lpass-cdc-rx-macro.c 152 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870
  1. // SPDX-License-Identifier: GPL-2.0-only
  2. /* Copyright (c) 2018-2021, The Linux Foundation. All rights reserved.
  3. */
  4. #include <linux/module.h>
  5. #include <linux/init.h>
  6. #include <linux/io.h>
  7. #include <linux/platform_device.h>
  8. #include <linux/clk.h>
  9. #include <linux/pm_runtime.h>
  10. #include <sound/soc.h>
  11. #include <sound/pcm.h>
  12. #include <sound/pcm_params.h>
  13. #include <sound/soc-dapm.h>
  14. #include <sound/tlv.h>
  15. #include <soc/swr-common.h>
  16. #include <soc/swr-wcd.h>
  17. #include <asoc/msm-cdc-pinctrl.h>
  18. #include "lpass-cdc.h"
  19. #include "lpass-cdc-comp.h"
  20. #include "lpass-cdc-registers.h"
  21. #include "lpass-cdc-clk-rsc.h"
  22. #define AUTO_SUSPEND_DELAY 50 /* delay in msec */
  23. #define LPASS_CDC_RX_MACRO_RATES (SNDRV_PCM_RATE_8000 | SNDRV_PCM_RATE_16000 |\
  24. SNDRV_PCM_RATE_32000 | SNDRV_PCM_RATE_48000 |\
  25. SNDRV_PCM_RATE_96000 | SNDRV_PCM_RATE_192000 |\
  26. SNDRV_PCM_RATE_384000)
  27. /* Fractional Rates */
  28. #define LPASS_CDC_RX_MACRO_FRAC_RATES (SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_88200 |\
  29. SNDRV_PCM_RATE_176400 | SNDRV_PCM_RATE_352800)
  30. #define LPASS_CDC_RX_MACRO_FORMATS (SNDRV_PCM_FMTBIT_S16_LE |\
  31. SNDRV_PCM_FMTBIT_S24_LE |\
  32. SNDRV_PCM_FMTBIT_S24_3LE | SNDRV_PCM_FMTBIT_S32_LE)
  33. #define LPASS_CDC_RX_MACRO_ECHO_RATES (SNDRV_PCM_RATE_8000 | SNDRV_PCM_RATE_16000 |\
  34. SNDRV_PCM_RATE_48000)
  35. #define LPASS_CDC_RX_MACRO_ECHO_FORMATS (SNDRV_PCM_FMTBIT_S16_LE |\
  36. SNDRV_PCM_FMTBIT_S24_LE |\
  37. SNDRV_PCM_FMTBIT_S24_3LE)
  38. #define SAMPLING_RATE_44P1KHZ 44100
  39. #define SAMPLING_RATE_88P2KHZ 88200
  40. #define SAMPLING_RATE_176P4KHZ 176400
  41. #define SAMPLING_RATE_352P8KHZ 352800
  42. #define LPASS_CDC_RX_MACRO_MAX_OFFSET 0x1000
  43. #define LPASS_CDC_RX_MACRO_MAX_DMA_CH_PER_PORT 2
  44. #define RX_SWR_STRING_LEN 80
  45. #define LPASS_CDC_RX_MACRO_CHILD_DEVICES_MAX 3
  46. #define LPASS_CDC_RX_MACRO_INTERP_MUX_NUM_INPUTS 3
  47. #define LPASS_CDC_RX_MACRO_SIDETONE_IIR_COEFF_MAX 5
  48. #define LPASS_CDC_RX_MACRO_FIR_COEFF_MAX 100
  49. #define LPASS_CDC_RX_MACRO_FIR_COEFF_ARRAY_MAX \
  50. (LPASS_CDC_RX_MACRO_FIR_COEFF_MAX + 1)
  51. /* first value represent number of coefficients in each 100 integer group */
  52. #define LPASS_CDC_RX_MACRO_FIR_FILTER_BYTES \
  53. (sizeof(u32) * LPASS_CDC_RX_MACRO_FIR_COEFF_ARRAY_MAX)
  54. #define STRING(name) #name
  55. #define LPASS_CDC_RX_MACRO_DAPM_ENUM(name, reg, offset, text) \
  56. static SOC_ENUM_SINGLE_DECL(name##_enum, reg, offset, text); \
  57. static const struct snd_kcontrol_new name##_mux = \
  58. SOC_DAPM_ENUM(STRING(name), name##_enum)
  59. #define LPASS_CDC_RX_MACRO_DAPM_ENUM_EXT(name, reg, offset, text, getname, putname) \
  60. static SOC_ENUM_SINGLE_DECL(name##_enum, reg, offset, text); \
  61. static const struct snd_kcontrol_new name##_mux = \
  62. SOC_DAPM_ENUM_EXT(STRING(name), name##_enum, getname, putname)
  63. #define LPASS_CDC_RX_MACRO_DAPM_MUX(name, shift, kctl) \
  64. SND_SOC_DAPM_MUX(name, SND_SOC_NOPM, shift, 0, &kctl##_mux)
  65. #define LPASS_CDC_RX_MACRO_RX_PATH_OFFSET \
  66. (LPASS_CDC_RX_RX1_RX_PATH_CTL - LPASS_CDC_RX_RX0_RX_PATH_CTL)
  67. #define LPASS_CDC_RX_MACRO_COMP_OFFSET \
  68. (LPASS_CDC_RX_COMPANDER1_CTL0 - LPASS_CDC_RX_COMPANDER0_CTL0)
  69. #define MAX_IMPED_PARAMS 6
  70. #define LPASS_CDC_RX_MACRO_EC_MIX_TX0_MASK 0xf0
  71. #define LPASS_CDC_RX_MACRO_EC_MIX_TX1_MASK 0x0f
  72. #define LPASS_CDC_RX_MACRO_EC_MIX_TX2_MASK 0x0f
  73. #define LPASS_CDC_RX_MACRO_GAIN_MAX_VAL 0x28
  74. #define LPASS_CDC_RX_MACRO_GAIN_VAL_UNITY 0x0
  75. /* Define macros to increase PA Gain by half */
  76. #define LPASS_CDC_RX_MACRO_MOD_GAIN (LPASS_CDC_RX_MACRO_GAIN_VAL_UNITY + 6)
  77. #define COMP_MAX_COEFF 25
  78. struct wcd_imped_val {
  79. u32 imped_val;
  80. u8 index;
  81. };
  82. static const struct wcd_imped_val imped_index[] = {
  83. {4, 0},
  84. {5, 1},
  85. {6, 2},
  86. {7, 3},
  87. {8, 4},
  88. {9, 5},
  89. {10, 6},
  90. {11, 7},
  91. {12, 8},
  92. {13, 9},
  93. };
  94. enum {
  95. HPH_ULP,
  96. HPH_LOHIFI,
  97. HPH_MODE_MAX,
  98. };
  99. static struct comp_coeff_val
  100. comp_coeff_table [HPH_MODE_MAX][COMP_MAX_COEFF] = {
  101. {
  102. {0x40, 0x00},
  103. {0x4C, 0x00},
  104. {0x5A, 0x00},
  105. {0x6B, 0x00},
  106. {0x7F, 0x00},
  107. {0x97, 0x00},
  108. {0xB3, 0x00},
  109. {0xD5, 0x00},
  110. {0xFD, 0x00},
  111. {0x2D, 0x01},
  112. {0x66, 0x01},
  113. {0xA7, 0x01},
  114. {0xF8, 0x01},
  115. {0x57, 0x02},
  116. {0xC7, 0x02},
  117. {0x4B, 0x03},
  118. {0xE9, 0x03},
  119. {0xA3, 0x04},
  120. {0x7D, 0x05},
  121. {0x90, 0x06},
  122. {0xD1, 0x07},
  123. {0x49, 0x09},
  124. {0x00, 0x0B},
  125. {0x01, 0x0D},
  126. {0x59, 0x0F},
  127. },
  128. {
  129. {0x40, 0x00},
  130. {0x4C, 0x00},
  131. {0x5A, 0x00},
  132. {0x6B, 0x00},
  133. {0x80, 0x00},
  134. {0x98, 0x00},
  135. {0xB4, 0x00},
  136. {0xD5, 0x00},
  137. {0xFE, 0x00},
  138. {0x2E, 0x01},
  139. {0x66, 0x01},
  140. {0xA9, 0x01},
  141. {0xF8, 0x01},
  142. {0x56, 0x02},
  143. {0xC4, 0x02},
  144. {0x4F, 0x03},
  145. {0xF0, 0x03},
  146. {0xAE, 0x04},
  147. {0x8B, 0x05},
  148. {0x8E, 0x06},
  149. {0xBC, 0x07},
  150. {0x56, 0x09},
  151. {0x0F, 0x0B},
  152. {0x13, 0x0D},
  153. {0x6F, 0x0F},
  154. },
  155. };
  156. enum {
  157. RX_MODE_ULP,
  158. RX_MODE_LOHIFI,
  159. RX_MODE_EAR,
  160. RX_MODE_MAX
  161. };
  162. static struct lpass_cdc_comp_setting comp_setting_table[RX_MODE_MAX] =
  163. {
  164. {12, -60, 12},
  165. {0, -60, 12},
  166. {12, -36, 12},
  167. };
  168. struct lpass_cdc_rx_macro_reg_mask_val {
  169. u16 reg;
  170. u8 mask;
  171. u8 val;
  172. };
  173. static const struct lpass_cdc_rx_macro_reg_mask_val imped_table[][MAX_IMPED_PARAMS] = {
  174. {
  175. {LPASS_CDC_RX_RX0_RX_VOL_CTL, 0xff, 0xf2},
  176. {LPASS_CDC_RX_RX0_RX_VOL_MIX_CTL, 0xff, 0xf2},
  177. {LPASS_CDC_RX_RX0_RX_PATH_SEC1, 0x01, 0x00},
  178. {LPASS_CDC_RX_RX1_RX_VOL_CTL, 0xff, 0xf2},
  179. {LPASS_CDC_RX_RX1_RX_VOL_MIX_CTL, 0xff, 0xf2},
  180. {LPASS_CDC_RX_RX1_RX_PATH_SEC1, 0x01, 0x00},
  181. },
  182. {
  183. {LPASS_CDC_RX_RX0_RX_VOL_CTL, 0xff, 0xf4},
  184. {LPASS_CDC_RX_RX0_RX_VOL_MIX_CTL, 0xff, 0xf4},
  185. {LPASS_CDC_RX_RX0_RX_PATH_SEC1, 0x01, 0x00},
  186. {LPASS_CDC_RX_RX1_RX_VOL_CTL, 0xff, 0xf4},
  187. {LPASS_CDC_RX_RX1_RX_VOL_MIX_CTL, 0xff, 0xf4},
  188. {LPASS_CDC_RX_RX1_RX_PATH_SEC1, 0x01, 0x00},
  189. },
  190. {
  191. {LPASS_CDC_RX_RX0_RX_VOL_CTL, 0xff, 0xf7},
  192. {LPASS_CDC_RX_RX0_RX_VOL_MIX_CTL, 0xff, 0xf7},
  193. {LPASS_CDC_RX_RX0_RX_PATH_SEC1, 0x01, 0x01},
  194. {LPASS_CDC_RX_RX1_RX_VOL_CTL, 0xff, 0xf7},
  195. {LPASS_CDC_RX_RX1_RX_VOL_MIX_CTL, 0xff, 0xf7},
  196. {LPASS_CDC_RX_RX1_RX_PATH_SEC1, 0x01, 0x01},
  197. },
  198. {
  199. {LPASS_CDC_RX_RX0_RX_VOL_CTL, 0xff, 0xf9},
  200. {LPASS_CDC_RX_RX0_RX_VOL_MIX_CTL, 0xff, 0xf9},
  201. {LPASS_CDC_RX_RX0_RX_PATH_SEC1, 0x01, 0x00},
  202. {LPASS_CDC_RX_RX1_RX_VOL_CTL, 0xff, 0xf9},
  203. {LPASS_CDC_RX_RX1_RX_VOL_MIX_CTL, 0xff, 0xf9},
  204. {LPASS_CDC_RX_RX1_RX_PATH_SEC1, 0x01, 0x00},
  205. },
  206. {
  207. {LPASS_CDC_RX_RX0_RX_VOL_CTL, 0xff, 0xfa},
  208. {LPASS_CDC_RX_RX0_RX_VOL_MIX_CTL, 0xff, 0xfa},
  209. {LPASS_CDC_RX_RX0_RX_PATH_SEC1, 0x01, 0x00},
  210. {LPASS_CDC_RX_RX1_RX_VOL_CTL, 0xff, 0xfa},
  211. {LPASS_CDC_RX_RX1_RX_VOL_MIX_CTL, 0xff, 0xfa},
  212. {LPASS_CDC_RX_RX1_RX_PATH_SEC1, 0x01, 0x00},
  213. },
  214. {
  215. {LPASS_CDC_RX_RX0_RX_VOL_CTL, 0xff, 0xfb},
  216. {LPASS_CDC_RX_RX0_RX_VOL_MIX_CTL, 0xff, 0xfb},
  217. {LPASS_CDC_RX_RX0_RX_PATH_SEC1, 0x01, 0x00},
  218. {LPASS_CDC_RX_RX1_RX_VOL_CTL, 0xff, 0xfb},
  219. {LPASS_CDC_RX_RX1_RX_VOL_MIX_CTL, 0xff, 0xfb},
  220. {LPASS_CDC_RX_RX1_RX_PATH_SEC1, 0x01, 0x00},
  221. },
  222. {
  223. {LPASS_CDC_RX_RX0_RX_VOL_CTL, 0xff, 0xfc},
  224. {LPASS_CDC_RX_RX0_RX_VOL_MIX_CTL, 0xff, 0xfc},
  225. {LPASS_CDC_RX_RX0_RX_PATH_SEC1, 0x01, 0x00},
  226. {LPASS_CDC_RX_RX1_RX_VOL_CTL, 0xff, 0xfc},
  227. {LPASS_CDC_RX_RX1_RX_VOL_MIX_CTL, 0xff, 0xfc},
  228. {LPASS_CDC_RX_RX1_RX_PATH_SEC1, 0x01, 0x00},
  229. },
  230. {
  231. {LPASS_CDC_RX_RX0_RX_VOL_CTL, 0xff, 0xfd},
  232. {LPASS_CDC_RX_RX0_RX_VOL_MIX_CTL, 0xff, 0xfd},
  233. {LPASS_CDC_RX_RX0_RX_PATH_SEC1, 0x01, 0x00},
  234. {LPASS_CDC_RX_RX1_RX_VOL_CTL, 0xff, 0xfd},
  235. {LPASS_CDC_RX_RX1_RX_VOL_MIX_CTL, 0xff, 0xfd},
  236. {LPASS_CDC_RX_RX1_RX_PATH_SEC1, 0x01, 0x00},
  237. },
  238. {
  239. {LPASS_CDC_RX_RX0_RX_VOL_CTL, 0xff, 0xfd},
  240. {LPASS_CDC_RX_RX0_RX_VOL_MIX_CTL, 0xff, 0xfd},
  241. {LPASS_CDC_RX_RX0_RX_PATH_SEC1, 0x01, 0x01},
  242. {LPASS_CDC_RX_RX1_RX_VOL_CTL, 0xff, 0xfd},
  243. {LPASS_CDC_RX_RX1_RX_VOL_MIX_CTL, 0xff, 0xfd},
  244. {LPASS_CDC_RX_RX1_RX_PATH_SEC1, 0x01, 0x01},
  245. },
  246. };
  247. enum {
  248. INTERP_HPHL,
  249. INTERP_HPHR,
  250. INTERP_AUX,
  251. INTERP_MAX
  252. };
  253. enum {
  254. LPASS_CDC_RX_MACRO_RX0,
  255. LPASS_CDC_RX_MACRO_RX1,
  256. LPASS_CDC_RX_MACRO_RX2,
  257. LPASS_CDC_RX_MACRO_RX3,
  258. LPASS_CDC_RX_MACRO_RX4,
  259. LPASS_CDC_RX_MACRO_RX5,
  260. LPASS_CDC_RX_MACRO_PORTS_MAX
  261. };
  262. enum {
  263. LPASS_CDC_RX_MACRO_COMP1, /* HPH_L */
  264. LPASS_CDC_RX_MACRO_COMP2, /* HPH_R */
  265. LPASS_CDC_RX_MACRO_COMP_MAX
  266. };
  267. enum {
  268. LPASS_CDC_RX_MACRO_EC0_MUX = 0,
  269. LPASS_CDC_RX_MACRO_EC1_MUX,
  270. LPASS_CDC_RX_MACRO_EC2_MUX,
  271. LPASS_CDC_RX_MACRO_EC_MUX_MAX,
  272. };
  273. enum {
  274. INTn_1_INP_SEL_ZERO = 0,
  275. INTn_1_INP_SEL_DEC0,
  276. INTn_1_INP_SEL_DEC1,
  277. INTn_1_INP_SEL_IIR0,
  278. INTn_1_INP_SEL_IIR1,
  279. INTn_1_INP_SEL_RX0,
  280. INTn_1_INP_SEL_RX1,
  281. INTn_1_INP_SEL_RX2,
  282. INTn_1_INP_SEL_RX3,
  283. INTn_1_INP_SEL_RX4,
  284. INTn_1_INP_SEL_RX5,
  285. };
  286. enum {
  287. INTn_2_INP_SEL_ZERO = 0,
  288. INTn_2_INP_SEL_RX0,
  289. INTn_2_INP_SEL_RX1,
  290. INTn_2_INP_SEL_RX2,
  291. INTn_2_INP_SEL_RX3,
  292. INTn_2_INP_SEL_RX4,
  293. INTn_2_INP_SEL_RX5,
  294. };
  295. enum {
  296. INTERP_MAIN_PATH,
  297. INTERP_MIX_PATH,
  298. };
  299. /* Codec supports 2 IIR filters */
  300. enum {
  301. IIR0 = 0,
  302. IIR1,
  303. IIR_MAX,
  304. };
  305. /* Each IIR has 5 Filter Stages */
  306. enum {
  307. BAND1 = 0,
  308. BAND2,
  309. BAND3,
  310. BAND4,
  311. BAND5,
  312. BAND_MAX,
  313. };
  314. #define LPASS_CDC_RX_MACRO_IIR_FILTER_SIZE (sizeof(u32) * BAND_MAX)
  315. struct lpass_cdc_rx_macro_iir_filter_ctl {
  316. unsigned int iir_idx;
  317. unsigned int band_idx;
  318. struct soc_bytes_ext bytes_ext;
  319. };
  320. #define LPASS_CDC_RX_MACRO_IIR_FILTER_CTL(xname, iidx, bidx) \
  321. { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
  322. .info = lpass_cdc_rx_macro_iir_filter_info, \
  323. .get = lpass_cdc_rx_macro_iir_band_audio_mixer_get, \
  324. .put = lpass_cdc_rx_macro_iir_band_audio_mixer_put, \
  325. .private_value = (unsigned long)&(struct lpass_cdc_rx_macro_iir_filter_ctl) { \
  326. .iir_idx = iidx, \
  327. .band_idx = bidx, \
  328. .bytes_ext = {.max = LPASS_CDC_RX_MACRO_IIR_FILTER_SIZE, }, \
  329. } \
  330. }
  331. /* Codec supports 2 FIR filters Path */
  332. enum {
  333. RX0_PATH = 0,
  334. RX1_PATH,
  335. FIR_PATH_MAX,
  336. };
  337. /* Each RX Path has 2 group of coefficients */
  338. enum {
  339. GRP0 = 0,
  340. GRP1,
  341. GRP_MAX,
  342. };
  343. struct lpass_cdc_rx_macro_fir_filter_ctl {
  344. unsigned int path_idx;
  345. unsigned int grp_idx;
  346. struct soc_bytes_ext bytes_ext;
  347. };
  348. #define LPASS_CDC_RX_MACRO_FIR_FILTER_CTL(xname, pidx, gidx) \
  349. { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
  350. .info = lpass_cdc_rx_macro_fir_filter_info, \
  351. .get = lpass_cdc_rx_macro_fir_audio_mixer_get, \
  352. .put = lpass_cdc_rx_macro_fir_audio_mixer_put, \
  353. .private_value = (unsigned long)&(struct lpass_cdc_rx_macro_fir_filter_ctl) { \
  354. .path_idx = pidx, \
  355. .grp_idx = gidx, \
  356. .bytes_ext = {.max = LPASS_CDC_RX_MACRO_FIR_FILTER_BYTES, }, \
  357. } \
  358. }
  359. struct lpass_cdc_rx_macro_idle_detect_config {
  360. u8 hph_idle_thr;
  361. u8 hph_idle_detect_en;
  362. };
  363. struct interp_sample_rate {
  364. int sample_rate;
  365. int rate_val;
  366. };
  367. static struct interp_sample_rate sr_val_tbl[] = {
  368. {8000, 0x0}, {16000, 0x1}, {32000, 0x3}, {48000, 0x4}, {96000, 0x5},
  369. {192000, 0x6}, {384000, 0x7}, {44100, 0x9}, {88200, 0xA},
  370. {176400, 0xB}, {352800, 0xC},
  371. };
  372. static int lpass_cdc_rx_macro_core_vote(void *handle, bool enable);
  373. static int lpass_cdc_rx_macro_hw_params(struct snd_pcm_substream *substream,
  374. struct snd_pcm_hw_params *params,
  375. struct snd_soc_dai *dai);
  376. static int lpass_cdc_rx_macro_get_channel_map(struct snd_soc_dai *dai,
  377. unsigned int *tx_num, unsigned int *tx_slot,
  378. unsigned int *rx_num, unsigned int *rx_slot);
  379. static int lpass_cdc_rx_macro_mute_stream(struct snd_soc_dai *dai, int mute, int stream);
  380. static int lpass_cdc_rx_macro_int_dem_inp_mux_put(struct snd_kcontrol *kcontrol,
  381. struct snd_ctl_elem_value *ucontrol);
  382. static int lpass_cdc_rx_macro_mux_get(struct snd_kcontrol *kcontrol,
  383. struct snd_ctl_elem_value *ucontrol);
  384. static int lpass_cdc_rx_macro_mux_put(struct snd_kcontrol *kcontrol,
  385. struct snd_ctl_elem_value *ucontrol);
  386. static int lpass_cdc_rx_macro_enable_interp_clk(struct snd_soc_component *component,
  387. int event, int interp_idx);
  388. /* Hold instance to soundwire platform device */
  389. struct rx_swr_ctrl_data {
  390. struct platform_device *rx_swr_pdev;
  391. };
  392. struct rx_swr_ctrl_platform_data {
  393. void *handle; /* holds codec private data */
  394. int (*read)(void *handle, int reg);
  395. int (*write)(void *handle, int reg, int val);
  396. int (*bulk_write)(void *handle, u32 *reg, u32 *val, size_t len);
  397. int (*clk)(void *handle, bool enable);
  398. int (*core_vote)(void *handle, bool enable);
  399. int (*handle_irq)(void *handle,
  400. irqreturn_t (*swrm_irq_handler)(int irq,
  401. void *data),
  402. void *swrm_handle,
  403. int action);
  404. };
  405. enum {
  406. RX_MACRO_AIF_INVALID = 0,
  407. RX_MACRO_AIF1_PB,
  408. RX_MACRO_AIF2_PB,
  409. RX_MACRO_AIF3_PB,
  410. RX_MACRO_AIF4_PB,
  411. RX_MACRO_AIF_ECHO,
  412. RX_MACRO_AIF5_PB,
  413. RX_MACRO_AIF6_PB,
  414. LPASS_CDC_RX_MACRO_MAX_DAIS,
  415. };
  416. enum {
  417. RX_MACRO_AIF1_CAP = 0,
  418. RX_MACRO_AIF2_CAP,
  419. RX_MACRO_AIF3_CAP,
  420. LPASS_CDC_RX_MACRO_MAX_AIF_CAP_DAIS
  421. };
  422. /*
  423. * @dev: rx macro device pointer
  424. * @comp_enabled: compander enable mixer value set
  425. * @prim_int_users: Users of interpolator
  426. * @rx_mclk_users: RX MCLK users count
  427. * @vi_feed_value: VI sense mask
  428. * @swr_clk_lock: to lock swr master clock operations
  429. * @swr_ctrl_data: SoundWire data structure
  430. * @swr_plat_data: Soundwire platform data
  431. * @lpass_cdc_rx_macro_add_child_devices_work: work for adding child devices
  432. * @rx_swr_gpio_p: used by pinctrl API
  433. * @component: codec handle
  434. */
  435. struct lpass_cdc_rx_macro_priv {
  436. struct device *dev;
  437. int comp_enabled[LPASS_CDC_RX_MACRO_COMP_MAX];
  438. /* Main path clock users count */
  439. int main_clk_users[INTERP_MAX];
  440. int rx_port_value[LPASS_CDC_RX_MACRO_PORTS_MAX];
  441. u16 prim_int_users[INTERP_MAX];
  442. int rx_mclk_users;
  443. int swr_clk_users;
  444. bool dapm_mclk_enable;
  445. bool reset_swr;
  446. int clsh_users;
  447. int rx_mclk_cnt;
  448. u8 fir_total_coeff_num[FIR_PATH_MAX];
  449. bool is_native_on;
  450. bool is_ear_mode_on;
  451. bool is_fir_filter_on;
  452. bool is_fir_coeff_written[FIR_PATH_MAX][GRP_MAX];
  453. bool is_fir_capable;
  454. bool dev_up;
  455. bool hph_pwr_mode;
  456. bool hph_hd2_mode;
  457. struct mutex mclk_lock;
  458. struct mutex swr_clk_lock;
  459. struct rx_swr_ctrl_data *swr_ctrl_data;
  460. struct rx_swr_ctrl_platform_data swr_plat_data;
  461. struct work_struct lpass_cdc_rx_macro_add_child_devices_work;
  462. struct device_node *rx_swr_gpio_p;
  463. struct snd_soc_component *component;
  464. unsigned long active_ch_mask[LPASS_CDC_RX_MACRO_MAX_DAIS];
  465. unsigned long active_ch_cnt[LPASS_CDC_RX_MACRO_MAX_DAIS];
  466. u16 bit_width[LPASS_CDC_RX_MACRO_MAX_DAIS];
  467. char __iomem *rx_io_base;
  468. char __iomem *rx_mclk_mode_muxsel;
  469. struct lpass_cdc_rx_macro_idle_detect_config idle_det_cfg;
  470. u8 sidetone_coeff_array[IIR_MAX][BAND_MAX]
  471. [LPASS_CDC_RX_MACRO_SIDETONE_IIR_COEFF_MAX * 4];
  472. /* NOT designed to always reflect the actual hardware value */
  473. u32 fir_coeff_array[FIR_PATH_MAX][GRP_MAX]
  474. [LPASS_CDC_RX_MACRO_FIR_COEFF_MAX];
  475. u32 num_fir_coeff[FIR_PATH_MAX][GRP_MAX];
  476. struct platform_device *pdev_child_devices
  477. [LPASS_CDC_RX_MACRO_CHILD_DEVICES_MAX];
  478. int child_count;
  479. int is_softclip_on;
  480. int is_aux_hpf_on;
  481. int softclip_clk_users;
  482. u16 clk_id;
  483. u16 default_clk_id;
  484. struct clk *hifi_fir_clk;
  485. int8_t rx0_gain_val;
  486. int8_t rx1_gain_val;
  487. };
  488. static struct snd_soc_dai_driver lpass_cdc_rx_macro_dai[];
  489. static const DECLARE_TLV_DB_SCALE(digital_gain, 0, 1, 0);
  490. static const char * const rx_int_mix_mux_text[] = {
  491. "ZERO", "RX0", "RX1", "RX2", "RX3", "RX4", "RX5"
  492. };
  493. static const char * const rx_prim_mix_text[] = {
  494. "ZERO", "DEC0", "DEC1", "IIR0", "IIR1", "RX0", "RX1", "RX2",
  495. "RX3", "RX4", "RX5"
  496. };
  497. static const char * const rx_sidetone_mix_text[] = {
  498. "ZERO", "SRC0", "SRC1", "SRC_SUM"
  499. };
  500. static const char * const iir_inp_mux_text[] = {
  501. "ZERO", "DEC0", "DEC1", "DEC2", "DEC3",
  502. "RX0", "RX1", "RX2", "RX3", "RX4", "RX5"
  503. };
  504. static const char * const rx_int_dem_inp_mux_text[] = {
  505. "NORMAL_DSM_OUT", "CLSH_DSM_OUT",
  506. };
  507. static const char * const rx_int0_1_interp_mux_text[] = {
  508. "ZERO", "RX INT0_1 MIX1",
  509. };
  510. static const char * const rx_int1_1_interp_mux_text[] = {
  511. "ZERO", "RX INT1_1 MIX1",
  512. };
  513. static const char * const rx_int2_1_interp_mux_text[] = {
  514. "ZERO", "RX INT2_1 MIX1",
  515. };
  516. static const char * const rx_int0_2_interp_mux_text[] = {
  517. "ZERO", "RX INT0_2 MUX",
  518. };
  519. static const char * const rx_int1_2_interp_mux_text[] = {
  520. "ZERO", "RX INT1_2 MUX",
  521. };
  522. static const char * const rx_int2_2_interp_mux_text[] = {
  523. "ZERO", "RX INT2_2 MUX",
  524. };
  525. static const char *const lpass_cdc_rx_macro_mux_text[] = {
  526. "ZERO", "AIF1_PB", "AIF2_PB", "AIF3_PB", "AIF4_PB"
  527. };
  528. static const char *const lpass_cdc_rx_macro_ear_mode_text[] = {"OFF", "ON"};
  529. static const struct soc_enum lpass_cdc_rx_macro_ear_mode_enum =
  530. SOC_ENUM_SINGLE_EXT(2, lpass_cdc_rx_macro_ear_mode_text);
  531. static const char *const lpass_cdc_rx_macro_hph_hd2_mode_text[] = {"OFF", "ON"};
  532. static const struct soc_enum lpass_cdc_rx_macro_hph_hd2_mode_enum =
  533. SOC_ENUM_SINGLE_EXT(2, lpass_cdc_rx_macro_hph_hd2_mode_text);
  534. static const char *const lpass_cdc_rx_macro_hph_pwr_mode_text[] = {"ULP", "LOHIFI"};
  535. static const struct soc_enum lpass_cdc_rx_macro_hph_pwr_mode_enum =
  536. SOC_ENUM_SINGLE_EXT(2, lpass_cdc_rx_macro_hph_pwr_mode_text);
  537. static const char * const lpass_cdc_rx_macro_vbat_bcl_gsm_mode_text[] = {"OFF", "ON"};
  538. static const struct soc_enum lpass_cdc_rx_macro_vbat_bcl_gsm_mode_enum =
  539. SOC_ENUM_SINGLE_EXT(2, lpass_cdc_rx_macro_vbat_bcl_gsm_mode_text);
  540. static const char *const lpass_cdc_rx_macro_fir_filter_text[] = {"OFF", "ON"};
  541. static const struct soc_enum lpass_cdc_rx_macro_fir_filter_enum =
  542. SOC_ENUM_SINGLE_EXT(2, lpass_cdc_rx_macro_fir_filter_text);
  543. static const struct snd_kcontrol_new rx_int2_1_vbat_mix_switch[] = {
  544. SOC_DAPM_SINGLE("RX AUX VBAT Enable", SND_SOC_NOPM, 0, 1, 0)
  545. };
  546. static const char * const hph_idle_detect_text[] = {"OFF", "ON"};
  547. static SOC_ENUM_SINGLE_EXT_DECL(hph_idle_detect_enum, hph_idle_detect_text);
  548. LPASS_CDC_RX_MACRO_DAPM_ENUM(rx_int0_2, LPASS_CDC_RX_INP_MUX_RX_INT0_CFG1, 0,
  549. rx_int_mix_mux_text);
  550. LPASS_CDC_RX_MACRO_DAPM_ENUM(rx_int1_2, LPASS_CDC_RX_INP_MUX_RX_INT1_CFG1, 0,
  551. rx_int_mix_mux_text);
  552. LPASS_CDC_RX_MACRO_DAPM_ENUM(rx_int2_2, LPASS_CDC_RX_INP_MUX_RX_INT2_CFG1, 0,
  553. rx_int_mix_mux_text);
  554. LPASS_CDC_RX_MACRO_DAPM_ENUM(rx_int0_1_mix_inp0, LPASS_CDC_RX_INP_MUX_RX_INT0_CFG0, 0,
  555. rx_prim_mix_text);
  556. LPASS_CDC_RX_MACRO_DAPM_ENUM(rx_int0_1_mix_inp1, LPASS_CDC_RX_INP_MUX_RX_INT0_CFG0, 4,
  557. rx_prim_mix_text);
  558. LPASS_CDC_RX_MACRO_DAPM_ENUM(rx_int0_1_mix_inp2, LPASS_CDC_RX_INP_MUX_RX_INT0_CFG1, 4,
  559. rx_prim_mix_text);
  560. LPASS_CDC_RX_MACRO_DAPM_ENUM(rx_int1_1_mix_inp0, LPASS_CDC_RX_INP_MUX_RX_INT1_CFG0, 0,
  561. rx_prim_mix_text);
  562. LPASS_CDC_RX_MACRO_DAPM_ENUM(rx_int1_1_mix_inp1, LPASS_CDC_RX_INP_MUX_RX_INT1_CFG0, 4,
  563. rx_prim_mix_text);
  564. LPASS_CDC_RX_MACRO_DAPM_ENUM(rx_int1_1_mix_inp2, LPASS_CDC_RX_INP_MUX_RX_INT1_CFG1, 4,
  565. rx_prim_mix_text);
  566. LPASS_CDC_RX_MACRO_DAPM_ENUM(rx_int2_1_mix_inp0, LPASS_CDC_RX_INP_MUX_RX_INT2_CFG0, 0,
  567. rx_prim_mix_text);
  568. LPASS_CDC_RX_MACRO_DAPM_ENUM(rx_int2_1_mix_inp1, LPASS_CDC_RX_INP_MUX_RX_INT2_CFG0, 4,
  569. rx_prim_mix_text);
  570. LPASS_CDC_RX_MACRO_DAPM_ENUM(rx_int2_1_mix_inp2, LPASS_CDC_RX_INP_MUX_RX_INT2_CFG1, 4,
  571. rx_prim_mix_text);
  572. LPASS_CDC_RX_MACRO_DAPM_ENUM(rx_int0_mix2_inp, LPASS_CDC_RX_INP_MUX_SIDETONE_SRC_CFG0, 2,
  573. rx_sidetone_mix_text);
  574. LPASS_CDC_RX_MACRO_DAPM_ENUM(rx_int1_mix2_inp, LPASS_CDC_RX_INP_MUX_SIDETONE_SRC_CFG0, 4,
  575. rx_sidetone_mix_text);
  576. LPASS_CDC_RX_MACRO_DAPM_ENUM(rx_int2_mix2_inp, LPASS_CDC_RX_INP_MUX_SIDETONE_SRC_CFG0, 6,
  577. rx_sidetone_mix_text);
  578. LPASS_CDC_RX_MACRO_DAPM_ENUM(iir0_inp0, LPASS_CDC_RX_IIR_INP_MUX_IIR0_MIX_CFG0, 0,
  579. iir_inp_mux_text);
  580. LPASS_CDC_RX_MACRO_DAPM_ENUM(iir0_inp1, LPASS_CDC_RX_IIR_INP_MUX_IIR0_MIX_CFG1, 0,
  581. iir_inp_mux_text);
  582. LPASS_CDC_RX_MACRO_DAPM_ENUM(iir0_inp2, LPASS_CDC_RX_IIR_INP_MUX_IIR0_MIX_CFG2, 0,
  583. iir_inp_mux_text);
  584. LPASS_CDC_RX_MACRO_DAPM_ENUM(iir0_inp3, LPASS_CDC_RX_IIR_INP_MUX_IIR0_MIX_CFG3, 0,
  585. iir_inp_mux_text);
  586. LPASS_CDC_RX_MACRO_DAPM_ENUM(iir1_inp0, LPASS_CDC_RX_IIR_INP_MUX_IIR1_MIX_CFG0, 0,
  587. iir_inp_mux_text);
  588. LPASS_CDC_RX_MACRO_DAPM_ENUM(iir1_inp1, LPASS_CDC_RX_IIR_INP_MUX_IIR1_MIX_CFG1, 0,
  589. iir_inp_mux_text);
  590. LPASS_CDC_RX_MACRO_DAPM_ENUM(iir1_inp2, LPASS_CDC_RX_IIR_INP_MUX_IIR1_MIX_CFG2, 0,
  591. iir_inp_mux_text);
  592. LPASS_CDC_RX_MACRO_DAPM_ENUM(iir1_inp3, LPASS_CDC_RX_IIR_INP_MUX_IIR1_MIX_CFG3, 0,
  593. iir_inp_mux_text);
  594. LPASS_CDC_RX_MACRO_DAPM_ENUM(rx_int0_1_interp, SND_SOC_NOPM, 0,
  595. rx_int0_1_interp_mux_text);
  596. LPASS_CDC_RX_MACRO_DAPM_ENUM(rx_int1_1_interp, SND_SOC_NOPM, 0,
  597. rx_int1_1_interp_mux_text);
  598. LPASS_CDC_RX_MACRO_DAPM_ENUM(rx_int2_1_interp, SND_SOC_NOPM, 0,
  599. rx_int2_1_interp_mux_text);
  600. LPASS_CDC_RX_MACRO_DAPM_ENUM(rx_int0_2_interp, SND_SOC_NOPM, 0,
  601. rx_int0_2_interp_mux_text);
  602. LPASS_CDC_RX_MACRO_DAPM_ENUM(rx_int1_2_interp, SND_SOC_NOPM, 0,
  603. rx_int1_2_interp_mux_text);
  604. LPASS_CDC_RX_MACRO_DAPM_ENUM(rx_int2_2_interp, SND_SOC_NOPM, 0,
  605. rx_int2_2_interp_mux_text);
  606. LPASS_CDC_RX_MACRO_DAPM_ENUM_EXT(rx_int0_dem_inp, LPASS_CDC_RX_RX0_RX_PATH_CFG1, 0,
  607. rx_int_dem_inp_mux_text, snd_soc_dapm_get_enum_double,
  608. lpass_cdc_rx_macro_int_dem_inp_mux_put);
  609. LPASS_CDC_RX_MACRO_DAPM_ENUM_EXT(rx_int1_dem_inp, LPASS_CDC_RX_RX1_RX_PATH_CFG1, 0,
  610. rx_int_dem_inp_mux_text, snd_soc_dapm_get_enum_double,
  611. lpass_cdc_rx_macro_int_dem_inp_mux_put);
  612. LPASS_CDC_RX_MACRO_DAPM_ENUM_EXT(lpass_cdc_rx_macro_rx0, SND_SOC_NOPM, 0, lpass_cdc_rx_macro_mux_text,
  613. lpass_cdc_rx_macro_mux_get, lpass_cdc_rx_macro_mux_put);
  614. LPASS_CDC_RX_MACRO_DAPM_ENUM_EXT(lpass_cdc_rx_macro_rx1, SND_SOC_NOPM, 0, lpass_cdc_rx_macro_mux_text,
  615. lpass_cdc_rx_macro_mux_get, lpass_cdc_rx_macro_mux_put);
  616. LPASS_CDC_RX_MACRO_DAPM_ENUM_EXT(lpass_cdc_rx_macro_rx2, SND_SOC_NOPM, 0, lpass_cdc_rx_macro_mux_text,
  617. lpass_cdc_rx_macro_mux_get, lpass_cdc_rx_macro_mux_put);
  618. LPASS_CDC_RX_MACRO_DAPM_ENUM_EXT(lpass_cdc_rx_macro_rx3, SND_SOC_NOPM, 0, lpass_cdc_rx_macro_mux_text,
  619. lpass_cdc_rx_macro_mux_get, lpass_cdc_rx_macro_mux_put);
  620. LPASS_CDC_RX_MACRO_DAPM_ENUM_EXT(lpass_cdc_rx_macro_rx4, SND_SOC_NOPM, 0, lpass_cdc_rx_macro_mux_text,
  621. lpass_cdc_rx_macro_mux_get, lpass_cdc_rx_macro_mux_put);
  622. LPASS_CDC_RX_MACRO_DAPM_ENUM_EXT(lpass_cdc_rx_macro_rx5, SND_SOC_NOPM, 0, lpass_cdc_rx_macro_mux_text,
  623. lpass_cdc_rx_macro_mux_get, lpass_cdc_rx_macro_mux_put);
  624. static const char * const rx_echo_mux_text[] = {
  625. "ZERO", "RX_MIX0", "RX_MIX1", "RX_MIX2"
  626. };
  627. static const struct soc_enum rx_mix_tx2_mux_enum =
  628. SOC_ENUM_SINGLE(LPASS_CDC_RX_INP_MUX_RX_MIX_CFG5, 0, 4,
  629. rx_echo_mux_text);
  630. static const struct snd_kcontrol_new rx_mix_tx2_mux =
  631. SOC_DAPM_ENUM("RX MIX TX2_MUX Mux", rx_mix_tx2_mux_enum);
  632. static const struct soc_enum rx_mix_tx1_mux_enum =
  633. SOC_ENUM_SINGLE(LPASS_CDC_RX_INP_MUX_RX_MIX_CFG4, 0, 4,
  634. rx_echo_mux_text);
  635. static const struct snd_kcontrol_new rx_mix_tx1_mux =
  636. SOC_DAPM_ENUM("RX MIX TX1_MUX Mux", rx_mix_tx1_mux_enum);
  637. static const struct soc_enum rx_mix_tx0_mux_enum =
  638. SOC_ENUM_SINGLE(LPASS_CDC_RX_INP_MUX_RX_MIX_CFG4, 4, 4,
  639. rx_echo_mux_text);
  640. static const struct snd_kcontrol_new rx_mix_tx0_mux =
  641. SOC_DAPM_ENUM("RX MIX TX0_MUX Mux", rx_mix_tx0_mux_enum);
  642. static struct snd_soc_dai_ops lpass_cdc_rx_macro_dai_ops = {
  643. .hw_params = lpass_cdc_rx_macro_hw_params,
  644. .get_channel_map = lpass_cdc_rx_macro_get_channel_map,
  645. .mute_stream = lpass_cdc_rx_macro_mute_stream,
  646. };
  647. static struct snd_soc_dai_driver lpass_cdc_rx_macro_dai[] = {
  648. {
  649. .name = "rx_macro_rx1",
  650. .id = RX_MACRO_AIF1_PB,
  651. .playback = {
  652. .stream_name = "RX_MACRO_AIF1 Playback",
  653. .rates = LPASS_CDC_RX_MACRO_RATES | LPASS_CDC_RX_MACRO_FRAC_RATES,
  654. .formats = LPASS_CDC_RX_MACRO_FORMATS,
  655. .rate_max = 384000,
  656. .rate_min = 8000,
  657. .channels_min = 1,
  658. .channels_max = 2,
  659. },
  660. .ops = &lpass_cdc_rx_macro_dai_ops,
  661. },
  662. {
  663. .name = "rx_macro_rx2",
  664. .id = RX_MACRO_AIF2_PB,
  665. .playback = {
  666. .stream_name = "RX_MACRO_AIF2 Playback",
  667. .rates = LPASS_CDC_RX_MACRO_RATES | LPASS_CDC_RX_MACRO_FRAC_RATES,
  668. .formats = LPASS_CDC_RX_MACRO_FORMATS,
  669. .rate_max = 384000,
  670. .rate_min = 8000,
  671. .channels_min = 1,
  672. .channels_max = 2,
  673. },
  674. .ops = &lpass_cdc_rx_macro_dai_ops,
  675. },
  676. {
  677. .name = "rx_macro_rx3",
  678. .id = RX_MACRO_AIF3_PB,
  679. .playback = {
  680. .stream_name = "RX_MACRO_AIF3 Playback",
  681. .rates = LPASS_CDC_RX_MACRO_RATES | LPASS_CDC_RX_MACRO_FRAC_RATES,
  682. .formats = LPASS_CDC_RX_MACRO_FORMATS,
  683. .rate_max = 384000,
  684. .rate_min = 8000,
  685. .channels_min = 1,
  686. .channels_max = 2,
  687. },
  688. .ops = &lpass_cdc_rx_macro_dai_ops,
  689. },
  690. {
  691. .name = "rx_macro_rx4",
  692. .id = RX_MACRO_AIF4_PB,
  693. .playback = {
  694. .stream_name = "RX_MACRO_AIF4 Playback",
  695. .rates = LPASS_CDC_RX_MACRO_RATES | LPASS_CDC_RX_MACRO_FRAC_RATES,
  696. .formats = LPASS_CDC_RX_MACRO_FORMATS,
  697. .rate_max = 384000,
  698. .rate_min = 8000,
  699. .channels_min = 1,
  700. .channels_max = 2,
  701. },
  702. .ops = &lpass_cdc_rx_macro_dai_ops,
  703. },
  704. {
  705. .name = "rx_macro_echo",
  706. .id = RX_MACRO_AIF_ECHO,
  707. .capture = {
  708. .stream_name = "RX_AIF_ECHO Capture",
  709. .rates = LPASS_CDC_RX_MACRO_ECHO_RATES,
  710. .formats = LPASS_CDC_RX_MACRO_ECHO_FORMATS,
  711. .rate_max = 48000,
  712. .rate_min = 8000,
  713. .channels_min = 1,
  714. .channels_max = 3,
  715. },
  716. .ops = &lpass_cdc_rx_macro_dai_ops,
  717. },
  718. {
  719. .name = "rx_macro_rx5",
  720. .id = RX_MACRO_AIF5_PB,
  721. .playback = {
  722. .stream_name = "RX_MACRO_AIF5 Playback",
  723. .rates = LPASS_CDC_RX_MACRO_RATES | LPASS_CDC_RX_MACRO_FRAC_RATES,
  724. .formats = LPASS_CDC_RX_MACRO_FORMATS,
  725. .rate_max = 384000,
  726. .rate_min = 8000,
  727. .channels_min = 1,
  728. .channels_max = 4,
  729. },
  730. .ops = &lpass_cdc_rx_macro_dai_ops,
  731. },
  732. {
  733. .name = "rx_macro_rx6",
  734. .id = RX_MACRO_AIF6_PB,
  735. .playback = {
  736. .stream_name = "RX_MACRO_AIF6 Playback",
  737. .rates = LPASS_CDC_RX_MACRO_RATES | LPASS_CDC_RX_MACRO_FRAC_RATES,
  738. .formats = LPASS_CDC_RX_MACRO_FORMATS,
  739. .rate_max = 384000,
  740. .rate_min = 8000,
  741. .channels_min = 1,
  742. .channels_max = 4,
  743. },
  744. .ops = &lpass_cdc_rx_macro_dai_ops,
  745. },
  746. };
  747. static int get_impedance_index(int imped)
  748. {
  749. int i = 0;
  750. if (imped < imped_index[i].imped_val) {
  751. pr_debug("%s, detected impedance is less than %d Ohm\n",
  752. __func__, imped_index[i].imped_val);
  753. i = 0;
  754. goto ret;
  755. }
  756. if (imped >= imped_index[ARRAY_SIZE(imped_index) - 1].imped_val) {
  757. pr_debug("%s, detected impedance is greater than %d Ohm\n",
  758. __func__,
  759. imped_index[ARRAY_SIZE(imped_index) - 1].imped_val);
  760. i = ARRAY_SIZE(imped_index) - 1;
  761. goto ret;
  762. }
  763. for (i = 0; i < ARRAY_SIZE(imped_index) - 1; i++) {
  764. if (imped >= imped_index[i].imped_val &&
  765. imped < imped_index[i + 1].imped_val)
  766. break;
  767. }
  768. ret:
  769. pr_debug("%s: selected impedance index = %d\n",
  770. __func__, imped_index[i].index);
  771. return imped_index[i].index;
  772. }
  773. /*
  774. * lpass_cdc_rx_macro_wcd_clsh_imped_config -
  775. * This function updates HPHL and HPHR gain settings
  776. * according to the impedance value.
  777. *
  778. * @component: codec pointer handle
  779. * @imped: impedance value of HPHL/R
  780. * @reset: bool variable to reset registers when teardown
  781. */
  782. static void lpass_cdc_rx_macro_wcd_clsh_imped_config(struct snd_soc_component *component,
  783. int imped, bool reset)
  784. {
  785. int i;
  786. int index = 0;
  787. int table_size;
  788. static const struct lpass_cdc_rx_macro_reg_mask_val
  789. (*imped_table_ptr)[MAX_IMPED_PARAMS];
  790. table_size = ARRAY_SIZE(imped_table);
  791. imped_table_ptr = imped_table;
  792. /* reset = 1, which means request is to reset the register values */
  793. if (reset) {
  794. for (i = 0; i < MAX_IMPED_PARAMS; i++)
  795. snd_soc_component_update_bits(component,
  796. imped_table_ptr[index][i].reg,
  797. imped_table_ptr[index][i].mask, 0);
  798. return;
  799. }
  800. index = get_impedance_index(imped);
  801. if (index >= (ARRAY_SIZE(imped_index) - 1)) {
  802. pr_debug("%s, impedance not in range = %d\n", __func__, imped);
  803. return;
  804. }
  805. if (index >= table_size) {
  806. pr_debug("%s, impedance index not in range = %d\n", __func__,
  807. index);
  808. return;
  809. }
  810. for (i = 0; i < MAX_IMPED_PARAMS; i++)
  811. snd_soc_component_update_bits(component,
  812. imped_table_ptr[index][i].reg,
  813. imped_table_ptr[index][i].mask,
  814. imped_table_ptr[index][i].val);
  815. }
  816. static bool lpass_cdc_rx_macro_get_data(struct snd_soc_component *component,
  817. struct device **rx_dev,
  818. struct lpass_cdc_rx_macro_priv **rx_priv,
  819. const char *func_name)
  820. {
  821. *rx_dev = lpass_cdc_get_device_ptr(component->dev, RX_MACRO);
  822. if (!(*rx_dev)) {
  823. dev_err(component->dev,
  824. "%s: null device for macro!\n", func_name);
  825. return false;
  826. }
  827. *rx_priv = dev_get_drvdata((*rx_dev));
  828. if (!(*rx_priv)) {
  829. dev_err(component->dev,
  830. "%s: priv is null for macro!\n", func_name);
  831. return false;
  832. }
  833. if (!(*rx_priv)->component) {
  834. dev_err(component->dev,
  835. "%s: rx_priv component is not initialized!\n", func_name);
  836. return false;
  837. }
  838. return true;
  839. }
  840. static int lpass_cdc_rx_macro_set_port_map(struct snd_soc_component *component,
  841. u32 usecase, u32 size, void *data)
  842. {
  843. struct device *rx_dev = NULL;
  844. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  845. struct swrm_port_config port_cfg;
  846. int ret = 0;
  847. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  848. return -EINVAL;
  849. memset(&port_cfg, 0, sizeof(port_cfg));
  850. port_cfg.uc = usecase;
  851. port_cfg.size = size;
  852. port_cfg.params = data;
  853. if (rx_priv->swr_ctrl_data)
  854. ret = swrm_wcd_notify(
  855. rx_priv->swr_ctrl_data[0].rx_swr_pdev,
  856. SWR_SET_PORT_MAP, &port_cfg);
  857. return ret;
  858. }
  859. static int lpass_cdc_rx_macro_int_dem_inp_mux_put(struct snd_kcontrol *kcontrol,
  860. struct snd_ctl_elem_value *ucontrol)
  861. {
  862. struct snd_soc_dapm_widget *widget =
  863. snd_soc_dapm_kcontrol_widget(kcontrol);
  864. struct snd_soc_component *component =
  865. snd_soc_dapm_to_component(widget->dapm);
  866. struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
  867. unsigned int val = 0;
  868. unsigned short look_ahead_dly_reg =
  869. LPASS_CDC_RX_RX0_RX_PATH_CFG0;
  870. val = ucontrol->value.enumerated.item[0];
  871. if (val >= e->items)
  872. return -EINVAL;
  873. dev_dbg(component->dev, "%s: wname: %s, val: 0x%x\n", __func__,
  874. widget->name, val);
  875. if (e->reg == LPASS_CDC_RX_RX0_RX_PATH_CFG1)
  876. look_ahead_dly_reg = LPASS_CDC_RX_RX0_RX_PATH_CFG0;
  877. else if (e->reg == LPASS_CDC_RX_RX1_RX_PATH_CFG1)
  878. look_ahead_dly_reg = LPASS_CDC_RX_RX1_RX_PATH_CFG0;
  879. /* Set Look Ahead Delay */
  880. snd_soc_component_update_bits(component, look_ahead_dly_reg,
  881. 0x08, (val ? 0x08 : 0x00));
  882. /* Set DEM INP Select */
  883. return snd_soc_dapm_put_enum_double(kcontrol, ucontrol);
  884. }
  885. static int lpass_cdc_rx_macro_set_prim_interpolator_rate(struct snd_soc_dai *dai,
  886. u8 rate_reg_val,
  887. u32 sample_rate)
  888. {
  889. u8 int_1_mix1_inp = 0;
  890. u32 j = 0, port = 0;
  891. u16 int_mux_cfg0 = 0, int_mux_cfg1 = 0;
  892. u16 int_fs_reg = 0;
  893. u8 int_mux_cfg0_val = 0, int_mux_cfg1_val = 0;
  894. u8 inp0_sel = 0, inp1_sel = 0, inp2_sel = 0;
  895. struct snd_soc_component *component = dai->component;
  896. struct device *rx_dev = NULL;
  897. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  898. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  899. return -EINVAL;
  900. for_each_set_bit(port, &rx_priv->active_ch_mask[dai->id],
  901. LPASS_CDC_RX_MACRO_PORTS_MAX) {
  902. int_1_mix1_inp = port;
  903. if ((int_1_mix1_inp < LPASS_CDC_RX_MACRO_RX0) ||
  904. (int_1_mix1_inp > LPASS_CDC_RX_MACRO_PORTS_MAX)) {
  905. pr_err("%s: Invalid RX port, Dai ID is %d\n",
  906. __func__, dai->id);
  907. return -EINVAL;
  908. }
  909. int_mux_cfg0 = LPASS_CDC_RX_INP_MUX_RX_INT0_CFG0;
  910. /*
  911. * Loop through all interpolator MUX inputs and find out
  912. * to which interpolator input, the rx port
  913. * is connected
  914. */
  915. for (j = 0; j < INTERP_MAX; j++) {
  916. int_mux_cfg1 = int_mux_cfg0 + 4;
  917. int_mux_cfg0_val = snd_soc_component_read(
  918. component, int_mux_cfg0);
  919. int_mux_cfg1_val = snd_soc_component_read(
  920. component, int_mux_cfg1);
  921. inp0_sel = int_mux_cfg0_val & 0x0F;
  922. inp1_sel = (int_mux_cfg0_val >> 4) & 0x0F;
  923. inp2_sel = (int_mux_cfg1_val >> 4) & 0x0F;
  924. if ((inp0_sel == int_1_mix1_inp + INTn_1_INP_SEL_RX0) ||
  925. (inp1_sel == int_1_mix1_inp + INTn_1_INP_SEL_RX0) ||
  926. (inp2_sel == int_1_mix1_inp + INTn_1_INP_SEL_RX0)) {
  927. int_fs_reg = LPASS_CDC_RX_RX0_RX_PATH_CTL +
  928. LPASS_CDC_RX_MACRO_RX_PATH_OFFSET * j;
  929. pr_debug("%s: AIF_PB DAI(%d) connected to INT%u_1\n",
  930. __func__, dai->id, j);
  931. pr_debug("%s: set INT%u_1 sample rate to %u\n",
  932. __func__, j, sample_rate);
  933. /* sample_rate is in Hz */
  934. snd_soc_component_update_bits(component,
  935. int_fs_reg,
  936. 0x0F, rate_reg_val);
  937. }
  938. int_mux_cfg0 += 8;
  939. }
  940. }
  941. return 0;
  942. }
  943. static int lpass_cdc_rx_macro_set_mix_interpolator_rate(struct snd_soc_dai *dai,
  944. u8 rate_reg_val,
  945. u32 sample_rate)
  946. {
  947. u8 int_2_inp = 0;
  948. u32 j = 0, port = 0;
  949. u16 int_mux_cfg1 = 0, int_fs_reg = 0;
  950. u8 int_mux_cfg1_val = 0;
  951. struct snd_soc_component *component = dai->component;
  952. struct device *rx_dev = NULL;
  953. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  954. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  955. return -EINVAL;
  956. for_each_set_bit(port, &rx_priv->active_ch_mask[dai->id],
  957. LPASS_CDC_RX_MACRO_PORTS_MAX) {
  958. int_2_inp = port;
  959. if ((int_2_inp < LPASS_CDC_RX_MACRO_RX0) ||
  960. (int_2_inp > LPASS_CDC_RX_MACRO_PORTS_MAX)) {
  961. pr_err("%s: Invalid RX port, Dai ID is %d\n",
  962. __func__, dai->id);
  963. return -EINVAL;
  964. }
  965. int_mux_cfg1 = LPASS_CDC_RX_INP_MUX_RX_INT0_CFG1;
  966. for (j = 0; j < INTERP_MAX; j++) {
  967. int_mux_cfg1_val = snd_soc_component_read(
  968. component, int_mux_cfg1) &
  969. 0x0F;
  970. if (int_mux_cfg1_val == int_2_inp +
  971. INTn_2_INP_SEL_RX0) {
  972. int_fs_reg = LPASS_CDC_RX_RX0_RX_PATH_MIX_CTL +
  973. LPASS_CDC_RX_MACRO_RX_PATH_OFFSET * j;
  974. pr_debug("%s: AIF_PB DAI(%d) connected to INT%u_2\n",
  975. __func__, dai->id, j);
  976. pr_debug("%s: set INT%u_2 sample rate to %u\n",
  977. __func__, j, sample_rate);
  978. snd_soc_component_update_bits(
  979. component, int_fs_reg,
  980. 0x0F, rate_reg_val);
  981. }
  982. int_mux_cfg1 += 8;
  983. }
  984. }
  985. return 0;
  986. }
  987. static bool lpass_cdc_rx_macro_is_fractional_sample_rate(u32 sample_rate)
  988. {
  989. switch (sample_rate) {
  990. case SAMPLING_RATE_44P1KHZ:
  991. case SAMPLING_RATE_88P2KHZ:
  992. case SAMPLING_RATE_176P4KHZ:
  993. case SAMPLING_RATE_352P8KHZ:
  994. return true;
  995. default:
  996. return false;
  997. }
  998. return false;
  999. }
  1000. static int lpass_cdc_rx_macro_set_interpolator_rate(struct snd_soc_dai *dai,
  1001. u32 sample_rate)
  1002. {
  1003. struct snd_soc_component *component = dai->component;
  1004. int rate_val = 0;
  1005. int i = 0, ret = 0;
  1006. struct device *rx_dev = NULL;
  1007. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  1008. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  1009. return -EINVAL;
  1010. for (i = 0; i < ARRAY_SIZE(sr_val_tbl); i++) {
  1011. if (sample_rate == sr_val_tbl[i].sample_rate) {
  1012. rate_val = sr_val_tbl[i].rate_val;
  1013. if (lpass_cdc_rx_macro_is_fractional_sample_rate(sample_rate))
  1014. rx_priv->is_native_on = true;
  1015. else
  1016. rx_priv->is_native_on = false;
  1017. break;
  1018. }
  1019. }
  1020. if ((i == ARRAY_SIZE(sr_val_tbl)) || (rate_val < 0)) {
  1021. dev_err(component->dev, "%s: Unsupported sample rate: %d\n",
  1022. __func__, sample_rate);
  1023. return -EINVAL;
  1024. }
  1025. ret = lpass_cdc_rx_macro_set_prim_interpolator_rate(dai, (u8)rate_val, sample_rate);
  1026. if (ret)
  1027. return ret;
  1028. ret = lpass_cdc_rx_macro_set_mix_interpolator_rate(dai, (u8)rate_val, sample_rate);
  1029. if (ret)
  1030. return ret;
  1031. return ret;
  1032. }
  1033. static int lpass_cdc_rx_macro_hw_params(struct snd_pcm_substream *substream,
  1034. struct snd_pcm_hw_params *params,
  1035. struct snd_soc_dai *dai)
  1036. {
  1037. struct snd_soc_component *component = dai->component;
  1038. int ret = 0;
  1039. struct device *rx_dev = NULL;
  1040. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  1041. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  1042. return -EINVAL;
  1043. dev_dbg(component->dev,
  1044. "%s: dai_name = %s DAI-ID %x rate %d num_ch %d\n", __func__,
  1045. dai->name, dai->id, params_rate(params),
  1046. params_channels(params));
  1047. switch (substream->stream) {
  1048. case SNDRV_PCM_STREAM_PLAYBACK:
  1049. ret = lpass_cdc_rx_macro_set_interpolator_rate(dai, params_rate(params));
  1050. if (ret) {
  1051. pr_err("%s: cannot set sample rate: %u\n",
  1052. __func__, params_rate(params));
  1053. return ret;
  1054. }
  1055. rx_priv->bit_width[dai->id] = params_width(params);
  1056. break;
  1057. case SNDRV_PCM_STREAM_CAPTURE:
  1058. default:
  1059. break;
  1060. }
  1061. return 0;
  1062. }
  1063. static int lpass_cdc_rx_macro_get_channel_map(struct snd_soc_dai *dai,
  1064. unsigned int *tx_num, unsigned int *tx_slot,
  1065. unsigned int *rx_num, unsigned int *rx_slot)
  1066. {
  1067. struct snd_soc_component *component = dai->component;
  1068. struct device *rx_dev = NULL;
  1069. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  1070. unsigned int temp = 0, ch_mask = 0;
  1071. u16 val = 0, mask = 0, cnt = 0, i = 0;
  1072. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  1073. return -EINVAL;
  1074. switch (dai->id) {
  1075. case RX_MACRO_AIF1_PB:
  1076. case RX_MACRO_AIF2_PB:
  1077. case RX_MACRO_AIF3_PB:
  1078. case RX_MACRO_AIF4_PB:
  1079. for_each_set_bit(temp, &rx_priv->active_ch_mask[dai->id],
  1080. LPASS_CDC_RX_MACRO_PORTS_MAX) {
  1081. ch_mask |= (1 << temp);
  1082. if (++i == LPASS_CDC_RX_MACRO_MAX_DMA_CH_PER_PORT)
  1083. break;
  1084. }
  1085. /*
  1086. * CDC_DMA_RX_0 port drives RX0/RX1 -- ch_mask 0x1/0x2/0x3
  1087. * CDC_DMA_RX_1 port drives RX2/RX3 -- ch_mask 0x1/0x2/0x3
  1088. * CDC_DMA_RX_2 port drives RX4 -- ch_mask 0x1
  1089. * CDC_DMA_RX_3 port drives RX5 -- ch_mask 0x1
  1090. * AIFn can pair to any CDC_DMA_RX_n port.
  1091. * In general, below convention is used::
  1092. * CDC_DMA_RX_0(AIF1)/CDC_DMA_RX_1(AIF2)/
  1093. * CDC_DMA_RX_2(AIF3)/CDC_DMA_RX_3(AIF4)
  1094. * Above is reflected in machine driver BE dailink
  1095. */
  1096. if (ch_mask & 0x0C)
  1097. ch_mask = ch_mask >> 2;
  1098. if ((ch_mask & 0x10) || (ch_mask & 0x20))
  1099. ch_mask = 0x1;
  1100. *rx_slot = ch_mask;
  1101. *rx_num = rx_priv->active_ch_cnt[dai->id];
  1102. dev_dbg(rx_priv->dev,
  1103. "%s: dai->id:%d, ch_mask:0x%x, active_ch_cnt:%d active_mask: 0x%x\n",
  1104. __func__, dai->id, *rx_slot, *rx_num, rx_priv->active_ch_mask[dai->id]);
  1105. break;
  1106. case RX_MACRO_AIF5_PB:
  1107. *rx_slot = 0x1;
  1108. *rx_num = 0x01;
  1109. dev_dbg(rx_priv->dev,
  1110. "%s: dai->id:%d, ch_mask:0x%x, active_ch_cnt:%d\n",
  1111. __func__, dai->id, *rx_slot, *rx_num);
  1112. break;
  1113. case RX_MACRO_AIF6_PB:
  1114. *rx_slot = 0x1;
  1115. *rx_num = 0x01;
  1116. dev_dbg(rx_priv->dev,
  1117. "%s: dai->id:%d, ch_mask:0x%x, active_ch_cnt:%d\n",
  1118. __func__, dai->id, *rx_slot, *rx_num);
  1119. break;
  1120. case RX_MACRO_AIF_ECHO:
  1121. val = snd_soc_component_read(component,
  1122. LPASS_CDC_RX_INP_MUX_RX_MIX_CFG4);
  1123. if (val & LPASS_CDC_RX_MACRO_EC_MIX_TX0_MASK) {
  1124. mask |= 0x1;
  1125. cnt++;
  1126. }
  1127. if (val & LPASS_CDC_RX_MACRO_EC_MIX_TX1_MASK) {
  1128. mask |= 0x2;
  1129. cnt++;
  1130. }
  1131. val = snd_soc_component_read(component,
  1132. LPASS_CDC_RX_INP_MUX_RX_MIX_CFG5);
  1133. if (val & LPASS_CDC_RX_MACRO_EC_MIX_TX2_MASK) {
  1134. mask |= 0x4;
  1135. cnt++;
  1136. }
  1137. *tx_slot = mask;
  1138. *tx_num = cnt;
  1139. break;
  1140. default:
  1141. dev_err(rx_dev, "%s: Invalid AIF\n", __func__);
  1142. break;
  1143. }
  1144. return 0;
  1145. }
  1146. static int lpass_cdc_rx_macro_mute_stream(struct snd_soc_dai *dai, int mute, int stream)
  1147. {
  1148. struct snd_soc_component *component = dai->component;
  1149. struct device *rx_dev = NULL;
  1150. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  1151. uint16_t j = 0, reg = 0, mix_reg = 0, dsm_reg = 0;
  1152. u16 int_mux_cfg0 = 0, int_mux_cfg1 = 0;
  1153. u8 int_mux_cfg0_val = 0, int_mux_cfg1_val = 0;
  1154. if (mute)
  1155. return 0;
  1156. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  1157. return -EINVAL;
  1158. switch (dai->id) {
  1159. case RX_MACRO_AIF1_PB:
  1160. case RX_MACRO_AIF2_PB:
  1161. case RX_MACRO_AIF3_PB:
  1162. case RX_MACRO_AIF4_PB:
  1163. for (j = 0; j < INTERP_MAX; j++) {
  1164. reg = LPASS_CDC_RX_RX0_RX_PATH_CTL +
  1165. (j * LPASS_CDC_RX_MACRO_RX_PATH_OFFSET);
  1166. mix_reg = LPASS_CDC_RX_RX0_RX_PATH_MIX_CTL +
  1167. (j * LPASS_CDC_RX_MACRO_RX_PATH_OFFSET);
  1168. dsm_reg = LPASS_CDC_RX_RX0_RX_PATH_DSM_CTL +
  1169. (j * LPASS_CDC_RX_MACRO_RX_PATH_OFFSET);
  1170. if (j == INTERP_AUX)
  1171. dsm_reg = LPASS_CDC_RX_RX2_RX_PATH_DSM_CTL;
  1172. int_mux_cfg0 = LPASS_CDC_RX_INP_MUX_RX_INT0_CFG0 + j * 8;
  1173. int_mux_cfg1 = int_mux_cfg0 + 4;
  1174. int_mux_cfg0_val = snd_soc_component_read(component,
  1175. int_mux_cfg0);
  1176. int_mux_cfg1_val = snd_soc_component_read(component,
  1177. int_mux_cfg1);
  1178. if (snd_soc_component_read(component, dsm_reg) & 0x01) {
  1179. if (int_mux_cfg0_val || (int_mux_cfg1_val & 0xF0))
  1180. snd_soc_component_update_bits(component,
  1181. reg, 0x20, 0x20);
  1182. if (int_mux_cfg1_val & 0x0F) {
  1183. snd_soc_component_update_bits(component,
  1184. reg, 0x20, 0x20);
  1185. snd_soc_component_update_bits(component,
  1186. mix_reg, 0x20, 0x20);
  1187. }
  1188. }
  1189. }
  1190. break;
  1191. default:
  1192. break;
  1193. }
  1194. return 0;
  1195. }
  1196. static int lpass_cdc_rx_macro_mclk_enable(
  1197. struct lpass_cdc_rx_macro_priv *rx_priv,
  1198. bool mclk_enable, bool dapm)
  1199. {
  1200. struct regmap *regmap = dev_get_regmap(rx_priv->dev->parent, NULL);
  1201. int ret = 0;
  1202. if (regmap == NULL) {
  1203. dev_err(rx_priv->dev, "%s: regmap is NULL\n", __func__);
  1204. return -EINVAL;
  1205. }
  1206. dev_dbg(rx_priv->dev, "%s: mclk_enable = %u, dapm = %d clk_users= %d\n",
  1207. __func__, mclk_enable, dapm, rx_priv->rx_mclk_users);
  1208. mutex_lock(&rx_priv->mclk_lock);
  1209. if (mclk_enable) {
  1210. if (rx_priv->rx_mclk_users == 0) {
  1211. if (rx_priv->is_native_on)
  1212. rx_priv->clk_id = RX_CORE_CLK;
  1213. lpass_cdc_rx_macro_core_vote(rx_priv, true);
  1214. ret = lpass_cdc_clk_rsc_request_clock(rx_priv->dev,
  1215. rx_priv->default_clk_id,
  1216. rx_priv->clk_id,
  1217. true);
  1218. lpass_cdc_rx_macro_core_vote(rx_priv, false);
  1219. if (ret < 0) {
  1220. dev_err(rx_priv->dev,
  1221. "%s: rx request clock enable failed\n",
  1222. __func__);
  1223. goto exit;
  1224. }
  1225. lpass_cdc_clk_rsc_fs_gen_request(rx_priv->dev,
  1226. true);
  1227. regcache_mark_dirty(regmap);
  1228. regcache_sync_region(regmap,
  1229. RX_START_OFFSET,
  1230. RX_MAX_OFFSET);
  1231. regmap_update_bits(regmap,
  1232. LPASS_CDC_RX_CLK_RST_CTRL_MCLK_CONTROL,
  1233. 0x01, 0x01);
  1234. regmap_update_bits(regmap,
  1235. LPASS_CDC_RX_CLK_RST_CTRL_MCLK_CONTROL,
  1236. 0x02, 0x02);
  1237. regmap_update_bits(regmap,
  1238. LPASS_CDC_RX_CLK_RST_CTRL_FS_CNT_CONTROL,
  1239. 0x02, 0x00);
  1240. regmap_update_bits(regmap,
  1241. LPASS_CDC_RX_CLK_RST_CTRL_FS_CNT_CONTROL,
  1242. 0x01, 0x01);
  1243. }
  1244. rx_priv->rx_mclk_users++;
  1245. } else {
  1246. if (rx_priv->rx_mclk_users <= 0) {
  1247. dev_err(rx_priv->dev, "%s: clock already disabled\n",
  1248. __func__);
  1249. rx_priv->rx_mclk_users = 0;
  1250. goto exit;
  1251. }
  1252. rx_priv->rx_mclk_users--;
  1253. if (rx_priv->rx_mclk_users == 0) {
  1254. regmap_update_bits(regmap,
  1255. LPASS_CDC_RX_CLK_RST_CTRL_FS_CNT_CONTROL,
  1256. 0x01, 0x00);
  1257. regmap_update_bits(regmap,
  1258. LPASS_CDC_RX_CLK_RST_CTRL_FS_CNT_CONTROL,
  1259. 0x02, 0x02);
  1260. regmap_update_bits(regmap,
  1261. LPASS_CDC_RX_CLK_RST_CTRL_MCLK_CONTROL,
  1262. 0x02, 0x00);
  1263. regmap_update_bits(regmap,
  1264. LPASS_CDC_RX_CLK_RST_CTRL_MCLK_CONTROL,
  1265. 0x01, 0x00);
  1266. lpass_cdc_clk_rsc_fs_gen_request(rx_priv->dev,
  1267. false);
  1268. lpass_cdc_rx_macro_core_vote(rx_priv, true);
  1269. lpass_cdc_clk_rsc_request_clock(rx_priv->dev,
  1270. rx_priv->default_clk_id,
  1271. rx_priv->clk_id,
  1272. false);
  1273. lpass_cdc_rx_macro_core_vote(rx_priv, false);
  1274. rx_priv->clk_id = rx_priv->default_clk_id;
  1275. }
  1276. }
  1277. exit:
  1278. trace_printk("%s: mclk_enable = %u, dapm = %d clk_users= %d\n",
  1279. __func__, mclk_enable, dapm, rx_priv->rx_mclk_users);
  1280. mutex_unlock(&rx_priv->mclk_lock);
  1281. return ret;
  1282. }
  1283. static int lpass_cdc_rx_macro_mclk_event(struct snd_soc_dapm_widget *w,
  1284. struct snd_kcontrol *kcontrol, int event)
  1285. {
  1286. struct snd_soc_component *component =
  1287. snd_soc_dapm_to_component(w->dapm);
  1288. int ret = 0;
  1289. struct device *rx_dev = NULL;
  1290. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  1291. int mclk_freq = MCLK_FREQ;
  1292. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  1293. return -EINVAL;
  1294. dev_dbg(rx_dev, "%s: event = %d\n", __func__, event);
  1295. switch (event) {
  1296. case SND_SOC_DAPM_PRE_PMU:
  1297. if (rx_priv->is_native_on)
  1298. mclk_freq = MCLK_FREQ_NATIVE;
  1299. if (rx_priv->swr_ctrl_data)
  1300. swrm_wcd_notify(
  1301. rx_priv->swr_ctrl_data[0].rx_swr_pdev,
  1302. SWR_CLK_FREQ, &mclk_freq);
  1303. ret = lpass_cdc_rx_macro_mclk_enable(rx_priv, 1, true);
  1304. if (ret)
  1305. rx_priv->dapm_mclk_enable = false;
  1306. else
  1307. rx_priv->dapm_mclk_enable = true;
  1308. break;
  1309. case SND_SOC_DAPM_POST_PMD:
  1310. if (rx_priv->dapm_mclk_enable)
  1311. ret = lpass_cdc_rx_macro_mclk_enable(rx_priv, 0, true);
  1312. break;
  1313. default:
  1314. dev_err(rx_priv->dev,
  1315. "%s: invalid DAPM event %d\n", __func__, event);
  1316. ret = -EINVAL;
  1317. }
  1318. return ret;
  1319. }
  1320. static int lpass_cdc_rx_macro_event_handler(struct snd_soc_component *component,
  1321. u16 event, u32 data)
  1322. {
  1323. u16 reg = 0, reg_mix = 0, rx_idx = 0, mute = 0x0, val = 0;
  1324. struct device *rx_dev = NULL;
  1325. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  1326. int ret = 0;
  1327. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  1328. return -EINVAL;
  1329. switch (event) {
  1330. case LPASS_CDC_MACRO_EVT_RX_MUTE:
  1331. rx_idx = data >> 0x10;
  1332. mute = data & 0xffff;
  1333. val = mute ? 0x10 : 0x00;
  1334. reg = LPASS_CDC_RX_RX0_RX_PATH_CTL + (rx_idx *
  1335. LPASS_CDC_RX_MACRO_RX_PATH_OFFSET);
  1336. reg_mix = LPASS_CDC_RX_RX0_RX_PATH_MIX_CTL + (rx_idx *
  1337. LPASS_CDC_RX_MACRO_RX_PATH_OFFSET);
  1338. snd_soc_component_update_bits(component, reg,
  1339. 0x10, val);
  1340. snd_soc_component_update_bits(component, reg_mix,
  1341. 0x10, val);
  1342. break;
  1343. case LPASS_CDC_MACRO_EVT_RX_COMPANDER_SOFT_RST:
  1344. rx_idx = data >> 0x10;
  1345. if (rx_idx == INTERP_AUX)
  1346. goto done;
  1347. reg = LPASS_CDC_RX_COMPANDER0_CTL0 +
  1348. (rx_idx * LPASS_CDC_RX_MACRO_COMP_OFFSET);
  1349. snd_soc_component_write(component, reg,
  1350. snd_soc_component_read(component, reg));
  1351. break;
  1352. case LPASS_CDC_MACRO_EVT_IMPED_TRUE:
  1353. lpass_cdc_rx_macro_wcd_clsh_imped_config(component, data, true);
  1354. break;
  1355. case LPASS_CDC_MACRO_EVT_IMPED_FALSE:
  1356. lpass_cdc_rx_macro_wcd_clsh_imped_config(component, data, false);
  1357. break;
  1358. case LPASS_CDC_MACRO_EVT_SSR_DOWN:
  1359. trace_printk("%s, enter SSR down\n", __func__);
  1360. rx_priv->dev_up = false;
  1361. if (rx_priv->swr_ctrl_data) {
  1362. swrm_wcd_notify(
  1363. rx_priv->swr_ctrl_data[0].rx_swr_pdev,
  1364. SWR_DEVICE_SSR_DOWN, NULL);
  1365. }
  1366. if ((!pm_runtime_enabled(rx_dev) ||
  1367. !pm_runtime_suspended(rx_dev))) {
  1368. ret = lpass_cdc_runtime_suspend(rx_dev);
  1369. if (!ret) {
  1370. pm_runtime_disable(rx_dev);
  1371. pm_runtime_set_suspended(rx_dev);
  1372. pm_runtime_enable(rx_dev);
  1373. }
  1374. }
  1375. break;
  1376. case LPASS_CDC_MACRO_EVT_PRE_SSR_UP:
  1377. lpass_cdc_rx_macro_core_vote(rx_priv, true);
  1378. /* enable&disable RX_CORE_CLK to reset GFMUX reg */
  1379. ret = lpass_cdc_clk_rsc_request_clock(rx_priv->dev,
  1380. rx_priv->default_clk_id,
  1381. RX_CORE_CLK, true);
  1382. if (ret < 0)
  1383. dev_err_ratelimited(rx_priv->dev,
  1384. "%s, failed to enable clk, ret:%d\n",
  1385. __func__, ret);
  1386. else
  1387. lpass_cdc_clk_rsc_request_clock(rx_priv->dev,
  1388. rx_priv->default_clk_id,
  1389. RX_CORE_CLK, false);
  1390. lpass_cdc_rx_macro_core_vote(rx_priv, false);
  1391. break;
  1392. case LPASS_CDC_MACRO_EVT_SSR_UP:
  1393. trace_printk("%s, enter SSR up\n", __func__);
  1394. rx_priv->dev_up = true;
  1395. /* reset swr after ssr/pdr */
  1396. rx_priv->reset_swr = true;
  1397. if (rx_priv->swr_ctrl_data)
  1398. swrm_wcd_notify(
  1399. rx_priv->swr_ctrl_data[0].rx_swr_pdev,
  1400. SWR_DEVICE_SSR_UP, NULL);
  1401. break;
  1402. case LPASS_CDC_MACRO_EVT_CLK_RESET:
  1403. lpass_cdc_rsc_clk_reset(rx_dev, RX_CORE_CLK);
  1404. break;
  1405. case LPASS_CDC_MACRO_EVT_RX_PA_GAIN_UPDATE:
  1406. rx_priv->rx0_gain_val = snd_soc_component_read(component,
  1407. LPASS_CDC_RX_RX0_RX_VOL_CTL);
  1408. rx_priv->rx1_gain_val = snd_soc_component_read(component,
  1409. LPASS_CDC_RX_RX1_RX_VOL_CTL);
  1410. if (data) {
  1411. /* Reduce gain by half only if its greater than -6DB */
  1412. if ((rx_priv->rx0_gain_val >= LPASS_CDC_RX_MACRO_GAIN_VAL_UNITY)
  1413. && (rx_priv->rx0_gain_val <= LPASS_CDC_RX_MACRO_GAIN_MAX_VAL))
  1414. snd_soc_component_update_bits(component,
  1415. LPASS_CDC_RX_RX0_RX_VOL_CTL, 0xFF,
  1416. (rx_priv->rx0_gain_val -
  1417. LPASS_CDC_RX_MACRO_MOD_GAIN));
  1418. if ((rx_priv->rx1_gain_val >= LPASS_CDC_RX_MACRO_GAIN_VAL_UNITY)
  1419. && (rx_priv->rx1_gain_val <= LPASS_CDC_RX_MACRO_GAIN_MAX_VAL))
  1420. snd_soc_component_update_bits(component,
  1421. LPASS_CDC_RX_RX1_RX_VOL_CTL, 0xFF,
  1422. (rx_priv->rx1_gain_val -
  1423. LPASS_CDC_RX_MACRO_MOD_GAIN));
  1424. }
  1425. else {
  1426. /* Reset gain value to default */
  1427. if ((rx_priv->rx0_gain_val >=
  1428. (LPASS_CDC_RX_MACRO_GAIN_VAL_UNITY - LPASS_CDC_RX_MACRO_MOD_GAIN)) &&
  1429. (rx_priv->rx0_gain_val <= (LPASS_CDC_RX_MACRO_GAIN_MAX_VAL -
  1430. LPASS_CDC_RX_MACRO_MOD_GAIN)))
  1431. snd_soc_component_update_bits(component,
  1432. LPASS_CDC_RX_RX0_RX_VOL_CTL, 0xFF,
  1433. (rx_priv->rx0_gain_val +
  1434. LPASS_CDC_RX_MACRO_MOD_GAIN));
  1435. if ((rx_priv->rx1_gain_val >=
  1436. (LPASS_CDC_RX_MACRO_GAIN_VAL_UNITY - LPASS_CDC_RX_MACRO_MOD_GAIN)) &&
  1437. (rx_priv->rx1_gain_val <= (LPASS_CDC_RX_MACRO_GAIN_MAX_VAL -
  1438. LPASS_CDC_RX_MACRO_MOD_GAIN)))
  1439. snd_soc_component_update_bits(component,
  1440. LPASS_CDC_RX_RX1_RX_VOL_CTL, 0xFF,
  1441. (rx_priv->rx1_gain_val +
  1442. LPASS_CDC_RX_MACRO_MOD_GAIN));
  1443. }
  1444. break;
  1445. case LPASS_CDC_MACRO_EVT_HPHL_HD2_ENABLE:
  1446. /* Enable hd2 config for hphl*/
  1447. snd_soc_component_update_bits(component,
  1448. LPASS_CDC_RX_RX0_RX_PATH_CFG0, 0x04, data);
  1449. break;
  1450. case LPASS_CDC_MACRO_EVT_HPHR_HD2_ENABLE:
  1451. /* Enable hd2 config for hphr*/
  1452. snd_soc_component_update_bits(component,
  1453. LPASS_CDC_RX_RX1_RX_PATH_CFG0, 0x04, data);
  1454. break;
  1455. }
  1456. done:
  1457. return ret;
  1458. }
  1459. static int lpass_cdc_rx_macro_find_playback_dai_id_for_port(int port_id,
  1460. struct lpass_cdc_rx_macro_priv *rx_priv)
  1461. {
  1462. int i = 0;
  1463. for (i = RX_MACRO_AIF1_PB; i < LPASS_CDC_RX_MACRO_MAX_DAIS; i++) {
  1464. if (test_bit(port_id, &rx_priv->active_ch_mask[i]))
  1465. return i;
  1466. }
  1467. return -EINVAL;
  1468. }
  1469. static int lpass_cdc_rx_macro_set_idle_detect_thr(struct snd_soc_component *component,
  1470. struct lpass_cdc_rx_macro_priv *rx_priv,
  1471. int interp, int path_type)
  1472. {
  1473. int port_id[4] = { 0, 0, 0, 0 };
  1474. int *port_ptr = NULL;
  1475. int num_ports = 0;
  1476. int bit_width = 0, i = 0;
  1477. int mux_reg = 0, mux_reg_val = 0;
  1478. int dai_id = 0, idle_thr = 0;
  1479. if ((interp != INTERP_HPHL) && (interp != INTERP_HPHR))
  1480. return 0;
  1481. if (!rx_priv->idle_det_cfg.hph_idle_detect_en)
  1482. return 0;
  1483. port_ptr = &port_id[0];
  1484. num_ports = 0;
  1485. /*
  1486. * Read interpolator MUX input registers and find
  1487. * which cdc_dma port is connected and store the port
  1488. * numbers in port_id array.
  1489. */
  1490. if (path_type == INTERP_MIX_PATH) {
  1491. mux_reg = LPASS_CDC_RX_INP_MUX_RX_INT0_CFG1 +
  1492. 2 * interp;
  1493. mux_reg_val = snd_soc_component_read(component, mux_reg) &
  1494. 0x0f;
  1495. if ((mux_reg_val >= INTn_2_INP_SEL_RX0) &&
  1496. (mux_reg_val <= INTn_2_INP_SEL_RX5)) {
  1497. *port_ptr++ = mux_reg_val - 1;
  1498. num_ports++;
  1499. }
  1500. }
  1501. if (path_type == INTERP_MAIN_PATH) {
  1502. mux_reg = LPASS_CDC_RX_INP_MUX_RX_INT1_CFG0 +
  1503. 2 * (interp - 1);
  1504. mux_reg_val = snd_soc_component_read(component, mux_reg) &
  1505. 0x0f;
  1506. i = LPASS_CDC_RX_MACRO_INTERP_MUX_NUM_INPUTS;
  1507. while (i) {
  1508. if ((mux_reg_val >= INTn_1_INP_SEL_RX0) &&
  1509. (mux_reg_val <= INTn_1_INP_SEL_RX5)) {
  1510. *port_ptr++ = mux_reg_val -
  1511. INTn_1_INP_SEL_RX0;
  1512. num_ports++;
  1513. }
  1514. mux_reg_val =
  1515. (snd_soc_component_read(component, mux_reg) &
  1516. 0xf0) >> 4;
  1517. mux_reg += 1;
  1518. i--;
  1519. }
  1520. }
  1521. dev_dbg(component->dev, "%s: num_ports: %d, ports[%d %d %d %d]\n",
  1522. __func__, num_ports, port_id[0], port_id[1],
  1523. port_id[2], port_id[3]);
  1524. i = 0;
  1525. while (num_ports) {
  1526. dai_id = lpass_cdc_rx_macro_find_playback_dai_id_for_port(port_id[i++],
  1527. rx_priv);
  1528. if ((dai_id >= 0) && (dai_id < LPASS_CDC_RX_MACRO_MAX_DAIS)) {
  1529. dev_dbg(component->dev, "%s: dai_id: %d bit_width: %d\n",
  1530. __func__, dai_id,
  1531. rx_priv->bit_width[dai_id]);
  1532. if (rx_priv->bit_width[dai_id] > bit_width)
  1533. bit_width = rx_priv->bit_width[dai_id];
  1534. }
  1535. num_ports--;
  1536. }
  1537. switch (bit_width) {
  1538. case 16:
  1539. idle_thr = 0xff; /* F16 */
  1540. break;
  1541. case 24:
  1542. case 32:
  1543. idle_thr = 0x03; /* F22 */
  1544. break;
  1545. default:
  1546. idle_thr = 0x00;
  1547. break;
  1548. }
  1549. dev_dbg(component->dev, "%s: (new) idle_thr: %d, (cur) idle_thr: %d\n",
  1550. __func__, idle_thr, rx_priv->idle_det_cfg.hph_idle_thr);
  1551. if ((rx_priv->idle_det_cfg.hph_idle_thr == 0) ||
  1552. (idle_thr < rx_priv->idle_det_cfg.hph_idle_thr)) {
  1553. snd_soc_component_write(component,
  1554. LPASS_CDC_RX_IDLE_DETECT_CFG3, idle_thr);
  1555. rx_priv->idle_det_cfg.hph_idle_thr = idle_thr;
  1556. }
  1557. return 0;
  1558. }
  1559. static int lpass_cdc_rx_macro_enable_mix_path(struct snd_soc_dapm_widget *w,
  1560. struct snd_kcontrol *kcontrol, int event)
  1561. {
  1562. struct snd_soc_component *component =
  1563. snd_soc_dapm_to_component(w->dapm);
  1564. u16 gain_reg = 0, mix_reg = 0;
  1565. struct device *rx_dev = NULL;
  1566. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  1567. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  1568. return -EINVAL;
  1569. if (w->shift >= INTERP_MAX) {
  1570. dev_err(component->dev, "%s: Invalid Interpolator value %d for name %s\n",
  1571. __func__, w->shift, w->name);
  1572. return -EINVAL;
  1573. }
  1574. gain_reg = LPASS_CDC_RX_RX0_RX_VOL_MIX_CTL +
  1575. (w->shift * LPASS_CDC_RX_MACRO_RX_PATH_OFFSET);
  1576. mix_reg = LPASS_CDC_RX_RX0_RX_PATH_MIX_CTL +
  1577. (w->shift * LPASS_CDC_RX_MACRO_RX_PATH_OFFSET);
  1578. dev_dbg(component->dev, "%s %d %s\n", __func__, event, w->name);
  1579. switch (event) {
  1580. case SND_SOC_DAPM_PRE_PMU:
  1581. lpass_cdc_rx_macro_set_idle_detect_thr(component, rx_priv, w->shift,
  1582. INTERP_MIX_PATH);
  1583. lpass_cdc_rx_macro_enable_interp_clk(component, event, w->shift);
  1584. break;
  1585. case SND_SOC_DAPM_POST_PMU:
  1586. snd_soc_component_write(component, gain_reg,
  1587. snd_soc_component_read(component, gain_reg));
  1588. break;
  1589. case SND_SOC_DAPM_POST_PMD:
  1590. /* Clk Disable */
  1591. snd_soc_component_update_bits(component, mix_reg, 0x20, 0x00);
  1592. lpass_cdc_rx_macro_enable_interp_clk(component, event, w->shift);
  1593. /* Reset enable and disable */
  1594. snd_soc_component_update_bits(component, mix_reg, 0x40, 0x40);
  1595. snd_soc_component_update_bits(component, mix_reg, 0x40, 0x00);
  1596. break;
  1597. }
  1598. return 0;
  1599. }
  1600. static bool lpass_cdc_rx_macro_adie_lb(struct snd_soc_component *component,
  1601. int interp_idx)
  1602. {
  1603. u16 int_mux_cfg0 = 0, int_mux_cfg1 = 0;
  1604. u8 int_mux_cfg0_val = 0, int_mux_cfg1_val = 0;
  1605. u8 int_n_inp0 = 0, int_n_inp1 = 0, int_n_inp2 = 0;
  1606. int_mux_cfg0 = LPASS_CDC_RX_INP_MUX_RX_INT0_CFG0 + interp_idx * 8;
  1607. int_mux_cfg1 = int_mux_cfg0 + 4;
  1608. int_mux_cfg0_val = snd_soc_component_read(component, int_mux_cfg0);
  1609. int_mux_cfg1_val = snd_soc_component_read(component, int_mux_cfg1);
  1610. int_n_inp0 = int_mux_cfg0_val & 0x0F;
  1611. if (int_n_inp0 == INTn_1_INP_SEL_DEC0 ||
  1612. int_n_inp0 == INTn_1_INP_SEL_DEC1 ||
  1613. int_n_inp0 == INTn_1_INP_SEL_IIR0 ||
  1614. int_n_inp0 == INTn_1_INP_SEL_IIR1)
  1615. return true;
  1616. int_n_inp1 = int_mux_cfg0_val >> 4;
  1617. if (int_n_inp1 == INTn_1_INP_SEL_DEC0 ||
  1618. int_n_inp1 == INTn_1_INP_SEL_DEC1 ||
  1619. int_n_inp1 == INTn_1_INP_SEL_IIR0 ||
  1620. int_n_inp1 == INTn_1_INP_SEL_IIR1)
  1621. return true;
  1622. int_n_inp2 = int_mux_cfg1_val >> 4;
  1623. if (int_n_inp2 == INTn_1_INP_SEL_DEC0 ||
  1624. int_n_inp2 == INTn_1_INP_SEL_DEC1 ||
  1625. int_n_inp2 == INTn_1_INP_SEL_IIR0 ||
  1626. int_n_inp2 == INTn_1_INP_SEL_IIR1)
  1627. return true;
  1628. return false;
  1629. }
  1630. static int lpass_cdc_rx_macro_enable_main_path(struct snd_soc_dapm_widget *w,
  1631. struct snd_kcontrol *kcontrol,
  1632. int event)
  1633. {
  1634. struct snd_soc_component *component =
  1635. snd_soc_dapm_to_component(w->dapm);
  1636. u16 gain_reg = 0;
  1637. u16 reg = 0;
  1638. struct device *rx_dev = NULL;
  1639. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  1640. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  1641. return -EINVAL;
  1642. dev_dbg(component->dev, "%s %d %s\n", __func__, event, w->name);
  1643. if (w->shift >= INTERP_MAX) {
  1644. dev_err(component->dev, "%s: Invalid Interpolator value %d for name %s\n",
  1645. __func__, w->shift, w->name);
  1646. return -EINVAL;
  1647. }
  1648. reg = LPASS_CDC_RX_RX0_RX_PATH_CTL + (w->shift *
  1649. LPASS_CDC_RX_MACRO_RX_PATH_OFFSET);
  1650. gain_reg = LPASS_CDC_RX_RX0_RX_VOL_CTL + (w->shift *
  1651. LPASS_CDC_RX_MACRO_RX_PATH_OFFSET);
  1652. switch (event) {
  1653. case SND_SOC_DAPM_PRE_PMU:
  1654. lpass_cdc_rx_macro_set_idle_detect_thr(component, rx_priv, w->shift,
  1655. INTERP_MAIN_PATH);
  1656. lpass_cdc_rx_macro_enable_interp_clk(component, event, w->shift);
  1657. if (lpass_cdc_rx_macro_adie_lb(component, w->shift))
  1658. snd_soc_component_update_bits(component,
  1659. reg, 0x20, 0x20);
  1660. break;
  1661. case SND_SOC_DAPM_POST_PMU:
  1662. snd_soc_component_write(component, gain_reg,
  1663. snd_soc_component_read(component, gain_reg));
  1664. break;
  1665. case SND_SOC_DAPM_POST_PMD:
  1666. lpass_cdc_rx_macro_enable_interp_clk(component, event, w->shift);
  1667. break;
  1668. }
  1669. return 0;
  1670. }
  1671. static void lpass_cdc_rx_macro_droop_setting(struct snd_soc_component *component,
  1672. int interp_n, int event)
  1673. {
  1674. u8 pcm_rate = 0, val = 0;
  1675. u16 rx0_path_ctl_reg = 0, rx_path_cfg3_reg = 0;
  1676. rx_path_cfg3_reg = LPASS_CDC_RX_RX0_RX_PATH_CFG3 +
  1677. (interp_n * LPASS_CDC_RX_MACRO_RX_PATH_OFFSET);
  1678. rx0_path_ctl_reg = LPASS_CDC_RX_RX0_RX_PATH_CTL +
  1679. (interp_n * LPASS_CDC_RX_MACRO_RX_PATH_OFFSET);
  1680. pcm_rate = (snd_soc_component_read(component, rx0_path_ctl_reg)
  1681. & 0x0F);
  1682. if (pcm_rate < 0x06)
  1683. val = 0x03;
  1684. else if (pcm_rate < 0x08)
  1685. val = 0x01;
  1686. else if (pcm_rate < 0x0B)
  1687. val = 0x02;
  1688. else
  1689. val = 0x00;
  1690. if (SND_SOC_DAPM_EVENT_ON(event))
  1691. snd_soc_component_update_bits(component, rx_path_cfg3_reg,
  1692. 0x03, val);
  1693. if (SND_SOC_DAPM_EVENT_OFF(event))
  1694. snd_soc_component_update_bits(component, rx_path_cfg3_reg,
  1695. 0x03, 0x03);
  1696. }
  1697. static int lpass_cdc_rx_macro_config_compander(struct snd_soc_component *component,
  1698. struct lpass_cdc_rx_macro_priv *rx_priv,
  1699. int interp_n, int event)
  1700. {
  1701. int comp = 0;
  1702. u16 comp_ctl0_reg = 0, comp_ctl8_reg = 0, rx_path_cfg0_reg = 0;
  1703. u16 comp_coeff_lsb_reg = 0, comp_coeff_msb_reg = 0;
  1704. u16 mode = rx_priv->hph_pwr_mode;
  1705. /* AUX does not have compander */
  1706. if (interp_n == INTERP_AUX)
  1707. return 0;
  1708. comp = interp_n;
  1709. if (!rx_priv->comp_enabled[comp])
  1710. return 0;
  1711. if (rx_priv->is_ear_mode_on && interp_n == INTERP_HPHL)
  1712. mode = RX_MODE_EAR;
  1713. if (interp_n == INTERP_HPHL) {
  1714. comp_coeff_lsb_reg = LPASS_CDC_RX_TOP_HPHL_COMP_WR_LSB;
  1715. comp_coeff_msb_reg = LPASS_CDC_RX_TOP_HPHL_COMP_WR_MSB;
  1716. } else if (interp_n == INTERP_HPHR) {
  1717. comp_coeff_lsb_reg = LPASS_CDC_RX_TOP_HPHR_COMP_WR_LSB;
  1718. comp_coeff_msb_reg = LPASS_CDC_RX_TOP_HPHR_COMP_WR_MSB;
  1719. } else {
  1720. /* compander coefficients are loaded only for hph path */
  1721. return 0;
  1722. }
  1723. comp_ctl0_reg = LPASS_CDC_RX_COMPANDER0_CTL0 +
  1724. (comp * LPASS_CDC_RX_MACRO_COMP_OFFSET);
  1725. comp_ctl8_reg = LPASS_CDC_RX_COMPANDER0_CTL8 +
  1726. (comp * LPASS_CDC_RX_MACRO_COMP_OFFSET);
  1727. rx_path_cfg0_reg = LPASS_CDC_RX_RX0_RX_PATH_CFG0 +
  1728. (comp * LPASS_CDC_RX_MACRO_RX_PATH_OFFSET);
  1729. if (SND_SOC_DAPM_EVENT_ON(event)) {
  1730. lpass_cdc_load_compander_coeff(component,
  1731. comp_coeff_lsb_reg, comp_coeff_msb_reg,
  1732. comp_coeff_table[rx_priv->hph_pwr_mode],
  1733. COMP_MAX_COEFF);
  1734. lpass_cdc_update_compander_setting(component,
  1735. comp_ctl8_reg,
  1736. &comp_setting_table[mode]);
  1737. /* Enable Compander Clock */
  1738. snd_soc_component_update_bits(component, comp_ctl0_reg,
  1739. 0x01, 0x01);
  1740. snd_soc_component_update_bits(component, comp_ctl0_reg,
  1741. 0x02, 0x02);
  1742. snd_soc_component_update_bits(component, comp_ctl0_reg,
  1743. 0x02, 0x00);
  1744. snd_soc_component_update_bits(component, rx_path_cfg0_reg,
  1745. 0x02, 0x02);
  1746. }
  1747. if (SND_SOC_DAPM_EVENT_OFF(event)) {
  1748. snd_soc_component_update_bits(component, comp_ctl0_reg,
  1749. 0x04, 0x04);
  1750. snd_soc_component_update_bits(component, rx_path_cfg0_reg,
  1751. 0x02, 0x00);
  1752. snd_soc_component_update_bits(component, comp_ctl0_reg,
  1753. 0x01, 0x00);
  1754. snd_soc_component_update_bits(component, comp_ctl0_reg,
  1755. 0x04, 0x00);
  1756. }
  1757. return 0;
  1758. }
  1759. static void lpass_cdc_rx_macro_enable_softclip_clk(struct snd_soc_component *component,
  1760. struct lpass_cdc_rx_macro_priv *rx_priv,
  1761. bool enable)
  1762. {
  1763. if (enable) {
  1764. if (rx_priv->softclip_clk_users == 0)
  1765. snd_soc_component_update_bits(component,
  1766. LPASS_CDC_RX_SOFTCLIP_CRC,
  1767. 0x01, 0x01);
  1768. rx_priv->softclip_clk_users++;
  1769. } else {
  1770. rx_priv->softclip_clk_users--;
  1771. if (rx_priv->softclip_clk_users == 0)
  1772. snd_soc_component_update_bits(component,
  1773. LPASS_CDC_RX_SOFTCLIP_CRC,
  1774. 0x01, 0x00);
  1775. }
  1776. }
  1777. static int lpass_cdc_rx_macro_config_softclip(struct snd_soc_component *component,
  1778. struct lpass_cdc_rx_macro_priv *rx_priv,
  1779. int event)
  1780. {
  1781. dev_dbg(component->dev, "%s: event %d, enabled %d\n",
  1782. __func__, event, rx_priv->is_softclip_on);
  1783. if (!rx_priv->is_softclip_on)
  1784. return 0;
  1785. if (SND_SOC_DAPM_EVENT_ON(event)) {
  1786. /* Enable Softclip clock */
  1787. lpass_cdc_rx_macro_enable_softclip_clk(component, rx_priv, true);
  1788. /* Enable Softclip control */
  1789. snd_soc_component_update_bits(component,
  1790. LPASS_CDC_RX_SOFTCLIP_SOFTCLIP_CTRL, 0x01, 0x01);
  1791. }
  1792. if (SND_SOC_DAPM_EVENT_OFF(event)) {
  1793. snd_soc_component_update_bits(component,
  1794. LPASS_CDC_RX_SOFTCLIP_SOFTCLIP_CTRL, 0x01, 0x00);
  1795. lpass_cdc_rx_macro_enable_softclip_clk(component, rx_priv, false);
  1796. }
  1797. return 0;
  1798. }
  1799. static int lpass_cdc_rx_macro_config_aux_hpf(struct snd_soc_component *component,
  1800. struct lpass_cdc_rx_macro_priv *rx_priv,
  1801. int event)
  1802. {
  1803. dev_dbg(component->dev, "%s: event %d, enabled %d\n",
  1804. __func__, event, rx_priv->is_aux_hpf_on);
  1805. if (SND_SOC_DAPM_EVENT_ON(event)) {
  1806. /* Update Aux HPF control */
  1807. if (!rx_priv->is_aux_hpf_on)
  1808. snd_soc_component_update_bits(component,
  1809. LPASS_CDC_RX_RX2_RX_PATH_CFG1, 0x04, 0x00);
  1810. }
  1811. if (SND_SOC_DAPM_EVENT_OFF(event)) {
  1812. /* Reset to default (HPF=ON) */
  1813. snd_soc_component_update_bits(component,
  1814. LPASS_CDC_RX_RX2_RX_PATH_CFG1, 0x04, 0x04);
  1815. }
  1816. return 0;
  1817. }
  1818. static inline void
  1819. lpass_cdc_rx_macro_enable_clsh_block(struct lpass_cdc_rx_macro_priv *rx_priv, bool enable)
  1820. {
  1821. if ((enable && ++rx_priv->clsh_users == 1) ||
  1822. (!enable && --rx_priv->clsh_users == 0))
  1823. snd_soc_component_update_bits(rx_priv->component,
  1824. LPASS_CDC_RX_CLSH_CRC, 0x01,
  1825. (u8) enable);
  1826. if (rx_priv->clsh_users < 0)
  1827. rx_priv->clsh_users = 0;
  1828. dev_dbg(rx_priv->dev, "%s: clsh_users %d, enable %d", __func__,
  1829. rx_priv->clsh_users, enable);
  1830. }
  1831. static int lpass_cdc_rx_macro_config_classh(struct snd_soc_component *component,
  1832. struct lpass_cdc_rx_macro_priv *rx_priv,
  1833. int interp_n, int event)
  1834. {
  1835. if (SND_SOC_DAPM_EVENT_OFF(event)) {
  1836. lpass_cdc_rx_macro_enable_clsh_block(rx_priv, false);
  1837. return 0;
  1838. }
  1839. if (!SND_SOC_DAPM_EVENT_ON(event))
  1840. return 0;
  1841. lpass_cdc_rx_macro_enable_clsh_block(rx_priv, true);
  1842. if (interp_n == INTERP_HPHL ||
  1843. interp_n == INTERP_HPHR) {
  1844. /*
  1845. * These K1 values depend on the Headphone Impedance
  1846. * For now it is assumed to be 16 ohm
  1847. */
  1848. snd_soc_component_update_bits(component,
  1849. LPASS_CDC_RX_CLSH_K1_LSB,
  1850. 0xFF, 0xC0);
  1851. snd_soc_component_update_bits(component,
  1852. LPASS_CDC_RX_CLSH_K1_MSB,
  1853. 0x0F, 0x00);
  1854. }
  1855. switch (interp_n) {
  1856. case INTERP_HPHL:
  1857. if (rx_priv->is_ear_mode_on)
  1858. snd_soc_component_update_bits(component,
  1859. LPASS_CDC_RX_CLSH_HPH_V_PA,
  1860. 0x3F, 0x39);
  1861. else
  1862. snd_soc_component_update_bits(component,
  1863. LPASS_CDC_RX_CLSH_HPH_V_PA,
  1864. 0x3F, 0x1C);
  1865. snd_soc_component_update_bits(component,
  1866. LPASS_CDC_RX_CLSH_DECAY_CTRL,
  1867. 0x07, 0x00);
  1868. snd_soc_component_update_bits(component,
  1869. LPASS_CDC_RX_RX0_RX_PATH_CFG0,
  1870. 0x40, 0x40);
  1871. break;
  1872. case INTERP_HPHR:
  1873. if (rx_priv->is_ear_mode_on)
  1874. snd_soc_component_update_bits(component,
  1875. LPASS_CDC_RX_CLSH_HPH_V_PA,
  1876. 0x3F, 0x39);
  1877. else
  1878. snd_soc_component_update_bits(component,
  1879. LPASS_CDC_RX_CLSH_HPH_V_PA,
  1880. 0x3F, 0x1C);
  1881. snd_soc_component_update_bits(component,
  1882. LPASS_CDC_RX_CLSH_DECAY_CTRL,
  1883. 0x07, 0x00);
  1884. snd_soc_component_update_bits(component,
  1885. LPASS_CDC_RX_RX1_RX_PATH_CFG0,
  1886. 0x40, 0x40);
  1887. break;
  1888. case INTERP_AUX:
  1889. snd_soc_component_update_bits(component,
  1890. LPASS_CDC_RX_RX2_RX_PATH_CFG0,
  1891. 0x08, 0x08);
  1892. snd_soc_component_update_bits(component,
  1893. LPASS_CDC_RX_RX2_RX_PATH_CFG0,
  1894. 0x10, 0x10);
  1895. break;
  1896. }
  1897. return 0;
  1898. }
  1899. static void lpass_cdc_rx_macro_hd2_control(struct snd_soc_component *component,
  1900. u16 interp_idx, int event)
  1901. {
  1902. u16 hd2_scale_reg = 0;
  1903. u16 hd2_enable_reg = 0;
  1904. switch (interp_idx) {
  1905. case INTERP_HPHL:
  1906. hd2_scale_reg = LPASS_CDC_RX_RX0_RX_PATH_SEC3;
  1907. hd2_enable_reg = LPASS_CDC_RX_RX0_RX_PATH_CFG0;
  1908. break;
  1909. case INTERP_HPHR:
  1910. hd2_scale_reg = LPASS_CDC_RX_RX1_RX_PATH_SEC3;
  1911. hd2_enable_reg = LPASS_CDC_RX_RX1_RX_PATH_CFG0;
  1912. break;
  1913. }
  1914. if (hd2_enable_reg && SND_SOC_DAPM_EVENT_ON(event)) {
  1915. snd_soc_component_update_bits(component, hd2_scale_reg,
  1916. 0x3C, 0x14);
  1917. snd_soc_component_update_bits(component, hd2_enable_reg,
  1918. 0x04, 0x04);
  1919. }
  1920. if (hd2_enable_reg && SND_SOC_DAPM_EVENT_OFF(event)) {
  1921. snd_soc_component_update_bits(component, hd2_enable_reg,
  1922. 0x04, 0x00);
  1923. snd_soc_component_update_bits(component, hd2_scale_reg,
  1924. 0x3C, 0x00);
  1925. }
  1926. }
  1927. static int lpass_cdc_rx_macro_hph_idle_detect_get(struct snd_kcontrol *kcontrol,
  1928. struct snd_ctl_elem_value *ucontrol)
  1929. {
  1930. struct snd_soc_component *component =
  1931. snd_soc_kcontrol_component(kcontrol);
  1932. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  1933. struct device *rx_dev = NULL;
  1934. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  1935. return -EINVAL;
  1936. ucontrol->value.integer.value[0] =
  1937. rx_priv->idle_det_cfg.hph_idle_detect_en;
  1938. return 0;
  1939. }
  1940. static int lpass_cdc_rx_macro_hph_idle_detect_put(struct snd_kcontrol *kcontrol,
  1941. struct snd_ctl_elem_value *ucontrol)
  1942. {
  1943. struct snd_soc_component *component =
  1944. snd_soc_kcontrol_component(kcontrol);
  1945. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  1946. struct device *rx_dev = NULL;
  1947. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  1948. return -EINVAL;
  1949. rx_priv->idle_det_cfg.hph_idle_detect_en =
  1950. ucontrol->value.integer.value[0];
  1951. return 0;
  1952. }
  1953. static int lpass_cdc_rx_macro_get_compander(struct snd_kcontrol *kcontrol,
  1954. struct snd_ctl_elem_value *ucontrol)
  1955. {
  1956. struct snd_soc_component *component =
  1957. snd_soc_kcontrol_component(kcontrol);
  1958. int comp = ((struct soc_multi_mixer_control *)
  1959. kcontrol->private_value)->shift;
  1960. struct device *rx_dev = NULL;
  1961. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  1962. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  1963. return -EINVAL;
  1964. ucontrol->value.integer.value[0] = rx_priv->comp_enabled[comp];
  1965. return 0;
  1966. }
  1967. static int lpass_cdc_rx_macro_set_compander(struct snd_kcontrol *kcontrol,
  1968. struct snd_ctl_elem_value *ucontrol)
  1969. {
  1970. struct snd_soc_component *component =
  1971. snd_soc_kcontrol_component(kcontrol);
  1972. int comp = ((struct soc_multi_mixer_control *)
  1973. kcontrol->private_value)->shift;
  1974. int value = ucontrol->value.integer.value[0];
  1975. struct device *rx_dev = NULL;
  1976. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  1977. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  1978. return -EINVAL;
  1979. dev_dbg(component->dev, "%s: Compander %d enable current %d, new %d\n",
  1980. __func__, comp + 1, rx_priv->comp_enabled[comp], value);
  1981. rx_priv->comp_enabled[comp] = value;
  1982. return 0;
  1983. }
  1984. static int lpass_cdc_rx_macro_mux_get(struct snd_kcontrol *kcontrol,
  1985. struct snd_ctl_elem_value *ucontrol)
  1986. {
  1987. struct snd_soc_dapm_widget *widget =
  1988. snd_soc_dapm_kcontrol_widget(kcontrol);
  1989. struct snd_soc_component *component =
  1990. snd_soc_dapm_to_component(widget->dapm);
  1991. struct device *rx_dev = NULL;
  1992. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  1993. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  1994. return -EINVAL;
  1995. ucontrol->value.integer.value[0] =
  1996. rx_priv->rx_port_value[widget->shift];
  1997. return 0;
  1998. }
  1999. static int lpass_cdc_rx_macro_mux_put(struct snd_kcontrol *kcontrol,
  2000. struct snd_ctl_elem_value *ucontrol)
  2001. {
  2002. struct snd_soc_dapm_widget *widget =
  2003. snd_soc_dapm_kcontrol_widget(kcontrol);
  2004. struct snd_soc_component *component =
  2005. snd_soc_dapm_to_component(widget->dapm);
  2006. struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
  2007. struct snd_soc_dapm_update *update = NULL;
  2008. u32 rx_port_value = ucontrol->value.integer.value[0];
  2009. u32 aif_rst = 0;
  2010. struct device *rx_dev = NULL;
  2011. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  2012. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  2013. return -EINVAL;
  2014. aif_rst = rx_priv->rx_port_value[widget->shift];
  2015. if (!rx_port_value) {
  2016. if (aif_rst == 0) {
  2017. dev_err(rx_dev, "%s:AIF reset already\n", __func__);
  2018. return 0;
  2019. }
  2020. if (aif_rst > RX_MACRO_AIF4_PB) {
  2021. dev_err(rx_dev, "%s: Invalid AIF reset\n", __func__);
  2022. return 0;
  2023. }
  2024. }
  2025. rx_priv->rx_port_value[widget->shift] = rx_port_value;
  2026. dev_dbg(rx_dev, "%s: mux input: %d, mux output: %d, aif_rst: %d\n",
  2027. __func__, rx_port_value, widget->shift, aif_rst);
  2028. switch (rx_port_value) {
  2029. case 0:
  2030. if (rx_priv->active_ch_cnt[aif_rst]) {
  2031. clear_bit(widget->shift,
  2032. &rx_priv->active_ch_mask[aif_rst]);
  2033. rx_priv->active_ch_cnt[aif_rst]--;
  2034. }
  2035. break;
  2036. case 1:
  2037. case 2:
  2038. case 3:
  2039. case 4:
  2040. set_bit(widget->shift,
  2041. &rx_priv->active_ch_mask[rx_port_value]);
  2042. rx_priv->active_ch_cnt[rx_port_value]++;
  2043. break;
  2044. default:
  2045. dev_err(component->dev,
  2046. "%s:Invalid AIF_ID for LPASS_CDC_RX_MACRO MUX %d\n",
  2047. __func__, rx_port_value);
  2048. goto err;
  2049. }
  2050. snd_soc_dapm_mux_update_power(widget->dapm, kcontrol,
  2051. rx_port_value, e, update);
  2052. return 0;
  2053. err:
  2054. return -EINVAL;
  2055. }
  2056. static int lpass_cdc_rx_macro_get_ear_mode(struct snd_kcontrol *kcontrol,
  2057. struct snd_ctl_elem_value *ucontrol)
  2058. {
  2059. struct snd_soc_component *component =
  2060. snd_soc_kcontrol_component(kcontrol);
  2061. struct device *rx_dev = NULL;
  2062. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  2063. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  2064. return -EINVAL;
  2065. ucontrol->value.integer.value[0] = rx_priv->is_ear_mode_on;
  2066. return 0;
  2067. }
  2068. static int lpass_cdc_rx_macro_put_ear_mode(struct snd_kcontrol *kcontrol,
  2069. struct snd_ctl_elem_value *ucontrol)
  2070. {
  2071. struct snd_soc_component *component =
  2072. snd_soc_kcontrol_component(kcontrol);
  2073. struct device *rx_dev = NULL;
  2074. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  2075. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  2076. return -EINVAL;
  2077. rx_priv->is_ear_mode_on =
  2078. (!ucontrol->value.integer.value[0] ? false : true);
  2079. return 0;
  2080. }
  2081. static int lpass_cdc_rx_macro_get_hph_hd2_mode(struct snd_kcontrol *kcontrol,
  2082. struct snd_ctl_elem_value *ucontrol)
  2083. {
  2084. struct snd_soc_component *component =
  2085. snd_soc_kcontrol_component(kcontrol);
  2086. struct device *rx_dev = NULL;
  2087. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  2088. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  2089. return -EINVAL;
  2090. ucontrol->value.integer.value[0] = rx_priv->hph_hd2_mode;
  2091. return 0;
  2092. }
  2093. static int lpass_cdc_rx_macro_put_hph_hd2_mode(struct snd_kcontrol *kcontrol,
  2094. struct snd_ctl_elem_value *ucontrol)
  2095. {
  2096. struct snd_soc_component *component =
  2097. snd_soc_kcontrol_component(kcontrol);
  2098. struct device *rx_dev = NULL;
  2099. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  2100. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  2101. return -EINVAL;
  2102. rx_priv->hph_hd2_mode = ucontrol->value.integer.value[0];
  2103. return 0;
  2104. }
  2105. static int lpass_cdc_rx_macro_get_hph_pwr_mode(struct snd_kcontrol *kcontrol,
  2106. struct snd_ctl_elem_value *ucontrol)
  2107. {
  2108. struct snd_soc_component *component =
  2109. snd_soc_kcontrol_component(kcontrol);
  2110. struct device *rx_dev = NULL;
  2111. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  2112. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  2113. return -EINVAL;
  2114. ucontrol->value.integer.value[0] = rx_priv->hph_pwr_mode;
  2115. return 0;
  2116. }
  2117. static int lpass_cdc_rx_macro_put_hph_pwr_mode(struct snd_kcontrol *kcontrol,
  2118. struct snd_ctl_elem_value *ucontrol)
  2119. {
  2120. struct snd_soc_component *component =
  2121. snd_soc_kcontrol_component(kcontrol);
  2122. struct device *rx_dev = NULL;
  2123. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  2124. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  2125. return -EINVAL;
  2126. rx_priv->hph_pwr_mode = ucontrol->value.integer.value[0];
  2127. return 0;
  2128. }
  2129. static int lpass_cdc_rx_macro_vbat_bcl_gsm_mode_func_get(struct snd_kcontrol *kcontrol,
  2130. struct snd_ctl_elem_value *ucontrol)
  2131. {
  2132. struct snd_soc_component *component =
  2133. snd_soc_kcontrol_component(kcontrol);
  2134. ucontrol->value.integer.value[0] =
  2135. ((snd_soc_component_read(
  2136. component, LPASS_CDC_RX_BCL_VBAT_CFG) & 0x04) ?
  2137. 1 : 0);
  2138. dev_dbg(component->dev, "%s: value: %lu\n", __func__,
  2139. ucontrol->value.integer.value[0]);
  2140. return 0;
  2141. }
  2142. static int lpass_cdc_rx_macro_vbat_bcl_gsm_mode_func_put(struct snd_kcontrol *kcontrol,
  2143. struct snd_ctl_elem_value *ucontrol)
  2144. {
  2145. struct snd_soc_component *component =
  2146. snd_soc_kcontrol_component(kcontrol);
  2147. dev_dbg(component->dev, "%s: value: %lu\n", __func__,
  2148. ucontrol->value.integer.value[0]);
  2149. /* Set Vbat register configuration for GSM mode bit based on value */
  2150. if (ucontrol->value.integer.value[0])
  2151. snd_soc_component_update_bits(component,
  2152. LPASS_CDC_RX_BCL_VBAT_CFG,
  2153. 0x04, 0x04);
  2154. else
  2155. snd_soc_component_update_bits(component,
  2156. LPASS_CDC_RX_BCL_VBAT_CFG,
  2157. 0x04, 0x00);
  2158. return 0;
  2159. }
  2160. static int lpass_cdc_rx_macro_soft_clip_enable_get(struct snd_kcontrol *kcontrol,
  2161. struct snd_ctl_elem_value *ucontrol)
  2162. {
  2163. struct snd_soc_component *component =
  2164. snd_soc_kcontrol_component(kcontrol);
  2165. struct device *rx_dev = NULL;
  2166. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  2167. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  2168. return -EINVAL;
  2169. ucontrol->value.integer.value[0] = rx_priv->is_softclip_on;
  2170. dev_dbg(component->dev, "%s: ucontrol->value.integer.value[0] = %ld\n",
  2171. __func__, ucontrol->value.integer.value[0]);
  2172. return 0;
  2173. }
  2174. static int lpass_cdc_rx_macro_soft_clip_enable_put(struct snd_kcontrol *kcontrol,
  2175. struct snd_ctl_elem_value *ucontrol)
  2176. {
  2177. struct snd_soc_component *component =
  2178. snd_soc_kcontrol_component(kcontrol);
  2179. struct device *rx_dev = NULL;
  2180. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  2181. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  2182. return -EINVAL;
  2183. rx_priv->is_softclip_on = ucontrol->value.integer.value[0];
  2184. dev_dbg(component->dev, "%s: soft clip enable = %d\n", __func__,
  2185. rx_priv->is_softclip_on);
  2186. return 0;
  2187. }
  2188. static int lpass_cdc_rx_macro_aux_hpf_mode_get(struct snd_kcontrol *kcontrol,
  2189. struct snd_ctl_elem_value *ucontrol)
  2190. {
  2191. struct snd_soc_component *component =
  2192. snd_soc_kcontrol_component(kcontrol);
  2193. struct device *rx_dev = NULL;
  2194. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  2195. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  2196. return -EINVAL;
  2197. ucontrol->value.integer.value[0] = rx_priv->is_aux_hpf_on;
  2198. dev_dbg(component->dev, "%s: ucontrol->value.integer.value[0] = %ld\n",
  2199. __func__, ucontrol->value.integer.value[0]);
  2200. return 0;
  2201. }
  2202. static int lpass_cdc_rx_macro_aux_hpf_mode_put(struct snd_kcontrol *kcontrol,
  2203. struct snd_ctl_elem_value *ucontrol)
  2204. {
  2205. struct snd_soc_component *component =
  2206. snd_soc_kcontrol_component(kcontrol);
  2207. struct device *rx_dev = NULL;
  2208. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  2209. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  2210. return -EINVAL;
  2211. rx_priv->is_aux_hpf_on = ucontrol->value.integer.value[0];
  2212. dev_dbg(component->dev, "%s: aux hpf enable = %d\n", __func__,
  2213. rx_priv->is_aux_hpf_on);
  2214. return 0;
  2215. }
  2216. static int lpass_cdc_rx_macro_enable_vbat(struct snd_soc_dapm_widget *w,
  2217. struct snd_kcontrol *kcontrol,
  2218. int event)
  2219. {
  2220. struct snd_soc_component *component =
  2221. snd_soc_dapm_to_component(w->dapm);
  2222. struct device *rx_dev = NULL;
  2223. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  2224. dev_dbg(component->dev, "%s %s %d\n", __func__, w->name, event);
  2225. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  2226. return -EINVAL;
  2227. switch (event) {
  2228. case SND_SOC_DAPM_PRE_PMU:
  2229. /* Enable clock for VBAT block */
  2230. snd_soc_component_update_bits(component,
  2231. LPASS_CDC_RX_BCL_VBAT_PATH_CTL, 0x10, 0x10);
  2232. /* Enable VBAT block */
  2233. snd_soc_component_update_bits(component,
  2234. LPASS_CDC_RX_BCL_VBAT_CFG, 0x01, 0x01);
  2235. /* Update interpolator with 384K path */
  2236. snd_soc_component_update_bits(component,
  2237. LPASS_CDC_RX_RX2_RX_PATH_CFG1, 0x80, 0x80);
  2238. /* Update DSM FS rate */
  2239. snd_soc_component_update_bits(component,
  2240. LPASS_CDC_RX_RX2_RX_PATH_SEC7, 0x02, 0x02);
  2241. /* Use attenuation mode */
  2242. snd_soc_component_update_bits(component,
  2243. LPASS_CDC_RX_BCL_VBAT_CFG, 0x02, 0x00);
  2244. /* BCL block needs softclip clock to be enabled */
  2245. lpass_cdc_rx_macro_enable_softclip_clk(component, rx_priv, true);
  2246. /* Enable VBAT at channel level */
  2247. snd_soc_component_update_bits(component,
  2248. LPASS_CDC_RX_RX2_RX_PATH_CFG1, 0x02, 0x02);
  2249. /* Set the ATTK1 gain */
  2250. snd_soc_component_update_bits(component,
  2251. LPASS_CDC_RX_BCL_VBAT_BCL_GAIN_UPD1,
  2252. 0xFF, 0xFF);
  2253. snd_soc_component_update_bits(component,
  2254. LPASS_CDC_RX_BCL_VBAT_BCL_GAIN_UPD2,
  2255. 0xFF, 0x03);
  2256. snd_soc_component_update_bits(component,
  2257. LPASS_CDC_RX_BCL_VBAT_BCL_GAIN_UPD3,
  2258. 0xFF, 0x00);
  2259. /* Set the ATTK2 gain */
  2260. snd_soc_component_update_bits(component,
  2261. LPASS_CDC_RX_BCL_VBAT_BCL_GAIN_UPD4,
  2262. 0xFF, 0xFF);
  2263. snd_soc_component_update_bits(component,
  2264. LPASS_CDC_RX_BCL_VBAT_BCL_GAIN_UPD5,
  2265. 0xFF, 0x03);
  2266. snd_soc_component_update_bits(component,
  2267. LPASS_CDC_RX_BCL_VBAT_BCL_GAIN_UPD6,
  2268. 0xFF, 0x00);
  2269. /* Set the ATTK3 gain */
  2270. snd_soc_component_update_bits(component,
  2271. LPASS_CDC_RX_BCL_VBAT_BCL_GAIN_UPD7,
  2272. 0xFF, 0xFF);
  2273. snd_soc_component_update_bits(component,
  2274. LPASS_CDC_RX_BCL_VBAT_BCL_GAIN_UPD8,
  2275. 0xFF, 0x03);
  2276. snd_soc_component_update_bits(component,
  2277. LPASS_CDC_RX_BCL_VBAT_BCL_GAIN_UPD9,
  2278. 0xFF, 0x00);
  2279. /* Enable CB decode block clock */
  2280. snd_soc_component_update_bits(component,
  2281. LPASS_CDC_RX_CB_DECODE_CB_DECODE_CTL1, 0x01, 0x01);
  2282. /* Enable BCL path */
  2283. snd_soc_component_update_bits(component,
  2284. LPASS_CDC_RX_CB_DECODE_CB_DECODE_CTL2, 0x01, 0x01);
  2285. /* Request for BCL data */
  2286. snd_soc_component_update_bits(component,
  2287. LPASS_CDC_RX_CB_DECODE_CB_DECODE_CTL3, 0x01, 0x01);
  2288. break;
  2289. case SND_SOC_DAPM_POST_PMD:
  2290. snd_soc_component_update_bits(component,
  2291. LPASS_CDC_RX_CB_DECODE_CB_DECODE_CTL3, 0x01, 0x00);
  2292. snd_soc_component_update_bits(component,
  2293. LPASS_CDC_RX_CB_DECODE_CB_DECODE_CTL2, 0x01, 0x00);
  2294. snd_soc_component_update_bits(component,
  2295. LPASS_CDC_RX_CB_DECODE_CB_DECODE_CTL1, 0x01, 0x00);
  2296. snd_soc_component_update_bits(component,
  2297. LPASS_CDC_RX_RX2_RX_PATH_CFG1,
  2298. 0x80, 0x00);
  2299. snd_soc_component_update_bits(component,
  2300. LPASS_CDC_RX_RX2_RX_PATH_SEC7,
  2301. 0x02, 0x00);
  2302. snd_soc_component_update_bits(component,
  2303. LPASS_CDC_RX_BCL_VBAT_CFG,
  2304. 0x02, 0x02);
  2305. snd_soc_component_update_bits(component,
  2306. LPASS_CDC_RX_RX2_RX_PATH_CFG1,
  2307. 0x02, 0x00);
  2308. snd_soc_component_update_bits(component,
  2309. LPASS_CDC_RX_BCL_VBAT_BCL_GAIN_UPD1,
  2310. 0xFF, 0x00);
  2311. snd_soc_component_update_bits(component,
  2312. LPASS_CDC_RX_BCL_VBAT_BCL_GAIN_UPD2,
  2313. 0xFF, 0x00);
  2314. snd_soc_component_update_bits(component,
  2315. LPASS_CDC_RX_BCL_VBAT_BCL_GAIN_UPD3,
  2316. 0xFF, 0x00);
  2317. snd_soc_component_update_bits(component,
  2318. LPASS_CDC_RX_BCL_VBAT_BCL_GAIN_UPD4,
  2319. 0xFF, 0x00);
  2320. snd_soc_component_update_bits(component,
  2321. LPASS_CDC_RX_BCL_VBAT_BCL_GAIN_UPD5,
  2322. 0xFF, 0x00);
  2323. snd_soc_component_update_bits(component,
  2324. LPASS_CDC_RX_BCL_VBAT_BCL_GAIN_UPD6,
  2325. 0xFF, 0x00);
  2326. snd_soc_component_update_bits(component,
  2327. LPASS_CDC_RX_BCL_VBAT_BCL_GAIN_UPD7,
  2328. 0xFF, 0x00);
  2329. snd_soc_component_update_bits(component,
  2330. LPASS_CDC_RX_BCL_VBAT_BCL_GAIN_UPD8,
  2331. 0xFF, 0x00);
  2332. snd_soc_component_update_bits(component,
  2333. LPASS_CDC_RX_BCL_VBAT_BCL_GAIN_UPD9,
  2334. 0xFF, 0x00);
  2335. lpass_cdc_rx_macro_enable_softclip_clk(component, rx_priv, false);
  2336. snd_soc_component_update_bits(component,
  2337. LPASS_CDC_RX_BCL_VBAT_CFG, 0x01, 0x00);
  2338. snd_soc_component_update_bits(component,
  2339. LPASS_CDC_RX_BCL_VBAT_PATH_CTL, 0x10, 0x00);
  2340. break;
  2341. default:
  2342. dev_err(rx_dev, "%s: Invalid event %d\n", __func__, event);
  2343. break;
  2344. }
  2345. return 0;
  2346. }
  2347. static void lpass_cdc_rx_macro_idle_detect_control(struct snd_soc_component *component,
  2348. struct lpass_cdc_rx_macro_priv *rx_priv,
  2349. int interp, int event)
  2350. {
  2351. int reg = 0, mask = 0, val = 0;
  2352. if (!rx_priv->idle_det_cfg.hph_idle_detect_en)
  2353. return;
  2354. if (interp == INTERP_HPHL) {
  2355. reg = LPASS_CDC_RX_IDLE_DETECT_PATH_CTL;
  2356. mask = 0x01;
  2357. val = 0x01;
  2358. }
  2359. if (interp == INTERP_HPHR) {
  2360. reg = LPASS_CDC_RX_IDLE_DETECT_PATH_CTL;
  2361. mask = 0x02;
  2362. val = 0x02;
  2363. }
  2364. if (reg && SND_SOC_DAPM_EVENT_ON(event))
  2365. snd_soc_component_update_bits(component, reg, mask, val);
  2366. if (reg && SND_SOC_DAPM_EVENT_OFF(event)) {
  2367. snd_soc_component_update_bits(component, reg, mask, 0x00);
  2368. rx_priv->idle_det_cfg.hph_idle_thr = 0;
  2369. snd_soc_component_write(component,
  2370. LPASS_CDC_RX_IDLE_DETECT_CFG3, 0x0);
  2371. }
  2372. }
  2373. static void lpass_cdc_rx_macro_hphdelay_lutbypass(struct snd_soc_component *component,
  2374. struct lpass_cdc_rx_macro_priv *rx_priv,
  2375. u16 interp_idx, int event)
  2376. {
  2377. u16 hph_lut_bypass_reg = 0;
  2378. u16 hph_comp_ctrl7 = 0;
  2379. switch (interp_idx) {
  2380. case INTERP_HPHL:
  2381. hph_lut_bypass_reg = LPASS_CDC_RX_TOP_HPHL_COMP_LUT;
  2382. hph_comp_ctrl7 = LPASS_CDC_RX_COMPANDER0_CTL7;
  2383. break;
  2384. case INTERP_HPHR:
  2385. hph_lut_bypass_reg = LPASS_CDC_RX_TOP_HPHR_COMP_LUT;
  2386. hph_comp_ctrl7 = LPASS_CDC_RX_COMPANDER1_CTL7;
  2387. break;
  2388. default:
  2389. break;
  2390. }
  2391. if (hph_lut_bypass_reg && SND_SOC_DAPM_EVENT_ON(event)) {
  2392. if (interp_idx == INTERP_HPHL) {
  2393. if (rx_priv->is_ear_mode_on)
  2394. snd_soc_component_update_bits(component,
  2395. LPASS_CDC_RX_RX0_RX_PATH_CFG1,
  2396. 0x02, 0x02);
  2397. else
  2398. snd_soc_component_update_bits(component,
  2399. hph_lut_bypass_reg,
  2400. 0x80, 0x80);
  2401. } else {
  2402. snd_soc_component_update_bits(component,
  2403. hph_lut_bypass_reg,
  2404. 0x80, 0x80);
  2405. }
  2406. if (rx_priv->hph_pwr_mode)
  2407. snd_soc_component_update_bits(component,
  2408. hph_comp_ctrl7,
  2409. 0x20, 0x00);
  2410. }
  2411. if (hph_lut_bypass_reg && SND_SOC_DAPM_EVENT_OFF(event)) {
  2412. snd_soc_component_update_bits(component,
  2413. LPASS_CDC_RX_RX0_RX_PATH_CFG1,
  2414. 0x02, 0x00);
  2415. snd_soc_component_update_bits(component, hph_lut_bypass_reg,
  2416. 0x80, 0x00);
  2417. snd_soc_component_update_bits(component, hph_comp_ctrl7,
  2418. 0x20, 0x20);
  2419. }
  2420. }
  2421. static int lpass_cdc_rx_macro_enable_interp_clk(struct snd_soc_component *component,
  2422. int event, int interp_idx)
  2423. {
  2424. u16 main_reg = 0, dsm_reg = 0, rx_cfg2_reg = 0;
  2425. struct device *rx_dev = NULL;
  2426. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  2427. if (!component) {
  2428. pr_err("%s: component is NULL\n", __func__);
  2429. return -EINVAL;
  2430. }
  2431. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  2432. return -EINVAL;
  2433. main_reg = LPASS_CDC_RX_RX0_RX_PATH_CTL +
  2434. (interp_idx * LPASS_CDC_RX_MACRO_RX_PATH_OFFSET);
  2435. dsm_reg = LPASS_CDC_RX_RX0_RX_PATH_DSM_CTL +
  2436. (interp_idx * LPASS_CDC_RX_MACRO_RX_PATH_OFFSET);
  2437. if (interp_idx == INTERP_AUX)
  2438. dsm_reg = LPASS_CDC_RX_RX2_RX_PATH_DSM_CTL;
  2439. rx_cfg2_reg = LPASS_CDC_RX_RX0_RX_PATH_CFG2 +
  2440. (interp_idx * LPASS_CDC_RX_MACRO_RX_PATH_OFFSET);
  2441. if (SND_SOC_DAPM_EVENT_ON(event)) {
  2442. if (rx_priv->main_clk_users[interp_idx] == 0) {
  2443. /* Main path PGA mute enable */
  2444. snd_soc_component_update_bits(component, main_reg,
  2445. 0x10, 0x10);
  2446. snd_soc_component_update_bits(component, dsm_reg,
  2447. 0x01, 0x01);
  2448. snd_soc_component_update_bits(component, rx_cfg2_reg,
  2449. 0x03, 0x03);
  2450. lpass_cdc_rx_macro_idle_detect_control(component, rx_priv,
  2451. interp_idx, event);
  2452. if (rx_priv->hph_hd2_mode)
  2453. lpass_cdc_rx_macro_hd2_control(
  2454. component, interp_idx, event);
  2455. lpass_cdc_rx_macro_hphdelay_lutbypass(component, rx_priv,
  2456. interp_idx, event);
  2457. lpass_cdc_rx_macro_droop_setting(component,
  2458. interp_idx, event);
  2459. lpass_cdc_rx_macro_config_compander(component, rx_priv,
  2460. interp_idx, event);
  2461. if (interp_idx == INTERP_AUX) {
  2462. lpass_cdc_rx_macro_config_softclip(component, rx_priv,
  2463. event);
  2464. lpass_cdc_rx_macro_config_aux_hpf(component, rx_priv,
  2465. event);
  2466. }
  2467. lpass_cdc_rx_macro_config_classh(component, rx_priv,
  2468. interp_idx, event);
  2469. }
  2470. rx_priv->main_clk_users[interp_idx]++;
  2471. }
  2472. if (SND_SOC_DAPM_EVENT_OFF(event)) {
  2473. rx_priv->main_clk_users[interp_idx]--;
  2474. if (rx_priv->main_clk_users[interp_idx] <= 0) {
  2475. rx_priv->main_clk_users[interp_idx] = 0;
  2476. /* Main path PGA mute enable */
  2477. snd_soc_component_update_bits(component, main_reg,
  2478. 0x10, 0x10);
  2479. /* Clk Disable */
  2480. snd_soc_component_update_bits(component, dsm_reg,
  2481. 0x01, 0x00);
  2482. snd_soc_component_update_bits(component, main_reg,
  2483. 0x20, 0x00);
  2484. /* Reset enable and disable */
  2485. snd_soc_component_update_bits(component, main_reg,
  2486. 0x40, 0x40);
  2487. snd_soc_component_update_bits(component, main_reg,
  2488. 0x40, 0x00);
  2489. /* Reset rate to 48K*/
  2490. snd_soc_component_update_bits(component, main_reg,
  2491. 0x0F, 0x04);
  2492. snd_soc_component_update_bits(component, rx_cfg2_reg,
  2493. 0x03, 0x00);
  2494. lpass_cdc_rx_macro_config_classh(component, rx_priv,
  2495. interp_idx, event);
  2496. lpass_cdc_rx_macro_config_compander(component, rx_priv,
  2497. interp_idx, event);
  2498. if (interp_idx == INTERP_AUX) {
  2499. lpass_cdc_rx_macro_config_softclip(component, rx_priv,
  2500. event);
  2501. lpass_cdc_rx_macro_config_aux_hpf(component, rx_priv,
  2502. event);
  2503. }
  2504. lpass_cdc_rx_macro_hphdelay_lutbypass(component, rx_priv,
  2505. interp_idx, event);
  2506. if (rx_priv->hph_hd2_mode)
  2507. lpass_cdc_rx_macro_hd2_control(component, interp_idx,
  2508. event);
  2509. lpass_cdc_rx_macro_idle_detect_control(component, rx_priv,
  2510. interp_idx, event);
  2511. }
  2512. }
  2513. dev_dbg(component->dev, "%s event %d main_clk_users %d\n",
  2514. __func__, event, rx_priv->main_clk_users[interp_idx]);
  2515. return rx_priv->main_clk_users[interp_idx];
  2516. }
  2517. static int lpass_cdc_rx_macro_enable_rx_path_clk(struct snd_soc_dapm_widget *w,
  2518. struct snd_kcontrol *kcontrol, int event)
  2519. {
  2520. struct snd_soc_component *component =
  2521. snd_soc_dapm_to_component(w->dapm);
  2522. u16 sidetone_reg = 0, fs_reg = 0;
  2523. dev_dbg(component->dev, "%s %d %d\n", __func__, event, w->shift);
  2524. sidetone_reg = LPASS_CDC_RX_RX0_RX_PATH_CFG1 +
  2525. LPASS_CDC_RX_MACRO_RX_PATH_OFFSET * (w->shift);
  2526. fs_reg = LPASS_CDC_RX_RX0_RX_PATH_CTL +
  2527. LPASS_CDC_RX_MACRO_RX_PATH_OFFSET * (w->shift);
  2528. switch (event) {
  2529. case SND_SOC_DAPM_PRE_PMU:
  2530. lpass_cdc_rx_macro_enable_interp_clk(component, event, w->shift);
  2531. snd_soc_component_update_bits(component, sidetone_reg,
  2532. 0x10, 0x10);
  2533. snd_soc_component_update_bits(component, fs_reg,
  2534. 0x20, 0x20);
  2535. break;
  2536. case SND_SOC_DAPM_POST_PMD:
  2537. snd_soc_component_update_bits(component, sidetone_reg,
  2538. 0x10, 0x00);
  2539. lpass_cdc_rx_macro_enable_interp_clk(component, event, w->shift);
  2540. break;
  2541. default:
  2542. break;
  2543. };
  2544. return 0;
  2545. }
  2546. static void lpass_cdc_rx_macro_restore_iir_coeff(struct lpass_cdc_rx_macro_priv *rx_priv, int iir_idx,
  2547. int band_idx)
  2548. {
  2549. u16 reg_add = 0, coeff_idx = 0, idx = 0;
  2550. struct regmap *regmap = dev_get_regmap(rx_priv->dev->parent, NULL);
  2551. if (regmap == NULL) {
  2552. dev_err(rx_priv->dev, "%s: regmap is NULL\n", __func__);
  2553. return;
  2554. }
  2555. regmap_write(regmap,
  2556. (LPASS_CDC_RX_SIDETONE_IIR0_IIR_COEF_B1_CTL + 0x80 * iir_idx),
  2557. (band_idx * BAND_MAX * sizeof(uint32_t)) & 0x7F);
  2558. reg_add = LPASS_CDC_RX_SIDETONE_IIR0_IIR_COEF_B2_CTL + 0x80 * iir_idx;
  2559. /* 5 coefficients per band and 4 writes per coefficient */
  2560. for (coeff_idx = 0; coeff_idx < LPASS_CDC_RX_MACRO_SIDETONE_IIR_COEFF_MAX;
  2561. coeff_idx++) {
  2562. /* Four 8 bit values(one 32 bit) per coefficient */
  2563. regmap_write(regmap, reg_add,
  2564. rx_priv->sidetone_coeff_array[iir_idx][band_idx][idx++]);
  2565. regmap_write(regmap, reg_add,
  2566. rx_priv->sidetone_coeff_array[iir_idx][band_idx][idx++]);
  2567. regmap_write(regmap, reg_add,
  2568. rx_priv->sidetone_coeff_array[iir_idx][band_idx][idx++]);
  2569. regmap_write(regmap, reg_add,
  2570. rx_priv->sidetone_coeff_array[iir_idx][band_idx][idx++]);
  2571. }
  2572. }
  2573. static int lpass_cdc_rx_macro_iir_enable_audio_mixer_get(struct snd_kcontrol *kcontrol,
  2574. struct snd_ctl_elem_value *ucontrol)
  2575. {
  2576. struct snd_soc_component *component =
  2577. snd_soc_kcontrol_component(kcontrol);
  2578. int iir_idx = ((struct soc_multi_mixer_control *)
  2579. kcontrol->private_value)->reg;
  2580. int band_idx = ((struct soc_multi_mixer_control *)
  2581. kcontrol->private_value)->shift;
  2582. /* IIR filter band registers are at integer multiples of 0x80 */
  2583. u16 iir_reg = LPASS_CDC_RX_SIDETONE_IIR0_IIR_CTL + 0x80 * iir_idx;
  2584. ucontrol->value.integer.value[0] = (
  2585. snd_soc_component_read(component, iir_reg) &
  2586. (1 << band_idx)) != 0;
  2587. dev_dbg(component->dev, "%s: IIR #%d band #%d enable %d\n", __func__,
  2588. iir_idx, band_idx,
  2589. (uint32_t)ucontrol->value.integer.value[0]);
  2590. return 0;
  2591. }
  2592. static int lpass_cdc_rx_macro_iir_enable_audio_mixer_put(struct snd_kcontrol *kcontrol,
  2593. struct snd_ctl_elem_value *ucontrol)
  2594. {
  2595. struct snd_soc_component *component =
  2596. snd_soc_kcontrol_component(kcontrol);
  2597. int iir_idx = ((struct soc_multi_mixer_control *)
  2598. kcontrol->private_value)->reg;
  2599. int band_idx = ((struct soc_multi_mixer_control *)
  2600. kcontrol->private_value)->shift;
  2601. bool iir_band_en_status = 0;
  2602. int value = ucontrol->value.integer.value[0];
  2603. u16 iir_reg = LPASS_CDC_RX_SIDETONE_IIR0_IIR_CTL + 0x80 * iir_idx;
  2604. struct device *rx_dev = NULL;
  2605. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  2606. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  2607. return -EINVAL;
  2608. lpass_cdc_rx_macro_restore_iir_coeff(rx_priv, iir_idx, band_idx);
  2609. /* Mask first 5 bits, 6-8 are reserved */
  2610. snd_soc_component_update_bits(component, iir_reg, (1 << band_idx),
  2611. (value << band_idx));
  2612. iir_band_en_status = ((snd_soc_component_read(component, iir_reg) &
  2613. (1 << band_idx)) != 0);
  2614. dev_dbg(component->dev, "%s: IIR #%d band #%d enable %d\n", __func__,
  2615. iir_idx, band_idx, iir_band_en_status);
  2616. return 0;
  2617. }
  2618. static uint32_t get_iir_band_coeff(struct snd_soc_component *component,
  2619. int iir_idx, int band_idx,
  2620. int coeff_idx)
  2621. {
  2622. uint32_t value = 0;
  2623. /* Address does not automatically update if reading */
  2624. snd_soc_component_write(component,
  2625. (LPASS_CDC_RX_SIDETONE_IIR0_IIR_COEF_B1_CTL + 0x80 * iir_idx),
  2626. ((band_idx * BAND_MAX + coeff_idx)
  2627. * sizeof(uint32_t)) & 0x7F);
  2628. value |= snd_soc_component_read(component,
  2629. (LPASS_CDC_RX_SIDETONE_IIR0_IIR_COEF_B2_CTL + 0x80 * iir_idx));
  2630. snd_soc_component_write(component,
  2631. (LPASS_CDC_RX_SIDETONE_IIR0_IIR_COEF_B1_CTL + 0x80 * iir_idx),
  2632. ((band_idx * BAND_MAX + coeff_idx)
  2633. * sizeof(uint32_t) + 1) & 0x7F);
  2634. value |= (snd_soc_component_read(component,
  2635. (LPASS_CDC_RX_SIDETONE_IIR0_IIR_COEF_B2_CTL +
  2636. 0x80 * iir_idx)) << 8);
  2637. snd_soc_component_write(component,
  2638. (LPASS_CDC_RX_SIDETONE_IIR0_IIR_COEF_B1_CTL + 0x80 * iir_idx),
  2639. ((band_idx * BAND_MAX + coeff_idx)
  2640. * sizeof(uint32_t) + 2) & 0x7F);
  2641. value |= (snd_soc_component_read(component,
  2642. (LPASS_CDC_RX_SIDETONE_IIR0_IIR_COEF_B2_CTL +
  2643. 0x80 * iir_idx)) << 16);
  2644. snd_soc_component_write(component,
  2645. (LPASS_CDC_RX_SIDETONE_IIR0_IIR_COEF_B1_CTL + 0x80 * iir_idx),
  2646. ((band_idx * BAND_MAX + coeff_idx)
  2647. * sizeof(uint32_t) + 3) & 0x7F);
  2648. /* Mask bits top 2 bits since they are reserved */
  2649. value |= ((snd_soc_component_read(component,
  2650. (LPASS_CDC_RX_SIDETONE_IIR0_IIR_COEF_B2_CTL +
  2651. 0x80 * iir_idx)) & 0x3F) << 24);
  2652. return value;
  2653. }
  2654. static int lpass_cdc_rx_macro_iir_filter_info(struct snd_kcontrol *kcontrol,
  2655. struct snd_ctl_elem_info *ucontrol)
  2656. {
  2657. struct lpass_cdc_rx_macro_iir_filter_ctl *ctl =
  2658. (struct lpass_cdc_rx_macro_iir_filter_ctl *)kcontrol->private_value;
  2659. struct soc_bytes_ext *params = &ctl->bytes_ext;
  2660. ucontrol->type = SNDRV_CTL_ELEM_TYPE_BYTES;
  2661. ucontrol->count = params->max;
  2662. return 0;
  2663. }
  2664. static int lpass_cdc_rx_macro_iir_band_audio_mixer_get(struct snd_kcontrol *kcontrol,
  2665. struct snd_ctl_elem_value *ucontrol)
  2666. {
  2667. struct snd_soc_component *component =
  2668. snd_soc_kcontrol_component(kcontrol);
  2669. struct lpass_cdc_rx_macro_iir_filter_ctl *ctl =
  2670. (struct lpass_cdc_rx_macro_iir_filter_ctl *)kcontrol->private_value;
  2671. struct soc_bytes_ext *params = &ctl->bytes_ext;
  2672. int iir_idx = ctl->iir_idx;
  2673. int band_idx = ctl->band_idx;
  2674. u32 coeff[BAND_MAX];
  2675. int coeff_idx = 0;
  2676. for (coeff_idx = 0; coeff_idx < LPASS_CDC_RX_MACRO_SIDETONE_IIR_COEFF_MAX;
  2677. coeff_idx++) {
  2678. coeff[coeff_idx] =
  2679. get_iir_band_coeff(component, iir_idx, band_idx, coeff_idx);
  2680. }
  2681. memcpy(ucontrol->value.bytes.data, &coeff[0], params->max);
  2682. dev_dbg(component->dev, "%s: IIR #%d band #%d b0 = 0x%x\n"
  2683. "%s: IIR #%d band #%d b1 = 0x%x\n"
  2684. "%s: IIR #%d band #%d b2 = 0x%x\n"
  2685. "%s: IIR #%d band #%d a1 = 0x%x\n"
  2686. "%s: IIR #%d band #%d a2 = 0x%x\n",
  2687. __func__, iir_idx, band_idx, coeff[0],
  2688. __func__, iir_idx, band_idx, coeff[1],
  2689. __func__, iir_idx, band_idx, coeff[2],
  2690. __func__, iir_idx, band_idx, coeff[3],
  2691. __func__, iir_idx, band_idx, coeff[4]);
  2692. return 0;
  2693. }
  2694. static void set_iir_band_coeff(struct snd_soc_component *component,
  2695. int iir_idx, int band_idx,
  2696. uint32_t value)
  2697. {
  2698. snd_soc_component_write(component,
  2699. (LPASS_CDC_RX_SIDETONE_IIR0_IIR_COEF_B2_CTL + 0x80 * iir_idx),
  2700. (value & 0xFF));
  2701. snd_soc_component_write(component,
  2702. (LPASS_CDC_RX_SIDETONE_IIR0_IIR_COEF_B2_CTL + 0x80 * iir_idx),
  2703. (value >> 8) & 0xFF);
  2704. snd_soc_component_write(component,
  2705. (LPASS_CDC_RX_SIDETONE_IIR0_IIR_COEF_B2_CTL + 0x80 * iir_idx),
  2706. (value >> 16) & 0xFF);
  2707. /* Mask top 2 bits, 7-8 are reserved */
  2708. snd_soc_component_write(component,
  2709. (LPASS_CDC_RX_SIDETONE_IIR0_IIR_COEF_B2_CTL + 0x80 * iir_idx),
  2710. (value >> 24) & 0x3F);
  2711. }
  2712. static int lpass_cdc_rx_macro_iir_band_audio_mixer_put(struct snd_kcontrol *kcontrol,
  2713. struct snd_ctl_elem_value *ucontrol)
  2714. {
  2715. struct snd_soc_component *component =
  2716. snd_soc_kcontrol_component(kcontrol);
  2717. struct lpass_cdc_rx_macro_iir_filter_ctl *ctl =
  2718. (struct lpass_cdc_rx_macro_iir_filter_ctl *)kcontrol->private_value;
  2719. struct soc_bytes_ext *params = &ctl->bytes_ext;
  2720. int iir_idx = ctl->iir_idx;
  2721. int band_idx = ctl->band_idx;
  2722. u32 coeff[BAND_MAX];
  2723. int coeff_idx, idx = 0;
  2724. struct device *rx_dev = NULL;
  2725. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  2726. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  2727. return -EINVAL;
  2728. memcpy(&coeff[0], ucontrol->value.bytes.data, params->max);
  2729. /*
  2730. * Mask top bit it is reserved
  2731. * Updates addr automatically for each B2 write
  2732. */
  2733. snd_soc_component_write(component,
  2734. (LPASS_CDC_RX_SIDETONE_IIR0_IIR_COEF_B1_CTL + 0x80 * iir_idx),
  2735. (band_idx * BAND_MAX * sizeof(uint32_t)) & 0x7F);
  2736. /* Store the coefficients in sidetone coeff array */
  2737. for (coeff_idx = 0; coeff_idx < LPASS_CDC_RX_MACRO_SIDETONE_IIR_COEFF_MAX;
  2738. coeff_idx++) {
  2739. uint32_t value = coeff[coeff_idx];
  2740. set_iir_band_coeff(component, iir_idx, band_idx, value);
  2741. /* Four 8 bit values(one 32 bit) per coefficient */
  2742. rx_priv->sidetone_coeff_array[iir_idx][band_idx][idx++] =
  2743. (value & 0xFF);
  2744. rx_priv->sidetone_coeff_array[iir_idx][band_idx][idx++] =
  2745. (value >> 8) & 0xFF;
  2746. rx_priv->sidetone_coeff_array[iir_idx][band_idx][idx++] =
  2747. (value >> 16) & 0xFF;
  2748. rx_priv->sidetone_coeff_array[iir_idx][band_idx][idx++] =
  2749. (value >> 24) & 0xFF;
  2750. }
  2751. pr_debug("%s: IIR #%d band #%d b0 = 0x%x\n"
  2752. "%s: IIR #%d band #%d b1 = 0x%x\n"
  2753. "%s: IIR #%d band #%d b2 = 0x%x\n"
  2754. "%s: IIR #%d band #%d a1 = 0x%x\n"
  2755. "%s: IIR #%d band #%d a2 = 0x%x\n",
  2756. __func__, iir_idx, band_idx,
  2757. get_iir_band_coeff(component, iir_idx, band_idx, 0),
  2758. __func__, iir_idx, band_idx,
  2759. get_iir_band_coeff(component, iir_idx, band_idx, 1),
  2760. __func__, iir_idx, band_idx,
  2761. get_iir_band_coeff(component, iir_idx, band_idx, 2),
  2762. __func__, iir_idx, band_idx,
  2763. get_iir_band_coeff(component, iir_idx, band_idx, 3),
  2764. __func__, iir_idx, band_idx,
  2765. get_iir_band_coeff(component, iir_idx, band_idx, 4));
  2766. return 0;
  2767. }
  2768. static int lpass_cdc_rx_macro_set_iir_gain(struct snd_soc_dapm_widget *w,
  2769. struct snd_kcontrol *kcontrol, int event)
  2770. {
  2771. struct snd_soc_component *component =
  2772. snd_soc_dapm_to_component(w->dapm);
  2773. dev_dbg(component->dev, "%s: event = %d\n", __func__, event);
  2774. switch (event) {
  2775. case SND_SOC_DAPM_POST_PMU: /* fall through */
  2776. case SND_SOC_DAPM_PRE_PMD:
  2777. if (strnstr(w->name, "IIR0", sizeof("IIR0"))) {
  2778. snd_soc_component_write(component,
  2779. LPASS_CDC_RX_SIDETONE_IIR0_IIR_GAIN_B1_CTL,
  2780. snd_soc_component_read(component,
  2781. LPASS_CDC_RX_SIDETONE_IIR0_IIR_GAIN_B1_CTL));
  2782. snd_soc_component_write(component,
  2783. LPASS_CDC_RX_SIDETONE_IIR0_IIR_GAIN_B2_CTL,
  2784. snd_soc_component_read(component,
  2785. LPASS_CDC_RX_SIDETONE_IIR0_IIR_GAIN_B2_CTL));
  2786. snd_soc_component_write(component,
  2787. LPASS_CDC_RX_SIDETONE_IIR0_IIR_GAIN_B3_CTL,
  2788. snd_soc_component_read(component,
  2789. LPASS_CDC_RX_SIDETONE_IIR0_IIR_GAIN_B3_CTL));
  2790. snd_soc_component_write(component,
  2791. LPASS_CDC_RX_SIDETONE_IIR0_IIR_GAIN_B4_CTL,
  2792. snd_soc_component_read(component,
  2793. LPASS_CDC_RX_SIDETONE_IIR0_IIR_GAIN_B4_CTL));
  2794. } else {
  2795. snd_soc_component_write(component,
  2796. LPASS_CDC_RX_SIDETONE_IIR1_IIR_GAIN_B1_CTL,
  2797. snd_soc_component_read(component,
  2798. LPASS_CDC_RX_SIDETONE_IIR1_IIR_GAIN_B1_CTL));
  2799. snd_soc_component_write(component,
  2800. LPASS_CDC_RX_SIDETONE_IIR1_IIR_GAIN_B2_CTL,
  2801. snd_soc_component_read(component,
  2802. LPASS_CDC_RX_SIDETONE_IIR1_IIR_GAIN_B2_CTL));
  2803. snd_soc_component_write(component,
  2804. LPASS_CDC_RX_SIDETONE_IIR1_IIR_GAIN_B3_CTL,
  2805. snd_soc_component_read(component,
  2806. LPASS_CDC_RX_SIDETONE_IIR1_IIR_GAIN_B3_CTL));
  2807. snd_soc_component_write(component,
  2808. LPASS_CDC_RX_SIDETONE_IIR1_IIR_GAIN_B4_CTL,
  2809. snd_soc_component_read(component,
  2810. LPASS_CDC_RX_SIDETONE_IIR1_IIR_GAIN_B4_CTL));
  2811. }
  2812. break;
  2813. }
  2814. return 0;
  2815. }
  2816. static int lpass_cdc_rx_macro_fir_filter_enable_get(struct snd_kcontrol *kcontrol,
  2817. struct snd_ctl_elem_value *ucontrol)
  2818. {
  2819. struct snd_soc_component *component =
  2820. snd_soc_kcontrol_component(kcontrol);
  2821. struct device *rx_dev = NULL;
  2822. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  2823. if (!component) {
  2824. pr_err("%s: component is NULL\n", __func__);
  2825. return -EINVAL;
  2826. }
  2827. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  2828. return -EINVAL;
  2829. ucontrol->value.bytes.data[0] = (unsigned char)rx_priv->is_fir_filter_on;
  2830. return 0;
  2831. }
  2832. static int lpass_cdc_rx_macro_fir_filter_enable_put(struct snd_kcontrol *kcontrol,
  2833. struct snd_ctl_elem_value *ucontrol)
  2834. {
  2835. struct snd_soc_component *component =
  2836. snd_soc_kcontrol_component(kcontrol);
  2837. struct device *rx_dev = NULL;
  2838. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  2839. int ret = 0;
  2840. if (!component) {
  2841. pr_err("%s: component is NULL\n", __func__);
  2842. return -EINVAL;
  2843. }
  2844. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  2845. return -EINVAL;
  2846. if (!rx_priv->hifi_fir_clk) {
  2847. dev_dbg(rx_priv->dev, "%s: Undefined HIFI FIR Clock.\n",
  2848. __func__);
  2849. return 0;
  2850. }
  2851. if (!rx_priv->is_fir_capable) {
  2852. dev_dbg(rx_priv->dev, "%s: HIFI FIR is not supported.\n",
  2853. __func__);
  2854. return 0;
  2855. }
  2856. rx_priv->is_fir_filter_on =
  2857. (!ucontrol->value.bytes.data[0] ? false : true);
  2858. dev_dbg(rx_priv->dev, "%s:is_fir_filter_on=%d\n",
  2859. __func__, rx_priv->is_fir_filter_on);
  2860. if (rx_priv->is_fir_filter_on) {
  2861. ret = clk_prepare_enable(rx_priv->hifi_fir_clk);
  2862. if (ret < 0) {
  2863. dev_err_ratelimited(rx_priv->dev, "%s:hifi_fir_clk enable failed\n",
  2864. __func__);
  2865. return ret;
  2866. }
  2867. /* Enable HIFI_FEAT_EN bit */
  2868. snd_soc_component_update_bits(component, LPASS_CDC_RX_TOP_TOP_CFG1, 0x01, 0x01);
  2869. /* Enable FIR_CLK_EN */
  2870. snd_soc_component_update_bits(component, LPASS_CDC_RX_RX0_RX_PATH_CTL, 0x80, 0x80);
  2871. snd_soc_component_update_bits(component, LPASS_CDC_RX_RX1_RX_PATH_CTL, 0x80, 0x80);
  2872. /* Start the FIR filter */
  2873. snd_soc_component_update_bits(component, LPASS_CDC_RX_RX0_RX_FIR_CTL, 0x0D, 0x05);
  2874. snd_soc_component_update_bits(component, LPASS_CDC_RX_RX1_RX_FIR_CTL, 0x0D, 0x05);
  2875. } else {
  2876. /* Stop the FIR filter */
  2877. snd_soc_component_update_bits(component, LPASS_CDC_RX_RX0_RX_FIR_CTL, 0x0D, 0x00);
  2878. snd_soc_component_update_bits(component, LPASS_CDC_RX_RX1_RX_FIR_CTL, 0x0D, 0x00);
  2879. /* Disable FIR_CLK_EN */
  2880. snd_soc_component_update_bits(component, LPASS_CDC_RX_RX0_RX_PATH_CTL, 0x80, 0x00);
  2881. snd_soc_component_update_bits(component, LPASS_CDC_RX_RX1_RX_PATH_CTL, 0x80, 0x00);
  2882. /* Disable HIFI_FEAT_EN bit */
  2883. snd_soc_component_update_bits(component, LPASS_CDC_RX_TOP_TOP_CFG1, 0x01, 0x00);
  2884. clk_disable_unprepare(rx_priv->hifi_fir_clk);
  2885. }
  2886. return 0;
  2887. }
  2888. static int lpass_cdc_rx_macro_fir_filter_info(struct snd_kcontrol *kcontrol,
  2889. struct snd_ctl_elem_info *ucontrol)
  2890. {
  2891. struct lpass_cdc_rx_macro_fir_filter_ctl *ctl =
  2892. (struct lpass_cdc_rx_macro_fir_filter_ctl *)kcontrol->private_value;
  2893. struct soc_bytes_ext *params = &ctl->bytes_ext;
  2894. ucontrol->type = SNDRV_CTL_ELEM_TYPE_BYTES;
  2895. ucontrol->count = params->max;
  2896. return 0;
  2897. }
  2898. static int lpass_cdc_rx_macro_fir_audio_mixer_get(struct snd_kcontrol *kcontrol,
  2899. struct snd_ctl_elem_value *ucontrol)
  2900. {
  2901. struct snd_soc_component *component =
  2902. snd_soc_kcontrol_component(kcontrol);
  2903. struct lpass_cdc_rx_macro_fir_filter_ctl *ctl =
  2904. (struct lpass_cdc_rx_macro_fir_filter_ctl *)kcontrol->private_value;
  2905. unsigned int path_idx = ctl->path_idx;
  2906. unsigned int grp_idx = ctl->grp_idx;
  2907. u32 num_coeff_grp = 0;
  2908. u32 readArray[LPASS_CDC_RX_MACRO_FIR_COEFF_ARRAY_MAX];
  2909. unsigned int coeff_idx = 0, array_idx = 0;
  2910. unsigned int copy_size;
  2911. struct device *rx_dev = NULL;
  2912. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  2913. if (!component) {
  2914. pr_err("%s: component is NULL\n", __func__);
  2915. return -EINVAL;
  2916. }
  2917. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  2918. return -EINVAL;
  2919. if (path_idx >= FIR_PATH_MAX) {
  2920. dev_err(rx_priv->dev, "%s: path_idx:%d is invalid\n", __func__, path_idx);
  2921. return -EINVAL;
  2922. }
  2923. if (grp_idx >= GRP_MAX) {
  2924. dev_err(rx_priv->dev, "%s: grp_idx:%d is invalid\n", __func__, grp_idx);
  2925. return -EINVAL;
  2926. }
  2927. num_coeff_grp = rx_priv->num_fir_coeff[path_idx][grp_idx];
  2928. readArray[array_idx++] = num_coeff_grp;
  2929. for (coeff_idx = 0; coeff_idx < num_coeff_grp; coeff_idx++) {
  2930. readArray[array_idx++] =
  2931. rx_priv->fir_coeff_array[path_idx][grp_idx][coeff_idx];
  2932. }
  2933. copy_size = array_idx;
  2934. memcpy(ucontrol->value.bytes.data, &readArray[0], sizeof(readArray[0]) * copy_size);
  2935. return 0;
  2936. }
  2937. static int set_fir_filter_coeff(struct snd_soc_component *component,
  2938. struct lpass_cdc_rx_macro_priv *rx_priv,
  2939. unsigned int path_idx)
  2940. {
  2941. int grp_idx = 0, coeff_idx = 0;
  2942. unsigned int ret = 0;
  2943. unsigned int max_coeff_num, num_coeff_grp;
  2944. unsigned int path_ctl_addr = 0, wdata0_addr = 0, coeff_addr = 0;
  2945. unsigned int fir_ctl_addr = 0;
  2946. bool all_coeff_written = true;
  2947. switch (path_idx) {
  2948. case RX0_PATH:
  2949. path_ctl_addr = LPASS_CDC_RX_RX0_RX_PATH_CTL;
  2950. wdata0_addr = LPASS_CDC_RX_RX0_RX_FIR_COEFF_WDATA0;
  2951. coeff_addr = LPASS_CDC_RX_RX0_RX_FIR_COEFF_ADDR;
  2952. fir_ctl_addr = LPASS_CDC_RX_RX0_RX_FIR_CTL;
  2953. break;
  2954. case RX1_PATH:
  2955. path_ctl_addr = LPASS_CDC_RX_RX1_RX_PATH_CTL;
  2956. wdata0_addr = LPASS_CDC_RX_RX1_RX_FIR_COEFF_WDATA0;
  2957. coeff_addr = LPASS_CDC_RX_RX1_RX_FIR_COEFF_ADDR;
  2958. fir_ctl_addr = LPASS_CDC_RX_RX1_RX_FIR_CTL;
  2959. break;
  2960. default:
  2961. dev_err(rx_priv->dev,
  2962. "%s: inavlid FIR ID: %d\n", __func__, path_idx);
  2963. ret = -EINVAL;
  2964. goto exit;
  2965. }
  2966. max_coeff_num = LPASS_CDC_RX_MACRO_FIR_COEFF_MAX;
  2967. for (grp_idx = 0; grp_idx < GRP_MAX; grp_idx++)
  2968. all_coeff_written = all_coeff_written &&
  2969. rx_priv->is_fir_coeff_written[path_idx][grp_idx];
  2970. if (all_coeff_written)
  2971. goto exit;
  2972. ret = lpass_cdc_rx_macro_mclk_enable(rx_priv, 1, false);
  2973. if (ret < 0) {
  2974. dev_err_ratelimited(rx_priv->dev, "%s:rx_macro_mclk enable failed\n",
  2975. __func__);
  2976. goto exit;
  2977. }
  2978. ret = clk_prepare_enable(rx_priv->hifi_fir_clk);
  2979. if (ret < 0) {
  2980. dev_err_ratelimited(rx_priv->dev, "%s:hifi_fir_clk enable failed\n",
  2981. __func__);
  2982. goto disable_mclk_block;
  2983. }
  2984. /* Enable HIFI_FEAT_EN bit */
  2985. snd_soc_component_update_bits(component, LPASS_CDC_RX_TOP_TOP_CFG1, 0x01, 0x01);
  2986. /* Enable FIR_CLK_EN, datapath reset */
  2987. snd_soc_component_update_bits(component, path_ctl_addr, 0xC0, 0xC0);
  2988. /* Enable FIR_CLK_EN, Release Reset */
  2989. snd_soc_component_update_bits(component, path_ctl_addr, 0xC0, 0x80);
  2990. /* wait for data ram initialization after enabling clock */
  2991. usleep_range(10, 11);
  2992. for (grp_idx = 0; grp_idx < GRP_MAX; grp_idx++) {
  2993. unsigned int coeff_idx_start = 0, array_idx = 0;
  2994. /* Skip if this group is written and no futher update */
  2995. if (rx_priv->is_fir_coeff_written[path_idx][grp_idx])
  2996. continue;
  2997. num_coeff_grp = rx_priv->num_fir_coeff[path_idx][grp_idx];
  2998. if (num_coeff_grp > max_coeff_num) {
  2999. dev_err(rx_priv->dev,
  3000. "%s: inavlid number of RX_FIR coefficients:%d"
  3001. " in path:%d, group:%d\n",
  3002. __func__, num_coeff_grp, path_idx, grp_idx);
  3003. ret = -EINVAL;
  3004. goto disable_FIR;
  3005. }
  3006. coeff_idx_start = grp_idx * max_coeff_num;
  3007. for (coeff_idx = coeff_idx_start;
  3008. coeff_idx < coeff_idx_start + num_coeff_grp / 2 * 2;
  3009. coeff_idx += 2) {
  3010. unsigned int addr_offset = coeff_idx / 2;
  3011. /* First coefficient in pair */
  3012. u32 value = rx_priv->fir_coeff_array[path_idx][grp_idx][array_idx++];
  3013. dev_dbg(rx_priv->dev, "%s: val of coeff_idx:%d, COEFF:0x%x\n",
  3014. __func__, coeff_idx, value);
  3015. snd_soc_component_write(component, wdata0_addr,
  3016. value & 0xFF);
  3017. snd_soc_component_write(component, wdata0_addr + 0x4,
  3018. (value >> 8) & 0xFF);
  3019. snd_soc_component_write(component, wdata0_addr + 0x8,
  3020. (value >> 16) & 0xFF);
  3021. snd_soc_component_write(component, wdata0_addr + 0xC,
  3022. (value >> 24) & 0xFF);
  3023. /* Second coefficient in pair */
  3024. value = rx_priv->fir_coeff_array[path_idx][grp_idx][array_idx++];
  3025. dev_dbg(rx_priv->dev, "%s: val of coeff_idx:%d, COEFF:0x%x\n",
  3026. __func__, coeff_idx, value);
  3027. snd_soc_component_write(component, wdata0_addr + 0x10,
  3028. value & 0xFF);
  3029. snd_soc_component_write(component, wdata0_addr + 0x14,
  3030. (value >> 8) & 0xFF);
  3031. snd_soc_component_write(component, wdata0_addr + 0x18,
  3032. (value >> 16) & 0xFF);
  3033. snd_soc_component_write(component, wdata0_addr + 0x1C,
  3034. (value >> 24) & 0xFF);
  3035. snd_soc_component_write(component, coeff_addr, addr_offset);
  3036. snd_soc_component_update_bits(component, fir_ctl_addr, 0x02, 0x02);
  3037. usleep_range(13, 15);
  3038. snd_soc_component_update_bits(component, fir_ctl_addr, 0x02, 0x00);
  3039. }
  3040. /* odd number of coefficients in this group, handle last one */
  3041. if (num_coeff_grp % 2 != 0) {
  3042. int addr_offset = coeff_idx / 2;
  3043. /* First coefficient in pair */
  3044. u32 value = rx_priv->fir_coeff_array[path_idx][grp_idx][array_idx++];
  3045. dev_dbg(rx_priv->dev, "%s: val of coeff_idx:%d, COEFF:0x%x\n",
  3046. __func__, coeff_idx, value);
  3047. snd_soc_component_write(component, wdata0_addr,
  3048. value & 0xFF);
  3049. snd_soc_component_write(component, wdata0_addr + 0x4,
  3050. (value >> 8) & 0xFF);
  3051. snd_soc_component_write(component, wdata0_addr + 0x8,
  3052. (value >> 16) & 0xFF);
  3053. snd_soc_component_write(component, wdata0_addr + 0xC,
  3054. (value >> 24) & 0xFF);
  3055. /* Second coefficient in pair */
  3056. dev_dbg(rx_priv->dev, "%s: val of coeff_idx:%d, COEFF:0x%x\n",
  3057. __func__, coeff_idx, 0x0);
  3058. snd_soc_component_write(component, wdata0_addr + 0x10, 0x0);
  3059. snd_soc_component_write(component, wdata0_addr + 0x14, 0x0);
  3060. snd_soc_component_write(component, wdata0_addr + 0x18, 0x0);
  3061. snd_soc_component_write(component, wdata0_addr + 0x1C, 0x0);
  3062. snd_soc_component_write(component, coeff_addr, addr_offset);
  3063. snd_soc_component_update_bits(component, fir_ctl_addr, 0x02, 0x02);
  3064. usleep_range(13, 15);
  3065. snd_soc_component_update_bits(component, fir_ctl_addr, 0x02, 0x00);
  3066. }
  3067. rx_priv->is_fir_coeff_written[path_idx][grp_idx] = true;
  3068. dev_dbg(component->dev, "%s: HIFI FIR Path:%d Group:%d coefficients"
  3069. " updated.\n",
  3070. __func__, path_idx, grp_idx);
  3071. }
  3072. disable_FIR:
  3073. /* disable FIR_CLK_EN */
  3074. snd_soc_component_update_bits(component, path_ctl_addr, 0x80, 0x00);
  3075. /* Disable HIFI_FEAT_EN bit */
  3076. snd_soc_component_update_bits(component, LPASS_CDC_RX_TOP_TOP_CFG1, 0x01, 0x00);
  3077. clk_disable_unprepare(rx_priv->hifi_fir_clk);
  3078. disable_mclk_block:
  3079. ret = lpass_cdc_rx_macro_mclk_enable(rx_priv, 0, false);
  3080. exit:
  3081. return ret;
  3082. }
  3083. static int lpass_cdc_rx_macro_fir_audio_mixer_put(struct snd_kcontrol *kcontrol,
  3084. struct snd_ctl_elem_value *ucontrol)
  3085. {
  3086. struct snd_soc_component *component =
  3087. snd_soc_kcontrol_component(kcontrol);
  3088. struct lpass_cdc_rx_macro_fir_filter_ctl *ctl =
  3089. (struct lpass_cdc_rx_macro_fir_filter_ctl *)kcontrol->private_value;
  3090. unsigned int path_idx = ctl->path_idx;
  3091. unsigned int grp_idx = ctl->grp_idx;
  3092. u32 ele_size = 0, num_coeff_grp = 0;
  3093. u32 coeff[LPASS_CDC_RX_MACRO_FIR_COEFF_ARRAY_MAX];
  3094. int ret = 0;
  3095. unsigned int stored_total_num = 0;
  3096. unsigned int grp_iidx = 0, coeff_idx = 0, array_idx = 0;
  3097. struct device *rx_dev = NULL;
  3098. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  3099. if (!component) {
  3100. pr_err("%s: component is NULL\n", __func__);
  3101. return -EINVAL;
  3102. }
  3103. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  3104. return -EINVAL;
  3105. if (path_idx >= FIR_PATH_MAX) {
  3106. dev_err(rx_priv->dev,"%s: path_idx:%d is invalid\n", __func__, path_idx);
  3107. return -EINVAL;
  3108. }
  3109. if (grp_idx >= GRP_MAX) {
  3110. dev_err(rx_priv->dev,"%s: grp_idx:%d is invalid\n", __func__, grp_idx);
  3111. return -EINVAL;
  3112. }
  3113. if (!rx_priv->hifi_fir_clk) {
  3114. dev_dbg(rx_priv->dev, "%s: Undefined HIFI FIR Clock.\n",
  3115. __func__);
  3116. return 0;
  3117. }
  3118. if (!rx_priv->is_fir_capable) {
  3119. dev_dbg(rx_priv->dev, "%s: HIFI FIR is not supported.\n",
  3120. __func__);
  3121. return 0;
  3122. }
  3123. ele_size = sizeof(coeff[0]);
  3124. memcpy(&coeff[0], ucontrol->value.bytes.data, ele_size);
  3125. num_coeff_grp = coeff[0];
  3126. dev_dbg(rx_priv->dev, "%s: bytes.data: path:%d, grp:%d, num_coeff_grp:%d\n",
  3127. __func__, path_idx, grp_idx, num_coeff_grp);
  3128. if (num_coeff_grp > LPASS_CDC_RX_MACRO_FIR_COEFF_MAX) {
  3129. dev_err(rx_priv->dev,
  3130. "%s: inavlid number of RX_FIR coefficients:%d in path:%d, group:%d\n",
  3131. __func__, num_coeff_grp, path_idx, grp_idx);
  3132. rx_priv->num_fir_coeff[path_idx][grp_idx] = 0;
  3133. return -EINVAL;
  3134. } else {
  3135. rx_priv->num_fir_coeff[path_idx][grp_idx] = num_coeff_grp;
  3136. }
  3137. memcpy(&coeff[1], &(ucontrol->value.bytes.data[ele_size]), ele_size * num_coeff_grp);
  3138. /* Store the coefficients in FIR coeff array */
  3139. array_idx = 1;
  3140. for (coeff_idx = 0; coeff_idx < num_coeff_grp; coeff_idx++)
  3141. rx_priv->fir_coeff_array[path_idx][grp_idx][coeff_idx] = coeff[array_idx++];
  3142. /* Clear the written flag so this group is ready to be written */
  3143. rx_priv->is_fir_coeff_written[path_idx][grp_idx] = false;
  3144. stored_total_num = 0;
  3145. for (grp_iidx = 0; grp_iidx < GRP_MAX; grp_iidx++) {
  3146. stored_total_num += rx_priv->num_fir_coeff[path_idx][grp_iidx];
  3147. }
  3148. /* Only write coeffs if total num matches, otherwise delay the write */
  3149. if (rx_priv->fir_total_coeff_num[path_idx] == stored_total_num)
  3150. ret = set_fir_filter_coeff(component, rx_priv, path_idx);
  3151. return ret;
  3152. }
  3153. static int lpass_cdc_rx_macro_fir_coeff_num_get(struct snd_kcontrol *kcontrol,
  3154. struct snd_ctl_elem_value *ucontrol)
  3155. {
  3156. struct snd_soc_component *component =
  3157. snd_soc_kcontrol_component(kcontrol);
  3158. unsigned int path_idx = ((struct soc_multi_mixer_control *)
  3159. kcontrol->private_value)->shift;
  3160. struct device *rx_dev = NULL;
  3161. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  3162. if (!component) {
  3163. pr_err("%s: component is NULL\n", __func__);
  3164. return -EINVAL;
  3165. }
  3166. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  3167. return -EINVAL;
  3168. if (path_idx >= FIR_PATH_MAX) {
  3169. dev_err(rx_priv->dev,"%s: path_idx:%d is invalid\n", __func__, path_idx);
  3170. return -EINVAL;
  3171. }
  3172. ucontrol->value.bytes.data[0] = rx_priv->fir_total_coeff_num[path_idx];
  3173. return 0;
  3174. }
  3175. static int lpass_cdc_rx_macro_fir_coeff_num_put(struct snd_kcontrol *kcontrol,
  3176. struct snd_ctl_elem_value *ucontrol)
  3177. {
  3178. struct snd_soc_component *component =
  3179. snd_soc_kcontrol_component(kcontrol);
  3180. unsigned int path_idx = ((struct soc_multi_mixer_control *)
  3181. kcontrol->private_value)->shift;
  3182. u8 fir_total_coeff_num = ucontrol->value.bytes.data[0];
  3183. struct device *rx_dev = NULL;
  3184. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  3185. unsigned int ret = 0;
  3186. unsigned int grp_idx, stored_total_num, num_coeff_addr;
  3187. if (!component) {
  3188. pr_err("%s: component is NULL\n", __func__);
  3189. return -EINVAL;
  3190. }
  3191. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  3192. return -EINVAL;
  3193. switch (path_idx) {
  3194. case RX0_PATH:
  3195. num_coeff_addr = LPASS_CDC_RX_RX0_RX_FIR_CFG;
  3196. break;
  3197. case RX1_PATH:
  3198. num_coeff_addr = LPASS_CDC_RX_RX1_RX_FIR_CFG;
  3199. break;
  3200. default:
  3201. dev_err(rx_priv->dev,
  3202. "%s: inavlid FIR ID: %d\n", __func__, path_idx);
  3203. ret = -EINVAL;
  3204. goto exit;
  3205. }
  3206. if (fir_total_coeff_num > LPASS_CDC_RX_MACRO_FIR_COEFF_MAX * GRP_MAX) {
  3207. dev_err(rx_priv->dev,
  3208. "%s: inavlid total number of RX_FIR coefficients:%d"
  3209. " in path:%d\n",
  3210. __func__, fir_total_coeff_num, path_idx);
  3211. rx_priv->fir_total_coeff_num[path_idx] = 0;
  3212. return -EINVAL;
  3213. } else {
  3214. rx_priv->fir_total_coeff_num[path_idx] = fir_total_coeff_num;
  3215. }
  3216. snd_soc_component_write(component, num_coeff_addr, fir_total_coeff_num);
  3217. dev_dbg(component->dev, "%s: HIFI FIR Path:%d total coefficients"
  3218. " number updated: %d.\n",
  3219. __func__, path_idx, fir_total_coeff_num);
  3220. stored_total_num = 0;
  3221. for (grp_idx = 0; grp_idx < GRP_MAX; grp_idx++)
  3222. stored_total_num += rx_priv->num_fir_coeff[path_idx][grp_idx];
  3223. if (fir_total_coeff_num == stored_total_num)
  3224. ret = set_fir_filter_coeff(component, rx_priv, path_idx);
  3225. exit:
  3226. return ret;
  3227. }
  3228. static const struct snd_kcontrol_new lpass_cdc_rx_macro_snd_controls[] = {
  3229. SOC_SINGLE_S8_TLV("RX_RX0 Digital Volume",
  3230. LPASS_CDC_RX_RX0_RX_VOL_CTL,
  3231. -84, 40, digital_gain),
  3232. SOC_SINGLE_S8_TLV("RX_RX1 Digital Volume",
  3233. LPASS_CDC_RX_RX1_RX_VOL_CTL,
  3234. -84, 40, digital_gain),
  3235. SOC_SINGLE_S8_TLV("RX_RX2 Digital Volume",
  3236. LPASS_CDC_RX_RX2_RX_VOL_CTL,
  3237. -84, 40, digital_gain),
  3238. SOC_SINGLE_S8_TLV("RX_RX0 Mix Digital Volume",
  3239. LPASS_CDC_RX_RX0_RX_VOL_MIX_CTL,
  3240. -84, 40, digital_gain),
  3241. SOC_SINGLE_S8_TLV("RX_RX1 Mix Digital Volume",
  3242. LPASS_CDC_RX_RX1_RX_VOL_MIX_CTL,
  3243. -84, 40, digital_gain),
  3244. SOC_SINGLE_S8_TLV("RX_RX2 Mix Digital Volume",
  3245. LPASS_CDC_RX_RX2_RX_VOL_MIX_CTL,
  3246. -84, 40, digital_gain),
  3247. SOC_SINGLE_EXT("RX_COMP1 Switch", SND_SOC_NOPM, LPASS_CDC_RX_MACRO_COMP1, 1, 0,
  3248. lpass_cdc_rx_macro_get_compander, lpass_cdc_rx_macro_set_compander),
  3249. SOC_SINGLE_EXT("RX_COMP2 Switch", SND_SOC_NOPM, LPASS_CDC_RX_MACRO_COMP2, 1, 0,
  3250. lpass_cdc_rx_macro_get_compander, lpass_cdc_rx_macro_set_compander),
  3251. SOC_SINGLE_EXT("RX0 FIR Coeff Num", SND_SOC_NOPM, RX0_PATH,
  3252. (LPASS_CDC_RX_MACRO_FIR_COEFF_MAX * GRP_MAX), 0,
  3253. lpass_cdc_rx_macro_fir_coeff_num_get, lpass_cdc_rx_macro_fir_coeff_num_put),
  3254. SOC_SINGLE_EXT("RX1 FIR Coeff Num", SND_SOC_NOPM, RX1_PATH,
  3255. (LPASS_CDC_RX_MACRO_FIR_COEFF_MAX * GRP_MAX), 0,
  3256. lpass_cdc_rx_macro_fir_coeff_num_get, lpass_cdc_rx_macro_fir_coeff_num_put),
  3257. SOC_ENUM_EXT("HPH Idle Detect", hph_idle_detect_enum,
  3258. lpass_cdc_rx_macro_hph_idle_detect_get, lpass_cdc_rx_macro_hph_idle_detect_put),
  3259. SOC_ENUM_EXT("RX_EAR Mode", lpass_cdc_rx_macro_ear_mode_enum,
  3260. lpass_cdc_rx_macro_get_ear_mode, lpass_cdc_rx_macro_put_ear_mode),
  3261. SOC_ENUM_EXT("RX_FIR Filter", lpass_cdc_rx_macro_fir_filter_enum,
  3262. lpass_cdc_rx_macro_fir_filter_enable_get, lpass_cdc_rx_macro_fir_filter_enable_put),
  3263. SOC_ENUM_EXT("RX_HPH HD2 Mode", lpass_cdc_rx_macro_hph_hd2_mode_enum,
  3264. lpass_cdc_rx_macro_get_hph_hd2_mode, lpass_cdc_rx_macro_put_hph_hd2_mode),
  3265. SOC_ENUM_EXT("RX_HPH_PWR_MODE", lpass_cdc_rx_macro_hph_pwr_mode_enum,
  3266. lpass_cdc_rx_macro_get_hph_pwr_mode, lpass_cdc_rx_macro_put_hph_pwr_mode),
  3267. SOC_ENUM_EXT("RX_GSM mode Enable", lpass_cdc_rx_macro_vbat_bcl_gsm_mode_enum,
  3268. lpass_cdc_rx_macro_vbat_bcl_gsm_mode_func_get,
  3269. lpass_cdc_rx_macro_vbat_bcl_gsm_mode_func_put),
  3270. SOC_SINGLE_EXT("RX_Softclip Enable", SND_SOC_NOPM, 0, 1, 0,
  3271. lpass_cdc_rx_macro_soft_clip_enable_get,
  3272. lpass_cdc_rx_macro_soft_clip_enable_put),
  3273. SOC_SINGLE_EXT("AUX_HPF Enable", SND_SOC_NOPM, 0, 1, 0,
  3274. lpass_cdc_rx_macro_aux_hpf_mode_get,
  3275. lpass_cdc_rx_macro_aux_hpf_mode_put),
  3276. SOC_SINGLE_S8_TLV("IIR0 INP0 Volume",
  3277. LPASS_CDC_RX_SIDETONE_IIR0_IIR_GAIN_B1_CTL, -84, 40,
  3278. digital_gain),
  3279. SOC_SINGLE_S8_TLV("IIR0 INP1 Volume",
  3280. LPASS_CDC_RX_SIDETONE_IIR0_IIR_GAIN_B2_CTL, -84, 40,
  3281. digital_gain),
  3282. SOC_SINGLE_S8_TLV("IIR0 INP2 Volume",
  3283. LPASS_CDC_RX_SIDETONE_IIR0_IIR_GAIN_B3_CTL, -84, 40,
  3284. digital_gain),
  3285. SOC_SINGLE_S8_TLV("IIR0 INP3 Volume",
  3286. LPASS_CDC_RX_SIDETONE_IIR0_IIR_GAIN_B4_CTL, -84, 40,
  3287. digital_gain),
  3288. SOC_SINGLE_S8_TLV("IIR1 INP0 Volume",
  3289. LPASS_CDC_RX_SIDETONE_IIR1_IIR_GAIN_B1_CTL, -84, 40,
  3290. digital_gain),
  3291. SOC_SINGLE_S8_TLV("IIR1 INP1 Volume",
  3292. LPASS_CDC_RX_SIDETONE_IIR1_IIR_GAIN_B2_CTL, -84, 40,
  3293. digital_gain),
  3294. SOC_SINGLE_S8_TLV("IIR1 INP2 Volume",
  3295. LPASS_CDC_RX_SIDETONE_IIR1_IIR_GAIN_B3_CTL, -84, 40,
  3296. digital_gain),
  3297. SOC_SINGLE_S8_TLV("IIR1 INP3 Volume",
  3298. LPASS_CDC_RX_SIDETONE_IIR1_IIR_GAIN_B4_CTL, -84, 40,
  3299. digital_gain),
  3300. SOC_SINGLE_EXT("IIR0 Enable Band1", IIR0, BAND1, 1, 0,
  3301. lpass_cdc_rx_macro_iir_enable_audio_mixer_get,
  3302. lpass_cdc_rx_macro_iir_enable_audio_mixer_put),
  3303. SOC_SINGLE_EXT("IIR0 Enable Band2", IIR0, BAND2, 1, 0,
  3304. lpass_cdc_rx_macro_iir_enable_audio_mixer_get,
  3305. lpass_cdc_rx_macro_iir_enable_audio_mixer_put),
  3306. SOC_SINGLE_EXT("IIR0 Enable Band3", IIR0, BAND3, 1, 0,
  3307. lpass_cdc_rx_macro_iir_enable_audio_mixer_get,
  3308. lpass_cdc_rx_macro_iir_enable_audio_mixer_put),
  3309. SOC_SINGLE_EXT("IIR0 Enable Band4", IIR0, BAND4, 1, 0,
  3310. lpass_cdc_rx_macro_iir_enable_audio_mixer_get,
  3311. lpass_cdc_rx_macro_iir_enable_audio_mixer_put),
  3312. SOC_SINGLE_EXT("IIR0 Enable Band5", IIR0, BAND5, 1, 0,
  3313. lpass_cdc_rx_macro_iir_enable_audio_mixer_get,
  3314. lpass_cdc_rx_macro_iir_enable_audio_mixer_put),
  3315. SOC_SINGLE_EXT("IIR1 Enable Band1", IIR1, BAND1, 1, 0,
  3316. lpass_cdc_rx_macro_iir_enable_audio_mixer_get,
  3317. lpass_cdc_rx_macro_iir_enable_audio_mixer_put),
  3318. SOC_SINGLE_EXT("IIR1 Enable Band2", IIR1, BAND2, 1, 0,
  3319. lpass_cdc_rx_macro_iir_enable_audio_mixer_get,
  3320. lpass_cdc_rx_macro_iir_enable_audio_mixer_put),
  3321. SOC_SINGLE_EXT("IIR1 Enable Band3", IIR1, BAND3, 1, 0,
  3322. lpass_cdc_rx_macro_iir_enable_audio_mixer_get,
  3323. lpass_cdc_rx_macro_iir_enable_audio_mixer_put),
  3324. SOC_SINGLE_EXT("IIR1 Enable Band4", IIR1, BAND4, 1, 0,
  3325. lpass_cdc_rx_macro_iir_enable_audio_mixer_get,
  3326. lpass_cdc_rx_macro_iir_enable_audio_mixer_put),
  3327. SOC_SINGLE_EXT("IIR1 Enable Band5", IIR1, BAND5, 1, 0,
  3328. lpass_cdc_rx_macro_iir_enable_audio_mixer_get,
  3329. lpass_cdc_rx_macro_iir_enable_audio_mixer_put),
  3330. LPASS_CDC_RX_MACRO_IIR_FILTER_CTL("IIR0 Band1", IIR0, BAND1),
  3331. LPASS_CDC_RX_MACRO_IIR_FILTER_CTL("IIR0 Band2", IIR0, BAND2),
  3332. LPASS_CDC_RX_MACRO_IIR_FILTER_CTL("IIR0 Band3", IIR0, BAND3),
  3333. LPASS_CDC_RX_MACRO_IIR_FILTER_CTL("IIR0 Band4", IIR0, BAND4),
  3334. LPASS_CDC_RX_MACRO_IIR_FILTER_CTL("IIR0 Band5", IIR0, BAND5),
  3335. LPASS_CDC_RX_MACRO_IIR_FILTER_CTL("IIR1 Band1", IIR1, BAND1),
  3336. LPASS_CDC_RX_MACRO_IIR_FILTER_CTL("IIR1 Band2", IIR1, BAND2),
  3337. LPASS_CDC_RX_MACRO_IIR_FILTER_CTL("IIR1 Band3", IIR1, BAND3),
  3338. LPASS_CDC_RX_MACRO_IIR_FILTER_CTL("IIR1 Band4", IIR1, BAND4),
  3339. LPASS_CDC_RX_MACRO_IIR_FILTER_CTL("IIR1 Band5", IIR1, BAND5),
  3340. LPASS_CDC_RX_MACRO_FIR_FILTER_CTL("RX0 FIR Coeff Group0", RX0_PATH, GRP0),
  3341. LPASS_CDC_RX_MACRO_FIR_FILTER_CTL("RX0 FIR Coeff Group1", RX0_PATH, GRP1),
  3342. LPASS_CDC_RX_MACRO_FIR_FILTER_CTL("RX1 FIR Coeff Group0", RX1_PATH, GRP0),
  3343. LPASS_CDC_RX_MACRO_FIR_FILTER_CTL("RX1 FIR Coeff Group1", RX1_PATH, GRP1),
  3344. };
  3345. static int lpass_cdc_rx_macro_enable_echo(struct snd_soc_dapm_widget *w,
  3346. struct snd_kcontrol *kcontrol,
  3347. int event)
  3348. {
  3349. struct snd_soc_component *component =
  3350. snd_soc_dapm_to_component(w->dapm);
  3351. struct device *rx_dev = NULL;
  3352. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  3353. u16 val = 0, ec_hq_reg = 0;
  3354. int ec_tx = 0;
  3355. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  3356. return -EINVAL;
  3357. dev_dbg(rx_dev, "%s %d %s\n", __func__, event, w->name);
  3358. val = snd_soc_component_read(component,
  3359. LPASS_CDC_RX_INP_MUX_RX_MIX_CFG4);
  3360. if (!(strcmp(w->name, "RX MIX TX0 MUX")))
  3361. ec_tx = ((val & 0xf0) >> 0x4) - 1;
  3362. else if (!(strcmp(w->name, "RX MIX TX1 MUX")))
  3363. ec_tx = (val & 0x0f) - 1;
  3364. val = snd_soc_component_read(component,
  3365. LPASS_CDC_RX_INP_MUX_RX_MIX_CFG5);
  3366. if (!(strcmp(w->name, "RX MIX TX2 MUX")))
  3367. ec_tx = (val & 0x0f) - 1;
  3368. if (ec_tx < 0 || (ec_tx >= LPASS_CDC_RX_MACRO_EC_MUX_MAX)) {
  3369. dev_err(rx_dev, "%s: EC mix control not set correctly\n",
  3370. __func__);
  3371. return -EINVAL;
  3372. }
  3373. ec_hq_reg = LPASS_CDC_RX_EC_REF_HQ0_EC_REF_HQ_PATH_CTL +
  3374. 0x40 * ec_tx;
  3375. snd_soc_component_update_bits(component, ec_hq_reg, 0x01, 0x01);
  3376. ec_hq_reg = LPASS_CDC_RX_EC_REF_HQ0_EC_REF_HQ_CFG0 +
  3377. 0x40 * ec_tx;
  3378. /* default set to 48k */
  3379. snd_soc_component_update_bits(component, ec_hq_reg, 0x1E, 0x08);
  3380. return 0;
  3381. }
  3382. static const struct snd_soc_dapm_widget lpass_cdc_rx_macro_dapm_widgets[] = {
  3383. SND_SOC_DAPM_AIF_IN("RX AIF1 PB", "RX_MACRO_AIF1 Playback", 0,
  3384. SND_SOC_NOPM, 0, 0),
  3385. SND_SOC_DAPM_AIF_IN("RX AIF2 PB", "RX_MACRO_AIF2 Playback", 0,
  3386. SND_SOC_NOPM, 0, 0),
  3387. SND_SOC_DAPM_AIF_IN("RX AIF3 PB", "RX_MACRO_AIF3 Playback", 0,
  3388. SND_SOC_NOPM, 0, 0),
  3389. SND_SOC_DAPM_AIF_IN("RX AIF4 PB", "RX_MACRO_AIF4 Playback", 0,
  3390. SND_SOC_NOPM, 0, 0),
  3391. SND_SOC_DAPM_AIF_OUT("RX AIF_ECHO", "RX_AIF_ECHO Capture", 0,
  3392. SND_SOC_NOPM, 0, 0),
  3393. SND_SOC_DAPM_AIF_IN("RX AIF5 PB", "RX_MACRO_AIF5 Playback", 0,
  3394. SND_SOC_NOPM, 0, 0),
  3395. SND_SOC_DAPM_AIF_IN("RX AIF6 PB", "RX_MACRO_AIF6 Playback", 0,
  3396. SND_SOC_NOPM, 0, 0),
  3397. LPASS_CDC_RX_MACRO_DAPM_MUX("RX_MACRO RX0 MUX", LPASS_CDC_RX_MACRO_RX0, lpass_cdc_rx_macro_rx0),
  3398. LPASS_CDC_RX_MACRO_DAPM_MUX("RX_MACRO RX1 MUX", LPASS_CDC_RX_MACRO_RX1, lpass_cdc_rx_macro_rx1),
  3399. LPASS_CDC_RX_MACRO_DAPM_MUX("RX_MACRO RX2 MUX", LPASS_CDC_RX_MACRO_RX2, lpass_cdc_rx_macro_rx2),
  3400. LPASS_CDC_RX_MACRO_DAPM_MUX("RX_MACRO RX3 MUX", LPASS_CDC_RX_MACRO_RX3, lpass_cdc_rx_macro_rx3),
  3401. LPASS_CDC_RX_MACRO_DAPM_MUX("RX_MACRO RX4 MUX", LPASS_CDC_RX_MACRO_RX4, lpass_cdc_rx_macro_rx4),
  3402. LPASS_CDC_RX_MACRO_DAPM_MUX("RX_MACRO RX5 MUX", LPASS_CDC_RX_MACRO_RX5, lpass_cdc_rx_macro_rx5),
  3403. SND_SOC_DAPM_MIXER("RX_RX0", SND_SOC_NOPM, 0, 0, NULL, 0),
  3404. SND_SOC_DAPM_MIXER("RX_RX1", SND_SOC_NOPM, 0, 0, NULL, 0),
  3405. SND_SOC_DAPM_MIXER("RX_RX2", SND_SOC_NOPM, 0, 0, NULL, 0),
  3406. SND_SOC_DAPM_MIXER("RX_RX3", SND_SOC_NOPM, 0, 0, NULL, 0),
  3407. SND_SOC_DAPM_MIXER("RX_RX4", SND_SOC_NOPM, 0, 0, NULL, 0),
  3408. SND_SOC_DAPM_MIXER("RX_RX5", SND_SOC_NOPM, 0, 0, NULL, 0),
  3409. LPASS_CDC_RX_MACRO_DAPM_MUX("IIR0 INP0 MUX", 0, iir0_inp0),
  3410. LPASS_CDC_RX_MACRO_DAPM_MUX("IIR0 INP1 MUX", 0, iir0_inp1),
  3411. LPASS_CDC_RX_MACRO_DAPM_MUX("IIR0 INP2 MUX", 0, iir0_inp2),
  3412. LPASS_CDC_RX_MACRO_DAPM_MUX("IIR0 INP3 MUX", 0, iir0_inp3),
  3413. LPASS_CDC_RX_MACRO_DAPM_MUX("IIR1 INP0 MUX", 0, iir1_inp0),
  3414. LPASS_CDC_RX_MACRO_DAPM_MUX("IIR1 INP1 MUX", 0, iir1_inp1),
  3415. LPASS_CDC_RX_MACRO_DAPM_MUX("IIR1 INP2 MUX", 0, iir1_inp2),
  3416. LPASS_CDC_RX_MACRO_DAPM_MUX("IIR1 INP3 MUX", 0, iir1_inp3),
  3417. SND_SOC_DAPM_MUX_E("RX MIX TX0 MUX", SND_SOC_NOPM,
  3418. LPASS_CDC_RX_MACRO_EC0_MUX, 0,
  3419. &rx_mix_tx0_mux, lpass_cdc_rx_macro_enable_echo,
  3420. SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD),
  3421. SND_SOC_DAPM_MUX_E("RX MIX TX1 MUX", SND_SOC_NOPM,
  3422. LPASS_CDC_RX_MACRO_EC1_MUX, 0,
  3423. &rx_mix_tx1_mux, lpass_cdc_rx_macro_enable_echo,
  3424. SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD),
  3425. SND_SOC_DAPM_MUX_E("RX MIX TX2 MUX", SND_SOC_NOPM,
  3426. LPASS_CDC_RX_MACRO_EC2_MUX, 0,
  3427. &rx_mix_tx2_mux, lpass_cdc_rx_macro_enable_echo,
  3428. SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD),
  3429. SND_SOC_DAPM_MIXER_E("IIR0", LPASS_CDC_RX_SIDETONE_IIR0_IIR_PATH_CTL,
  3430. 4, 0, NULL, 0, lpass_cdc_rx_macro_set_iir_gain,
  3431. SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_PRE_PMD),
  3432. SND_SOC_DAPM_MIXER_E("IIR1", LPASS_CDC_RX_SIDETONE_IIR1_IIR_PATH_CTL,
  3433. 4, 0, NULL, 0, lpass_cdc_rx_macro_set_iir_gain,
  3434. SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_PRE_PMD),
  3435. SND_SOC_DAPM_MIXER("SRC0", LPASS_CDC_RX_SIDETONE_SRC0_ST_SRC_PATH_CTL,
  3436. 4, 0, NULL, 0),
  3437. SND_SOC_DAPM_MIXER("SRC1", LPASS_CDC_RX_SIDETONE_SRC1_ST_SRC_PATH_CTL,
  3438. 4, 0, NULL, 0),
  3439. LPASS_CDC_RX_MACRO_DAPM_MUX("RX INT0 DEM MUX", 0, rx_int0_dem_inp),
  3440. LPASS_CDC_RX_MACRO_DAPM_MUX("RX INT1 DEM MUX", 0, rx_int1_dem_inp),
  3441. SND_SOC_DAPM_MUX_E("RX INT0_2 MUX", SND_SOC_NOPM, INTERP_HPHL, 0,
  3442. &rx_int0_2_mux, lpass_cdc_rx_macro_enable_mix_path,
  3443. SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMU |
  3444. SND_SOC_DAPM_POST_PMD),
  3445. SND_SOC_DAPM_MUX_E("RX INT1_2 MUX", SND_SOC_NOPM, INTERP_HPHR, 0,
  3446. &rx_int1_2_mux, lpass_cdc_rx_macro_enable_mix_path,
  3447. SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMU |
  3448. SND_SOC_DAPM_POST_PMD),
  3449. SND_SOC_DAPM_MUX_E("RX INT2_2 MUX", SND_SOC_NOPM, INTERP_AUX, 0,
  3450. &rx_int2_2_mux, lpass_cdc_rx_macro_enable_mix_path,
  3451. SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMU |
  3452. SND_SOC_DAPM_POST_PMD),
  3453. LPASS_CDC_RX_MACRO_DAPM_MUX("RX INT0_1 MIX1 INP0", 0, rx_int0_1_mix_inp0),
  3454. LPASS_CDC_RX_MACRO_DAPM_MUX("RX INT0_1 MIX1 INP1", 0, rx_int0_1_mix_inp1),
  3455. LPASS_CDC_RX_MACRO_DAPM_MUX("RX INT0_1 MIX1 INP2", 0, rx_int0_1_mix_inp2),
  3456. LPASS_CDC_RX_MACRO_DAPM_MUX("RX INT1_1 MIX1 INP0", 0, rx_int1_1_mix_inp0),
  3457. LPASS_CDC_RX_MACRO_DAPM_MUX("RX INT1_1 MIX1 INP1", 0, rx_int1_1_mix_inp1),
  3458. LPASS_CDC_RX_MACRO_DAPM_MUX("RX INT1_1 MIX1 INP2", 0, rx_int1_1_mix_inp2),
  3459. LPASS_CDC_RX_MACRO_DAPM_MUX("RX INT2_1 MIX1 INP0", 0, rx_int2_1_mix_inp0),
  3460. LPASS_CDC_RX_MACRO_DAPM_MUX("RX INT2_1 MIX1 INP1", 0, rx_int2_1_mix_inp1),
  3461. LPASS_CDC_RX_MACRO_DAPM_MUX("RX INT2_1 MIX1 INP2", 0, rx_int2_1_mix_inp2),
  3462. SND_SOC_DAPM_MUX_E("RX INT0_1 INTERP", SND_SOC_NOPM, INTERP_HPHL, 0,
  3463. &rx_int0_1_interp_mux, lpass_cdc_rx_macro_enable_main_path,
  3464. SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMU |
  3465. SND_SOC_DAPM_POST_PMD),
  3466. SND_SOC_DAPM_MUX_E("RX INT1_1 INTERP", SND_SOC_NOPM, INTERP_HPHR, 0,
  3467. &rx_int1_1_interp_mux, lpass_cdc_rx_macro_enable_main_path,
  3468. SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMU |
  3469. SND_SOC_DAPM_POST_PMD),
  3470. SND_SOC_DAPM_MUX_E("RX INT2_1 INTERP", SND_SOC_NOPM, INTERP_AUX, 0,
  3471. &rx_int2_1_interp_mux, lpass_cdc_rx_macro_enable_main_path,
  3472. SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMU |
  3473. SND_SOC_DAPM_POST_PMD),
  3474. LPASS_CDC_RX_MACRO_DAPM_MUX("RX INT0_2 INTERP", 0, rx_int0_2_interp),
  3475. LPASS_CDC_RX_MACRO_DAPM_MUX("RX INT1_2 INTERP", 0, rx_int1_2_interp),
  3476. LPASS_CDC_RX_MACRO_DAPM_MUX("RX INT2_2 INTERP", 0, rx_int2_2_interp),
  3477. SND_SOC_DAPM_MIXER("RX INT0_1 MIX1", SND_SOC_NOPM, 0, 0, NULL, 0),
  3478. SND_SOC_DAPM_MIXER("RX INT0 SEC MIX", SND_SOC_NOPM, 0, 0, NULL, 0),
  3479. SND_SOC_DAPM_MIXER("RX INT1_1 MIX1", SND_SOC_NOPM, 0, 0, NULL, 0),
  3480. SND_SOC_DAPM_MIXER("RX INT1 SEC MIX", SND_SOC_NOPM, 0, 0, NULL, 0),
  3481. SND_SOC_DAPM_MIXER("RX INT2_1 MIX1", SND_SOC_NOPM, 0, 0, NULL, 0),
  3482. SND_SOC_DAPM_MIXER("RX INT2 SEC MIX", SND_SOC_NOPM, 0, 0, NULL, 0),
  3483. SND_SOC_DAPM_MUX_E("RX INT0 MIX2 INP", SND_SOC_NOPM, INTERP_HPHL,
  3484. 0, &rx_int0_mix2_inp_mux, lpass_cdc_rx_macro_enable_rx_path_clk,
  3485. SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD),
  3486. SND_SOC_DAPM_MUX_E("RX INT1 MIX2 INP", SND_SOC_NOPM, INTERP_HPHR,
  3487. 0, &rx_int1_mix2_inp_mux, lpass_cdc_rx_macro_enable_rx_path_clk,
  3488. SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD),
  3489. SND_SOC_DAPM_MUX_E("RX INT2 MIX2 INP", SND_SOC_NOPM, INTERP_AUX,
  3490. 0, &rx_int2_mix2_inp_mux, lpass_cdc_rx_macro_enable_rx_path_clk,
  3491. SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD),
  3492. SND_SOC_DAPM_MIXER_E("RX INT2_1 VBAT", SND_SOC_NOPM,
  3493. 0, 0, rx_int2_1_vbat_mix_switch,
  3494. ARRAY_SIZE(rx_int2_1_vbat_mix_switch),
  3495. lpass_cdc_rx_macro_enable_vbat,
  3496. SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD),
  3497. SND_SOC_DAPM_MIXER("RX INT0 MIX2", SND_SOC_NOPM, 0, 0, NULL, 0),
  3498. SND_SOC_DAPM_MIXER("RX INT1 MIX2", SND_SOC_NOPM, 0, 0, NULL, 0),
  3499. SND_SOC_DAPM_MIXER("RX INT2 MIX2", SND_SOC_NOPM, 0, 0, NULL, 0),
  3500. SND_SOC_DAPM_OUTPUT("HPHL_OUT"),
  3501. SND_SOC_DAPM_OUTPUT("HPHR_OUT"),
  3502. SND_SOC_DAPM_OUTPUT("AUX_OUT"),
  3503. SND_SOC_DAPM_OUTPUT("PCM_OUT"),
  3504. SND_SOC_DAPM_INPUT("RX_TX DEC0_INP"),
  3505. SND_SOC_DAPM_INPUT("RX_TX DEC1_INP"),
  3506. SND_SOC_DAPM_INPUT("RX_TX DEC2_INP"),
  3507. SND_SOC_DAPM_INPUT("RX_TX DEC3_INP"),
  3508. SND_SOC_DAPM_SUPPLY_S("RX_MCLK", 0, SND_SOC_NOPM, 0, 0,
  3509. lpass_cdc_rx_macro_mclk_event, SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD),
  3510. };
  3511. static const struct snd_soc_dapm_route rx_audio_map[] = {
  3512. {"RX AIF1 PB", NULL, "RX_MCLK"},
  3513. {"RX AIF2 PB", NULL, "RX_MCLK"},
  3514. {"RX AIF3 PB", NULL, "RX_MCLK"},
  3515. {"RX AIF4 PB", NULL, "RX_MCLK"},
  3516. {"RX AIF6 PB", NULL, "RX_MCLK"},
  3517. {"PCM_OUT", NULL, "RX AIF6 PB"},
  3518. {"RX_MACRO RX0 MUX", "AIF1_PB", "RX AIF1 PB"},
  3519. {"RX_MACRO RX1 MUX", "AIF1_PB", "RX AIF1 PB"},
  3520. {"RX_MACRO RX2 MUX", "AIF1_PB", "RX AIF1 PB"},
  3521. {"RX_MACRO RX3 MUX", "AIF1_PB", "RX AIF1 PB"},
  3522. {"RX_MACRO RX4 MUX", "AIF1_PB", "RX AIF1 PB"},
  3523. {"RX_MACRO RX5 MUX", "AIF1_PB", "RX AIF1 PB"},
  3524. {"RX_MACRO RX0 MUX", "AIF2_PB", "RX AIF2 PB"},
  3525. {"RX_MACRO RX1 MUX", "AIF2_PB", "RX AIF2 PB"},
  3526. {"RX_MACRO RX2 MUX", "AIF2_PB", "RX AIF2 PB"},
  3527. {"RX_MACRO RX3 MUX", "AIF2_PB", "RX AIF2 PB"},
  3528. {"RX_MACRO RX4 MUX", "AIF2_PB", "RX AIF2 PB"},
  3529. {"RX_MACRO RX5 MUX", "AIF2_PB", "RX AIF2 PB"},
  3530. {"RX_MACRO RX0 MUX", "AIF3_PB", "RX AIF3 PB"},
  3531. {"RX_MACRO RX1 MUX", "AIF3_PB", "RX AIF3 PB"},
  3532. {"RX_MACRO RX2 MUX", "AIF3_PB", "RX AIF3 PB"},
  3533. {"RX_MACRO RX3 MUX", "AIF3_PB", "RX AIF3 PB"},
  3534. {"RX_MACRO RX4 MUX", "AIF3_PB", "RX AIF3 PB"},
  3535. {"RX_MACRO RX5 MUX", "AIF3_PB", "RX AIF3 PB"},
  3536. {"RX_MACRO RX0 MUX", "AIF4_PB", "RX AIF4 PB"},
  3537. {"RX_MACRO RX1 MUX", "AIF4_PB", "RX AIF4 PB"},
  3538. {"RX_MACRO RX2 MUX", "AIF4_PB", "RX AIF4 PB"},
  3539. {"RX_MACRO RX3 MUX", "AIF4_PB", "RX AIF4 PB"},
  3540. {"RX_MACRO RX4 MUX", "AIF4_PB", "RX AIF4 PB"},
  3541. {"RX_MACRO RX5 MUX", "AIF4_PB", "RX AIF4 PB"},
  3542. {"RX_RX0", NULL, "RX_MACRO RX0 MUX"},
  3543. {"RX_RX1", NULL, "RX_MACRO RX1 MUX"},
  3544. {"RX_RX2", NULL, "RX_MACRO RX2 MUX"},
  3545. {"RX_RX3", NULL, "RX_MACRO RX3 MUX"},
  3546. {"RX_RX4", NULL, "RX_MACRO RX4 MUX"},
  3547. {"RX_RX5", NULL, "RX_MACRO RX5 MUX"},
  3548. {"RX INT0_1 MIX1 INP0", "RX0", "RX_RX0"},
  3549. {"RX INT0_1 MIX1 INP0", "RX1", "RX_RX1"},
  3550. {"RX INT0_1 MIX1 INP0", "RX2", "RX_RX2"},
  3551. {"RX INT0_1 MIX1 INP0", "RX3", "RX_RX3"},
  3552. {"RX INT0_1 MIX1 INP0", "RX4", "RX_RX4"},
  3553. {"RX INT0_1 MIX1 INP0", "RX5", "RX_RX5"},
  3554. {"RX INT0_1 MIX1 INP0", "IIR0", "IIR0"},
  3555. {"RX INT0_1 MIX1 INP0", "IIR1", "IIR1"},
  3556. {"RX INT0_1 MIX1 INP0", "DEC0", "RX_TX DEC0_INP"},
  3557. {"RX INT0_1 MIX1 INP0", "DEC1", "RX_TX DEC1_INP"},
  3558. {"RX INT0_1 MIX1 INP1", "RX0", "RX_RX0"},
  3559. {"RX INT0_1 MIX1 INP1", "RX1", "RX_RX1"},
  3560. {"RX INT0_1 MIX1 INP1", "RX2", "RX_RX2"},
  3561. {"RX INT0_1 MIX1 INP1", "RX3", "RX_RX3"},
  3562. {"RX INT0_1 MIX1 INP1", "RX4", "RX_RX4"},
  3563. {"RX INT0_1 MIX1 INP1", "RX5", "RX_RX5"},
  3564. {"RX INT0_1 MIX1 INP1", "IIR0", "IIR0"},
  3565. {"RX INT0_1 MIX1 INP1", "IIR1", "IIR1"},
  3566. {"RX INT0_1 MIX1 INP1", "DEC0", "RX_TX DEC0_INP"},
  3567. {"RX INT0_1 MIX1 INP1", "DEC1", "RX_TX DEC1_INP"},
  3568. {"RX INT0_1 MIX1 INP2", "RX0", "RX_RX0"},
  3569. {"RX INT0_1 MIX1 INP2", "RX1", "RX_RX1"},
  3570. {"RX INT0_1 MIX1 INP2", "RX2", "RX_RX2"},
  3571. {"RX INT0_1 MIX1 INP2", "RX3", "RX_RX3"},
  3572. {"RX INT0_1 MIX1 INP2", "RX4", "RX_RX4"},
  3573. {"RX INT0_1 MIX1 INP2", "RX5", "RX_RX5"},
  3574. {"RX INT0_1 MIX1 INP2", "IIR0", "IIR0"},
  3575. {"RX INT0_1 MIX1 INP2", "IIR1", "IIR1"},
  3576. {"RX INT0_1 MIX1 INP2", "DEC0", "RX_TX DEC0_INP"},
  3577. {"RX INT0_1 MIX1 INP2", "DEC1", "RX_TX DEC1_INP"},
  3578. {"RX INT1_1 MIX1 INP0", "RX0", "RX_RX0"},
  3579. {"RX INT1_1 MIX1 INP0", "RX1", "RX_RX1"},
  3580. {"RX INT1_1 MIX1 INP0", "RX2", "RX_RX2"},
  3581. {"RX INT1_1 MIX1 INP0", "RX3", "RX_RX3"},
  3582. {"RX INT1_1 MIX1 INP0", "RX4", "RX_RX4"},
  3583. {"RX INT1_1 MIX1 INP0", "RX5", "RX_RX5"},
  3584. {"RX INT1_1 MIX1 INP0", "IIR0", "IIR0"},
  3585. {"RX INT1_1 MIX1 INP0", "IIR1", "IIR1"},
  3586. {"RX INT1_1 MIX1 INP0", "DEC0", "RX_TX DEC0_INP"},
  3587. {"RX INT1_1 MIX1 INP0", "DEC1", "RX_TX DEC1_INP"},
  3588. {"RX INT1_1 MIX1 INP1", "RX0", "RX_RX0"},
  3589. {"RX INT1_1 MIX1 INP1", "RX1", "RX_RX1"},
  3590. {"RX INT1_1 MIX1 INP1", "RX2", "RX_RX2"},
  3591. {"RX INT1_1 MIX1 INP1", "RX3", "RX_RX3"},
  3592. {"RX INT1_1 MIX1 INP1", "RX4", "RX_RX4"},
  3593. {"RX INT1_1 MIX1 INP1", "RX5", "RX_RX5"},
  3594. {"RX INT1_1 MIX1 INP1", "IIR0", "IIR0"},
  3595. {"RX INT1_1 MIX1 INP1", "IIR1", "IIR1"},
  3596. {"RX INT1_1 MIX1 INP1", "DEC0", "RX_TX DEC0_INP"},
  3597. {"RX INT1_1 MIX1 INP1", "DEC1", "RX_TX DEC1_INP"},
  3598. {"RX INT1_1 MIX1 INP2", "RX0", "RX_RX0"},
  3599. {"RX INT1_1 MIX1 INP2", "RX1", "RX_RX1"},
  3600. {"RX INT1_1 MIX1 INP2", "RX2", "RX_RX2"},
  3601. {"RX INT1_1 MIX1 INP2", "RX3", "RX_RX3"},
  3602. {"RX INT1_1 MIX1 INP2", "RX4", "RX_RX4"},
  3603. {"RX INT1_1 MIX1 INP2", "RX5", "RX_RX5"},
  3604. {"RX INT1_1 MIX1 INP2", "IIR0", "IIR0"},
  3605. {"RX INT1_1 MIX1 INP2", "IIR1", "IIR1"},
  3606. {"RX INT1_1 MIX1 INP2", "DEC0", "RX_TX DEC0_INP"},
  3607. {"RX INT1_1 MIX1 INP2", "DEC1", "RX_TX DEC1_INP"},
  3608. {"RX INT2_1 MIX1 INP0", "RX0", "RX_RX0"},
  3609. {"RX INT2_1 MIX1 INP0", "RX1", "RX_RX1"},
  3610. {"RX INT2_1 MIX1 INP0", "RX2", "RX_RX2"},
  3611. {"RX INT2_1 MIX1 INP0", "RX3", "RX_RX3"},
  3612. {"RX INT2_1 MIX1 INP0", "RX4", "RX_RX4"},
  3613. {"RX INT2_1 MIX1 INP0", "RX5", "RX_RX5"},
  3614. {"RX INT2_1 MIX1 INP0", "IIR0", "IIR0"},
  3615. {"RX INT2_1 MIX1 INP0", "IIR1", "IIR1"},
  3616. {"RX INT2_1 MIX1 INP0", "DEC0", "RX_TX DEC0_INP"},
  3617. {"RX INT2_1 MIX1 INP0", "DEC1", "RX_TX DEC1_INP"},
  3618. {"RX INT2_1 MIX1 INP1", "RX0", "RX_RX0"},
  3619. {"RX INT2_1 MIX1 INP1", "RX1", "RX_RX1"},
  3620. {"RX INT2_1 MIX1 INP1", "RX2", "RX_RX2"},
  3621. {"RX INT2_1 MIX1 INP1", "RX3", "RX_RX3"},
  3622. {"RX INT2_1 MIX1 INP1", "RX4", "RX_RX4"},
  3623. {"RX INT2_1 MIX1 INP1", "RX5", "RX_RX5"},
  3624. {"RX INT2_1 MIX1 INP1", "IIR0", "IIR0"},
  3625. {"RX INT2_1 MIX1 INP1", "IIR1", "IIR1"},
  3626. {"RX INT2_1 MIX1 INP1", "DEC0", "RX_TX DEC0_INP"},
  3627. {"RX INT2_1 MIX1 INP1", "DEC1", "RX_TX DEC1_INP"},
  3628. {"RX INT2_1 MIX1 INP2", "RX0", "RX_RX0"},
  3629. {"RX INT2_1 MIX1 INP2", "RX1", "RX_RX1"},
  3630. {"RX INT2_1 MIX1 INP2", "RX2", "RX_RX2"},
  3631. {"RX INT2_1 MIX1 INP2", "RX3", "RX_RX3"},
  3632. {"RX INT2_1 MIX1 INP2", "RX4", "RX_RX4"},
  3633. {"RX INT2_1 MIX1 INP2", "RX5", "RX_RX5"},
  3634. {"RX INT2_1 MIX1 INP2", "IIR0", "IIR0"},
  3635. {"RX INT2_1 MIX1 INP2", "IIR1", "IIR1"},
  3636. {"RX INT2_1 MIX1 INP2", "DEC0", "RX_TX DEC0_INP"},
  3637. {"RX INT2_1 MIX1 INP2", "DEC1", "RX_TX DEC1_INP"},
  3638. {"RX INT0_1 MIX1", NULL, "RX INT0_1 MIX1 INP0"},
  3639. {"RX INT0_1 MIX1", NULL, "RX INT0_1 MIX1 INP1"},
  3640. {"RX INT0_1 MIX1", NULL, "RX INT0_1 MIX1 INP2"},
  3641. {"RX INT1_1 MIX1", NULL, "RX INT1_1 MIX1 INP0"},
  3642. {"RX INT1_1 MIX1", NULL, "RX INT1_1 MIX1 INP1"},
  3643. {"RX INT1_1 MIX1", NULL, "RX INT1_1 MIX1 INP2"},
  3644. {"RX INT2_1 MIX1", NULL, "RX INT2_1 MIX1 INP0"},
  3645. {"RX INT2_1 MIX1", NULL, "RX INT2_1 MIX1 INP1"},
  3646. {"RX INT2_1 MIX1", NULL, "RX INT2_1 MIX1 INP2"},
  3647. {"RX MIX TX0 MUX", "RX_MIX0", "RX INT0 SEC MIX"},
  3648. {"RX MIX TX0 MUX", "RX_MIX1", "RX INT1 SEC MIX"},
  3649. {"RX MIX TX0 MUX", "RX_MIX2", "RX INT2 SEC MIX"},
  3650. {"RX MIX TX1 MUX", "RX_MIX0", "RX INT0 SEC MIX"},
  3651. {"RX MIX TX1 MUX", "RX_MIX1", "RX INT1 SEC MIX"},
  3652. {"RX MIX TX1 MUX", "RX_MIX2", "RX INT2 SEC MIX"},
  3653. {"RX MIX TX2 MUX", "RX_MIX0", "RX INT0 SEC MIX"},
  3654. {"RX MIX TX2 MUX", "RX_MIX1", "RX INT1 SEC MIX"},
  3655. {"RX MIX TX2 MUX", "RX_MIX2", "RX INT2 SEC MIX"},
  3656. {"RX AIF_ECHO", NULL, "RX MIX TX0 MUX"},
  3657. {"RX AIF_ECHO", NULL, "RX MIX TX1 MUX"},
  3658. {"RX AIF_ECHO", NULL, "RX MIX TX2 MUX"},
  3659. {"RX AIF_ECHO", NULL, "RX_MCLK"},
  3660. /* Mixing path INT0 */
  3661. {"RX INT0_2 MUX", "RX0", "RX_RX0"},
  3662. {"RX INT0_2 MUX", "RX1", "RX_RX1"},
  3663. {"RX INT0_2 MUX", "RX2", "RX_RX2"},
  3664. {"RX INT0_2 MUX", "RX3", "RX_RX3"},
  3665. {"RX INT0_2 MUX", "RX4", "RX_RX4"},
  3666. {"RX INT0_2 MUX", "RX5", "RX_RX5"},
  3667. {"RX INT0_2 INTERP", NULL, "RX INT0_2 MUX"},
  3668. {"RX INT0 SEC MIX", NULL, "RX INT0_2 INTERP"},
  3669. /* Mixing path INT1 */
  3670. {"RX INT1_2 MUX", "RX0", "RX_RX0"},
  3671. {"RX INT1_2 MUX", "RX1", "RX_RX1"},
  3672. {"RX INT1_2 MUX", "RX2", "RX_RX2"},
  3673. {"RX INT1_2 MUX", "RX3", "RX_RX3"},
  3674. {"RX INT1_2 MUX", "RX4", "RX_RX4"},
  3675. {"RX INT1_2 MUX", "RX5", "RX_RX5"},
  3676. {"RX INT1_2 INTERP", NULL, "RX INT1_2 MUX"},
  3677. {"RX INT1 SEC MIX", NULL, "RX INT1_2 INTERP"},
  3678. /* Mixing path INT2 */
  3679. {"RX INT2_2 MUX", "RX0", "RX_RX0"},
  3680. {"RX INT2_2 MUX", "RX1", "RX_RX1"},
  3681. {"RX INT2_2 MUX", "RX2", "RX_RX2"},
  3682. {"RX INT2_2 MUX", "RX3", "RX_RX3"},
  3683. {"RX INT2_2 MUX", "RX4", "RX_RX4"},
  3684. {"RX INT2_2 MUX", "RX5", "RX_RX5"},
  3685. {"RX INT2_2 INTERP", NULL, "RX INT2_2 MUX"},
  3686. {"RX INT2 SEC MIX", NULL, "RX INT2_2 INTERP"},
  3687. {"RX INT0_1 INTERP", NULL, "RX INT0_1 MIX1"},
  3688. {"RX INT0 SEC MIX", NULL, "RX INT0_1 INTERP"},
  3689. {"RX INT0 MIX2", NULL, "RX INT0 SEC MIX"},
  3690. {"RX INT0 MIX2", NULL, "RX INT0 MIX2 INP"},
  3691. {"RX INT0 DEM MUX", "CLSH_DSM_OUT", "RX INT0 MIX2"},
  3692. {"HPHL_OUT", NULL, "RX INT0 DEM MUX"},
  3693. {"HPHL_OUT", NULL, "RX_MCLK"},
  3694. {"RX INT1_1 INTERP", NULL, "RX INT1_1 MIX1"},
  3695. {"RX INT1 SEC MIX", NULL, "RX INT1_1 INTERP"},
  3696. {"RX INT1 MIX2", NULL, "RX INT1 SEC MIX"},
  3697. {"RX INT1 MIX2", NULL, "RX INT1 MIX2 INP"},
  3698. {"RX INT1 DEM MUX", "CLSH_DSM_OUT", "RX INT1 MIX2"},
  3699. {"HPHR_OUT", NULL, "RX INT1 DEM MUX"},
  3700. {"HPHR_OUT", NULL, "RX_MCLK"},
  3701. {"RX INT2_1 INTERP", NULL, "RX INT2_1 MIX1"},
  3702. {"RX INT2_1 VBAT", "RX AUX VBAT Enable", "RX INT2_1 INTERP"},
  3703. {"RX INT2 SEC MIX", NULL, "RX INT2_1 VBAT"},
  3704. {"RX INT2 SEC MIX", NULL, "RX INT2_1 INTERP"},
  3705. {"RX INT2 MIX2", NULL, "RX INT2 SEC MIX"},
  3706. {"RX INT2 MIX2", NULL, "RX INT2 MIX2 INP"},
  3707. {"AUX_OUT", NULL, "RX INT2 MIX2"},
  3708. {"AUX_OUT", NULL, "RX_MCLK"},
  3709. {"IIR0", NULL, "RX_MCLK"},
  3710. {"IIR0", NULL, "IIR0 INP0 MUX"},
  3711. {"IIR0 INP0 MUX", "DEC0", "RX_TX DEC0_INP"},
  3712. {"IIR0 INP0 MUX", "DEC1", "RX_TX DEC1_INP"},
  3713. {"IIR0 INP0 MUX", "DEC2", "RX_TX DEC2_INP"},
  3714. {"IIR0 INP0 MUX", "DEC3", "RX_TX DEC3_INP"},
  3715. {"IIR0 INP0 MUX", "RX0", "RX_RX0"},
  3716. {"IIR0 INP0 MUX", "RX1", "RX_RX1"},
  3717. {"IIR0 INP0 MUX", "RX2", "RX_RX2"},
  3718. {"IIR0 INP0 MUX", "RX3", "RX_RX3"},
  3719. {"IIR0 INP0 MUX", "RX4", "RX_RX4"},
  3720. {"IIR0 INP0 MUX", "RX5", "RX_RX5"},
  3721. {"IIR0", NULL, "IIR0 INP1 MUX"},
  3722. {"IIR0 INP1 MUX", "DEC0", "RX_TX DEC0_INP"},
  3723. {"IIR0 INP1 MUX", "DEC1", "RX_TX DEC1_INP"},
  3724. {"IIR0 INP1 MUX", "DEC2", "RX_TX DEC2_INP"},
  3725. {"IIR0 INP1 MUX", "DEC3", "RX_TX DEC3_INP"},
  3726. {"IIR0 INP1 MUX", "RX0", "RX_RX0"},
  3727. {"IIR0 INP1 MUX", "RX1", "RX_RX1"},
  3728. {"IIR0 INP1 MUX", "RX2", "RX_RX2"},
  3729. {"IIR0 INP1 MUX", "RX3", "RX_RX3"},
  3730. {"IIR0 INP1 MUX", "RX4", "RX_RX4"},
  3731. {"IIR0 INP1 MUX", "RX5", "RX_RX5"},
  3732. {"IIR0", NULL, "IIR0 INP2 MUX"},
  3733. {"IIR0 INP2 MUX", "DEC0", "RX_TX DEC0_INP"},
  3734. {"IIR0 INP2 MUX", "DEC1", "RX_TX DEC1_INP"},
  3735. {"IIR0 INP2 MUX", "DEC2", "RX_TX DEC2_INP"},
  3736. {"IIR0 INP2 MUX", "DEC3", "RX_TX DEC3_INP"},
  3737. {"IIR0 INP2 MUX", "RX0", "RX_RX0"},
  3738. {"IIR0 INP2 MUX", "RX1", "RX_RX1"},
  3739. {"IIR0 INP2 MUX", "RX2", "RX_RX2"},
  3740. {"IIR0 INP2 MUX", "RX3", "RX_RX3"},
  3741. {"IIR0 INP2 MUX", "RX4", "RX_RX4"},
  3742. {"IIR0 INP2 MUX", "RX5", "RX_RX5"},
  3743. {"IIR0", NULL, "IIR0 INP3 MUX"},
  3744. {"IIR0 INP3 MUX", "DEC0", "RX_TX DEC0_INP"},
  3745. {"IIR0 INP3 MUX", "DEC1", "RX_TX DEC1_INP"},
  3746. {"IIR0 INP3 MUX", "DEC2", "RX_TX DEC2_INP"},
  3747. {"IIR0 INP3 MUX", "DEC3", "RX_TX DEC3_INP"},
  3748. {"IIR0 INP3 MUX", "RX0", "RX_RX0"},
  3749. {"IIR0 INP3 MUX", "RX1", "RX_RX1"},
  3750. {"IIR0 INP3 MUX", "RX2", "RX_RX2"},
  3751. {"IIR0 INP3 MUX", "RX3", "RX_RX3"},
  3752. {"IIR0 INP3 MUX", "RX4", "RX_RX4"},
  3753. {"IIR0 INP3 MUX", "RX5", "RX_RX5"},
  3754. {"IIR1", NULL, "RX_MCLK"},
  3755. {"IIR1", NULL, "IIR1 INP0 MUX"},
  3756. {"IIR1 INP0 MUX", "DEC0", "RX_TX DEC0_INP"},
  3757. {"IIR1 INP0 MUX", "DEC1", "RX_TX DEC1_INP"},
  3758. {"IIR1 INP0 MUX", "DEC2", "RX_TX DEC2_INP"},
  3759. {"IIR1 INP0 MUX", "DEC3", "RX_TX DEC3_INP"},
  3760. {"IIR1 INP0 MUX", "RX0", "RX_RX0"},
  3761. {"IIR1 INP0 MUX", "RX1", "RX_RX1"},
  3762. {"IIR1 INP0 MUX", "RX2", "RX_RX2"},
  3763. {"IIR1 INP0 MUX", "RX3", "RX_RX3"},
  3764. {"IIR1 INP0 MUX", "RX4", "RX_RX4"},
  3765. {"IIR1 INP0 MUX", "RX5", "RX_RX5"},
  3766. {"IIR1", NULL, "IIR1 INP1 MUX"},
  3767. {"IIR1 INP1 MUX", "DEC0", "RX_TX DEC0_INP"},
  3768. {"IIR1 INP1 MUX", "DEC1", "RX_TX DEC1_INP"},
  3769. {"IIR1 INP1 MUX", "DEC2", "RX_TX DEC2_INP"},
  3770. {"IIR1 INP1 MUX", "DEC3", "RX_TX DEC3_INP"},
  3771. {"IIR1 INP1 MUX", "RX0", "RX_RX0"},
  3772. {"IIR1 INP1 MUX", "RX1", "RX_RX1"},
  3773. {"IIR1 INP1 MUX", "RX2", "RX_RX2"},
  3774. {"IIR1 INP1 MUX", "RX3", "RX_RX3"},
  3775. {"IIR1 INP1 MUX", "RX4", "RX_RX4"},
  3776. {"IIR1 INP1 MUX", "RX5", "RX_RX5"},
  3777. {"IIR1", NULL, "IIR1 INP2 MUX"},
  3778. {"IIR1 INP2 MUX", "DEC0", "RX_TX DEC0_INP"},
  3779. {"IIR1 INP2 MUX", "DEC1", "RX_TX DEC1_INP"},
  3780. {"IIR1 INP2 MUX", "DEC2", "RX_TX DEC2_INP"},
  3781. {"IIR1 INP2 MUX", "DEC3", "RX_TX DEC3_INP"},
  3782. {"IIR1 INP2 MUX", "RX0", "RX_RX0"},
  3783. {"IIR1 INP2 MUX", "RX1", "RX_RX1"},
  3784. {"IIR1 INP2 MUX", "RX2", "RX_RX2"},
  3785. {"IIR1 INP2 MUX", "RX3", "RX_RX3"},
  3786. {"IIR1 INP2 MUX", "RX4", "RX_RX4"},
  3787. {"IIR1 INP2 MUX", "RX5", "RX_RX5"},
  3788. {"IIR1", NULL, "IIR1 INP3 MUX"},
  3789. {"IIR1 INP3 MUX", "DEC0", "RX_TX DEC0_INP"},
  3790. {"IIR1 INP3 MUX", "DEC1", "RX_TX DEC1_INP"},
  3791. {"IIR1 INP3 MUX", "DEC2", "RX_TX DEC2_INP"},
  3792. {"IIR1 INP3 MUX", "DEC3", "RX_TX DEC3_INP"},
  3793. {"IIR1 INP3 MUX", "RX0", "RX_RX0"},
  3794. {"IIR1 INP3 MUX", "RX1", "RX_RX1"},
  3795. {"IIR1 INP3 MUX", "RX2", "RX_RX2"},
  3796. {"IIR1 INP3 MUX", "RX3", "RX_RX3"},
  3797. {"IIR1 INP3 MUX", "RX4", "RX_RX4"},
  3798. {"IIR1 INP3 MUX", "RX5", "RX_RX5"},
  3799. {"SRC0", NULL, "IIR0"},
  3800. {"SRC1", NULL, "IIR1"},
  3801. {"RX INT0 MIX2 INP", "SRC0", "SRC0"},
  3802. {"RX INT0 MIX2 INP", "SRC1", "SRC1"},
  3803. {"RX INT1 MIX2 INP", "SRC0", "SRC0"},
  3804. {"RX INT1 MIX2 INP", "SRC1", "SRC1"},
  3805. {"RX INT2 MIX2 INP", "SRC0", "SRC0"},
  3806. {"RX INT2 MIX2 INP", "SRC1", "SRC1"},
  3807. };
  3808. static int lpass_cdc_rx_macro_core_vote(void *handle, bool enable)
  3809. {
  3810. int rc = 0;
  3811. struct lpass_cdc_rx_macro_priv *rx_priv = (struct lpass_cdc_rx_macro_priv *) handle;
  3812. if (rx_priv == NULL) {
  3813. pr_err("%s: rx priv data is NULL\n", __func__);
  3814. return -EINVAL;
  3815. }
  3816. if (enable) {
  3817. pm_runtime_get_sync(rx_priv->dev);
  3818. if (lpass_cdc_check_core_votes(rx_priv->dev))
  3819. rc = 0;
  3820. else
  3821. rc = -ENOTSYNC;
  3822. } else {
  3823. pm_runtime_put_autosuspend(rx_priv->dev);
  3824. pm_runtime_mark_last_busy(rx_priv->dev);
  3825. }
  3826. return rc;
  3827. }
  3828. static int rx_swrm_clock(void *handle, bool enable)
  3829. {
  3830. struct lpass_cdc_rx_macro_priv *rx_priv = (struct lpass_cdc_rx_macro_priv *) handle;
  3831. struct regmap *regmap = dev_get_regmap(rx_priv->dev->parent, NULL);
  3832. int ret = 0;
  3833. if (regmap == NULL) {
  3834. dev_err(rx_priv->dev, "%s: regmap is NULL\n", __func__);
  3835. return -EINVAL;
  3836. }
  3837. mutex_lock(&rx_priv->swr_clk_lock);
  3838. trace_printk("%s: swrm clock %s\n",
  3839. __func__, (enable ? "enable" : "disable"));
  3840. dev_dbg(rx_priv->dev, "%s: swrm clock %s\n",
  3841. __func__, (enable ? "enable" : "disable"));
  3842. if (enable) {
  3843. pm_runtime_get_sync(rx_priv->dev);
  3844. if (rx_priv->swr_clk_users == 0) {
  3845. ret = msm_cdc_pinctrl_select_active_state(
  3846. rx_priv->rx_swr_gpio_p);
  3847. if (ret < 0) {
  3848. dev_err(rx_priv->dev,
  3849. "%s: rx swr pinctrl enable failed\n",
  3850. __func__);
  3851. pm_runtime_mark_last_busy(rx_priv->dev);
  3852. pm_runtime_put_autosuspend(rx_priv->dev);
  3853. goto exit;
  3854. }
  3855. ret = lpass_cdc_rx_macro_mclk_enable(rx_priv, 1, true);
  3856. if (ret < 0) {
  3857. msm_cdc_pinctrl_select_sleep_state(
  3858. rx_priv->rx_swr_gpio_p);
  3859. dev_err(rx_priv->dev,
  3860. "%s: rx request clock enable failed\n",
  3861. __func__);
  3862. pm_runtime_mark_last_busy(rx_priv->dev);
  3863. pm_runtime_put_autosuspend(rx_priv->dev);
  3864. goto exit;
  3865. }
  3866. if (rx_priv->reset_swr)
  3867. regmap_update_bits(regmap,
  3868. LPASS_CDC_RX_CLK_RST_CTRL_SWR_CONTROL,
  3869. 0x02, 0x02);
  3870. regmap_update_bits(regmap,
  3871. LPASS_CDC_RX_CLK_RST_CTRL_SWR_CONTROL,
  3872. 0x01, 0x01);
  3873. if (rx_priv->reset_swr)
  3874. regmap_update_bits(regmap,
  3875. LPASS_CDC_RX_CLK_RST_CTRL_SWR_CONTROL,
  3876. 0x02, 0x00);
  3877. rx_priv->reset_swr = false;
  3878. }
  3879. pm_runtime_mark_last_busy(rx_priv->dev);
  3880. pm_runtime_put_autosuspend(rx_priv->dev);
  3881. rx_priv->swr_clk_users++;
  3882. } else {
  3883. if (rx_priv->swr_clk_users <= 0) {
  3884. dev_err(rx_priv->dev,
  3885. "%s: rx swrm clock users already reset\n",
  3886. __func__);
  3887. rx_priv->swr_clk_users = 0;
  3888. goto exit;
  3889. }
  3890. rx_priv->swr_clk_users--;
  3891. if (rx_priv->swr_clk_users == 0) {
  3892. regmap_update_bits(regmap,
  3893. LPASS_CDC_RX_CLK_RST_CTRL_SWR_CONTROL,
  3894. 0x01, 0x00);
  3895. lpass_cdc_rx_macro_mclk_enable(rx_priv, 0, true);
  3896. ret = msm_cdc_pinctrl_select_sleep_state(
  3897. rx_priv->rx_swr_gpio_p);
  3898. if (ret < 0) {
  3899. dev_err(rx_priv->dev,
  3900. "%s: rx swr pinctrl disable failed\n",
  3901. __func__);
  3902. goto exit;
  3903. }
  3904. }
  3905. }
  3906. trace_printk("%s: swrm clock users %d\n",
  3907. __func__, rx_priv->swr_clk_users);
  3908. dev_dbg(rx_priv->dev, "%s: swrm clock users %d\n",
  3909. __func__, rx_priv->swr_clk_users);
  3910. exit:
  3911. mutex_unlock(&rx_priv->swr_clk_lock);
  3912. return ret;
  3913. }
  3914. /**
  3915. * lpass_cdc_rx_set_fir_capability - Set RX HIFI FIR Filter capability
  3916. *
  3917. * @component: Codec component ptr.
  3918. * @capable: if the target have RX HIFI FIR available.
  3919. *
  3920. * Set RX HIFI FIR capability, stored the capability into RX macro private data.
  3921. */
  3922. int lpass_cdc_rx_set_fir_capability(struct snd_soc_component *component, bool capable)
  3923. {
  3924. struct device *rx_dev = NULL;
  3925. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  3926. if (!component) {
  3927. pr_err("%s: component is NULL\n", __func__);
  3928. return -EINVAL;
  3929. }
  3930. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  3931. return -EINVAL;
  3932. rx_priv->is_fir_capable = capable;
  3933. return 0;
  3934. }
  3935. EXPORT_SYMBOL(lpass_cdc_rx_set_fir_capability);
  3936. static const struct lpass_cdc_rx_macro_reg_mask_val
  3937. lpass_cdc_rx_macro_reg_init[] = {
  3938. {LPASS_CDC_RX_RX0_RX_PATH_SEC7, 0x07, 0x02},
  3939. {LPASS_CDC_RX_RX1_RX_PATH_SEC7, 0x07, 0x02},
  3940. {LPASS_CDC_RX_RX2_RX_PATH_SEC7, 0x07, 0x02},
  3941. {LPASS_CDC_RX_RX0_RX_PATH_CFG3, 0x03, 0x02},
  3942. {LPASS_CDC_RX_RX1_RX_PATH_CFG3, 0x03, 0x02},
  3943. {LPASS_CDC_RX_RX2_RX_PATH_CFG3, 0x03, 0x02},
  3944. };
  3945. static int lpass_cdc_rx_macro_init(struct snd_soc_component *component)
  3946. {
  3947. struct snd_soc_dapm_context *dapm =
  3948. snd_soc_component_get_dapm(component);
  3949. int ret = 0;
  3950. struct device *rx_dev = NULL;
  3951. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  3952. int i;
  3953. rx_dev = lpass_cdc_get_device_ptr(component->dev, RX_MACRO);
  3954. if (!rx_dev) {
  3955. dev_err(component->dev,
  3956. "%s: null device for macro!\n", __func__);
  3957. return -EINVAL;
  3958. }
  3959. rx_priv = dev_get_drvdata(rx_dev);
  3960. if (!rx_priv) {
  3961. dev_err(component->dev,
  3962. "%s: priv is null for macro!\n", __func__);
  3963. return -EINVAL;
  3964. }
  3965. ret = snd_soc_dapm_new_controls(dapm, lpass_cdc_rx_macro_dapm_widgets,
  3966. ARRAY_SIZE(lpass_cdc_rx_macro_dapm_widgets));
  3967. if (ret < 0) {
  3968. dev_err(rx_dev, "%s: failed to add controls\n", __func__);
  3969. return ret;
  3970. }
  3971. ret = snd_soc_dapm_add_routes(dapm, rx_audio_map,
  3972. ARRAY_SIZE(rx_audio_map));
  3973. if (ret < 0) {
  3974. dev_err(rx_dev, "%s: failed to add routes\n", __func__);
  3975. return ret;
  3976. }
  3977. ret = snd_soc_dapm_new_widgets(dapm->card);
  3978. if (ret < 0) {
  3979. dev_err(rx_dev, "%s: failed to add widgets\n", __func__);
  3980. return ret;
  3981. }
  3982. ret = snd_soc_add_component_controls(component, lpass_cdc_rx_macro_snd_controls,
  3983. ARRAY_SIZE(lpass_cdc_rx_macro_snd_controls));
  3984. if (ret < 0) {
  3985. dev_err(rx_dev, "%s: failed to add snd_ctls\n", __func__);
  3986. return ret;
  3987. }
  3988. rx_priv->dev_up = true;
  3989. rx_priv->rx0_gain_val = 0;
  3990. rx_priv->rx1_gain_val = 0;
  3991. snd_soc_dapm_ignore_suspend(dapm, "RX_MACRO_AIF1 Playback");
  3992. snd_soc_dapm_ignore_suspend(dapm, "RX_MACRO_AIF2 Playback");
  3993. snd_soc_dapm_ignore_suspend(dapm, "RX_MACRO_AIF3 Playback");
  3994. snd_soc_dapm_ignore_suspend(dapm, "RX_MACRO_AIF4 Playback");
  3995. snd_soc_dapm_ignore_suspend(dapm, "RX_MACRO_AIF5 Playback");
  3996. snd_soc_dapm_ignore_suspend(dapm, "RX_MACRO_AIF6 Playback");
  3997. snd_soc_dapm_ignore_suspend(dapm, "HPHL_OUT");
  3998. snd_soc_dapm_ignore_suspend(dapm, "HPHR_OUT");
  3999. snd_soc_dapm_ignore_suspend(dapm, "AUX_OUT");
  4000. snd_soc_dapm_ignore_suspend(dapm, "PCM_OUT");
  4001. snd_soc_dapm_ignore_suspend(dapm, "RX_TX DEC0_INP");
  4002. snd_soc_dapm_ignore_suspend(dapm, "RX_TX DEC1_INP");
  4003. snd_soc_dapm_ignore_suspend(dapm, "RX_TX DEC2_INP");
  4004. snd_soc_dapm_ignore_suspend(dapm, "RX_TX DEC3_INP");
  4005. snd_soc_dapm_sync(dapm);
  4006. for (i = 0; i < ARRAY_SIZE(lpass_cdc_rx_macro_reg_init); i++)
  4007. snd_soc_component_update_bits(component,
  4008. lpass_cdc_rx_macro_reg_init[i].reg,
  4009. lpass_cdc_rx_macro_reg_init[i].mask,
  4010. lpass_cdc_rx_macro_reg_init[i].val);
  4011. rx_priv->component = component;
  4012. return 0;
  4013. }
  4014. static int lpass_cdc_rx_macro_deinit(struct snd_soc_component *component)
  4015. {
  4016. struct device *rx_dev = NULL;
  4017. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  4018. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  4019. return -EINVAL;
  4020. rx_priv->component = NULL;
  4021. return 0;
  4022. }
  4023. static void lpass_cdc_rx_macro_add_child_devices(struct work_struct *work)
  4024. {
  4025. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  4026. struct platform_device *pdev = NULL;
  4027. struct device_node *node = NULL;
  4028. struct rx_swr_ctrl_data *swr_ctrl_data = NULL, *temp = NULL;
  4029. int ret = 0;
  4030. u16 count = 0, ctrl_num = 0;
  4031. struct rx_swr_ctrl_platform_data *platdata = NULL;
  4032. char plat_dev_name[RX_SWR_STRING_LEN] = "";
  4033. bool rx_swr_master_node = false;
  4034. rx_priv = container_of(work, struct lpass_cdc_rx_macro_priv,
  4035. lpass_cdc_rx_macro_add_child_devices_work);
  4036. if (!rx_priv) {
  4037. pr_err("%s: Memory for rx_priv does not exist\n",
  4038. __func__);
  4039. return;
  4040. }
  4041. if (!rx_priv->dev) {
  4042. pr_err("%s: RX device does not exist\n", __func__);
  4043. return;
  4044. }
  4045. if(!rx_priv->dev->of_node) {
  4046. dev_err(rx_priv->dev,
  4047. "%s: DT node for RX dev does not exist\n", __func__);
  4048. return;
  4049. }
  4050. platdata = &rx_priv->swr_plat_data;
  4051. rx_priv->child_count = 0;
  4052. for_each_available_child_of_node(rx_priv->dev->of_node, node) {
  4053. rx_swr_master_node = false;
  4054. if (strnstr(node->name, "rx_swr_master",
  4055. strlen("rx_swr_master")) != NULL)
  4056. rx_swr_master_node = true;
  4057. if(rx_swr_master_node)
  4058. strlcpy(plat_dev_name, "rx_swr_ctrl",
  4059. (RX_SWR_STRING_LEN - 1));
  4060. else
  4061. strlcpy(plat_dev_name, node->name,
  4062. (RX_SWR_STRING_LEN - 1));
  4063. pdev = platform_device_alloc(plat_dev_name, -1);
  4064. if (!pdev) {
  4065. dev_err(rx_priv->dev, "%s: pdev memory alloc failed\n",
  4066. __func__);
  4067. ret = -ENOMEM;
  4068. goto err;
  4069. }
  4070. pdev->dev.parent = rx_priv->dev;
  4071. pdev->dev.of_node = node;
  4072. if (rx_swr_master_node) {
  4073. ret = platform_device_add_data(pdev, platdata,
  4074. sizeof(*platdata));
  4075. if (ret) {
  4076. dev_err(&pdev->dev,
  4077. "%s: cannot add plat data ctrl:%d\n",
  4078. __func__, ctrl_num);
  4079. goto fail_pdev_add;
  4080. }
  4081. temp = krealloc(swr_ctrl_data,
  4082. (ctrl_num + 1) * sizeof(
  4083. struct rx_swr_ctrl_data),
  4084. GFP_KERNEL);
  4085. if (!temp) {
  4086. ret = -ENOMEM;
  4087. goto fail_pdev_add;
  4088. }
  4089. swr_ctrl_data = temp;
  4090. swr_ctrl_data[ctrl_num].rx_swr_pdev = pdev;
  4091. ctrl_num++;
  4092. dev_dbg(&pdev->dev,
  4093. "%s: Adding soundwire ctrl device(s)\n",
  4094. __func__);
  4095. rx_priv->swr_ctrl_data = swr_ctrl_data;
  4096. }
  4097. ret = platform_device_add(pdev);
  4098. if (ret) {
  4099. dev_err(&pdev->dev,
  4100. "%s: Cannot add platform device\n",
  4101. __func__);
  4102. goto fail_pdev_add;
  4103. }
  4104. if (rx_priv->child_count < LPASS_CDC_RX_MACRO_CHILD_DEVICES_MAX)
  4105. rx_priv->pdev_child_devices[
  4106. rx_priv->child_count++] = pdev;
  4107. else
  4108. goto err;
  4109. }
  4110. return;
  4111. fail_pdev_add:
  4112. for (count = 0; count < rx_priv->child_count; count++)
  4113. platform_device_put(rx_priv->pdev_child_devices[count]);
  4114. err:
  4115. return;
  4116. }
  4117. static void lpass_cdc_rx_macro_init_ops(struct macro_ops *ops, char __iomem *rx_io_base)
  4118. {
  4119. memset(ops, 0, sizeof(struct macro_ops));
  4120. ops->init = lpass_cdc_rx_macro_init;
  4121. ops->exit = lpass_cdc_rx_macro_deinit;
  4122. ops->io_base = rx_io_base;
  4123. ops->dai_ptr = lpass_cdc_rx_macro_dai;
  4124. ops->num_dais = ARRAY_SIZE(lpass_cdc_rx_macro_dai);
  4125. ops->event_handler = lpass_cdc_rx_macro_event_handler;
  4126. ops->set_port_map = lpass_cdc_rx_macro_set_port_map;
  4127. }
  4128. static int lpass_cdc_rx_macro_probe(struct platform_device *pdev)
  4129. {
  4130. struct macro_ops ops = {0};
  4131. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  4132. u32 rx_base_addr = 0, muxsel = 0;
  4133. char __iomem *rx_io_base = NULL, *muxsel_io = NULL;
  4134. int ret = 0;
  4135. u32 default_clk_id = 0;
  4136. struct clk *hifi_fir_clk = NULL;
  4137. u32 is_used_rx_swr_gpio = 1;
  4138. const char *is_used_rx_swr_gpio_dt = "qcom,is-used-swr-gpio";
  4139. if (!lpass_cdc_is_va_macro_registered(&pdev->dev)) {
  4140. dev_err(&pdev->dev,
  4141. "%s: va-macro not registered yet, defer\n", __func__);
  4142. return -EPROBE_DEFER;
  4143. }
  4144. rx_priv = devm_kzalloc(&pdev->dev, sizeof(struct lpass_cdc_rx_macro_priv),
  4145. GFP_KERNEL);
  4146. if (!rx_priv)
  4147. return -ENOMEM;
  4148. rx_priv->dev = &pdev->dev;
  4149. ret = of_property_read_u32(pdev->dev.of_node, "reg",
  4150. &rx_base_addr);
  4151. if (ret) {
  4152. dev_err(&pdev->dev, "%s: could not find %s entry in dt\n",
  4153. __func__, "reg");
  4154. return ret;
  4155. }
  4156. ret = of_property_read_u32(pdev->dev.of_node, "qcom,rx_mclk_mode_muxsel",
  4157. &muxsel);
  4158. if (ret) {
  4159. dev_err(&pdev->dev, "%s: could not find %s entry in dt\n",
  4160. __func__, "reg");
  4161. return ret;
  4162. }
  4163. ret = of_property_read_u32(pdev->dev.of_node, "qcom,default-clk-id",
  4164. &default_clk_id);
  4165. if (ret) {
  4166. dev_err(&pdev->dev, "%s: could not find %s entry in dt\n",
  4167. __func__, "qcom,default-clk-id");
  4168. default_clk_id = RX_CORE_CLK;
  4169. }
  4170. if (of_find_property(pdev->dev.of_node, is_used_rx_swr_gpio_dt,
  4171. NULL)) {
  4172. ret = of_property_read_u32(pdev->dev.of_node,
  4173. is_used_rx_swr_gpio_dt,
  4174. &is_used_rx_swr_gpio);
  4175. if (ret) {
  4176. dev_err(&pdev->dev, "%s: error reading %s in dt\n",
  4177. __func__, is_used_rx_swr_gpio_dt);
  4178. is_used_rx_swr_gpio = 1;
  4179. }
  4180. }
  4181. rx_priv->rx_swr_gpio_p = of_parse_phandle(pdev->dev.of_node,
  4182. "qcom,rx-swr-gpios", 0);
  4183. if (!rx_priv->rx_swr_gpio_p && is_used_rx_swr_gpio) {
  4184. dev_err(&pdev->dev, "%s: swr_gpios handle not provided!\n",
  4185. __func__);
  4186. return -EINVAL;
  4187. }
  4188. if (msm_cdc_pinctrl_get_state(rx_priv->rx_swr_gpio_p) < 0 &&
  4189. is_used_rx_swr_gpio) {
  4190. dev_err(&pdev->dev, "%s: failed to get swr pin state\n",
  4191. __func__);
  4192. return -EPROBE_DEFER;
  4193. }
  4194. msm_cdc_pinctrl_set_wakeup_capable(
  4195. rx_priv->rx_swr_gpio_p, false);
  4196. rx_io_base = devm_ioremap(&pdev->dev, rx_base_addr,
  4197. LPASS_CDC_RX_MACRO_MAX_OFFSET);
  4198. if (!rx_io_base) {
  4199. dev_err(&pdev->dev, "%s: ioremap failed\n", __func__);
  4200. return -ENOMEM;
  4201. }
  4202. rx_priv->rx_io_base = rx_io_base;
  4203. muxsel_io = devm_ioremap(&pdev->dev, muxsel, 0x4);
  4204. if (!muxsel_io) {
  4205. dev_err(&pdev->dev, "%s: ioremap failed for muxsel\n",
  4206. __func__);
  4207. return -ENOMEM;
  4208. }
  4209. rx_priv->rx_mclk_mode_muxsel = muxsel_io;
  4210. rx_priv->reset_swr = true;
  4211. INIT_WORK(&rx_priv->lpass_cdc_rx_macro_add_child_devices_work,
  4212. lpass_cdc_rx_macro_add_child_devices);
  4213. rx_priv->swr_plat_data.handle = (void *) rx_priv;
  4214. rx_priv->swr_plat_data.read = NULL;
  4215. rx_priv->swr_plat_data.write = NULL;
  4216. rx_priv->swr_plat_data.bulk_write = NULL;
  4217. rx_priv->swr_plat_data.clk = rx_swrm_clock;
  4218. rx_priv->swr_plat_data.core_vote = lpass_cdc_rx_macro_core_vote;
  4219. rx_priv->swr_plat_data.handle_irq = NULL;
  4220. rx_priv->clk_id = default_clk_id;
  4221. rx_priv->default_clk_id = default_clk_id;
  4222. ops.clk_id_req = rx_priv->clk_id;
  4223. ops.default_clk_id = default_clk_id;
  4224. hifi_fir_clk = devm_clk_get(&pdev->dev, "rx_mclk2_2x_clk");
  4225. if (IS_ERR(hifi_fir_clk)) {
  4226. ret = PTR_ERR(hifi_fir_clk);
  4227. dev_dbg(&pdev->dev, "%s: clk get %s failed %d\n",
  4228. __func__, "rx_mclk2_2x_clk", ret);
  4229. hifi_fir_clk = NULL;
  4230. }
  4231. rx_priv->hifi_fir_clk = hifi_fir_clk;
  4232. rx_priv->is_aux_hpf_on = 1;
  4233. dev_set_drvdata(&pdev->dev, rx_priv);
  4234. mutex_init(&rx_priv->mclk_lock);
  4235. mutex_init(&rx_priv->swr_clk_lock);
  4236. lpass_cdc_rx_macro_init_ops(&ops, rx_io_base);
  4237. ret = lpass_cdc_register_macro(&pdev->dev, RX_MACRO, &ops);
  4238. if (ret) {
  4239. dev_err(&pdev->dev,
  4240. "%s: register macro failed\n", __func__);
  4241. goto err_reg_macro;
  4242. }
  4243. pm_runtime_set_autosuspend_delay(&pdev->dev, AUTO_SUSPEND_DELAY);
  4244. pm_runtime_use_autosuspend(&pdev->dev);
  4245. pm_runtime_set_suspended(&pdev->dev);
  4246. pm_suspend_ignore_children(&pdev->dev, true);
  4247. pm_runtime_enable(&pdev->dev);
  4248. schedule_work(&rx_priv->lpass_cdc_rx_macro_add_child_devices_work);
  4249. return 0;
  4250. err_reg_macro:
  4251. mutex_destroy(&rx_priv->mclk_lock);
  4252. mutex_destroy(&rx_priv->swr_clk_lock);
  4253. return ret;
  4254. }
  4255. static int lpass_cdc_rx_macro_remove(struct platform_device *pdev)
  4256. {
  4257. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  4258. u16 count = 0;
  4259. rx_priv = dev_get_drvdata(&pdev->dev);
  4260. if (!rx_priv)
  4261. return -EINVAL;
  4262. for (count = 0; count < rx_priv->child_count &&
  4263. count < LPASS_CDC_RX_MACRO_CHILD_DEVICES_MAX; count++)
  4264. platform_device_unregister(rx_priv->pdev_child_devices[count]);
  4265. pm_runtime_disable(&pdev->dev);
  4266. pm_runtime_set_suspended(&pdev->dev);
  4267. lpass_cdc_unregister_macro(&pdev->dev, RX_MACRO);
  4268. mutex_destroy(&rx_priv->mclk_lock);
  4269. mutex_destroy(&rx_priv->swr_clk_lock);
  4270. kfree(rx_priv->swr_ctrl_data);
  4271. return 0;
  4272. }
  4273. static const struct of_device_id lpass_cdc_rx_macro_dt_match[] = {
  4274. {.compatible = "qcom,lpass-cdc-rx-macro"},
  4275. {}
  4276. };
  4277. static const struct dev_pm_ops lpass_cdc_dev_pm_ops = {
  4278. SET_SYSTEM_SLEEP_PM_OPS(
  4279. pm_runtime_force_suspend,
  4280. pm_runtime_force_resume
  4281. )
  4282. SET_RUNTIME_PM_OPS(
  4283. lpass_cdc_runtime_suspend,
  4284. lpass_cdc_runtime_resume,
  4285. NULL
  4286. )
  4287. };
  4288. static struct platform_driver lpass_cdc_rx_macro_driver = {
  4289. .driver = {
  4290. .name = "lpass_cdc_rx_macro",
  4291. .owner = THIS_MODULE,
  4292. .pm = &lpass_cdc_dev_pm_ops,
  4293. .of_match_table = lpass_cdc_rx_macro_dt_match,
  4294. .suppress_bind_attrs = true,
  4295. },
  4296. .probe = lpass_cdc_rx_macro_probe,
  4297. .remove = lpass_cdc_rx_macro_remove,
  4298. };
  4299. module_platform_driver(lpass_cdc_rx_macro_driver);
  4300. MODULE_DESCRIPTION("RX macro driver");
  4301. MODULE_LICENSE("GPL v2");