hal_srng.c 38 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352
  1. /*
  2. * Copyright (c) 2016-2020 The Linux Foundation. All rights reserved.
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for
  5. * any purpose with or without fee is hereby granted, provided that the
  6. * above copyright notice and this permission notice appear in all
  7. * copies.
  8. *
  9. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
  10. * WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
  11. * WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
  12. * AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
  13. * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
  14. * PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
  15. * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
  16. * PERFORMANCE OF THIS SOFTWARE.
  17. */
  18. #include "hal_hw_headers.h"
  19. #include "hal_api.h"
  20. #include "target_type.h"
  21. #include "wcss_version.h"
  22. #include "qdf_module.h"
  23. #ifdef QCA_WIFI_QCA8074
  24. void hal_qca6290_attach(struct hal_soc *hal);
  25. #endif
  26. #ifdef QCA_WIFI_QCA8074
  27. void hal_qca8074_attach(struct hal_soc *hal);
  28. #endif
  29. #if defined(QCA_WIFI_QCA8074V2) || defined(QCA_WIFI_QCA6018)
  30. void hal_qca8074v2_attach(struct hal_soc *hal);
  31. #endif
  32. #ifdef QCA_WIFI_QCA6390
  33. void hal_qca6390_attach(struct hal_soc *hal);
  34. #endif
  35. #ifdef QCA_WIFI_QCA6490
  36. void hal_qca6490_attach(struct hal_soc *hal);
  37. #endif
  38. #ifdef QCA_WIFI_QCN9000
  39. void hal_qcn9000_attach(struct hal_soc *hal);
  40. #endif
  41. #ifdef QCA_WIFI_QCN9100
  42. void hal_qcn9100_attach(struct hal_soc *hal);
  43. #endif
  44. #ifdef QCA_WIFI_QCA6750
  45. void hal_qca6750_attach(struct hal_soc *hal);
  46. #endif
  47. #ifdef QCA_WIFI_QCA5018
  48. void hal_qca5018_attach(struct hal_soc *hal);
  49. #endif
  50. #ifdef ENABLE_VERBOSE_DEBUG
  51. bool is_hal_verbose_debug_enabled;
  52. #endif
  53. #ifdef ENABLE_HAL_REG_WR_HISTORY
  54. struct hal_reg_write_fail_history hal_reg_wr_hist;
  55. void hal_reg_wr_fail_history_add(struct hal_soc *hal_soc,
  56. uint32_t offset,
  57. uint32_t wr_val, uint32_t rd_val)
  58. {
  59. struct hal_reg_write_fail_entry *record;
  60. int idx;
  61. idx = hal_history_get_next_index(&hal_soc->reg_wr_fail_hist->index,
  62. HAL_REG_WRITE_HIST_SIZE);
  63. record = &hal_soc->reg_wr_fail_hist->record[idx];
  64. record->timestamp = qdf_get_log_timestamp();
  65. record->reg_offset = offset;
  66. record->write_val = wr_val;
  67. record->read_val = rd_val;
  68. }
  69. static void hal_reg_write_fail_history_init(struct hal_soc *hal)
  70. {
  71. hal->reg_wr_fail_hist = &hal_reg_wr_hist;
  72. qdf_atomic_set(&hal->reg_wr_fail_hist->index, -1);
  73. }
  74. #else
  75. static void hal_reg_write_fail_history_init(struct hal_soc *hal)
  76. {
  77. }
  78. #endif
  79. /**
  80. * hal_get_srng_ring_id() - get the ring id of a descriped ring
  81. * @hal: hal_soc data structure
  82. * @ring_type: type enum describing the ring
  83. * @ring_num: which ring of the ring type
  84. * @mac_id: which mac does the ring belong to (or 0 for non-lmac rings)
  85. *
  86. * Return: the ring id or -EINVAL if the ring does not exist.
  87. */
  88. static int hal_get_srng_ring_id(struct hal_soc *hal, int ring_type,
  89. int ring_num, int mac_id)
  90. {
  91. struct hal_hw_srng_config *ring_config =
  92. HAL_SRNG_CONFIG(hal, ring_type);
  93. int ring_id;
  94. if (ring_num >= ring_config->max_rings) {
  95. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO,
  96. "%s: ring_num exceeded maximum no. of supported rings",
  97. __func__);
  98. /* TODO: This is a programming error. Assert if this happens */
  99. return -EINVAL;
  100. }
  101. if (ring_config->lmac_ring) {
  102. ring_id = ring_config->start_ring_id + ring_num +
  103. (mac_id * HAL_MAX_RINGS_PER_LMAC);
  104. } else {
  105. ring_id = ring_config->start_ring_id + ring_num;
  106. }
  107. return ring_id;
  108. }
  109. static struct hal_srng *hal_get_srng(struct hal_soc *hal, int ring_id)
  110. {
  111. /* TODO: Should we allocate srng structures dynamically? */
  112. return &(hal->srng_list[ring_id]);
  113. }
  114. #define HP_OFFSET_IN_REG_START 1
  115. #define OFFSET_FROM_HP_TO_TP 4
  116. static void hal_update_srng_hp_tp_address(struct hal_soc *hal_soc,
  117. int shadow_config_index,
  118. int ring_type,
  119. int ring_num)
  120. {
  121. struct hal_srng *srng;
  122. int ring_id;
  123. struct hal_hw_srng_config *ring_config =
  124. HAL_SRNG_CONFIG(hal_soc, ring_type);
  125. ring_id = hal_get_srng_ring_id(hal_soc, ring_type, ring_num, 0);
  126. if (ring_id < 0)
  127. return;
  128. srng = hal_get_srng(hal_soc, ring_id);
  129. if (ring_config->ring_dir == HAL_SRNG_DST_RING) {
  130. srng->u.dst_ring.tp_addr = SHADOW_REGISTER(shadow_config_index)
  131. + hal_soc->dev_base_addr;
  132. hal_debug("tp_addr=%pK dev base addr %pK index %u",
  133. srng->u.dst_ring.tp_addr, hal_soc->dev_base_addr,
  134. shadow_config_index);
  135. } else {
  136. srng->u.src_ring.hp_addr = SHADOW_REGISTER(shadow_config_index)
  137. + hal_soc->dev_base_addr;
  138. hal_debug("hp_addr=%pK dev base addr %pK index %u",
  139. srng->u.src_ring.hp_addr,
  140. hal_soc->dev_base_addr, shadow_config_index);
  141. }
  142. }
  143. QDF_STATUS hal_set_one_shadow_config(void *hal_soc,
  144. int ring_type,
  145. int ring_num)
  146. {
  147. uint32_t target_register;
  148. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  149. struct hal_hw_srng_config *srng_config = &hal->hw_srng_table[ring_type];
  150. int shadow_config_index = hal->num_shadow_registers_configured;
  151. if (shadow_config_index >= MAX_SHADOW_REGISTERS) {
  152. QDF_ASSERT(0);
  153. return QDF_STATUS_E_RESOURCES;
  154. }
  155. hal->num_shadow_registers_configured++;
  156. target_register = srng_config->reg_start[HP_OFFSET_IN_REG_START];
  157. target_register += (srng_config->reg_size[HP_OFFSET_IN_REG_START]
  158. *ring_num);
  159. /* if the ring is a dst ring, we need to shadow the tail pointer */
  160. if (srng_config->ring_dir == HAL_SRNG_DST_RING)
  161. target_register += OFFSET_FROM_HP_TO_TP;
  162. hal->shadow_config[shadow_config_index].addr = target_register;
  163. /* update hp/tp addr in the hal_soc structure*/
  164. hal_update_srng_hp_tp_address(hal_soc, shadow_config_index, ring_type,
  165. ring_num);
  166. hal_debug("target_reg %x, shadow register 0x%x shadow_index 0x%x, ring_type %d, ring num %d",
  167. target_register,
  168. SHADOW_REGISTER(shadow_config_index),
  169. shadow_config_index,
  170. ring_type, ring_num);
  171. return QDF_STATUS_SUCCESS;
  172. }
  173. qdf_export_symbol(hal_set_one_shadow_config);
  174. QDF_STATUS hal_construct_shadow_config(void *hal_soc)
  175. {
  176. int ring_type, ring_num;
  177. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  178. for (ring_type = 0; ring_type < MAX_RING_TYPES; ring_type++) {
  179. struct hal_hw_srng_config *srng_config =
  180. &hal->hw_srng_table[ring_type];
  181. if (ring_type == CE_SRC ||
  182. ring_type == CE_DST ||
  183. ring_type == CE_DST_STATUS)
  184. continue;
  185. if (srng_config->lmac_ring)
  186. continue;
  187. for (ring_num = 0; ring_num < srng_config->max_rings;
  188. ring_num++)
  189. hal_set_one_shadow_config(hal_soc, ring_type, ring_num);
  190. }
  191. return QDF_STATUS_SUCCESS;
  192. }
  193. qdf_export_symbol(hal_construct_shadow_config);
  194. void hal_get_shadow_config(void *hal_soc,
  195. struct pld_shadow_reg_v2_cfg **shadow_config,
  196. int *num_shadow_registers_configured)
  197. {
  198. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  199. *shadow_config = hal->shadow_config;
  200. *num_shadow_registers_configured =
  201. hal->num_shadow_registers_configured;
  202. }
  203. qdf_export_symbol(hal_get_shadow_config);
  204. static void hal_validate_shadow_register(struct hal_soc *hal,
  205. uint32_t *destination,
  206. uint32_t *shadow_address)
  207. {
  208. unsigned int index;
  209. uint32_t *shadow_0_offset = SHADOW_REGISTER(0) + hal->dev_base_addr;
  210. int destination_ba_offset =
  211. ((char *)destination) - (char *)hal->dev_base_addr;
  212. index = shadow_address - shadow_0_offset;
  213. if (index >= MAX_SHADOW_REGISTERS) {
  214. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  215. "%s: index %x out of bounds", __func__, index);
  216. goto error;
  217. } else if (hal->shadow_config[index].addr != destination_ba_offset) {
  218. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  219. "%s: sanity check failure, expected %x, found %x",
  220. __func__, destination_ba_offset,
  221. hal->shadow_config[index].addr);
  222. goto error;
  223. }
  224. return;
  225. error:
  226. qdf_print("baddr %pK, desination %pK, shadow_address %pK s0offset %pK index %x",
  227. hal->dev_base_addr, destination, shadow_address,
  228. shadow_0_offset, index);
  229. QDF_BUG(0);
  230. return;
  231. }
  232. static void hal_target_based_configure(struct hal_soc *hal)
  233. {
  234. /**
  235. * Indicate Initialization of srngs to avoid force wake
  236. * as umac power collapse is not enabled yet
  237. */
  238. hal->init_phase = true;
  239. switch (hal->target_type) {
  240. #ifdef QCA_WIFI_QCA6290
  241. case TARGET_TYPE_QCA6290:
  242. hal->use_register_windowing = true;
  243. hal_qca6290_attach(hal);
  244. break;
  245. #endif
  246. #ifdef QCA_WIFI_QCA6390
  247. case TARGET_TYPE_QCA6390:
  248. hal->use_register_windowing = true;
  249. hal_qca6390_attach(hal);
  250. break;
  251. #endif
  252. #ifdef QCA_WIFI_QCA6490
  253. case TARGET_TYPE_QCA6490:
  254. hal->use_register_windowing = true;
  255. hal_qca6490_attach(hal);
  256. hal->init_phase = false;
  257. break;
  258. #endif
  259. #ifdef QCA_WIFI_QCA6750
  260. case TARGET_TYPE_QCA6750:
  261. hal->use_register_windowing = true;
  262. hal->static_window_map = true;
  263. hal_qca6750_attach(hal);
  264. break;
  265. #endif
  266. #if defined(QCA_WIFI_QCA8074) && defined(WIFI_TARGET_TYPE_3_0)
  267. case TARGET_TYPE_QCA8074:
  268. hal_qca8074_attach(hal);
  269. break;
  270. #endif
  271. #if defined(QCA_WIFI_QCA8074V2)
  272. case TARGET_TYPE_QCA8074V2:
  273. hal_qca8074v2_attach(hal);
  274. break;
  275. #endif
  276. #if defined(QCA_WIFI_QCA6018)
  277. case TARGET_TYPE_QCA6018:
  278. hal_qca8074v2_attach(hal);
  279. break;
  280. #endif
  281. #if defined(QCA_WIFI_QCN9100)
  282. case TARGET_TYPE_QCN9100:
  283. hal->use_register_windowing = true;
  284. /*
  285. * Static window map is enabled for qcn9000 to use 2mb bar
  286. * size and use multiple windows to write into registers.
  287. */
  288. hal->static_window_map = true;
  289. hal_qcn9100_attach(hal);
  290. break;
  291. #endif
  292. #ifdef QCA_WIFI_QCN9000
  293. case TARGET_TYPE_QCN9000:
  294. hal->use_register_windowing = true;
  295. /*
  296. * Static window map is enabled for qcn9000 to use 2mb bar
  297. * size and use multiple windows to write into registers.
  298. */
  299. hal->static_window_map = true;
  300. hal_qcn9000_attach(hal);
  301. break;
  302. #endif
  303. #ifdef QCA_WIFI_QCA5018
  304. case TARGET_TYPE_QCA5018:
  305. hal->use_register_windowing = true;
  306. hal->static_window_map = true;
  307. hal_qca5018_attach(hal);
  308. break;
  309. #endif
  310. default:
  311. break;
  312. }
  313. }
  314. uint32_t hal_get_target_type(hal_soc_handle_t hal_soc_hdl)
  315. {
  316. struct hal_soc *hal_soc = (struct hal_soc *)hal_soc_hdl;
  317. struct hif_target_info *tgt_info =
  318. hif_get_target_info_handle(hal_soc->hif_handle);
  319. return tgt_info->target_type;
  320. }
  321. qdf_export_symbol(hal_get_target_type);
  322. #ifdef FEATURE_HAL_DELAYED_REG_WRITE
  323. #ifdef MEMORY_DEBUG
  324. /*
  325. * Length of the queue(array) used to hold delayed register writes.
  326. * Must be a multiple of 2.
  327. */
  328. #define HAL_REG_WRITE_QUEUE_LEN 128
  329. #else
  330. #define HAL_REG_WRITE_QUEUE_LEN 32
  331. #endif
  332. /**
  333. * hal_is_reg_write_tput_level_high() - throughput level for delayed reg writes
  334. * @hal: hal_soc pointer
  335. *
  336. * Return: true if throughput is high, else false.
  337. */
  338. static inline bool hal_is_reg_write_tput_level_high(struct hal_soc *hal)
  339. {
  340. int bw_level = hif_get_bandwidth_level(hal->hif_handle);
  341. return (bw_level >= PLD_BUS_WIDTH_MEDIUM) ? true : false;
  342. }
  343. /**
  344. * hal_process_reg_write_q_elem() - process a regiter write queue element
  345. * @hal: hal_soc pointer
  346. * @q_elem: pointer to hal regiter write queue element
  347. *
  348. * Return: The value which was written to the address
  349. */
  350. static uint32_t
  351. hal_process_reg_write_q_elem(struct hal_soc *hal,
  352. struct hal_reg_write_q_elem *q_elem)
  353. {
  354. struct hal_srng *srng = q_elem->srng;
  355. uint32_t write_val;
  356. SRNG_LOCK(&srng->lock);
  357. srng->reg_write_in_progress = false;
  358. srng->wstats.dequeues++;
  359. if (srng->ring_dir == HAL_SRNG_SRC_RING) {
  360. q_elem->dequeue_val = srng->u.src_ring.hp;
  361. hal_write_address_32_mb(hal,
  362. srng->u.src_ring.hp_addr,
  363. srng->u.src_ring.hp, false);
  364. write_val = srng->u.src_ring.hp;
  365. } else {
  366. q_elem->dequeue_val = srng->u.dst_ring.tp;
  367. hal_write_address_32_mb(hal,
  368. srng->u.dst_ring.tp_addr,
  369. srng->u.dst_ring.tp, false);
  370. write_val = srng->u.dst_ring.tp;
  371. }
  372. q_elem->valid = 0;
  373. SRNG_UNLOCK(&srng->lock);
  374. return write_val;
  375. }
  376. /**
  377. * hal_reg_write_fill_sched_delay_hist() - fill reg write delay histogram in hal
  378. * @hal: hal_soc pointer
  379. * @delay: delay in us
  380. *
  381. * Return: None
  382. */
  383. static inline void hal_reg_write_fill_sched_delay_hist(struct hal_soc *hal,
  384. uint64_t delay_us)
  385. {
  386. uint32_t *hist;
  387. hist = hal->stats.wstats.sched_delay;
  388. if (delay_us < 100)
  389. hist[REG_WRITE_SCHED_DELAY_SUB_100us]++;
  390. else if (delay_us < 1000)
  391. hist[REG_WRITE_SCHED_DELAY_SUB_1000us]++;
  392. else if (delay_us < 5000)
  393. hist[REG_WRITE_SCHED_DELAY_SUB_5000us]++;
  394. else
  395. hist[REG_WRITE_SCHED_DELAY_GT_5000us]++;
  396. }
  397. /**
  398. * hal_reg_write_work() - Worker to process delayed writes
  399. * @arg: hal_soc pointer
  400. *
  401. * Return: None
  402. */
  403. static void hal_reg_write_work(void *arg)
  404. {
  405. int32_t q_depth, write_val;
  406. struct hal_soc *hal = arg;
  407. struct hal_reg_write_q_elem *q_elem;
  408. uint64_t delta_us;
  409. uint8_t ring_id;
  410. uint32_t *addr;
  411. q_elem = &hal->reg_write_queue[(hal->read_idx)];
  412. q_elem->work_scheduled_time = qdf_get_log_timestamp();
  413. /* Make sure q_elem consistent in the memory for multi-cores */
  414. qdf_rmb();
  415. if (!q_elem->valid)
  416. return;
  417. q_depth = qdf_atomic_read(&hal->stats.wstats.q_depth);
  418. if (q_depth > hal->stats.wstats.max_q_depth)
  419. hal->stats.wstats.max_q_depth = q_depth;
  420. if (hif_prevent_link_low_power_states(hal->hif_handle)) {
  421. hal->stats.wstats.prevent_l1_fails++;
  422. return;
  423. }
  424. while (true) {
  425. qdf_rmb();
  426. if (!q_elem->valid)
  427. break;
  428. q_elem->dequeue_time = qdf_get_log_timestamp();
  429. ring_id = q_elem->srng->ring_id;
  430. addr = q_elem->addr;
  431. delta_us = qdf_log_timestamp_to_usecs(q_elem->dequeue_time -
  432. q_elem->enqueue_time);
  433. hal_reg_write_fill_sched_delay_hist(hal, delta_us);
  434. hal->stats.wstats.dequeues++;
  435. qdf_atomic_dec(&hal->stats.wstats.q_depth);
  436. write_val = hal_process_reg_write_q_elem(hal, q_elem);
  437. hal_verbose_debug("read_idx %u srng 0x%x, addr 0x%pK dequeue_val %u sched delay %llu us",
  438. hal->read_idx, ring_id, addr, write_val, delta_us);
  439. qdf_atomic_dec(&hal->active_work_cnt);
  440. hal->read_idx = (hal->read_idx + 1) &
  441. (HAL_REG_WRITE_QUEUE_LEN - 1);
  442. q_elem = &hal->reg_write_queue[(hal->read_idx)];
  443. }
  444. hif_allow_link_low_power_states(hal->hif_handle);
  445. }
  446. /**
  447. * hal_flush_reg_write_work() - flush all writes from regiter write queue
  448. * @arg: hal_soc pointer
  449. *
  450. * Return: None
  451. */
  452. static inline void hal_flush_reg_write_work(struct hal_soc *hal)
  453. {
  454. qdf_cancel_work(&hal->reg_write_work);
  455. qdf_flush_work(&hal->reg_write_work);
  456. qdf_flush_workqueue(0, hal->reg_write_wq);
  457. }
  458. /**
  459. * hal_reg_write_enqueue() - enqueue register writes into kworker
  460. * @hal_soc: hal_soc pointer
  461. * @srng: srng pointer
  462. * @addr: iomem address of regiter
  463. * @value: value to be written to iomem address
  464. *
  465. * This function executes from within the SRNG LOCK
  466. *
  467. * Return: None
  468. */
  469. static void hal_reg_write_enqueue(struct hal_soc *hal_soc,
  470. struct hal_srng *srng,
  471. void __iomem *addr,
  472. uint32_t value)
  473. {
  474. struct hal_reg_write_q_elem *q_elem;
  475. uint32_t write_idx;
  476. if (srng->reg_write_in_progress) {
  477. hal_verbose_debug("Already in progress srng ring id 0x%x addr 0x%pK val %u",
  478. srng->ring_id, addr, value);
  479. qdf_atomic_inc(&hal_soc->stats.wstats.coalesces);
  480. srng->wstats.coalesces++;
  481. return;
  482. }
  483. write_idx = qdf_atomic_inc_return(&hal_soc->write_idx);
  484. write_idx = write_idx & (HAL_REG_WRITE_QUEUE_LEN - 1);
  485. q_elem = &hal_soc->reg_write_queue[write_idx];
  486. if (q_elem->valid) {
  487. hal_err("queue full");
  488. QDF_BUG(0);
  489. return;
  490. }
  491. qdf_atomic_inc(&hal_soc->stats.wstats.enqueues);
  492. srng->wstats.enqueues++;
  493. qdf_atomic_inc(&hal_soc->stats.wstats.q_depth);
  494. q_elem->srng = srng;
  495. q_elem->addr = addr;
  496. q_elem->enqueue_val = value;
  497. q_elem->enqueue_time = qdf_get_log_timestamp();
  498. /*
  499. * Before the valid flag is set to true, all the other
  500. * fields in the q_elem needs to be updated in memory.
  501. * Else there is a chance that the dequeuing worker thread
  502. * might read stale entries and process incorrect srng.
  503. */
  504. qdf_wmb();
  505. q_elem->valid = true;
  506. /*
  507. * After all other fields in the q_elem has been updated
  508. * in memory successfully, the valid flag needs to be updated
  509. * in memory in time too.
  510. * Else there is a chance that the dequeuing worker thread
  511. * might read stale valid flag and the work will be bypassed
  512. * for this round. And if there is no other work scheduled
  513. * later, this hal register writing won't be updated any more.
  514. */
  515. qdf_wmb();
  516. srng->reg_write_in_progress = true;
  517. qdf_atomic_inc(&hal_soc->active_work_cnt);
  518. hal_verbose_debug("write_idx %u srng ring id 0x%x addr 0x%pK val %u",
  519. write_idx, srng->ring_id, addr, value);
  520. qdf_queue_work(hal_soc->qdf_dev, hal_soc->reg_write_wq,
  521. &hal_soc->reg_write_work);
  522. }
  523. void hal_delayed_reg_write(struct hal_soc *hal_soc,
  524. struct hal_srng *srng,
  525. void __iomem *addr,
  526. uint32_t value)
  527. {
  528. if (pld_is_device_awake(hal_soc->qdf_dev->dev) ||
  529. hal_is_reg_write_tput_level_high(hal_soc)) {
  530. qdf_atomic_inc(&hal_soc->stats.wstats.direct);
  531. srng->wstats.direct++;
  532. hal_write_address_32_mb(hal_soc, addr, value, false);
  533. } else {
  534. hal_reg_write_enqueue(hal_soc, srng, addr, value);
  535. }
  536. }
  537. /**
  538. * hal_delayed_reg_write_init() - Initialization function for delayed reg writes
  539. * @hal_soc: hal_soc pointer
  540. *
  541. * Initialize main data structures to process register writes in a delayed
  542. * workqueue.
  543. *
  544. * Return: QDF_STATUS_SUCCESS on success else a QDF error.
  545. */
  546. static QDF_STATUS hal_delayed_reg_write_init(struct hal_soc *hal)
  547. {
  548. hal->reg_write_wq =
  549. qdf_alloc_high_prior_ordered_workqueue("hal_register_write_wq");
  550. qdf_create_work(0, &hal->reg_write_work, hal_reg_write_work, hal);
  551. hal->reg_write_queue = qdf_mem_malloc(HAL_REG_WRITE_QUEUE_LEN *
  552. sizeof(*hal->reg_write_queue));
  553. if (!hal->reg_write_queue) {
  554. hal_err("unable to allocate memory");
  555. QDF_BUG(0);
  556. return QDF_STATUS_E_NOMEM;
  557. }
  558. /* Initial value of indices */
  559. hal->read_idx = 0;
  560. qdf_atomic_set(&hal->write_idx, -1);
  561. return QDF_STATUS_SUCCESS;
  562. }
  563. /**
  564. * hal_delayed_reg_write_deinit() - De-Initialize delayed reg write processing
  565. * @hal_soc: hal_soc pointer
  566. *
  567. * De-initialize main data structures to process register writes in a delayed
  568. * workqueue.
  569. *
  570. * Return: None
  571. */
  572. static void hal_delayed_reg_write_deinit(struct hal_soc *hal)
  573. {
  574. hal_flush_reg_write_work(hal);
  575. qdf_destroy_workqueue(0, hal->reg_write_wq);
  576. qdf_mem_free(hal->reg_write_queue);
  577. }
  578. static inline
  579. char *hal_fill_reg_write_srng_stats(struct hal_srng *srng,
  580. char *buf, qdf_size_t size)
  581. {
  582. qdf_scnprintf(buf, size, "enq %u deq %u coal %u direct %u",
  583. srng->wstats.enqueues, srng->wstats.dequeues,
  584. srng->wstats.coalesces, srng->wstats.direct);
  585. return buf;
  586. }
  587. /* bytes for local buffer */
  588. #define HAL_REG_WRITE_SRNG_STATS_LEN 100
  589. void hal_dump_reg_write_srng_stats(hal_soc_handle_t hal_soc_hdl)
  590. {
  591. struct hal_srng *srng;
  592. char buf[HAL_REG_WRITE_SRNG_STATS_LEN];
  593. struct hal_soc *hal = (struct hal_soc *)hal_soc_hdl;
  594. srng = hal_get_srng(hal, HAL_SRNG_SW2TCL1);
  595. hal_debug("SW2TCL1: %s",
  596. hal_fill_reg_write_srng_stats(srng, buf, sizeof(buf)));
  597. srng = hal_get_srng(hal, HAL_SRNG_WBM2SW0_RELEASE);
  598. hal_debug("WBM2SW0: %s",
  599. hal_fill_reg_write_srng_stats(srng, buf, sizeof(buf)));
  600. srng = hal_get_srng(hal, HAL_SRNG_REO2SW1);
  601. hal_debug("REO2SW1: %s",
  602. hal_fill_reg_write_srng_stats(srng, buf, sizeof(buf)));
  603. srng = hal_get_srng(hal, HAL_SRNG_REO2SW2);
  604. hal_debug("REO2SW2: %s",
  605. hal_fill_reg_write_srng_stats(srng, buf, sizeof(buf)));
  606. srng = hal_get_srng(hal, HAL_SRNG_REO2SW3);
  607. hal_debug("REO2SW3: %s",
  608. hal_fill_reg_write_srng_stats(srng, buf, sizeof(buf)));
  609. }
  610. void hal_dump_reg_write_stats(hal_soc_handle_t hal_soc_hdl)
  611. {
  612. uint32_t *hist;
  613. struct hal_soc *hal = (struct hal_soc *)hal_soc_hdl;
  614. hist = hal->stats.wstats.sched_delay;
  615. hal_debug("enq %u deq %u coal %u direct %u q_depth %u max_q %u sched-delay hist %u %u %u %u",
  616. qdf_atomic_read(&hal->stats.wstats.enqueues),
  617. hal->stats.wstats.dequeues,
  618. qdf_atomic_read(&hal->stats.wstats.coalesces),
  619. qdf_atomic_read(&hal->stats.wstats.direct),
  620. qdf_atomic_read(&hal->stats.wstats.q_depth),
  621. hal->stats.wstats.max_q_depth,
  622. hist[REG_WRITE_SCHED_DELAY_SUB_100us],
  623. hist[REG_WRITE_SCHED_DELAY_SUB_1000us],
  624. hist[REG_WRITE_SCHED_DELAY_SUB_5000us],
  625. hist[REG_WRITE_SCHED_DELAY_GT_5000us]);
  626. }
  627. int hal_get_reg_write_pending_work(void *hal_soc)
  628. {
  629. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  630. return qdf_atomic_read(&hal->active_work_cnt);
  631. }
  632. #else
  633. static inline QDF_STATUS hal_delayed_reg_write_init(struct hal_soc *hal)
  634. {
  635. return QDF_STATUS_SUCCESS;
  636. }
  637. static inline void hal_delayed_reg_write_deinit(struct hal_soc *hal)
  638. {
  639. }
  640. #endif
  641. /**
  642. * hal_attach - Initialize HAL layer
  643. * @hif_handle: Opaque HIF handle
  644. * @qdf_dev: QDF device
  645. *
  646. * Return: Opaque HAL SOC handle
  647. * NULL on failure (if given ring is not available)
  648. *
  649. * This function should be called as part of HIF initialization (for accessing
  650. * copy engines). DP layer will get hal_soc handle using hif_get_hal_handle()
  651. *
  652. */
  653. void *hal_attach(struct hif_opaque_softc *hif_handle, qdf_device_t qdf_dev)
  654. {
  655. struct hal_soc *hal;
  656. int i;
  657. hal = qdf_mem_malloc(sizeof(*hal));
  658. if (!hal) {
  659. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  660. "%s: hal_soc allocation failed", __func__);
  661. goto fail0;
  662. }
  663. hal->hif_handle = hif_handle;
  664. hal->dev_base_addr = hif_get_dev_ba(hif_handle); /* UMAC */
  665. hal->dev_base_addr_ce = hif_get_dev_ba_ce(hif_handle); /* CE */
  666. hal->qdf_dev = qdf_dev;
  667. hal->shadow_rdptr_mem_vaddr = (uint32_t *)qdf_mem_alloc_consistent(
  668. qdf_dev, qdf_dev->dev, sizeof(*(hal->shadow_rdptr_mem_vaddr)) *
  669. HAL_SRNG_ID_MAX, &(hal->shadow_rdptr_mem_paddr));
  670. if (!hal->shadow_rdptr_mem_paddr) {
  671. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  672. "%s: hal->shadow_rdptr_mem_paddr allocation failed",
  673. __func__);
  674. goto fail1;
  675. }
  676. qdf_mem_zero(hal->shadow_rdptr_mem_vaddr,
  677. sizeof(*(hal->shadow_rdptr_mem_vaddr)) * HAL_SRNG_ID_MAX);
  678. hal->shadow_wrptr_mem_vaddr =
  679. (uint32_t *)qdf_mem_alloc_consistent(qdf_dev, qdf_dev->dev,
  680. sizeof(*(hal->shadow_wrptr_mem_vaddr)) * HAL_MAX_LMAC_RINGS,
  681. &(hal->shadow_wrptr_mem_paddr));
  682. if (!hal->shadow_wrptr_mem_vaddr) {
  683. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  684. "%s: hal->shadow_wrptr_mem_vaddr allocation failed",
  685. __func__);
  686. goto fail2;
  687. }
  688. qdf_mem_zero(hal->shadow_wrptr_mem_vaddr,
  689. sizeof(*(hal->shadow_wrptr_mem_vaddr)) * HAL_MAX_LMAC_RINGS);
  690. for (i = 0; i < HAL_SRNG_ID_MAX; i++) {
  691. hal->srng_list[i].initialized = 0;
  692. hal->srng_list[i].ring_id = i;
  693. }
  694. qdf_spinlock_create(&hal->register_access_lock);
  695. hal->register_window = 0;
  696. hal->target_type = hal_get_target_type(hal_soc_to_hal_soc_handle(hal));
  697. hal_target_based_configure(hal);
  698. hal_reg_write_fail_history_init(hal);
  699. qdf_minidump_log(hal, sizeof(*hal), "hal_soc");
  700. qdf_atomic_init(&hal->active_work_cnt);
  701. hal_delayed_reg_write_init(hal);
  702. return (void *)hal;
  703. fail2:
  704. qdf_mem_free_consistent(qdf_dev, qdf_dev->dev,
  705. sizeof(*(hal->shadow_rdptr_mem_vaddr)) * HAL_SRNG_ID_MAX,
  706. hal->shadow_rdptr_mem_vaddr, hal->shadow_rdptr_mem_paddr, 0);
  707. fail1:
  708. qdf_mem_free(hal);
  709. fail0:
  710. return NULL;
  711. }
  712. qdf_export_symbol(hal_attach);
  713. /**
  714. * hal_mem_info - Retrieve hal memory base address
  715. *
  716. * @hal_soc: Opaque HAL SOC handle
  717. * @mem: pointer to structure to be updated with hal mem info
  718. */
  719. void hal_get_meminfo(hal_soc_handle_t hal_soc_hdl, struct hal_mem_info *mem)
  720. {
  721. struct hal_soc *hal = (struct hal_soc *)hal_soc_hdl;
  722. mem->dev_base_addr = (void *)hal->dev_base_addr;
  723. mem->shadow_rdptr_mem_vaddr = (void *)hal->shadow_rdptr_mem_vaddr;
  724. mem->shadow_wrptr_mem_vaddr = (void *)hal->shadow_wrptr_mem_vaddr;
  725. mem->shadow_rdptr_mem_paddr = (void *)hal->shadow_rdptr_mem_paddr;
  726. mem->shadow_wrptr_mem_paddr = (void *)hal->shadow_wrptr_mem_paddr;
  727. hif_read_phy_mem_base((void *)hal->hif_handle,
  728. (qdf_dma_addr_t *)&mem->dev_base_paddr);
  729. return;
  730. }
  731. qdf_export_symbol(hal_get_meminfo);
  732. /**
  733. * hal_detach - Detach HAL layer
  734. * @hal_soc: HAL SOC handle
  735. *
  736. * Return: Opaque HAL SOC handle
  737. * NULL on failure (if given ring is not available)
  738. *
  739. * This function should be called as part of HIF initialization (for accessing
  740. * copy engines). DP layer will get hal_soc handle using hif_get_hal_handle()
  741. *
  742. */
  743. extern void hal_detach(void *hal_soc)
  744. {
  745. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  746. hal_delayed_reg_write_deinit(hal);
  747. qdf_mem_free_consistent(hal->qdf_dev, hal->qdf_dev->dev,
  748. sizeof(*(hal->shadow_rdptr_mem_vaddr)) * HAL_SRNG_ID_MAX,
  749. hal->shadow_rdptr_mem_vaddr, hal->shadow_rdptr_mem_paddr, 0);
  750. qdf_mem_free_consistent(hal->qdf_dev, hal->qdf_dev->dev,
  751. sizeof(*(hal->shadow_wrptr_mem_vaddr)) * HAL_MAX_LMAC_RINGS,
  752. hal->shadow_wrptr_mem_vaddr, hal->shadow_wrptr_mem_paddr, 0);
  753. qdf_minidump_remove(hal);
  754. qdf_mem_free(hal);
  755. return;
  756. }
  757. qdf_export_symbol(hal_detach);
  758. /**
  759. * hal_ce_dst_setup - Initialize CE destination ring registers
  760. * @hal_soc: HAL SOC handle
  761. * @srng: SRNG ring pointer
  762. */
  763. static inline void hal_ce_dst_setup(struct hal_soc *hal, struct hal_srng *srng,
  764. int ring_num)
  765. {
  766. uint32_t reg_val = 0;
  767. uint32_t reg_addr;
  768. struct hal_hw_srng_config *ring_config =
  769. HAL_SRNG_CONFIG(hal, CE_DST);
  770. /* set DEST_MAX_LENGTH according to ce assignment */
  771. reg_addr = HWIO_WFSS_CE_CHANNEL_DST_R0_DEST_CTRL_ADDR(
  772. ring_config->reg_start[R0_INDEX] +
  773. (ring_num * ring_config->reg_size[R0_INDEX]));
  774. reg_val = HAL_REG_READ(hal, reg_addr);
  775. reg_val &= ~HWIO_WFSS_CE_CHANNEL_DST_R0_DEST_CTRL_DEST_MAX_LENGTH_BMSK;
  776. reg_val |= srng->u.dst_ring.max_buffer_length &
  777. HWIO_WFSS_CE_CHANNEL_DST_R0_DEST_CTRL_DEST_MAX_LENGTH_BMSK;
  778. HAL_REG_WRITE(hal, reg_addr, reg_val);
  779. if (srng->prefetch_timer) {
  780. reg_addr = HWIO_WFSS_CE_CHANNEL_DST_R0_DEST_RING_CONSUMER_PREFETCH_TIMER_ADDR(
  781. ring_config->reg_start[R0_INDEX] +
  782. (ring_num * ring_config->reg_size[R0_INDEX]));
  783. reg_val = HAL_REG_READ(hal, reg_addr);
  784. reg_val &= ~HWIO_WFSS_CE_CHANNEL_DST_R0_DEST_RING_CONSUMER_PREFETCH_TIMER_RMSK;
  785. reg_val |= srng->prefetch_timer;
  786. HAL_REG_WRITE(hal, reg_addr, reg_val);
  787. reg_val = HAL_REG_READ(hal, reg_addr);
  788. }
  789. }
  790. /**
  791. * hal_reo_read_write_ctrl_ix - Read or write REO_DESTINATION_RING_CTRL_IX
  792. * @hal: HAL SOC handle
  793. * @read: boolean value to indicate if read or write
  794. * @ix0: pointer to store IX0 reg value
  795. * @ix1: pointer to store IX1 reg value
  796. * @ix2: pointer to store IX2 reg value
  797. * @ix3: pointer to store IX3 reg value
  798. */
  799. void hal_reo_read_write_ctrl_ix(hal_soc_handle_t hal_soc_hdl, bool read,
  800. uint32_t *ix0, uint32_t *ix1,
  801. uint32_t *ix2, uint32_t *ix3)
  802. {
  803. uint32_t reg_offset;
  804. struct hal_soc *hal = (struct hal_soc *)hal_soc_hdl;
  805. if (read) {
  806. if (ix0) {
  807. reg_offset =
  808. HWIO_REO_R0_DESTINATION_RING_CTRL_IX_0_ADDR(
  809. SEQ_WCSS_UMAC_REO_REG_OFFSET);
  810. *ix0 = HAL_REG_READ(hal, reg_offset);
  811. }
  812. if (ix1) {
  813. reg_offset =
  814. HWIO_REO_R0_DESTINATION_RING_CTRL_IX_1_ADDR(
  815. SEQ_WCSS_UMAC_REO_REG_OFFSET);
  816. *ix1 = HAL_REG_READ(hal, reg_offset);
  817. }
  818. if (ix2) {
  819. reg_offset =
  820. HWIO_REO_R0_DESTINATION_RING_CTRL_IX_2_ADDR(
  821. SEQ_WCSS_UMAC_REO_REG_OFFSET);
  822. *ix2 = HAL_REG_READ(hal, reg_offset);
  823. }
  824. if (ix3) {
  825. reg_offset =
  826. HWIO_REO_R0_DESTINATION_RING_CTRL_IX_3_ADDR(
  827. SEQ_WCSS_UMAC_REO_REG_OFFSET);
  828. *ix3 = HAL_REG_READ(hal, reg_offset);
  829. }
  830. } else {
  831. if (ix0) {
  832. reg_offset =
  833. HWIO_REO_R0_DESTINATION_RING_CTRL_IX_0_ADDR(
  834. SEQ_WCSS_UMAC_REO_REG_OFFSET);
  835. HAL_REG_WRITE_CONFIRM(hal, reg_offset, *ix0);
  836. }
  837. if (ix1) {
  838. reg_offset =
  839. HWIO_REO_R0_DESTINATION_RING_CTRL_IX_1_ADDR(
  840. SEQ_WCSS_UMAC_REO_REG_OFFSET);
  841. HAL_REG_WRITE(hal, reg_offset, *ix1);
  842. }
  843. if (ix2) {
  844. reg_offset =
  845. HWIO_REO_R0_DESTINATION_RING_CTRL_IX_2_ADDR(
  846. SEQ_WCSS_UMAC_REO_REG_OFFSET);
  847. HAL_REG_WRITE_CONFIRM(hal, reg_offset, *ix2);
  848. }
  849. if (ix3) {
  850. reg_offset =
  851. HWIO_REO_R0_DESTINATION_RING_CTRL_IX_3_ADDR(
  852. SEQ_WCSS_UMAC_REO_REG_OFFSET);
  853. HAL_REG_WRITE_CONFIRM(hal, reg_offset, *ix3);
  854. }
  855. }
  856. }
  857. /**
  858. * hal_srng_dst_set_hp_paddr() - Set physical address to dest ring head pointer
  859. * @srng: sring pointer
  860. * @paddr: physical address
  861. */
  862. void hal_srng_dst_set_hp_paddr(struct hal_srng *srng,
  863. uint64_t paddr)
  864. {
  865. SRNG_DST_REG_WRITE(srng, HP_ADDR_LSB,
  866. paddr & 0xffffffff);
  867. SRNG_DST_REG_WRITE(srng, HP_ADDR_MSB,
  868. paddr >> 32);
  869. }
  870. /**
  871. * hal_srng_dst_init_hp() - Initilaize destination ring head pointer
  872. * @srng: sring pointer
  873. * @vaddr: virtual address
  874. */
  875. void hal_srng_dst_init_hp(struct hal_srng *srng,
  876. uint32_t *vaddr)
  877. {
  878. if (!srng)
  879. return;
  880. srng->u.dst_ring.hp_addr = vaddr;
  881. SRNG_DST_REG_WRITE_CONFIRM(srng, HP, srng->u.dst_ring.cached_hp);
  882. if (vaddr) {
  883. *srng->u.dst_ring.hp_addr = srng->u.dst_ring.cached_hp;
  884. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  885. "hp_addr=%pK, cached_hp=%d, hp=%d",
  886. (void *)srng->u.dst_ring.hp_addr,
  887. srng->u.dst_ring.cached_hp,
  888. *srng->u.dst_ring.hp_addr);
  889. }
  890. }
  891. /**
  892. * hal_srng_hw_init - Private function to initialize SRNG HW
  893. * @hal_soc: HAL SOC handle
  894. * @srng: SRNG ring pointer
  895. */
  896. static inline void hal_srng_hw_init(struct hal_soc *hal,
  897. struct hal_srng *srng)
  898. {
  899. if (srng->ring_dir == HAL_SRNG_SRC_RING)
  900. hal_srng_src_hw_init(hal, srng);
  901. else
  902. hal_srng_dst_hw_init(hal, srng);
  903. }
  904. #ifdef CONFIG_SHADOW_V2
  905. #define ignore_shadow false
  906. #define CHECK_SHADOW_REGISTERS true
  907. #else
  908. #define ignore_shadow true
  909. #define CHECK_SHADOW_REGISTERS false
  910. #endif
  911. /**
  912. * hal_srng_setup - Initialize HW SRNG ring.
  913. * @hal_soc: Opaque HAL SOC handle
  914. * @ring_type: one of the types from hal_ring_type
  915. * @ring_num: Ring number if there are multiple rings of same type (staring
  916. * from 0)
  917. * @mac_id: valid MAC Id should be passed if ring type is one of lmac rings
  918. * @ring_params: SRNG ring params in hal_srng_params structure.
  919. * Callers are expected to allocate contiguous ring memory of size
  920. * 'num_entries * entry_size' bytes and pass the physical and virtual base
  921. * addresses through 'ring_base_paddr' and 'ring_base_vaddr' in
  922. * hal_srng_params structure. Ring base address should be 8 byte aligned
  923. * and size of each ring entry should be queried using the API
  924. * hal_srng_get_entrysize
  925. *
  926. * Return: Opaque pointer to ring on success
  927. * NULL on failure (if given ring is not available)
  928. */
  929. void *hal_srng_setup(void *hal_soc, int ring_type, int ring_num,
  930. int mac_id, struct hal_srng_params *ring_params)
  931. {
  932. int ring_id;
  933. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  934. struct hal_srng *srng;
  935. struct hal_hw_srng_config *ring_config =
  936. HAL_SRNG_CONFIG(hal, ring_type);
  937. void *dev_base_addr;
  938. int i;
  939. ring_id = hal_get_srng_ring_id(hal_soc, ring_type, ring_num, mac_id);
  940. if (ring_id < 0)
  941. return NULL;
  942. hal_verbose_debug("mac_id %d ring_id %d", mac_id, ring_id);
  943. srng = hal_get_srng(hal_soc, ring_id);
  944. if (srng->initialized) {
  945. hal_verbose_debug("Ring (ring_type, ring_num) already initialized");
  946. return NULL;
  947. }
  948. dev_base_addr = hal->dev_base_addr;
  949. srng->ring_id = ring_id;
  950. srng->ring_dir = ring_config->ring_dir;
  951. srng->ring_base_paddr = ring_params->ring_base_paddr;
  952. srng->ring_base_vaddr = ring_params->ring_base_vaddr;
  953. srng->entry_size = ring_config->entry_size;
  954. srng->num_entries = ring_params->num_entries;
  955. srng->ring_size = srng->num_entries * srng->entry_size;
  956. srng->ring_size_mask = srng->ring_size - 1;
  957. srng->msi_addr = ring_params->msi_addr;
  958. srng->msi_data = ring_params->msi_data;
  959. srng->intr_timer_thres_us = ring_params->intr_timer_thres_us;
  960. srng->intr_batch_cntr_thres_entries =
  961. ring_params->intr_batch_cntr_thres_entries;
  962. srng->prefetch_timer = ring_params->prefetch_timer;
  963. srng->hal_soc = hal_soc;
  964. for (i = 0 ; i < MAX_SRNG_REG_GROUPS; i++) {
  965. srng->hwreg_base[i] = dev_base_addr + ring_config->reg_start[i]
  966. + (ring_num * ring_config->reg_size[i]);
  967. }
  968. /* Zero out the entire ring memory */
  969. qdf_mem_zero(srng->ring_base_vaddr, (srng->entry_size *
  970. srng->num_entries) << 2);
  971. srng->flags = ring_params->flags;
  972. #ifdef BIG_ENDIAN_HOST
  973. /* TODO: See if we should we get these flags from caller */
  974. srng->flags |= HAL_SRNG_DATA_TLV_SWAP;
  975. srng->flags |= HAL_SRNG_MSI_SWAP;
  976. srng->flags |= HAL_SRNG_RING_PTR_SWAP;
  977. #endif
  978. if (srng->ring_dir == HAL_SRNG_SRC_RING) {
  979. srng->u.src_ring.hp = 0;
  980. srng->u.src_ring.reap_hp = srng->ring_size -
  981. srng->entry_size;
  982. srng->u.src_ring.tp_addr =
  983. &(hal->shadow_rdptr_mem_vaddr[ring_id]);
  984. srng->u.src_ring.low_threshold =
  985. ring_params->low_threshold * srng->entry_size;
  986. if (ring_config->lmac_ring) {
  987. /* For LMAC rings, head pointer updates will be done
  988. * through FW by writing to a shared memory location
  989. */
  990. srng->u.src_ring.hp_addr =
  991. &(hal->shadow_wrptr_mem_vaddr[ring_id -
  992. HAL_SRNG_LMAC1_ID_START]);
  993. srng->flags |= HAL_SRNG_LMAC_RING;
  994. } else if (ignore_shadow || (srng->u.src_ring.hp_addr == 0)) {
  995. srng->u.src_ring.hp_addr =
  996. hal_get_window_address(hal,
  997. SRNG_SRC_ADDR(srng, HP));
  998. if (CHECK_SHADOW_REGISTERS) {
  999. QDF_TRACE(QDF_MODULE_ID_TXRX,
  1000. QDF_TRACE_LEVEL_ERROR,
  1001. "%s: Ring (%d, %d) missing shadow config",
  1002. __func__, ring_type, ring_num);
  1003. }
  1004. } else {
  1005. hal_validate_shadow_register(hal,
  1006. SRNG_SRC_ADDR(srng, HP),
  1007. srng->u.src_ring.hp_addr);
  1008. }
  1009. } else {
  1010. /* During initialization loop count in all the descriptors
  1011. * will be set to zero, and HW will set it to 1 on completing
  1012. * descriptor update in first loop, and increments it by 1 on
  1013. * subsequent loops (loop count wraps around after reaching
  1014. * 0xffff). The 'loop_cnt' in SW ring state is the expected
  1015. * loop count in descriptors updated by HW (to be processed
  1016. * by SW).
  1017. */
  1018. srng->u.dst_ring.loop_cnt = 1;
  1019. srng->u.dst_ring.tp = 0;
  1020. srng->u.dst_ring.hp_addr =
  1021. &(hal->shadow_rdptr_mem_vaddr[ring_id]);
  1022. if (ring_config->lmac_ring) {
  1023. /* For LMAC rings, tail pointer updates will be done
  1024. * through FW by writing to a shared memory location
  1025. */
  1026. srng->u.dst_ring.tp_addr =
  1027. &(hal->shadow_wrptr_mem_vaddr[ring_id -
  1028. HAL_SRNG_LMAC1_ID_START]);
  1029. srng->flags |= HAL_SRNG_LMAC_RING;
  1030. } else if (ignore_shadow || srng->u.dst_ring.tp_addr == 0) {
  1031. srng->u.dst_ring.tp_addr =
  1032. hal_get_window_address(hal,
  1033. SRNG_DST_ADDR(srng, TP));
  1034. if (CHECK_SHADOW_REGISTERS) {
  1035. QDF_TRACE(QDF_MODULE_ID_TXRX,
  1036. QDF_TRACE_LEVEL_ERROR,
  1037. "%s: Ring (%d, %d) missing shadow config",
  1038. __func__, ring_type, ring_num);
  1039. }
  1040. } else {
  1041. hal_validate_shadow_register(hal,
  1042. SRNG_DST_ADDR(srng, TP),
  1043. srng->u.dst_ring.tp_addr);
  1044. }
  1045. }
  1046. if (!(ring_config->lmac_ring)) {
  1047. hal_srng_hw_init(hal, srng);
  1048. if (ring_type == CE_DST) {
  1049. srng->u.dst_ring.max_buffer_length = ring_params->max_buffer_length;
  1050. hal_ce_dst_setup(hal, srng, ring_num);
  1051. }
  1052. }
  1053. SRNG_LOCK_INIT(&srng->lock);
  1054. srng->srng_event = 0;
  1055. srng->initialized = true;
  1056. return (void *)srng;
  1057. }
  1058. qdf_export_symbol(hal_srng_setup);
  1059. /**
  1060. * hal_srng_cleanup - Deinitialize HW SRNG ring.
  1061. * @hal_soc: Opaque HAL SOC handle
  1062. * @hal_srng: Opaque HAL SRNG pointer
  1063. */
  1064. void hal_srng_cleanup(void *hal_soc, hal_ring_handle_t hal_ring_hdl)
  1065. {
  1066. struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
  1067. SRNG_LOCK_DESTROY(&srng->lock);
  1068. srng->initialized = 0;
  1069. }
  1070. qdf_export_symbol(hal_srng_cleanup);
  1071. /**
  1072. * hal_srng_get_entrysize - Returns size of ring entry in bytes
  1073. * @hal_soc: Opaque HAL SOC handle
  1074. * @ring_type: one of the types from hal_ring_type
  1075. *
  1076. */
  1077. uint32_t hal_srng_get_entrysize(void *hal_soc, int ring_type)
  1078. {
  1079. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  1080. struct hal_hw_srng_config *ring_config =
  1081. HAL_SRNG_CONFIG(hal, ring_type);
  1082. return ring_config->entry_size << 2;
  1083. }
  1084. qdf_export_symbol(hal_srng_get_entrysize);
  1085. /**
  1086. * hal_srng_max_entries - Returns maximum possible number of ring entries
  1087. * @hal_soc: Opaque HAL SOC handle
  1088. * @ring_type: one of the types from hal_ring_type
  1089. *
  1090. * Return: Maximum number of entries for the given ring_type
  1091. */
  1092. uint32_t hal_srng_max_entries(void *hal_soc, int ring_type)
  1093. {
  1094. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  1095. struct hal_hw_srng_config *ring_config =
  1096. HAL_SRNG_CONFIG(hal, ring_type);
  1097. return ring_config->max_size / ring_config->entry_size;
  1098. }
  1099. qdf_export_symbol(hal_srng_max_entries);
  1100. enum hal_srng_dir hal_srng_get_dir(void *hal_soc, int ring_type)
  1101. {
  1102. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  1103. struct hal_hw_srng_config *ring_config =
  1104. HAL_SRNG_CONFIG(hal, ring_type);
  1105. return ring_config->ring_dir;
  1106. }
  1107. /**
  1108. * hal_srng_dump - Dump ring status
  1109. * @srng: hal srng pointer
  1110. */
  1111. void hal_srng_dump(struct hal_srng *srng)
  1112. {
  1113. if (srng->ring_dir == HAL_SRNG_SRC_RING) {
  1114. hal_debug("=== SRC RING %d ===", srng->ring_id);
  1115. hal_debug("hp %u, reap_hp %u, tp %u, cached tp %u",
  1116. srng->u.src_ring.hp,
  1117. srng->u.src_ring.reap_hp,
  1118. *srng->u.src_ring.tp_addr,
  1119. srng->u.src_ring.cached_tp);
  1120. } else {
  1121. hal_debug("=== DST RING %d ===", srng->ring_id);
  1122. hal_debug("tp %u, hp %u, cached tp %u, loop_cnt %u",
  1123. srng->u.dst_ring.tp,
  1124. *srng->u.dst_ring.hp_addr,
  1125. srng->u.dst_ring.cached_hp,
  1126. srng->u.dst_ring.loop_cnt);
  1127. }
  1128. }
  1129. /**
  1130. * hal_get_srng_params - Retrieve SRNG parameters for a given ring from HAL
  1131. *
  1132. * @hal_soc: Opaque HAL SOC handle
  1133. * @hal_ring: Ring pointer (Source or Destination ring)
  1134. * @ring_params: SRNG parameters will be returned through this structure
  1135. */
  1136. extern void hal_get_srng_params(hal_soc_handle_t hal_soc_hdl,
  1137. hal_ring_handle_t hal_ring_hdl,
  1138. struct hal_srng_params *ring_params)
  1139. {
  1140. struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
  1141. int i =0;
  1142. ring_params->ring_id = srng->ring_id;
  1143. ring_params->ring_dir = srng->ring_dir;
  1144. ring_params->entry_size = srng->entry_size;
  1145. ring_params->ring_base_paddr = srng->ring_base_paddr;
  1146. ring_params->ring_base_vaddr = srng->ring_base_vaddr;
  1147. ring_params->num_entries = srng->num_entries;
  1148. ring_params->msi_addr = srng->msi_addr;
  1149. ring_params->msi_data = srng->msi_data;
  1150. ring_params->intr_timer_thres_us = srng->intr_timer_thres_us;
  1151. ring_params->intr_batch_cntr_thres_entries =
  1152. srng->intr_batch_cntr_thres_entries;
  1153. ring_params->low_threshold = srng->u.src_ring.low_threshold;
  1154. ring_params->flags = srng->flags;
  1155. ring_params->ring_id = srng->ring_id;
  1156. for (i = 0 ; i < MAX_SRNG_REG_GROUPS; i++)
  1157. ring_params->hwreg_base[i] = srng->hwreg_base[i];
  1158. }
  1159. qdf_export_symbol(hal_get_srng_params);
  1160. void hal_set_low_threshold(hal_ring_handle_t hal_ring_hdl,
  1161. uint32_t low_threshold)
  1162. {
  1163. struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
  1164. srng->u.src_ring.low_threshold = low_threshold * srng->entry_size;
  1165. }
  1166. qdf_export_symbol(hal_set_low_threshold);
  1167. #ifdef FORCE_WAKE
  1168. void hal_set_init_phase(hal_soc_handle_t soc, bool init_phase)
  1169. {
  1170. struct hal_soc *hal_soc = (struct hal_soc *)soc;
  1171. hal_soc->init_phase = init_phase;
  1172. }
  1173. #endif /* FORCE_WAKE */