hal_api_mon.h 29 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027
  1. /*
  2. * Copyright (c) 2017-2018 The Linux Foundation. All rights reserved.
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for
  5. * any purpose with or without fee is hereby granted, provided that the
  6. * above copyright notice and this permission notice appear in all
  7. * copies.
  8. *
  9. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
  10. * WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
  11. * WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
  12. * AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
  13. * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
  14. * PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
  15. * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
  16. * PERFORMANCE OF THIS SOFTWARE.
  17. */
  18. #ifndef _HAL_API_MON_H_
  19. #define _HAL_API_MON_H_
  20. #include "qdf_types.h"
  21. #include "hal_internal.h"
  22. #define HAL_RX_OFFSET(block, field) block##_##field##_OFFSET
  23. #define HAL_RX_LSB(block, field) block##_##field##_LSB
  24. #define HAL_RX_MASk(block, field) block##_##field##_MASK
  25. #define HAL_RX_GET(_ptr, block, field) \
  26. (((*((volatile uint32_t *)_ptr + (HAL_RX_OFFSET(block, field)>>2))) & \
  27. HAL_RX_MASk(block, field)) >> \
  28. HAL_RX_LSB(block, field))
  29. #define HAL_RX_PHY_DATA_RADAR 0x01
  30. #define HAL_SU_MU_CODING_LDPC 0x01
  31. #define HAL_RX_FCS_LEN (4)
  32. #define KEY_EXTIV 0x20
  33. #define HAL_RX_USER_TLV32_TYPE_OFFSET 0x00000000
  34. #define HAL_RX_USER_TLV32_TYPE_LSB 1
  35. #define HAL_RX_USER_TLV32_TYPE_MASK 0x000003FE
  36. #define HAL_RX_USER_TLV32_LEN_OFFSET 0x00000000
  37. #define HAL_RX_USER_TLV32_LEN_LSB 10
  38. #define HAL_RX_USER_TLV32_LEN_MASK 0x003FFC00
  39. #define HAL_RX_USER_TLV32_USERID_OFFSET 0x00000000
  40. #define HAL_RX_USER_TLV32_USERID_LSB 26
  41. #define HAL_RX_USER_TLV32_USERID_MASK 0xFC000000
  42. #define HAL_ALIGN(x, a) HAL_ALIGN_MASK(x, (a)-1)
  43. #define HAL_ALIGN_MASK(x, mask) (typeof(x))(((uint32)(x) + (mask)) & ~(mask))
  44. #define HAL_RX_TLV32_HDR_SIZE 4
  45. #define HAL_RX_GET_USER_TLV32_TYPE(rx_status_tlv_ptr) \
  46. ((*((uint32_t *)(rx_status_tlv_ptr)) & \
  47. HAL_RX_USER_TLV32_TYPE_MASK) >> \
  48. HAL_RX_USER_TLV32_TYPE_LSB)
  49. #define HAL_RX_GET_USER_TLV32_LEN(rx_status_tlv_ptr) \
  50. ((*((uint32_t *)(rx_status_tlv_ptr)) & \
  51. HAL_RX_USER_TLV32_LEN_MASK) >> \
  52. HAL_RX_USER_TLV32_LEN_LSB)
  53. #define HAL_RX_GET_USER_TLV32_USERID(rx_status_tlv_ptr) \
  54. ((*((uint32_t *)(rx_status_tlv_ptr)) & \
  55. HAL_RX_USER_TLV32_USERID_MASK) >> \
  56. HAL_RX_USER_TLV32_USERID_LSB)
  57. #define HAL_TLV_STATUS_PPDU_NOT_DONE 0
  58. #define HAL_TLV_STATUS_PPDU_DONE 1
  59. #define HAL_TLV_STATUS_BUF_DONE 2
  60. #define HAL_MAX_UL_MU_USERS 8
  61. #define HAL_RX_PKT_TYPE_11A 0
  62. #define HAL_RX_PKT_TYPE_11B 1
  63. #define HAL_RX_PKT_TYPE_11N 2
  64. #define HAL_RX_PKT_TYPE_11AC 3
  65. #define HAL_RX_PKT_TYPE_11AX 4
  66. #define HAL_RX_RECEPTION_TYPE_SU 0
  67. #define HAL_RX_RECEPTION_TYPE_MU_MIMO 1
  68. #define HAL_RX_RECEPTION_TYPE_OFDMA 2
  69. #define HAL_RX_RECEPTION_TYPE_MU_OFDMA 3
  70. /* Multiply rate by 2 to avoid float point
  71. * and get rate in units of 500kbps
  72. */
  73. #define HAL_11B_RATE_0MCS 11*2
  74. #define HAL_11B_RATE_1MCS 5.5*2
  75. #define HAL_11B_RATE_2MCS 2*2
  76. #define HAL_11B_RATE_3MCS 1*2
  77. #define HAL_11B_RATE_4MCS 11*2
  78. #define HAL_11B_RATE_5MCS 5.5*2
  79. #define HAL_11B_RATE_6MCS 2*2
  80. #define HAL_11A_RATE_0MCS 48*2
  81. #define HAL_11A_RATE_1MCS 24*2
  82. #define HAL_11A_RATE_2MCS 12*2
  83. #define HAL_11A_RATE_3MCS 6*2
  84. #define HAL_11A_RATE_4MCS 54*2
  85. #define HAL_11A_RATE_5MCS 36*2
  86. #define HAL_11A_RATE_6MCS 18*2
  87. #define HAL_11A_RATE_7MCS 9*2
  88. #define HE_GI_0_8 0
  89. #define HE_GI_1_6 1
  90. #define HE_GI_3_2 2
  91. #define HE_LTF_1_X 0
  92. #define HE_LTF_2_X 1
  93. #define HE_LTF_4_X 2
  94. #define VHT_SIG_SU_NSS_MASK 0x7
  95. #define HAL_TID_INVALID 31
  96. #define HAL_AST_IDX_INVALID 0xFFFF
  97. #ifdef GET_MSDU_AGGREGATION
  98. #define HAL_RX_GET_MSDU_AGGREGATION(rx_desc, rs)\
  99. {\
  100. struct rx_msdu_end *rx_msdu_end;\
  101. bool first_msdu, last_msdu; \
  102. rx_msdu_end = &rx_desc->msdu_end_tlv.rx_msdu_end;\
  103. first_msdu = HAL_RX_GET(rx_msdu_end, RX_MSDU_END_5, FIRST_MSDU);\
  104. last_msdu = HAL_RX_GET(rx_msdu_end, RX_MSDU_END_5, LAST_MSDU);\
  105. if (first_msdu && last_msdu)\
  106. rs->rs_flags &= (~IEEE80211_AMSDU_FLAG);\
  107. else\
  108. rs->rs_flags |= (IEEE80211_AMSDU_FLAG); \
  109. } \
  110. #else
  111. #define HAL_RX_GET_MSDU_AGGREGATION(rx_desc, rs)
  112. #endif
  113. enum {
  114. HAL_HW_RX_DECAP_FORMAT_RAW = 0,
  115. HAL_HW_RX_DECAP_FORMAT_NWIFI,
  116. HAL_HW_RX_DECAP_FORMAT_ETH2,
  117. HAL_HW_RX_DECAP_FORMAT_8023,
  118. };
  119. enum {
  120. DP_PPDU_STATUS_START,
  121. DP_PPDU_STATUS_DONE,
  122. };
  123. static inline
  124. uint32_t HAL_RX_MON_HW_RX_DESC_SIZE(void)
  125. {
  126. /* return the HW_RX_DESC size */
  127. return sizeof(struct rx_pkt_tlvs);
  128. }
  129. static inline
  130. uint8_t *HAL_RX_MON_DEST_GET_DESC(uint8_t *data)
  131. {
  132. return data;
  133. }
  134. static inline
  135. uint32_t HAL_RX_DESC_GET_MPDU_LENGTH_ERR(void *hw_desc_addr)
  136. {
  137. struct rx_attention *rx_attn;
  138. struct rx_pkt_tlvs *rx_desc = (struct rx_pkt_tlvs *)hw_desc_addr;
  139. rx_attn = &rx_desc->attn_tlv.rx_attn;
  140. return HAL_RX_GET(rx_attn, RX_ATTENTION_1, MPDU_LENGTH_ERR);
  141. }
  142. static inline
  143. uint32_t HAL_RX_DESC_GET_MPDU_FCS_ERR(void *hw_desc_addr)
  144. {
  145. struct rx_attention *rx_attn;
  146. struct rx_pkt_tlvs *rx_desc = (struct rx_pkt_tlvs *)hw_desc_addr;
  147. rx_attn = &rx_desc->attn_tlv.rx_attn;
  148. return HAL_RX_GET(rx_attn, RX_ATTENTION_1, FCS_ERR);
  149. }
  150. static inline
  151. uint32_t
  152. HAL_RX_DESC_GET_DECAP_FORMAT(void *hw_desc_addr) {
  153. struct rx_msdu_start *rx_msdu_start;
  154. struct rx_pkt_tlvs *rx_desc = (struct rx_pkt_tlvs *)hw_desc_addr;
  155. rx_msdu_start = &rx_desc->msdu_start_tlv.rx_msdu_start;
  156. return HAL_RX_GET(rx_msdu_start, RX_MSDU_START_2, DECAP_FORMAT);
  157. }
  158. static inline
  159. uint8_t *
  160. HAL_RX_DESC_GET_80211_HDR(void *hw_desc_addr) {
  161. uint8_t *rx_pkt_hdr;
  162. struct rx_pkt_tlvs *rx_desc = (struct rx_pkt_tlvs *)hw_desc_addr;
  163. rx_pkt_hdr = &rx_desc->pkt_hdr_tlv.rx_pkt_hdr[0];
  164. return rx_pkt_hdr;
  165. }
  166. static inline
  167. uint32_t HAL_RX_MON_HW_DESC_GET_PPDUID_GET(void *hw_desc_addr)
  168. {
  169. struct rx_mpdu_info *rx_mpdu_info;
  170. struct rx_pkt_tlvs *rx_desc = (struct rx_pkt_tlvs *)hw_desc_addr;
  171. rx_mpdu_info =
  172. &rx_desc->mpdu_start_tlv.rx_mpdu_start.rx_mpdu_info_details;
  173. return HAL_RX_GET(rx_mpdu_info, RX_MPDU_INFO_0, PHY_PPDU_ID);
  174. }
  175. /* TODO: Move all Rx descriptor functions to hal_rx.h to avoid duplication */
  176. static inline
  177. uint32_t hal_rx_desc_is_first_msdu(void *hw_desc_addr)
  178. {
  179. struct rx_pkt_tlvs *rx_tlvs = (struct rx_pkt_tlvs *)hw_desc_addr;
  180. struct rx_msdu_end *msdu_end = &rx_tlvs->msdu_end_tlv.rx_msdu_end;
  181. return HAL_RX_GET(msdu_end, RX_MSDU_END_5, FIRST_MSDU);
  182. }
  183. #define HAL_RX_BUFFER_ADDR_31_0_GET(buff_addr_info) \
  184. (_HAL_MS((*_OFFSET_TO_WORD_PTR(buff_addr_info, \
  185. BUFFER_ADDR_INFO_0_BUFFER_ADDR_31_0_OFFSET)), \
  186. BUFFER_ADDR_INFO_0_BUFFER_ADDR_31_0_MASK, \
  187. BUFFER_ADDR_INFO_0_BUFFER_ADDR_31_0_LSB))
  188. #define HAL_RX_REO_ENT_BUFFER_ADDR_39_32_GET(reo_ent_desc) \
  189. (HAL_RX_BUFFER_ADDR_39_32_GET(& \
  190. (((struct reo_entrance_ring *)reo_ent_desc) \
  191. ->reo_level_mpdu_frame_info.msdu_link_desc_addr_info)))
  192. #define HAL_RX_REO_ENT_BUFFER_ADDR_31_0_GET(reo_ent_desc) \
  193. (HAL_RX_BUFFER_ADDR_31_0_GET(& \
  194. (((struct reo_entrance_ring *)reo_ent_desc) \
  195. ->reo_level_mpdu_frame_info.msdu_link_desc_addr_info)))
  196. #define HAL_RX_REO_ENT_BUF_COOKIE_GET(reo_ent_desc) \
  197. (HAL_RX_BUF_COOKIE_GET(& \
  198. (((struct reo_entrance_ring *)reo_ent_desc) \
  199. ->reo_level_mpdu_frame_info.msdu_link_desc_addr_info)))
  200. /**
  201. * hal_rx_reo_ent_buf_paddr_get: Gets the physical address and
  202. * cookie from the REO entrance ring element
  203. *
  204. * @ hal_rx_desc_cookie: Opaque cookie pointer used by HAL to get to
  205. * the current descriptor
  206. * @ buf_info: structure to return the buffer information
  207. * @ msdu_cnt: pointer to msdu count in MPDU
  208. * Return: void
  209. */
  210. static inline
  211. void hal_rx_reo_ent_buf_paddr_get(void *rx_desc,
  212. struct hal_buf_info *buf_info,
  213. void **pp_buf_addr_info,
  214. uint32_t *msdu_cnt
  215. )
  216. {
  217. struct reo_entrance_ring *reo_ent_ring =
  218. (struct reo_entrance_ring *)rx_desc;
  219. struct buffer_addr_info *buf_addr_info;
  220. struct rx_mpdu_desc_info *rx_mpdu_desc_info_details;
  221. uint32_t loop_cnt;
  222. rx_mpdu_desc_info_details =
  223. &reo_ent_ring->reo_level_mpdu_frame_info.rx_mpdu_desc_info_details;
  224. *msdu_cnt = HAL_RX_GET(rx_mpdu_desc_info_details,
  225. RX_MPDU_DESC_INFO_0, MSDU_COUNT);
  226. loop_cnt = HAL_RX_GET(reo_ent_ring, REO_ENTRANCE_RING_7, LOOPING_COUNT);
  227. buf_addr_info =
  228. &reo_ent_ring->reo_level_mpdu_frame_info.msdu_link_desc_addr_info;
  229. buf_info->paddr =
  230. (HAL_RX_BUFFER_ADDR_31_0_GET(buf_addr_info) |
  231. ((uint64_t)
  232. (HAL_RX_BUFFER_ADDR_39_32_GET(buf_addr_info)) << 32));
  233. buf_info->sw_cookie = HAL_RX_BUF_COOKIE_GET(buf_addr_info);
  234. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  235. "[%s][%d] ReoAddr=%pK, addrInfo=%pK, paddr=0x%llx, loopcnt=%d\n",
  236. __func__, __LINE__, reo_ent_ring, buf_addr_info,
  237. (unsigned long long)buf_info->paddr, loop_cnt);
  238. *pp_buf_addr_info = (void *)buf_addr_info;
  239. }
  240. static inline
  241. void hal_rx_mon_next_link_desc_get(void *rx_msdu_link_desc,
  242. struct hal_buf_info *buf_info, void **pp_buf_addr_info)
  243. {
  244. struct rx_msdu_link *msdu_link =
  245. (struct rx_msdu_link *)rx_msdu_link_desc;
  246. struct buffer_addr_info *buf_addr_info;
  247. buf_addr_info = &msdu_link->next_msdu_link_desc_addr_info;
  248. buf_info->paddr =
  249. (HAL_RX_BUFFER_ADDR_31_0_GET(buf_addr_info) |
  250. ((uint64_t)
  251. (HAL_RX_BUFFER_ADDR_39_32_GET(buf_addr_info)) << 32));
  252. buf_info->sw_cookie = HAL_RX_BUF_COOKIE_GET(buf_addr_info);
  253. *pp_buf_addr_info = (void *)buf_addr_info;
  254. }
  255. /**
  256. * hal_rx_msdu_link_desc_set: Retrieves MSDU Link Descriptor to WBM
  257. *
  258. * @ soc : HAL version of the SOC pointer
  259. * @ src_srng_desc : void pointer to the WBM Release Ring descriptor
  260. * @ buf_addr_info : void pointer to the buffer_addr_info
  261. *
  262. * Return: void
  263. */
  264. static inline void hal_rx_mon_msdu_link_desc_set(struct hal_soc *soc,
  265. void *src_srng_desc, void *buf_addr_info)
  266. {
  267. struct buffer_addr_info *wbm_srng_buffer_addr_info =
  268. (struct buffer_addr_info *)src_srng_desc;
  269. uint64_t paddr;
  270. struct buffer_addr_info *p_buffer_addr_info =
  271. (struct buffer_addr_info *)buf_addr_info;
  272. paddr =
  273. (HAL_RX_BUFFER_ADDR_31_0_GET(buf_addr_info) |
  274. ((uint64_t)
  275. (HAL_RX_BUFFER_ADDR_39_32_GET(buf_addr_info)) << 32));
  276. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  277. "[%s][%d] src_srng_desc=%pK, buf_addr=0x%llx, cookie=0x%llx\n",
  278. __func__, __LINE__, src_srng_desc, (unsigned long long)paddr,
  279. (unsigned long long)p_buffer_addr_info->sw_buffer_cookie);
  280. /* Structure copy !!! */
  281. *wbm_srng_buffer_addr_info =
  282. *((struct buffer_addr_info *)buf_addr_info);
  283. }
  284. static inline
  285. uint32 hal_get_rx_msdu_link_desc_size(void)
  286. {
  287. return sizeof(struct rx_msdu_link);
  288. }
  289. enum {
  290. HAL_PKT_TYPE_OFDM = 0,
  291. HAL_PKT_TYPE_CCK,
  292. HAL_PKT_TYPE_HT,
  293. HAL_PKT_TYPE_VHT,
  294. HAL_PKT_TYPE_HE,
  295. };
  296. enum {
  297. HAL_SGI_0_8_US,
  298. HAL_SGI_0_4_US,
  299. HAL_SGI_1_6_US,
  300. HAL_SGI_3_2_US,
  301. };
  302. enum {
  303. HAL_FULL_RX_BW_20,
  304. HAL_FULL_RX_BW_40,
  305. HAL_FULL_RX_BW_80,
  306. HAL_FULL_RX_BW_160,
  307. };
  308. enum {
  309. HAL_RX_TYPE_SU,
  310. HAL_RX_TYPE_MU_MIMO,
  311. HAL_RX_TYPE_MU_OFDMA,
  312. HAL_RX_TYPE_MU_OFDMA_MIMO,
  313. };
  314. /**
  315. * hal_rx_mon_hw_desc_get_mpdu_status: Retrieve MPDU status
  316. *
  317. * @ hw_desc_addr: Start address of Rx HW TLVs
  318. * @ rs: Status for monitor mode
  319. *
  320. * Return: void
  321. */
  322. static inline
  323. void hal_rx_mon_hw_desc_get_mpdu_status(void *hw_desc_addr,
  324. struct mon_rx_status *rs)
  325. {
  326. struct rx_msdu_start *rx_msdu_start;
  327. struct rx_pkt_tlvs *rx_desc = (struct rx_pkt_tlvs *)hw_desc_addr;
  328. uint32_t reg_value;
  329. static uint32_t sgi_hw_to_cdp[] = {
  330. CDP_SGI_0_8_US,
  331. CDP_SGI_0_4_US,
  332. CDP_SGI_1_6_US,
  333. CDP_SGI_3_2_US,
  334. };
  335. rx_msdu_start = &rx_desc->msdu_start_tlv.rx_msdu_start;
  336. HAL_RX_GET_MSDU_AGGREGATION(rx_desc, rs);
  337. rs->ant_signal_db = HAL_RX_GET(rx_msdu_start,
  338. RX_MSDU_START_5, USER_RSSI);
  339. rs->is_stbc = HAL_RX_GET(rx_msdu_start, RX_MSDU_START_5, STBC);
  340. reg_value = HAL_RX_GET(rx_msdu_start, RX_MSDU_START_5, SGI);
  341. rs->sgi = sgi_hw_to_cdp[reg_value];
  342. #if !defined(QCA_WIFI_QCA6290_11AX)
  343. rs->nr_ant = HAL_RX_GET(rx_msdu_start, RX_MSDU_START_5, NSS);
  344. #endif
  345. reg_value = HAL_RX_GET(rx_msdu_start, RX_MSDU_START_5, PKT_TYPE);
  346. switch (reg_value) {
  347. case HAL_RX_PKT_TYPE_11N:
  348. rs->ht_flags = 1;
  349. break;
  350. case HAL_RX_PKT_TYPE_11AC:
  351. rs->vht_flags = 1;
  352. reg_value = HAL_RX_GET(rx_msdu_start, RX_MSDU_START_5,
  353. RECEIVE_BANDWIDTH);
  354. rs->vht_flag_values2 = reg_value;
  355. break;
  356. case HAL_RX_PKT_TYPE_11AX:
  357. rs->he_flags = 1;
  358. break;
  359. default:
  360. break;
  361. }
  362. reg_value = HAL_RX_GET(rx_msdu_start, RX_MSDU_START_5, RECEPTION_TYPE);
  363. rs->beamformed = (reg_value == HAL_RX_RECEPTION_TYPE_MU_MIMO) ? 1 : 0;
  364. /* TODO: rs->beamformed should be set for SU beamforming also */
  365. }
  366. struct hal_rx_ppdu_user_info {
  367. };
  368. struct hal_rx_ppdu_common_info {
  369. uint32_t ppdu_id;
  370. uint32_t last_ppdu_id;
  371. uint32_t ppdu_timestamp;
  372. uint32_t mpdu_cnt_fcs_ok;
  373. uint32_t mpdu_cnt_fcs_err;
  374. };
  375. struct hal_rx_ppdu_info {
  376. struct hal_rx_ppdu_common_info com_info;
  377. struct hal_rx_ppdu_user_info user_info[HAL_MAX_UL_MU_USERS];
  378. struct mon_rx_status rx_status;
  379. uint8_t *first_msdu_payload;
  380. };
  381. static inline uint32_t
  382. hal_get_rx_status_buf_size(void) {
  383. /* RX status buffer size is hard coded for now */
  384. return 2048;
  385. }
  386. static inline uint8_t*
  387. hal_rx_status_get_next_tlv(uint8_t *rx_tlv) {
  388. uint32_t tlv_len, tlv_tag;
  389. tlv_len = HAL_RX_GET_USER_TLV32_LEN(rx_tlv);
  390. tlv_tag = HAL_RX_GET_USER_TLV32_TYPE(rx_tlv);
  391. /* The actual length of PPDU_END is the combined lenght of many PHY
  392. * TLVs that follow. Skip the TLV header and
  393. * rx_rxpcu_classification_overview that follows the header to get to
  394. * next TLV.
  395. */
  396. if (tlv_tag == WIFIRX_PPDU_END_E)
  397. tlv_len = sizeof(struct rx_rxpcu_classification_overview);
  398. return (uint8_t *)(((unsigned long)(rx_tlv + tlv_len +
  399. HAL_RX_TLV32_HDR_SIZE + 3)) & (~((unsigned long)3)));
  400. }
  401. static inline uint32_t
  402. hal_rx_status_get_tlv_info(void *rx_tlv, struct hal_rx_ppdu_info *ppdu_info)
  403. {
  404. uint32_t tlv_tag, user_id, tlv_len, value;
  405. uint8_t group_id = 0;
  406. uint16_t he_gi = 0;
  407. uint16_t he_ltf = 0;
  408. tlv_tag = HAL_RX_GET_USER_TLV32_TYPE(rx_tlv);
  409. user_id = HAL_RX_GET_USER_TLV32_USERID(rx_tlv);
  410. tlv_len = HAL_RX_GET_USER_TLV32_LEN(rx_tlv);
  411. rx_tlv = (uint8_t *) rx_tlv + HAL_RX_TLV32_HDR_SIZE;
  412. switch (tlv_tag) {
  413. case WIFIRX_PPDU_START_E:
  414. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
  415. "[%s][%d] ppdu_start_e len=%d\n",
  416. __func__, __LINE__, tlv_len);
  417. ppdu_info->com_info.ppdu_id =
  418. HAL_RX_GET(rx_tlv, RX_PPDU_START_0,
  419. PHY_PPDU_ID);
  420. /* channel number is set in PHY meta data */
  421. ppdu_info->rx_status.chan_num =
  422. HAL_RX_GET(rx_tlv, RX_PPDU_START_1,
  423. SW_PHY_META_DATA);
  424. ppdu_info->com_info.ppdu_timestamp =
  425. HAL_RX_GET(rx_tlv, RX_PPDU_START_2,
  426. PPDU_START_TIMESTAMP);
  427. break;
  428. case WIFIRX_PPDU_START_USER_INFO_E:
  429. break;
  430. case WIFIRX_PPDU_END_E:
  431. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
  432. "[%s][%d] ppdu_end_e len=%d\n",
  433. __func__, __LINE__, tlv_len);
  434. /* This is followed by sub-TLVs of PPDU_END */
  435. ppdu_info->rx_status.duration =
  436. HAL_RX_GET(rx_tlv, RXPCU_PPDU_END_INFO_8,
  437. RX_PPDU_DURATION);
  438. break;
  439. case WIFIRXPCU_PPDU_END_INFO_E:
  440. ppdu_info->rx_status.tsft =
  441. HAL_RX_GET(rx_tlv, RXPCU_PPDU_END_INFO_1,
  442. WB_TIMESTAMP_UPPER_32);
  443. ppdu_info->rx_status.tsft = (ppdu_info->rx_status.tsft << 32) |
  444. HAL_RX_GET(rx_tlv, RXPCU_PPDU_END_INFO_0,
  445. WB_TIMESTAMP_LOWER_32);
  446. break;
  447. case WIFIRX_PPDU_END_USER_STATS_E:
  448. {
  449. unsigned long tid = 0;
  450. uint16_t seq = 0;
  451. ppdu_info->rx_status.ast_index =
  452. HAL_RX_GET(rx_tlv, RX_PPDU_END_USER_STATS_4,
  453. AST_INDEX);
  454. ppdu_info->rx_status.mcs =
  455. HAL_RX_GET(rx_tlv, RX_PPDU_END_USER_STATS_1, MCS);
  456. tid = HAL_RX_GET(rx_tlv, RX_PPDU_END_USER_STATS_12,
  457. RECEIVED_QOS_DATA_TID_BITMAP);
  458. ppdu_info->rx_status.tid = qdf_find_first_bit(&tid, sizeof(tid)*8);
  459. if (ppdu_info->rx_status.tid == (sizeof(tid) * 8))
  460. ppdu_info->rx_status.tid = HAL_TID_INVALID;
  461. ppdu_info->rx_status.tcp_msdu_count =
  462. HAL_RX_GET(rx_tlv, RX_PPDU_END_USER_STATS_9,
  463. TCP_MSDU_COUNT) +
  464. HAL_RX_GET(rx_tlv, RX_PPDU_END_USER_STATS_10,
  465. TCP_ACK_MSDU_COUNT);
  466. ppdu_info->rx_status.udp_msdu_count =
  467. HAL_RX_GET(rx_tlv, RX_PPDU_END_USER_STATS_9,
  468. UDP_MSDU_COUNT);
  469. ppdu_info->rx_status.other_msdu_count =
  470. HAL_RX_GET(rx_tlv, RX_PPDU_END_USER_STATS_10,
  471. OTHER_MSDU_COUNT);
  472. ppdu_info->rx_status.nss =
  473. HAL_RX_GET(rx_tlv, RX_PPDU_END_USER_STATS_1, NSS);
  474. ppdu_info->rx_status.frame_control_info_valid =
  475. HAL_RX_GET(rx_tlv, RX_PPDU_END_USER_STATS_3,
  476. DATA_SEQUENCE_CONTROL_INFO_VALID);
  477. seq = HAL_RX_GET(rx_tlv, RX_PPDU_END_USER_STATS_5,
  478. FIRST_DATA_SEQ_CTRL);
  479. if (ppdu_info->rx_status.frame_control_info_valid)
  480. ppdu_info->rx_status.first_data_seq_ctrl = seq;
  481. ppdu_info->rx_status.preamble_type =
  482. HAL_RX_GET(rx_tlv, RX_PPDU_END_USER_STATS_3,
  483. HT_CONTROL_FIELD_PKT_TYPE);
  484. ppdu_info->com_info.mpdu_cnt_fcs_ok =
  485. HAL_RX_GET(rx_tlv, RX_PPDU_END_USER_STATS_3,
  486. MPDU_CNT_FCS_OK);
  487. ppdu_info->com_info.mpdu_cnt_fcs_err =
  488. HAL_RX_GET(rx_tlv, RX_PPDU_END_USER_STATS_2,
  489. MPDU_CNT_FCS_ERR);
  490. if ((ppdu_info->com_info.mpdu_cnt_fcs_ok |
  491. ppdu_info->com_info.mpdu_cnt_fcs_err) > 1)
  492. ppdu_info->rx_status.rs_flags |= IEEE80211_AMPDU_FLAG;
  493. else
  494. ppdu_info->rx_status.rs_flags &=
  495. (~IEEE80211_AMPDU_FLAG);
  496. break;
  497. }
  498. case WIFIRX_PPDU_END_USER_STATS_EXT_E:
  499. break;
  500. case WIFIRX_PPDU_END_STATUS_DONE_E:
  501. return HAL_TLV_STATUS_PPDU_DONE;
  502. case WIFIDUMMY_E:
  503. return HAL_TLV_STATUS_BUF_DONE;
  504. case WIFIPHYRX_HT_SIG_E:
  505. {
  506. uint8_t *ht_sig_info = (uint8_t *)rx_tlv +
  507. HAL_RX_OFFSET(PHYRX_HT_SIG_0,
  508. HT_SIG_INFO_PHYRX_HT_SIG_INFO_DETAILS);
  509. value = HAL_RX_GET(ht_sig_info, HT_SIG_INFO_1,
  510. FEC_CODING);
  511. ppdu_info->rx_status.ldpc = (value == HAL_SU_MU_CODING_LDPC) ?
  512. 1 : 0;
  513. ppdu_info->rx_status.mcs = HAL_RX_GET(ht_sig_info,
  514. HT_SIG_INFO_0, MCS);
  515. ppdu_info->rx_status.bw = HAL_RX_GET(ht_sig_info,
  516. HT_SIG_INFO_0, CBW);
  517. ppdu_info->rx_status.sgi = HAL_RX_GET(ht_sig_info,
  518. HT_SIG_INFO_1, SHORT_GI);
  519. break;
  520. }
  521. case WIFIPHYRX_L_SIG_B_E:
  522. {
  523. uint8_t *l_sig_b_info = (uint8_t *)rx_tlv +
  524. HAL_RX_OFFSET(PHYRX_L_SIG_B_0,
  525. L_SIG_B_INFO_PHYRX_L_SIG_B_INFO_DETAILS);
  526. value = HAL_RX_GET(l_sig_b_info, L_SIG_B_INFO_0, RATE);
  527. switch (value) {
  528. case 1:
  529. ppdu_info->rx_status.rate = HAL_11B_RATE_3MCS;
  530. break;
  531. case 2:
  532. ppdu_info->rx_status.rate = HAL_11B_RATE_2MCS;
  533. break;
  534. case 3:
  535. ppdu_info->rx_status.rate = HAL_11B_RATE_1MCS;
  536. break;
  537. case 4:
  538. ppdu_info->rx_status.rate = HAL_11B_RATE_0MCS;
  539. break;
  540. case 5:
  541. ppdu_info->rx_status.rate = HAL_11B_RATE_6MCS;
  542. break;
  543. case 6:
  544. ppdu_info->rx_status.rate = HAL_11B_RATE_5MCS;
  545. break;
  546. case 7:
  547. ppdu_info->rx_status.rate = HAL_11B_RATE_4MCS;
  548. break;
  549. default:
  550. break;
  551. }
  552. break;
  553. }
  554. case WIFIPHYRX_L_SIG_A_E:
  555. {
  556. uint8_t *l_sig_a_info = (uint8_t *)rx_tlv +
  557. HAL_RX_OFFSET(PHYRX_L_SIG_A_0,
  558. L_SIG_A_INFO_PHYRX_L_SIG_A_INFO_DETAILS);
  559. value = HAL_RX_GET(l_sig_a_info, L_SIG_A_INFO_0, RATE);
  560. switch (value) {
  561. case 8:
  562. ppdu_info->rx_status.rate = HAL_11A_RATE_0MCS;
  563. break;
  564. case 9:
  565. ppdu_info->rx_status.rate = HAL_11A_RATE_1MCS;
  566. break;
  567. case 10:
  568. ppdu_info->rx_status.rate = HAL_11A_RATE_2MCS;
  569. break;
  570. case 11:
  571. ppdu_info->rx_status.rate = HAL_11A_RATE_3MCS;
  572. break;
  573. case 12:
  574. ppdu_info->rx_status.rate = HAL_11A_RATE_4MCS;
  575. break;
  576. case 13:
  577. ppdu_info->rx_status.rate = HAL_11A_RATE_5MCS;
  578. break;
  579. case 14:
  580. ppdu_info->rx_status.rate = HAL_11A_RATE_6MCS;
  581. break;
  582. case 15:
  583. ppdu_info->rx_status.rate = HAL_11A_RATE_7MCS;
  584. break;
  585. default:
  586. break;
  587. }
  588. break;
  589. }
  590. case WIFIPHYRX_VHT_SIG_A_E:
  591. {
  592. uint8_t *vht_sig_a_info = (uint8_t *)rx_tlv +
  593. HAL_RX_OFFSET(PHYRX_VHT_SIG_A_0,
  594. VHT_SIG_A_INFO_PHYRX_VHT_SIG_A_INFO_DETAILS);
  595. value = HAL_RX_GET(vht_sig_a_info, VHT_SIG_A_INFO_1,
  596. SU_MU_CODING);
  597. ppdu_info->rx_status.ldpc = (value == HAL_SU_MU_CODING_LDPC) ?
  598. 1 : 0;
  599. group_id = HAL_RX_GET(vht_sig_a_info, VHT_SIG_A_INFO_0, GROUP_ID);
  600. ppdu_info->rx_status.vht_flag_values5 = group_id;
  601. ppdu_info->rx_status.mcs = HAL_RX_GET(vht_sig_a_info,
  602. VHT_SIG_A_INFO_1, MCS);
  603. ppdu_info->rx_status.sgi = HAL_RX_GET(vht_sig_a_info,
  604. VHT_SIG_A_INFO_1, GI_SETTING);
  605. #if !defined(QCA_WIFI_QCA6290_11AX)
  606. value = HAL_RX_GET(vht_sig_a_info,
  607. VHT_SIG_A_INFO_0, N_STS);
  608. ppdu_info->rx_status.nss = ((value & VHT_SIG_SU_NSS_MASK) + 1);
  609. #else
  610. ppdu_info->rx_status.nss = 0;
  611. #endif
  612. ppdu_info->rx_status.vht_flag_values3[0] =
  613. (((ppdu_info->rx_status.mcs) << 4)
  614. | ppdu_info->rx_status.nss);
  615. ppdu_info->rx_status.bw = HAL_RX_GET(vht_sig_a_info,
  616. VHT_SIG_A_INFO_0, BANDWIDTH);
  617. break;
  618. }
  619. case WIFIPHYRX_HE_SIG_A_SU_E:
  620. {
  621. uint8_t *he_sig_a_su_info = (uint8_t *)rx_tlv +
  622. HAL_RX_OFFSET(PHYRX_HE_SIG_A_SU_0,
  623. HE_SIG_A_SU_INFO_PHYRX_HE_SIG_A_SU_INFO_DETAILS);
  624. ppdu_info->rx_status.he_flags = 1;
  625. value = HAL_RX_GET(he_sig_a_su_info, HE_SIG_A_SU_INFO_0,
  626. FORMAT_INDICATION);
  627. if (value == 0) {
  628. ppdu_info->rx_status.he_data1 =
  629. QDF_MON_STATUS_HE_TRIG_FORMAT_TYPE;
  630. } else {
  631. ppdu_info->rx_status.he_data1 =
  632. QDF_MON_STATUS_HE_SU_OR_EXT_SU_FORMAT_TYPE;
  633. }
  634. /*data1*/
  635. ppdu_info->rx_status.he_data1 |=
  636. QDF_MON_STATUS_HE_BSS_COLOR_KNOWN |
  637. QDF_MON_STATUS_HE_BEAM_CHANGE_KNOWN |
  638. QDF_MON_STATUS_HE_DL_UL_KNOWN |
  639. QDF_MON_STATUS_HE_MCS_KNOWN |
  640. QDF_MON_STATUS_HE_DCM_KNOWN |
  641. QDF_MON_STATUS_HE_CODING_KNOWN |
  642. QDF_MON_STATUS_HE_LDPC_EXTRA_SYMBOL_KNOWN |
  643. QDF_MON_STATUS_HE_STBC_KNOWN |
  644. QDF_MON_STATUS_HE_DATA_BW_RU_KNOWN |
  645. QDF_MON_STATUS_HE_DOPPLER_KNOWN;
  646. /*data2*/
  647. ppdu_info->rx_status.he_data2 =
  648. QDF_MON_STATUS_HE_GI_KNOWN;
  649. ppdu_info->rx_status.he_data2 |=
  650. QDF_MON_STATUS_TXBF_KNOWN |
  651. QDF_MON_STATUS_PE_DISAMBIGUITY_KNOWN |
  652. QDF_MON_STATUS_TXOP_KNOWN |
  653. QDF_MON_STATUS_LTF_SYMBOLS_KNOWN |
  654. QDF_MON_STATUS_PRE_FEC_PADDING_KNOWN |
  655. QDF_MON_STATUS_MIDABLE_PERIODICITY_KNOWN;
  656. /*data3*/
  657. value = HAL_RX_GET(he_sig_a_su_info,
  658. HE_SIG_A_SU_INFO_0, BSS_COLOR_ID);
  659. ppdu_info->rx_status.he_data3 = value;
  660. value = HAL_RX_GET(he_sig_a_su_info,
  661. HE_SIG_A_SU_INFO_0, BEAM_CHANGE);
  662. value = value << QDF_MON_STATUS_BEAM_CHANGE_SHIFT;
  663. ppdu_info->rx_status.he_data3 |= value;
  664. value = HAL_RX_GET(he_sig_a_su_info,
  665. HE_SIG_A_SU_INFO_0, DL_UL_FLAG);
  666. value = value << QDF_MON_STATUS_DL_UL_SHIFT;
  667. ppdu_info->rx_status.he_data3 |= value;
  668. value = HAL_RX_GET(he_sig_a_su_info,
  669. HE_SIG_A_SU_INFO_0, TRANSMIT_MCS);
  670. ppdu_info->rx_status.mcs = value;
  671. value = value << QDF_MON_STATUS_TRANSMIT_MCS_SHIFT;
  672. ppdu_info->rx_status.he_data3 |= value;
  673. value = HAL_RX_GET(he_sig_a_su_info,
  674. HE_SIG_A_SU_INFO_0, DCM);
  675. value = value << QDF_MON_STATUS_DCM_SHIFT;
  676. ppdu_info->rx_status.he_data3 |= value;
  677. value = HAL_RX_GET(he_sig_a_su_info,
  678. HE_SIG_A_SU_INFO_1, CODING);
  679. value = value << QDF_MON_STATUS_CODING_SHIFT;
  680. ppdu_info->rx_status.he_data3 |= value;
  681. value = HAL_RX_GET(he_sig_a_su_info,
  682. HE_SIG_A_SU_INFO_1,
  683. LDPC_EXTRA_SYMBOL);
  684. value = value << QDF_MON_STATUS_LDPC_EXTRA_SYMBOL_SHIFT;
  685. ppdu_info->rx_status.he_data3 |= value;
  686. value = HAL_RX_GET(he_sig_a_su_info,
  687. HE_SIG_A_SU_INFO_1, STBC);
  688. value = value << QDF_MON_STATUS_STBC_SHIFT;
  689. ppdu_info->rx_status.he_data3 |= value;
  690. /*data4*/
  691. value = HAL_RX_GET(he_sig_a_su_info, HE_SIG_A_SU_INFO_0,
  692. SPATIAL_REUSE);
  693. ppdu_info->rx_status.he_data4 = value;
  694. /*data5*/
  695. value = HAL_RX_GET(he_sig_a_su_info,
  696. HE_SIG_A_SU_INFO_0, TRANSMIT_BW);
  697. ppdu_info->rx_status.he_data5 = value;
  698. ppdu_info->rx_status.bw = value;
  699. value = HAL_RX_GET(he_sig_a_su_info,
  700. HE_SIG_A_SU_INFO_0, CP_LTF_SIZE);
  701. switch (value) {
  702. case 0:
  703. he_gi = HE_GI_0_8;
  704. he_ltf = HE_LTF_1_X;
  705. break;
  706. case 1:
  707. he_gi = HE_GI_0_8;
  708. he_ltf = HE_LTF_2_X;
  709. break;
  710. case 2:
  711. he_gi = HE_GI_1_6;
  712. he_ltf = HE_LTF_2_X;
  713. break;
  714. case 3:
  715. he_gi = HE_GI_3_2;
  716. he_ltf = HE_LTF_4_X;
  717. break;
  718. }
  719. ppdu_info->rx_status.sgi = he_gi;
  720. value = he_gi << QDF_MON_STATUS_GI_SHIFT;
  721. ppdu_info->rx_status.he_data5 |= value;
  722. value = he_ltf << QDF_MON_STATUS_HE_LTF_SHIFT;
  723. ppdu_info->rx_status.he_data5 |= value;
  724. value = HAL_RX_GET(he_sig_a_su_info, HE_SIG_A_SU_INFO_1,
  725. PACKET_EXTENSION_A_FACTOR);
  726. value = value << QDF_MON_STATUS_PRE_FEC_PAD_SHIFT;
  727. ppdu_info->rx_status.he_data5 |= value;
  728. value = HAL_RX_GET(he_sig_a_su_info, HE_SIG_A_SU_INFO_1, TXBF);
  729. value = value << QDF_MON_STATUS_TXBF_SHIFT;
  730. ppdu_info->rx_status.he_data5 |= value;
  731. value = HAL_RX_GET(he_sig_a_su_info, HE_SIG_A_SU_INFO_1,
  732. PACKET_EXTENSION_PE_DISAMBIGUITY);
  733. value = value << QDF_MON_STATUS_PE_DISAMBIGUITY_SHIFT;
  734. ppdu_info->rx_status.he_data5 |= value;
  735. /*data6*/
  736. value = HAL_RX_GET(he_sig_a_su_info, HE_SIG_A_SU_INFO_0, NSTS);
  737. value++;
  738. ppdu_info->rx_status.nss = value;
  739. ppdu_info->rx_status.he_data6 = value;
  740. value = HAL_RX_GET(he_sig_a_su_info, HE_SIG_A_SU_INFO_1,
  741. DOPPLER_INDICATION);
  742. value = value << QDF_MON_STATUS_DOPPLER_SHIFT;
  743. ppdu_info->rx_status.he_data6 |= value;
  744. value = HAL_RX_GET(he_sig_a_su_info, HE_SIG_A_SU_INFO_1,
  745. TXOP_DURATION);
  746. value = value << QDF_MON_STATUS_TXOP_SHIFT;
  747. ppdu_info->rx_status.he_data6 |= value;
  748. break;
  749. }
  750. case WIFIPHYRX_HE_SIG_A_MU_DL_E:
  751. ppdu_info->rx_status.he_sig_A1 =
  752. *((uint32_t *)((uint8_t *)rx_tlv +
  753. HAL_RX_OFFSET(PHYRX_HE_SIG_A_MU_DL_0,
  754. HE_SIG_A_MU_DL_INFO_PHYRX_HE_SIG_A_MU_DL_INFO_DETAILS)));
  755. ppdu_info->rx_status.he_sig_A1 |=
  756. QDF_MON_STATUS_HE_SIG_A1_HE_FORMAT_MU;
  757. ppdu_info->rx_status.he_sig_A1_known =
  758. QDF_MON_STATUS_HE_SIG_A1_MU_KNOWN_ALL;
  759. ppdu_info->rx_status.he_sig_A2 =
  760. *((uint32_t *)((uint8_t *)rx_tlv +
  761. HAL_RX_OFFSET(PHYRX_HE_SIG_A_MU_DL_1,
  762. HE_SIG_A_MU_DL_INFO_PHYRX_HE_SIG_A_MU_DL_INFO_DETAILS)));
  763. ppdu_info->rx_status.he_sig_A2_known =
  764. QDF_MON_STATUS_HE_SIG_A2_MU_KNOWN_ALL;
  765. break;
  766. case WIFIPHYRX_HE_SIG_B1_MU_E:
  767. {
  768. uint8_t *he_sig_b1_mu_info = (uint8_t *)rx_tlv +
  769. *((uint32_t *)((uint8_t *)rx_tlv +
  770. HAL_RX_OFFSET(PHYRX_HE_SIG_B1_MU_0,
  771. HE_SIG_B1_MU_INFO_PHYRX_HE_SIG_B1_MU_INFO_DETAILS)));
  772. ppdu_info->rx_status.he_sig_b_common_RU[0] =
  773. HAL_RX_GET(he_sig_b1_mu_info, HE_SIG_B1_MU_INFO_0,
  774. RU_ALLOCATION);
  775. ppdu_info->rx_status.he_sig_b_common_known =
  776. QDF_MON_STATUS_HE_SIG_B_COMMON_KNOWN_RU0;
  777. /* TODO: Check on the availability of other fields in
  778. * sig_b_common
  779. */
  780. break;
  781. }
  782. case WIFIPHYRX_HE_SIG_B2_MU_E:
  783. ppdu_info->rx_status.he_sig_b_user =
  784. *((uint32_t *)((uint8_t *)rx_tlv +
  785. HAL_RX_OFFSET(PHYRX_HE_SIG_B2_MU_0,
  786. HE_SIG_B2_MU_INFO_PHYRX_HE_SIG_B2_MU_INFO_DETAILS)));
  787. ppdu_info->rx_status.he_sig_b_user_known =
  788. QDF_MON_STATUS_HE_SIG_B_USER_KNOWN_SIG_B_ALL;
  789. break;
  790. case WIFIPHYRX_HE_SIG_B2_OFDMA_E:
  791. ppdu_info->rx_status.he_sig_b_user =
  792. *((uint32_t *)((uint8_t *)rx_tlv +
  793. HAL_RX_OFFSET(PHYRX_HE_SIG_B2_OFDMA_0,
  794. HE_SIG_B2_OFDMA_INFO_PHYRX_HE_SIG_B2_OFDMA_INFO_DETAILS)));
  795. ppdu_info->rx_status.he_sig_b_user_known =
  796. QDF_MON_STATUS_HE_SIG_B_USER_KNOWN_SIG_B_ALL;
  797. break;
  798. case WIFIPHYRX_RSSI_LEGACY_E:
  799. {
  800. uint8_t *rssi_info_tlv = (uint8_t *)rx_tlv +
  801. HAL_RX_OFFSET(PHYRX_RSSI_LEGACY_3,
  802. RECEIVE_RSSI_INFO_PRE_RSSI_INFO_DETAILS);
  803. ppdu_info->rx_status.rssi_comb = HAL_RX_GET(rx_tlv,
  804. PHYRX_RSSI_LEGACY_35, RSSI_COMB);
  805. ppdu_info->rx_status.bw = HAL_RX_GET(rx_tlv,
  806. #if !defined(QCA_WIFI_QCA6290_11AX)
  807. PHYRX_RSSI_LEGACY_35, RECEIVE_BANDWIDTH);
  808. #else
  809. PHYRX_RSSI_LEGACY_0, RECEIVE_BANDWIDTH);
  810. #endif
  811. ppdu_info->rx_status.he_re = 0;
  812. ppdu_info->rx_status.reception_type = HAL_RX_GET(rx_tlv,
  813. PHYRX_RSSI_LEGACY_0, RECEPTION_TYPE);
  814. value = HAL_RX_GET(rssi_info_tlv,
  815. RECEIVE_RSSI_INFO_0, RSSI_PRI20_CHAIN0);
  816. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  817. "RSSI_PRI20_CHAIN0: %d\n", value);
  818. value = HAL_RX_GET(rssi_info_tlv,
  819. RECEIVE_RSSI_INFO_0, RSSI_EXT20_CHAIN0);
  820. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  821. "RSSI_EXT20_CHAIN0: %d\n", value);
  822. value = HAL_RX_GET(rssi_info_tlv,
  823. RECEIVE_RSSI_INFO_0, RSSI_EXT40_LOW20_CHAIN0);
  824. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  825. "RSSI_EXT40_LOW20_CHAIN0: %d\n", value);
  826. value = HAL_RX_GET(rssi_info_tlv,
  827. RECEIVE_RSSI_INFO_0, RSSI_EXT40_HIGH20_CHAIN0);
  828. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  829. "RSSI_EXT40_HIGH20_CHAIN0: %d\n", value);
  830. value = HAL_RX_GET(rssi_info_tlv,
  831. RECEIVE_RSSI_INFO_1, RSSI_EXT80_LOW20_CHAIN0);
  832. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  833. "RSSI_EXT80_LOW20_CHAIN0: %d\n", value);
  834. value = HAL_RX_GET(rssi_info_tlv,
  835. RECEIVE_RSSI_INFO_1, RSSI_EXT80_LOW_HIGH20_CHAIN0);
  836. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  837. "RSSI_EXT80_LOW_HIGH20_CHAIN0: %d\n", value);
  838. value = HAL_RX_GET(rssi_info_tlv,
  839. RECEIVE_RSSI_INFO_1, RSSI_EXT80_HIGH_LOW20_CHAIN0);
  840. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  841. "RSSI_EXT80_HIGH_LOW20_CHAIN0: %d\n", value);
  842. value = HAL_RX_GET(rssi_info_tlv,
  843. RECEIVE_RSSI_INFO_1, RSSI_EXT80_HIGH20_CHAIN0);
  844. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  845. "RSSI_EXT80_HIGH20_CHAIN0: %d\n", value);
  846. break;
  847. }
  848. case WIFIRX_HEADER_E:
  849. ppdu_info->first_msdu_payload = rx_tlv;
  850. break;
  851. case 0:
  852. return HAL_TLV_STATUS_PPDU_DONE;
  853. default:
  854. break;
  855. }
  856. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
  857. "%s TLV type: %d, TLV len:%d\n",
  858. __func__, tlv_tag, tlv_len);
  859. return HAL_TLV_STATUS_PPDU_NOT_DONE;
  860. }
  861. static inline
  862. uint32_t hal_get_rx_status_done_tlv_size(void *hal_soc)
  863. {
  864. return HAL_RX_TLV32_HDR_SIZE;
  865. }
  866. static inline QDF_STATUS
  867. hal_get_rx_status_done(uint8_t *rx_tlv)
  868. {
  869. uint32_t tlv_tag;
  870. tlv_tag = HAL_RX_GET_USER_TLV32_TYPE(rx_tlv);
  871. if (tlv_tag == WIFIRX_STATUS_BUFFER_DONE_E)
  872. return QDF_STATUS_SUCCESS;
  873. else
  874. return QDF_STATUS_E_EMPTY;
  875. }
  876. static inline QDF_STATUS
  877. hal_clear_rx_status_done(uint8_t *rx_tlv)
  878. {
  879. *(uint32_t *)rx_tlv = 0;
  880. return QDF_STATUS_SUCCESS;
  881. }
  882. #endif