_STATS_INC(dp_pdev, replenish.map_err, 1);
  2651. return ret;
  2652. }
  2653. nbuf_frag_info_t->paddr =
  2654. qdf_nbuf_get_frag_paddr((nbuf_frag_info_t->virt_addr).nbuf, 0);
  2655. ret = dp_check_paddr(dp_soc, &((nbuf_frag_info_t->virt_addr).nbuf),
  2656. &nbuf_frag_info_t->paddr,
  2657. rx_desc_pool);
  2658. if (ret == QDF_STATUS_E_FAILURE) {
  2659. dp_err("nbuf check x86 failed");
  2660. DP_STATS_INC(dp_pdev, replenish.x86_fail, 1);
  2661. return ret;
  2662. }
  2663. return QDF_STATUS_SUCCESS;
  2664. }
  2665. QDF_STATUS
  2666. dp_pdev_rx_buffers_attach(struct dp_soc *dp_soc, uint32_t mac_id,
  2667. struct dp_srng *dp_rxdma_srng,
  2668. struct rx_desc_pool *rx_desc_pool,
  2669. uint32_t num_req_buffers)
  2670. {
  2671. struct dp_pdev *dp_pdev = dp_get_pdev_for_lmac_id(dp_soc, mac_id);
  2672. hal_ring_handle_t rxdma_srng = dp_rxdma_srng->hal_srng;
  2673. union dp_rx_desc_list_elem_t *next;
  2674. void *rxdma_ring_entry;
  2675. qdf_dma_addr_t paddr;
  2676. struct dp_rx_nbuf_frag_info *nf_info;
  2677. uint32_t nr_descs, nr_nbuf = 0, nr_nbuf_total = 0;
  2678. uint32_t buffer_index, nbuf_ptrs_per_page;
  2679. qdf_nbuf_t nbuf;
  2680. QDF_STATUS ret;
  2681. int page_idx, total_pages;
  2682. union dp_rx_desc_list_elem_t *desc_list = NULL;
  2683. union dp_rx_desc_list_elem_t *tail = NULL;
  2684. int sync_hw_ptr = 1;
  2685. uint32_t num_entries_avail;
  2686. if (qdf_unlikely(!rxdma_srng)) {
  2687. DP_STATS_INC(dp_pdev, replenish.rxdma_err, num_req_buffers);
  2688. return QDF_STATUS_E_FAILURE;
  2689. }
  2690. dp_debug("requested %u RX buffers for driver attach", num_req_buffers);
  2691. hal_srng_access_start(dp_soc->hal_soc, rxdma_srng);
  2692. num_entries_avail = hal_srng_src_num_avail(dp_soc->hal_soc,
  2693. rxdma_srng,
  2694. sync_hw_ptr);
  2695. hal_srng_access_end(dp_soc->hal_soc, rxdma_srng);
  2696. if (!num_entries_avail) {
  2697. dp_err("Num of available entries is zero, nothing to do");
  2698. return QDF_STATUS_E_NOMEM;
  2699. }
  2700. if (num_entries_avail < num_req_buffers)
  2701. num_req_buffers = num_entries_avail;
  2702. nr_descs = dp_rx_get_free_desc_list(dp_soc, mac_id, rx_desc_pool,
  2703. num_req_buffers, &desc_list, &tail);
  2704. if (!nr_descs) {
  2705. dp_err("no free rx_descs in freelist");
  2706. DP_STATS_INC(dp_pdev, err.desc_alloc_fail, num_req_buffers);
  2707. return QDF_STATUS_E_NOMEM;
  2708. }
  2709. dp_debug("got %u RX descs for driver attach", nr_descs);
  2710. /*
  2711. * Try to allocate pointers to the nbuf one page at a time.
  2712. * Take pointers that can fit in one page of memory and
  2713. * iterate through the total descriptors that need to be
  2714. * allocated in order of pages. Reuse the pointers that
  2715. * have been allocated to fit in one page across each
  2716. * iteration to index into the nbuf.
  2717. */
  2718. total_pages = (nr_descs * sizeof(*nf_info)) / PAGE_SIZE;
  2719. /*
  2720. * Add an extra page to store the remainder if any
  2721. */
  2722. if ((nr_descs * sizeof(*nf_info)) % PAGE_SIZE)
  2723. total_pages++;
  2724. nf_info = qdf_mem_malloc(PAGE_SIZE);
  2725. if (!nf_info) {
  2726. dp_err("failed to allocate nbuf array");
  2727. DP_STATS_INC(dp_pdev, replenish.rxdma_err, num_req_buffers);
  2728. QDF_BUG(0);
  2729. return QDF_STATUS_E_NOMEM;
  2730. }
  2731. nbuf_ptrs_per_page = PAGE_SIZE / sizeof(*nf_info);
  2732. for (page_idx = 0; page_idx < total_pages; page_idx++) {
  2733. qdf_mem_zero(nf_info, PAGE_SIZE);
  2734. for (nr_nbuf = 0; nr_nbuf < nbuf_ptrs_per_page; nr_nbuf++) {
  2735. /*
  2736. * The last page of buffer pointers may not be required
  2737. * completely based on the number of descriptors. Below
  2738. * check will ensure we are allocating only the
  2739. * required number of descriptors.
  2740. */
  2741. if (nr_nbuf_total >= nr_descs)
  2742. break;
  2743. /* Flag is set while pdev rx_desc_pool initialization */
  2744. if (qdf_unlikely(rx_desc_pool->rx_mon_dest_frag_enable))
  2745. ret = dp_pdev_frag_alloc_and_map(dp_soc,
  2746. &nf_info[nr_nbuf], dp_pdev,
  2747. rx_desc_pool);
  2748. else
  2749. ret = dp_pdev_nbuf_alloc_and_map(dp_soc,
  2750. &nf_info[nr_nbuf], dp_pdev,
  2751. rx_desc_pool);
  2752. if (QDF_IS_STATUS_ERROR(ret))
  2753. break;
  2754. nr_nbuf_total++;
  2755. }
  2756. hal_srng_access_start(dp_soc->hal_soc, rxdma_srng);
  2757. for (buffer_index = 0; buffer_index < nr_nbuf; buffer_index++) {
  2758. rxdma_ring_entry =
  2759. hal_srng_src_get_next(dp_soc->hal_soc,
  2760. rxdma_srng);
  2761. qdf_assert_always(rxdma_ring_entry);
  2762. next = desc_list->next;
  2763. paddr = nf_info[buffer_index].paddr;
  2764. nbuf = nf_info[buffer_index].virt_addr.nbuf;
  2765. /* Flag is set while pdev rx_desc_pool initialization */
  2766. if (qdf_unlikely(rx_desc_pool->rx_mon_dest_frag_enable))
  2767. dp_rx_desc_frag_prep(&desc_list->rx_desc,
  2768. &nf_info[buffer_index]);
  2769. else
  2770. dp_rx_desc_prep(&desc_list->rx_desc,
  2771. &nf_info[buffer_index]);
  2772. desc_list->rx_desc.in_use = 1;
  2773. dp_rx_desc_alloc_dbg_info(&desc_list->rx_desc);
  2774. dp_rx_desc_update_dbg_info(&desc_list->rx_desc,
  2775. __func__,
  2776. RX_DESC_REPLENISHED);
  2777. hal_rxdma_buff_addr_info_set(rxdma_ring_entry, paddr,
  2778. desc_list->rx_desc.cookie,
  2779. rx_desc_pool->owner);
  2780. dp_ipa_handle_rx_buf_smmu_mapping(
  2781. dp_soc, nbuf,
  2782. rx_desc_pool->buf_size,
  2783. true);
  2784. desc_list = next;
  2785. }
  2786. hal_srng_access_end(dp_soc->hal_soc, rxdma_srng);
  2787. }
  2788. dp_info("filled %u RX buffers for driver attach", nr_nbuf_total);
  2789. qdf_mem_free(nf_info);
  2790. if (!nr_nbuf_total) {
  2791. dp_err("No nbuf's allocated");
  2792. QDF_BUG(0);
  2793. return QDF_STATUS_E_RESOURCES;
  2794. }
  2795. /* No need to count the number of bytes received during replenish.
  2796. * Therefore set replenish.pkts.bytes as 0.
  2797. */
  2798. DP_STATS_INC_PKT(dp_pdev, replenish.pkts, nr_nbuf, 0);
  2799. return QDF_STATUS_SUCCESS;
  2800. }
  2801. /**
  2802. * dp_rx_enable_mon_dest_frag() - Enable frag processing for
  2803. * monitor destination ring via frag.
  2804. *
  2805. * Enable this flag only for monitor destination buffer processing
  2806. * if DP_RX_MON_MEM_FRAG feature is enabled.
  2807. * If flag is set then frag based function will be called for alloc,
  2808. * map, prep desc and free ops for desc buffer else normal nbuf based
  2809. * function will be called.
  2810. *
  2811. * @rx_desc_pool: Rx desc pool
  2812. * @is_mon_dest_desc: Is it for monitor dest buffer
  2813. *
  2814. * Return: None
  2815. */
  2816. #ifdef DP_RX_MON_MEM_FRAG
  2817. void dp_rx_enable_mon_dest_frag(struct rx_desc_pool *rx_desc_pool,
  2818. bool is_mon_dest_desc)
  2819. {
  2820. rx_desc_pool->rx_mon_dest_frag_enable = is_mon_dest_desc;
  2821. if (is_mon_dest_desc)
  2822. dp_alert("Feature DP_RX_MON_MEM_FRAG for mon_dest is enabled");
  2823. }
  2824. #else
  2825. void dp_rx_enable_mon_dest_frag(struct rx_desc_pool *rx_desc_pool,
  2826. bool is_mon_dest_desc)
  2827. {
  2828. rx_desc_pool->rx_mon_dest_frag_enable = false;
  2829. if (is_mon_dest_desc)
  2830. dp_alert("Feature DP_RX_MON_MEM_FRAG for mon_dest is disabled");
  2831. }
  2832. #endif
  2833. /*
  2834. * dp_rx_pdev_desc_pool_alloc() - allocate memory for software rx descriptor
  2835. * pool
  2836. *
  2837. * @pdev: core txrx pdev context
  2838. *
  2839. * Return: QDF_STATUS - QDF_STATUS_SUCCESS
  2840. * QDF_STATUS_E_NOMEM
  2841. */
  2842. QDF_STATUS
  2843. dp_rx_pdev_desc_pool_alloc(struct dp_pdev *pdev)
  2844. {
  2845. struct dp_soc *soc = pdev->soc;
  2846. uint32_t rxdma_entries;
  2847. uint32_t rx_sw_desc_num;
  2848. struct dp_srng *dp_rxdma_srng;
  2849. struct rx_desc_pool *rx_desc_pool;
  2850. uint32_t status = QDF_STATUS_SUCCESS;
  2851. int mac_for_pdev;
  2852. mac_for_pdev = pdev->lmac_id;
  2853. if (wlan_cfg_get_dp_pdev_nss_enabled(pdev->wlan_cfg_ctx)) {
  2854. dp_rx_info("%pK: nss-wifi<4> skip Rx refil %d",
  2855. soc, mac_for_pdev);
  2856. return status;
  2857. }
  2858. dp_rxdma_srng = &soc->rx_refill_buf_ring[mac_for_pdev];
  2859. rxdma_entries = dp_rxdma_srng->num_entries;
  2860. rx_desc_pool = &soc->rx_desc_buf[mac_for_pdev];
  2861. rx_sw_desc_num = wlan_cfg_get_dp_soc_rx_sw_desc_num(soc->wlan_cfg_ctx);
  2862. rx_desc_pool->desc_type = DP_RX_DESC_BUF_TYPE;
  2863. status = dp_rx_desc_pool_alloc(soc,
  2864. rx_sw_desc_num,
  2865. rx_desc_pool);
  2866. if (status != QDF_STATUS_SUCCESS)
  2867. return status;
  2868. return status;
  2869. }
  2870. /*
  2871. * dp_rx_pdev_desc_pool_free() - free software rx descriptor pool
  2872. *
  2873. * @pdev: core txrx pdev context
  2874. */
  2875. void dp_rx_pdev_desc_pool_free(struct dp_pdev *pdev)
  2876. {
  2877. int mac_for_pdev = pdev->lmac_id;
  2878. struct dp_soc *soc = pdev->soc;
  2879. struct rx_desc_pool *rx_desc_pool;
  2880. rx_desc_pool = &soc->rx_desc_buf[mac_for_pdev];
  2881. dp_rx_desc_pool_free(soc, rx_desc_pool);
  2882. }
  2883. /*
  2884. * dp_rx_pdev_desc_pool_init() - initialize software rx descriptors
  2885. *
  2886. * @pdev: core txrx pdev context
  2887. *
  2888. * Return: QDF_STATUS - QDF_STATUS_SUCCESS
  2889. * QDF_STATUS_E_NOMEM
  2890. */
  2891. QDF_STATUS dp_rx_pdev_desc_pool_init(struct dp_pdev *pdev)
  2892. {
  2893. int mac_for_pdev = pdev->lmac_id;
  2894. struct dp_soc *soc = pdev->soc;
  2895. uint32_t rxdma_entries;
  2896. uint32_t rx_sw_desc_num;
  2897. struct dp_srng *dp_rxdma_srng;
  2898. struct rx_desc_pool *rx_desc_pool;
  2899. if (wlan_cfg_get_dp_pdev_nss_enabled(pdev->wlan_cfg_ctx)) {
  2900. /**
  2901. * If NSS is enabled, rx_desc_pool is already filled.
  2902. * Hence, just disable desc_pool frag flag.
  2903. */
  2904. rx_desc_pool = &soc->rx_desc_buf[mac_for_pdev];
  2905. dp_rx_enable_mon_dest_frag(rx_desc_pool, false);
  2906. dp_rx_info("%pK: nss-wifi<4> skip Rx refil %d",
  2907. soc, mac_for_pdev);
  2908. return QDF_STATUS_SUCCESS;
  2909. }
  2910. rx_desc_pool = &soc->rx_desc_buf[mac_for_pdev];
  2911. if (dp_rx_desc_pool_is_allocated(rx_desc_pool) == QDF_STATUS_E_NOMEM)
  2912. return QDF_STATUS_E_NOMEM;
  2913. dp_rxdma_srng = &soc->rx_refill_buf_ring[mac_for_pdev];
  2914. rxdma_entries = dp_rxdma_srng->num_entries;
  2915. soc->process_rx_status = CONFIG_PROCESS_RX_STATUS;
  2916. rx_sw_desc_num =
  2917. wlan_cfg_get_dp_soc_rx_sw_desc_num(soc->wlan_cfg_ctx);
  2918. rx_desc_pool->owner = DP_WBM2SW_RBM;
  2919. rx_desc_pool->buf_size = RX_DATA_BUFFER_SIZE;
  2920. rx_desc_pool->buf_alignment = RX_DATA_BUFFER_ALIGNMENT;
  2921. /* Disable monitor dest processing via frag */
  2922. dp_rx_enable_mon_dest_frag(rx_desc_pool, false);
  2923. dp_rx_desc_pool_init(soc, mac_for_pdev,
  2924. rx_sw_desc_num, rx_desc_pool);
  2925. return QDF_STATUS_SUCCESS;
  2926. }
  2927. /*
  2928. * dp_rx_pdev_desc_pool_deinit() - de-initialize software rx descriptor pools
  2929. * @pdev: core txrx pdev context
  2930. *
  2931. * This function resets the freelist of rx descriptors and destroys locks
  2932. * associated with this list of descriptors.
  2933. */
  2934. void dp_rx_pdev_desc_pool_deinit(struct dp_pdev *pdev)
  2935. {
  2936. int mac_for_pdev = pdev->lmac_id;
  2937. struct dp_soc *soc = pdev->soc;
  2938. struct rx_desc_pool *rx_desc_pool;
  2939. rx_desc_pool = &soc->rx_desc_buf[mac_for_pdev];
  2940. dp_rx_desc_pool_deinit(soc, rx_desc_pool);
  2941. }
  2942. /*
  2943. * dp_rx_pdev_buffers_alloc() - Allocate nbufs (skbs) and replenish RxDMA ring
  2944. *
  2945. * @pdev: core txrx pdev context
  2946. *
  2947. * Return: QDF_STATUS - QDF_STATUS_SUCCESS
  2948. * QDF_STATUS_E_NOMEM
  2949. */
  2950. QDF_STATUS
  2951. dp_rx_pdev_buffers_alloc(struct dp_pdev *pdev)
  2952. {
  2953. int mac_for_pdev = pdev->lmac_id;
  2954. struct dp_soc *soc = pdev->soc;
  2955. struct dp_srng *dp_rxdma_srng;
  2956. struct rx_desc_pool *rx_desc_pool;
  2957. uint32_t rxdma_entries;
  2958. dp_rxdma_srng = &soc->rx_refill_buf_ring[mac_for_pdev];
  2959. rxdma_entries = dp_rxdma_srng->num_entries;
  2960. rx_desc_pool = &soc->rx_desc_buf[mac_for_pdev];
  2961. /* Initialize RX buffer pool which will be
  2962. * used during low memory conditions
  2963. */
  2964. dp_rx_buffer_pool_init(soc, mac_for_pdev);
  2965. return dp_pdev_rx_buffers_attach(soc, mac_for_pdev, dp_rxdma_srng,
  2966. rx_desc_pool, rxdma_entries - 1);
  2967. }
  2968. /*
  2969. * dp_rx_pdev_buffers_free - Free nbufs (skbs)
  2970. *
  2971. * @pdev: core txrx pdev context
  2972. */
  2973. void
  2974. dp_rx_pdev_buffers_free(struct dp_pdev *pdev)
  2975. {
  2976. int mac_for_pdev = pdev->lmac_id;
  2977. struct dp_soc *soc = pdev->soc;
  2978. struct rx_desc_pool *rx_desc_pool;
  2979. rx_desc_pool = &soc->rx_desc_buf[mac_for_pdev];
  2980. dp_rx_desc_nbuf_free(soc, rx_desc_pool);
  2981. dp_rx_buffer_pool_deinit(soc, mac_for_pdev);
  2982. }
  2983. #ifdef DP_RX_SPECIAL_FRAME_NEED
  2984. bool dp_rx_deliver_special_frame(struct dp_soc *soc, struct dp_peer *peer,
  2985. qdf_nbuf_t nbuf, uint32_t frame_mask,
  2986. uint8_t *rx_tlv_hdr)
  2987. {
  2988. uint32_t l2_hdr_offset = 0;
  2989. uint16_t msdu_len = 0;
  2990. uint32_t skip_len;
  2991. l2_hdr_offset =
  2992. hal_rx_msdu_end_l3_hdr_padding_get(soc->hal_soc, rx_tlv_hdr);
  2993. if (qdf_unlikely(qdf_nbuf_is_frag(nbuf))) {
  2994. skip_len = l2_hdr_offset;
  2995. } else {
  2996. msdu_len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
  2997. skip_len = l2_hdr_offset + RX_PKT_TLVS_LEN;
  2998. qdf_nbuf_set_pktlen(nbuf, msdu_len + skip_len);
  2999. }
  3000. QDF_NBUF_CB_RX_NUM_ELEMENTS_IN_LIST(nbuf) = 1;
  3001. dp_rx_set_hdr_pad(nbuf, l2_hdr_offset);
  3002. qdf_nbuf_pull_head(nbuf, skip_len);
  3003. if (dp_rx_is_special_frame(nbuf, frame_mask)) {
  3004. qdf_nbuf_set_exc_frame(nbuf, 1);
  3005. dp_rx_deliver_to_stack(soc, peer->vdev, peer,
  3006. nbuf, NULL);
  3007. return true;
  3008. }
  3009. return false;
  3010. }
  3011. #endif