dp_rx.c 45 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590
  1. /*
  2. * Copyright (c) 2016-2017 The Linux Foundation. All rights reserved.
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for
  5. * any purpose with or without fee is hereby granted, provided that the
  6. * above copyright notice and this permission notice appear in all
  7. * copies.
  8. *
  9. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
  10. * WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
  11. * WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
  12. * AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
  13. * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
  14. * PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
  15. * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
  16. * PERFORMANCE OF THIS SOFTWARE.
  17. */
  18. #include "dp_types.h"
  19. #include "dp_rx.h"
  20. #include "dp_peer.h"
  21. #include "hal_rx.h"
  22. #include "hal_api.h"
  23. #include "qdf_nbuf.h"
  24. #ifdef MESH_MODE_SUPPORT
  25. #include "if_meta_hdr.h"
  26. #endif
  27. #include "dp_internal.h"
  28. #include "dp_rx_mon.h"
  29. #ifdef RX_DESC_DEBUG_CHECK
  30. static inline void dp_rx_desc_prep(struct dp_rx_desc *rx_desc, qdf_nbuf_t nbuf)
  31. {
  32. rx_desc->magic = DP_RX_DESC_MAGIC;
  33. rx_desc->nbuf = nbuf;
  34. }
  35. #else
  36. static inline void dp_rx_desc_prep(struct dp_rx_desc *rx_desc, qdf_nbuf_t nbuf)
  37. {
  38. rx_desc->nbuf = nbuf;
  39. }
  40. #endif
  41. #ifdef CONFIG_WIN
  42. static inline bool dp_rx_check_ap_bridge(struct dp_vdev *vdev)
  43. {
  44. return vdev->ap_bridge_enabled;
  45. }
  46. #else
  47. static inline bool dp_rx_check_ap_bridge(struct dp_vdev *vdev)
  48. {
  49. if (vdev->opmode != wlan_op_mode_sta)
  50. return true;
  51. else
  52. return false;
  53. }
  54. #endif
  55. /*
  56. * dp_rx_buffers_replenish() - replenish rxdma ring with rx nbufs
  57. * called during dp rx initialization
  58. * and at the end of dp_rx_process.
  59. *
  60. * @soc: core txrx main context
  61. * @mac_id: mac_id which is one of 3 mac_ids
  62. * @dp_rxdma_srng: dp rxdma circular ring
  63. * @rx_desc_pool: Poiter to free Rx descriptor pool
  64. * @num_req_buffers: number of buffer to be replenished
  65. * @desc_list: list of descs if called from dp_rx_process
  66. * or NULL during dp rx initialization or out of buffer
  67. * interrupt.
  68. * @tail: tail of descs list
  69. * @owner: who owns the nbuf (host, NSS etc...)
  70. * Return: return success or failure
  71. */
  72. QDF_STATUS dp_rx_buffers_replenish(struct dp_soc *dp_soc, uint32_t mac_id,
  73. struct dp_srng *dp_rxdma_srng,
  74. struct rx_desc_pool *rx_desc_pool,
  75. uint32_t num_req_buffers,
  76. union dp_rx_desc_list_elem_t **desc_list,
  77. union dp_rx_desc_list_elem_t **tail,
  78. uint8_t owner)
  79. {
  80. uint32_t num_alloc_desc;
  81. uint16_t num_desc_to_free = 0;
  82. struct dp_pdev *dp_pdev = dp_soc->pdev_list[mac_id];
  83. uint32_t num_entries_avail;
  84. uint32_t count;
  85. int sync_hw_ptr = 1;
  86. qdf_dma_addr_t paddr;
  87. qdf_nbuf_t rx_netbuf;
  88. void *rxdma_ring_entry;
  89. union dp_rx_desc_list_elem_t *next;
  90. QDF_STATUS ret;
  91. void *rxdma_srng;
  92. rxdma_srng = dp_rxdma_srng->hal_srng;
  93. if (!rxdma_srng) {
  94. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  95. "rxdma srng not initialized");
  96. DP_STATS_INC(dp_pdev, replenish.rxdma_err, num_req_buffers);
  97. return QDF_STATUS_E_FAILURE;
  98. }
  99. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  100. "requested %d buffers for replenish", num_req_buffers);
  101. hal_srng_access_start(dp_soc->hal_soc, rxdma_srng);
  102. num_entries_avail = hal_srng_src_num_avail(dp_soc->hal_soc,
  103. rxdma_srng,
  104. sync_hw_ptr);
  105. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  106. "no of availble entries in rxdma ring: %d",
  107. num_entries_avail);
  108. if (!(*desc_list) && (num_entries_avail >
  109. ((dp_rxdma_srng->num_entries * 3) / 4))) {
  110. num_req_buffers = num_entries_avail;
  111. } else if (num_entries_avail < num_req_buffers) {
  112. num_desc_to_free = num_req_buffers - num_entries_avail;
  113. num_req_buffers = num_entries_avail;
  114. }
  115. if (qdf_unlikely(!num_req_buffers)) {
  116. num_desc_to_free = num_req_buffers;
  117. hal_srng_access_end(dp_soc->hal_soc, rxdma_srng);
  118. goto free_descs;
  119. }
  120. /*
  121. * if desc_list is NULL, allocate the descs from freelist
  122. */
  123. if (!(*desc_list)) {
  124. num_alloc_desc = dp_rx_get_free_desc_list(dp_soc, mac_id,
  125. rx_desc_pool,
  126. num_req_buffers,
  127. desc_list,
  128. tail);
  129. if (!num_alloc_desc) {
  130. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  131. "no free rx_descs in freelist");
  132. DP_STATS_INC(dp_pdev, err.desc_alloc_fail,
  133. num_req_buffers);
  134. hal_srng_access_end(dp_soc->hal_soc, rxdma_srng);
  135. return QDF_STATUS_E_NOMEM;
  136. }
  137. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  138. "%d rx desc allocated", num_alloc_desc);
  139. num_req_buffers = num_alloc_desc;
  140. }
  141. count = 0;
  142. while (count < num_req_buffers) {
  143. rx_netbuf = qdf_nbuf_alloc(dp_soc->osdev,
  144. RX_BUFFER_SIZE,
  145. RX_BUFFER_RESERVATION,
  146. RX_BUFFER_ALIGNMENT,
  147. FALSE);
  148. if (rx_netbuf == NULL) {
  149. DP_STATS_INC(dp_pdev, replenish.nbuf_alloc_fail, 1);
  150. continue;
  151. }
  152. ret = qdf_nbuf_map_single(dp_soc->osdev, rx_netbuf,
  153. QDF_DMA_BIDIRECTIONAL);
  154. if (qdf_unlikely(ret == QDF_STATUS_E_FAILURE)) {
  155. qdf_nbuf_free(rx_netbuf);
  156. DP_STATS_INC(dp_pdev, replenish.map_err, 1);
  157. continue;
  158. }
  159. paddr = qdf_nbuf_get_frag_paddr(rx_netbuf, 0);
  160. /*
  161. * check if the physical address of nbuf->data is
  162. * less then 0x50000000 then free the nbuf and try
  163. * allocating new nbuf. We can try for 100 times.
  164. * this is a temp WAR till we fix it properly.
  165. */
  166. ret = check_x86_paddr(dp_soc, &rx_netbuf, &paddr, dp_pdev);
  167. if (ret == QDF_STATUS_E_FAILURE) {
  168. DP_STATS_INC(dp_pdev, replenish.x86_fail, 1);
  169. break;
  170. }
  171. count++;
  172. rxdma_ring_entry = hal_srng_src_get_next(dp_soc->hal_soc,
  173. rxdma_srng);
  174. next = (*desc_list)->next;
  175. dp_rx_desc_prep(&((*desc_list)->rx_desc), rx_netbuf);
  176. (*desc_list)->rx_desc.in_use = 1;
  177. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  178. "rx_netbuf=%pK, buf=%pK, paddr=0x%llx, cookie=%d\n",
  179. rx_netbuf, qdf_nbuf_data(rx_netbuf),
  180. (unsigned long long)paddr, (*desc_list)->rx_desc.cookie);
  181. hal_rxdma_buff_addr_info_set(rxdma_ring_entry, paddr,
  182. (*desc_list)->rx_desc.cookie,
  183. owner);
  184. *desc_list = next;
  185. }
  186. hal_srng_access_end(dp_soc->hal_soc, rxdma_srng);
  187. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  188. "successfully replenished %d buffers", num_req_buffers);
  189. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  190. "%d rx desc added back to free list", num_desc_to_free);
  191. DP_STATS_INC_PKT(dp_pdev, replenish.pkts, num_req_buffers,
  192. (RX_BUFFER_SIZE * num_req_buffers));
  193. free_descs:
  194. DP_STATS_INC(dp_pdev, buf_freelist, num_desc_to_free);
  195. /*
  196. * add any available free desc back to the free list
  197. */
  198. if (*desc_list)
  199. dp_rx_add_desc_list_to_free_list(dp_soc, desc_list, tail,
  200. mac_id, rx_desc_pool);
  201. return QDF_STATUS_SUCCESS;
  202. }
  203. /*
  204. * dp_rx_deliver_raw() - process RAW mode pkts and hand over the
  205. * pkts to RAW mode simulation to
  206. * decapsulate the pkt.
  207. *
  208. * @vdev: vdev on which RAW mode is enabled
  209. * @nbuf_list: list of RAW pkts to process
  210. * @peer: peer object from which the pkt is rx
  211. *
  212. * Return: void
  213. */
  214. void
  215. dp_rx_deliver_raw(struct dp_vdev *vdev, qdf_nbuf_t nbuf_list,
  216. struct dp_peer *peer)
  217. {
  218. qdf_nbuf_t deliver_list_head = NULL;
  219. qdf_nbuf_t deliver_list_tail = NULL;
  220. qdf_nbuf_t nbuf;
  221. nbuf = nbuf_list;
  222. while (nbuf) {
  223. qdf_nbuf_t next = qdf_nbuf_next(nbuf);
  224. DP_RX_LIST_APPEND(deliver_list_head, deliver_list_tail, nbuf);
  225. DP_STATS_INC(vdev->pdev, rx_raw_pkts, 1);
  226. /*
  227. * reset the chfrag_start and chfrag_end bits in nbuf cb
  228. * as this is a non-amsdu pkt and RAW mode simulation expects
  229. * these bit s to be 0 for non-amsdu pkt.
  230. */
  231. if (qdf_nbuf_is_rx_chfrag_start(nbuf) &&
  232. qdf_nbuf_is_rx_chfrag_end(nbuf)) {
  233. qdf_nbuf_set_rx_chfrag_start(nbuf, 0);
  234. qdf_nbuf_set_rx_chfrag_end(nbuf, 0);
  235. }
  236. nbuf = next;
  237. }
  238. vdev->osif_rsim_rx_decap(vdev->osif_vdev, &deliver_list_head,
  239. &deliver_list_tail, (struct cdp_peer*) peer);
  240. vdev->osif_rx(vdev->osif_vdev, deliver_list_head);
  241. }
  242. #ifdef DP_LFR
  243. /*
  244. * In case of LFR, data of a new peer might be sent up
  245. * even before peer is added.
  246. */
  247. static inline struct dp_vdev *
  248. dp_get_vdev_from_peer(struct dp_soc *soc,
  249. uint16_t peer_id,
  250. struct dp_peer *peer,
  251. struct hal_rx_mpdu_desc_info mpdu_desc_info)
  252. {
  253. struct dp_vdev *vdev;
  254. uint8_t vdev_id;
  255. if (unlikely(!peer)) {
  256. if (peer_id != HTT_INVALID_PEER) {
  257. vdev_id = DP_PEER_METADATA_ID_GET(
  258. mpdu_desc_info.peer_meta_data);
  259. QDF_TRACE(QDF_MODULE_ID_DP,
  260. QDF_TRACE_LEVEL_DEBUG,
  261. FL("PeerID %d not found use vdevID %d"),
  262. peer_id, vdev_id);
  263. vdev = dp_get_vdev_from_soc_vdev_id_wifi3(soc,
  264. vdev_id);
  265. } else {
  266. QDF_TRACE(QDF_MODULE_ID_DP,
  267. QDF_TRACE_LEVEL_DEBUG,
  268. FL("Invalid PeerID %d"),
  269. peer_id);
  270. return NULL;
  271. }
  272. } else {
  273. vdev = peer->vdev;
  274. }
  275. return vdev;
  276. }
  277. /*
  278. * In case of LFR, this is an empty inline function
  279. */
  280. static inline void dp_rx_peer_validity_check(struct dp_peer *peer)
  281. {
  282. }
  283. #else
  284. static inline struct dp_vdev *
  285. dp_get_vdev_from_peer(struct dp_soc *soc,
  286. uint16_t peer_id,
  287. struct dp_peer *peer,
  288. struct hal_rx_mpdu_desc_info mpdu_desc_info)
  289. {
  290. if (unlikely(!peer)) {
  291. QDF_TRACE(QDF_MODULE_ID_DP,
  292. QDF_TRACE_LEVEL_DEBUG,
  293. FL("Peer not found for peerID %d"),
  294. peer_id);
  295. return NULL;
  296. } else {
  297. return peer->vdev;
  298. }
  299. }
  300. /*
  301. * Assert if PEER is NULL
  302. */
  303. static inline void dp_rx_peer_validity_check(struct dp_peer *peer)
  304. {
  305. qdf_assert_always(peer);
  306. }
  307. #endif
  308. /**
  309. * dp_rx_intrabss_fwd() - Implements the Intra-BSS forwarding logic
  310. *
  311. * @soc: core txrx main context
  312. * @sa_peer : source peer entry
  313. * @rx_tlv_hdr : start address of rx tlvs
  314. * @nbuf : nbuf that has to be intrabss forwarded
  315. *
  316. * Return: bool: true if it is forwarded else false
  317. */
  318. static bool
  319. dp_rx_intrabss_fwd(struct dp_soc *soc,
  320. struct dp_peer *sa_peer,
  321. uint8_t *rx_tlv_hdr,
  322. qdf_nbuf_t nbuf)
  323. {
  324. uint16_t da_idx;
  325. uint16_t len;
  326. struct dp_peer *da_peer;
  327. struct dp_ast_entry *ast_entry;
  328. qdf_nbuf_t nbuf_copy;
  329. /* check if the destination peer is available in peer table
  330. * and also check if the source peer and destination peer
  331. * belong to the same vap and destination peer is not bss peer.
  332. */
  333. if ((hal_rx_msdu_end_da_is_valid_get(rx_tlv_hdr) &&
  334. !hal_rx_msdu_end_da_is_mcbc_get(rx_tlv_hdr))) {
  335. da_idx = hal_rx_msdu_end_da_idx_get(rx_tlv_hdr);
  336. ast_entry = soc->ast_table[da_idx];
  337. if (!ast_entry)
  338. return false;
  339. da_peer = ast_entry->peer;
  340. if (!da_peer)
  341. return false;
  342. if (da_peer->vdev == sa_peer->vdev && !da_peer->bss_peer) {
  343. memset(nbuf->cb, 0x0, sizeof(nbuf->cb));
  344. len = qdf_nbuf_len(nbuf);
  345. if (!dp_tx_send(sa_peer->vdev, nbuf)) {
  346. DP_STATS_INC_PKT(sa_peer, rx.intra_bss.pkts,
  347. 1, len);
  348. return true;
  349. } else {
  350. DP_STATS_INC_PKT(sa_peer, rx.intra_bss.fail, 1,
  351. len);
  352. return false;
  353. }
  354. }
  355. }
  356. /* if it is a broadcast pkt (eg: ARP) and it is not its own
  357. * source, then clone the pkt and send the cloned pkt for
  358. * intra BSS forwarding and original pkt up the network stack
  359. * Note: how do we handle multicast pkts. do we forward
  360. * all multicast pkts as is or let a higher layer module
  361. * like igmpsnoop decide whether to forward or not with
  362. * Mcast enhancement.
  363. */
  364. else if (qdf_unlikely((hal_rx_msdu_end_da_is_mcbc_get(rx_tlv_hdr) &&
  365. !sa_peer->bss_peer))) {
  366. nbuf_copy = qdf_nbuf_copy(nbuf);
  367. if (!nbuf_copy)
  368. return false;
  369. memset(nbuf_copy->cb, 0x0, sizeof(nbuf_copy->cb));
  370. len = qdf_nbuf_len(nbuf_copy);
  371. if (dp_tx_send(sa_peer->vdev, nbuf_copy)) {
  372. DP_STATS_INC_PKT(sa_peer, rx.intra_bss.fail, 1, len);
  373. qdf_nbuf_free(nbuf_copy);
  374. } else
  375. DP_STATS_INC_PKT(sa_peer, rx.intra_bss.pkts, 1, len);
  376. }
  377. /* return false as we have to still send the original pkt
  378. * up the stack
  379. */
  380. return false;
  381. }
  382. #ifdef MESH_MODE_SUPPORT
  383. /**
  384. * dp_rx_fill_mesh_stats() - Fills the mesh per packet receive stats
  385. *
  386. * @vdev: DP Virtual device handle
  387. * @nbuf: Buffer pointer
  388. * @rx_tlv_hdr: start of rx tlv header
  389. * @peer: pointer to peer
  390. *
  391. * This function allocated memory for mesh receive stats and fill the
  392. * required stats. Stores the memory address in skb cb.
  393. *
  394. * Return: void
  395. */
  396. void dp_rx_fill_mesh_stats(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
  397. uint8_t *rx_tlv_hdr, struct dp_peer *peer)
  398. {
  399. struct mesh_recv_hdr_s *rx_info = NULL;
  400. uint32_t pkt_type;
  401. uint32_t nss;
  402. uint32_t rate_mcs;
  403. uint32_t bw;
  404. /* fill recv mesh stats */
  405. rx_info = qdf_mem_malloc(sizeof(struct mesh_recv_hdr_s));
  406. /* upper layers are resposible to free this memory */
  407. if (rx_info == NULL) {
  408. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  409. "Memory allocation failed for mesh rx stats");
  410. DP_STATS_INC(vdev->pdev, mesh_mem_alloc, 1);
  411. return;
  412. }
  413. rx_info->rs_flags = MESH_RXHDR_VER1;
  414. if (qdf_nbuf_is_rx_chfrag_start(nbuf))
  415. rx_info->rs_flags |= MESH_RX_FIRST_MSDU;
  416. if (qdf_nbuf_is_rx_chfrag_end(nbuf))
  417. rx_info->rs_flags |= MESH_RX_LAST_MSDU;
  418. if (hal_rx_attn_msdu_get_is_decrypted(rx_tlv_hdr)) {
  419. rx_info->rs_flags |= MESH_RX_DECRYPTED;
  420. rx_info->rs_keyix = hal_rx_msdu_get_keyid(rx_tlv_hdr);
  421. if (vdev->osif_get_key)
  422. vdev->osif_get_key(vdev->osif_vdev,
  423. &rx_info->rs_decryptkey[0],
  424. &peer->mac_addr.raw[0],
  425. rx_info->rs_keyix);
  426. }
  427. rx_info->rs_rssi = hal_rx_msdu_start_get_rssi(rx_tlv_hdr);
  428. rx_info->rs_channel = hal_rx_msdu_start_get_freq(rx_tlv_hdr);
  429. pkt_type = hal_rx_msdu_start_get_pkt_type(rx_tlv_hdr);
  430. rate_mcs = hal_rx_msdu_start_rate_mcs_get(rx_tlv_hdr);
  431. bw = hal_rx_msdu_start_bw_get(rx_tlv_hdr);
  432. nss = hal_rx_msdu_start_nss_get(rx_tlv_hdr);
  433. rx_info->rs_ratephy1 = rate_mcs | (nss << 0x8) | (pkt_type << 16) |
  434. (bw << 24);
  435. qdf_nbuf_set_rx_fctx_type(nbuf, (void *)rx_info, CB_FTYPE_MESH_RX_INFO);
  436. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_DEBUG,
  437. FL("Mesh rx stats: flags %x, rssi %x, chn %x, rate %x, kix %x"),
  438. rx_info->rs_flags,
  439. rx_info->rs_rssi,
  440. rx_info->rs_channel,
  441. rx_info->rs_ratephy1,
  442. rx_info->rs_keyix);
  443. }
  444. /**
  445. * dp_rx_filter_mesh_packets() - Filters mesh unwanted packets
  446. *
  447. * @vdev: DP Virtual device handle
  448. * @nbuf: Buffer pointer
  449. * @rx_tlv_hdr: start of rx tlv header
  450. *
  451. * This checks if the received packet is matching any filter out
  452. * catogery and and drop the packet if it matches.
  453. *
  454. * Return: status(0 indicates drop, 1 indicate to no drop)
  455. */
  456. QDF_STATUS dp_rx_filter_mesh_packets(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
  457. uint8_t *rx_tlv_hdr)
  458. {
  459. union dp_align_mac_addr mac_addr;
  460. if (qdf_unlikely(vdev->mesh_rx_filter)) {
  461. if (vdev->mesh_rx_filter & MESH_FILTER_OUT_FROMDS)
  462. if (hal_rx_mpdu_get_fr_ds(rx_tlv_hdr))
  463. return QDF_STATUS_SUCCESS;
  464. if (vdev->mesh_rx_filter & MESH_FILTER_OUT_TODS)
  465. if (hal_rx_mpdu_get_to_ds(rx_tlv_hdr))
  466. return QDF_STATUS_SUCCESS;
  467. if (vdev->mesh_rx_filter & MESH_FILTER_OUT_NODS)
  468. if (!hal_rx_mpdu_get_fr_ds(rx_tlv_hdr)
  469. && !hal_rx_mpdu_get_to_ds(rx_tlv_hdr))
  470. return QDF_STATUS_SUCCESS;
  471. if (vdev->mesh_rx_filter & MESH_FILTER_OUT_RA) {
  472. if (hal_rx_mpdu_get_addr1(rx_tlv_hdr,
  473. &mac_addr.raw[0]))
  474. return QDF_STATUS_E_FAILURE;
  475. if (!qdf_mem_cmp(&mac_addr.raw[0],
  476. &vdev->mac_addr.raw[0],
  477. DP_MAC_ADDR_LEN))
  478. return QDF_STATUS_SUCCESS;
  479. }
  480. if (vdev->mesh_rx_filter & MESH_FILTER_OUT_TA) {
  481. if (hal_rx_mpdu_get_addr2(rx_tlv_hdr,
  482. &mac_addr.raw[0]))
  483. return QDF_STATUS_E_FAILURE;
  484. if (!qdf_mem_cmp(&mac_addr.raw[0],
  485. &vdev->mac_addr.raw[0],
  486. DP_MAC_ADDR_LEN))
  487. return QDF_STATUS_SUCCESS;
  488. }
  489. }
  490. return QDF_STATUS_E_FAILURE;
  491. }
  492. #else
  493. void dp_rx_fill_mesh_stats(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
  494. uint8_t *rx_tlv_hdr, struct dp_peer *peer)
  495. {
  496. }
  497. QDF_STATUS dp_rx_filter_mesh_packets(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
  498. uint8_t *rx_tlv_hdr)
  499. {
  500. return QDF_STATUS_E_FAILURE;
  501. }
  502. #endif
  503. #ifdef CONFIG_WIN
  504. /**
  505. * dp_rx_nac_filter(): Function to perform filtering of non-associated
  506. * clients
  507. * @pdev: DP pdev handle
  508. * @rx_pkt_hdr: Rx packet Header
  509. *
  510. * return: dp_vdev*
  511. */
  512. static
  513. struct dp_vdev *dp_rx_nac_filter(struct dp_pdev *pdev,
  514. uint8_t *rx_pkt_hdr)
  515. {
  516. struct ieee80211_frame *wh;
  517. struct dp_neighbour_peer *peer = NULL;
  518. wh = (struct ieee80211_frame *)rx_pkt_hdr;
  519. if ((wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) != IEEE80211_FC1_DIR_TODS)
  520. return NULL;
  521. qdf_spin_lock_bh(&pdev->neighbour_peer_mutex);
  522. TAILQ_FOREACH(peer, &pdev->neighbour_peers_list,
  523. neighbour_peer_list_elem) {
  524. if (qdf_mem_cmp(&peer->neighbour_peers_macaddr.raw[0],
  525. wh->i_addr2, DP_MAC_ADDR_LEN) == 0) {
  526. QDF_TRACE(
  527. QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  528. FL("NAC configuration matched for mac-%2x:%2x:%2x:%2x:%2x:%2x"),
  529. peer->neighbour_peers_macaddr.raw[0],
  530. peer->neighbour_peers_macaddr.raw[1],
  531. peer->neighbour_peers_macaddr.raw[2],
  532. peer->neighbour_peers_macaddr.raw[3],
  533. peer->neighbour_peers_macaddr.raw[4],
  534. peer->neighbour_peers_macaddr.raw[5]);
  535. qdf_spin_unlock_bh(&pdev->neighbour_peer_mutex);
  536. return pdev->monitor_vdev;
  537. }
  538. }
  539. qdf_spin_unlock_bh(&pdev->neighbour_peer_mutex);
  540. return NULL;
  541. }
  542. /**
  543. * dp_rx_process_invalid_peer(): Function to pass invalid peer list to umac
  544. * @soc: DP SOC handle
  545. * @mpdu: mpdu for which peer is invalid
  546. *
  547. * return: integer type
  548. */
  549. uint8_t dp_rx_process_invalid_peer(struct dp_soc *soc, qdf_nbuf_t mpdu)
  550. {
  551. struct dp_invalid_peer_msg msg;
  552. struct dp_vdev *vdev = NULL;
  553. struct dp_pdev *pdev = NULL;
  554. struct ieee80211_frame *wh;
  555. uint8_t i;
  556. uint8_t *rx_pkt_hdr;
  557. rx_pkt_hdr = hal_rx_pkt_hdr_get(qdf_nbuf_data(mpdu));
  558. wh = (struct ieee80211_frame *)rx_pkt_hdr;
  559. if (!DP_FRAME_IS_DATA(wh)) {
  560. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  561. "NAWDS valid only for data frames");
  562. return 1;
  563. }
  564. if (qdf_nbuf_len(mpdu) < sizeof(struct ieee80211_frame)) {
  565. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  566. "Invalid nbuf length");
  567. return 1;
  568. }
  569. for (i = 0; i < MAX_PDEV_CNT; i++) {
  570. pdev = soc->pdev_list[i];
  571. if (!pdev) {
  572. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  573. "PDEV not found");
  574. continue;
  575. }
  576. if (pdev->filter_neighbour_peers) {
  577. /* Next Hop scenario not yet handle */
  578. vdev = dp_rx_nac_filter(pdev, rx_pkt_hdr);
  579. if (vdev) {
  580. dp_rx_mon_deliver(soc, i,
  581. pdev->invalid_peer_head_msdu,
  582. pdev->invalid_peer_tail_msdu);
  583. return 0;
  584. }
  585. }
  586. TAILQ_FOREACH(vdev, &pdev->vdev_list, vdev_list_elem) {
  587. if (qdf_mem_cmp(wh->i_addr1, vdev->mac_addr.raw,
  588. DP_MAC_ADDR_LEN) == 0) {
  589. goto out;
  590. }
  591. }
  592. }
  593. if (!vdev) {
  594. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  595. "VDEV not found");
  596. return 1;
  597. }
  598. out:
  599. msg.wh = wh;
  600. qdf_nbuf_pull_head(mpdu, RX_PKT_TLVS_LEN);
  601. msg.nbuf = mpdu;
  602. msg.vdev_id = vdev->vdev_id;
  603. if (pdev->soc->cdp_soc.ol_ops->rx_invalid_peer)
  604. return pdev->soc->cdp_soc.ol_ops->rx_invalid_peer(
  605. pdev->osif_pdev, &msg);
  606. return 0;
  607. }
  608. #else
  609. uint8_t dp_rx_process_invalid_peer(struct dp_soc *soc, qdf_nbuf_t mpdu)
  610. {
  611. return 0;
  612. }
  613. #endif
  614. #if defined(FEATURE_LRO)
  615. static void dp_rx_print_lro_info(uint8_t *rx_tlv)
  616. {
  617. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  618. FL("----------------------RX DESC LRO----------------------\n"));
  619. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  620. FL("lro_eligible 0x%x"), HAL_RX_TLV_GET_LRO_ELIGIBLE(rx_tlv));
  621. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  622. FL("pure_ack 0x%x"), HAL_RX_TLV_GET_TCP_PURE_ACK(rx_tlv));
  623. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  624. FL("chksum 0x%x"), HAL_RX_TLV_GET_TCP_CHKSUM(rx_tlv));
  625. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  626. FL("TCP seq num 0x%x"), HAL_RX_TLV_GET_TCP_SEQ(rx_tlv));
  627. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  628. FL("TCP ack num 0x%x"), HAL_RX_TLV_GET_TCP_ACK(rx_tlv));
  629. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  630. FL("TCP window 0x%x"), HAL_RX_TLV_GET_TCP_WIN(rx_tlv));
  631. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  632. FL("TCP protocol 0x%x"), HAL_RX_TLV_GET_TCP_PROTO(rx_tlv));
  633. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  634. FL("TCP offset 0x%x"), HAL_RX_TLV_GET_TCP_OFFSET(rx_tlv));
  635. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  636. FL("toeplitz 0x%x"), HAL_RX_TLV_GET_FLOW_ID_TOEPLITZ(rx_tlv));
  637. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  638. FL("---------------------------------------------------------\n"));
  639. }
  640. /**
  641. * dp_rx_lro() - LRO related processing
  642. * @rx_tlv: TLV data extracted from the rx packet
  643. * @peer: destination peer of the msdu
  644. * @msdu: network buffer
  645. * @ctx: LRO context
  646. *
  647. * This function performs the LRO related processing of the msdu
  648. *
  649. * Return: true: LRO enabled false: LRO is not enabled
  650. */
  651. static void dp_rx_lro(uint8_t *rx_tlv, struct dp_peer *peer,
  652. qdf_nbuf_t msdu, qdf_lro_ctx_t ctx)
  653. {
  654. if (!peer || !peer->vdev || !peer->vdev->lro_enable) {
  655. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_DEBUG,
  656. FL("no peer, no vdev or LRO disabled"));
  657. QDF_NBUF_CB_RX_LRO_ELIGIBLE(msdu) = 0;
  658. return;
  659. }
  660. qdf_assert(rx_tlv);
  661. dp_rx_print_lro_info(rx_tlv);
  662. QDF_NBUF_CB_RX_LRO_ELIGIBLE(msdu) =
  663. HAL_RX_TLV_GET_LRO_ELIGIBLE(rx_tlv);
  664. QDF_NBUF_CB_RX_TCP_PURE_ACK(msdu) =
  665. HAL_RX_TLV_GET_TCP_PURE_ACK(rx_tlv);
  666. QDF_NBUF_CB_RX_TCP_CHKSUM(msdu) =
  667. HAL_RX_TLV_GET_TCP_CHKSUM(rx_tlv);
  668. QDF_NBUF_CB_RX_TCP_SEQ_NUM(msdu) =
  669. HAL_RX_TLV_GET_TCP_SEQ(rx_tlv);
  670. QDF_NBUF_CB_RX_TCP_ACK_NUM(msdu) =
  671. HAL_RX_TLV_GET_TCP_ACK(rx_tlv);
  672. QDF_NBUF_CB_RX_TCP_WIN(msdu) =
  673. HAL_RX_TLV_GET_TCP_WIN(rx_tlv);
  674. QDF_NBUF_CB_RX_TCP_PROTO(msdu) =
  675. HAL_RX_TLV_GET_TCP_PROTO(rx_tlv);
  676. QDF_NBUF_CB_RX_IPV6_PROTO(msdu) =
  677. HAL_RX_TLV_GET_IPV6(rx_tlv);
  678. QDF_NBUF_CB_RX_TCP_OFFSET(msdu) =
  679. HAL_RX_TLV_GET_TCP_OFFSET(rx_tlv);
  680. QDF_NBUF_CB_RX_FLOW_ID(msdu) =
  681. HAL_RX_TLV_GET_FLOW_ID_TOEPLITZ(rx_tlv);
  682. QDF_NBUF_CB_RX_LRO_CTX(msdu) = (unsigned char *)ctx;
  683. }
  684. #else
  685. static void dp_rx_lro(uint8_t *rx_tlv, struct dp_peer *peer,
  686. qdf_nbuf_t msdu, qdf_lro_ctx_t ctx)
  687. {
  688. }
  689. #endif
  690. static inline void dp_rx_adjust_nbuf_len(qdf_nbuf_t nbuf, uint16_t *mpdu_len)
  691. {
  692. if (*mpdu_len >= (RX_BUFFER_SIZE - RX_PKT_TLVS_LEN))
  693. qdf_nbuf_set_pktlen(nbuf, RX_BUFFER_SIZE);
  694. else
  695. qdf_nbuf_set_pktlen(nbuf, (*mpdu_len + RX_PKT_TLVS_LEN));
  696. *mpdu_len -= (RX_BUFFER_SIZE - RX_PKT_TLVS_LEN);
  697. }
  698. /**
  699. * dp_rx_sg_create() - create a frag_list for MSDUs which are spread across
  700. * multiple nbufs.
  701. * @nbuf: nbuf which can may be part of frag_list.
  702. * @rx_tlv_hdr: pointer to the start of RX TLV headers.
  703. * @mpdu_len: mpdu length.
  704. * @is_first_frag: is this the first nbuf in the fragmented MSDU.
  705. * @frag_list_len: length of all the fragments combined.
  706. * @head_frag_nbuf: parent nbuf
  707. * @frag_list_head: pointer to the first nbuf in the frag_list.
  708. * @frag_list_tail: pointer to the last nbuf in the frag_list.
  709. *
  710. * This function implements the creation of RX frag_list for cases
  711. * where an MSDU is spread across multiple nbufs.
  712. *
  713. */
  714. void dp_rx_sg_create(qdf_nbuf_t nbuf, uint8_t *rx_tlv_hdr,
  715. uint16_t *mpdu_len, bool *is_first_frag,
  716. uint16_t *frag_list_len, qdf_nbuf_t *head_frag_nbuf,
  717. qdf_nbuf_t *frag_list_head, qdf_nbuf_t *frag_list_tail)
  718. {
  719. if (qdf_unlikely(qdf_nbuf_is_rx_chfrag_cont(nbuf))) {
  720. if (!(*is_first_frag)) {
  721. *is_first_frag = 1;
  722. qdf_nbuf_set_rx_chfrag_start(nbuf, 1);
  723. *mpdu_len = hal_rx_msdu_start_msdu_len_get(rx_tlv_hdr);
  724. dp_rx_adjust_nbuf_len(nbuf, mpdu_len);
  725. *head_frag_nbuf = nbuf;
  726. } else {
  727. dp_rx_adjust_nbuf_len(nbuf, mpdu_len);
  728. qdf_nbuf_pull_head(nbuf, RX_PKT_TLVS_LEN);
  729. *frag_list_len += qdf_nbuf_len(nbuf);
  730. DP_RX_LIST_APPEND(*frag_list_head,
  731. *frag_list_tail,
  732. nbuf);
  733. }
  734. } else {
  735. if (qdf_unlikely(*is_first_frag)) {
  736. qdf_nbuf_set_rx_chfrag_start(nbuf, 0);
  737. dp_rx_adjust_nbuf_len(nbuf, mpdu_len);
  738. qdf_nbuf_pull_head(nbuf,
  739. RX_PKT_TLVS_LEN);
  740. *frag_list_len += qdf_nbuf_len(nbuf);
  741. DP_RX_LIST_APPEND(*frag_list_head,
  742. *frag_list_tail,
  743. nbuf);
  744. qdf_nbuf_append_ext_list(*head_frag_nbuf,
  745. *frag_list_head,
  746. *frag_list_len);
  747. *is_first_frag = 0;
  748. return;
  749. }
  750. *head_frag_nbuf = nbuf;
  751. }
  752. }
  753. static inline void dp_rx_deliver_to_stack(struct dp_vdev *vdev,
  754. struct dp_peer *peer,
  755. qdf_nbuf_t nbuf_list)
  756. {
  757. /*
  758. * highly unlikely to have a vdev without a registerd rx
  759. * callback function. if so let us free the nbuf_list.
  760. */
  761. if (qdf_unlikely(!vdev->osif_rx)) {
  762. qdf_nbuf_t nbuf;
  763. do {
  764. nbuf = nbuf_list;
  765. nbuf_list = nbuf_list->next;
  766. qdf_nbuf_free(nbuf);
  767. } while (nbuf_list);
  768. return;
  769. }
  770. if (qdf_unlikely(vdev->rx_decap_type == htt_cmn_pkt_type_raw) ||
  771. (vdev->rx_decap_type == htt_cmn_pkt_type_native_wifi))
  772. dp_rx_deliver_raw(vdev, nbuf_list, peer);
  773. else
  774. vdev->osif_rx(vdev->osif_vdev, nbuf_list);
  775. }
  776. #ifdef WDS_VENDOR_EXTENSION
  777. int dp_wds_rx_policy_check(
  778. uint8_t *rx_tlv_hdr,
  779. struct dp_vdev *vdev,
  780. struct dp_peer *peer,
  781. int rx_mcast
  782. )
  783. {
  784. struct dp_peer *bss_peer;
  785. int fr_ds, to_ds, rx_3addr, rx_4addr;
  786. int rx_policy_ucast, rx_policy_mcast;
  787. if (vdev->opmode == wlan_op_mode_ap) {
  788. TAILQ_FOREACH(bss_peer, &vdev->peer_list, peer_list_elem) {
  789. if (bss_peer->bss_peer) {
  790. /* if wds policy check is not enabled on this vdev, accept all frames */
  791. if (!bss_peer->wds_ecm.wds_rx_filter) {
  792. return 1;
  793. }
  794. break;
  795. }
  796. }
  797. rx_policy_ucast = bss_peer->wds_ecm.wds_rx_ucast_4addr;
  798. rx_policy_mcast = bss_peer->wds_ecm.wds_rx_mcast_4addr;
  799. } else { /* sta mode */
  800. if (!peer->wds_ecm.wds_rx_filter) {
  801. return 1;
  802. }
  803. rx_policy_ucast = peer->wds_ecm.wds_rx_ucast_4addr;
  804. rx_policy_mcast = peer->wds_ecm.wds_rx_mcast_4addr;
  805. }
  806. /* ------------------------------------------------
  807. * self
  808. * peer- rx rx-
  809. * wds ucast mcast dir policy accept note
  810. * ------------------------------------------------
  811. * 1 1 0 11 x1 1 AP configured to accept ds-to-ds Rx ucast from wds peers, constraint met; so, accept
  812. * 1 1 0 01 x1 0 AP configured to accept ds-to-ds Rx ucast from wds peers, constraint not met; so, drop
  813. * 1 1 0 10 x1 0 AP configured to accept ds-to-ds Rx ucast from wds peers, constraint not met; so, drop
  814. * 1 1 0 00 x1 0 bad frame, won't see it
  815. * 1 0 1 11 1x 1 AP configured to accept ds-to-ds Rx mcast from wds peers, constraint met; so, accept
  816. * 1 0 1 01 1x 0 AP configured to accept ds-to-ds Rx mcast from wds peers, constraint not met; so, drop
  817. * 1 0 1 10 1x 0 AP configured to accept ds-to-ds Rx mcast from wds peers, constraint not met; so, drop
  818. * 1 0 1 00 1x 0 bad frame, won't see it
  819. * 1 1 0 11 x0 0 AP configured to accept from-ds Rx ucast from wds peers, constraint not met; so, drop
  820. * 1 1 0 01 x0 0 AP configured to accept from-ds Rx ucast from wds peers, constraint not met; so, drop
  821. * 1 1 0 10 x0 1 AP configured to accept from-ds Rx ucast from wds peers, constraint met; so, accept
  822. * 1 1 0 00 x0 0 bad frame, won't see it
  823. * 1 0 1 11 0x 0 AP configured to accept from-ds Rx mcast from wds peers, constraint not met; so, drop
  824. * 1 0 1 01 0x 0 AP configured to accept from-ds Rx mcast from wds peers, constraint not met; so, drop
  825. * 1 0 1 10 0x 1 AP configured to accept from-ds Rx mcast from wds peers, constraint met; so, accept
  826. * 1 0 1 00 0x 0 bad frame, won't see it
  827. *
  828. * 0 x x 11 xx 0 we only accept td-ds Rx frames from non-wds peers in mode.
  829. * 0 x x 01 xx 1
  830. * 0 x x 10 xx 0
  831. * 0 x x 00 xx 0 bad frame, won't see it
  832. * ------------------------------------------------
  833. */
  834. fr_ds = hal_rx_mpdu_get_fr_ds(rx_tlv_hdr);
  835. to_ds = hal_rx_mpdu_get_to_ds(rx_tlv_hdr);
  836. rx_3addr = fr_ds ^ to_ds;
  837. rx_4addr = fr_ds & to_ds;
  838. if (vdev->opmode == wlan_op_mode_ap) {
  839. if ((!peer->wds_enabled && rx_3addr && to_ds) ||
  840. (peer->wds_enabled && !rx_mcast && (rx_4addr == rx_policy_ucast)) ||
  841. (peer->wds_enabled && rx_mcast && (rx_4addr == rx_policy_mcast))) {
  842. return 1;
  843. }
  844. } else { /* sta mode */
  845. if ((!rx_mcast && (rx_4addr == rx_policy_ucast)) ||
  846. (rx_mcast && (rx_4addr == rx_policy_mcast))) {
  847. return 1;
  848. }
  849. }
  850. return 0;
  851. }
  852. #else
  853. int dp_wds_rx_policy_check(
  854. uint8_t *rx_tlv_hdr,
  855. struct dp_vdev *vdev,
  856. struct dp_peer *peer,
  857. int rx_mcast
  858. )
  859. {
  860. return 1;
  861. }
  862. #endif
  863. /**
  864. * dp_rx_process() - Brain of the Rx processing functionality
  865. * Called from the bottom half (tasklet/NET_RX_SOFTIRQ)
  866. * @soc: core txrx main context
  867. * @hal_ring: opaque pointer to the HAL Rx Ring, which will be serviced
  868. * @quota: No. of units (packets) that can be serviced in one shot.
  869. *
  870. * This function implements the core of Rx functionality. This is
  871. * expected to handle only non-error frames.
  872. *
  873. * Return: uint32_t: No. of elements processed
  874. */
  875. uint32_t
  876. dp_rx_process(struct dp_intr *int_ctx, void *hal_ring, uint32_t quota)
  877. {
  878. void *hal_soc;
  879. void *ring_desc;
  880. struct dp_rx_desc *rx_desc = NULL;
  881. qdf_nbuf_t nbuf, next;
  882. union dp_rx_desc_list_elem_t *head[MAX_PDEV_CNT] = { NULL };
  883. union dp_rx_desc_list_elem_t *tail[MAX_PDEV_CNT] = { NULL };
  884. uint32_t rx_bufs_used = 0, rx_buf_cookie, l2_hdr_offset;
  885. uint16_t msdu_len;
  886. uint16_t peer_id;
  887. struct dp_peer *peer = NULL;
  888. struct dp_vdev *vdev = NULL;
  889. uint32_t pkt_len;
  890. struct hal_rx_mpdu_desc_info mpdu_desc_info = { 0 };
  891. struct hal_rx_msdu_desc_info msdu_desc_info = { 0 };
  892. enum hal_reo_error_status error;
  893. uint32_t peer_mdata;
  894. uint8_t *rx_tlv_hdr;
  895. uint32_t rx_bufs_reaped[MAX_PDEV_CNT] = { 0 };
  896. uint32_t sgi, mcs, tid, nss, bw, reception_type, pkt_type;
  897. uint8_t mac_id = 0;
  898. uint32_t ampdu_flag, amsdu_flag;
  899. struct dp_pdev *pdev;
  900. struct dp_srng *dp_rxdma_srng;
  901. struct rx_desc_pool *rx_desc_pool;
  902. struct dp_soc *soc = int_ctx->soc;
  903. uint8_t ring_id = 0;
  904. uint8_t core_id = 0;
  905. bool is_first_frag = 0;
  906. uint16_t mpdu_len = 0;
  907. qdf_nbuf_t head_frag_nbuf = NULL;
  908. qdf_nbuf_t frag_list_head = NULL;
  909. qdf_nbuf_t frag_list_tail = NULL;
  910. uint16_t frag_list_len = 0;
  911. qdf_nbuf_t nbuf_head = NULL;
  912. qdf_nbuf_t nbuf_tail = NULL;
  913. qdf_nbuf_t deliver_list_head = NULL;
  914. qdf_nbuf_t deliver_list_tail = NULL;
  915. DP_HIST_INIT();
  916. /* Debug -- Remove later */
  917. qdf_assert(soc && hal_ring);
  918. hal_soc = soc->hal_soc;
  919. /* Debug -- Remove later */
  920. qdf_assert(hal_soc);
  921. hif_pm_runtime_mark_last_busy(soc->osdev->dev);
  922. sgi = mcs = tid = nss = bw = reception_type = pkt_type = 0;
  923. if (qdf_unlikely(hal_srng_access_start(hal_soc, hal_ring))) {
  924. /*
  925. * Need API to convert from hal_ring pointer to
  926. * Ring Type / Ring Id combo
  927. */
  928. DP_STATS_INC(soc, rx.err.hal_ring_access_fail, 1);
  929. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  930. FL("HAL RING Access Failed -- %pK"), hal_ring);
  931. hal_srng_access_end(hal_soc, hal_ring);
  932. goto done;
  933. }
  934. /*
  935. * start reaping the buffers from reo ring and queue
  936. * them in per vdev queue.
  937. * Process the received pkts in a different per vdev loop.
  938. */
  939. while (qdf_likely(quota && (ring_desc =
  940. hal_srng_dst_get_next(hal_soc, hal_ring)))) {
  941. error = HAL_RX_ERROR_STATUS_GET(ring_desc);
  942. ring_id = hal_srng_ring_id_get(hal_ring);
  943. if (qdf_unlikely(error == HAL_REO_ERROR_DETECTED)) {
  944. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  945. FL("HAL RING 0x%pK:error %d"), hal_ring, error);
  946. DP_STATS_INC(soc, rx.err.hal_reo_error[ring_id], 1);
  947. /* Don't know how to deal with this -- assert */
  948. qdf_assert(0);
  949. }
  950. rx_buf_cookie = HAL_RX_REO_BUF_COOKIE_GET(ring_desc);
  951. rx_desc = dp_rx_cookie_2_va_rxdma_buf(soc, rx_buf_cookie);
  952. qdf_assert(rx_desc);
  953. rx_bufs_reaped[rx_desc->pool_id]++;
  954. /* TODO */
  955. /*
  956. * Need a separate API for unmapping based on
  957. * phyiscal address
  958. */
  959. qdf_nbuf_unmap_single(soc->osdev, rx_desc->nbuf,
  960. QDF_DMA_BIDIRECTIONAL);
  961. core_id = smp_processor_id();
  962. DP_STATS_INC(soc, rx.ring_packets[core_id][ring_id], 1);
  963. /* Get MPDU DESC info */
  964. hal_rx_mpdu_desc_info_get(ring_desc, &mpdu_desc_info);
  965. peer_id = DP_PEER_METADATA_PEER_ID_GET(
  966. mpdu_desc_info.peer_meta_data);
  967. hal_rx_mpdu_peer_meta_data_set(qdf_nbuf_data(rx_desc->nbuf),
  968. mpdu_desc_info.peer_meta_data);
  969. peer = dp_peer_find_by_id(soc, peer_id);
  970. vdev = dp_get_vdev_from_peer(soc, peer_id, peer,
  971. mpdu_desc_info);
  972. if (!vdev) {
  973. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO_LOW,
  974. FL("vdev is NULL"));
  975. DP_STATS_INC(soc, rx.err.invalid_vdev, 1);
  976. qdf_nbuf_free(rx_desc->nbuf);
  977. goto fail;
  978. }
  979. /* Get MSDU DESC info */
  980. hal_rx_msdu_desc_info_get(ring_desc, &msdu_desc_info);
  981. /*
  982. * save msdu flags first, last and continuation msdu in
  983. * nbuf->cb
  984. */
  985. if (msdu_desc_info.msdu_flags & HAL_MSDU_F_FIRST_MSDU_IN_MPDU)
  986. qdf_nbuf_set_rx_chfrag_start(rx_desc->nbuf, 1);
  987. if (msdu_desc_info.msdu_flags & HAL_MSDU_F_MSDU_CONTINUATION)
  988. qdf_nbuf_set_rx_chfrag_cont(rx_desc->nbuf, 1);
  989. if (msdu_desc_info.msdu_flags & HAL_MSDU_F_LAST_MSDU_IN_MPDU)
  990. qdf_nbuf_set_rx_chfrag_end(rx_desc->nbuf, 1);
  991. DP_STATS_INC_PKT(peer, rx.rcvd_reo[ring_id], 1,
  992. qdf_nbuf_len(rx_desc->nbuf));
  993. ampdu_flag = (mpdu_desc_info.mpdu_flags &
  994. HAL_MPDU_F_AMPDU_FLAG);
  995. DP_STATS_INCC(peer, rx.ampdu_cnt, 1, ampdu_flag);
  996. DP_STATS_INCC(peer, rx.non_ampdu_cnt, 1, !(ampdu_flag));
  997. amsdu_flag = ((msdu_desc_info.msdu_flags &
  998. HAL_MSDU_F_FIRST_MSDU_IN_MPDU) &&
  999. (msdu_desc_info.msdu_flags &
  1000. HAL_MSDU_F_LAST_MSDU_IN_MPDU));
  1001. DP_STATS_INCC(peer, rx.non_amsdu_cnt, 1,
  1002. amsdu_flag);
  1003. DP_STATS_INCC(peer, rx.amsdu_cnt, 1,
  1004. !(amsdu_flag));
  1005. DP_HIST_PACKET_COUNT_INC(vdev->pdev->pdev_id);
  1006. DP_RX_LIST_APPEND(nbuf_head, nbuf_tail, rx_desc->nbuf);
  1007. fail:
  1008. /*
  1009. * if continuation bit is set then we have MSDU spread
  1010. * across multiple buffers, let us not decrement quota
  1011. * till we reap all buffers of that MSDU.
  1012. */
  1013. if (qdf_likely(!qdf_nbuf_is_rx_chfrag_cont(rx_desc->nbuf)))
  1014. quota -= 1;
  1015. dp_rx_add_to_free_desc_list(&head[rx_desc->pool_id],
  1016. &tail[rx_desc->pool_id],
  1017. rx_desc);
  1018. }
  1019. done:
  1020. hal_srng_access_end(hal_soc, hal_ring);
  1021. /* Update histogram statistics by looping through pdev's */
  1022. DP_RX_HIST_STATS_PER_PDEV();
  1023. for (mac_id = 0; mac_id < MAX_PDEV_CNT; mac_id++) {
  1024. /*
  1025. * continue with next mac_id if no pkts were reaped
  1026. * from that pool
  1027. */
  1028. if (!rx_bufs_reaped[mac_id])
  1029. continue;
  1030. pdev = soc->pdev_list[mac_id];
  1031. dp_rxdma_srng = &pdev->rx_refill_buf_ring;
  1032. rx_desc_pool = &soc->rx_desc_buf[mac_id];
  1033. dp_rx_buffers_replenish(soc, mac_id, dp_rxdma_srng,
  1034. rx_desc_pool, rx_bufs_reaped[mac_id],
  1035. &head[mac_id], &tail[mac_id],
  1036. HAL_RX_BUF_RBM_SW3_BM);
  1037. }
  1038. /* Peer can be NULL is case of LFR */
  1039. if (qdf_likely(peer != NULL))
  1040. vdev = NULL;
  1041. nbuf = nbuf_head;
  1042. while (nbuf) {
  1043. next = nbuf->next;
  1044. rx_tlv_hdr = qdf_nbuf_data(nbuf);
  1045. peer_mdata = hal_rx_mpdu_peer_meta_data_get(rx_tlv_hdr);
  1046. peer_id = DP_PEER_METADATA_PEER_ID_GET(peer_mdata);
  1047. peer = dp_peer_find_by_id(soc, peer_id);
  1048. if (deliver_list_head && peer && (vdev != peer->vdev)) {
  1049. dp_rx_deliver_to_stack(vdev, peer, deliver_list_head);
  1050. deliver_list_head = NULL;
  1051. deliver_list_tail = NULL;
  1052. }
  1053. if (qdf_likely(peer != NULL))
  1054. vdev = peer->vdev;
  1055. /*
  1056. * Check if DMA completed -- msdu_done is the last bit
  1057. * to be written
  1058. */
  1059. if (!hal_rx_attn_msdu_done_get(rx_tlv_hdr)) {
  1060. QDF_TRACE(QDF_MODULE_ID_DP,
  1061. QDF_TRACE_LEVEL_ERROR,
  1062. FL("MSDU DONE failure"));
  1063. DP_STATS_INC(vdev->pdev, dropped.msdu_not_done,
  1064. 1);
  1065. hal_rx_dump_pkt_tlvs(rx_tlv_hdr, QDF_TRACE_LEVEL_INFO);
  1066. qdf_assert(0);
  1067. }
  1068. /*
  1069. * The below condition happens when an MSDU is spread
  1070. * across multiple buffers. This can happen in two cases
  1071. * 1. The nbuf size is smaller then the received msdu.
  1072. * ex: we have set the nbuf size to 2048 during
  1073. * nbuf_alloc. but we received an msdu which is
  1074. * 2304 bytes in size then this msdu is spread
  1075. * across 2 nbufs.
  1076. *
  1077. * 2. AMSDUs when RAW mode is enabled.
  1078. * ex: 1st MSDU is in 1st nbuf and 2nd MSDU is spread
  1079. * across 1st nbuf and 2nd nbuf and last MSDU is
  1080. * spread across 2nd nbuf and 3rd nbuf.
  1081. *
  1082. * for these scenarios let us create a skb frag_list and
  1083. * append these buffers till the last MSDU of the AMSDU
  1084. */
  1085. if (qdf_unlikely(vdev->rx_decap_type ==
  1086. htt_cmn_pkt_type_raw)) {
  1087. dp_rx_sg_create(nbuf, rx_tlv_hdr, &mpdu_len,
  1088. &is_first_frag, &frag_list_len,
  1089. &head_frag_nbuf,
  1090. &frag_list_head,
  1091. &frag_list_tail);
  1092. if (is_first_frag) {
  1093. nbuf = next;
  1094. continue;
  1095. } else {
  1096. frag_list_head = NULL;
  1097. frag_list_tail = NULL;
  1098. nbuf = head_frag_nbuf;
  1099. rx_tlv_hdr = qdf_nbuf_data(nbuf);
  1100. }
  1101. }
  1102. /*
  1103. * This is a redundant sanity check, Ideally peer
  1104. * should never be NULL here. if for any reason it
  1105. * is NULL we will assert.
  1106. * Do nothing for LFR case.
  1107. */
  1108. dp_rx_peer_validity_check(peer);
  1109. if (!dp_wds_rx_policy_check(rx_tlv_hdr, vdev, peer,
  1110. hal_rx_msdu_end_da_is_mcbc_get(rx_tlv_hdr))) {
  1111. QDF_TRACE(QDF_MODULE_ID_DP,
  1112. QDF_TRACE_LEVEL_ERROR,
  1113. FL("Policy Check Drop pkt"));
  1114. /* Drop & free packet */
  1115. qdf_nbuf_free(nbuf);
  1116. /* Statistics */
  1117. nbuf = next;
  1118. continue;
  1119. }
  1120. if (qdf_unlikely(peer && peer->bss_peer)) {
  1121. QDF_TRACE(QDF_MODULE_ID_DP,
  1122. QDF_TRACE_LEVEL_ERROR,
  1123. FL("received pkt with same src MAC"));
  1124. DP_STATS_INC(vdev->pdev, dropped.mec, 1);
  1125. /* Drop & free packet */
  1126. qdf_nbuf_free(nbuf);
  1127. /* Statistics */
  1128. nbuf = next;
  1129. continue;
  1130. }
  1131. pdev = vdev->pdev;
  1132. if (qdf_unlikely(peer && (peer->nawds_enabled == true) &&
  1133. (hal_rx_msdu_end_da_is_mcbc_get(rx_tlv_hdr)) &&
  1134. (hal_rx_get_mpdu_mac_ad4_valid(rx_tlv_hdr) == false))) {
  1135. DP_STATS_INC_PKT(peer, rx.nawds_mcast_drop, 1,
  1136. qdf_nbuf_len(nbuf));
  1137. qdf_nbuf_free(nbuf);
  1138. nbuf = next;
  1139. continue;
  1140. }
  1141. if (qdf_likely(
  1142. !hal_rx_attn_tcp_udp_cksum_fail_get(rx_tlv_hdr)
  1143. &&
  1144. !hal_rx_attn_ip_cksum_fail_get(rx_tlv_hdr))) {
  1145. qdf_nbuf_rx_cksum_t cksum = {0};
  1146. cksum.l4_result =
  1147. QDF_NBUF_RX_CKSUM_TCP_UDP_UNNECESSARY;
  1148. qdf_nbuf_set_rx_cksum(nbuf, &cksum);
  1149. }
  1150. tid = hal_rx_mpdu_start_tid_get(rx_tlv_hdr);
  1151. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  1152. "%s: %d, SGI: %d, tid: %d",
  1153. __func__, __LINE__, sgi, tid);
  1154. bw = hal_rx_msdu_start_bw_get(rx_tlv_hdr);
  1155. reception_type = hal_rx_msdu_start_reception_type_get(
  1156. rx_tlv_hdr);
  1157. nss = hal_rx_msdu_start_nss_get(rx_tlv_hdr);
  1158. pkt_type = hal_rx_msdu_start_get_pkt_type(rx_tlv_hdr);
  1159. DP_STATS_INC(vdev->pdev,
  1160. rx.reception_type[reception_type], 1);
  1161. DP_STATS_INCC(vdev->pdev, rx.nss[nss], 1,
  1162. ((reception_type == REPT_MU_MIMO) ||
  1163. (reception_type == REPT_MU_OFDMA_MIMO))
  1164. );
  1165. DP_STATS_INCC(peer, rx.err.mic_err, 1,
  1166. hal_rx_mpdu_end_mic_err_get(
  1167. rx_tlv_hdr));
  1168. DP_STATS_INCC(peer, rx.err.decrypt_err, 1,
  1169. hal_rx_mpdu_end_decrypt_err_get(
  1170. rx_tlv_hdr));
  1171. DP_STATS_INC(peer, rx.wme_ac_type[TID_TO_WME_AC(tid)],
  1172. 1);
  1173. DP_STATS_INC(peer, rx.reception_type[reception_type],
  1174. 1);
  1175. if (soc->process_rx_status) {
  1176. ampdu_flag = (mpdu_desc_info.mpdu_flags &
  1177. HAL_MPDU_F_AMPDU_FLAG);
  1178. sgi = hal_rx_msdu_start_sgi_get(rx_tlv_hdr);
  1179. mcs = hal_rx_msdu_start_rate_mcs_get(rx_tlv_hdr);
  1180. DP_STATS_INC(peer, rx.bw[bw], 1);
  1181. DP_STATS_INC(peer, rx.sgi_count[sgi], 1);
  1182. DP_STATS_INCC(peer, rx.ampdu_cnt, 1, ampdu_flag);
  1183. DP_STATS_INCC(peer, rx.non_ampdu_cnt, 1, !(ampdu_flag));
  1184. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].
  1185. mcs_count[MAX_MCS], 1,
  1186. ((mcs >= MAX_MCS_11A) &&
  1187. (pkt_type == DOT11_A)));
  1188. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].
  1189. mcs_count[mcs], 1,
  1190. ((mcs < MAX_MCS_11A) &&
  1191. (pkt_type == DOT11_A)));
  1192. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].
  1193. mcs_count[MAX_MCS], 1,
  1194. ((mcs >= MAX_MCS_11B) &&
  1195. (pkt_type == DOT11_B)));
  1196. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].
  1197. mcs_count[mcs], 1,
  1198. ((mcs < MAX_MCS_11B) &&
  1199. (pkt_type == DOT11_B)));
  1200. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].
  1201. mcs_count[MAX_MCS], 1,
  1202. ((mcs >= MAX_MCS_11A) &&
  1203. (pkt_type == DOT11_N)));
  1204. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].
  1205. mcs_count[mcs], 1,
  1206. ((mcs < MAX_MCS_11A) &&
  1207. (pkt_type == DOT11_N)));
  1208. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].
  1209. mcs_count[MAX_MCS], 1,
  1210. ((mcs >= MAX_MCS_11AC) &&
  1211. (pkt_type == DOT11_AC)));
  1212. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].
  1213. mcs_count[mcs], 1,
  1214. ((mcs < MAX_MCS_11AC) &&
  1215. (pkt_type == DOT11_AC)));
  1216. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].
  1217. mcs_count[MAX_MCS], 1,
  1218. ((mcs >= (MAX_MCS - 1)) &&
  1219. (pkt_type == DOT11_AX)));
  1220. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].
  1221. mcs_count[mcs], 1,
  1222. ((mcs < (MAX_MCS - 1)) &&
  1223. (pkt_type == DOT11_AX)));
  1224. }
  1225. /*
  1226. * HW structures call this L3 header padding --
  1227. * even though this is actually the offset from
  1228. * the buffer beginning where the L2 header
  1229. * begins.
  1230. */
  1231. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  1232. FL("rxhash: flow id toeplitz: 0x%x\n"),
  1233. hal_rx_msdu_start_toeplitz_get(rx_tlv_hdr));
  1234. l2_hdr_offset =
  1235. hal_rx_msdu_end_l3_hdr_padding_get(rx_tlv_hdr);
  1236. msdu_len = hal_rx_msdu_start_msdu_len_get(rx_tlv_hdr);
  1237. pkt_len = msdu_len + l2_hdr_offset + RX_PKT_TLVS_LEN;
  1238. if (unlikely(qdf_nbuf_get_ext_list(nbuf)))
  1239. qdf_nbuf_pull_head(nbuf, RX_PKT_TLVS_LEN);
  1240. else {
  1241. qdf_nbuf_set_pktlen(nbuf, pkt_len);
  1242. qdf_nbuf_pull_head(nbuf,
  1243. RX_PKT_TLVS_LEN +
  1244. l2_hdr_offset);
  1245. }
  1246. if (qdf_unlikely(vdev->mesh_vdev)) {
  1247. if (dp_rx_filter_mesh_packets(vdev, nbuf,
  1248. rx_tlv_hdr)
  1249. == QDF_STATUS_SUCCESS) {
  1250. QDF_TRACE(QDF_MODULE_ID_DP,
  1251. QDF_TRACE_LEVEL_INFO_MED,
  1252. FL("mesh pkt filtered"));
  1253. DP_STATS_INC(vdev->pdev, dropped.mesh_filter,
  1254. 1);
  1255. qdf_nbuf_free(nbuf);
  1256. nbuf = next;
  1257. continue;
  1258. }
  1259. dp_rx_fill_mesh_stats(vdev, nbuf, rx_tlv_hdr, peer);
  1260. }
  1261. #ifdef QCA_WIFI_NAPIER_EMULATION_DBG /* Debug code, remove later */
  1262. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1263. "p_id %d msdu_len %d hdr_off %d",
  1264. peer_id, msdu_len, l2_hdr_offset);
  1265. print_hex_dump(KERN_ERR,
  1266. "\t Pkt Data:", DUMP_PREFIX_NONE, 32, 4,
  1267. qdf_nbuf_data(nbuf), 128, false);
  1268. #endif /* NAPIER_EMULATION */
  1269. if (qdf_likely(vdev->rx_decap_type ==
  1270. htt_cmn_pkt_type_ethernet) &&
  1271. (qdf_likely(!vdev->mesh_vdev))) {
  1272. /* WDS Source Port Learning */
  1273. dp_rx_wds_srcport_learn(soc,
  1274. rx_tlv_hdr,
  1275. peer,
  1276. nbuf);
  1277. /* Intrabss-fwd */
  1278. if (dp_rx_check_ap_bridge(vdev))
  1279. if (dp_rx_intrabss_fwd(soc,
  1280. peer,
  1281. rx_tlv_hdr,
  1282. nbuf)) {
  1283. nbuf = next;
  1284. continue; /* Get next desc */
  1285. }
  1286. }
  1287. rx_bufs_used++;
  1288. dp_rx_lro(rx_tlv_hdr, peer, nbuf, int_ctx->lro_ctx);
  1289. DP_RX_LIST_APPEND(deliver_list_head,
  1290. deliver_list_tail,
  1291. nbuf);
  1292. DP_STATS_INCC_PKT(peer, rx.multicast, 1, pkt_len,
  1293. hal_rx_msdu_end_da_is_mcbc_get(
  1294. rx_tlv_hdr));
  1295. DP_STATS_INC_PKT(peer, rx.to_stack, 1,
  1296. pkt_len);
  1297. if ((pdev->enhanced_stats_en) && likely(peer) &&
  1298. hal_rx_attn_first_mpdu_get(rx_tlv_hdr)) {
  1299. if (soc->cdp_soc.ol_ops->update_dp_stats) {
  1300. soc->cdp_soc.ol_ops->update_dp_stats(
  1301. vdev->pdev->osif_pdev,
  1302. &peer->stats,
  1303. peer_id,
  1304. UPDATE_PEER_STATS);
  1305. dp_aggregate_vdev_stats(peer->vdev);
  1306. soc->cdp_soc.ol_ops->update_dp_stats(
  1307. vdev->pdev->osif_pdev,
  1308. &peer->vdev->stats,
  1309. peer->vdev->vdev_id,
  1310. UPDATE_VDEV_STATS);
  1311. }
  1312. }
  1313. nbuf = next;
  1314. }
  1315. if (deliver_list_head)
  1316. dp_rx_deliver_to_stack(vdev, peer, deliver_list_head);
  1317. return rx_bufs_used; /* Assume no scale factor for now */
  1318. }
  1319. /**
  1320. * dp_rx_detach() - detach dp rx
  1321. * @pdev: core txrx pdev context
  1322. *
  1323. * This function will detach DP RX into main device context
  1324. * will free DP Rx resources.
  1325. *
  1326. * Return: void
  1327. */
  1328. void
  1329. dp_rx_pdev_detach(struct dp_pdev *pdev)
  1330. {
  1331. uint8_t pdev_id = pdev->pdev_id;
  1332. struct dp_soc *soc = pdev->soc;
  1333. struct rx_desc_pool *rx_desc_pool;
  1334. rx_desc_pool = &soc->rx_desc_buf[pdev_id];
  1335. if (rx_desc_pool->pool_size != 0) {
  1336. dp_rx_desc_pool_free(soc, pdev_id, rx_desc_pool);
  1337. qdf_spinlock_destroy(&soc->rx_desc_mutex[pdev_id]);
  1338. }
  1339. return;
  1340. }
  1341. /**
  1342. * dp_rx_attach() - attach DP RX
  1343. * @pdev: core txrx pdev context
  1344. *
  1345. * This function will attach a DP RX instance into the main
  1346. * device (SOC) context. Will allocate dp rx resource and
  1347. * initialize resources.
  1348. *
  1349. * Return: QDF_STATUS_SUCCESS: success
  1350. * QDF_STATUS_E_RESOURCES: Error return
  1351. */
  1352. QDF_STATUS
  1353. dp_rx_pdev_attach(struct dp_pdev *pdev)
  1354. {
  1355. uint8_t pdev_id = pdev->pdev_id;
  1356. struct dp_soc *soc = pdev->soc;
  1357. struct dp_srng rxdma_srng;
  1358. uint32_t rxdma_entries;
  1359. union dp_rx_desc_list_elem_t *desc_list = NULL;
  1360. union dp_rx_desc_list_elem_t *tail = NULL;
  1361. struct dp_srng *dp_rxdma_srng;
  1362. struct rx_desc_pool *rx_desc_pool;
  1363. if (wlan_cfg_get_dp_pdev_nss_enabled(pdev->wlan_cfg_ctx)) {
  1364. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1365. "nss-wifi<4> skip Rx refil %d", pdev_id);
  1366. return QDF_STATUS_SUCCESS;
  1367. }
  1368. qdf_spinlock_create(&soc->rx_desc_mutex[pdev_id]);
  1369. pdev = soc->pdev_list[pdev_id];
  1370. rxdma_srng = pdev->rx_refill_buf_ring;
  1371. soc->process_rx_status = 0;
  1372. rxdma_entries = rxdma_srng.alloc_size/hal_srng_get_entrysize(
  1373. soc->hal_soc, RXDMA_BUF);
  1374. rx_desc_pool = &soc->rx_desc_buf[pdev_id];
  1375. dp_rx_desc_pool_alloc(soc, pdev_id, rxdma_entries*3, rx_desc_pool);
  1376. /* For Rx buffers, WBM release ring is SW RING 3,for all pdev's */
  1377. dp_rxdma_srng = &pdev->rx_refill_buf_ring;
  1378. dp_rx_buffers_replenish(soc, pdev_id, dp_rxdma_srng, rx_desc_pool,
  1379. 0, &desc_list, &tail, HAL_RX_BUF_RBM_SW3_BM);
  1380. return QDF_STATUS_SUCCESS;
  1381. }